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Abstract

There are many challenges in subsurface modeling. First, many important subsurface

processes occur at the interfaces, either the interface of two different porous media (e.g.,

layered media) or the interface of free-porous media (e.g., hyporheic zones, arterial mass

transport). Second, these processes (flow, transport, and mechanical deformation) are

complex, coupled, and multi-physics by nature. Third, natural geomaterials such as fis-

sured rocks often exhibit a pore-size distribution with two dominant pore scales. Fourth,

the practical problems are invariably large-scale by nature. Thus, successful modeling

of such processes in complex porous media requires: (i) an accurate prescription of flow

dynamics within each region and at the interface, (ii) development of robust and accurate

computational methods, and (iii) implementation and understanding of these models in

a parallel and scalable high performance computing (HPC) environment.

This dissertation develops modeling strategies to advance the current state-of-the-art

in subsurface modeling to address the challenges mentioned above. The specific aims are

three-fold: First, we develop a comprehensive mathematical framework that provides a

self-consistent set of conditions for flow dynamics at an interface. It will be shown that

many of the popular interface conditions form special cases of the proposed framework.

The approach hinges on extending the principle of virtual power to account for the power

expended at the interface and then appealing to the calculus of variations.

Second, we present a discontinuous Galerkin formulation for the double porosity/per-

meability (DPP) model. We present a numerical procedure to discretize the interface

conditions accurately. We develop numerical strategies to simulate and study the flow of

fluids in porous media with complex pore-networks by using the DPP model. We also

devise solver and parallel computing strategies to solve large-scale practical problems.

Third, we address the coupling of mechanical deformation of the porous solid with

transport processes. We assume the porous solid to be an elastoplastic material, and

transport of chemical species to be Fickian and develop a mathematical model and a
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robust computational framework. These modeling tools can be applied to a variety of

problems such as moisture diffusion in cementitious materials and consolidation of soils

under severe loading-unloading regimes.
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Chapter 1

Introduction

Emergence of computational technologies and demand of industries have pushed the

approach of combining mechanics, computational methods and HPC to the forefront.

Many important science and engineering problems involve flow and transport in a domain

which comprises free flow and porous regions. In these problems, a plethora of vital

processes takes place within each regions and also near the interface of free flow and porous

regions. One has to capture these processes accurately to discern the overall dynamics

and all the interactions in the entire domain. We now discuss two such problems, which

have motivated us to undertake the research presented hereby.

The first problem pertains to the hyporheic zone, located beneath a stream bed, where

mixing of surface and shallow groundwater (subsurface water) takes place. Myriads of

geological and hydrochemical (coupled) processes happen at this zone, which are vital to

water distribution, environmental safety and can affect the whole food chain [95, 166].

As shown in Fig. 1.1), the zone may contain multiple layers of porous medium (with

different material properties) deposited vertically where top layer interacts (i.e., exchange

water and species) at the interface with free-flow domain.

The second problem pertains to the arterial mass transfer—the transport of athero-

genic macromolecules, such as low density lipoproteins (LDL), from bulk blood flow into

artery walls and vice versa [168, 174] (see Fig. 1.2). Accumulation of LDL at the inter-

face of bulk blood flow and the endothelial layer—the part of lumen next to the blood
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Figure 1.1: The left figure (adapted from the US Geological Survey [170]) shows a typical
hyporheic zone. The right figure (adapted from the British Environment
Agency [41]) depicts important processes that take place in a hyporheic zone.

flow—is a primary cause of various cardiovascular diseases; for example, atherosclerotic

lesions within the intima of arteries [43, 84]. A firm understanding of transluminal flow

and transport will enable physicians to administer better therapeutic procedures. By

changing the scale of observation, the artery wall itself is composed of stack of porous

membranes wrapped around the (free-flow) lumen.

Predictive modeling of coupled free-porous, multi-physics problems (with strong ma-

terial heterogeneity) such as arterial mass transfer and hyporheic zone needs: (i) a firm

understanding of underlying mechanics (both at the interface of free-porous and within

each regions), (ii) development of robust and accurate computational methods, and (iii)

implementation and understanding of these models in a parallel and scalable HPC envi-

ronment.

On the mechanics front, three outstanding problems will involve:
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Figure 1.2: The left figure shows a microscopic blood vessel in capillary network [127].
The right figure shows that by changing scale of observation, lumen wall
membrane itself is composed of stack of porous media [176].

1. Theoretical interface conditions for coupled flow dynamics at the interfaces. Em-

ploying purely empirical interface conditions at the physics disparity (e.g., free-

porous media interface) are prevalent in the literature1. However, there is a knowl-

edge gap on a unified theoretical framework (with underpinning mechanics) to ob-

tain a complete set of interface conditions which capture the prior experimental

relations.

2. Porous media with complex microstructure. In the recent years, there has been an

increasing demand on the exploration of hydrocarbons from unconventional sources

(i.e., oil and gas from tight shale), [167]. Laboratory experiments confirm that many

of these geomaterials such as (tight) shale rocks exhibit two or more dominant pore-

scales connected by two dominant pore-networks [130]. On the other hand, additive

manufacturing now enables us to easily create porous media with complex porous

structure. We can now direct hardware to deposit material layer upon layer, in

1Physics disparity interfaces should not be confused with interfaces at the material disparity. Material

disparity, also known as heterogeneity, are observed within a region at the vicinity of jump in material

properties such as permeability.
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precise geometric shapes. One example of this complex porous media is biological

implants that are designed to replace, support, or enhance a damaged biological

structure. These demands well justify to account for multi-porosity in our coupled

free flow-porous system. As illustrated in Fig. 1.3, at each layer of porous domain

two or more dominant pore networks could coexist with the possibility of mass

exchange between pore-scales. Hence, a mathematical model with strong continuum

thermomechanics underpinning is required to address double porosity/permeability

(DPP) or multi-porosity problem.

3. Systematic developement of multi-physics of coupled problems Cementitious materi-

als are susceptible to degradation in their lifespan due to external stimuli, which can

be in the form of mechanical loading, temperature, transport of chemical species

within the material, chemical reactions, or radiation. Degradation, which involves

deterioration of host material, is usually modeled via a coupled mechanism such as

coupled deformation-diffusion system. A firm understanding of this system and its

effects on the mechanical response is central to a wide variety of problems. Prior

experiments have shown that the presence and diffusion of a chemical species affect

the plastic material properties; for example, the elastic yield functions depends on

the concentration of the species. Such dependence on material properties affects

the plastic deformation of the material.

In addition to deriving a robust mathematical model which incorporates various as-

pects of mechanics, one should also be cognizant that these mathematical models are not

amenable to analytical solutions and existing numerical formulations are not adequate.

Thus an accurate and convergent computational framework for modeling these systems

needs to be developed. Excessive care should be taken with respect to modeling diffusion

of a chemical species which is an omnipresent phenomenon in geophysical problems. One
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Figure 1.3: Different features of a typical coupled free-porous media model with complex
pore-networks and highly heterogeneous permeability.

encounters several challenges in solving coupled problems that involve a diffusion process

(e.g., degradaion problems). The central one is about producing non-negative solutions

under the diffusion equations. It is well-known that popular numerical formulations for

transport equations do not satisfy maximum principle and the non-negative constraint.

These violations are prominent when the diffusion process is anisotropic. Using such for-

mulations for diffusion problems in conjunction with other problems such as elastoplastic

deformation will produce unreliable solutions.

Apart from the above challenges, the application problems in these areas are typically

large-scale in nature, These large-scale problems cannot be solved on a standard desktop

or by employing direct solvers, as such a computation will be prohibitively expensive.

and hence one needs to employ parallel computing tools and HPC techniques to tackle

these problems.
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It is beyond the scope of a PhD thesis to address all the aspects of the overarching

goal. Herein, critical knowledge gaps are identified, and solutions will be provided. Below

is the list of these objectives, which all stems from the overarching goal.

� Develop a framework for obtaining appropriate conditions for coupled flow dynam-

ics at the interface of free-porous media. Also, recover some popular conditions

available in the literature for coupled flows as special cases of the proposed frame-

work.

� Propose a stabilized formulation for the multi-scale porous media (with high ma-

terial heterogeneity), which suppresses the non-physical numerical instabilities in

coupled flow-transport problems, but captures the physical instabilities.

� Propose two composable block solver methodologies to solve Kx = b that arise

from finite element modeling of multi-scale porous media. Also, use performance

spectrum model to gauge solvers scalability and comment on the choice of finite

element formulations in large scale problems.

� Propose a mathematical model which describes the response of an elastoplastic

material due to the diffusion of a chemical species within the material. Also, de-

veloping a computational framework for the resulting system of coupled equations

that satisfies maximum principle and the non-negative constraint. This problem

could be seen as a precursor to incorporating plastic deformations of the porous

matrix into the interface problem.

The theme of the current work is described in Fig. 1.4. We resort to different the-

oretical and computational approaches to pursue the objectives outlined earlier. For

deriving a self-consistent boundary conditions at the interface of the free-porous region,

our approach will utilize the principle of virtual power and the theory of interacting
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Figure 1.4: This figure shows the scope of current dissertation, which lies at the intersec-
tion of four topics.

continua. We invoke a geometric argument to enforce the internal constraints, impose

the principle of material frame-indifference on all the constitutive relations and use the

standard results from the calculus of variations. To numerically solve the DPP model

in a highly heterogeneous domain, we propose a stabilized mixed discontinuous Galerkin

formulation. This formulation will enjoy several attractive features. Using the compos-

able solvers feature available in PETSc and the finite element libraries available under

the Firedrake Project, we illustrate two different ways by which one can effectively pre-

condition systems of equations resulting from large-scale DPP problem. Also, we employ

the performance model called the Time-Accuracy- Size (TAS) spectrum model to demon-

strate that the proposed composable block solvers are scalable in both the parallel and

algorithmic sense. Finally, we develop a computational framework for modeling coupled

elastoplastic-diffusion system. Our approach will employ an optimization-based solver

that respects maximum principle and satisfies physical constraints like the non-negative

constraint.
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1.1 An outline of the proposal

Background material and preliminaries (including the governing equations of the DPP

model, and convenient grouping of the variables) are provided in chapter 2. The weak

forms of the classical, and continuous Galerkin mixed finite element formulations are

presented along with the proposed stabilized mixed DG formulation in chapter 3. A sys-

tematic convergence analysis and the error estimation of the proposed DG formulation are

carried out in chapter 4. Chapter 5 begins with constant flow patch tests and sensitivity

studies on the stabilization parameters. Numerical convergence analysis and structure

preserving properties are provided. In addition, the proposed DG formulation is im-

plemented to study viscous-fingering-type physical instabilities in heterogeneous porous

media with double pore-networks. Two block solver methodologies for preconditioning

linear algebraic system arises from DPP are discussed in detail in chapter 6. The frame-

work of the performance spectrum model along with the guidelines on how to interpret

the resulting diagrams are presented in chapter 7. Using numerical simulations, the per-

formance of the proposed block solvers are gauged. In the same chapter, we also compare

the performance of the chosen finite element discretizations using the TAS performance

spectrum model. Using the principle of virtual power at the interface of free-porous re-

gions, we obtain complete interface conditions in chapter 8. We then proceed to show

that the popular conditions – Beavers-Joseph (BJ) and Beavers-Joseph-Saffman (BJS)

conditions – are special cases of the proposed framework. In chapter 9, we present a

mathematical model which describes the response of a elastoplastic material due to the

diffusion of a chemical species within the material. We also present a computational

framework for the resulting system of coupled equations and illustrate the predictive ca-

pabilities of the proposed computational framework. This chapter ends with a discussion

on the physics of the deformation of an elasto-plastic material under material degradation
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due to the transport of a chemical species. Finally, conclusions and future trajectories

are drawn in chapter 10.
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Chapter 2

Background Material

and Preliminaries

2.1 Double porosity/permeability (DPP) model

A class of models, which is commonly referred to as double porosity/permeability

(DPP) models, have been found to be particularly attractive in modeling flows in porous

media with two pore-networks (e.g., see [21, 175, 66, 27, 135, 51]). Recently, a DPP

mathematical model with strong continuum thermomechanics underpinning has been

derived in [135]. This model, which will be central to this text and will be referred to

as the DPP model from here on, describes the flow of a single-phase incompressible fluid

in a rigid porous medium with two distinct pore-networks, with a possible mass transfer

across the pore-networks. The governing equations form a boundary value problem in

terms of four-fields and the nature of the PDE is elliptic under steady-state responses.

We refer to the two pore-networks as macro-pore and micro-pore networks, which are

denoted by subscripts 1 and 2, respectively. We denote the porous domain by Ω ⊂ Rnd,

where “nd” represents the number of spatial dimensions. For a precise mathematical

treatment, we assume that Ω is an open bounded domain. The boundary ∂Ω = Ω−Ω is

assumed to be smooth, where the superposed bar denotes the set closure. A spatial point

is denoted by x ∈ Ω. The gradient operator with respect to x is denoted by grad[·] and
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the corresponding divergence operator is denoted by div[·]. The unit outward normal to

the boundary is denoted by n̂(x). The pressure and the discharge (or Darcy) velocity

fields in the macro-pore network are, respectively, denoted by p1(x) and u1(x), and the

corresponding fields in the micro-pore network are denoted by p2(x) and u2(x). We

denote the viscosity and true density of the fluid by µ and γ, respectively.

The abstract boundary value problem under the DPP model takes the following form:

Find u1(x), u2(x), p1(x) and p2(x) such that

µk−1
1 u1(x) + grad[p1(x)] = γb(x) in Ω, (2.1a)

µk−1
2 u2(x) + grad[p2(x)] = γb(x) in Ω, (2.1b)

div[u1(x)] = +χ(x) in Ω, (2.1c)

div[u2(x)] = −χ(x) in Ω, (2.1d)

χ(x) = −β
µ

(p1(x)− p2(x)) in Ω, (2.1e)

u1(x) · n̂(x) = un1(x) on Γu1 , (2.1f)

u2(x) · n̂(x) = un2(x) on Γu2 , (2.1g)

p1(x) = p01(x) on Γp1, and (2.1h)

p2(x) = p02(x) on Γp2, (2.1i)

where k1(x) and k2(x), respectively, denote the (isotropic) permeabilities of the macro-

pore and micro-pore networks, b(x) denotes the specific body force, and β is a dimen-

sionless characteristic of the porous medium. χ(x) accounts for the mass exchange across

the pore-networks and is the rate of volume transfer of the fluid between the two pore-

networks per unit volume of the porous medium. The dimension of χ(x) is one over the

time [M0L0T−1]. Γui denotes that part of the boundary on which the normal component

of velocity is prescribed in the macro-pore (i = 1) and micro-pore (i = 2) networks, and

un1(x) and un2(x) denote the prescribed normal components of the velocities on Γu1 and

11



Γu2 , respectively. Γpi is that part of the boundary on which the pressure is prescribed in

the macro-pore (i = 1) and micro-pore (i = 2) networks, and p01(x) and p02(x) denote

the prescribed pressures on Γp1 and Γp2, respectively.

For mathematical well-posedness, we assume that

Γu1 ∪ Γp1 = ∂Ω, Γu1 ∩ Γp1 = ∅, Γu2 ∪ Γp2 = ∂Ω, and Γu2 ∩ Γp2 = ∅. (2.2)

However, if Γp1 = ∅ and Γp2 = ∅ hold simultaneously then one will be able to find the

pressure in each pore-network only up to an arbitrary constant. We assume that the

drag coefficients in the two pore-networks, µ/k1 and µ/k2, are bounded below and above.

That is,

0 < inf
x∈Ω

µ

ki(x)
≤ sup

x∈Ω

µ

ki(x)
< +∞ i = 1, 2. (2.3)

This also means that there exist two non-dimensional constants 1 ≤ Cdrag,1, Cdrag,2 < +∞

where

Cdrag,1 :=

(
sup
x∈Ω

µ

k1(x)

)(
inf
x∈Ω

µ

k1(x)

)−1

and Cdrag,2 :=

(
sup
x∈Ω

µ

k2(x)

)(
inf
x∈Ω

µ

k2(x)

)−1

.

(2.4)

2.2 Grouping of field variables in continuous setting

We now discuss two ways of grouping the field variables, which form the basis for

the proposed composable block solvers. Under the first approach, the field variables are

grouped based on the scale of the pore-network. That is, all the field variables (i.e.,

velocity and pressure) pertaining to the macro-pore network are placed in one group,

and the field variables of the micro-pore network are placed into another. We refer to

this splitting of field variables as the scale-split and the associated grouping takes the
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following form

Υ1 =



u1(x)

p1(x)

u2(x)

p2(x)


. (2.5)

The governing equations of the DPP model under the scale-split can be compactly written

as

L1[Υ1] = F1. (2.6)

In the above equation, the differential operator takes the following form

L1 :=



µk−1
1 I grad[·] O 0

div[·] β
µ

O −β
µ

O 0 µk−1
2 I grad[·]

O −β
µ

div[·] β
µ


, (2.7)

where I denotes the identity tensor, O denotes the zero tensor, and the forcing function

takes the following form

F1 =



γb(x)

0

γb(x)

0


. (2.8)

Under the second approach, the field variables are grouped based on the nature of the

fields. That is, field variables of a similar kind are placed in the same group. We refer

to this splitting of field variables as the field-split and the associated grouping takes the

13



following form

Υ2 =



u1(x)

u2(x)

p1(x)

p2(x)


. (2.9)

The governing equations of the DPP model under the field-split can be compactly written

as

L2[Υ2] = F2, (2.10)

where the differential operator takes the following form

L2 :=



µk−1
1 I O grad[·] 0

O µk−1
2 I 0 grad[·]

div[·] O β
µ

−β
µ

O div[·] −β
µ

β
µ


(2.11)

and the forcing function can be written as

F2 =



γb(x)

γb(x)

0

0


. (2.12)

2.3 Geometrical definitions

The domain is partitioned into “Nele” subdomains, which will be elements in the

context of the finite element method. These elements form a mesh on the domain. Math-

ematically, a mesh T on Ω is a finite collection of disjoint polyhedra T = {ω1, · · · , ωNele}

14



such that

Ω =
Nele⋃
i=1

ωi. (2.13)

(Recall that an overline denotes the set closure.) We refer to ωi as the i-th subdomain

(element). The union of all open subdomains is denoted by

Ω̃ =
Nele⋃
i=1

ωi (2.14)

with the understanding that an integration over Ω̃ is interpreted as∫
Ω̃

(·)dΩ =
Nele∑
i=1

∫
ωi

(·)dΩ. (2.15)

The boundary of element ωi is denoted by ∂ωi := ωi − ωi. The set of all edges1 in

the mesh is denoted by E and the set of all interior edges is denoted by E int. The entire

boundary of the skeleton of the mesh (i.e, the union of all the interior and exterior edges)

is denoted by

Γ =
⋃
Υ∈E

Υ ≡
Nele⋃
i=1

∂ωi. (2.16)

The entire interior boundary (i.e., the union of all the interior edges) is denoted by

Γint =
⋃

Υ∈E int

Υ ≡ Γ \ ∂Ω. (2.17)

Similar to the broken integral over Ω̃ (i.e., equation (2.15)), the integral over Γint should

be interpreted as ∫
Γint

(·)dΓ =
∑

Υ∈E int

∫
Υ

(·)dΓ. (2.18)

1For simplicity, we use “edge” to refer to a node in 1D, an edge in 2D and a face in 3D. The context

will be clear from the particular discussion.
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2.4 Average and jump operators

Consider an interior edge Υ ∈ E int. We denote the elements that juxtapose Υ by ω+
Υ

and ω−Υ. The unit normal vectors on this interior edge pointing outwards to ω+
Υ and ω−Υ

are, respectively, denoted by n̂+
Υ and n̂−Υ (see Fig. 2.1). The average {{·}} and jump J·K

operators on Υ for a scalar field ϕ(x) are, respectively, defined as

{{ϕ}} :=
1

2

(
ϕ+

Υ(x) + ϕ−Υ(x)
)

and JϕK := ϕ+
Υ(x)n̂+

Υ(x) + ϕ−Υ(x)n̂−Υ(x) ∀x ∈ Υ,

(2.19)

where ϕ+
Υ(x) and ϕ−Υ(x) are the restrictions of ϕ(x) onto the elements ω+

Υ and ω−Υ, re-

spectively. Mathematically,

ϕ+
Υ(x) := ϕ(x)

∣∣
∂ω+

Υ
and ϕ−Υ(x) := ϕ(x)

∣∣
∂ω−

Υ
∀x ∈ Υ. (2.20)

For a vector field τ (x), these operators on Υ are defined as

{{τ}} :=
1

2

(
τ+

Υ(x) + τ−Υ(x)
)

and Jτ K := τ+
Υ(x) · n̂+

Υ(x) + τ−Υ(x) · n̂−Υ(x) ∀x ∈ Υ,

(2.21)

where τ+
Υ(x) and τ−Υ(x) are defined similar to equation (2.20). It is important to note

that the jump operator acts on a scalar field to produce a vector field and vice-versa. It

is also important to note that the above definitions are independent of the ordering of

the elements. The following identity will be used in the rest of this chapter:

Jϕτ K = Jτ K{{ϕ}}+ {{τ}} · JϕK. (2.22)

2.5 Mesh-related quantities

We denote the element diameter (i.e., the length of the largest edge) of ω ∈ T by hω.

The maximum element diameter in a given mesh is referred to as the mesh-size and is
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Figure 2.1: This figure shows the decomposition of the domain into subdomains. External
(∂Ω) and internal (Γint) boundaries of the domain, the interface (Υ) between
two adjacent elements, and normal vectors to the boundaries are shown.
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ω

hω

hincω

Figure 2.2: This figure illustrates the element diameter parameter hω and the diameter
of the inscribed circle hinc

ω for a typical element ω ∈ T .

denoted by

h := max
ω∈T

hω. (2.23)

We denote the diameter of the inscribed circle in ω ∈ T by hinc
ω (see Fig. 2.2). For an

internal edge Υ ∈ E int, shared by elements ω+
Υ and ω−Υ, we define the characteristic length

hΥ as

hΥ =
1

2

(
hω+

Υ
+ hω−

Υ

)
. (2.24)

For an external edge Υ ∈ E \ E int, hΥ is set to be equal to the element diameter of the

element containing the edge Υ.

We place two restrictions on a mesh, and we refer to a mesh satisfying these two

restrictions as an admissible mesh.

(i) The mesh is shape regular [28], which means that there exists a constant number

Csp such that

Csphω ≤ hinc
ω ∀ω ∈ T . (2.25)

The constant Csp is commonly referred to as the shape parameter.

(ii) The mesh is locally quasi-uniform, which also goes by the name contact regularity

[62]. This condition requires that the element diameters of any two neighboring

18



elements obey an equivalence relation. That is, there exists a constant number

Clqu > 0 such that

1

Clqu

hω+
Υ
≤ hω−

Υ
≤ Clquhω+

Υ
∀Υ ∈ E int. (2.26)

The ordering of the neighboring elements (i.e., which element is “+” and which one

is “−”) in the above inequality is arbitrary. This means that the above inequality

holds even if ω+
Υ and ω−Υ are interchanged. The locally quasi-uniform condition

implies the following useful bound:

1

2

(
1 +

1

Clqu

)
hω+

Υ
≤ hΥ ≤

1

2
(1 + Clqu)hω+

Υ
∀Υ ∈ E int and (2.27a)

1

2

(
1 +

1

Clqu

)
hω−

Υ
≤ hΥ ≤

1

2
(1 + Clqu)hω−

Υ
∀Υ ∈ E int. (2.27b)

A mesh T with mesh-size h will be denoted by Th. A sequence of meshes will be

denoted by TH, where H = (0, h̄). TH is said to be an admissible sequence of meshes if

Th is admissible for every h ∈ H.

Remark 2.5.1. There are other notions of characteristic mesh sizes which are employed

for DG methods. For example, an element length scale has been employed in [92], which

takes the following form under our notation

ĥ =
meas(ω+

Υ) + meas(ω−Υ)

2 meas(Υ)
, (2.28)

where meas(·) denotes the measure of a set. A good discussion on various mesh-based

characteristic lengths can be found in [62].

2.6 Functional analysis aspects

We denote the standard L2 inner-product over a set K by (·; ·)K. That is,

(a; b)K :=

∫
K
a · b dK (2.29)
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and the associated standard L2 norm is denoted by ‖ · ‖K as

‖a‖K =
√

(a; a)K. (2.30)

The subscript in the L2 inner-product and the associated norm will be dropped if K = Ω̃.

In a subsequent section on the interpolation error, we employ a general order Sobolev

semi-norm. To this end, let α = (α1, · · · , αnd) ∈ Nnd be a nd-tuple (i.e., multi-index),

the order of which is denoted by |α| :=
∑nd

i=1 αi. We denote the multi-index (classical or

distributional) partial derivative by Dα(·). For a scalar function ϕ(x) ∈ C∞c (K) (which is

a set of infinitely differentiable functions with compact support in K) [67], the multi-index

(classical) partial derivative with respect to a given coordinate system x = (x1, · · · , xnd)

is defined as

Dαϕ(x) :=
∂|α|ϕ(x)

∂xα1
1 ∂x

α2
2 · · · ∂x

αnd
nd

. (2.31)

Then, the multi-index distributional partial derivative of a scalar field a : K → R is

defined as

(Dαa(x);ϕ(x))K := (−1)|α| (a(x);Dαϕ(x))K ∀ϕ(x) ∈ C∞c (K). (2.32)

For a scalar field a : K → R, the s-th order Sobolev semi-norm over K is defined as

|a|Hs(K) :=

∑
|α|=s

‖Dαa(x)‖2
K

1/2

(2.33)

and for a vector field a : K → Rnd with scalar components ai (i = 1, · · · , nd), the

corresponding semi-norm is defined as

|a|Hs(K) :=

(
nd∑
i=1

|ai|2Hs(K)

)1/2

. (2.34)
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2.6.1 Inverse and trace inequalities2

The inequalities given below play a crucial role in obtaining bounds on the error due

to terms defined on the element interface. Mathematical proofs to these estimates can

be found in [173, 9, 62, 145].

Lemma 2.6.1. (Continuous trace inequality.) For an admissible mesh Th, the following

estimates hold ∀ω ∈ Th:

‖v‖∂ω ≤ Ctrace

(
1√
hω
‖v‖ω +

√
hω ‖grad[v]‖ω

)
∀v(x) ∈ H1(ω) and (2.35)

‖v‖∂ω ≤ Ctrace

(
1√
hω
‖v‖ω +

√
hω ‖grad[v]‖ω

)
∀v(x) ∈ (H1(ω))nd, (2.36)

where the Ctrace depends on the shape parameter (i.e., Csp) and the number of spatial

dimensions (nd) but it is not dependent on hω.

Let Pm(ω) denote the set of all polynomials up to and including m-th order over

ω ∈ Th. We then have the following discrete inequalities.

Lemma 2.6.2. (Discrete inverse inequality.) Let Th be an admissible mesh. Then the

following estimates hold ∀ω ∈ Th:

‖grad[vh]‖ω ≤ Cinvh
−1
ω ‖vh‖ω ∀vh(x) ∈ H1(ω) ∩Pm(ω) and (2.37)

‖grad[vh]‖ω ≤ Cinvh
−1
ω ‖vh‖ω ∀vh(x) ∈

(
H1(ω)

)nd ∩ (Pm(ω))nd , (2.38)

2For these results we assume that the velocity fields belong to (H1(ω))nd instead of H(div, ω), which

was the case in the function space (3.8a). The reason is that one has to deal with half-Sobolev spaces

and corresponding dual spaces (i.e., negative half-spaces) for trace inequalities under H(div); which

makes the convergence and error analyses more involved. Moreover, the authors are not aware of any

discrete trace inequalities available in the mathematical analysis literature that can be easily used under

half-Sobolev spaces.
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where Cinv is a constant dependent on the shape parameter (Csp), the number of spatial

dimensions (nd) and the polynomial order (m), but it does not depend on hω or on the

fields vh(x) and vh(x).

Lemma 2.6.3. (Discrete trace inequality.) For an admissible mesh Th, the following

estimates hold ∀ω ∈ Th:

‖vh‖∂ω ≤ Ctrace (1 + Cinv)
1√
hω
‖vh‖ω ∀vh(x) ∈ H1(ω) ∩Pm(ω) and (2.39)

‖vh‖∂ω ≤ Ctrace (1 + Cinv)
1√
hω
‖vh‖ω ∀vh(x) ∈

(
H1(ω)

)nd ∩ (Pm(ω))nd . (2.40)
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Chapter 3

Classical and Stabilized

Mixed Weak Formulations

Except for some academic problems, it is not possible to obtain analytical solutions

for the governing equations under the DPP model. Hence, there is a need to resort to

numerical solutions. A continuous stabilized mixed formulation proposed recently by [96]

for the DPP mathematical model. However, continuous Galerkin (CG) based formula-

tions suffer from the so-called Gibbs phenomenon when applied to problems with highly

heterogeneous medium properties such as layered media; which manifests in the form

of spurious oscillations (overshoots and undershoots) at the interface of a sharp change

in medium properties (e.g., permeability). [92] have clearly demonstrated that conven-

tional continuous finite element methods for Darcy equations fall short in accurately

capturing jumps in the solution fields at the location of material discontinuities. Since

disparate medium properties are frequently encountered in subsurface modeling, the sta-

bilized mixed four-field CG formulation recently proposed for DPP model [96] will not be

able to accurately capture the velocity profiles in highly heterogeneous porous media and

will not suffice for realistic subsurface modeling. This will be clearly demonstrated using

numerical simulations later in this document. We, therefore, develop a stabilized mixed

discontinuous Galerkin (DG) formulation for the DPP model, which is robust, stable and

capable of capturing possible jumps in the solution fields due to the existing disparate
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medium properties.

It is important to mention that one can also capture disparate medium properties

and satisfy the LBB inf-sup stability condition [34] by employing an element from the

H(div) family; which include Raviart-Thomas spaces [149], Nédélec spaces [138] Brezzi-

Douglas-Marini (BDM) spaces [32], Brezzi-Douglas-Fortin-Marini (BDFM) spaces [30]

and Crouzeix-Raviart spaces [58]. Although there is an on-going debate on using H(div)

elements vs. DG methods, the latter do enjoy some unique desirable features. DG meth-

ods combine the attractive features of both finite element and finite volume methods. Ap-

plication of completely discontinuous basis functions in the form of piecewise polynomials

in DG methods provides them with the flexibility to support common non-conforming

spaces (e.g., non-matching grids and hanging nodes, h-p adaptivity, variable degrees of

local interpolations) and handle jumps in the profiles of variables [154, 52, 111, 112]. DG

methods also enjoy high parallel efficiency. Unlike the conventional continuous formula-

tions, they are known to exhibit better local (or element-wise) mass balance [92, 153].

The origins of DG methods can be traced back to [113] and [139]. One of the first suc-

cessful applications of DG formulation to solve a practical problem was by [151], which ad-

dressed neutron transport. Over the years, DG methods have been successfully employed

to solve hyperbolic PDEs [37, 142], elliptic PDEs [63, 155, 156, 10, 22, 54], parabolic

PDEs [63, 107], coupling algorithms [137] and space-time finite elements [143, 2]. Several

variants of DG formulations have been developed over the years with varying merits for

each variant. Some popular variants are Runge-Kutta DG [56], local DG [44], embedded

DG [78], compact DG [144], hybridizable DG [53] and adjoint-type variational multiscale

DG [92, 17]. Although these variants may look very different, a unified framework has

been laid out by [10], to derive DG methods systematically, and these methods differ in

their choices of numerical fluxes. However, to the best of authors’ knowledge, there is no
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clear cut winner among these variants.

Under a mixed formulation, velocities and pressures are taken to be the primary

variables. However, for numerical stability, a mixed formulation should either satisfy

or circumvent the Ladyzhenskaya-Babuška-Brezzi (LBB) inf-sup stability condition [35].

This naturally places all the mixed formulations into either of two categories. A mixed

formulation in the first category is built on the classical mixed formulation (which is based

on the Galerkin formalism) but places restrictions on the interpolation functions for the

independent field variables to satisfy the LBB condition. To put it differently, not all

combinations of interpolation functions for the field variables satisfy the LBB condition

under the classical mixed formulation. A mixed formulation in the second category

augments the classical mixed formulation with stabilization terms so as to circumvent

the LBB condition and to render a stable formulation. In this chapter, we consider one

mixed formulation from the first category and two from the second category.

Let us define the following function spaces for the velocities and pressures fields as

follows:

U1 :=
{

u1(x) ∈ (L2(Ω))nd
∣∣∣ div[u1] ∈ L2(Ω),u1(x) · n̂(x) = un1(x) ∈ H−1/2(Γu1)

}
,

(3.1a)

U2 :=
{

u2(x) ∈ (L2(Ω))nd
∣∣∣ div[u2] ∈ L2(Ω),u2(x) · n̂(x) = un2(x) ∈ H−1/2(Γu2)

}
,

(3.1b)

W1 :=
{

w1(x) ∈ (L2(Ω))nd
∣∣∣ div[w1] ∈ L2(Ω),w1(x) · n̂(x) = 0 on Γu1

}
, (3.1c)

W2 :=
{

w2(x) ∈ (L2(Ω))nd
∣∣∣ div[w2] ∈ L2(Ω),w2(x) · n̂(x) = 0 on Γu2

}
, (3.1d)

P :=

{
(p1(x), p2(x)) ∈ L2(Ω)× L2(Ω)

∣∣∣ (∫
Ω

p1(x)dΩ

)(∫
Ω

p2(x)dΩ

)
= 0

}
, and

(3.1e)

Q :=

{
(p1(x), p2(x)) ∈ H1(Ω)×H1(Ω)

∣∣∣ (∫
Ω

p1(x)dΩ

)(∫
Ω

p2(x)dΩ

)
= 0

}
, (3.1f)
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where “nd” denotes the number of spatial dimensions, H1(Ω) is a standard Sobolev space,

and H−1/2(·) is the dual space corresponding to H1/2(·). Rigorous discussion of Sobolev

spaces are accessible in [106]; and further discussion of function spaces are provided by

[35].

3.1 Classical mixed formulation using H(div) elements

The classical mixed formulation can be written as: Find (u1(x),u2(x)) ∈ U1×U2 and

(p1(x), p2(x)) ∈ P such that we have

BGal(w1,w2, q1, q2; u1,u2, p1, p2) = LGal(w1,w2, q1, q2)

∀ (w1(x),w2(x)) ∈ W1 ×W2, (q1(x), q2(x)) ∈ P , (3.2)

where the bilinear form and the linear functional are, respectively, defined as

BGal := (w1;µk−1
1 u1)− (div[w1]; p1) + (q1; div[u1]) + (w2;µk−1

2 u2)

− (div[w2]; p2) + (q2; div[u2]) + (q1 − q2; β/µ(p1 − p2)) and (3.3a)

LGal := (w1; γb)− (w1 · n̂; p01)Γp
1

+ (w2; γb)− (w2 · n̂; p02)Γp
2
. (3.3b)

3.1.1 H(div) elements

Classes of H(div) finite element discretizations such as Raviart-Thomas (RT) [150],

generalized RTN [138], BDM [33], and BDFM [31] have been shown to satisfy the LBB

condition. Moreover, these finite element discretizations satisfy element-wise mass bal-

ance property [35].

The classical mixed formulation based on discretizations from the lowest-order Raviart-

Thomas spaces is commonly referred to as the RT0 formulation; which is frequently used
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in subsurface modeling [49]. The unknowns under the RT0 formulation on a triangle

are fluxes at the midpoints of edges of the element and element-wise constant pressures.

The finite dimensional subspaces for each velocity and pressure fields under the lowest-

order Raviart-Thomas discretization on a triangle, which are collectively denoted by

RTF1 ⊕DP0, take the following form:

Uh := {u = (u, v) | uK = aK + bKx, vK = cK + bKy; aK , bK , cK ∈ R;K ∈ Th} and

(3.4a)

Ph := {p | p = constant on each triangle K ∈ Th}, (3.4b)

where Th is a triangulation on Ω. These subspaces on a tetrahedron, which are denoted

by N1F1 ⊕DP0, take the following form:

Uh := {u = (u, v, w) | uK = aK + bKx, vK = cK + bKy, wK = dK + bKz;

aK , bK , cK , dK ∈ R;K ∈ Th} and (3.5a)

Ph := {p | p = constant on each tetrahedron K ∈ Th}, (3.5b)

where Th, in this case, is a tetrahedralization on Ω.

In addition to H(div) discretizations on simplicial meshes, we also consider the cor-

responding discretizations on non-simplicial element – QUAD and HEX. The velocity

spaces for QUAD and HEX elements are, respectively, RCTF1 and NCF1 [128, 13]. The

(macro- and micro-) pressures are element-wise constants, and DG0 is commonly used to

denote element-wise constant discretization on non-simplicial elements. See Figure 3.1

and Table 3.1 for a description of these discretizations. The finite dimensional subspaces

for the RCTF1 and NCF1 discretizations can be written precisely using the language of

finite element exterior calculus. But such a description needs introduction of additional

jargon and notation, which is beyond the scope of this document. We, therefore, refer

the reader to [12, 11, 13]. However, to guide the reader, the degrees-of-freedom for these
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Figure 3.1: This figure shows the two-dimensional and three-dimensional elements that
are employed in this chapter. The degrees-of-freedom (DoF) for each element
are also indicated.

discretizations are shown in Fig. 3.1 and Table 3.1.

3.2 Stabilized mixed continuous Galerkin formula-

tion (CG-VMS)

The weak form of the CG-VMS formulation can be written as: Find (u1(x),u2(x)) ∈

U1 × U2 and (p1(x), p2(x)) ∈ Q such that we have

BCG
stab(w1,w2, q1, q2; u1,u2, p1, p2) = LCG

stab(w1,w2, q1, q2)
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Table 3.1: The element-level discretization for different mesh types and the chosen three
formulations.

⊕
denotes the direct sum operator between two finite element

spaces.

Mesh
type

Finite element formulation
H(div) CG-VMS/DG-VMS

TRI [RTF1

⊕
DP0]2 [P1

⊕
P1]2

QUAD [RTCF1

⊕
DQ0]2 [Q1

⊕
Q1]2

TET [N1F1

⊕
DP0]2 [P1

⊕
P1]2

HEX [NCF1

⊕
DQ0]2 [Q1

⊕
Q1]2

∀ (w1(x),w2(x)) ∈ W1 ×W2, (q1(x), q2(x)) ∈ Q, (3.6)

where the bilinear form and the linear functional are defined, respectively, as

BCG
stab := BGal(w1,w2, q1, q2; u1,u2, p1, p2)

− 1

2

(
µk−1

1 w1 − grad[q1];
1

µ
k1(µk−1

1 u1 + grad[p1])

)
− 1

2

(
µk−1

2 w2 − grad[q2];
1

µ
k2(µk−1

2 u2 + grad[p2])

)
and (3.7a)

LCG
stab := LGal(w1,w2, q1, q2)− 1

2

(
µk−1

1 w1 − grad[q1];
1

µ
k1γb

)
− 1

2

(
µk−1

2 w2 − grad[q2];
1

µ
k2γb

)
. (3.7b)

An attractive feature of the CG-VMS formulation is that nodal-based equal-order

interpolation for all the field variables (micro- and macro- velocities and pressures) is

stable, which is not the case with the classical mixed formulation. The stability is achieved

by the addition of stabilization terms, which circumvent the LBB condition.

3.3 Stabilized mixed DG formulation (DG-VMS)

We employ the adjoint-type variational multiscale approach to develop a stabilized

mixed four-field DG formulation for the DPP model. In order to circumvent the LBB
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inf-sup stability condition we add residual-based, adjoint-type stabilization terms defined

over the elements. In order to avoid Gibbs phenomenon and at the same time maintain

stability, we choose appropriate and consistent numerical fluxes, which are in the form

of jumps and averages of the medium properties and solution fields. The resulting sta-

bilized mixed DG formulation enjoys several attractive features, which include: (i) The

formulation is capable of eliminating the spurious numerical instabilities in the profiles

of solutions and capturing the existing jumps in the material properties. (ii) Equal-order

interpolation, which is convenient for computer implementation as simple underlying

data structures are needed, is stable for all the field variables. (iii) The formulation is

mathematically shown to be consistent, stable, and hence convergent. (iv) A priori er-

ror estimation is systematically obtained. (v) The DG formulation exhibits improved

element-wise mass balance compared to its continuous counterpart. (vi) The formulation

can be utilized to capture physical instabilities in heterogeneous porous media and to

eliminate numerical instabilities at the same time.

Formulations under the discontinuous Galerkin (DG) method inherit attractive fea-

tures of both finite element and finite volume methods by allowing discontinuous basis

functions (e.g., in the form of piecewise polynomials) [82]. The DG method supports

non-matching grids and hanging nodes, and hence ideal for hp adaptivity [55]. Moreover,

the method can naturally handle jumps in the profiles of the solution variables [93, 98].

We propose a stabilized four-field formulation for the DPP model. The proposed

formulation draws its inspiration from the stabilized two-field formulations proposed by

[92, 17] for Darcy equations, which describe the flow of an incompressible fluid through

a porous medium with a single pore-network.

We introduce the following broken Sobolev spaces (which are piece-wise discontinuous
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spaces):

Udg :=
{

u(x)
∣∣ u(x)

∣∣
ωi ∈

(
L2(ωi)

)nd
; div[u] ∈ L2(ωi); i = 1, · · · , Nele

}
, (3.8a)

P̃dg :=
{
p(x)

∣∣ p(x)
∣∣
ωi ∈ L2(ωi); i = 1, · · · , Nele

}
, (3.8b)

Q̃dg :=
{
p(x)

∣∣ p(x)
∣∣
ωi ∈ H1(ωi); i = 1, · · · , Nele

}
, (3.8c)

Pdg :=

{
(p1(x), p2(x)) ∈ P̃ × P̃

∣∣ (∫
Ω̃

p1(x)dΩ

)(∫
Ω̃

p2(x)dΩ

)
= 0

}
, and (3.8d)

Qdg :=

{
(p1(x), p2(x)) ∈ Q̃ × Q̃

∣∣ (∫
Ω̃

p1(x)dΩ

)(∫
Ω̃

p2(x)dΩ

)
= 0

}
, (3.8e)

where L2(ωi) denotes the set of all square-integrable functions defined on ωi, and H1(ωi)

is a standard Sobolev space [67].

Remark 3.3.1. The following condition in Pdg and Qdg spaces (which is expressed in

terms of the mean pressures in the two pore-networks):(∫
Ω̃

p1(x)dΩ

)(∫
Ω̃

p2(x)dΩ

)
= 0

is one of the ways to fix the datum for the pressure. However, this condition is seldom

employed in a numerical implementation. Alternatively, one can prescribe the pressure

on a portion of the boundary in one of the pore-networks. For further details refer to

[96].

3.3.1 Weak form in terms of numerical fluxes

Multiplying the governing equations (2.1a)–(2.1d) by weighting functions, integrating

over an element ω, and using equation (2.1e) and the divergence theorem, we obtain the

following:

(
w1;µk−1

1 u1

)
ω
− (div[w1]; p1)ω +

(
w1 · n̂;

∗
p1

)
∂ω

+
(
w2;µk−1

2 u2

)
ω
− (div[w2]; p2)ω

+
(
w2 · n̂;

∗
p2

)
∂ω

+ (q1; div[u1])ω +
(
q1;
(
∗
u1 − u1

)
· n̂
)
∂ω

+ (q2; div[u2])ω
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+
(
q2;
(
∗
u2 − u2

)
· n̂
)
∂ω

+

(
q1 − q2;

β

µ
(p1 − p2)

)
ω

= (w1; γb1)ω + (w2; γb2)ω , (3.9)

where
∗
p1 and

∗
p2 are the numerical fluxes for the pressures and

∗
u1 and

∗
u2 are the numerical

fluxes for the velocities. Summing the above equation over all the elements and using the

identity (2.22), we obtain the following weak form in terms of numerical fluxes:

(
w1;µk−1

1 u1

)
− (div[w1]; p1) +

(
{{w1}}; J

∗
p1K
)

Γint
+
(
Jw1K; {{

∗
p1}}

)
Γint

+
(
w1 · n̂;

∗
p1

)
∂Ω

+
(
w2;µk−1

2 u2

)
− (div[w2]; p2) +

(
{{w2}}; J

∗
p2K
)

Γint
+
(
Jw2K; {{

∗
p2}}

)
Γint

+
(
w2 · n̂;

∗
p2

)
∂Ω

+ (q1; div[u1]) +
(
{{q1}}; J

∗
u1K− Ju1K

)
Γint

+
(
Jq1K; {{

∗
u1}} − {{u1}}

)
Γint

+
(
q1;
( ∗
u1 − u1

)
· n̂
)
∂Ω

+ (q2; div[u2]) +
(
{{q2}}; J

∗
u2K− Ju2K

)
Γint

+
(
Jq2K; {{

∗
u2}} − {{u2}}

)
Γint

+
(
q2;
( ∗
u2 − u2

)
· n̂
)
∂Ω

+

(
q1 − q2;

β

µ
(p1 − p2)

)
= (w1; γb1) + (w2; γb2) . (3.10)

Physically, the jumps in pressures and the normal component of velocities should

vanish on any curve which is entirely inside the domain, and in particular, on any interior

edge. That is,

Jp1K = 0, Jp2K = 0, Ju1K = 0 and Ju2K = 0 on Γint. (3.11)

Numerical fluxes are important components of DG methods, which have to be selected

carefully. The choice of these numerical fluxes can greatly affect the stability of a DG

formulation. Herein, we consider the following general expressions for the numerical

fluxes:

?
p1 =


λ

(1)
1 {{p1}}+

λ
(2)
1

2
Jp1K · n̂ + λ

(3)
1 Ju1K on Γint

p1 on Γu1

p01 on Γp1,

(3.12)

?
p2 =


λ

(1)
2 {{p2}}+

λ
(2)
2

2
Jp2K · n̂ + λ

(3)
2 Ju2K on Γint

p2 on Γu2

p02 on Γp2,

(3.13)
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?
u1 = Λ

(1)
1 {{u1}}+

Λ
(2)
1

2
Ju1Kn̂ + Λ

(3)
1 Jp1K on Γint, (3.14a)

?
u1 · n̂ =

 un1 on Γu1

u1 · n̂ on Γp1,
(3.14b)

?
u2 = Λ

(1)
2 {{u2}}+

Λ
(2)
2

2
Ju2Kn̂ + Λ

(3)
2 Jp2K on Γint, and (3.15a)

?
u2 · n̂ =

 un2 on Γu2

u2 · n̂ on Γp2,
(3.15b)

where λ
(j)
i and Λ

(j)
i (i, j = 1 or 2) are constants. It is easy to check that these numerical

fluxes satisfy the following relations on Γint:

{{ ?p1}} = λ
(1)
1 {{p1}}+ λ

(3)
1 Ju1K and J

?
p1K = λ

(2)
1 Jp1K, (3.16a)

{{ ?p2}} = λ
(1)
2 {{p2}}+ λ

(3)
2 Ju2K and J

?
p2K = λ

(2)
2 Jp2K, (3.16b)

{{ ?
u1}} = Λ

(1)
1 {{u1}}+ Λ

(3)
1 Jp1K and J

?
u1K = Λ

(2)
1 Ju1K, and (3.16c)

{{ ?
u2}} = Λ

(1)
2 {{u2}}+ Λ

(3)
2 Jp2K and J

?
u2K = Λ

(2)
2 Ju2K. (3.16d)

3.3.2 The classical mixed DG formulation

This formulation is based on the Galerkin formalism and can be obtained by making

the following choices:

λ
(1)
1 = λ

(1)
2 = Λ

(1)
1 = Λ

(1)
2 = 1 (3.17)

and the other constants in equations (3.12)–(3.15) are taken to be zeros. The numerical

fluxes on Γint under the classical mixed DG formulation take the following form:

∗
p1 = {{p1}},

∗
p2 = {{p2}},

∗
u1 = {{u1}} and

∗
u2 = {{u2}}. (3.18)
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The above numerical fluxes are similar to the ones employed by [23], which are known

to be consistent but do not result in a stable DG method [10]. The corresponding weak

formulation reads: Find (u1(x),u2(x)) ∈ Udg × Udg, (p1(x), p2(x)) ∈ Pdg such that we

have

BDG
Gal(w1,w2, q1, q2; u1,u2, p1, p2) = LDG

Gal(w1,w2, q1, q2)

∀ (w1(x),w2(x)) ∈ Udg × Udg, (q1(x), q2(x)) ∈ Pdg, (3.19)

where the bilinear form and the linear functional are, respectively, defined as:

BDG
Gal :=

(
w1;µk−1

1 u1

)
− (div[w1]; p1) + (q1; div[u1]) + (Jw1K; {{p1}})Γint − ({{q1}}; Ju1K)Γint

+
(
w2;µk−1

2 u2

)
− (div[w2]; p2) + (q2; div[u2]) + (Jw2K; {{p2}})Γint − ({{q2}}; Ju2K)Γint

+

(
q1 − q2;

β

µ
(p1 − p2)

)
+ (w1 · n̂; p1)Γu

1
+ (w2 · n̂; p2)Γu

2

− (q1; u1 · n̂)Γu
1
− (q2; u2 · n̂)Γu

2
and (3.20a)

LDG
Gal := (w1; γb1) + (w2; γb2)− (w1 · n̂; p01)Γp

1
− (w2 · n̂; p02)Γp

2
− (q1;un1)Γu

1
− (q2;un2)Γu

2
.

(3.20b)

The classical mixed DG formulation is not stable under all combinations of interpola-

tion functions for the field variables, which is due to the violation of the LBB inf-sup

stability condition [34]. Specifically, equal-order interpolation for all the field variables

is not stable under the classical mixed DG formulation. This numerical instability (due

to the interpolation functions) is different from the aforementioned instability due to

the numerical fluxes (i.e., Bassi-Rebay DG method). We develop a stabilized mixed DG

formulation which does not suffer from any of the aforementioned instabilities. This is

achieved by adding adjoint-type, residual-based stabilization terms (which are defined

over the subdomains and circumvent the LBB inf-sup stability condition) and by incor-

porating appropriate numerical fluxes (which are consistent and stable and are defined

along the subdomain interfaces).
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3.3.3 Proposed stabilized mixed DG formulation

This formulation makes the following choices:

λ
(1)
1 = λ

(1)
2 = 1, λ

(3)
1 = ηuhΥ{{µk−1

1 }} and λ
(3)
2 = ηuhΥ{{µk−1

2 }} and (3.21a)

Λ
(1)
1 = Λ

(1)
2 = 1, Λ

(3)
1 =

ηp
hΥ

{{µ−1k1}} and Λ
(3)
2 =

ηp
hΥ

{{µ−1k2}} (3.21b)

and the other constants in equations (3.12)–(3.15) are taken to be zero. ηu and ηp are

non-negative, non-dimensional bounded constants. The corresponding numerical fluxes

on Γint take the following form:

∗
p1 = {{p1}}+ ηuhΥ{{µk−1

1 }}Ju1K,
∗
p2 = {{p2}}+ ηuhΥ{{µk−1

2 }}Ju2K,

∗
u1 = {{u1}}+

ηp
hΥ

{{µ−1k1}}Jp1K and
∗
u2 = {{u2}}+

ηp
hΥ

{{µ−1k2}}Jp2K. (3.22)

The mathematical statement of the proposed stabilized mixed DG formulation

reads as: Find (u1(x),u2(x)) ∈ Udg × Udg, (p1(x), p2(x)) ∈ Qdg such that we have

BDG
stab(w1,w2, q1, q2; u1,u2, p1, p2) = LDG

stab(w1,w2, q1, q2)

∀ (w1(x),w2(x)) ∈ Udg × Udg, (q1(x), q2(x)) ∈ Qdg (3.23)

where the bilinear form and the linear functional are, respectively, defined as:

BDG
stab := BDG

Gal −
1

2

(
µk−1

1 w1 − grad[q1];µ−1k1(µk−1
1 u1 + grad[p1])

)
− 1

2

(
µk−1

2 w2 − grad[q2];µ−1k2(µk−1
2 u2 + grad[p2])

)
+
(
ηuhΥ{{µk−1

1 }}Jw1K; Ju1K
)

Γint +
(
ηuhΥ{{µk−1

2 }}Jw2K; Ju2K
)

Γint

+

(
ηp
hΥ

{{µ−1k1}}Jq1K; Jp1K
)

Γint

+

(
ηp
hΥ

{{µ−1k2}}Jq2K; Jp2K
)

Γint

(3.24a)

LDG
stab := LDG

Gal −
1

2

(
µk−1

1 w1 − grad[q1];µ−1k1γb1

)
− 1

2

(
µk−1

2 w2 − grad[q2];µ−1k2γb2

)
(3.24b)

35



To completely define the formulation, the parameters ηu and ηp have to be pre-

scribed. We make the following recommendation, which is based on the theoretical

convergence analysis (see Chapter 4) and extensive numerical simulations (see sec-

tion 5.1–section 5.4):

(i) For conforming approximations, the parameters can be taken to be ηu = ηp =

0.

(ii) For non-conforming approximations, the parameters can be taken to be ηu =

ηp = 10 or 100. (See section 5.1.2.1).

A few remarks about the stabilized formulation are in order.

(a) The above stabilized formulation is an adjoint-type formulation. We have posed even

the classical mixed formulation as an adjoint-type (see the bilinear form (3.20a)). In

addition, the stabilization terms within the elements (i.e., in Ω̃) are of adjoint-type,

which look similar to the one proposed by [92] for the two-field Darcy equations.

(b) Since the formulation is of adjoint-type, the formulation will not give rise to sym-

metric coefficient (“stiffness”) matrix. But the coefficient matrix will be positive

definite, which can be inferred from Lemma 4.1.1. Alternatively, the above stabilized

formulation can be posed as an equivalent symmetric formulation by replacing q1

and q2 with −q1 and −q2, respectively; which is justified as q1 and q2 are arbitrary

weighting functions. In this case, the resulting symmetric formulation will not result

in positive-definite coefficient matrix.

(c) In order to minimize the drift in the solution fields, especially in the case of non-

conforming discretization, additional stabilization terms on the interior boundaries
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(i.e., terms containing ηu and ηp) are required in both networks. The necessity of em-

ploying such stabilization parameters has been addressed by [17] for the case of Darcy

equations. It is noteworthy that ηu parameter was not included in the formulation

proposed by [92], as they did not consider non-conforming approximations.

(d) Due to the presence of the terms containing ηu and ηp, the above numerical fluxes

are no longer similar to the ones proposed by [23]. The numerical fluxes employed in

the proposed formulation are not the same as any of the DG methods discussed in

the review paper [10].

(e) In the case of Darcy equations, a stabilized formulation without edge stabilization

terms has been developed and its convergence has been established by utilizing a

lifting operator [36]. The question about whether such an approach can be extended

to the DPP model is worthy of an investigation, but is beyond the scope of this text.
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Chapter 4

Theoretical Analysis

4.1 Stability norm

We start by grouping the field variables and their corresponding weighting functions

as

U = (u1(x),u2(x), p1(x), p2(x)) ∈ U and (4.1a)

W = (w1(x),w2(x), q1(x), q2(x)) ∈ U, (4.1b)

where the product space U is defined as

U = Udg × Udg ×Qdg. (4.2)

The proposed stabilized mixed DG formulation (3.23) can then be compactly written

as: Find U ∈ U such that we have

BDG
stab(W; U) = LDG

stab(W) ∀W ∈ U. (4.3)

The stability of the proposed weak formulation will be established under the following

norm:

(
‖W‖DG

stab

)2
:= BDG

stab(W;W) =
1

2

∥∥∥∥√ µ

k1
w1

∥∥∥∥2

+
1

2

∥∥∥∥∥
√
k1

µ
grad[q1]

∥∥∥∥∥
2

+
1

2

∥∥∥∥√ µ

k2
w2

∥∥∥∥2

+
1

2

∥∥∥∥∥
√
k2

µ
grad[q2]

∥∥∥∥∥
2

+

∥∥∥∥∥
√
β

µ
(q1 − q2)

∥∥∥∥∥
2
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+

∥∥∥∥√ηuhΥ{{µ k−1
1 }} Jw1K

∥∥∥∥2

Γint

+

∥∥∥∥√ ηp
hΥ
{{µ−1k1}} Jq1K

∥∥∥∥2

Γint

+

∥∥∥∥√ηuhΥ{{µ k−1
2 }} Jw2K

∥∥∥∥2

Γint

+

∥∥∥∥√ ηp
hΥ
{{µ−1k2}} Jq2K

∥∥∥∥2

Γint

∀W ∈ U

(4.4)

Lemma 4.1.1. (Stability norm) ‖ · ‖DG
stab is a norm on U.

Proof. The mathematical proof is similar to that of the continuous formulation, which is

provided in [96].

4.2 Convergence theorem and error analysis

In order to perform the error analysis of the proposed stabilized mixed DG formula-

tion, we need to define the finite element solution Uh and the corresponding weighting

function as

Uh = (uh1(x),uh2(x), ph1(x), ph2(x)) ∈ Uh and (4.5a)

Wh = (wh
1(x),wh

2(x), qh1 (x), qh2 (x)) ∈ Uh. (4.5b)

Uh is the closed linear subspace of U and is defined as

Uh = Uh × Uh ×Qh, (4.6)

where

Uh :=
{

uh(x) ∈ Udg
∣∣∣ uh(x) ∈

(
C0(ωi)

)nd
; uh(x)|ωi ∈

(
Pk(ωi)

)nd
; i = 1, · · · , Nele

}
(4.7a)

Qh :=
{(
ph1 , p

h
2

)
∈ Qdg

∣∣∣ ph1(x), ph2(x) ∈ C0(ωi); ph1(x), ph2(x)|ωi ∈P l(ωi); i = 1, · · · , Nele
}

(4.7b)
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and C0(ωi) is the set of all continuous functions defined on ωi (which is the set closure

of ωi).

The finite element formulation corresponding to the proposed stabilized mixed DG

formulation is defined as: Find Uh ∈ Uh such that we have

BDG
stab(Wh; Uh) = LDG

stab(Wh) ∀Wh ∈ Uh. (4.8)

The error in the finite element solution E is defined as the difference between the

finite element solution and the exact solution. If we define Ũh as an “interpolate” of U

onto Uh [29], decomposition of the error can be performed as

E := Uh −U = Eh + H, (4.9)

where Eh = Uh − Ũh is the approximation error and H = Ũh −U is the interpolation

error. The components of E and H are as

E = {eu1 , eu2 , ep1 , ep2} and H =
{
ηu1

,ηu2
, ηp1 , ηp2

}
. (4.10)

Lemma 4.2.1. (Estimates for approximation errors on Γint.) On a sequence of admissible

meshes, the following estimates hold:∥∥∥∥√hΥ{{µk−1
1 }} {{eu1}}

∥∥∥∥2

Γint

≤ Ceu1

∥∥∥∥√µk−1
1 eu1

∥∥∥∥2

and (4.11)

∥∥∥∥√hΥ{{µk−1
2 }} {{eu2}}

∥∥∥∥2

Γint

≤ Ceu2

∥∥∥∥√µk−1
2 eu2

∥∥∥∥2

. (4.12)

Proof. We first note that∥∥∥∥√hΥ{{µk−1
1 }} {{eu1}}

∥∥∥∥2

Γint

=
∑

Υ∈E int

∥∥∥∥√hΥ{{µk−1
1 }} {{eu1}}

∥∥∥∥2

Υ

. (4.13)
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We now bound the approximation error of u1 on an interior edge Υ ∈ E int. The Cauchy-

Schwarz inequality implies the following∥∥∥∥√hΥ{{µk−1
1 }} {{eu1}}

∥∥∥∥2

Υ

≤ 1

2

(∥∥∥∥√hΥ{{µk−1
1 }} eu1

∥∥∥∥2

∂ω+
Υ∩Υ

+

∥∥∥∥√hΥ{{µk−1
1 }} eu1

∥∥∥∥2

∂ω−
Υ∩Υ

)
.

(4.14)

Noting the boundedness of the drag coefficients (i.e., equation (2.4)), we obtain the

following∥∥∥∥√hΥ{{µk−1
1 }} {{eu1}}

∥∥∥∥2

Υ

≤ 1

2
Cdrag,1

(∥∥∥∥√hΥµk
−1
1 eu1

∥∥∥∥2

∂ω+
Υ∩Υ

+

∥∥∥∥√hΥµk
−1
1 eu1

∥∥∥∥2

∂ω−
Υ∩Υ

)
.

(4.15)

Using the bound based on the locally quasi-uniform condition (i.e., inequality (2.27)) we

obtain the following∥∥∥∥√hΥ{{µk−1
1 }}{{eu1}}

∥∥∥∥2

Υ

≤ 1

4
Cdrag,1(1 + Clqu)

(∥∥∥√hω+
Υ
µk−1

1 eu1

∥∥∥2

∂ω+
Υ∩Υ

+
∥∥∥√hω−

Υ
µk−1

1 eu1

∥∥∥2

∂ω−
Υ∩Υ

)
.

(4.16)

By summing over all the interior edges we obtain the following

∑
Υ∈E int

∥∥∥∥√hΥ{{µk−1
1 }} {{eu1}}

∥∥∥∥2

Υ

≤ 1

4
Cdrag,1(1 + Clqu)

∑
ω∈T

∥∥∥∥√hωµk
−1
1 eu1

∥∥∥∥2

∂ω\∂Ω

≤ 1

4
Cdrag,1(1 + Clqu)

∑
ω∈T

∥∥∥∥√hωµk
−1
1 eu1

∥∥∥∥2

∂ω

. (4.17)

By invoking the discrete trace inequality (2.40) we obtain the following

∑
Υ∈E int

∥∥∥∥√hΥ{{µk−1
1 }} {{eu1}}

∥∥∥∥2

Υ

≤ 1

4
Cdrag,1(1 + Clqu)C2

trace(1 + Cinv)2
∑
ω∈T

∥∥∥∥√µk−1
1 eu1

∥∥∥∥2

ω

≤ 1

4
Cdrag,1C2

trace(1 + Cinv)2(1 + Clqu)

∥∥∥∥√µk−1
1 eu1

∥∥∥∥2

.

(4.18)

(Recall that the subscript will be dropped if the L2 norm is over Ω̃ := ∪ω∈T ω.) Thus,

Ceu1
:=

1

4
Cdrag,1C2

trace(1 + Cinv)2(1 + Clqu). (4.19)
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On similar lines, one can establish the estimate (4.12) with

Ceu2
:=

1

4
Cdrag,2C2

trace(1 + Cinv)2(1 + Clqu). (4.20)

If a p-th order polynomial is employed for a field variable f(x) on an element ω ∈ T

and the corresponding interpolate denoted by f̃h, the following estimate holds for the

interpolation error [34]

‖f − f̃h‖ω ≤ Cinth
p+1
w |f |Hp+1(ω), (4.21)

where hω is the element diameter of ω, Cint is a non-dimensional constant independent of

hω and f , and | · |Hp+1(ω) is a Sobolev semi-norm, which is defined in equation (2.33).

To avoid further introduction of constants, we employ the notation A . B to denote

that there exits a constant C, independent of the mesh size, such that A ≤ CB. A similar

definition holds for A & B. The notation A ∼ B denotes the case when A . B and

A & B hold simultaneously.

Lemma 4.2.2. (Estimates for interpolation errors on Γint.) If polynomial orders used

for interpolation of u1, u2, p1 and p2 are, respectively, p, q, r and s then the following

estimates hold for the interpolation errors on Γint:∥∥∥∥∥
√
hΥ

ηp
{{µk−1

1 }} {{ηu1
}}

∥∥∥∥∥
2

Γint

.
∑
ω∈Th

h2(p+1)
ω |u1|2Hp+1(ω), (4.22)

∥∥∥∥∥
√
hΥ

ηp
{{µk−1

2 }} {{ηu2
}}

∥∥∥∥∥
2

Γint

.
∑
ω∈Th

h2(q+1)
ω |u2|2Hq+1(ω), (4.23)

∥∥∥∥√h−1
Υ {{µ−1k1}} Jηp1K

∥∥∥∥2

Γint

.
∑
ω∈Th

h2r
ω |p1|2Hr+1(ω), and (4.24)

∥∥∥∥√h−1
Υ {{µ−1k2}} Jηp2K

∥∥∥∥2

Γint

.
∑
ω∈Th

h2s
ω |p2|2Hs+1(ω). (4.25)
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Proof. We first establish the estimate (4.22). The boundedness of the drag coefficient

µ/k1(x) and the linearity of a norm imply the∥∥∥∥∥
√
hΥ

ηp
{{µk−1

1 }} {{ηu1
}}

∥∥∥∥∥
2

Υ

≤ 1

ηp

(
sup
x∈Ω

µ

k1(x)

)∥∥∥√hΥ {{ηu1
}}
∥∥∥2

Υ
∀Υ ∈ E int. (4.26)

Using the triangle inequality and the bound from the locally quasi-uniform condition

(2.27), we obtain the:∥∥∥∥∥
√
hΥ

ηp
{{µk−1

1 }} {{ηu1
}}

∥∥∥∥∥
2

Υ

.
1

4
(1 + Clqu)

(∥∥∥∥√hω+
Υ
ηu1

∥∥∥∥2

∂ω+
Υ∩Υ

+

∥∥∥∥√hω−
Υ
ηu1

∥∥∥∥2

∂ω−
Υ∩Υ

)
∀Υ ∈ E int.

(4.27)

By summing over all the interior edges and noting the linearity of a norm, we obtain∥∥∥∥∥
√
hΥ

ηp
{{µk−1

1 }} {{ηu1
}}

∥∥∥∥∥
2

Γint

=
∑

Υ∈E int

∥∥∥∥∥
√
hΥ

ηp
{{µk−1

1 }} {{ηu1
}}

∥∥∥∥∥
2

Υ

.
∑
ω∈Th

(
hω
∥∥ηu1

∥∥2

∂ω

)
. (4.28)

By invoking the discrete trace inequality (2.40), we obtain the following inequality∥∥∥∥∥
√
hΥ

ηp
{{µk−1

1 }} {{ηu1
}}

∥∥∥∥∥
2

Γint

.
∑
ω∈Th

∥∥ηu1

∥∥2

ω
. (4.29)

If a polynomial of order p is employed for approximating u1, then the standard estimate

for the interpolation error (4.21) provides∥∥∥∥∥
√
hΥ

ηp
{{µk−1

1 }} {{ηu1
}}

∥∥∥∥∥
2

Γint

.
∑
ω∈Th

h2(p+1)
ω |u1|2Hp+1(ω), (4.30)

which is the estimate (4.22). By reasoning out on similar lines, one can establish the

estimate (4.23).

We now establish the estimate (4.24). The boundedness of the drag coefficient µ/k1(x)

and the linearity of a norm imply∥∥∥∥√h−1
Υ {{µ−1k1}} Jηp1K

∥∥∥∥2

Υ

≤
(

inf
x∈Ω

µ

k1(x)

)∥∥∥∥√h−1
Υ Jηp1K

∥∥∥∥2

Υ

∀Υ ∈ E int. (4.31)

Using the triangle inequality and the bound from the locally quasi-uniform condition

(2.27), we obtain∥∥∥∥√h−1
Υ {{µ−1k1}} Jηp1K

∥∥∥∥2

Υ

. 4

(
1 +

1

Clqu

)−1
(∥∥∥∥√h−1

ω+
Υ

ηp1

∥∥∥∥2

∂ω+
Υ∩Υ

+

∥∥∥∥√h−1

ω−
Υ

ηp1

∥∥∥∥2

∂ω−
Υ∩Υ

)
∀Υ ∈ E int.

(4.32)
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By summing over all the interior edges and noting the linearity of a norm, we obtain∥∥∥∥√h−1
Υ {{µ−1k1}} Jηp1K

∥∥∥∥2

Γint

=
∑

Υ∈E int

∥∥∥∥√h−1
Υ {{µ−1k1}} Jηp1K

∥∥∥∥2

Υ

.
∑
ω∈Th

(
h−1
ω ‖ηp1‖

2
∂ω

)
. (4.33)

By invoking the discrete trace inequality (2.39), we obtain the following inequality∥∥∥∥√h−1
Υ {{µ−1k1}} Jηp1K

∥∥∥∥2

Γint

.
∑
ω∈Th

(
h−2
ω ‖ηp1‖

2
ω

)
. (4.34)

If a polynomial of order r is employed for approximating p1, then the standard estimate

for the interpolation error (4.21) provides∥∥∥∥√h−1
Υ {{µ−1k1}} Jηp1K

∥∥∥∥2

Γint

.
∑
ω∈Th

h2r
ω |p1|2Hr+1(ω), (4.35)

which is the estimate (4.24). By reasoning out on similar lines, one can establish the

estimate (4.25).

Lemma 4.2.3. (Estimate for H under the stability norm.) If polynomial orders used

for interpolation of u1, u2, p1 and p2 are, respectively, p, q, r and s then the following

estimate holds

(
‖H‖DG

stab

)2
.
∑
ω∈Th

(
h2(p+1)
ω |u1|2Hp+1(ω) + h2(q+1)

ω |u2|2Hq+1(ω)+
(
1 + h2

ω

)
h2r
ω |p1|2Hr+1(ω)

+
(
1 + h2

ω

)
h2s
ω |p2|2Hs+1(ω)

)
, (4.36)

where the constant in the estimate is independent of the characteristic mesh length (h

or hω) and the solution fields (u1, u2, p1 and p2).

Proof. The definition of the stability norm (4.4) and the components of H (4.10) imply

(
‖H‖DG

stab

)2
=

1

2

∥∥∥∥√ µ

k1
ηu1

∥∥∥∥2

+
1

2

∥∥∥∥∥
√
k1

µ
grad[ηp1 ]

∥∥∥∥∥
2

+
1

2

∥∥∥∥√ µ

k2
ηu2

∥∥∥∥2

+
1

2

∥∥∥∥∥
√
k2

µ
grad[ηp2 ]

∥∥∥∥∥
2

+

∥∥∥∥∥
√
β

µ
(ηp1 − ηp2)

∥∥∥∥∥
2

+

∥∥∥∥√ηuhΥ{{µ k−1
1 }} Jηu1

K
∥∥∥∥2

Γint

+

∥∥∥∥√ ηp
hΥ
{{µ−1k1}} Jηp1K

∥∥∥∥2

Γint

+

∥∥∥∥√ηuhΥ{{µ k−1
2 }} Jηu2

K
∥∥∥∥2

Γint

+

∥∥∥∥√ ηp
hΥ
{{µ−1k2}} Jηp2K

∥∥∥∥2

Γint

. (4.37)
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Using the boundedness of the drag coefficient of the first pore-network, linearity of a

norm and the standard estimate for the interpolation error (4.21), and noting that the

polynomial order of approximation for u1 is p, we obtain

1

2

∥∥∥∥√ µ

k1

ηu1

∥∥∥∥2

≤ 1

2
sup
x∈Ω

µ

k1(x)

∑
ω∈Th

∥∥ηu1

∥∥2

ω
.
∑
ω∈Th

h2(p+1)
ω |u1|2Hp+1(ω) . (4.38)

Similarly,

1

2

∥∥∥∥√ µ

k2

ηu2

∥∥∥∥2

≤ 1

2
sup
x∈Ω

µ

k2(x)

∑
ω∈Th

∣∣ηu2

∣∣2
ω
.
∑
ω∈Th

h2(q+1)
ω |u2|2Hq+1(ω) . (4.39)

For the second term, we proceed as follows by first noting the boundedness of the

drag coefficient in the first pore-network

1

2

∥∥∥∥∥
√
k1

µ
grad[ηp1 ]

∥∥∥∥∥
2

≤ 1

2
inf
x∈Ω

µ

k1(x)

∑
ω∈Th

‖grad[ηp1 ]‖2
ω

≤ 1

2
inf
x∈Ω

µ

k1(x)
C2

inv

∑
ω∈Th

h−2
ω ‖ηp1‖

2
ω [inverse estimate (2.37)]

.
∑
ω∈Th

h2r
ω |p1|2Hr+1(ω) [interpolation estimate (4.21)].

(4.40)

Similarly, one can derive the following estimate for the fourth term

1

2

∥∥∥∥∥
√
k2

µ
grad[ηp2 ]

∥∥∥∥∥
2

.
∑
ω∈Th

h2s
ω |p2|2Hs+1(ω) . (4.41)

The estimate for the fifth term utilizes the triangle inequality and the interpolation

estimate (4.21) and it can be obtained as∥∥∥∥∥
√
β

µ
(ηp1 − ηp2)

∥∥∥∥∥
2

≤ β

µ

∑
ω∈Th

(
‖ηp1‖

2
ω + ‖ηp2‖

2
ω

)
.
∑
ω∈Th

(
h2(r+1)
ω |p1|2Hr+1(ω) + h2(s+1)

ω |p2|2Hs+1(ω)

)
.

(4.42)
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Using the boundedness of ηu and the drag coefficient of the first pore-network and

noting the linearity of a norm, we obtain the following estimate for the sixth term∥∥∥∥√ηuhΥ{{µ k−1
1 }} Jηu1

K
∥∥∥∥2

Γint

.
∑

Υ∈E int

∥∥∥√hΥ Jηu1
K
∥∥∥2

Υ
. (4.43)

Using the bound based on the locally quasi-uniform condition (2.27) and the triangle

inequality, we obtain∥∥∥∥√ηuhΥ{{µ k−1
1 }} Jηu1

K
∥∥∥∥2

Γint

.
∑

Υ∈E int

(∥∥∥√hω+
Υ
ηu1

∥∥∥2

∂ω+
Υ∩Υ

+
∥∥∥√hω−

Υ
ηu1

∥∥∥2

∂ω−
Υ∩Υ

)
.
∑
ω∈Th

hω
∥∥ηu1

∥∥2

∂ω
. (4.44)

Using the discrete trace inequality (2.40) and the standard interpolation estimate (4.21),

we obtain∥∥∥∥√ηuhΥ{{µ k−1
1 }} Jηu1

K
∥∥∥∥2

Γint

.
∑
ω∈Th

∥∥ηu1

∥∥2

ω
.
∑
ω∈Th

h2(p+1)
ω |u1|2Hp+1(ω) . (4.45)

A similar argument gives rise to the following estimate for the eighth term∥∥∥∥√ηuhΥ{{µ k−1
2 }} Jηu2

K
∥∥∥∥2

Γint

.
∑
ω∈Th

h2(q+1)
ω |u2|2Hq+1(ω) . (4.46)

Noting that ηp is a bounded constant, estimates (4.24) and (4.25) immediately imply

the following estimates for the seventh and ninth terms:∥∥∥∥√ ηp
hΥ

{{µ−1k1}} Jηp1K
∥∥∥∥2

Γint

.
∑
ω∈Th

h2r
ω |p1|2Hr+1(ω) and (4.47)

∥∥∥∥√ ηp
hΥ

{{µ−1k2}} Jηp2K
∥∥∥∥2

Γint

.
∑
ω∈Th

h2s
ω |p2|2Hs+1(ω) . (4.48)

By adding up the individual estimates for all the terms, we obtain the desired result.

Theorem 4.2.1. (Consistency) The error in the finite element solution satisfies

BDG
stab(Wh; E) = 0 ∀Wh ∈ Uh ⊂ U. (4.49)
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Proof. The proof follows a standard procedure employed in the literature. Equation (4.3)

implies that for all Wh ∈ Uh ⊂ U we have:

BDG
stab(Wh; Uh) = LDG

stab(Wh) and (4.50a)

BDG
stab(Wh; U) = LDG

stab(Wh) (4.50b)

By subtracting the above two equations, invoking the linearity in the second slot of

BDG
stab(·; ·) and noting the definition of E given by (4.9), we obtain the desired result.

Theorem 4.2.2. (Convergence) Under a sequence of admissible meshes, the finite ele-

ment solution Uh ∈ Uh tends to the exact solution U ∈ U almost everywhere1 as the

mesh-size h→ 0.

Proof. The error with respect to the stability norm can be rewritten as

(
‖E‖DG

stab

)2
= BDG

stab(E; E) = BDG
stab(Eh + H; E) = BDG

stab(Eh; E) + BDG
stab(H; E) = BDG

stab(H; E).

(4.51)

We invoked the definition of ‖·‖DG
stab norm (i.e., Eq. (4.4)) for establishing the first equality,

the decomposition of the error (i.e., Eq. (4.9)) for the second equality, linearity in the

first slot of BDG
stab(·; ·) for the third equality, and consistency (i.e., Theorem 4.2.1) for the

fourth equality. We now expand BDG
stab(H; E) as

BDG
stab(H; E) = BDG

stab(ηu1
,ηu2

, ηp1 , ηp2 ; eu1 , eu2 , ep1 , ep2)

=
1

2
(ηu1

;µk−1
1 eu1) +

1

2
(ηu1

; grad[ep1 ])− 1

2
(grad[ηp1 ]; eu1)

+
1

2
(ηu2

;µk−1
2 eu2) +

1

2
(ηu2

; grad[ep2 ])− 1

2
(grad[ηp2 ]; eu2)

+
1

2

(
grad[ηp1 ];

k1

µ
grad[ep1 ]

)
+

1

2

(
grad[ηp2 ];

k2

µ
grad[ep2 ]

)
1Two quantities that are the same except on a set of measure zero are said to be equal almost

everywhere [67].
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+

(
(ηp1 − ηp2);

β

µ
(ep1 − ep2)

)
−
(
{{ηu1

}}; Jep1K
)

Γint + (Jηp1K; {{eu1}})Γint −
(
{{ηu2

}}; Jep2K
)

Γint + (Jηp2K; {{eu2}})Γint

+
(
ηuhΥ{{µk−1

1 }}Jηu1
K; Jeu1K

)
Γint +

(
ηp
hΥ

{{µ−1k1}}Jηp1K; Jep1K
)

Γint

+
(
ηuhΥ{{µk−1

2 }}Jηu2
K; Jeu2K

)
Γint +

(
ηp
hΥ

{{µ−1k2}}Jηp2K; Jep2K
)

Γint

. (4.52)

By employing Cauchy-Schwarz and Peter-Paul inequalities, we obtain the following bound2

2BDG
stab(H;E) ≤ ε1

2

∥∥∥∥√ µ

k1
ηu1

∥∥∥∥2

+
1

2ε1

∥∥∥∥√ µ

k1
eu1

∥∥∥∥2

+
ε2

2

∥∥∥∥√ µ

k1
ηu1

∥∥∥∥2

+
1

2ε2

∥∥∥∥∥
√
k1

µ
grad[ep1

]

∥∥∥∥∥
2

+
ε3

2

∥∥∥∥∥
√
k1

µ
grad[ηp1

]

∥∥∥∥∥
2

+
1

2ε3

∥∥∥∥√ µ

k1
eu1

∥∥∥∥2

+
ε4

2

∥∥∥∥∥
√
k1

µ
grad[ηp1

]

∥∥∥∥∥
2

+
1

2ε4

∥∥∥∥∥
√
k1

µ
grad[ep1

]

∥∥∥∥∥
2

+
ε5

2

∥∥∥∥√ µ

k2
ηu2

∥∥∥∥2

+
1

2ε5

∥∥∥∥√ µ

k2
eu2

∥∥∥∥2

+
ε6

2

∥∥∥∥√ µ

k2
ηu2

∥∥∥∥2

+
1

2ε6

∥∥∥∥∥
√
k2

µ
grad[ep2 ]

∥∥∥∥∥
2

+
ε7

2

∥∥∥∥∥
√
k2

µ
grad[ηp2

]

∥∥∥∥∥
2

+
1

2ε7

∥∥∥∥√ µ

k2
eu2

∥∥∥∥2

+
ε8

2

∥∥∥∥∥
√
k2

µ
grad[ηp2

]

∥∥∥∥∥
2

+
1

2ε8

∥∥∥∥∥
√
k2

µ
grad[ep2

]

∥∥∥∥∥
2

+ε9

∥∥∥∥∥
√
β

µ
(ηp1
− ηp2

)

∥∥∥∥∥
2

+
1

ε9

∥∥∥∥∥
√
β

µ
(ep1
− ep2

)

∥∥∥∥∥
2

+ε10

∥∥∥∥∥
√
hΥ

ηp
{{µk−1

1 }} {{ηu1
}}

∥∥∥∥∥
2

Γint

+
1

ε10

∥∥∥∥√ ηp
hΥ
{{µ−1k1}} Jep1

K
∥∥∥∥2

Γint

+ε11

∥∥∥∥√h−1
Υ {{µ−1k1}} Jηp1

K
∥∥∥∥2

Γint

+
1

ε11

∥∥∥∥√hΥ{{µk−1
1 }} {{eu1

}}
∥∥∥∥2

Γint

+ε12

∥∥∥∥∥
√
hΥ

ηp
{{µk−1

2 }} {{ηu2
}}

∥∥∥∥∥
2

Γint

+
1

ε12

∥∥∥∥√ ηp
hΥ
{{µ−1k2}} Jep2

K
∥∥∥∥2

Γint

+ε13

∥∥∥∥√h−1
Υ {{µ−1k2}} Jηp2

K
∥∥∥∥2

Γint

+
1

ε13

∥∥∥∥√hΥ{{µk−1
2 }} {{eu2

}}
∥∥∥∥2

Γint

+ε14

∥∥∥∥√ηuhΥ{{µk−1
1 }} Jηu1

K
∥∥∥∥2

Γint

+
1

ε14

∥∥∥∥√ηuhΥ{{µk−1
1 }} Jeu1

K
∥∥∥∥2

Γint

+ε15

∥∥∥∥√ ηp
hΥ
{{µ−1k1}} Jηp1

K
∥∥∥∥2

Γint

+
1

ε15

∥∥∥∥√ ηp
hΥ
{{µ−1k1}} Jep1

K
∥∥∥∥2

Γint

2For convenience of the reader, we color-coded the terms. (See the online version for the colored text.)

The red-colored terms contain interpolation errors and contribute to ‖H‖DG
stab. The blue-colored terms

contain approximation errors and contribute to ‖E‖DG
stab. We employ Lemma 4.2.1 on the magenta-colored

terms and employ Lemma 4.2.2 on the green-colored terms.
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with εi (i = 1, · · · , 17) are arbitrary positive constants. After employing Lemma 4.2.1,

the above inequality can be grouped as
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We choose the coefficients of the first nine terms (i.e., blue-colored terms) in such a way

that these nine terms add up to the square of ‖E‖DG
stab. This can be achieved by choosing

these coefficients as:
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One way to satisfy the above constraints is to make the following choices for the individual

constants:

ε1 = ε3 = ε5 = ε7 = 4, ε2 = ε4 = ε6 = ε8 = ε10 = ε12 = ε15 = ε17 = 2, ε9 = ε14 = ε16 = 1,

ε11 = 4Ceu1
and ε13 = 4Ceu2

.

(4.56)

By incorporating the above choices into inequality (4.54), we obtain
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Lemma 4.2.2 implies

(
‖E‖DG

stab

)2
. 6
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As h → 0, hω → 0 ∀ω ∈ Th, which in turn implies that ‖H‖DG
stab → 0 (using Lemma

4.2.3) and all other terms on the right hand side tend to zero (using Lemma 4.2.2). Thus,

‖EDG
stab‖ → 0 as h→ 0. Since ‖ · ‖DG

stab is a norm (i.e., Lemma 4.1.1), one can conclude that

Uh → U almost everywhere as h→ 0.

Remark 4.2.1. The selection of constants εi (i = 1, · · · , 17) in equation (4.56) is arbi-

trary. We do not claim that this selection provides an optimal bound, which is not the

aim of this work. However, the selection is sufficient to establish the convergence of the

proposed formulation.

Lemmas 4.2.2 and 4.2.3 immediately give the following results:

Corollary 4.2.1. (Rates of convergence.) Let p, q, r and s be the polynomial orders for

approximating the fields u1, u2, p1 and p2. Let the orders of regularity in terms of the

Sobolev semi-norm for these solution fields be p̂, q̂, r̂ and ŝ. Then the rates of convergence

for these fields will be, respectively, min[p+ 1, p̂], min[q + 1, q̂], min[r, r̂] and min[s, ŝ].

Remark 4.2.2. In order for Lemma 4.2.2 to hold, ηp 6= 0, as ηp is in the denominator

of the estimates (4.22) and (4.23). Since the convergence theorem utilizes Lemma 4.2.2,

the convergence of the proposed DG formulation is thus established for the case ηp 6= 0.

However, numerical simulations suggest that the parameters ηu and ηp do not seem to

have a noticeable effect on the results for problems involving conforming meshes and

conforming interpolations.
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Chapter 5

Numerical Analyses and Results

5.1 Patch tests

Patch tests are generally used to indicate the quality of a finite element. Despite some

debated mathematical controversies regarding the patch test, “the patch test is the most

practically useful technique for assessing element behavior” as nicely pinpointed by [90].

In this section, different constant flow patch tests are used to showcase various features

of the proposed stabilized mixed DG formulation. First, the capability of the proposed

formulation for modeling flow in a highly heterogeneous, layered porous domain with

abrupt changes in macro- and micro-permeabilities, is shown. Then, the ability of the

proposed stabilized mixed DG formulation for supporting non-conforming discretization,

in the form of non-conforming order refinement and non-conforming element refinement,

is assessed. Finally, the proposed stabilized mixed DG formulation is employed on meshes

with non-constant Jacobian elements. For the case of non-conforming order refinement,

a parametric study is performed to assess the sensitivity of the solutions with respect to

the stabilization parameters ηu and ηp.
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5.1.1 Velocity-driven patch test

In reality, heterogeneity of the material properties is indispensable when it comes to

porous domains. In many geological systems, medium properties can vary by many orders

of magnitude and rapid changes may occur over small spatial scales. The aim of this

boundary value problem is to show that the proposed stabilized mixed DG formulation

can perform satisfactorily when the medium properties are heterogeneous.

The heterogeneous domain consists of five horizontal layers with different macro- and

micro-permeabilities in each layer. As shown in Fig. 5.1, on the left side of each layer, a

constant normal velocity (ui ·n̂ = −k# layer
i

µ
) is applied and on the right side, ui ·n̂ =

k# layer
i

µ

is prescribed. On the top and bottom of the domain, normal components of macro- and

micro-velocities are prescribed to be zero. For uniqueness of the solution, pressure is

prescribed on one corner of the domain. Table 5.1 provides the model parameters for this

problem.

Table 5.1: Model parameters for velocity-driven patch test.

Parameter Value
γb {0.0, 0.0}
Lx 5.0
Ly 4.0
µ 1.0
β 1.0
k 0.2
ηu 100.0
ηp 100.0
h structured TRI mesh of size 0.04 used

As can be seen in Fig. 5.2, velocities are constant and pressures are linearly varying

in the horizontal direction in each layer, which are in agreement with the exact solution

of this problem as remarked by [92]. This problem is also solved using the stabilized
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Figure 5.1: Velocity-driven patch test: This figure shows the computational domain,
boundary conditions, and macro- and micro-permeabilities in each layer.

continuous Galerkin (CG) formulation of the DPP model developed by [96] and the x-

components of velocity profiles are compared under both DG and CG formulations at

x=2.5 throughout the domain as shown in Fig. 5.3. As can be seen, spurious oscillations

are observed along the interfaces of the layers under the CG formulation. Under the DG

formulation, however, such oscillations are completely eliminated and the physical jumps

in the velocity profiles are accurately captured across the interfaces.

5.1.2 Non-conforming discretization

One of the features of DG formulations is that the global error of the computation

can be controlled by adjusting the numerical resolution in a selected set of the elements.

Such a non-conforming discretization can be obtained in two ways [83]: One can either

modify the local order of the interpolation, or locally change the element size in parts of

the computational domain. [16, 15] have discussed that the former method, also known as

non-conforming order refinement or non-conforming polynomial orders, is more preferred

for smooth problems. However, for the non-smooth case, which is due to the geometric
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(a) Macro-pressure (b) Micro-pressure

(c) Macro-velocity (d) Micro-velocity

Figure 5.2: Velocity-driven patch test: Velocities are constant within each layer and pres-
sures are linearly varying in the horizontal direction which are in agreement
with the exact solution of this problem.
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Figure 5.3: Velocity-driven patch test: This figure compares the velocities profiles obtained
under the stabilized mixed CG formulation and the proposed DG formulation.
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features, sources, or boundary conditions, non-conforming element refinement is the best

choice. In the following, we show the application of non-conforming discretization under

the proposed stabilized DG formulation using simply designed boundary value problems.

5.1.2.1 Non-conforming polynomial orders

Since the element communication under the DG formulations takes place through

fluxes, each element can independently possess a desired order of interpolation. Hence, the

DG methods can easily support the non-conforming polynomial orders (see [152, 42, 81]).

In order to investigate the performance of our proposed stabilized mixed DG formu-

lation under non-conforming polynomial orders, a problem taken from [96] is used. The

domain is considered to be a unit square, with pressures being prescribed on the entire

boundary of both pore-networks as shown in Fig. 5.4. Prescribed pressure values on

the respective boundary edges are obtained using the analytical solutions of this problem.

The analytical solution for the pressure and velocity fields can be written as:

p1(x, y) =
µ

π
exp(πx) sin(πy)− µ

βk1

exp(ηy), (5.1)

p2(x, y) =
µ

π
exp(πx) sin(πy) +

µ

βk2

exp(ηy), (5.2)

u1(x, y) = −k1

 exp(πx) sin(πy)

exp(πx) cos(πy)

+

 0

η
β

exp(ηy)

 , and (5.3)

u2(x, y) = −k2

 exp(πx) sin(πy)

exp(πx) cos(πy)

−
 0

η
β

exp(ηy)

 . (5.4)

where

η :=

√
β
k1 + k2

k1k2

. (5.5)

η is a useful parameter to characterize the flow of fluids through porous media with double

porosity/permeability [135].
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Figure 5.4: Non-conforming polynomial orders: The computational domain in the 2D set-
ting is a unit square. Pressures are prescribed on the entire boundary of both
pore-networks.

Table 5.2: Model parameters for non-conforming polynomial orders, element-wise mass
balance study, and 2D numerical convergence analysis.

Parameter Value
γb {0.0, 0.0}
L 1.0
µ 1.0
β 1.0
k1 1.0
k2 0.1

η
√

11 ' 3.3166
ηu 10.0
ηp 1.0
h structured TRI mesh of size 0.1 used

pleft
i , i = 1, 2 Obtained by evaluating

pright
i , i = 1, 2 the analytical solution
ptop
i , i = 1, 2 (equations (5.1) and (5.2) )

pbottom
i , i = 1, 2 on the respective boundaries.

Table 5.2 provides the parameter values for this problem. In the left and right parts

of the domain, two different sets of equal-order interpolation are employed for velocities
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Figure 5.5: Non-conforming polynomial orders: In the left part of the domain, third order
interpolation polynomials are used for velocities and pressures, while in the
right part, first order interpolation polynomials are used.

and pressures as shown in Fig. 5.5. In the left half, third order interpolation polynomials

are employed for velocities and pressures in each pore-network while in the right half,

first-order interpolation polynomials are used.

Smooth velocity profiles along the non-conforming edge (x = 0.5) are not achievable

for a coarse mesh (e.g., of size 10 x 10 elements mesh) without using extra stabilization

terms (i.e., ηu = ηp = 0). One can either apply exhaustive mesh refinement, which

in turn leads to a much higher computational cost, or can circumvent the unnecessary

refinements by alternatively taking advantage of non-zero ηu and ηp. Figs. 5.6–5.8

illustrate the sensitivity of x-component of velocities along the non-conforming edge with

respect to ηu, ηp and their combined effect. According to Figs. 5.6(a) and 5.6(b), the

increase in ηp per se in the absence of ηu slightly improves the results. However, for the

case of ηp = 0 and non-zero ηu, a drastic enhancement is captured with ηu of order one

as shown in Figs. 5.7(a) and 5.7(b). Figs. 5.8(a) and 5.8(b) show the combined

effect of ηu and ηp along the non-conforming edge in minimizing the drifts of macro and

micro-velocity fields.
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Figure 5.6: Non-conforming polynomial orders: This parametric study demonstrates that
an increase in ηp in the absence of ηu slightly improves the accuracy in captur-
ing the jumps of the (macro- and micro-) velocities across a non-conforming
edge.
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Figure 5.7: Non-conforming polynomial orders: This figure shows a parametric study per-
formed on the effect of ηu on velocity profiles. For the case of ηp = 0 and
non-zero ηu, a drastic enhancement is captured with ηu of order 1.
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Figs. 5.9 and 5.10 compare the exact and numerical solutions for the pressure and

velocity fields by taking ηu = 10 and ηp = 1. As can be seen, the numerical and the

exact solutions match, which implies that the proposed mixed DG formulation can nicely

handle non-conforming polynomial orders. [17] suggests the need for such additional

stabilization terms for modeling flow under Darcy equations. However, to the best of the

authors’ knowledge, no numerical simulation has been reported to quantify the effect of

these stabilization parameters on the accuracy of results under the DPP model for the

problems exhibiting mismatching interpolation order.

5.1.2.2 Non-conforming element refinement

In mesh refinement procedures, one can either uphold the conformity of the mesh or

produce irregular (non-conforming) meshes. The ability of DG formulations to support

non-conforming elements obviates the user from propagating refinements beyond the de-

sired elements [83]. The non-conforming meshes introduce hanging nodes on the edge

of neighboring elements. In general, there are two strategies for handling non-matching

interface discretization. In the first approach, extra degrees of freedom are assigned to

the hanging nodes; hence the shape functions are generated on both regular and hanging

nodes in such a way that both Kronecker delta and partition of unity properties are satis-

fied. Constructing these special shape functions for two- and three-dimensional problems

is discussed in [77, 132]. In the second approach, which is known as constrained approxi-

mation, the shape functions are generated only on the corner nodes of each element and

the stiffness matrix is assembled via conventional algorithms. The constraints at hanging

nodes are then designed to be the average of their neighboring corner nodes. This can be

enforced either through Lagrange multipliers or multiplication by the connectivity matrix

[3, 20]. This method is a classical standard procedure in treatment of mismatching girds
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Figure 5.8: Non-conforming polynomial orders: This figure shows a parametric study per-
formed on the combined effect of ηu and ηp on minimizing the drifts of macro
and micro-velocity fields.
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(a) Macro-pressure (Numerical solution) (b) Macro-pressure (Exact solution)

(c) Micro-pressure (Numerical solution) (d) Micro-pressure (Exact solution)

Figure 5.9: Non-conforming polynomial orders: In the left half of the domain, third order
interpolation polynomials are used for velocities and pressures, while in the
right half, first order interpolation polynomials are used.
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(a) Macro-velocity (Numerical solution) (b) Macro-velocity (Exact solution)

(c) Micro-velocity (Numerical solution) (d) Micro-velocity (Exact solution)

Figure 5.10: Non-conforming polynomial orders: This figure shows the exact and numerical
solutions for the velocity profiles within the domain.
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and hanging nodes. For further details refer to [141]. Herein, we resort to the second ap-

proach by introducing virtual nodes, as the refinement algorithm is more straightforward

compared to the first approach [70].

Applications of mesh refinement in the light of DG formulations are provided by [40,

104, 79], where the numerical fluxes on the non-conforming meshes are incorporated in the

DG solver. In the following problem, the capability of our proposed stabilized mixed DG

formulation for supporting the non-conforming element refinement is investigated. The

domain is homogeneous with pressures being prescribed on the left and right boundaries

of both pore-networks. The normal components of velocities are zero on top and bottom

of the domain. The model parameters for this problem can be found in Table 5.3. The

refinement provided is based on physical considerations and takes place on the right half

of the domain, where the mismatching edge is shared by more than two elements, as can

be seen in Fig. 5.11(a).

The virtual nodes laid down on the non-conforming boundary face (nodes 13 and 14

in Fig. 5.11(b)), each store a linear interpolation of nodes 2 and 3. These nodes (similar

to hanging nodes 8 and 9) do not initially impose any additional degrees of freedom and

are merely auxiliary nodes on the edge of element 1 for programming convenience. The

usual DG algorithm for the assembly of the global stiffness matrix is followed. Then, we

enforce constraints for degrees of freedom corresponding to hanging nodes (and virtual

nodes) by Lagrange multiplier’s approach as described in details in [99, 70]. At this stage,

the interactions of node 8 with nodes 2 and 3 was facilitated via virtual node 13, and

similarly, the interaction of node 9 with nodes 2 and 3 was assisted via virtual node 14.

Fig. 5.12 shows the velocity and pressure profiles within the domain. Pressures in both

pore-networks are varying linearly and velocities are constant throughout the domain.

These results show that the proposed stabilized DG formulation is capable of handling
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Table 5.3: Model parameters for non-conforming element refinement problem.

Parameter Value
γb {0.0, 0.0}
Lx 2.0
Ly 1.0
µ 1.0
β 1.0
k1 1.0
k2 0.1
ηu 0.0
ηp 0.0

hanging node

(a) Computational domain

3

2

1 2

9 10

12 11

5 6

4 3

1
8

713

14

(b) Mesh discretization

Figure 5.11: Non-conforming element refinement: The top figure shows the representa-
tive computational domain with non-conforming element refinement. The
bottom figure shows the DG discretization of this domain.

66



(a) Macro-pressure (b) Micro-pressure

(c) Macro-velocity (d) Micro-velocity

Figure 5.12: Non-conforming element refinement: These results show that the proposed
stabilized DG formulation is capable of handling non-conforming element
refinement (with hanging nodes in the mesh).

non-conforming element refinement (with hanging nodes in the mesh).

5.1.3 Non-constant Jacobian elements

In practice, many hydrogeological systems have complex shapes and modeling of such

domains, especially in the 3D settings, requires using of elements with irregular shapes.

Divergent boundaries in such elements result in non-constant Jacobian determinants.

Herein, the aim is to show that the proposed stabilized mixed DG formulation can perform

satisfactorily to model flow through computational domains composed of non-constant

Jacobian elements. It will be shown that under the equal-order interpolation for the field

variables, our proposed formulation is still able to pass the constant flow patch test with

irregular elements. Two different computational domains with sample meshes having

non-constant Jacobian brick elements are depicted in Fig. 5.13 and model parameters

are provided in Table 5.4. Pressures are prescribed at both left and right faces of the
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(a) Mesh #1 (b) Mesh #2

Figure 5.13: Non-constant Jacobian elements: This figure shows two different computa-
tional domains and their corresponding meshes for the constant flow patch
test. For this problem, non-constant Jacobian brick elements are used.

Table 5.4: Model parameters for 3D computational domains with non-constant Jacobian
elements.

Parameter Mesh #1 Mesh #2
γb {0.0, 0.0, 0.0} {0.0, 0.0, 0.0}
Lx 1.0 1.0
Ly 1.0 0.2
Lz 1.0 1.0
µ 1.0 1.0
β 1.0 1.0
k1 1.0 1.0
k2 0.1 0.1
ηu 0.0 0.0
ηp 0.0 0.0
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(a) Macro-pressure (b) Micro-pressure

(c) Macro-velocity (x component) (d) Micro-velocity (x component)

Figure 5.14: Non-constant Jacobian elements: Pressure and velocity profiles are shown for
Mesh #1 (Fig. 5.13(a)) with non-constant Jacobian elements.

two pore-networks (p1(x = 0, y, z) = p2(x = 0, y, z) = pL and p1(x = 1, y, z) = p2(x =

1, y, z) = pR). On the other faces, the normal component of velocity in both pore-networks

is assumed to be zero (i.e., u1 · n̂ = u2 · n̂ = 0). The pressure and velocity profiles for

both domains are shown in Figs. 5.14 and 5.15. In both domains, pressures are varying

linearly from the left face to the right one and velocities are constant throughout the

domain as expected. These results show that the proposed mixed DG formulation is

capable of providing accurate results using non-constant Jacobian elements.
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(a) Macro-pressure (b) Micro-pressure

(c) Macro-velocity (x component) (d) Micro-velocity (x component)

Figure 5.15: Non-constant Jacobian elements: Pressure and velocity contours are shown
for Mesh #2 (Fig. 5.13(b)) with non-constant Jacobian elements.
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5.2 Numerical convergence analysis

In this section, we perform numerical convergence analysis of the proposed stabilized

DG formulation with respect to both h- and p-refinements.

5.2.1 2D numerical convergence analysis:

Convergence analysis in the 2D setting is performed on the boundary value problem

described in Section 5.1.2.1. This problem earlier employed by [96] for the convergence

analysis of the stabilized mixed continuous Galerkin (CG) formulation of the DPP model

on a triangular (TRI) mesh. The exact solutions for the pressures and velocities are

provided by equations (5.1) – (5.4). The domain for this problem is homogeneous (macro-

and micro-permeabilities are constant within the domain). The computational domain is

shown in Fig. 5.4 and the parameter values are provided in Table 5.2.

The types of meshes used in this study are shown in Fig. 5.16. The three-node

triangular element (TRI) (which is a simplicial mesh), four-node square element (QUAD)

and four-node trapezoidal mesh [8] (which are non-simplicial meshes) are employed in the

numerical simulation and the convergence is obtained under h-refinement. We performed

h-convergence study on equal-order interpolations of order 1 to 4, and p-refinement of

up to order 8, on TRI mesh. In Figs. 5.17 and 5.18, the convergence rates under

h-refinement and p-refinement are provided for the L2-norm and the H1-norm of the

pressure fields in the two pore-networks. The rates of convergence under h- and p-

refinements are observed to be polynomial and exponential, respectively.

On non-simplicial meshes we performed two h-convergence analyses. In case I, equal-

order interpolations of p = q = r = s = 2; and in case II, interpolation order of p = q = 1
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2h

(a) TRI mesh

2h

(b) QUAD mesh

2h

(c) Trapezoidal mesh

Figure 5.16: Schematic of mesh types for convergence analysis: This figure provides a pic-
torial description of different types of mesh used in convergence study. The
size of h is taken as 0.1 in the figure.

and r = s = 2 were considered. In Figs. 5.19 and 5.20, the convergence rates under

h-refinement for QUAD and trapezoidal meshes are provided for the L2-norm and the

H1-norm of the pressure fields, and the L2-norm and the Hdiv-norm of the velocity fields.

The rates of convergence are observed to be polynomial. And for L2- and H1-norms, it is

shown that both interpolation cases lead to the same rate of convergence on pressure and

velocity fields for both pore networks. These results are in accordance with corollary 4.2.1

and equation (4.58). However, for Hdiv-norm, the rate of convergence is sensitive to the

choice of interpolation order for the velocity fields.

5.2.2 3D numerical convergence analysis

The computational domain of this problem is a unit cube with pressure being pre-

scribed on the entire boundary of the two pore-networks. The analytical solution takes

the following form:

p1(x, y, z) =
µ

π
exp(πx) (sin(πy) + sin(πz))− µ

βk1

(exp(ηy) + exp(ηz)) , (5.6)

p2(x, y, z) =
µ

π
exp(πx) (sin(πy) + sin(πz)) +

µ

βk2

(exp(ηy) + exp(ηz)) , (5.7)
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Figure 5.17: 2D numerical convergence analysis on TRI mesh: This figure provides the con-
vergence rates under h-refinement for various equal-order polynomial on
triangular mesh.
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Figure 5.18: 2D numerical convergence analysis on TRI mesh: This figure shows the results
of numerical convergence under p-refinement for a fixed mesh size (h = 0.2).
The number of degrees-of-freedom corresponds to p = 1 to 8.
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Figure 5.19: 2D numerical convergence analysis for QUAD mesh: This figure provides the
convergence rates under h-refinement for two sets of polynomials order of: 1
and 2, respectively, for velocity and pressure fields; and 2 for both velocity
and pressure fields in the two pore-networks.
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Figure 5.20: 2D numerical convergence analysis for trapezoidal mesh: This figure provides
the convergence rates under h-refinement for two sets of polynomials order
of: 1 and 2, respectively, for velocity and pressure; and 2 for both velocity
and pressure fields in the two pore-networks.
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Table 5.5: Model parameters for 3D numerical convergence analysis.

Parameter Value
γb {0.0, 0.0, 0.0}
Lx 1.0
Ly 1.0
µ 1.0
β 1.0
k1 1.0
k2 0.1

η
√

11 ' 3.3166
ηu 100.0
ηp 0.0

pleft
i , i = 1, 2 Obtained by evaluating

pright
i , i = 1, 2 the analytical solution
ptop
i , i = 1, 2 (equations (5.6) and (5.7) )

pbottom
i , i = 1, 2 on the respective boundaries.

u1(x, y, z) = −k1 exp(πx)


sin(πy) + sin(πz)

cos(πy)

cos(πz)

+
η

β


0

exp(ηy)

exp(ηz)

 , and (5.8)

u2(x, y, z) = −k2 exp(πx)


sin(πy) + sin(πz)

cos(πy)

cos(πz)

− η

β


0

exp(ηy)

exp(ηz)

 . (5.9)

Pressure boundary conditions on each face are obtained by evaluating the analytical

solution on the corresponding boundary of each pore-network. Table 5.5 provides the

parameter values employed in the numerical simulation.

The eight-node brick element HEX, which is a non-simplicial element, is employed in

this numerical simulation. Figs. 5.21 and 5.22 respectively provide the convergence rates

under h-refinement and p-refinement for the L2-norm and the H1-norm of the pressure

fields in the two pore-networks. As can be seen, the rates of convergence under the h-

and p-refinements are polynomial and exponential, respectively; which are in accordance

with the theory (viz. Corollary 4.2.1).
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Figure 5.21: 3D numerical convergence analysis on TRI mesh: This figure provides the con-
vergence rates under h-refinement for various equal-order polynomials. The
rate of convergence is polynomial, which is in accordance with the theory.
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Figure 5.22: 3D numerical convergence analysis on TRI mesh: This figure shows the results
of numerical convergence under p-refinement for a fixed mesh size (h = 0.2).
The number of degrees-of-freedom corresponds to p = 1 to 4.

5.3 Canonical problem and structure preserving prop-

erties

In this section, first, robustness of the proposed stabilized mixed DG formulation

is assessed using a standard test problem, with abrupt changes in material properties

and elliptic singularities. In the literature, this problem is typically referred to as the

quarter five-spot checkerboard problem. Second, the element-wise mass balance property

associated with the CG and DG formulations is compared.
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5.3.1 Quarter five-spot checkerboard problem

The original form of this problem, known as “five-spot problem” with homogeneous

properties, has been firstly designed for the Darcy equations. Herein, we extend this prob-

lem to the DPP model with modified boundary conditions and heterogeneous medium

properties. Fig. 5.23 shows the computational domain and the boundary conditions

for the five-spot problem. An injection well surrounded by four production wells placed

at four corners of a square domain form a typical setting in the enhanced oil recovery

applications. The underlying symmetry allows for solving the problem only in the top

right quadrant, which is referred to as a “quarter” five-spot problem. In the well-known

“checkerboard problem”, such a computational domain is divided into four sub-regions

I, II, III, and IV with abrupt changes in the permeability.

In this problem, elliptic singularities are observed near the injection and production

wells which are located at the opposite corners of the diagonals (denoted by Cinj and

Cprod, respectively). The normal component of velocity is prescribed to be zero on the

entire boundary of the micro-pore network. In the macro-network, however, velocity at

the injection and production wells is prescribed by applying a source/sink term while zero

normal velocity is assumed on the rest of the boundary. It is worth mentioning that the

prescribed source and sink strengths at injection and production wells are, respectively,

equal to +1 and -1. However, instead of applying a pointwise sink/source at the location

of wells, the normal component of velocity is applied along the external edges of the corner

element in x- and y-directions with an equivalent distribution as shown in Fig. 5.23.

Table 5.6 provides the parameter values for this problem. The permeability param-

eters in sub-regions I and IV and the ones in sub-regions II and III are mutually equal.

Herein, we assume that sub-regions I and IV are more permeable compared to sub-regions
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Figure 5.23: Quarter five-spot checkerboard problem: This figure shows the computational
domain and boundary conditions. The heterogeneous domain is divided into
four sub-regions with permeabilities shown in equation (5.10).
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II and III with the following drag coefficients:(
µ

k1

)
I

=

(
µ

k1

)
IV

= 1,

(
µ

k1

)
II

=

(
µ

k1

)
III

= 100,(
µ

k2

)
I

=

(
µ

k2

)
IV

= 10, and

(
µ

k2

)
II

=

(
µ

k2

)
III

= 1000. (5.10)

Table 5.6: Model parameters for the quarter five-spot checkerboard problem.

Parameter Value
γb {0.0, 0.0}
Lx 1.0
Ly 1.0
µ 1.0
β 1.0

k1, k2 refer to Eqn. (5.10)
un1 0.0 On ∂Ω− {Cprod & Cinj}
un2 0.0 On ∂Ω

source and sink −1 at Cprod

strength +1 at Cinj

ηu 0, 10, 100
ηp 0, 10, 100
h structured TRI mesh of size 0.01 used

Fig. 5.24 shows the macro- and micro pressure profiles for this problem. Steep gra-

dients near the injection and production wells with no spurious oscillation in the pressure

fields are observed under the proposed DG formulation which confirm the robustness of

the numerical formulation. In order to further explore the effect of stabilization param-

eters on the solution profiles, this problem has been solved for different combinations of

ηu and ηp as shown in Fig. 5.25. As can be seen, ηu and ηp have no noticeable effect

on x-component of velocities under the DG formulation. However, spurious oscillations

are observed under the CG formulation at the interface of sub-regions with different

permeability values which implies that CG formulations fall short in capturing material

discontinuities.
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(a) Macro-pressure (b) Micro-pressure

Figure 5.24: Quarter five-spot checkerboard problem: This figure shows that steep pressure
gradients near the injection and production wells are correctly captured
under the proposed DG formulation. Results are obtained for ηu = ηp = 0.

5.3.2 Element-wise mass balance

A DG method, when designed properly, can exhibit superior element-wise properties

compared to its continuous counterpart. CG formulations may suffer from poor element-

wise conservation; however, they satisfy a global mass balance [91]. The importance of

element-wise mass balance in subsurface modeling is discussed in [171], which is partic-

ularly true when the flow is coupled with transport and/or chemical reactions.

In this section, element-wise mass balance error is investigated under the proposed

stabilized mixed DG formulation for the DPP model, and the results are compared with

its continuous counterpart. In the context of DPP, the net rate of volumetric flux from

both pore-networks can be obtained as follows for an element ω ∈ Th:

m(ω) :=

∫
∂ω

(u1 + u2) · n̂ dΓ. (5.11)

After calculation, this equation should result in a zero value. The maximum element-wise
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Figure 5.25: Quarter five-spot checkerboard problem: This figure compares the x-
component of the macro-velocity (top) and micro-velocity (bottom) under
the CG and the proposed DG formulations with different ηu and ηp.
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mass inflow/outflow flux can be obtained as

mout
max := max

ω∈Th
[max[m(ω), 0]] and (5.12a)

min
max := max

ω∈Th
[max[−m(ω), 0]] . (5.12b)

It should be noted that the definition of the local mass flux presented in equation (5.11)

is different from the corresponding one under the Darcy equations. For the case of single

porosity and under Darcy equations, the net flux is zero for the velocity. However, under

the DPP model the net flux need not be zero for the individual velocities and it is shown

to be zero for the summation of u1 and u2. The domain is discretized with structured TRI

mesh of size 0.2. We employ the same boundary value problem as stated in subsection

5.1.2.1 with parameter values provided in Table 5.2. Pressures are prescribed on the

whole boundary in both pore-networks.

Comparisons of maximum local mass inflow/outflow with respect to different com-

binations of equal-order interpolation are illustrated in Fig. 5.26 for both DG and CG

formulations. Fig. 5.27 shows the local mass balance error in each element for cubic

equal-order polynomials. The error values obtained under CG and DG formulations

suggest that the DG formulation returns smaller errors.

5.4 Coupled problem with heterogeneous medium

properties

In the previous sections, we used patch tests and canonical problems to demonstrate

that the proposed stabilized mixed DG formulation can accurately capture the jumps

in the solution fields across material interfaces. We will further illustrate the perfor-

mance of this formulation using a representative problem pertaining to viscous fingering
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Figure 5.26: Element-wise mass balance: This figure shows the variation of the maximum
element-wise inflow/outflow flux with interpolation polynomial orders.

(a) CG formulation (b) DG formulation

Figure 5.27: Element-wise mass balance: This figure shows the local mass balance error
under both CG and DG formulations for cubic equal-order interpolation for
all the variables. As can be seen, the DG formulation returns smaller errors.
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in heterogeneous porous media.

Viscous fingering is a coupled phenomenon which involves both flow and transport

[64]. In the flow of two immiscible fluids in a thin cell, typically called the Hele-Shaw

cell, a more viscous fluid (with viscosity µH) is invaded by a less viscous one (with

viscosity µL < µH), resulting in the creation of physical (displacement) instabilities [88].

The classical viscous fingering in porous media with a single pore-network (i.e., under

Darcy equations) has been studied by [160], and therefore, this instability is sometimes

referred to as the Saffman-Taylor instability in the literature [64]. Recently, [96] have

numerically shown that viscous-fingering-type instabilities can also occur in homogeneous

porous media with double pore-networks. They employed the continuous Galerkin (CG)

formulation of the DPP model, as their studies were restricted to homogeneous porous

media.

Herein, we will employ the proposed DG formulation to study the effect of hetero-

geneity on the appearance and growth of viscous-fingering-type physical instabilities in

porous media with two pore-networks. The governing equations for this two-way coupled

flow and transport problem consist of two parts. Flow under the DPP model is governed

by equations (2.1a)–(2.1i) and the transient advection-diffusion problem is governed by

the following set of equations:

∂c(x, t)

∂t
+ div [u(x, t)c(x, t)−D(x, t)grad[c(x, t)]] = f(x, t) in Ω× (0, T ) , (5.13a)

c(x, t) = cp(x, t) on ΓD × (0, T ) ,

(5.13b)

n̂(x) · (u(x, t)c(x, t)−D(x, t)grad[c(x, t)]) = qp(x, t) on ΓN × (0, T ) , and

(5.13c)

c(x, t = 0) = c0(x) in Ω, (5.13d)
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where c(x, t) denotes the concentration, D(x, t) is the diffusivity, and the advection ve-

locity u(x, t) is sum of the macro- and micro-velocity fields (which are obtained from the

flow problem). That is,

u(x, t) = u1(x, t) + u2(x, t). (5.14)

The concentration for the more viscous fluid is assumed to be zero and for the less viscous

fluid is considered to be equal to 1. In order to complete the coupling of the flow and

transport equations and upon introducing µ0 as the base viscosity of the less viscous fluid

and Rc = log (µH/µL) as the log-mobility ratio, the viscosity of the fluid is assumed to

exponentially depend on the concentration of the diffusant as

µ(c(x, t)) = µ0 exp[Rc(1− c(x, t))]. (5.15)

We consider a domain consisting of two horizontal layers with different permeabilities.

The pictorial description of the problem is provided in Fig. 5.28. The values of macro-

and micro-permeabilities in the bottom layer are assumed to be higher than those of

the upper layer. Such heterogeneity in the permeability imposes a perturbation on the

interface of the two fluids which causes the appearance of unstable finger-like patterns

throughout the domain at the fluid-fluid interface. Moreover, a random function is used

for defining the initial condition for the transport problem within the domain. Parameter

values for this coupled flow and transport problem are provided in Table 5.7. For the

advection-diffusion model given by equations (5.13a)–(5.13d), we have utilized Streamline

Upwind Petrov-Galerkin (SUPG) formulation, as described in [38]. Also, see the computer

code provided in Appendix C.

Fig. 5.29 shows the concentration profile at different time steps throughout the het-

erogeneous domain. The more viscous fluid is shown in dark blue and the less viscous

fluid is shown in dark red. As can be seen, physical instabilities in form of separate
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Figure 5.28: Coupled flow and transport problem: This figure shows the pictorial description
of coupled flow-transport problem with heterogeneous medium properties
along with initial and boundary conditions.

Table 5.7: Model parameters for coupled flow and transport problem in the heterogeneous
domain.

Parameter Value
γb {0.0, 0.0}
f 0.0

Lx, Ly 1.0, 0.4
µ0 1× 10−3

Rc 3.0
D 2× 10−6

β 1.0
kDown

1 1.1

kUp
1 0.9
h structured TRI mesh

of size 0.01 used

Parameter Value
kDown

2 0.011

kUp
2 0.009
c0 0.0
cinj 1.0
pLeft 10.0
pRight 1.0
q 0.0

∆t 5× 10−5

T 1.5× 10−3

ηu 0
ηP 0

finger-like intrusions are created at the fluid-fluid interface. These intrusions are similar

to the viscous-fingering-type instabilities. At the early time steps, we have a larger num-

ber of fingers compared to the later time steps. These smaller fingers merge and form

fewer but much larger fingers as time goes by. It should be noted that finger-like physical

instabilities grow at a higher rate in the bottom layer due to its higher permeability, as

can be seen in Fig. 5.29. Moreover, at the later time steps, the fingers formed in the

bottom layer tend to move towards the interface and enter the top layer. The proposed
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(a) t=5 ∆t (b) t=10 ∆t

(c) t=15 ∆t (d) t=20 ∆t

Figure 5.29: Coupled flow and transport problem: This figure shows that the proposed
formulation can capture well-known instabilities in fluid mechanics, similar
to viscous-fingering instability, in a heterogeneous, layered porous domain.

DG formulation eliminated the numerical instabilities (like Gibbs phenomenon and spu-

rious node-to-node oscillations) but yet accurately captured the physical instabilities. It

is worth mentioning that in our numerical simulations, the parameters ηu and ηp had no

noticeable effect on the generation of fingers.
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Chapter 6

Proposed Solvers

Recent numerical endeavors for solving DPP address small-scale problems [50, 97, 98].

However, The current iterative solver methodologies have been developed and successfully

employed for either single-field problems (e.g., Poisson’s equation, linear elasticity) or for

two-field problems (e.g., Darcy equations, Stokes equations) using two-field composable

solvers [157, 147, 39]. However, there is a gap in knowledge when one wants to solve

large-scale problems under a complex pore-structure model such as DPP model. Unlike

Darcy equations, the governing equations under the DPP model cannot be written as

a single-field Poisson equation solely in terms of pressures [97], or even as a two-field

problem.

To facilitate solving large-scale problems under the DPP model, we present two four-

field composable block solver methodologies. Appealing to PETSc’s composable solver

features [19, 39] and Firedrake Project’s finite element libraries [147], we will show that

the proposed composable block solvers can be effectively implemented in a parallel setting.

The two salient features of the proposed block solvers are: they are scalable in both the

algorithmic and parallel senses. They can be employed under a wide variety of finite

element discretizations. Both of these features will be illustrated later in this document

using representative two- and three-dimensional problems.

We illustrate that the proposed composable solvers can be used under a wide variety
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of finite element discretizations, and will employ three popular finite element discretiza-

tions – the classical mixed formulation (which is based on the Galerkin formalism) using

H(div) elements, the CG-VMS stabilized formulation [97] and our proposed stabilized

mixed discontinuous Galerkin formulation [98], which will be referred to as DG-VMS for-

mulation. We will consider H(div) discretizations for simplicial elements (triangle [TRI]

and tetrahedron [TET]) and non-simplicial elements (quadrilateral [QUAD] and hexa-

hedron [HEX]). In particular, we employ the lowest-order Raviart-Thomas spaces for

simplicial elements [150, 26]. For non-simplicial elements, the velocity spaces for QUAD

and HEX elements are, respectively, RCTF1 and NCF1 [128, 13].

This chapter will be valuable to subsurface modelers on three fronts. First and the

obvious one is that the proposed composable block solver methodologies facilitate solving

large-scale problems involving flow through porous media with multiple pore-networks.

Second, our work can guide an application scientist to choose a finite element discretiza-

tion among several choices. Third, our work illustrates on how to utilize performance

metrics other than the commonly used metric – the total time to solution – in subsurface

modeling. A couple of these other metrics include Digits of Efficacy (DoE) and the total

Degrees-of-Freedom (DoF) processed per second (DoF/s).

6.1 Proposed four-field solvers

The fully discrete formulations for the DPP model can be assembled into the following

linear problem

Ku = f , (6.1)

where K is the stiffness matrix, u is the vector of unknown velocities and pressure, and

f is the corresponding forcing or RHS vector. Solving the system of equations (6.1) in a
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fast and scalable way requires careful composition and manipulation of the four different

physical fields. In this section, we demonstrate how this can be done through PETSc

[19, 18, 59] and its composable solver capabilities [39]. The individual block components

of the stiffness matrix K for the mixed Galerkin formulation using H(div) elements can

be categorized into the following:

K1
uu ←

(
w1;µk−1

1 u1

)
, (6.2a)

K1
up ← − (div[w1]; p1) , (6.2b)

K1
pu ← (q1; div[v1]) , (6.2c)

K1
pp ←

(
q1;

β

µ
p1

)
, (6.2d)

K2
uu ←

(
w2; µk−1

2 u2

)
, (6.2e)

K2
up ← − (div[w2]; p2) , (6.2f)

K2
pu ← (q2; div[v2]) , (6.2g)

K2
pp ←

(
q2;

β

µ
p2

)
, (6.2h)

K12
pp ← −

(
q1;

β

µ
p2

)
, and (6.2i)

K21
pp ← −

(
q2;

β

µ
p1

)
. (6.2j)

For the CG-VMS formulation, the individual block components of the stiffness matrix

can be categorized into the following:

K1
uu ←

1

2

(
w1;µk−1

1 u1

)
, (6.3a)

K1
up ← − (div[w1]; p1)− 1

2
(w1; grad[p1]) , (6.3b)

K1
pu ← (q1; div[v1]) +

1

2
(grad[q1]; u1) , (6.3c)

K1
pp ←

1

2

(
grad[q1];

1

µ
k1grad[p1]

)
+

(
q1;

β

µ
p1

)
, (6.3d)

K2
uu ←

1

2

(
w2; µk−1

2 u2

)
, (6.3e)
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K2
up ← − (div[w2]; p2)− 1

2
(w2; grad[p2]) , (6.3f)

K2
pu ← (q2; div[v2]) +

1

2
(grad[q2]; u2) , (6.3g)

K2
pp ←

1

2

(
grad[q2];

1

µ
k2grad[p2]

)
+

(
q2;

β

µ
p2

)
, (6.3h)

K12
pp ← −

(
q1;

β

µ
p2

)
, and (6.3i)

K21
pp ← −

(
q2;

β

µ
p1

)
. (6.3j)

Likewise, the block components of the stiffness matrix for the DG-VMS formulation read:

K1
uu ←

1

2

(
w1; µk−1

1 u1

)
+ ηuh

(
{{µk−1

1 }}Jw1K; Ju1K
)

Γint , (6.4a)

K1
up ← − (div[w1]; p1)− 1

2
(w1; grad[p1]) + (Jw1K; {{p1}})Γint + (w1 · n̂; p1)Γu

1
, (6.4b)

K1
pu ← (q1; div[v1]) +

1

2
(grad[q1]; u1)− ({{q1}}; Jv1K)Γint − (q1; v1 · n̂)Γu

1
, (6.4c)

K1
pp ←

1

2

(
grad[q1];

1

µ
k1grad[p1]

)
+

(
q1;

β

µ
p1

)
+
ηp
h

(
{{µ−1k1}}Jq1K; Jp1K

)
Γint , (6.4d)

K2
uu ←

1

2

(
w2; µk−1

2 u2

)
+ ηuh

(
{{µk−1

2 }}Jw2K; Ju2K
)

Γint , (6.4e)

K2
up ← − (div[w2]; p2)− 1

2
(w2; grad[p2]) + (Jw2K; {{p2}})Γint + (w2 · n̂; p2)Γu

2
, (6.4f)

K2
pu ← (q2; div[v2]) +

1

2
(grad[q2]; u2)− ({{q2}}; Jv2K)Γint − (q2; v2 · n̂)Γu

2
, (6.4g)

K2
pp ←

1

2

(
grad[q2];

1

µ
k2grad[p2]

)
+

(
q2;

β

µ
p2

)
+
ηp
h

(
{{µ−1k2}}Jq2K; Jp2K

)
Γint , (6.4h)

K12
pp ← −

(
q1;

β

µ
p2

)
, and (6.4i)

K21
pp ← −

(
q2;

β

µ
p1

)
. (6.4j)

The components of the corresponding RHS vector f for equations (6.2), (6.3) and (6.4)

are:

f 1
u ← (w1; γb)− (w1 · n̂; p01)Γp

1
, (6.5a)

f 1
p ← 0, (6.5b)
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f 2
u ← (w2; γb)− (w2 · n̂; p02)Γp

2
, (6.5c)

f 2
p ← 0, (6.5d)

and

f 1
u ←

1

2
(w1; γb)− (w1 · n̂; p01)Γp

1
, (6.6a)

f 1
p ←

1

2

(
grad[q1];

1

µ
k1γb

)
, (6.6b)

f 2
u ←

1

2
(w2; γb)− (w2 · n̂; p02)Γp

2
, (6.6c)

f 2
p ←

1

2

(
grad[q2];

1

µ
k2γb

)
, (6.6d)

and

f 1
u ←

1

2
(w1; γb)− (w1 · n̂; p01)Γp

1
, (6.7a)

f 1
p ←

1

2

(
grad[q1];

1

µ
k1γb

)
− (q1; un1)Γu

1
, (6.7b)

f 2
u ←

1

2
(w2; γb)− (w2 · n̂; p02)Γp

2
, (6.7c)

f 2
p ←

1

2

(
grad[q2];

1

µ
k2γb

)
− (q2; un2)Γu

2
, (6.7d)

respectively. Specifically, we employ PETSc’s block solver capabilities, in the PCFIEDL-

SPLIT class, taking two fields at a time. However, the global DPP model is a four field

problem so we subdivide our problem recursively such that we end up with 2×2 blocks.

Conceptually, PETSc can employ a wide variety of block solver methodologies on a 2×2

matrix:

K =

A B

C D

 , (6.8)

where A, B, C, and D are individual block matrices which also consist of 2×2 blocks.

Although equation (6.8) is conceptually a 4×4 block matrix, PETSc’s field-splitting ca-

pabilities enables us to break the system down dynamically at runtime into two levels of

2×2 blocks.
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We now propose two different ways one can compose scalable and efficient solvers and

preconditioners for blocks A, B, C, and D with the individual components shown in

equations (6.2), (6.3), and (6.4).

6.1.1 Method 1: splitting by scales

One option is to split the global problem by scales. That is, each macro- or micro-

scale 2×2 block will contain its corresponding velocity and pressure fields. Under this

solver strategy, equation (6.1) is then rewritten as

K1
uu K1

up 0 0

K1
pu K1

pp 0 K12
pp

0 0 K2
uu K2

up

0 K21
pp K2

pu K2
pp





u1

p1

u2

p2


=



f 1
u

f 1
p

f 2
u

f 2
p


, (6.9)

where 0 is a zero matrix, u1 and p1 are the respective macro-scale velocity and pressure

vectors, v2 and p2 are the respective micro-scale velocity and pressure vectors. The

individual 2×2 blocks from equation (6.8) would be:

A :=

K1
uu K1

up

K1
pu K1

pp

 , B :=

0 0

0 K12
pp

 ,
C :=

0 0

0 K21
pp

 , D :=

K2
uu K2

up

K2
pu K2

pp

 . (6.10)

Although the off diagonal blocksB andC contain the inter-scale pressure coupling terms,

they are very sparse so we will ignore these blocks for now. The composition of the A

and D blocks are similar to the classical mixed Poisson problem so the Schur complement

approach outlined in [47, 124] and the references within can be applied.

The task is to individually precondition the decoupled A and D blocks. We note that
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they admit factorizations of

A =

 I 0

K1
pu

(
K1

uu

)−1
I


K1

uu 0

0 S1


I (

K1
uu

)−1
K1

up

0 I

 and (6.11)

D =

 I 0

K2
pu

(
K2

uu

)−1
I

 and
K2

uu 0

0 S2


I (

K2
uu

)−1
K2

up

0 I

 , (6.12)

where I is the identity matrix and

S1 = K1
pp −K1

pu

(
K1

uu

)−1
K1

up and (6.13)

S2 = K2
pp −K2

pu

(
K2

uu

)−1
K2

up (6.14)

are the Schur complements for the A and D blocks, respectively. The inverses can

therefore be written as

A−1 =

I − (K1
uu

)−1
K1

up

0 I


(K1

uu

)−1
0

0
(
S1
)−1


 I 0

−K1
pu

(
K1

uu

)−1
I

 and (6.15)

D−1 =

I − (K2
uu

)−1
K2

up

0 I


(K2

uu

)−1
0

0
(
S2
)−1


 I 0

−K2
pu

(
K2

uu

)−1
I

 . (6.16)

The task at hand is to approximate the inverses of the K1
vv, K

2
uu, S

1, and S2 blocks.

The first two blocks are simply mass matrices so we can invert them using the ILU(0)

(incomplete lower upper) solver. For the Schur complement blocks, we employ a diagonal

mass-lumping of K1
uu and K2

uu to estimate
(
K1

uu

)−1
and

(
K2

uu

)−1
because they are

spectrally equivalent to the identity. That is,

S1
p = K1

pp −K1
pudiag

(
K1

uu

)−1
K1

up and (6.17)

S2
p = K2

pp −K2
pudiag

(
K2

uu

)−1
K2

up (6.18)

to precondition the inner solvers responsible for inverting S1 and S2. For these blocks we

employ the multigrid V-cycle on S1
p and S2

p from the HYPRE BoomerAMG package [68].
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We expect these to work because the S blocks are spectrally equivalent to the Laplacian,

modulo the penalty terms. In [124] it turns out the presence of the VMS stabilization

terms in the K1
pp and K2

pp blocks do not drastically affect the performance or scalability

of this solver strategy.

Instead of completely solving for the K−1
uu and Sp of both scales, we apply only a

single sweep of ILU(0)/block Jacobi and V-cycle, respectively, and rely on GMRES [158]

to solve the entire 4×4 block system. Thus this outer GMRES is able to pick up the

inter-scale pressure coupling blocks B and C. The PETSc command-line options for this

solver methodology is given in listing 2 (see Appendix B).

6.1.2 Method 2: splitting by fields

Another option is to group the velocities and pressures of both scales into two different

blocks. If this approach is taken, equation (6.1) is then rewritten as:

K1
uu 0 K1

up 0

0 K2
uu 0 K2

up

K1
pu 0 K1

pp K12
pp

0 K2
pu K21

pp K2
pp





u1

u2

p1

p2


=



f 1
u

f 2
u

f 1
p

f 2
p


, (6.19)

and the individual blocks in equation (6.8) would now look like

A :=

K1
uu 0

0 K2
uu

 , B :=

K1
up 0

0 K2
up

 ,
C :=

K1
pu 0

0 K2
pu

 , D :=

K1
pp K12

pp

K21
pp K2

pp

 . (6.20)
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Unlike the previous methodology, we can work directly with the above stiffness matrix,

which admits a factorization of

K =

 I 0

CA−1 I


A 0

0 S


I A−1B

0 I

 , (6.21)

where the Schur complement S is

S = D −CA−1B. (6.22)

The inverse can therefore be written as

K−1 =

I −A−1B

0 I


A−1 0

0 S−1


 I 0

−CA−1 I

 . (6.23)

Although A is a 2×2 block containing velocities spanning across two different scales,

we can still approximate A−1 by inverting the entire A block using ILU(0) because the

off-diagonal blocks are zero and the diagonal blocks consist of only mass matrices. Ap-

proximating S−1 is a little trickier because equation (6.22) is a dense 2×2 block with

off-diagonal terms. However, we can still employ a diagonal mass-lumping of A to esti-

mate A−1 because it is again spectrally equivalent to the identity. The preconditioner

needed for S−1 is

Sp = D −Cdiag (A)−1B

=

K1
pp K12

pp

K21
pp K2

pp

−
K1

pu 0

0 K2
pu

 diag


K1

uu 0

0 K2
uu



−1 K1

up 0

0 K2
up


=

K1
pp −K1

pudiag
(
K1

uu

)
K1

up K12
pp

K21
pp K2

pp −K2
pudiag

(
K2

uu

)
K2

up

 . (6.24)

The off-diagonal blocks only consist of mass-matrix terms but the decoupled diagonal

blocks are identical to equations (6.17) and (6.18). Thus, we individually employ multi-

grid V-cycle on each of the diagonal blocks. As in the previous solver methodology, only
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a single sweep of ILU(0) and the two multigrid V-cycles are needed for the A−1 matrix

and the two diagonal terms within the Sp matrix, respectively, and the GMRES method

is employed to solve the entire block system. The PETSc implementation is shown in

listing 3 (see Appendix B).

6.1.3 Computer implementation

The finite element capabilities are provided by the Firedrake Project package [147, 122,

85, 128, 25, 121, 87, 86] with GNU compilers. This sophisticate finite element simulation

package and its software dependencies can be found at [180, 183, 184, 177, 185, 179,

178, 181, 182]. The computational meshes are built on top of the DMPlex unstructured

grid format [103, 108, 109] and partitioned through the Chaco package [80]. Pictorial

descriptions of the specific elements represented by this mesh format and utilized in this

chapter are illustrated in Figure 3.1. The DMPlex data structure interfaces very nicely

with PETSc’s suite of parallel solvers and provide excellent scalability across thousands

of MPI processes [46, 48]. Sample Firedrake codes for some of these benchmark problems

can be found in Appendix C.

In our PETSc implementation, the same global matrix will be assembled for both

solvers. The preconditioners differ by the subblocks which are extracted. The different

sparsity pattern of the subblocks contributes to the performance differences seen in the

solvers, but the overall assembly time remains unchanged for either solvers.
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Chapter 7

Performance Model

Recently, [45] have proposed the Time-Accuracy-Size (TAS) performance spectrum

model, which is an enhanced version of the original spectrum model proposed in [48]

obtained by incorporating accuracy into the spectrum model. The TAS spectrum model

can be used to study the performance of numerical formulations in a parallel setting.

Herein, we will utilize the TAS model specifically to achieve the following: (i) We show

that the proposed composable solvers are algorithmically scalable. (ii) We compare the

performance of the two proposed composable solvers on a particular hardware. (iii) We

discuss how the choice of finite element mesh type could affect the solver performance.

(iv) We compare the performance of the chosen three finite element discretizations (the

classical mixed formulation with H(div) elements, the CG-VMS stabilized formulation

and the DG-VMS stabilized formulation) for solving the governing equations under the

DPP model.

7.1 Performance spectrum modeling

To understand the parallel performance and algorithmic scalability of the proposed

DPP composable block solver methodologies for the three finite element formulations, a

performance model is needed. The performance model based on the Time-Accuracy-Size

(TAS) spectrum analysis outlined in [45] shall be used as the basis for understanding
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the quality of these finite element formulations with the proposed block solvers. We now

briefly highlight the performance metrics used in this section and why they are each

important in each of their own ways.

7.1.1 Mesh convergence

This criterion uses the convergence notion to account for numerical accuracy of a

solution in the performance spectrum. In this text, we are adopting L2 norm of the error

defined as

Lnorm
2 = ‖uh − u‖L2 , (7.1)

where u is the exact solution, uh is the the finite element solution, and h is measure of

element size. Based on theory, most finite element discretizations will have an upper-

bound for L2 error norm as

Lnorm
2 ≤ Chα, (7.2)

where α is known as convergence rate and C is some constant. When reporting and

comparing how much accuracy is attained for each discretization, we use the notation of

Digits of Accuracy (DoA) defined as

DoA := −log10(Lnorm
2 ) (7.3)

and plot DoA against Digits of Size (DoS), which is defined as

DoS := −log10(DoF). (7.4)

Noting that for most formulations DoF = Dh−nd, where D is some constant, the slope

of DoA vs DoS plot is in the order of α
nd

. Any tailing off from the line plot is an indicator

of incorrect implementation or solver convergence tolerances being too relaxed. Further-

more, the ratio DoA/DoS can be a good indicator of how much accuracy is achieved per

DoF.
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7.1.2 Strong-scaling

In this basic parallel scaling while the size of problem remains unchanged, the number

of processes increases. In general, this metric comments on the marginal efficiency of each

additional processes assigned to a problem. It is conventional to plot number of processes

against the parallel efficiency defined as

Parallel eff. (%) =
T1

Tp × proc
× 100%, (7.5)

where proc is the number of MPI processes, T1 is the total wall-clock time needed on a

single MPI processes, and Tp is the total wall-clock time needed with proc MPI processes.

However, this metric must be interpreted carefully for the following reasons:

1. Solver iteration counts: The number of solver iterations may fluctuate as the number

of MPI processes changes. This can happen for a number of reasons, whether it is

algorithmic implementation or relaxed convergence criterion. It is necessary to also

report the number of KSP iterations required as the number of processes changes.

2. Problems too small: If the DoF count is too small for a particular MPI concurrency,

communication time will swamp the computation time, thus reducing the parallel

efficiency. This issue may arise when making comparative studies between different

finite element discretizations, as different formulations have different DoF counts for

a given h-size. Furthermore, for Python-based simulation packages like Firedrake,

overheads from just-in-time compilation and instantiation of objects can also affect

the strong-scaling .

3. Problems too large: If the DoF count is too large for a particular MPI concurrency,

the problems not only drop out of the various levels of cache in the memory hierarchy

but also invoke several expensive cache misses which can slow down the overall
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performance. This may result in superlinear speedups, like the BLMVM bound-

constrained optimization solver in [46].

Lastly, the global problem size for this scaling analysis is fixed which does not indicate

how a particular solver or algorithm scales as the size increases. Traditionally, weak-

scaling which increases both the global problem size and MPI concurrency with a fixed

size per MPI process, can help one understand the algorithmic scalability of a particular

solver, but it may be difficult to see from either the strong- or weak-scaling diagrams

how a given machine or algorithm will handle a variety of workloads. Thus, an additional

scaling metric needs to be introduced to help explain whether the performance of solvers

might degrade due to increased KSP iteration counts or memory contention on a machine

as the problem size increases.

7.1.3 Static-scaling

As described in [48], is a scaling analysis where the MPI concurrency is fixed but the

problem size is increased. The essential metric for this analysis is the computation rate

(DoF over Time). In this chapter, we run a series of problem sizes at a fixed parallelism

and plot the computation rate against the wall-clock time. Note that the time need not

be the total time to solution, instead one could look at various phases like the finite

element assembly or solver computation rates.

Static-scaling returns information on performance and scalability of software and

solvers across different hardware architectures. This scaling analysis also captures both

strong-scaling and weak-scaling effects. Assuming that the block solvers are of O(N)

scalability, where N = DoF , optimal scaling is indicated by a horizontal curve. Any

tail offs at small problem sizes suggests strong-scaling effects whereas tail offs at large
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problem sizes indicate suboptimal algorithmic or memory effects. The exact reasoning

for the tail offs towards the right can be verified through arithmetic intensity, which is

the measure of the total work over the total bytes transferred (see [48] and the references

within).

7.1.4 Digits-of-Efficacy (DoE)

The final metric needed for our performance spectrum study is the Digits of Efficacy

(DoE). This metric measures the accuracy production by a particular scheme in a given

amount of time. The DoE could be defined as

DoE := −log10(Lnorm
2 × Time). (7.6)

Assuming that straight lines are captured in both the mesh convergence and static-scaling

diagrams, the DoE has a linear dependence on problem size and returns a slope of nd−α

(see [45] for details on the exact derivation). This efficacy measure is analogous to the

action of a mechanical system, that is the product of energy and time. In the TAS

spectrum analysis, the DoE represents an analogous action for computation, and we

speculate that an optimal algorithm minimizes this product over its runtime. Since the

DoE takes the negative logarithm of action, a higher DoE is desirable.

7.2 Representative numerical results

In this section, after clarifying the terminology and framework adopted for the perfor-

mance spectrum model, we solve the four-field DPP model in two- and three-dimensional

settings in order to demonstrate the implementation of the proposed composable block

solvers and gauge their performances. The two-dimensional problem will be conducted
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Table 7.1: Parameters for two-dimensional problem.

Parameter Value
L 1.0
γb {0.0, 0.0}
µ 1.0
β 1.0
k1 1.0
k2 0.1

η
√

11
ηp 10
ηu 10

in serial (one MPI process) on a dual socket Intel Xeon E5-2609v3 server node. The

three-dimensional problems will be conducted on a dual socket Intel Xeon E5-2698v3

server node and will utilize up to 16 MPI processes (8 MPI processes per socket). On

different performance metrics, H(div), CG-VMS, and DG VMS formulations are com-

pared for both simplicial (TRI, TET) and non-simplicial (QUAD, HEX) meshes. Both

two-dimensional and three-dimensional problems were adopted by [97] for the conver-

gence analysis of continuous stabilized mixed formulation (CG-VMS) and by [98] for the

convergence analysis of discontinuous stabilized mixed formulation (DG-VMS) for the

DPP model. We are generating three series of outputs for first-order CG-VMS, DG-VMS

with ηp = ηu = 10, and H(div) formulations.

7.2.1 Two-dimensional study

For this first problem, let us consider a two-dimensional DPP boundary value problem

with governing equations stated in equation (2.1). The homogeneous (i.e., constant macro

and micro-permeabilities) bi-unit square computational domain and boundary conditions

for this study are shown in Fig. 7.1(a), and the corresponding parameters are described

in Table 7.1.
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(a) Schematic

Figure 7.1: Two-dimensional problem: This figure provides a pictorial description of the
boundary value problem.

h

(a) TRI mesh

h

(b) QUAD mesh

Figure 7.2: Two-dimensional problem: This figure shows the typical meshes employed in
our numerical simulations.
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The analytical solution for the pressure and velocity fields takes the following form:

u1(x, y) = −k1

 eπx sin(πy)

eπx cos(πy)− η
βk1
eηy

 , (7.7a)

p1(x, y) =
µ

π
eπx sin(πy)− µ

βk1

eηy, (7.7b)

u2(x, y) = −k2

 eπx sin(πy)

eπx cos(πy) + η
βk2
eηy

 , and (7.7c)

p2(x, y) =
µ

π
eπx sin(πy) +

µ

βk2

eηy, (7.7d)

where η is defined as

η :=

√
β
k1 + k2

k1k2

. (7.8)

For two-dimensional performance spectrum analysis, all three finite element formula-

tions will start off with the same h-sizes and will be refined up to 6 times. The initial

TRI and QUAD coarse meshes are shown in Fig. 7.2(a) and Fig. 7.2(b) and the corre-

sponding DoF counts for each formulation is shown in Table 7.2. The mesh convergence

results with respect to DoA and DoS are performed under field-splitting solver and are

shown in Fig. 7.3 and Fig. 7.4 respectively for TRI and QUAD meshes.

It should be noted that by applying scale-splitting solver, very same results could be

obtained and for brevity, we decided not to plot them in figures. It can be seen in these

diagrams that the CG-VMS and DG-VMS lines exhibit a slope α
nd

= 1, which verifies

that our Firedrake implementation of these discretizations is correct. The H(div) lines

exhibit a slope of 0.5 for TRI meshes but appear to have superlinear convergence for

the QUAD meshes, which has also been observed in other Firedrake endeavors [72]. It

can also be seen that if the solver tolerances are not strict enough, the mesh convergence

lines will tail off. Nonetheless, the CG-VMS and DG-VMS have the highest ratios of DoA

over DoS in most of these diagrams which suggests that each DoF in VMS formulations
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Figure 7.3: Two-dimensional problem using TRI mesh: This figure compares the mesh con-
vergence results for the chosen finite element formulations under various solver
tolerances. The results are shown for field-splitting block solver methodology.
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Figure 7.4: Two-dimensional problem using QUAD mesh: This figure compares the mesh
convergence results for the chosen finite element formulations under various
solver tolerances. The results are shown for field-splitting methodology.
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has a greater level of contribution to the overall numerical accuracy than their H(div)

counterparts.

Static-scaling results for both block solver strategies are shown in Figure 7.5, and

we see that the total wall clock time is almost equally distributed among the assemble

and solve phases. The field-splitting methodologies are slightly worse than their scale-

splitting counterparts for the VMS formulations. However, the difference in performance

is almost negligible when we look at the total time. The DoF counts are too small as the

line curves for both the assembly and solve phases flatten out when all three formulations

have roughly 10K DoF or more. No matter which mesh is utilized, the H(div) formulation

processes its DoF count faster than either VMS formulations.

Figs. 7.6 and 7.7 contain DoE diagrams for TRI and QUAD meshes, respectively.

Although H(div) appears to have the highest computation rates for both TRI and QUAD

meshes, it has a lower DoA than its VMS counterparts for TRI meshes, which results in

a much smaller DoE. For QUAD mesh on the other hand, H(div) formulation has a very

high DoA and it beats out its VMS counterparts for all the fields, as shown in Fig. 7.7.

7.2.2 Three-dimensional study

In this section, we are solving a three-dimensional problem which is constructed by

the Method of Manufactured Solutions (MMS) [140]. The homogeneous computational

domain and boundary conditions for this problem are illustrated in Fig. 7.8, and related

parameters are listed in Table 7.3. Also, a representative TET and HEX coarse meshes

are shown in Figs. 7.9(a) and 7.9(b), respectively. The analytical solution for the
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Figure 7.5: Two-dimensional problem: This figure compares the static-scaling results for
the chosen finite element formulations using TRI and QUAD meshes.
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Figure 7.6: Two-dimensional problem for TRI mesh: This figure compares the Digits of
Efficacy (DoE) among the chosen finite element formulations. Results for
both solver methodologies with a tolerance of 10−7 are reported.

Table 7.3: Parameters for three-dimensional problem.

Parameter Value
L 1.0
γb {0.0, 0.0, 0.0}
µ 1.0
β 1.0
k1 1.0
k2 0.1

η
√

11
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Figure 7.7: Two-dimensional problem for QUAD element: This figure compares the Digits
of Efficacy (DoE) among the chosen finite element formulations. Results for
both solver methodologies with a tolerance of 10−7 are reported.
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Figure 7.8: Three-dimensional domain: This figure provides a pictorial description of the
boundary value problem.

h

(a) TET mesh

h

(b) HEX mesh

Figure 7.9: Three-dimensional domain: This figure shows the typical meshes employed in
our numerical simulations.
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pressure and velocity fields in the two pore-networks takes the following form:

u1(x, y, z) = −k1


eπx(sin(πy) + sin(πz))

eπx cos(πy)− η
βk1
eηy

eπx cos(πz)− η
βk1
eηz

 , (7.9a)

p1(x, y, z) =
µ

π
eπx(sin(πy) + sin(πz))− µ

βk1

(eηy + eηz), (7.9b)

u2(x, y, z) = −k2


eπx(sin(πy) + sin(πz))

eπx cos(πy) + η
βk2
eηy

eπx cos(πz) + η
βk2
eηz

 , and (7.9c)

p2(x, y, z) =
µ

π
eπx(sin(πy) + sin(πz)) +

µ

βk1

(eηy + eηz). (7.9d)

7.2.2.1 Test 1: Strong-scaling results

First we investigate the strong-scaling performance of the proposed block solvers when

applied to different finite element formulations. Two case studies are shown: first we fix

the h-size for all finite element formulations, and second we modify each formulation’s

h-size such that they all have roughly matching DoF counts. Table 7.4 contains the

corresponding h-sizes and DoF counts needed for both case studies.

First, we consider when all discretizations have an h-size = 1/16. Strong-scaling

results for both field-splitting and scale-splitting block solver methodologies for H(div),

CG-VMS, and DG-VMS can be found in Tables 7.5, 7.6, and 7.7, respectively. All

three Tables indicate that the KSP iteration counts between field-splitting and scale-

splitting are identical whereas the wall-clock time for scale-splitting is slightly smaller.

The KSP counts for H(div) and CG-VMS do not change much when the number of MPI

processes increases, whereas DG-VMS’s KSP counts increase drastically. We suspect that

this proliferation in iteration count is attributed to the fact that the DG-VMS introduces
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several penalty terms and average/jump operators, all of which could affect the quality of

the Schur complement approach presented in this chapter. But even with our proposed

approach, the iterations appears to stabilize as more MPI processes are added. The

increase in KSP iteration counts will affect the parallel efficiency so one has to be careful

when interpreting these results. Nonetheless, we see that the DG-VMS parallel efficiency

is the highest, even with its proliferated KSP counts. This is attributed to the fact that

the DoF count for DG-VMS is larger than CG-VMS and H(div). All three tables indicate

that higher DoF counts bring in more efficiency in the parallel sense.

Second, we consider the case when all discretizations contain approximately 200K

degrees-of-freedom. Strong-scaling results for both field-splitting and scale-splitting block

solver methodologies for H(div), CG-VMS, and DG-VMS can be found in Tables 7.8,

7.9, and 7.10, respectively. Like with the same h-size case, the scale-splitting method

appears to be more efficient in terms of wall-clock time needed despite having the same

KSP counts as the field-splitting method. It can also be seen that the H(div) and CG-

VMS KSP counts do not fluctuate much with MPI processes and that DG-VMS KSP

counts still increase dramatically. However, tuning the mesh sizes such that all finite

element discretizations have the same DoF count enables us to have better understanding

of the parallel performance, especially for three-dimensional problems. It can be seen

that H(div) requires the least amount of wall-clock time resulting in the lowest parallel

efficiency, but that does not mean this is a bad formulation. In order to understand the

quality of the H(div) discretizations, we need to take into consideration the numerical

accuracy and perform a TAS spectrum analysis.
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7.2.2.2 Test 2: TAS Spectrum Analysis

For the TAS spectrum analysis, we consider a range of problems, shown in Table 7.11,

such that all finite element formulations in each refinement step have roughly the same

DoF count. The mesh convergence results with respect to DoA and DoS, for both TET

and HEX meshes, are shown in Fig. 7.10. CG-VMS and DG-VMS lines indicate a slope

of 2
3
, which again corroborates that our Firedrake implementation of these formulations

are correct. The H(div) lines exhibit a slope of 1
3

for TET mesh. However, similar to the

two-dimensional problem for non-simplicial element QUAD, H(div) exhibits super linear

convergence for the HEX meshes. We are not observing any tail-offs in these results as

the solver relative convergence tolerance of 1e − 7 was strict enough. The observation

that both CG- and DG-VMS have the highest DoA over DoS ratio for almost all velocity

and pressure fields implies that they have greater levels of contribution to the overall

numerical accuracy than the H(div) schemes.

Static-scaling results for both block solver strategies are presented in Fig. 7.11. Flat

lines appear in all six subfigures, indicating that the proposed block-solver methodologies

are scalable under the chosen h-sizes and hardware environment. It is a common belief

among application scientists that a solver exhibits worse scaling than an assembly proce-

dure, since assembly is almost entirely local. However, the results show that for all the

chosen discretizations—no matter what solver methodology is employed—time to assem-

ble stiffness matrix is higher than the solver time. This infers that we have successfully

optimized solvers to such an extent that the assembly procedure as implemented in the

Firedrake Project is more dominant.

Analogous to the two-dimensional problem, the scale-splitting methodologies are slightly

better than their field-splitting counterparts for the all formulations. Evidently, this dis-

parity is more clear for VMS formulations at the solve time level. However, the difference
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Figure 7.10: Three-dimensional problem: This figure compares the mesh convergence re-
sults for the chosen finite element formulations using TET and HEX meshes.
The solver tolerance is taken to be 10−7.
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Figure 7.11: Three-dimensional problem: This figure compares the static-scaling results
for the chosen finite element formulations using TET and HEX meshes.
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in performance is almost inconsequential when we look at the total time. It can be seen

that the DoF counts are sufficient to level out the curves when all three formulations

have roughly 20K DoFs or more. Regardless of the mesh type, the H(div) formulation

processes its DoF count faster than either VMS formulations.

Figs. 7.12 and 7.13 contain DoE diagrams for TET and HEX meshes, respectively.

For the case of TET mesh type, in spite of H(div) having the fastest computation rates,

it has a lower DoA than its VMS counterparts which in turns lead to a much smaller

DoE with steep declining curve. On the contrary, for the case of the HEX mesh, H(div)

surpasses its VMS counterparts due to its high DoA values. These diagrams demon-

strate how numerical accuracy can have a drastic effect on the overall computational

performance of these various finite element formulations.
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Figure 7.12: Three-dimensional problem using TET mesh: This figure compares the Digits
of Efficacy (DoE) for the chosen finite element formulations.
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Figure 7.13: Three-dimensional problem using HEX mesh: This figure compares the Digits
of Efficacy (DoE) for the chosen formulations.
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Chapter 8

Interface Conditions for Flows in

Coupled Free-Porous Media

Before we elaborate on some prior works and present our approach, we outline below

the following desired properties of the interface conditions.

(i) Interface conditions may directly stem from the balance laws and the associated

jump conditions. For example, the no-penetration boundary condition at a station-

ary impervious wall, commonly employed in fluid mechanics, stems from the jump

condition associated with the balance of mass.

(ii) Alternatively, they may be constitutive specifications. If this is the case, they should

be compatible with the balance laws and satisfy the essential invariance properties

(e.g., the principle of material frame-indifference or the Galilean invariance).

(iii) It is needless to say that they should agree with the experiments.

(iv) They should apply to a wide variety of problems.

(v) They should give rise to mathematical models (i.e., boundary value problems and

initial boundary value problems) that are mathematically well-posed.

This chapter fills the gap in our understanding of interface conditions for flows in

coupled free-porous media. Our treatment of the problem will be at the continuum
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(or the so-called Darcy) scale. The specific aims of this text are twofold. First, to

develop a framework for obtaining appropriate conditions for coupled flow dynamics at

the interface of free-porous media. Second, to recover some popular conditions available in

the literature for coupled flows as special cases of the proposed framework. Our approach

will utilize the principle of virtual power and the theory of interacting continua.

8.1 Experimental observation and prior works

The two most popular approaches are the Beavers-Joseph (BJ) condition [24] and

the Beavers-Joseph-Saffman (BJS) condition [159]. The experiments conducted by [24]

provided the following two pieces of information regarding flows near the interface of

coupled free-porous media:

(i) The no-slip condition, commonly used for free flows at a boundary, is no longer

satisfied at the interface.

(ii) There is a jump in the tangential components of velocity on either side of the

interface.

[24] also proposed an empirical relation, which advocates that the shear stress on the free

flow side of the interface is linearly proportional to the jump in the tangential velocities

across the interface. Based on the velocity profile and the notation introduced in Fig. 8.1,

the BJ condition takes the following form

uB −Q =

(
k1/2

α

)
∂u

∂y

∣∣∣∣
y=0+

, (8.1)

where y = 0+ is the boundary limit point from the free flow region, k denotes the

isotropic permeability of the porous medium, and α is a constant that depends only on

the properties of the fluid and the porous material.
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Figure 8.1: A pictorial description of the rectilinear flow in a horizontal channel between
an impervious upper wall and a pervious lower wall (at y = 0).

Later, [159] performed a statistical analysis and suggested a modification to the BJ

condition, and this new condition is popularly referred to as the BJS condition. Specifi-

cally, using a one-dimensional geometrical setting and assuming uniform pressure gradi-

ent in the porous medium, [159] argued that the velocity on the porous medium side is

a higher-order term compared to the velocity on the free flow side of the interface, and

hence one can neglect the higher-order term. The BJS condition takes the following form

uB =

(
k1/2

α

)
∂u

∂y

∣∣∣∣
y=0+

+O(k), (8.2)

where O(·) is the standard “big O notation,” which describes the limiting behavior of a

function when the argument tends towards a particular value.

Although these two approaches have laid the foundation for much of the works in this

field, they suffer from some drawbacks, which became clear because of new experimental

and numerical studies. First, the slip coefficients under the BJ and BJS conditions are

independent of the velocities in the free flow and porous regions. However, [115] have

shown the linear dependence of the slip coefficient on the Reynolds number, so the slip

coefficient can depend on the velocities. Second, their primary interest is free flows in a
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region with a part of its boundary to be pervious due to a juxtaposed porous medium.

Their approaches were aimed at replacing the slip condition with an alternate boundary

condition which is appropriate for free flows due to a pervious boundary. Thus their

treatments do not provide sufficient information to study flows in coupled free-porous

media, as there was no discussion on appropriate boundary conditions for the flows in

the porous region. Third, their treatment of the boundary conditions is rather ad hoc

and are not amenable to generalization to other porous media models.

One can find in the literature great efforts towards extending these two empirical

conditions; for example, see [110, 161]. However, the literature does not meet the desired

properties of the interface conditions. We will present a framework for getting a complete

set of interface conditions (not just boundary conditions for free flows due to the presence

of a pervious boundary) suitable for modeling flows in coupled free-porous media.

8.2 The proposed framework

Consider a domain Ω ⊂ Rnd in which an incompressible fluid flows, where “nd”

denotes the number of spatial dimensions and R denotes the set of real numbers. A

spatial point in the domain is denoted by x. The gradient and divergence operators

with respect to x are, respectively, denoted by grad[·] and div[·]. The domain consists of

two non-overlapping but adjoining regions: a porous region and a free flow region. See

Fig. 8.2 for a pictorial description.

8.2.1 The interface

The interface—the surface that demarcates the two regions—is denoted by Γint. The

face of Γint that is adjacent to the free flow region is denoted by Γfree, and the face of Γint
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Free flow region

Porous region

Kpor

Kfree
Γint

Free-porous interface

n̂por ŝ
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∂Kext
free

Γpor

Γfree

Figure 8.2: A pictorial description of coupled free-porous media. The free flow region
Kfree and the porous region Kpor share a common interface Γint.

that is adjacent to the porous region is denoted by Γpor. Note that Γint, for our purposes,

has a zero thickness, and the faces Γfree and Γpor have been introduced for mathematical

convenience. The unit outward normal on Γfree emanating away from the free flow region

is denoted by n̂free. Similarly, the unit outward normal on Γpor emanating away from the

porous region is denoted by n̂por. Clearly, these normals on the interface satisfy

n̂free(x) + n̂por(x) = 0 ∀x ∈ Γint. (8.3)

A unit tangent vector on Γint is denoted by ŝ.
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8.2.2 Free flow region

We denote the region in which free flow occurs by Kfree, and its whole boundary and

external boundary are, respectively, denoted by ∂Kfree and ∂Kext
free. We thus have

∂Kfree = ∂Kext
free ∪ Γfree and ∂Kext

free ∩ Γfree = ∅. (8.4)

The unit outward normal to the external boundary Kext
free is denoted by n̂ext

free. We denote

the velocity vector field in the free flow region by vfree(x), and the corresponding pressure

field by pfree(x). Mathematically, vfree : Kfree∪∂Kfree → Rnd and pfree : Kfree∪∂Kfree → R.

We denote the specific body force and the stress tensor in the free flow region by bfree(x)

and Tfree, respectively. The external boundary ∂Kext
free is divided into two parts: Γvfree and

Γtfree, such that

Γvfree ∪ Γtfree = ∂Kext
free and Γvfree ∩ Γtfree = ∅. (8.5)

Γvfree is the part of the external boundary of the free flow region on which velocity boundary

condition is prescribed, and Γtfree is that part of the external boundary of the free flow

region on which traction boundary condition is prescribed. We thus have

∂Kfree = ∂Kext
free ∪ Γfree = Γvfree ∪ Γtfree ∪ Γfree. (8.6)

We denote the prescribed velocity vector on Γvfree by vp
free(x), and the prescribed traction

on Γtfree by tp
free(x).

8.2.3 Porous region

We denote the porous region by Kpor, and its whole boundary and external boundary

are, respectively, denoted by ∂Kpor and ∂Kext
por. Similar to the free flow region, we have

∂Kpor = ∂Kext
por ∪ Γpor and ∂Kext

por ∩ Γpor = ∅. (8.7)
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The unit outward normal to the external boundary Kext
por is denoted by n̂ext

por. The porous

solid is assumed to be rigid, and its motion can be ignored. We denote the porosity by

φpor(x). We denote the discharge velocity and the pressure of the fluid in the porous

region by vpor(x) and ppor(x), respectively. It is important to note that the discharge

velocity is equal to the true (or seepage) velocity times the porosity. We denote the

specific body force and the stress of the fluid in the porous region by bpor(x) and Tpor,

respectively. We denote the interaction term for the fluid in the porous region by ipor,

which accounts for the momentum supply due to the coexistence of the other constituent

– the porous solid. As mentioned earlier, the interaction term should be interpreted in

the context of TIC. The external boundary ∂Kext
por is divided into two parts: Γvpor and

Γtpor, such that

Γvpor ∪ Γtpor = ∂Kext
por and Γvpor ∩ Γtpor = ∅. (8.8)

Γvpor is the part of the external boundary of the porous region on which velocity boundary

condition is prescribed, and Γtpor is that part of the external boundary of the porous region

on which traction boundary condition is prescribed. We thus have

∂Kpor = ∂Kext
por ∪ Γpor = Γvpor ∪ Γtpor ∪ Γpor. (8.9)

We denote the prescribed velocity on Γvpor by vp
por(x) and the prescribed traction on Γtpor

by tp
por(x).

8.2.4 Fluid properties

The dynamic coefficient of viscosity of the fluid is denoted by µ. The true density of

the fluid in the free flow region is denoted by γfree, and the corresponding quantity of the

fluid in the porous region is denoted by γpor. Note that the bulk density of the fluid in
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porous media is equal to the true density of the fluid times the porosity of the porous

medium. The interface conditions are derived under the realistic case of γfree = γpor = γ.

8.2.5 Kinematically admissible and virtual fields

We introduce the following space for the pairs of vector fields defined on free flow and

porous regions

W :=
{

(wfree(x),wpor(x)) | wfree : Kfree ∪ ∂Kfree → Rnd,wpor : Kpor ∪ ∂Kpor → Rnd
}
.

(8.10)

For a given pair of vector fields (wfree,wpor) ∈ W , we introduce the following normal

components:

w
(n)
free(x) := wfree(x) · n̂free(x), (8.11a)

w(n)
por(x) := wpor(x) · n̂por(x), (8.11b)

and the following decomposition:

wfree(x) = w
(n)
free(x)n̂free(x) +

∗
wfree(x), (8.12a)

wpor(x) = w(n)
por(x)n̂por(x) +

∗
wpor(x), (8.12b)

where
∗
wfree(x) and

∗
wpor(x) denote the corresponding tangential components of the vector

fields.

We refer to a pair of vector fields (wfree(x),wpor(x)) ∈ W to be kinematically admis-

sible if the following properties are satisfied:

(i) div[wfree] = 0 in Kfree and div[wpor] = 0 in Kpor,

(ii) w
(n)
free(x) + w

(n)
por(x) = 0 on the interface Γint, and
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(iii) wfree(x) and wpor(x) satisfy the velocity boundary conditions on the external bound-

ary (i.e., on Γvfree and Γvpor, respectively).

We denote the set of all kinematically admissible pairs of vector fields by V . Certainly,

the exact velocity fields are kinematically admissible; that is (vfree(x),vpor(x)) ∈ V .

We refer to a pair of vector fields (wfree(x),wpor(x)) ∈ W to be a pair of virtual vector

fields if the first two properties under kinematical admissibility are met, and wfree(x) and

wpor(x) vanish on Γvfree and Γvpor, respectively. We denote the set of all pairs of virtual

vector fields by Ṽ .

8.2.6 Other notation for convenience

We occasionally use the following notation:

Lfree = grad[vfree],Lpor = grad[vpor],Dfree =
1

2

(
Lfree + LT

free

)
, and Dpor =

1

2

(
Lpor + LT

por

)
.

(8.13)

8.2.7 Proposed principle of virtual power

The mathematical statement of the proposed principle of virtual power for flows in

coupled free-porous media, which will be in the form of balance of virtual power, can be

written as follows:

Find (vfree(x),vpor(x)) ∈ V such that the following two properties are met:

(P1) P(internal) = P(external) ∀(wfree(x),wpor(x)) ∈ Ṽ and

(8.14)
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(P2) P(internal) = 0 ∀(wfree(x),wpor(x)) ∈ Wrigid,

(8.15)

where the internal virtual power expended (i.e., virtual stress power) in the free

flow region is given by

P(internal)
free :=

∫
Kfree

Tfree · grad[wfree] dΩ. (8.16)

The internal virtual power expended in the porous region is written as

P(internal)
por := P(internal)

por, stress + P(internal)
por, interactions, (8.17)

where virtual stress power in the porous region is defined as

P(internal)
por, stress :=

∫
Kpor

Tpor · grad[wpor] dΩ, (8.18)

and the internal virtual power expended due to interactions between the con-

stituents in the porous region is written as

P(internal)
por, interactions :=

∫
Kpor

ipor ·

(
wpor −��

��*
0

w(solid)
por

)
dΩ =

∫
Kpor

ipor ·wpor dΩ. (8.19)

In the above equation, w
(solid)
por denotes the vector field associated with the porous

solid. Since we assumed the porous solid to be rigid and neglected its motion, this

term becomes zero. The internal virtual power expended at the interface is written

as

P(internal)
int :=

∫
Γint

δΨ dΓ, (8.20)

where δΨ denotes the virtual power expended density at the interface and depends

on both the true velocity fields and their virtual counterparts. The total internal

virtual power expended takes the following form

P(internal) := P(internal)
free + P(internal)

por + P(internal)
int . (8.21)
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The total external virtual power expended takes the following form

P(external) :=

∫
Kfree

γbfree ·wfree dΩ +

∫
Γt

free

tp
free ·wfree dΓ︸ ︷︷ ︸

external virtual power expended
on the free flow region

+

∫
Kpor

γφporbpor ·wpor dΩ +

∫
Γt

por

tp
por ·wpor dΓ︸ ︷︷ ︸

external virtual power expended
on the porous region

. (8.22)

We will show that an appropriate set of interface conditions can be derived by pre-

scribing a functional form for δΨ, and this prescription will be a constitutive specification.

We place the following restrictions on the functional, and these restrictions are based on

either invariance requirements, physical properties or convenience.

(i) Positive semi-definiteness. The total power expended at the interface should be

physically non-negative. This can be ensured by assuming Ψ to be a positive semi-

definite functional. Mathematically,

Ψ[χ] ≥ 0 ∀χ. (8.23)

(ii) Dependence of Ψ on velocities. We take the set of variables for the functional

dependence of Ψ as

χ = { ∗vfree(x),
∗
vpor(x), vn(x)}, (8.24)

where

vn(x) := v
(n)
free(x). (8.25)

Recall that the tangential velocities have been defined in equation (8.12). Since the

true fluid densities in the porous and free flow regions are assumed to be the same,
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the balance of mass across the interface implies that

vn(x) = −v(n)
por(x). (8.26)

The chosen functional dependence will imply that

δΨ =
∂Ψ

∂
∗
vfree

· δ ∗vfree +
∂Ψ

∂
∗
vpor

· δ ∗vpor +
∂Ψ

∂vn
· δvn. (8.27)

Noting that δvfree and δvpor are relative velocities with respect to the rigid porous

solid, they vanish under a rigid body motion of the entire domain. Hence, δΨ

vanishes under a rigid body motion of the virtual velocities. This point is important

to satisfy the statement (P2) under the proposed principle of virtual power.

(iii) Invariance. We require the constitutive relations emanating from the functional

Ψ to satisfy the principle of material frame-indifference. This implies that Ψ can

depend only on the following individual and joint invariants [165]:

∗
vfree ·

∗
vfree,

∗
vpor ·

∗
vpor,

∗
vfree ·

∗
vpor and vn.

8.3 Derivation of interface conditions and field equa-

tions

The main consequence of the statement (P2) is the symmetry of the Cauchy stresses

in both the regions, which is equivalent to the balance of angular momentum. That is,

Tfree(x) = TT
free(x) ∀x ∈ Kfree and Tpor(x) = TT

por(x) ∀x ∈ Kpor. (8.28)
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8.3.1 Handling internal constraints

The Cauchy stresses under the constrained motion due to internal constraints can be

written as:

Tfree(x) = −pfree(x)I + Textra
free (x) and (8.29a)

Tpor(x) = −ppor(x)I + Textra
por (x), (8.29b)

where the extra stresses, Textra
free and Textra

free , which should be prescribed through constitu-

tive specifications.

8.3.2 Consequences of (P1) statement

Using Green’s identity and noting that the virtual velocity fields vanish on Γvfree and

Γvpor, the (P1) statement (8.14) can be rewritten as∫
Γt

free

wfree ·
{
Tfreen̂

ext
free − tp

free

}
dΓ−

∫
Kfree

wfree · {div[Tfree] + γbfree} dΩ

+

∫
Γt

por

wpor ·
{
Tporn̂

ext
por − tp

por

}
dΓ−

∫
Kpor

wpor · {div[Tpor] + γφporbpor − ipor} dΩ

+

∫
Γint

{
wfree ·Tfreen̂free + wpor ·Tporn̂por +

∗
wfree ·

∂Ψ

∂
∗
vfree

+
∗
wpor ·

∂Ψ

∂
∗
vpor

+ wn ·
∂Ψ

∂vn

}
dΓ = 0

∀ (wfree,wpor) ∈ Ṽ . (8.30)

We now invoke the arbitrariness of the fields wfree(x) and wpor(x) but respecting the

requirements of kinematic admissibility. The first two terms give rise to the following

governing equations for the free flow region except along the part of the boundary that

shares with the interface:

div[Tfree] + γbfree = 0 in Kfree, (8.31a)
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div[vfree] = 0 in Kfree, (8.31b)

Tfreen̂
ext
free(x) = tp

free(x) on Γtfree, and (8.31c)

vfree(x) = vp
free(x) on Γvfree. (8.31d)

The third and fourth terms give rise to the following governing equations for the porous

region except along the part of the boundary that shares with the interface:

div[Tpor] + γφporbpor − ipor = 0 in Kpor, (8.32a)

div[vpor] = 0 in Kpor, (8.32b)

Tporn̂
ext
por(x) = tp

por(x) on Γtpor, and (8.32c)

vpor(x) = vp
por(x) on Γvpor. (8.32d)

Noting the decomposition given in equation (8.12), the fifth term gives rise to the following

interface conditions on Γint:

v
(n)
free(x) + v(n)

por(x) = 0, (8.33a)

n̂free(x) ·Tfree(x)n̂free(x) +
∂Ψ

∂vn
= n̂por(x) ·Tpor(x)n̂por(x), (8.33b)

ŝ(x) ·Textra
free n̂free(x) = −ŝ(x) · ∂Ψ

∂
∗
vfree

, and (8.33c)

ŝ(x) ·Textra
por n̂por(x) = −ŝ(x) · ∂Ψ

∂
∗
vpor

. (8.33d)

Equation (8.33a) is in fact the jump condition corresponding to the balance of mass.

The other three conditions are in general not jump conditions and they stem from a

constitutive specification in the form of a prescription for the functional Ψ. If Ψ is

independent of vn (which is assumed in section 8.4 to obtain some popular conditions like

the BJ and BJS conditions) then the second condition (8.33b) will reduce to the normal

component of the jump condition for the balance of linear momentum. To summarize,

146



the complete set of governing equations for flows in coupled free-porous media is:

� the equations in the free flow region along with the boundary conditions on the

external boundary (not including Γint) of the region (8.31a)–(8.31d),

� the equations in the porous region along with the boundary conditions on the

external boundary (not including Γint) of the region (8.32a)–(8.32d),

� the symmetry of Cauchy stresses (8.28),

� the decomposition of Cauchy stresses (8.29a)–(8.29b),

� the interface conditions (8.33a)–(8.33d) and

� the (prescribed) constitutive specifications for Textra
free , Textra

por , ipor and Ψ.

The solution fields will be vfree(x), vpor(x), pfree(x) and ppor(x).

8.4 Special cases

We now show the BJ and BJS conditions, and the no-slip condition (which is com-

monly employed in the fluid mechanics for free flows) are, respectively, special cases and

a limiting case of the proposed framework. The following assumptions will be common

to all the mentioned conditions:

(A1) The normal component of the velocity at the interface does not contribute towards

the power expended density at the interface. That is, Ψ is independent of vn.

(A2) Ψ is a quadratic functional of the tangential (relative) velocities, and the invariance

requirements demand that this functional has to be in terms of individual and joint
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invariants of the tangential (relative) velocities. Thus, mathematically, we write

the functional as

Ψ[
∗
vfree,

∗
vpor, vn] = α11

∗
vfree ·

∗
vfree + 2α12

∗
vfree ·

∗
vpor + α22

∗
vpor ·

∗
vpor, (8.34)

where α11, α12 and α22 are constants, and v∗free and v∗por are the tangential velocities.

(A3) The non-negativity of Ψ is enforced by assuming that

α11α22 ≥ α2
12. (8.35)

(A4) The Stokes model is assumed to describe the flow in the free flow region. That is,

the flow in the free flow region is assumed to be a creeping flow, which implies the

following

Textra
free = 2µDfree. (8.36)

The above assumptions give rise to the following interface conditions for the tangential

component of the tractions:

ŝ ·Textra
free n̂free = − ∂Ψ

∂
∗
vfree

· ŝ = −2(α11
∗
vfree + α12

∗
vpor) · ŝ on Γfree and (8.37a)

ŝ ·Textra
por n̂por = − ∂Ψ

∂
∗
vpor

· ŝ = −2(α12
∗
vfree + α22

∗
vpor) · ŝ on Γpor, (8.37b)

where ŝ(x) denotes an arbitrary unit tangent vector field along the interface.

8.4.1 Beavers-Joseph condition

The BJ condition can be obtained by further making the following choices:

α11 = α22 =
αµ
√

3

2
√

tr[K]
and α12 =

−αµ
√

3

2
√

tr[K]
, (8.38)
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where tr[·] denotes the trace of a second-order tensor. Then equation (8.37a) will reduce

to

ŝ · (−2µ Dfree)n̂free =
αµ
√

3√
tr[K]

ŝ · (vfree − vpor). (8.39)

which is the “boundary” condition proposed in [24] for the free flow region due to the

presence of a pervious boundary. By aligning the coordinate axes similar to the one shown

in Fig. 8.1 and by taking the x-component of vpor to be Q, one will get an expression

similar to the one provided in [24] (cf. equation (8.1)). It should be however noted that

[24] do not provide a corresponding condition for the flow in the porous media, which lies

on the other side of the interface.

On the other hand, using the proposed framework, one can obtain a corresponding

condition for the flow on the other side of the interface (i.e., the porous medium); which

is needed if one wants to simulate a coupled flow in both free and porous regions. Using

equation (8.37b), the interface condition on Γpor can be written as

ŝ ·Textra
por n̂por =

αµ′
√

3√
tr[K]

ŝ · (vfree − vpor). (8.40)

8.4.1.1 A discussion on the BJ condition

The velocity field in the porous region is assumed to be known a priori. Moreover,

the flow in the porous region is tacitly assumed to be uniform beyond a boundary layer

(see Fig. 8.1). But the velocity field in the porous region is seldom known a priori and

this is particularly true in the case of flows in coupled free-porous media. Even if the

velocity field in the porous region is known, this field will not be uniform due to spatial

heterogeneity of medium properties (e.g., permeability). (Heterogeneity is inherent to

the two application problems that we discussed in the introduction.) This will create an

ambiguity in assigning a value to Q (cf. equation (8.1)). Specifically, at what depth one
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has to sample the (horizontal or tangential) velocity to specify Q (cf. Fig. 8.1).

Last but not least, the BJ condition may not be compatible with all porous media

model. For example, if the flow in the porous region is modeled using the Darcy model,

for which, T
(extra)
por = 0. Equation (8.40) will then imply that

ŝ · (vfree − vpor) = 0,

which, based on the BJ condition (8.39), will further imply that

ŝ ·Dfreen̂ = 0.

But this condition will not be met in general, as, for example, the horizontal velocity can

depend on the y-coordinate or the vertical velocity can depend on the x-coordinate.

8.4.2 Beavers-Joseph-Saffman condition

In addition to the aforementioned four assumptions (A1)–(A4), we make the following

choices to obtain the BJS condition:

α11 = α22 =
αµ
√

3

2
√

tr[K]
and α12 = 0. (8.41)

Then, using equation (8.37a), the boundary condition at Γfree for the flow in the free

region due to a juxtaposed porous region takes the following form

ŝ · (−2µ Dfree)n̂free =
αµ
√

3√
tr[K]

ŝ · vfree. (8.42)

Using equation (8.37b), the interface condition on Γpor takes the following form

ŝ ·Textra
free n̂free =

αµ
√

3√
tr[K]

ŝ · vpor. (8.43)
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8.4.2.1 A discussion on the BJS condition

Since the BJS condition (8.42) does not contain Q (the mean velocity in the porous

region beyond the boundary layer), it does not assume the velocity field in the porous

region is neither known a priori nor uniform. However, the BJS condition need not be

compatible with all porous media models. If one again considers the Darcy model to

describe the flow in the porous region, equation (8.43) implies that vpor = 0 – the no-slip

boundary condition for the porous region along the interface – which is not what has

been observed in the experiments [24].

On the other hand, if one uses the Darcy-Brinkman model, for which Textra
por = 2µDpor,

the BJS condition will be compatible with the chosen model. Saffman did recognize that

his condition is actually compatible with the Darcy-Brinkman model and not the Darcy

model. However, by using asymptotic analysis, he argued that solutions from the Darcy-

Brinkman model and the Darcy model do not differ significantly outside the boundary

layer, and the size of the boundary layer is in the order of the square-root of the (trace

of) permeability.

8.4.3 No-slip condition

The classical no-slip condition can be obtained by making the following choices for

the constants:

α11 =
α

2
√

tr[K]
, α22 = 0 and α12 = 0, (8.44)

and then by letting tr[K]→ 0. To wit, based on the choices made in equation (8.44), the

interface condition (8.37a) reduces to the following:

ŝ · ∗vfree = −

(√
tr[K]

α

)
ŝ ·Textra

free n̂free. (8.45)
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By letting tr[K]→ 0 and noting that ŝ is an arbitrary tangent vector along the interface,

one can conclude that
∗
vfree = 0 on Γfree, which is the no-slip condition. Note that

tr[K] → 0 basically implies that the boundary is impervious, and the no-slip boundary

condition is typically enforced at an impervious boundary in an uncoupled free flow.

8.5 Minimum power theorem for a class of

coupled flows

It is well-known that an uncoupled creeping flow, which is governed by the incompress-

ible Stokes equations, enjoys a minimum power theorem [76]. It has also been established

that an uncoupled flow through porous media based on either Darcy equations or Darcy-

Brinkman equations enjoys a minimum power theorem [163]. It is thus natural to ask

whether a flow in coupled free-porous media enjoys a minimum power theorem.

We now show that the answer to this question is affirmative for a class of coupled

flows. This class of flows is characterized by these two requirements:

(R1) There exists two potentials, Φfree and Φpor, with the following properties:

(i) They satisfy the form-invariance and the invariance under a Euclidean trans-

formation (i.e., they satisfy the principle of material frame indifference). Specif-

ically these potentials can be expressed as Φfree[Dfree] and Φpor[Dpor,vpor].

(ii) They provide the constitutive relations of the following form for the extra

Cauchy stresses and the interaction term:

Textra
free =

∂Φfree

∂Dfree

, (8.46a)

Textra
por =

∂Φpor

∂Dpor

, and (8.46b)
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ipor =
∂Φpor

∂vpor

. (8.46c)

(iii) Each of the potentials has a positive definite Hessian.

(R2) The functional Ψ has a positive definite Hessian.

The requirement (R2) is in addition to the properties that outlined in §8.2 for Ψ to

satisfy. It is easy to construct Ψ to have a positive definite Hessian; the functional (8.34)

satisfying the condition (8.35) is one such example.

8.5.1 On construction of the potentials

For many popular uncoupled free flow models (e.g., Stokes equations) and porous

media models (e.g., Darcy equations, Darcy-Brinkman equations), the rate of internal

dissipation density satisfies the conditions (8.46a)–(8.46c). One can take the same ap-

proach to construct the potentials Φfree and Φpor even for the case of coupled flows. This

approach can be best illustrated by the following examples.

Under the Stokes model, the Cauchy stress and the extra Cauchy stress are given by

Tfree = −pfreeI + 2µDfree = −pfreeI + Textra
free , (8.47)

and the rate of internal dissipation density is given by

2µDfree ·Dfree.

Clearly, by choosing the potential Φfree to be

2Φfree[vfree] = 2µDfree ·Dfree, (8.48)

one can satisfy the requirement (8.46a). Similarly, under the Darcy model, the extra

Cauchy stress and interaction term are, respectively, given by

Textra
por = 0 and ipor = µK−1vpor(x). (8.49)
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By choosing the potential Φpor to be

2Φpor[vpor] = µK−1vpor(x) · vpor(x)︸ ︷︷ ︸
rate of internal dissipation density

, (8.50)

one can satisfy the requirements (8.46b) and (8.46c). Under the Darcy-Brinkman model,

the extra Cauchy stress and interaction term are, respectively, given by

Textra
por = 2µDpor ·Dpor and ipor = µK−1vpor(x). (8.51)

By choosing the potential Φpor to be

2Φpor[vpor] = 2µDpor ·Dpor + µK−1vpor(x) · vpor(x)︸ ︷︷ ︸
rate of internal dissipation density

, (8.52)

one can satisfy the requirements (8.46b) and (8.46c).

If the coupled flow is modeled based on Stokes-Darcy equations (i.e., Stokes model is

used for the free flow region, and Darcy model is used for the porous region), then the two

potentials for the coupled flow can be chosen based on equations (8.48) and (8.50), which

are for uncoupled flows. Similarly, if the coupled flow is based on Stokes-Darcy-Brinkman

equations (i.e., Stokes model is used for the free flow region and Darcy-Brinkman model

is used for the porous region), then the two potentials for the coupled flow can be chosen

based on equations (8.48) and (8.52).

8.5.2 Minimum power theorem

We define the total mechanical power functional as

Pcoupled[zfree(x), zpor(x)] : =

∫
Kfree

Φfree[zfree(x)] dΩ +

∫
Kpor

Φpor[zpor(x)] dΩ

+

∫
Γint

Ψ[
∗
zfree(x),

∗
zpor(x), zn(x)] dΓ
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−
∫
Kfree

γbfree(x) · zfree(x) dΩ−
∫

Γt
free

tp
free(x) · zfree(x) dΓ

−
∫
Kpor

γφpor(x)bpor(x) · zpor(x) dΩ−
∫

Γt
por

tp
por(x) · zpor(x) dΓ,

(8.53)

where zfree : Kfree → Rnd and zpor : Kpor → Rnd are vector fields; z∗free and z∗por denote,

respectively the tangential components of zfree and zpor; and

zn(x) := zfree(x) · n̂free(x).

We then establish the following result with a proof provided in Appendix D.

Theorem 8.5.1 (Minimum power theorem for coupled flows). For the class of coupled

flows satisfying the requirements (R1)–(R2), any pair of kinematically admissible vector

fields (ṽfree(x), ṽpor(x)) satisfies

Pcoupled[vfree(x),vpor(x)] ≤ Pcoupled[ṽfree(x), ṽpor(x)], (8.54)

in which vfree(x) is the velocity field in the free flow region and vpor(x) is the velocity field

in the porous region.

8.6 Uniqueness of solutions

We will use the minimum power theorem to establish the uniqueness of solutions

under the proposed interface conditions. For brevity, we will show for the case of coupled

Stokes-Darcy-Brinkman equations; however, with straightforward alterations, one can

show for the case of Darcy equations coupled with the Stokes equations. We establish

the uniqueness under the following functional form for Ψ, which is (slightly) more general

than the one considered in §8.4:

Ψ[
∗
vfree(x),

∗
vpor(x), vn(x)] = α11

∗
vfree(x) · ∗vfree(x) + 2α12

∗
vfree(x) · ∗vpor(x)
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+ α22
∗
vpor(x) · ∗vpor(x) + βvn(x) · vn(x),

(8.55)

with

α11α22 ≥ α2
12 and β ≥ 0. (8.56)

To establish uniqueness under more general conditions (e.g., a more general functional

form for Ψ), one needs to resort to techniques from functional analysis, which is beyond

the scope of this paper. We establish the following theorem with a proof provided in

Appendix D.

Theorem 8.6.1 (Uniqueness). Under the prescribed data given by bfree(x), bpor(x),

vp
free(x), vp

por(x), tp
free(x) and tp

por(x); and under Ψ given by equation (8.55); the solution

to the coupled Stokes-Darcy-Brinkman equations is unique up to an arbitrary constant for

the pressures.
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Chapter 9

A Modeling Framework for Coupling

Plasticity With Species Diffusion

9.1 Mathematical model

We shall consider a chemical species that diffuses in a deformable solid. The defor-

mation of the solid is modeled using small-strain elastoplasticity and the transport of

the chemical species is treated as a Fickian-type diffusion process. We now present a

mathematical model by coupling the deformation process of the solid with the transport

process of the chemical species. We consider two types of coupling: one-way and two-way.

Under the one-way coupling, the presence and transport of the chemical species affect the

material parameters of the deformation process, but the deformation of the solid does not

affect the transport process. To put it another way, neither the diffusion parameters, such

as diffusivity, depend on the deformation or stress in the solid, nor the kinematics of the

deformation enter the governing equations for the transport process. Under the two-way

coupling, each of the two processes—deformation and transport—affect each other. We

first introduce the necessary notation. We then outline the governing equations for each

of the processes and describe the nature of the coupling between them.

Let Ω ⊂ Rnd be an open bounded domain, where “nd” is the number of spatial

dimensions. Let ∂Ω denote its smooth boundary. A spatial point is denoted by x ∈ Ω,
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where a superposed bar denote the set closure. The gradient and divergence operators

with respect to x are denoted by grad[·] and div[·], respectively. The unit outward normal

to the boundary is denoted by n̂(x). We denote the displacement of the solid by u(x) and

concentration field by c(x). For the deformation subproblem, the boundary is divided

into two complementary parts: ΓD
u and ΓN

u . ΓD
u denotes that part of the boundary on

which Dirichlet (displacement) boundary condition is prescribed, and ΓN
u it the part of the

boundary on which Neumann (traction) boundary condition is prescribed. Likewise, for

the diffusion subproblem, the boundary is divided into ΓD
c —part of the boundary on which

Dirichlet (concetration) boundary condition is prescribed—and ΓN
c , part of the boundary

on which Neumann (flux) boundary condition is prescribed. For mathematical well-

posedness, we assume that ΓD
u ∩ΓN

u = ∅, ΓD
u ∪ΓN

u = ∂Ω, ΓD
c ∩ΓN

c = ∅, and ΓD
c ∪ΓN

c = ∂Ω.

Morevover, for uniqueness, we assume that ΓD
u and ΓD

c have zero (set) measure.

9.1.1 Deformation subproblem

We account for the solid undergoing elasto-plastic deformations and the material is

degrading due to the presence of the chemical species. We make the following assumptions

for the elasto-plastic deformations: (i) the strains are small, (ii) kinematic hardening is

neglected, (iii) the plasticity is associative, and (iv) J2 flow theory is applicable. We will

consider two different degradation models, referred to as Model I and Model II. We make

the following assumptions for Model I: (a) the elastic material parameters at a spatial

point depend on the concentration of the chemical species at that point, and (b) the

material can undergo linear isotropic hardening. The assumptions behind Model II are:

(a) the elastic limit function depends on the concentration of the chemical species, and

(b) the material can undergo nonlinear isotropic hardening.

Since we consider plasticity based on small strains, linearized strain and additive
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decomposition of strain will suffice. We denote the linearized strain by1

E :=
1

2
(grad[u] + grad[u]T). (9.1)

The additive decomposition of the strain tensor takes the following form

E = Ee + Ep, (9.2)

where Ee and Ep denote the elastic and plastic components, respectively.

The governing equations of the initial boundary-value deformation problem under

quasi-static condition could be written as:

div[T] + ρ(x)b(x) = 0 in Ω, (9.3a)

u(x, t) = up(x, t) on ΓD
u × (0, T ], and (9.3b)

Tn̂ = tp(x, t) on ΓN
u × (0, T ], (9.3c)

where ρ denotes the density, b denotes the specific body force, up is the prescribed time-

varying displacement, and tp is the prescribed time-varying surface traction. In addition,

we consider the following initial condition

u(x, 0) = u0(x) in Ω, (9.4)

where u0 is an initial displacement response that satisfies equations (9.3a)–(9.3c) at t = 0.

To close the formulation of this initial boundary-value problem, we require that Cauchy

stress satisfy the rate constitution equation as

Ṫ = EĖ, (9.5)

1In continuum mechanics, E is typically reserved to denote the Lagrangian strain. Since we do not

consider large-deformations in this text, there should be no confusion in our usage of E to denote the

linearized strain.
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where E is a fourth order tangent constitutive tensor and It should be noted that the rate

notations in the constitutive equation are pseudo and denote an incremental constitutive

response, and should not be interpreted to mean that the response may contain rate-

dependent effects.

A common choice for the free energy function Ψnrg is given by

Ψnrg(Ee,E ) =W(Ee) +H(E ), (9.6)

where W is the strain energy density, H is the hardening potential, and E represents a

general set of internal variables modeling the hardening of the material. In the context

of plasticity the set of E is defined as

E := {κ,α}, (9.7)

where κ is an internal variable measures the accumulated equivalent plastic strain, α is

the back stress that is determined by a kinematic hardening model. The energy form

explained in equation (9.6) enables us to decouple the elastic and hardening response of

the material. A classical quadric form of W could be considered as

W(Ee) =
1

2
Ee · CEe, (9.8)

where C is a fourth-order elasticity tensor. The Cauchy stress can be obtained as

T =
∂W
∂Ee

= CEe = C
(
E− Ep

)
. (9.9)

The deviatoric part of the stress tensor, S, is defined as

S := T− 1

nd
tr[T]I,

where tr[·] denotes the trace of a second-order tensor, and I denotes the second-order

indentity tensor. By differentiating H with respect to components of E , we also introduce

the set of stress-like hardening variables

Q :=

{
−∂H
∂κ

,−∂H
∂α

}
. (9.10)
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The stress tensor in classical plasticity model must satisfy the yield criterion, which de-

termines whether the material is still elastic or it has undergone an irreversible plastic

deformation. This criterion, which holds at any material point and at any loading in-

stance, is defined as

f(ξ, κ, c) = φ(ξ, Ikin(κ, c))− σ?y(κ, c, σ0) ≤ 0, (9.11)

where φ is a scalar effective stress measure, σ?y is elastic limit function, ξ = S−α is the

shifted stress, Ikin is the function used to model kinematic hardening, and σ0 is the initial

scalar yield stress in the absent of diffusant. Our material is represented by von Mises

yield condition (also known as J2-flow) and equation (9.11) could be reduced to

f(ξ, κ, c) = ‖ξ(Ikin(κ, c))‖ − σ?y(κ, c, σ0) ≤ 0. (9.12)

The evolution of plastic strain could be determined as

Ėp = γ̇
∂g(T,E )

∂T
= γ̇N̂, (9.13)

where γ̇ is the rate of the plastic multipler that is nonnegative, the scalar function g

is the plastic potential, and N̂ is a unit deviatoric tensor that is normal to the yield

surface. In this study, we assume associative plastic flow and hence f = g. The term γ̇

determines the magnitude of the plastic strain rate, and the direction is given by N̂. As

the material undergoes plastic deformation, the plastic variables also change according

to the hardening model. A general form of hardening rule can be stated as

Ė = γ̇h(ξ,Q, κ, c) = γ̇
∂f(ξ, κ, c)

∂Q
. (9.14)

In particular, the rate of back stress, and the rate of effective platic strain could be

obtained from equation (9.14) as:

α̇ = Ikin(κ, c)γ̇
∂f(ξ, κ, c)

∂ξ
= Ikin(κ, c)γ̇N̂ and (9.15a)
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κ̇ =

√
2

3
‖Ėp‖ =

√
2

3
γ̇. (9.15b)

Finally, the loading/unloading conditions can be expressed in the Kuhn-Tucker form as:

γ̇ ≥ 0, f ≤ 0, and γ̇f = 0. (9.16)

Now we introduce two models for taking into account the coupling effect of diffusion of

species on deformation problem.

Remark 9.1.1. In the degradation models introduced in the rest of this section, degraded

material incorporates only isotropic hardening, and no kinematic hardening behavior will

be assumed (i.e., Ikin = 0). This hypothesis could be justified as the material is assumed to

undergo a monolithic loading regime, and hence, the Bauschinger effect could be neglected.

However, in case of the emergence of supportive experimental results that observe kine-

matic hardening phenomenon for the coupled deformation-diffusion system, the proposed

framework in here could be extended with no difficulties.

9.1.1.1 Model I: degradation via elasticity parameters

In this model, linear isotropic hardening model is employed and the Cauchy stress

tensor dependence on c, is directly from Lamé parameters. Hence, the yield condition

could be simplified as

f(T, κ, c) =

√
3

2
‖S‖ − σ?y =

√
3

2
‖S‖ −Hκ− σ0 ≤ 0 (9.17)

where the constant scalar H > 0 is the isotropic hardening modulus, and the stress-strain

relationship, for any given concentration, could be written as

T(u,x, c) = λ(x, c)tr[Ee]I + 2µ(x, c)Ee, (9.18)
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where λ, and µ are the Lamé parameters. To consider degradation/healing of the material

due to the presence of diffusive species, the Lamé parameters depend on concentration

and can be written as:

λ(x, c) = λ0(x) + λ1(x)
c(x)

cref

and (9.19a)

µ(x, c) = µ0(x) + µ1(x)
c(x)

cref

, (9.19b)

where cref is the reference concentration, λ0 and µ0 are the Lamé parameters for the virgin

material; and λ1 and µ1 incorporate the effect of concentration on the Lamé parameters.

This type of coupling for the problem of pure elasticity-diffusion was earlier implemented

by [60, 133]. Fig 9.1(a) shows the effect of coupling power c
cref

on the elastic limit

function. It could be seen that the elastic limit function has shifted to the right as coupling

power increases, which implies a delay in plastic yielding. However, the initial yield

stress remains independent of coupling power. Fig 9.1(b) shows the stress path for a

representative one-dimensional problem under uniaxial tension loading when degradation

model I is employed. In one-dimensional analysis, stress, and strain are respectively

denoted by σ, and ε. Tangent modulus tensor E reduces Et, which could be related to

isotropic hardening modulus as

Et =
H

1 + H
E

. (9.20)

9.1.1.2 Model II: degradation via elastic limit function

Nonlinear isotropic hardening model, which was initially proposed by [169], is adopted

for this part of study. In recent years, variants of nonlinear isotropic models have been

employed for modeling healing/degradation problems. Using this hardening model, [94,

105, 129, 101, 162] have captured hydrogen embrittlement of metals, where the materials
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Figure 9.1: Model I: left figure shows the effect of coupling parameter cref on the onset
of plastic yielding. Right figure shows one-dimensional uniaxial stress-strain
relationship (σ–ε) undertaking “degradation via elasticity parameters” model.

become softened at microscale due to enhancing the dislocation mobility. In this coupling

category, the yield function takes the following form

f(T, κ, c) =

√
3

2
‖S‖ − σ?y =

√
3

2
‖S‖ − σc

(
1 +

κ

κ0

)nw
, (9.21)

where κ0 = σ0

E
, with E being the Young’s modulus, nw is the work hardening exponent,

and σc is the initial yield stress in the presence of diffusan. A linear form for σc is chosen

as

σc = (ζc+ 1)σ0. (9.22)

ζ is the coupling parameter used to adjust the behavior of elastic limit function based on

diffusant absorption in solid structure. The stress-strain relationship in this model takes

the following form

T(u,x) = λ0(x)tr[Ee]I + 2µ0(x)Ee. (9.23)

Fig 9.2(a) signifies the effect of coupling power |ζc| on the behavior of elastic limit

function. Unlike model I, initial yield stress depends on the coupling power. Schematic
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y
(κ; c; ζ)

κ
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increase in

direction of

σc(ζc)

(a) Elastic limit function

E(λ0;µ0)

"

σ

jζcj
increase in

direction of

(b) One-dimensional stress-strain

Figure 9.2: Model II: left figure depicts consistent decline in elastic limit function as the
coupling power |ζc| increases. Right figure shows one-dimensional stress-
strain path under uniaxial tension (σ–ε), employing the degradation via model
II.

of stress-strain relationship for one-dimensional uniaxial loading is illustrated in Fig

9.2(b).

Remark 9.1.2. Throughout the chapter, we refer to the case of the “uncoupled problems”,

which implies pure plastic deformation problem or deformation problem in the absence of

diffusant in the domain. This could be equally achieved by assuming cref →∞ and ζ → 0

for model I and model II, respectively. Uncoupled model I is the conventional linear

isotropic hardening and uncoupled model II, which is nonlinear isotropic hardening, is

known as Swift model (see figure 9.3).

9.1.2 Transport subproblem

Mass transport of diffusant species (e.g., hydrogen or material void) in the material

domain is a major factor in the degradation of the solid structure. Steady-state diffusion

is taken for the transport phenomenon, which assumes no chemical reactions causing the

formation of reaction products or phase transformations to occur at the diffusion problem.
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E(λ0;µ0)

"

σ

Perfect plasticity

Uncoupled model I

Uncoupled model II

Linear elasticity

Figure 9.3: Uncoupled models: This schematic shows one-dimensional stress-strain rela-
tionship for uncoupled model I and model II; and compares them with stan-
dard models under one-dimensional uniaxial tension.

The governing equations for the steady-state response of diffusion the system takes the

following form:

−div[D(x)grad[c(x)]] = m(x) in Ω, (9.24a)

c(x) = cp(x) on ΓD
c , and (9.24b)

−n̂(x) ·D(x)grad[c(x)] = hp(x) on ΓN
c , (9.24c)

where D is the diffusivity tensor, m(x) is the prescribed volumetric source, and hp(x)

is the prescribed diffusive flux. Assumption of steady-state for the diffusion equation is

realistic as the solid deformation is quasi-static (which implies that mechanical loading

is to be applied very slowly) and hence at any loading instance, the diffusion process

reaches equilibrium. We now discuss two types of coupling for the system of coupled

deformation-diffusion.

9.1.2.1 One-way vs two-way coupling

In both one-way and two-way systems, the concentration of the diffusant mass (which

is calculated by using the pure diffusion equation) is coupled into deformation system to

determine the elastoplastic behavior. The difference arises in the choice of the diffusivity
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tensor. As in one-way coupling strategy, the diffusivity tensor is irrespective of the strain

accumulated in the domain from elastoplastic deformation. In other words:

D(x) = D0 =

cos(θ) − sin(θ)

sin(θ) cos(θ)


d1 0

0 d2


 cos(θ) sin(θ)

− sin(θ) cos(θ)

 , (9.25)

where D0 is the reference diffusivity tensor and d1 and d2 are parameters specifying

material anisotropy. On the other hand, in the two-way system, for a given total strain

field with its first invariant defined as

IE := tr[E], (9.26)

we take into account the effect of deformation on the diffusivity tensor as

D(x) = D0(x) + (DT (x)−D0(x))
( exp[ηT IE]− 1

exp[ηT Iref
E ]− 1

)
+ (DS(x)−D0(x))

( exp[ηSIE]− 1

exp[ηSIref
E ]− 1

)
,

(9.27)

where the non-negative ηT and ηS are material parameters. DT and DS are respectively

the reference diffusivity tensor under tensile and shear strains; and Eref is a reference

measure of the strain. For convenience DT and DS can be chosen as

DT = φTD0 and (9.28a)

DS = φSD0, (9.28b)

where φT and φS are some positive real number material parameters specifying the corre-

sponding anisotropy induced from the deformation problem. Fig 9.4 summarizes one-way

and two-way coupling strategies.

Remark 9.1.3. Two-way coupling strategy could be reduced to one-way coupling if DT ,

and DS are chosen to be equal to D. This will establish the independence of diffusivity

tensor from deformation problem (i.e., DE(x) = D0) at any solve step.
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Remark 9.1.4. The effect of anisotropy of diffusivity tensor on deformation responses

will be studied in Section 3, and 4. It should be clarified that in this chapter for brevity, the

term anisotropy refers to diffusivity anisotropy and should not be confused with anisotropy

in deformation problem as the elasticity tensor remains isotropic in all the problems.

Figure 9.4: One-way and two-way coupling strategies for deformation-diffusion system.
In this figure R denotes the rotation tensor.
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9.2 Proposed computational framework

We shall develop a computational framework based on a staggered coupling approach,

which allows decomposing the problem into two subproblems—deformation and diffusion.

By solving these two subproblems iteratively until convergence, keeping the field variables

from the other subproblem constant in each iteration of a subproblem, one can get the

coupled response. Besides a coupling algorithm, the proposed computational framework

comprises individual solvers for the two subproblems. We use low-order finite elements

and the same computational mesh for solving both the subproblems. We describe below

the mentioned ingredients of the proposed computational framework.

9.2.1 A solver for deformation subproblem

We build the solver for the deformation subproblem by combining the single-field

displacement-based continuous Galerkin formulation, backward Euler, predictor-corrector

return mapping algorithm, and Newton-Raphson method. We define the following func-

tion spaces:

U :=
{

u(x, ·) ∈ (H1(Ω))nd |u(x, t) = up(x, t) on ΓD
u

}
and (9.29a)

W :=
{

w(x, ·) ∈ (H1(Ω))nd |u(x, t) = 0 on ΓD
u

}
, (9.29b)

where H1(Ω) is a standard Sobolov space on Ω [35]. The load step is divided into T + 1

sub-intervals and for any quantity ψ, we have

ψn(x) ≈ ψ(x, tn), n = 0, · · · , T . (9.30)

We assume the analysis procedure has been completed up to load increment tn. The

single-field Galerkin formulation for the pure deformation problem at load increment
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tn+1 reads: Find un+1 ∈ U such that we have

F(un+1,w) = 0 ∀w ∈ W , (9.31)

where F is the residual.

F(un+1,w) :=

∫
Ω

T[E(un+1)]︸ ︷︷ ︸
Tn+1

·grad[w] dΩ−
∫

Ω

ρb ·w dΩ +

∫
ΓN
u

w · tp
n dΓ. (9.32)

A solution to problems with nonlinear constitutive models, such as plasticity requires lin-

earization. Assuming that the applied load is independent of displacement, only the first

term of equation (9.32) requires linearization through Newton’s method. Let the super-

script (i) denote the current Newton or nonlinear iteration. The Jacobian J [u
(i)
n+1; δu,w]

is computed by taking the Gâteaux variation of the residual F(un+1,w) at un+1 = u
(i)
n+1

in the directions of δu. Formally, this is derived by

J [u
(i)
n+1; δu,w] := lim

ε→0

F(u
(i)
n+1 + εδu; w)−F(u

(i)
n+1; w)

ε
≡

[
d

dε
F(u

(i)
n+1 + εδu; w)

]
ε=0

,

(9.33)

provided the limit exists. Further discussions on Gt̂eaux variations are provide by [75].

Following through with the calculation above, the Jacobian for our formulation reads

J [u
(i)
n+1; δu,w] :=

∫
Ω

C(n+1,i)
alg

∂E(u
(i)
n+1)

∂u
(i)
n+1

δu · grad[w] dΩ, (9.34)

where C(n+1,i)
alg =

∂T
(i)
n+1

∂E(u
(i)
n+1)

denotes algorithmic tangent modulus.

In each Newton iteration, we thus solve the following linear variational problem: Find

δu ∈ U such that we have

J [u
(i)
n+1; δu,w] = −F(u

(i)
n+1,w) ∀w ∈ W . (9.35)

The fully discrete formulations for our deformation model at each Newton’s iteration can

be assembled into the following linear problem

K(n+1,i)
u δu = r(n+1,i)

u . (9.36)
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where Ku is called the tangent stiffness matrix and ru is the residual vector. Two dif-

ferent definitions of displacement increments could be considered for the incremental

deformation problem as:

δu = u
(i+1)
n+1 − u

(i)
n+1 and (9.37a)

∆u(i) = u
(i)
n+1 − un, (9.37b)

where δu is the displacement increment calculated at each Newton’s iteration, while ∆u,

which is the increment from the last converged load increment to the previous iteration,

will be used to calculate stress increment. In other words, δu is accumulated into ∆u

during the iterations. ∆u is set to 0 before starting a new load increment. After obtaining

the nodal displacement increments by solving equation (9.36), the displacement increment

∆u is achieved by the following update equation

∆u(i+1) = ∆u(i) + δu(i). (9.38)

Once the residual meets the prescribed tolerance the process will be terminated. While

calculating residual, the stress T
(i)
n+1 needs to be obtained. Stress calculation is compli-

cated due to history dependency of stress and non-linearity with respect to strain as the

plastic deformation occurs. Before elaborating on the stress determination strategy, we

need to formulate numerical algorithms to integrate the rate-form constitutive relations

in the deformation problem. We resort to the backward Euler marching scheme to en-

sure numerical stability. It is well-known that the backward Euler method as discussed

by [7] leads to the closest point projection in the elastoplasticity problem. Substituting

equation (9.13) into equation (9.9), incremental stress could be written as

Tn+1 = Tn + C∆En+1︸ ︷︷ ︸
Ttrial

n+1

−C∆Ep
n+1 = Ttrial

n+1 − 2µ∆γN̂n+1. (9.39)

Internal variables at t = tn+1 are also updated as

αn+1 = αn + Ikin∆γN̂n+1 and (9.40a)
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κn+1 = κn +

√
2

3
∆γ. (9.40b)

Coaxiality of Sn+1 and Strial
n+1 tensors could be easily established, which implies N̂n+1 =

N̂trial
n+1. As a result, shifted stress takes the following form

ξn+1 = Sn+1 −αn+1 = Ttrial
n+1 − αn − (2µ+ Ikin)∆γN̂trial

n+1. (9.41)

Incremental form of equation (9.16) implies that under plastic yielding (∆γ 6= 0), stress

must stay on the yielding surface (i.e., f = 0). This condition is known as plastic

consistency condition and using equations (9.40a) and (9.41), it takes the following general

form

f(ξn+1, κn+1, c) = ‖ξn+1‖ − σ?y(κn+1) = ‖ξtrial
n+1‖ − {2µ+ Ikin(κn+1)∆γ} −

√
2

3
σ?y(κn+1) = 0.

(9.42)

Updated stress and updated internal variables for an applied incremental strain at a given

material point will be obtained via a separate algorithm outside of the main form. The

response is computed using an iterative predictor-corrector return mapping algorithm

embedded in the global Newton iteration discussed earlier. This procedure for both

degradation models is summarized in Algorithm 1.

Remark 9.2.1. In this chapter, function spaces for deformation problem will be a stan-

dard linear CG space for the displacement while the stress and internal variables will be

represented by using a linear quadrature element. If all functions are assumed to be a

finite element space, or are interpolated in a finite element space, suboptimal convergence

of a Newton method will be observed. This is a well-known point in computational plastic-

ity and has been extensively discussed in [65, 164]. The choice of quadrature element will

make it possible to express the complex non-linear material constitutive equation at the

Gauss (quadrature) point only, without involving any interpolation of non-linear expres-

sions throughout the element. It will ensure an optimal convergence rate for the Newton’

method. For a thorough discussion of the quadrature element refer to [118].
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Algorithm 1 Stress update algorithm for degradation model I and model II

Input: Tn, κn, and ∆E(i+1).
. ∆E(i+1) = E

(i+1)
n+1 − En (from the last load load increment to the current iteration)

Output: Tn+1, κn+1.
1. Compute the elastic trial state

Strial
n+1 = Sn + C∆E

(i)
dev = Sn + 2µ∆E

(i)
dev.

. Note that in model I: µ = µ̂(c).
2. Compute f trial

n+1 = f(Ttrial
n+1, κn) and check consistency of trial state

ξtrial
n+1 = Strial

n+1 −αtrial
n+1,

f trial
n+1 = ‖ξtrial

n+1‖ −
√

2

3
σ?y(κn),

model I: f trial
n+1 = ‖Strial

n+1‖ −
√

2

3
(σ0 −Hκn) or

model II: f trial
n+1 = ‖Strial

n+1‖ −
√

2

3
(ζc+ 1)σ0(1 +

κ

κ0

)nw ,

if f trial
n+1 ≤ 0 then
(·)n+1 = (·)trial

n+1 and EXIT (elastic step).
else

solve for ∆γ > 0 in step 3 (plastic step).
end if
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Algorithm 1 continued

3. Plastic step or return mapping algorithm: solve for ∆γ (refer to equation (9.42))

model I: f(Sn+1, κn+1) is linear w.r.t ∆γ

∆γ =
f trial
n+1

2µ+ 2
3
H

or

model II: f(Sn+1, κn+1) is non-linear w.r.t ∆γ → Local Newton’s method Ini-
tialize: k = 0, κk, ∆γk = 0, fTol, and kmax.
while F̃ > fTol AND k < kmax do
J̃ [∆γk; δ∆γ] = −F̃(∆γk),

where

J̃ = −2µδ∆γ −
√

2
3

∂σ?
y

∂κn+1

∂κn+1

∂∆γ
δ∆γ =

{
− 2µ − 2

3
nwσ0

κ0
(ζc +

1)
(

1 + ∆γk

κ0

)n−1 }
δ∆γ

and
∆γk+1 = ∆γk + δ∆γ

end while

4. Update stress and plastic variables

Tn+1 = Ttrial
n+1 − 2µ∆γN̂trial

n+1; αn+1 = αn −H∆γN̂trial
n+1; and κk+1

n = κn +

√
2

3
∆γk+1.
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Remark 9.2.2. The algorithmic tangent modulus is needed for the calculation of global

Jacobian introduced in equation (9.34). This modulus should be consistent with time in-

tegration, and stress update algorithm discussed earlier. By differentiation of incremental

stress (refer to equation (9.39)) with respect to the incremental strain, this modulus in

incremental form could be obtained as

Calg =
∂∆T

∂∆E
= C− 2µN̂trial ⊗ ∂∆γ

∂∆E
− 2µ∆γ

∂N̂trial

∂∆E
. (9.43)

For von Mises yield criterion, we obtain

Calg = C− 4
µ2

M
N̂trial ⊗ N̂trial − 4µ2∆γ

‖ξtrial‖
{I− I⊗ I− N̂trial ⊗ N̂trial}, (9.44)

where ⊗ denote tensor product, I is fourth order symmetric identity tensor, and scalar

coefficient M is defined as:

M = 2µ+ Ikin +

√
2

3

∂Ikin

∂κ
∆γ +

2

3

∂σ?y
∂κ

We refer to [102] for complete derivation of equation (9.44). The coefficientM for model

I and model II could be obtained as:

Model I M = 2µ+
2

3
H and

Model II M = 2µ+
nwσ0(ζc+ 1)

κ0

(
1 +

κ

κ0

)nw

.

9.2.2 A solver for diffusion subproblem

The maximum-principles-preserving solver for the diffusion subproblem is devised by

posing the subproblem as a convex quadratic program and employing associated opti-

mization solvers.
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Before elaborating on the numerical scheme for solving the diffusion problem, we

provide a mathematical argument that establishes bounds for c(x) in Ω for the coupled

problem. From theory, we know that elliptic boundary value problems such as the dif-

fusion equation enjoy a maximum principle under appropriate regularity assumptions on

the domain and input parameters [73]. The non-negativity constraint is the physical

implication of maximum principles under certain conditions on the forcing function and

boundary conditions. In a continuous system, this property could a priori estimate the

non-negativity of concentration field via assessing c values on boundaries. A maximum

principle for diffusion with decay was first proposed by [89] and could be stated as

Let c(x) ∈ C2(Ω) ∪ C0(Ω̄) satisfy the following differential inequality

−div[D(x)grad[c]] = m(x) ≤ 0 in Ω, (9.46)

where diffusivity tensor, which is a function of displacement field in a two-way coupling,

is symmetric, continuously differentiable, and uniformly elliptic (i.e., there exists 0 <

c1 ≤ c2 < +∞, such that c1y
Ty ≤ yTD(x)y ≤ c2y

Ty for every x ∈ Ω and y ∈ Rnd).

Then c(x) satisfies a continuous maximum principle of the following form

max
x∈Ω̄

c(x) ≤ max
[
0,max

x∈ΓD
c

[cp(x)]
]
. (9.47)

Note that if f(x) ≥ 0 and cp ≥ 0, based on the above equation we can conclude that

c(x) ≥ 0 in the whole domain. When employing well-known discretization methods,

the consequent discrete system should also preserve such fundamental properties. How-

ever, many numerical formulations such as finite element, finite difference, finite volume,

lattice-Boltzmann, discontinuous Galerkin method, and spectral element method are not

expected to satisfy maximum principles and the non-negative constraints for diffusion

equation, even with exhaustive mesh refinements and polynomial refinements [134]. This

is due to the lack of an included mechanism in these numerical formulations to address
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these constraints. We now start with the variational form of single-field (concentration)

formulation and then modify the ensuing discrete problem to meet the non-negative con-

straint. We shall define the following function spaces:

P := {c(x) ∈ H1(Ω)| c(x) = cp(x) on ΓD
c } and (9.48a)

Q := {q(x) ∈ H1(Ω)| q(x) = 0 on ΓD
c }. (9.48b)

The single-field Galerkin formulation for the pure tonsorial diffusion problem reads: Find

c ∈ P such that we have

Bc(q; c) = Lc(q) ∀q(x) ∈ Q. (9.49)

where bilinear form and linear functional are, respectively, defined as:

Bc(q; c) :=

∫
Ω

grad[q] ·D(x)grad[c] dΩ and

Lc(q) :=

∫
Ω

q(x)m(x) dΩ +

∫
ΓN
c

q(x)hp(x) dΓ.

Since bilinear form is symmetric, by using Vainburg’s theorem our weak form has a

corresponding variational statement, which can be written as

minimize
c(x)∈P

=
1

2
Bc(c; c)− Lc(c). (9.51)

9.2.2.1 Optimized-based solver for diffusion problem

It is of paramount importance to note that the concentration is a non-negative quan-

tity, and a robust numerical solver must not violate the non-negative constraint at any

instances. [114, 136] proposed an optimization-based finite element method that is the

result of imposing the bounds on nodal solutions of minimization statement, constructed

by invoking Vainberg’s theorem on Galerkin formulation. In the rest of the chapter, we

use the symbols � and � to denote component-wise inequalities for vectors (i.e., for any
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two finite dimensional vectors a and b, a � b, means ai � bi). After spatial discretiza-

tion using finite elements, for a given nodal displacement u, the discrete equation for the

diffusion problem takes the following form

Kc(u)c = fc, (9.52)

where Kc is symmetric positive definite matrix, c is the vector containing nodal concen-

trations, and fc is the nodal source vector. To enforce maximum principle, we shall write

our weak form as the following minimization problem

minimize
c∈Rndof

=
1

2
〈c; Kc(u)c〉 − 〈c; fc〉 (9.53a)

subject to cmin1 � c � cmax1, (9.53b)

where 〈·; ·〉 represents the standard inner product on Euclidean space, 1 denotes a vector

of ones of size ndofs× 1 and ndofs denotes number of degrees-of-freedom in the nodal

concentration vector. cmin := min
x∈∂Ω

[0,min cp(x)] and cmax := max
x∈∂Ω

[0,max cp(x)] are, respec-

tively the lower and upper bounds for c. Note that by setting cmin = 0 and cmax = +∞,

we can obtain non-negative constraint. Equation (9.53) is a constrained optimization

problem that belongs to convex quadratic programming and unique global minimizer

could be found. The first order optimality condition for this problem could be stated as:

Kc(u)c = fc + λmin − λmax, (9.54a)

cmin1 � c � cmax1, (9.54b)

λmin � 0, (9.54c)

λmax � 0, (9.54d)

(c− cmin1) · λmin = 0, and (9.54e)

(cmax1− c) · λmax = 0, (9.54f)
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where λmin and λmax are vectors of Lagrange multipliers corresponding to c � cmin1 and

c � cmax1, respectively. There are many robust numerical algorithms available to solve

this constrained optimization problem (e.g., active set strategy, interior point methods,

trust region, · · · ). In this chapter, we have applied the trust-region-reflective method in

all our simulation. Detailed discussions of trust-region is provided by [131, 74].

9.2.3 A coupling algorithm

Solution strategies for multiphysics problems are mainly divided into monolithic and

staggered methods. The monolithic approach treats both problems (deformation and

diffusion) in a single system of equations. Despite its unconditional stability, it leads to a

large and non-symmetric system of equations that requires a high memory bandwidth and

thus high computational cost. The staggered approach (which hinges on operator-split

techniques) is designed to reduce the computational costs via partitioning the problem

into two sub-problems, and each sub-problem is treated by a different numerical scheme.

Detailed discussion on staggered and monolithic methods can be found in [69, 100, 125].

In this chapter, we will focus only on the staggered method as there is no straightforward

way to incorporate out optimization-based formulation within a monolithic scheme. The

various step of our coupling algorithm is summarized in Algorithm 2.

9.2.4 Computer implementation

The numerical simulations performed through scripting via COMSOL [116], which is a

bidirectional computational interface. This allowed us to utilize finite element capabilities

in [57] and integrate it with optimization packages in the MATLAB [126].
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Algorithm 2 Staggered coupling algorithm for elastoplasticity-diffusion system

1: Initialize u0 = 0, qp0 = 0.
2: Set c0 � 0.
3: for n = 0, · · · , T do . Begin load step
4: CALL DEFORMATION SOLVER: obtain un+1.
5: Traction increment: ∆qp

n.

6: Initialize: ∆u
(i)
n = 0, ∆γ

(i)
n = 0.

7: for i = 0, · · · do . Begin Newton’s iteration
8: Residual vector: r

(n,i)
u ,

9: if ‖r(n,i)
u ‖ < εTol then . Check convergence

10: BREAK . Go to next load step
11: else . Continue iterations
12: Tangent stiffness: K

(n,i)
u (cn).

13: Solve: K
(n,i)
u (cn)δu = −r(n,i).

14: end if
15: Update: ∆u

(i+1)
n = ∆u

(i)
n + δu.

16: Calculate: ∆E
(i+1)
n .

17: Stress update: T
(i+1)
n+1 , ∆γ

(i+1)
n . . (check Algorithm1)

18:

19: end for . End Newton’s iteration
20: Update: un+1 = un + ∆u

(i+1)
n and

21: qp
n+1 = qp

n + ∆qp
n.

22: CALL DIFFUSION SOLVER: obtain cn+1 by solving the following minimization
problem:

minimize
c∈Rndof

=
1

2
(cn+1; Kc(un+1)cn+1)− (cn+1; fc)

subject to cmin1 � cn+1 � cmax1

23: end for . End load step
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In our numerical simulations, GMRES iterative solver [158] preconditioned with al-

gebraic multigrid V-cycle based on smoothed aggregation [172] was used for deformation

problem, and the relative convergence tolerance of 1e−6 was employed. For diffusion

problem, trust-region-reflective algorithm from [146] in MATLAB used and the relative

tolerance set to 1e−14 .

9.3 Performance of the computational framework

In this section, we solve the coupled elastoplasticity-diffusion model in a plane stress

problem to demonstrate the implementation of the framework proposed in Section 9.2.

We first establish the need for a non-negative algorithm in both degradation model I

and II by illustrating the failure of conventional CG formulation in capturing correct c

profiles. These failures appear as unphysical c values that cascade to next loading step

and results in numerical errors also in deformation problem. We show that the proposed

computational framework suppresses the source of numerical artifacts and produces phys-

ical and reliable solutions. We also systematically study the effect of the concentration

of the diffusant on the deformation of solid and vice versa and compare the results with

uncoupled cases. We will also comment on the performance of the proposed solver in

terms of iteration count and time-to-solution.

9.3.1 Degrdation of plate with a circular hole

The computational domain and boundary conditions for deformation and diffusion

problems are depicted in figure 9.5. The pure deformation problem has been frequently

solved for linear anisotropic hardening problem and can be found in [186]. Due to the

double symmetry of the geometry, we only analyze the one-quarter of the plate. A total
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Figure 9.5: Plate with a circular hole: This figure provides a pictorial description of the
geometry and boundary value problem.

 

path
C

Point B

Point APath D

Figure 9.6: Plate with a circular hole: This figure shows the tree-node triangular mesh
used in the numerical results. Position of points A and B, and lines C and D
are also marked.

of 56 three-node isoparametric triangulars with linear interpolation of concentration and

displacement fields are employed in the calculation (see figure 9.6).

In this problem, a unit thickness is assumed, and the calculation is performed by

imposing the right edge to a uniform tensile load, which linearly increases from zero

to a maximum value of 133 MPa in 1.2 s and is linearly unloaded in the next 1.2 s.

The maximum traction is chosen such that the mean stress over the section passing

through the hole is 10% above the yield stress for the uncoupled model I (linear isotropic

hardening). The traction is prescribed in a total of 2.2 s in 26 steps. We took one

large increment (0.44 s) up to elastic limit followed by equal increments of 0.05 s up
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Table 9.1: Parameters for plane with a circular hole problem.

General parameters Value
m 0
ψ π/3
(λ0,µ0) (1.94e10,2.92e10)
σ0 243e6

Eref 0.001
(d1,d2) (50,1)
Model I parameters value
(λ1,µ1) (−8.5e8,−8.5e8)
Et 2.171e9

cref 0.05
(φT ,φS) (1.2,1.2)
Model II parameters value
nw 5
ζ −0.3
(φT ,φS) (1.25,1.25)

to maximum load. Due to path-dependency of elastoplastic solution, relatively small

increments chosen when anticipating a plastic flow in the loading stage. The loading

increment relaxed at the onset of the unloading stage to 0.2 s. As reversed plastic flow

can occur during the unloading, relatively small increments (0.05 s) assigned at the end

of the unloading stage. Although this loading pattern designed based on the uncoupled

model I, in order to be consistent, we use the same loading pattern for all problems solved

in this section. The material parameters and data-set for this problem are described in

Table 9.1. One should note that since the plate is thin and the loads are in-plane, we can

assume a plane stress condition and hence no special treatment of the incompressibility

constraint is needed.
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9.3.2 Non-negative (NN) vs continuous Galerkin (CG)

In this subsection, we highlight the importance of non-negative solutions and its im-

pact on coupled elastoplastic-diffusion analyses of a plate with a circular hole undergo-

ing one cycle of uniaxial loading-unloading. We applied two-way coupling strategy and

studied both degradation model I and II. From Figs 9.7 and 9.8, it is evident that

the proposed non-negative formulation satisfies the earlier mentioned condition and pro-

duces physically meaningful concentration, whereas the continuous Galerkin formulation

produces negative, unphysical concentrations for both models I and II. In the degrada-

tion model I, all violations occur as negative values. However, as shown in Fig 9.8 for

degradation model II, continuous Galerkin formulation violates both upper-bound and

lower-bound constraints.

Fig 9.9 shows the evolution of concentration profile measured on path D for three

loading steps. The discrepancy between continuous Galerkin and non-negative formu-

lation is not limited to maximum loading step but it is observed throughout the whole

loading process and varies in degradation model I and model II. The success of coupled

elastoplastic-diffusion analysis relies on the performance of each subproblem, and the vio-

lations occured in diffusion solution affects the deformation solution. Fig 9.10 compares

the stress profiles and effective plastic strain contours at the residual loading step. It can

be seen that continuous Galerkin formulation generates slightly different stress profiles

compared to the non-negative formulation.
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(a) maximum loading, CG formulation (b) maximum loading, NN formulation

(c) residual, CG formulation (d) residual, NN formulation

Figure 9.7: Degradation model I: This figure compares concentration profiles from the
continuous Galerkin formulation and the non-negative formulation at two
stages. Gray-scale region in the left figures indicates violated concentrations.
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(a) maximum loading, CG formulation (b) maximum loading, NN formulation

(c) residual, CG formulation (d) residual, NN formulation

Figure 9.8: Degradation model II: This figure compares concentration profiles from the
continuous Galerkin formulation and the non-negative formulation. Gray-
scale region in the left figure indicates violated concentrations.
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Figure 9.9: Continuous Galerkin vs non-negative formulation: This figure illustrates the
concentration profile on path D during three loading steps. Coordinates of
path D is marked in Fig 9.6.

(a) Degradation model I, CG formulation (b) Degradation model I, NN formulation

(c) Degradation model II, CG formulation (d) Degradation model II, NN formulation

Figure 9.10: Residual loading step: This figure compares stress profile and effective plas-
tic strain contours from the continuous Galerkin formulation and the non-
negative formulation at residual loading step.
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9.3.3 Performance of the staggered scheme and the trust-region

method

It should be noted that for each loading step in the staggered coupling algorithm, the

deformation solver, and either continuous Galerkin or trust-region algorithm for diffusion

problem should converge. The convergence and time-to-solution histories of the plate with

a circular hole under two-way coupling are shown in Table 9.2 for degradation model I.

The data are collected for six loading steps, and we see that for deformation problem,

time-to-solution and number of iterations remained almost unchanged regardless of the

formulation employed in diffusion solver. In deformation solver in both formulations,

the majority of clock-time is spent on assembly phase. However, as expected, non-

negative formulation appears to take higher clock-time in solver phase than continuous

Galerkin formulation. Despite requiring lower solver clock-time and a fixed iteration

count, continuous Galerkin formulation leads to violations of maximum principal. The

percent of these violations increases near the maximum loading step. Table 9.3 contains

performance results captured for degradation model II. We observe similar trends to

model I with respect to iteration count and time-to-solution for both solvers.

9.3.4 Physics of coupled deformation-diffusion problem

We illustrate how accumulated stress and propagation of plastic zone in solid affect

the diffusion process, and how the concentration of the diffusant affect the deformation

of the solid. We perform the calculation using different coupling strategies (uncoupled,

one-way, two-way) and compare the results with standard linear elasticity and perfect

plasticity problems. The problem set and material properties for this problem described

earlier in subsection 9.3.1. In this chapter, in plots pertaining to the deformation problem,
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the displacement fields are scaled up to 50 times for better visualization.

Fig 9.11(a) shows displacement of point A and B for degradation model I. As ex-

pected, the diffusant propagation in the domain has degenerated the stiffness of solid

matrix for coupled cases and compared to uncoupled and perfectly plastic cases (which

are unaffected by diffusant), increased displacement is observed at every loading step. At

maximum loading step, one-way and two-way coupled cases showed, respectively, 24%

and 21% increase in displacement at point A, compared to perfect plasticity case. From

Fig 9.11(b), one can observe that under degradation model II, unlike model I, the dis-

placement values are not exceeding the perfect plasticity case. This difference stems from

the mechanism model I and model II are taking to be coupled with diffusion problem.

In model I, as shown in Fig 9.1(a), the initial yield stress is fixed during degradation,

and as the concentration of diffusant grows, displacement at which yielding occurs is

postponed. This results in a global relaxation of structure. However, model II shrinks

the upper bound of elastic limit function at affected areas (see Fig 9.2(a)). This implies

that yielding occurs at lower displacement. In other words, The structure experience a

pseudo-softening behavior.

Stress profile and contour of effective plastic strain for the degradation model I is

shown in Fig 9.12. At maximum loading step, it is evident that thicker shear bands are

forming for one-way and two-way coupled cases. However, the intensity of stress profiles

remained unchanged on the shear bands. Residual stresses for coupled cases are spatially

more distributed but are significantly lower than stresses observed of for the uncoupled

case. In degradation model II, similar to model I, stresses during maximum loading are

approximately equal for all three cases. However, unlike model I, one-way and two-way

coupling strategies contain higher residual stresses than uncoupled case (see Fig 9.13).

We know that during unloading steps, the material follows the elastic stress path. As
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Figure 9.11: Plate with a circular hole: This figure shows displacement history at point
A and B.
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discussed earlier, model I decreases the slope of the elastic path as degradation grows.

This will result in lower stress at the end of the unloading step.

When the effective plastic strain is positive, the material yields. For uncoupled prob-

lems, during the loading stage, the plastic zone monotonically grows and will not change

during the unloading stage. This could be seen in Figs 9.14(a)–9.14(b) and Fig

9.15(a)–9.15(b) for model I and model II, respectively. However, for either one-way

or two-way coupled cases, the yielding function introduced in equations 9.17 and 9.21

updates. Hence the plastic zone could vary at each load step as the concentration profile

evolves. Fig 9.14 presents the location of the plastic zone during maximum and residual

loading steps for degradation model I. For the case of coupled problems, the zone has

grown at maximum loading and spreads to upper and lower edges at the vertical cen-

terline. But, significantly shrinks as the unloading stage ends. Results for degradation

model II are shown in Fig 9.15. X-patterns appear at maximum loading for both coupled

cases, and the pattern does not change at the residual loading step. To qualitatively

compare model I and II with respect to the evolution of the plastic zone, we use a global

metric of the percentage of yielded area in a domain. Fig 9.16 contains the result of this

metric for three cases of uncoupled, one-way coupled, and two-way coupled. It is evident

that coupled strategies increase the area of the plastic zone in the degradation model I.

This increase is also observed in model II but is less pronounced. It could be seen that

one-way coupling overestimates the area of the plastic zone for both models I and II.

193



(a) Uncoupled, maximu loading (b) Uncoupled, residual loading

(c) One-way, maximu loading (d) One-way, residual loading

(e) Two-way, maximu loading (f) Two-way, residual loading

Figure 9.12: Stress, degradation model I: This figure illustrates concentration profile and
contour of effective plastic strain at maximum and residual loading steps.
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(a) Uncoupled, maximum loading (b) Uncoupled, residual loading

(c) One-way, maximumm loading (d) One-way, residual loading

(e) Two-way, maximum loading (f) Two-way, residual loading

Figure 9.13: Stress, degradation model II: This figure illustrates concentration profile and
contour of effective plastic strain at maximum and residual loading steps.
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(a) Uncoupled, maximum loading (b) Uncoupled, residual loading

(c) One-way, maximum loading (d) One-way, residual loading

(e) Two-way, maximum loading (f) Two-way, residual loading

Figure 9.14: degradation model I: This figure shows the plastic zone at maximum and
residual loading steps.
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(a) Uncoupled, maximum loading (b) Uncoupled, residual loading

(c) One-way, maximum loading (d) One-way, residual loading

(e) Two-way, maximum loading (f) Two-way, residual loading

Figure 9.15: degradation model II: This figure shows the plastic zone at maximum and
residual loading steps.
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Chapter 10

Conclusions and Future Work

A new stabilized mixed DG formulation has been introduced for the DPP mathemat-

ical model in Chapter 3, which describes the flow of a single-phase incompressible fluid

through a porous medium with two dominant pore-networks. Some of the main findings

on the computational front and the nature of flow through porous media with double

pore-networks can be summarized as:

(i) Arbitrary combinations of interpolation functions for the field variables are stable

under the proposed DG formulation. Unlike the classical mixed DG formulation,

which violates the LBB inf-sup stability condition under the equal-order interpola-

tion for all the field variables, the proposed DG formulation circumvents the LBB

condition. This implies that the proposed DG formulation does not suffer from

node-to-node spurious oscillations when the computationally convenient equal-order

interpolation for all the field variables is employed.

(ii) Due to a careful selection of numerical fluxes, the proposed DG formulation does

not suffer from the inherent instabilities that DG methods typically suffer from; for

example, the Bassi-Rebay DG method.

(iii) The stabilization terms inside the domain are of adjoint-type and residual-based,

and the corresponding stabilization parameters do not contain any mesh-dependent

parameters.
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(iv) The proposed stabilized formulation performs remarkably well, in comparison with

its continuous counterpart, in the presence of heterogeneity in material properties.

In other words, under the proposed DG formulation no unphysical numerical insta-

bilities are generated at the vicinity of discontinuities in material properties due to

Gibbs phenomenon.

(v) The formulation passes patch tests, even on meshes with non-constant Jacobian

elements, in 2D and 3D settings.

(vi) The proposed DG formulation can support non-conforming discretization in form

of non-conforming polynomial orders or non-conforming element refinement, thus

allowing efficient h-, p-, and hp-adaptivities.

(vii) A sensitivity study revealed the importance of ηu and ηp (i.e., jump terms with

respect to the normal components of the velocities and pressures, respectively) to

reduce the drift along the interior edges for the case of non-conforming polynomial

orders.

(viii) It is shown, theoretically, that the proposed formulation is convergent. The conver-

gence rates obtained under both h- and p-refinement methods in several numerical

experiments are in accordance with the theory.

(ix) It is shown that the proposed DG formulation can be employed to solve coupled

flow-transport problems in porous media with double pore-networks. In particular,

the effect of heterogeneity of medium properties is studied on the appearance and

growth of fingers under viscous-fingering-type instability. The proposed formula-

tion is capable of suppressing the non-physical numerical instabilities (like Gibbs

phenomenon and spurious node-to-node oscillations), yet capturing the underlying

physical ones.
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In chapter 6, we have developed two block solver methodologies which are capa-

ble of solving large-scale problems under the four-field DPP mathematical model. We

subsequently presented a systematic performance analysis of various finite element dis-

cretizations for the DPP model using the recently proposed TAS spectrum model, which

takes into consideration important metrics such as mesh convergence, static-scaling, and

DoE. We have also identified strong-scaling issues one needs to be cognizant of when

the block solvers are applied to various finite elements. In our numerical studies, two-

and three-dimensional problems had analogous performance trends, despite their marked

discrepancy in time to solution.

Some salient features of the proposed composable block solver methodologies are as:

1. Both composable solvers are compatible with different kinds of mixed finite ele-

ment formulations: H(div) and non-H(div) elements, simplicial and non-simplicial

elements, node- and edge-based discretizations, and continuous and discontinuous

approximations.

2. Both composable solvers are scalable in both parallel and algorithmic senses.

3. The solvers can be implemented seamlessly using the existing PETSc’s composable

solver options. Hence, one can leverage on the existing parallel computing tools to

implement these composable solvers into existing simulators.

Some main conclusions from the performance analysis using the TAS spectrum model

are as:

1. Scale-split vs. field-split. For a fixed problem size, the scale-splitting methodology

tends to be slightly more efficient in terms of wall-clock time needed despite hav-

ing the same KSP counts as the field-splitting method. However, selecting either
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solver methodologies will be left to the programmer’s convenience and limitations

as switching from one strategy to another exerts negligible overall effects on perfor-

mance metrics.

2. H(div) vs. VMS formulations. (a) No matter what mesh type is chosen, DoFs are

processed the fastest under the H(div) formulation compared to the CG-VMS or

DG-VMS formulations. (b) The VMS formulations yield much higher overall nu-

merical accuracy for all velocity and pressure fields than their H(div) counterparts.

The exception is for non-simplicial meshes, where the H(div) formulation exhibits

superlinear convergence.

In chapter 8, we have considered the flows of incompressible fluids in coupled free-

porous media. We have presented a theoretical framework to obtain a complete set

of self-consistent conditions, which describes the flow dynamics at the interface of free

flow and porous regions. The interface conditions are essential for the closure of the

mathematical model. The framework is primarily built upon the principle of virtual

power, theory of interacting continua, and a geometric argument for enforcing internal

constraints, which in our case is the incompressibility of the fluid. The central idea in the

proposed principle of virtual power is to account for the power expended at the interface

and thereby making it possible to circumvent the need to estimate the partial stress in

the porous solid.

Under the proposed framework, the set of interface conditions is a combination of jump

conditions and a constitutive specification, which is provided by prescribing the physically

meaningful power expended density at the interface. We have also shown that the jump

conditions by themselves do not provide a workable set of conditions, which is because

of the inability to quantify the traction taken by the rigid porous solid under the theory

of interacting continua. The salient features of the proposed framework of obtaining
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interface conditions are: (i) The framework enjoys a strong theoretical underpinning. (ii)

The resulting interface conditions make the resulting mathematical model well-posed.

Specifically, we have shown that the resulting mathematical model has a unique solution.

(iii) The framework is amenable to generalizations, and the resulting interface conditions

are valid for a wide variety of porous media models. (iv) Several popular conditions in

the literature are special cases of the proposed framework. (v) Similar to uncoupled free

flows and uncoupled flows in porous media, the flows in coupled free-porous media under

the proposed interface conditions also enjoy a minimum power theorem.

In chapter 9, We have developed a comprehensive modeling framework, consisting

of a mathematical model and a computational framework, for studying the elastoplastic

mechanical response due to the transport of a chemical species within the host mate-

rial. We have demonstrated that the proposed computational framework respects math-

ematical principles, such as maximum principles, and physical constraints, such as the

non-negative constraint for the concentration field. We also compared the physics of a

degrading elastoplastic material with that of the response of a non-degrading material.

10.1 Future Work

One other possible numerical approach for addressing large-scale geophysical flow

models is to employ a method known as hybridization, where the discrete equations are

transformed such that classic static condensation and local post-processing methods can

be applied. Future endeavors could be focused on developing a hybridized discontinuous

Galerkin computational framework for DPP model and comparing its performance with

the proposed stabilized mixed discontinuous Galerkin.

On the interface of free flow and porous region, it is possible to construct a weak
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formulation based on the minimum power theorem, which can be utilized in a numerical

implementation of the mathematical model under the finite element method. Assess-

ing the efficacy of such a weak formulation is worthy of a future investigation. This

framework is applicable in numerical modeling of real-life interface problems in geolog-

ical systems (e.g., hyporheic zone modeling) and biological systems (e.g., arterial mass

transfer). Also, the current theoretical framework for deriving interface condition could

be extended to derive the fluid-porous-structure interface, using the principle of virtual

power and maximization of rate entropy production.

One can extend the work presented on coupled elastoplastic-diffusion systems on three

possible fronts. The first one is to incorporate chemical reactions into the model; for ex-

ample, considering oxidation of the material. The second study can be directed towards

understanding and modeling the initiation and propagation of fractures in degrading

materials, and phase-field modeling can be a leading candidate for such a study. The

third aspect can be on extending the current study to large deformation plasticity mod-

els, where interesting phenomena such as metal necking could be studied. These im-

provements enable application scientists to better understand the coupled behavior of

structures under degradation.

204



References

[1] VisIt. Developed by Departement of Energy, https://wci.llnl.gov/codes/visit.

[2] R. Abedi, B. Petracovici, and R. B. Haber. A space–time discontinuous Galerkin

method for linearized elastodynamics with element-wise momentum balance. Com-

puter Methods in Applied Mechanics and Engineering, 195(25-28):3247–3273, 2006.

[3] M. Ainsworth and B. Senior. Aspects of an adaptive hp-finite element method:

Adaptive strategy, conforming approximation and efficient solvers. Computer Meth-

ods in Applied Mechanics and Engineering, 150:65–87, 1997.

[4] M. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson,

J. Ring, M. E. Rognes, and G. N. Wells. The FEniCC project version 1.5. Archive

of Numerical Software, 3:9–23, 2015.

[5] M. S. Alnæs, A. Logg, K. B. Ølgaard, M. E. Rognes, and G. N. Wells. Unified form

language: A domain-specific language for weak formulations of partial differential

equations. ACM Transactions on Mathematical Software, 40:9, 2014.

[6] P. R. Amestoy, I. S. Duff, J. Koster, and J. Y. L’Excellent. A fully asynchronous

multifrontal solver using distributed dynamic scheduling. SIAM Journal on Matrix

Analysis and Applications, 23:15–41, 2001.

[7] F. Armero. Elastoplastic and viscoplastic deformations in solids and structures.

Encyclopedia of Computational Mechanics Second Edition, pages 1–41, 2018.

[8] D. Arnold, D. D. Boffi, and R. Falk. Approximation by quadrilateral finite elements.

Mathematics of Computation, 71(239):909–922, 2002.

205



[9] D. N. Arnold. An interior penalty finite element method with discontinuous ele-

ments. SIAM Journal on Numerical Analysis, 19:742–760, 1982.

[10] D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini. Unified analysis of

discontinuous Galerkin methods for elliptic problems. SIAM Journal on Numerical

Analysis, 39:1749–1779, 2002.

[11] D. N. Arnold, R. Falk, and R. Winther. Finite element exterior calculus: from

Hodge theory to numerical stability. Bulletin of the American mathematical society,

47(2):281–354, 2010.

[12] D. N. Arnold, R. S. Falk, and R. Winther. Finite element exterior calculus, homo-

logical techniques, and applications. Acta numerica, 15:1–155, 2006.

[13] D. N. Arnold and A. Logg. Periodic table of the finite elements. SIAM News,

47(9):212, 2014.

[14] U. Ayachit. The ParaView Guide: A Parallel Visualization Application. Kitware,

2015.
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[172] P. Vaněk, J. Mandel, and M. Brezina. Algebraic multigrid by smoothed aggregation

for second and fourth order elliptic problems. Computing, 56(3):179–196, 1996.

[173] R. Verfürth. A Posteriori Error Estimation Techniques for Finite Element Methods.

Oxford Science Publications, New Jersey, 2013.

[174] S. Wada and T. Karino. Theoretical study on flow-dependent concentration po-

larization of low density lipoproteins at the luminal surface of a straight artery.

Biorheology, 36:207–223, 1999.

[175] J. E. Warren and P. J. Root. The behavior of naturally fractured reservoirs. Society

of Petroleum Engineering Journal, 3:245–255, 1963.

[176] N. Yang and K. Vafai. Modeling of low-density lipoprotein (ldl) transport in the

artery—effects of hypertension. International Journal of Heat and Mass Transfer,

49(5-6):850–867, 2006.

[177] Zenodo/COFFEE. COFFEE: a compiler for fast expression evaluation, nov 2017.

[178] Zenodo/FIAT. FIAT: the finite element automated tabulator, apr 2018.

225



[179] Zenodo/FInAT. FInAT: a smarter library of finite elements, jan 2018.

[180] ZENODO/firedrake. Firedrake: an automated finite element system, may 2018.

[181] Zenodo/PETSc. PETSc: Portable, extensible toolkit for scientific computation,

apr 2018.

[182] Zenodo/petsc4py. petsc4py: The python interface to PETSc, apr 2018.

[183] Zenodo/PyOP2. PyOP2: framework for performance-portable parallel computa-

tions on unstructured meshes, may 2018.

[184] Zenodo/TSFC. TSFC: the two stage form compiler, may 2018.

[185] Zenodo/UFL. UFL: the unified form language, apr 2018.

[186] O. C. Zienkiewicz and R. L. Taylor. The Finite Element Method: Solid Mechanics,

volume 2. Butterworth-Heinemann, 2000.

226



Appendices

227



A Computer Implementation

The numerical results pertaining to the non-conforming discretization (Section 5.1.2)

and non-constant Jacobian elements (Section 5.1.3), have been obtained using COMSOL

Java API [57]. The numerical simulations for the 2D numerical convergence analysis on

QUAD and trapezoidal meshes, and 3D numerical convergence analysis (Section 5.2.2);

and the coupled problem (Section 5.4) were carried out using the Firedrake Project [148,

123]. All the remaining numerical results were generated using the FEniCS Project [117, 4].

The FEniCS and Firedrake Projects are built upon several scientific packages and

provide automated frameworks to solve partial differential equations in serial and parallel

environments. Both provide an easy-to-use Python-based interface to develop computer

codes, to access the scientific packages on which they are built upon, and to generate

the output in various formats which are compatible with popular visualization software

packages such as ParaView [14] and VisIt [1]. Under both these projects, mesh generation

can be performed either within the code or using the third party mesh generators such

as GMSH [71].

Among the various components available in FEniCS, we have used the Unified Form

Language (UFL) [5] and the DOLFIN library [119, 120] in our implementations. The former

enables the user to declare the finite element discretization of variational forms and the

latter is used for the automated assembly of the finite element discrete formulations.

The Firedrake Project employs the UFL from the FEniCS Project. However, the main

difference between the FEniCS and Firedrake Projects is that all data structures, linear

solvers and non-linear solvers for the former are provided by DOLFIN library and for

the latter are provided entirely by the PETSc library [19]. Another notable difference is

that the FEniCS Project offers only simplicial element (e.g., triangular and tetrahedron
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elements), whereas the Firedrake Project offers non-simplicial elements in addition to the

simplicial ones.

In our numerical simulations, MUMPS [6] direct solver and the sparse LU decompo-

sition direct solver from the UMFPACK [61] were, respectively, employed with default

settings under the COMSOL Java API and the FEniCS Project. The GMRES iterative

solver with “bjacobi” preconditioner and the relative convergence tolerance of 10−7 was

employed under the Firedrake Project.

Below, we have provided a Firedrake-based computer code, which can be used to

generate the results for the coupled problem, which is discussed in Section 5.4.

Listing 1: Firedrake code for solving the coupled problem in the heterogeneous porous

medium

1 from firedrake import *

2 import numpy

3 import random

4 try:

5 import matplotlib.pyplot as plt

6 except:

7 warning("Matplotlib not imported")

8

9 #== Create mesh ==

10 nx, ny = 100, 40

11 Lx, Ly = 1.0, 0.4

12 mesh = RectangleMesh(nx,ny,Lx,Ly)

13

14 #== Function spaces ==

15 #−−−Double porosity/permeability flow problem−−−

16 velSpace = VectorFunctionSpace(mesh,"DG",2)

17 pSpace = FunctionSpace(mesh,"DG",2)

18 wSpace = MixedFunctionSpace([velSpace,pSpace,velSpace,pSpace])

19

20 #−−−Advection−diffusion problem−−−
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21 uSpace = FunctionSpace(mesh,"CG",1)

22

23 #−−−Permeability−−−

24 kSpace = FunctionSpace(mesh, "DG", 0)

25

26 #== Material properties and parameters ==

27 mu0, Rc, D = Constant(1e−3), Constant(3.0), Constant(2e−6)

28 k1 0 = 1.1

29 k1 1 = 0.9

30 tol = 1E−14

31

32 class myk1(Expression): #Macro−permeability

33 def eval(self, values, x):

34 if x[1] < Ly/2 + tol:

35 values[0] = k1 0

36 else:

37 values[0] = k1 1

38

39 k1 = interpolate(myk1(),kSpace)

40

41 k2 0 = 0.01 * 1.1

42 k2 1 = 0.01 * 0.9

43

44 class myk2(Expression): #Micro−permeability

45 def eval(self, values, x):

46 if x[1] < Ly/2 + tol:

47 values[0] = k2 0

48 else:

49 values[0] = k2 1

50

51 k2 = interpolate(myk2(),kSpace)

52

53 #−−−Drag coefficients−−−

54

55 def alpha1(c):

56 return mu0 * exp(Rc * (1.0 − c))/k1

57

58 def invalpha1(c):

59 return 1/alpha1(c)
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60

61 def alpha2(c):

62 return mu0 * exp(Rc * (1.0 − c))/k2

63

64 def invalpha2(c):

65 return 1/alpha2(c)

66

67 #== Boundary and initial conditions ==

68 v topbottom = Constant(0.0)

69 p L = Constant(10.0)

70 p R = Constant(1.0)

71 c inj = Constant(1.0)

72

73 #== Perturbation function for initial concentration ==

74 #−−−Needed to trigger the instability−−−

75 class c 0(Expression):

76 def eval(self, values, x):

77 if x[0] < 0.010*Lx:

78 values[0] = abs(.10*exp(−x[0]*x[0]) * random.random())

79 else:

80 values[0] = 0.0

81

82 #== Define trial and test functions ==

83 #−−−DPP flow problem−−−

84 (v1,p1,v2,p2) = TrialFunctions(wSpace)

85 (w1,q1,w2,q2) = TestFunctions(wSpace)

86 DPP solution = Function(wSpace)

87

88 #−−−AD problem−−−

89 c1 = TrialFunction(uSpace)

90 u = TestFunction(uSpace)

91 conc = Function(uSpace)

92 conc k = interpolate(c 0(),uSpace)

93

94 #== Time parameters ==

95 T = 0.0015 # Total simulation time

96 dt = 0.00005 # Time step

97

98 #== Boundary conditions ==
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99 #−−−DPP velocity BCs−−−

100 bcDPP = []

101

102 #−−−AD concentration BCs−−−

103 bcleft c = DirichletBC(uSpace,c inj,1,method = "geometric")

104

105 bcAD = [bcleft c]

106

107 #== Define source terms ==

108 #−−−DPP model−−−

109 rhob1, rhob2 = Constant((0.0,0.0)), Constant((0.0,0.0))

110

111 #−−−AD problem−−−

112 f = Constant(0.0)

113

114 #== Normal vectors and mesh size ==

115 n = FacetNormal(mesh)

116 h = CellSize(mesh)

117 h avg = (h('+') + h('−'))/2

118

119 #== Penalty parameters ==

120 eta p, eta u = Constant(0.0), Constant(0.0)

121

122 #== Define variational forms ==

123

124 #−−−DPP stabilized mixed DG formulation−−−

125 aDPP = dot(w1, alpha1(conc k) * v1) * dx +\

126 dot(w2, alpha2(conc k) * v2) * dx −\

127 div(w1) * p1 * dx −\

128 div(w2) * p2 * dx +\

129 q1 * div(v1) * dx +\

130 q2 * div(v2) * dx +\

131 q1 * (p1 − p2) * dx −\

132 q2 * (p1 − p2) * dx +\

133 jump(w1,n) * avg(p1) * dS +\

134 jump(w2,n) * avg(p2) * dS −\

135 avg(q1) * jump(v1,n) * dS −\

136 avg(q2) * jump(v2,n) * dS +\

137 dot(w1,n) * p1 * ds(3) +\
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138 dot(w2,n) * p2 * ds(3) −\

139 q1 * dot(v1,n) * ds(3) −\

140 q2 * dot(v2,n) * ds(3) +\

141 dot(w1,n) * p1 * ds(4) +\

142 dot(w2,n) * p2 * ds(4) −\

143 q1 * dot(v1,n) * ds(4) −\

144 q2 * dot(v2,n) * ds(4) −\

145 0.5 * dot( alpha1(conc k) * w1 − grad(q1), \

146 invalpha1(conc k) * (alpha1(conc k) * v1 + grad(p1)) ) * dx −\

147 0.5 * dot( alpha2(conc k) * w2 − grad(q2), \

148 invalpha2(conc k) * (alpha2(conc k) * v2 + grad(p2)) ) * dx +\

149 (eta u * h avg) * avg(alpha1(conc k)) * (jump(v1,n) * jump(w1,n)) * dS +\

150 (eta u * h avg) * avg(alpha2(conc k)) * (jump(v2,n) * jump(w2,n)) * dS +\

151 (eta p / h avg) * avg(1 / alpha1(conc k)) * dot(jump(q1,n),jump(p1,n)) * dS +\

152 (eta p / h avg) * avg(1 / alpha2(conc k)) * dot(jump(q2,n),jump(p2,n)) * dS

153

154 LDPP = dot(w1,rhob1) * dx +\

155 dot(w2,rhob2) * dx −\

156 dot(w1,n) * p L * ds(1) −\

157 dot(w2,n) * p L * ds(1) −\

158 dot(w1,n) * p R * ds(2) −\

159 dot(w2,n) * p R * ds(2) −\

160 0.5 * dot( alpha1(conc k) * w1 − grad(q1), \

161 invalpha1(conc k) * rhob1 ) * dx −\

162 0.5 * dot( alpha2(conc k) * w2 − grad(q2), \

163 invalpha2(conc k) * rhob2 ) * dx

164

165

166 #−−−AD formulation with SUPG Stabilization−−−

167 vnorm = sqrt(dot((DPP solution.sub(0)+DPP solution.sub(2)),\

168 (DPP solution.sub(0)+DPP solution.sub(2))))

169

170 taw = h/(2*vnorm)*dot((DPP solution.sub(0)+DPP solution.sub(2)),\

171 grad(u))

172

173 a r = taw*(c1 + dt*(dot((DPP solution.sub(0)+DPP solution.sub(2)),\

174 grad(c1)) − div(D*grad(c1))))*dx

175

176 L r = taw*(conc k + dt*f)*dx
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177

178 #−−−Weak form (GL + SUPG)−−−

179 aAD = a r + u*c1*dx + dt*(u*dot((DPP solution.sub(0)+DPP solution.sub(2)),\

180 grad(c1))*dx + dot(grad(u),D*grad(c1))*dx)

181

182 LAD = L r + u*conc k*dx + dt*u*f*dx

183

184 #−−−Create files for storing solution−−−

185 cfile = File("Concentration.pvd")

186 v1file = File("Macro Velocity.pvd")

187 p1file = File("Macro Pressure.pvd")

188 v2file = File("Micro Velocity.pvd")

189 p2file = File("Micro Pressure.pvd")

190

191 #== Solver for flow problem ==

192 solver parameters = { # Default solver −− medium sized problems

193 'ksp type': 'gmres',

194 'pc type': 'bjacobi',

195 'mat type': 'aij',

196 'ksp rtol': 1e−7,

197 'ksp monitor': True

198 }

199

200 problem flow = LinearVariationalProblem(aDPP, LDPP, DPP solution, bcs=bcDPP,

201 constant jacobian=False)

202 solver flow = LinearVariationalSolver(problem flow, options prefix="flow ",

203 solver parameters=solver parameters)

204

205 #== March the solution over time ==

206 t = dt

207 while t ≤ T:

208 print '=============================='

209 print ' time =', t

210 print '=============================='

211 c 0.t = t

212

213 #−−−Compute DPP model−−−

214 solver flow.solve()

215
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216 #−−−Compute AD problem−−−

217 solve(aAD == LAD,conc,bcs=bcAD)

218 conc k.assign(conc) # update for next iteration

219

220 #−−−Dump solutions for each time step−−−

221 cfile.write(conc, time = t)

222 v1file.write(DPP solution.sub(0), time = t)

223 p1file.write(DPP solution.sub(1), time = t)

224 v2file.write(DPP solution.sub(2), time = t)

225 p2file.write(DPP solution.sub(3), time = t)

226 t += dt

227

228 print "total time = ", t

229

230 v1sol, p1sol, v2sol, p2sol = DPP solution.split()

231

232 #== Dump solution fields to file in VTK format ==

233 file = File("Concentration.pvd")

234 file.write(conc)

235

236 file = File('Macro Velocity.pvd')

237 file.write(v1sol)

238

239 file = File('Macro Pressure.pvd')

240 file.write(p1sol)

241

242 file = File('Micro Velocity.pvd')

243 file.write(v2sol)

244

245 file = File('Micro Pressure.pvd')

246 file.write(p2soll)
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B PETSc Command-line Options

In both the listing provided in this appendix, we have assumed that the global ordering

of the mixed function space is macro-scale velocity (0), macro-scale pressure (1), micro-

scale velocity (2), and micro-scale pressure (3).

Listing 2: PETSc command-line options for splitting by fields

1 −ksp type gmres

2 −pc type fieldsplit

3 −pc fieldsplit 0 fields 0,1

4 −pc fieldsplit 1 fields 2,3

5 −pc fieldsplit type additive

6 −fieldsplit 0 ksp type preonly

7 −fieldsplit 0 pc type fieldsplit

8 −fieldsplit 0 pc fieldsplit type schur

9 −fieldsplit 0 pc fieldsplit schur fact type full

10 −fieldsplit 0 pc fieldsplit schur precondition selfp

11 −fieldsplit 0 fieldsplit 0 ksp type preonly

12 −fieldsplit 0 fieldsplit 0 pc type bjacobi

13 −fieldsplit 0 fieldsplit 1 ksp type preonly

14 −fieldsplit 0 fieldsplit 1 pc type hypre

15 −fieldsplit 1 ksp type preonly

16 −fieldsplit 1 pc type fieldsplit

17 −fieldsplit 1 pc fieldsplit type schur

18 −fieldsplit 1 pc fieldsplit schur fact type full

19 −fieldsplit 1 pc fieldsplit schur precondition selfp

20 −fieldsplit 1 fieldsplit 0 ksp type preonly

21 −fieldsplit 1 fieldsplit 0 pc type bjacobi

22 −fieldsplit 1 fieldsplit 1 ksp type preonly

23 −fieldsplit 1 fieldsplit 1 pc type hypre

Listing 3: PETSc command-line options for splitting by scale
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1 −ksp type gmres

2 −pc type fieldsplit

3 −pc fieldsplit 0 fields 0,2

4 −pc fieldsplit 1 fields 1,3

5 −pc fieldsplit type schur

6 −pc fieldsplit schur fact type full

7 −pc fieldsplit schur precondition selfp

8 −fieldsplit 0 ksp type preonly

9 −fieldsplit 0 pc type bjacobi

10 −fieldsplit 1 ksp type preonly

11 −fieldsplit 1 pc type fieldsplit

12 −fieldsplit 1 pc fieldsplit type additive

13 −fieldsplit 1 fieldsplit 0 ksp type preonly

14 −fieldsplit 1 fieldsplit 0 pc type hypre

15 −fieldsplit 1 fieldsplit 1 ksp type preonly

16 −fieldsplit 1 fieldsplit 1 pc type hypre
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C Spectral Performance Codes

In the following, we have provided Firedrake-based computer codes for H(div) formu-

lation (listing 4), CG-VMS formulation (listing 5) and DG-VMS formulation (listing 6).

These three formulations were discussed earlier in Chapter 3.

Listing 4: Firedrake code for 3D problem with TET mesh using H(div) formulation

1 from firedrake import *

2 import numpy as np

3

4 #== Create mesh ==#

5 mesh = BoxMesh(5,5,5,1,1,1)

6

7 #== Function spaces ==#

8 vSpace = FunctionSpace(mesh,"RT",1)

9 pSpace = FunctionSpace(mesh,"DG",0)

10 wSpace = MixedFunctionSpace([vSpace,pSpace,vSpace,pSpace])

11

12 #== Define trial and test functions ==#

13 (v1,p1,v2,p2) = TrialFunctions(wSpace)

14 (w1,q1,w2,q2) = TestFunctions(wSpace)

15

16 #== Parameters and material properties ==#

17 rhob1, rhob2 = Constant((0.0,0.0,0.0)), Constant((0.0,0.0,0.0))

18 mu = Constant(1.0)

19 beta = Constant(1.0)

20 fact = 1.0

21 k1, k2 = Constant(1.0), Constant(0.1)

22 alpha1, alpha2 = Constant(mu/k1), Constant(mu/k2)

23 eta = np.sqrt(1.0 *(1.0+0.1)/(1.0 * 0.1))

24

25 #== Boundary conditions ==#

26 p1 left = interpolate(Expression("(1/pi)*(sin(pi*x[1])+sin(pi*x[2])) −\

27 (exp(eta*x[1])+exp(eta*x[2]))",eta=eta) , pSpace)

28 p1 right = interpolate(Expression("(1/pi)*exp(pi)*(sin(pi*x[1])+sin(pi*x[2])) −\
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29 (exp(eta*x[1])+exp(eta*x[2]))",eta=eta) , pSpace)

30 p1 bottom = interpolate(Expression("(1/pi)*exp(pi*x[0])*sin(pi*x[2]) −\

31 (1.0 + exp(eta*x[2]))",eta=eta) , pSpace)

32 p1 top = interpolate(Expression("(1/pi)*exp(pi*x[0])*sin(pi*x[2]) −\

33 (exp(eta) + exp(eta*x[2]))",eta=eta) , pSpace)

34 p1 back = interpolate(Expression("(1/pi)*exp(pi*x[0])*sin(pi*x[1]) −\

35 (exp(eta*x[1]) + 1.0)",eta=eta) , pSpace)

36 p1 front = interpolate(Expression("(1/pi)*exp(pi*x[0])*sin(pi*x[1]) −\

37 (exp(eta) + exp(eta*x[1]))",eta=eta) , pSpace)

38 p2 left = interpolate(Expression("(1/pi)*(sin(pi*x[1])+sin(pi*x[2])) +\

39 10.0 * (exp(eta*x[1])+exp(eta*x[2]))",eta=eta) , pSpace)

40 p2 right = interpolate(Expression("(1/pi)*exp(pi)*(sin(pi*x[1])+sin(pi*x[2])) +\

41 10.0 * (exp(eta*x[1])+exp(eta*x[2]))",eta=eta) , pSpace)

42 p2 bottom = interpolate(Expression("(1/pi)*exp(pi*x[0])*sin(pi*x[2]) +\

43 10.0 * (1.0 + exp(eta*x[2]))",eta=eta) , pSpace)

44 p2 top = interpolate(Expression("(1/pi)*exp(pi*x[0])*sin(pi*x[2]) +\

45 10.0 * (exp(eta) + exp(eta*x[2]))",eta=eta) , pSpace)

46 p2 back = interpolate(Expression("(1/pi)*exp(pi*x[0])*sin(pi*x[1]) +\

47 10.0 * (exp(eta*x[1]) + 1.0)",eta=eta) , pSpace)

48 p2 front = interpolate(Expression("(1/pi)*exp(pi*x[0])*sin(pi*x[1]) +\

49 10.0 * (exp(eta) + exp(eta*x[1]))",eta=eta) , pSpace)

50 bcs = []

51

52 #== Normal vectors ==#

53 n = FacetNormal(mesh)

54

55 #== Define variational forms ==#

56 a = dot(w1, alpha1*v1)*dx + dot(w2, alpha2*v2)*dx \

57 − div(w1) * p1 *dx − div(w2) * p2 * dx + q1 * div(v1) * dx + q2 * div(v2) * dx +\

58 q1 * fact * (p1 − p2) * dx − q2 * fact * (p1 − p2) * dx

59

60 L = dot(w1,rhob1)*dx + dot(w2,rhob2)*dx −\

61 dot(w1,n) * p1 left * ds(1) − dot(w2,n) * p2 left * ds(1) −\

62 dot(w1,n) * p1 right * ds(2) − dot(w2,n) * p2 right * ds(2) −\

63 dot(w1,n) * p1 bottom * ds(3) − dot(w2,n) * p2 bottom * ds(3) −\

64 dot(w1,n) * p1 top * ds(4) − dot(w2,n) * p2 top * ds(4) −\

65 dot(w1,n) * p1 back * ds(5) − dot(w2,n) * p2 back * ds(5) −\

66 dot(w1,n) * p1 front * ds(6) − dot(w2,n) * p2 front * ds(6)

67
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68 #== Solver options ==#

69 parameters twofields = {

70 "ksp type": "gmres",

71 "pc type": "fieldsplit",

72 "pc fieldsplit 0 fields": "0,2",

73 "pc fieldsplit 1 fields": "1,3",

74 "pc fieldsplit type": "schur",

75 "pc fieldsplit schur fact type": "full",

76 "pc fieldsplit schur precondition": "selfp",

77 "fieldsplit 0 ksp type": "preonly",

78 "fieldsplit 0 pc type": "bjacobi",

79 "fieldsplit 1 ksp type": "preonly",

80 "fieldsplit 1 pc type": "fieldsplit",

81 "fieldsplit 1 pc fieldsplit type": "additive",

82 "fieldsplit 1 fieldsplit 0 ksp type": "preonly",

83 "fieldsplit 1 fieldsplit 0 pc type": "hypre",

84 "fieldsplit 1 fieldsplit 0 pc hypre boomeramg strong threshold": 0.75,

85 "fieldsplit 1 fieldsplit 0 pc hypre boomeramg agg nl": 2,

86 "fieldsplit 1 fieldsplit 1 ksp type": "preonly",

87 "fieldsplit 1 fieldsplit 1 pc type": "hypre",

88 "fieldsplit 1 fieldsplit 1 pc hypre boomeramg strong threshold": 0.75,

89 "fieldsplit 1 fieldsplit 1 pc hypre boomeramg agg nl": 2,

90 "ksp rtol": 1e−5

91 }

92

93 #== Solve problem ==#

94 solution = Function(wSpace)

95 A = assemble(a, bcs=bcs, mat type='aij')

96 b = assemble(L)

97 solver = LinearSolver(A,P=None,options prefix="twofields ",\

98 solver parameters=parameters twofields)

99 solver.solve(solution,b)

100 v1sol,p1sol,v2sol,p2sol = solution.split()

101

102 #== Define exact solutions ==#

103 p1 ex = Function(pSpace)

104 p2 ex = Function(pSpace)

105 v1 ex = Function(vSpace)

106 v2 ex = Function(vSpace)
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107 p1 exact = Expression("(1/pi)*exp(pi*x[0])*(sin(pi*x[1]) +\

108 sin(pi*x[2])) − (1/(1.0*1.0))*(exp(3.316625*x[1]) +\

109 exp(3.316625*x[2]))", degree = 5)

110 p2 exact = Expression("(1/pi)*exp(pi*x[0])*(sin(pi*x[1]) +\

111 sin(pi*x[2])) + (1/(1*0.1))*(exp(3.316625*x[1]) +\

112 exp(3.316625*x[2]))", degree = 5)

113 v1 exact = Expression(("−1*exp(pi*x[0])*(sin(pi*x[1]) +\

114 sin(pi*x[2]))","−1*exp(pi*x[0])*cos(pi*x[1]) +\

115 (3.316625/1.0)*exp(3.316625*x[1])","−1*exp(pi*x[0])*cos(pi*x[2]) +\

116 (3.316625/1.0)*exp(3.316625*x[2])"), degree = 5)

117 v2 exact = Expression(("−0.1*exp(pi*x[0])*(sin(pi*x[1]) +\

118 sin(pi*x[2]))","−0.1*exp(pi*x[0])*cos(pi*x[1]) −\

119 (3.316625/1.0)*exp(3.316625*x[1])", "−0.1*exp(pi*x[0])*cos(pi*x[2]) −\

120 (3.316625/1.0)*exp(3.316625*x[2])"), degree = 5)

121 p1 ex = project(p1 exact, pSpace)

122 v1 ex = project(v1 exact, vSpace)

123 p2 ex = project(p2 exact, pSpace)

124 v2 ex = project(v2 exact, vSpace)

125 #== L2 error norms ==#

126 L2 p1 = errornorm(p1 ex,p1sol,norm type='L2',degree rise= 3)

127 L2 v1 = errornorm(v1 ex,v1sol,norm type='L2',degree rise= 3)

128 L2 p2 = errornorm(p2 ex,p2sol,norm type='L2',degree rise= 3)

129 L2 v2 = errornorm(v2 ex,v2sol,norm type='L2',degree rise= 3)

Listing 5: Firedrake code for 3D problem with TET mesh using CG-VMS formulation

1 from firedrake import *

2 import numpy as np

3

4 #== Create mesh ==#

5 mesh = BoxMesh(5,5,5,1,1,1)

6

7 #== Function spaces ==#

8 vSpace = VectorFunctionSpace(mesh,"CG",1)

9 pSpace = FunctionSpace(mesh,"CG",1)

10 wSpace = MixedFunctionSpace([vSpace,pSpace,vSpace,pSpace])

11

12 #== Define trial and test functions ==#
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13 (v1,p1,v2,p2) = TrialFunctions(wSpace)

14 (w1,q1,w2,q2) = TestFunctions(wSpace)

15

16 #== Parameters and material properties ==#

17 rhob1, rhob2 = Constant((0.0,0.0,0.0)), Constant((0.0,0.0,0.0))

18 mu = Constant(1.0)

19 beta = Constant(1.0)

20 fact = 1.0

21 k1, k2 = Constant(1.0), Constant(0.1)

22 alpha1, alpha2 = Constant(mu/k1), Constant(mu/k2)

23 eta = np.sqrt(1.0 *(1.0+0.1)/(1.0 * 0.1))

24 invalpha1 = 1.0 / alpha1

25 invalpha2 = 1.0 / alpha2

26

27 #== Boundary conditions ==#

28 p1 left = interpolate(Expression("(1/pi)*(sin(pi*x[1])+sin(pi*x[2])) −\

29 (exp(eta*x[1])+exp(eta*x[2]))",eta=eta) , pSpace)

30 p1 right = interpolate(Expression("(1/pi)*exp(pi)*(sin(pi*x[1])+sin(pi*x[2])) −\

31 (exp(eta*x[1])+exp(eta*x[2]))",eta=eta) , pSpace)

32 p1 bottom = interpolate(Expression("(1/pi)*exp(pi*x[0])*sin(pi*x[2]) −\

33 (1.0 + exp(eta*x[2]))",eta=eta) , pSpace)

34 p1 top = interpolate(Expression("(1/pi)*exp(pi*x[0])*sin(pi*x[2]) −\

35 (exp(eta) + exp(eta*x[2]))",eta=eta) , pSpace)

36 p1 back = interpolate(Expression("(1/pi)*exp(pi*x[0])*sin(pi*x[1]) −\

37 (exp(eta*x[1]) + 1.0)",eta=eta) , pSpace)

38 p1 front = interpolate(Expression("(1/pi)*exp(pi*x[0])*sin(pi*x[1]) −\

39 (exp(eta) + exp(eta*x[1]))",eta=eta) , pSpace)

40 p2 left = interpolate(Expression("(1/pi)*(sin(pi*x[1])+sin(pi*x[2])) +\

41 10.0 * (exp(eta*x[1])+exp(eta*x[2]))",eta=eta) , pSpace)

42 p2 right = interpolate(Expression("(1/pi)*exp(pi)*(sin(pi*x[1])+sin(pi*x[2])) +\

43 10.0 * (exp(eta*x[1])+exp(eta*x[2]))",eta=eta) , pSpace)

44 p2 bottom = interpolate(Expression("(1/pi)*exp(pi*x[0])*sin(pi*x[2]) +\

45 10.0 * (1.0 + exp(eta*x[2]))",eta=eta) , pSpace)

46 p2 top = interpolate(Expression("(1/pi)*exp(pi*x[0])*sin(pi*x[2]) +\

47 10.0 * (exp(eta) + exp(eta*x[2]))",eta=eta) , pSpace)

48 p2 back = interpolate(Expression("(1/pi)*exp(pi*x[0])*sin(pi*x[1]) +\

49 10.0 * (exp(eta*x[1]) + 1.0)",eta=eta) , pSpace)

50 p2 front = interpolate(Expression("(1/pi)*exp(pi*x[0])*sin(pi*x[1]) +\

51 10.0 * (exp(eta) + exp(eta*x[1]))",eta=eta) , pSpace)
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52 bcs = []

53

54 #== Normal vectors ==#

55 n = FacetNormal(mesh)

56

57 #== Define variational forms ==#

58 a = dot(w1, alpha1*v1)*dx + dot(w2, alpha2*v2)*dx \

59 − div(w1) * p1 *dx − div(w2) * p2 * dx \

60 + q1 * div(v1) * dx + q2 * div(v2) * dx +\

61 q1 * fact * (p1 − p2) * dx − q2 * fact * (p1 − p2) * dx −\

62 0.5 * dot( alpha1 * w1 − grad(q1), invalpha1 * (alpha1 * v1 + grad(p1)) ) * dx −\

63 0.5 * dot( alpha2 * w2 − grad(q2), invalpha2 * (alpha2 * v2 + grad(p2)) ) * dx

64

65 L = dot(w1,rhob1)*dx + dot(w2,rhob2)*dx −\

66 0.5 * dot( alpha1 * w1 − grad(q1), invalpha1 * rhob1 ) * dx −\

67 0.5 * dot( alpha2 * w2 − grad(q2), invalpha2 * rhob2 ) * dx −\

68 dot(w1,n) * p1 left * ds(1) − dot(w2,n) * p2 left * ds(1) −\

69 dot(w1,n) * p1 right * ds(2) − dot(w2,n) * p2 right * ds(2) −\

70 dot(w1,n) * p1 bottom * ds(3) − dot(w2,n) * p2 bottom * ds(3) −\

71 dot(w1,n) * p1 top * ds(4) − dot(w2,n) * p2 top * ds(4) −\

72 dot(w1,n) * p1 back * ds(5) − dot(w2,n) * p2 back * ds(5) −\

73 dot(w1,n) * p1 front * ds(6) − dot(w2,n) * p2 front * ds(6)

74

75 #== Solver options ==#

76 parameters twofields = {

77 "ksp type": "gmres",

78 "pc type": "fieldsplit",

79 "pc fieldsplit 0 fields": "0,2",

80 "pc fieldsplit 1 fields": "1,3",

81 "pc fieldsplit type": "schur",

82 "pc fieldsplit schur fact type": "full",

83 "pc fieldsplit schur precondition": "selfp",

84 "fieldsplit 0 ksp type": "preonly",

85 "fieldsplit 0 pc type": "bjacobi",

86 "fieldsplit 1 ksp type": "preonly",

87 "fieldsplit 1 pc type": "fieldsplit",

88 "fieldsplit 1 pc fieldsplit type": "additive",

89 "fieldsplit 1 fieldsplit 0 ksp type": "preonly",

90 "fieldsplit 1 fieldsplit 0 pc type": "hypre",
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91 "fieldsplit 1 fieldsplit 0 pc hypre boomeramg strong threshold": 0.75,

92 "fieldsplit 1 fieldsplit 0 pc hypre boomeramg agg nl": 2,

93 "fieldsplit 1 fieldsplit 1 ksp type": "preonly",

94 "fieldsplit 1 fieldsplit 1 pc type": "hypre",

95 "fieldsplit 1 fieldsplit 1 pc hypre boomeramg strong threshold": 0.75,

96 "fieldsplit 1 fieldsplit 1 pc hypre boomeramg agg nl": 2,

97 "ksp rtol": 1e−5

98 }

99

100 #== Solve problem ==#

101 solution = Function(wSpace)

102 A = assemble(a, bcs=bcs, mat type='aij')

103 b = assemble(L)

104 solver = LinearSolver(A,P=None,options prefix="twofields ",\

105 solver parameters=parameters twofields)

106 solver.solve(solution,b)

107 v1sol,p1sol,v2sol,p2sol = solution.split()

108

109 #== Define exact solutions ==#

110 p1 ex = Function(pSpace)

111 p2 ex = Function(pSpace)

112 v1 ex = Function(vSpace)

113 v2 ex = Function(vSpace)

114 p1 exact = Expression("(1/pi)*exp(pi*x[0])*(sin(pi*x[1]) +\

115 sin(pi*x[2])) − (1/(1.0*1.0))*(exp(3.316625*x[1]) +\

116 exp(3.316625*x[2]))", degree = 5)

117 p2 exact = Expression("(1/pi)*exp(pi*x[0])*(sin(pi*x[1]) +\

118 sin(pi*x[2])) + (1/(1*0.1))*(exp(3.316625*x[1]) +\

119 exp(3.316625*x[2]))", degree = 5)

120 v1 exact = Expression(("−1*exp(pi*x[0])*(sin(pi*x[1]) +\

121 sin(pi*x[2]))","−1*exp(pi*x[0])*cos(pi*x[1]) +\

122 (3.316625/1.0)*exp(3.316625*x[1])","−1*exp(pi*x[0])*cos(pi*x[2]) +\

123 (3.316625/1.0)*exp(3.316625*x[2])"), degree = 5)

124 v2 exact = Expression(("−0.1*exp(pi*x[0])*(sin(pi*x[1]) +\

125 sin(pi*x[2]))","−0.1*exp(pi*x[0])*cos(pi*x[1]) −\

126 (3.316625/1.0)*exp(3.316625*x[1])", "−0.1*exp(pi*x[0])*cos(pi*x[2]) −\

127 (3.316625/1.0)*exp(3.316625*x[2])"), degree = 5)

128 p1 ex = interpolate(p1 exact, pSpace)

129 v1 ex = interpolate(v1 exact, vSpace)
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130 p2 ex = interpolate(p2 exact, pSpace)

131 v2 ex = interpolate(v2 exact, vSpace)

132

133 #== L2 error norms ==#

134 L2 p1 = errornorm(p1 ex,p1sol,norm type='L2',degree rise= 3)

135 L2 v1 = errornorm(v1 ex,v1sol,norm type='L2',degree rise= 3)

136 L2 p2 = errornorm(p2 ex,p2sol,norm type='L2',degree rise= 3)

137 L2 v2 = errornorm(v2 ex,v2sol,norm type='L2',degree rise= 3)

Listing 6: Firedrake code for 3D problem with TET mesh using DG-VMS formulation

1 from firedrake import *

2 import numpy as np

3

4 #== Create mesh ==#

5 mesh = BoxMesh(5,5,5,1,1,1)

6

7 #== Function spaces ==#

8 vSpace = VectorFunctionSpace(mesh,"DG",1)

9 pSpace = FunctionSpace(mesh,"DG",1)

10 wSpace = MixedFunctionSpace([vSpace,pSpace,vSpace,pSpace])

11

12 #== Define trial and test functions ==#

13 (v1,p1,v2,p2) = TrialFunctions(wSpace)

14 (w1,q1,w2,q2) = TestFunctions(wSpace)

15

16 #== Parameters and material properties ==#

17 rhob1, rhob2 = Constant((0.0,0.0,0.0)), Constant((0.0,0.0,0.0))

18 mu = Constant(1.0)

19 beta = Constant(1.0)

20 fact = 1.0

21 k1, k2 = Constant(1.0), Constant(0.1)

22 alpha1, alpha2 = Constant(mu/k1), Constant(mu/k2)

23 eta = np.sqrt(1.0 *(1.0+0.1)/(1.0 * 0.1))

24 invalpha1 = 1.0 / alpha1

25 invalpha2 = 1.0 / alpha2

26

27 #== Boundary conditions ==#
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28 p1 left = interpolate(Expression("(1/pi)*(sin(pi*x[1])+sin(pi*x[2])) −\

29 (exp(eta*x[1])+exp(eta*x[2]))",eta=eta) , pSpace)

30 p1 right = interpolate(Expression("(1/pi)*exp(pi)*(sin(pi*x[1])+sin(pi*x[2])) −\

31 (exp(eta*x[1])+exp(eta*x[2]))",eta=eta) , pSpace)

32 p1 bottom = interpolate(Expression("(1/pi)*exp(pi*x[0])*sin(pi*x[2]) −\

33 (1.0 + exp(eta*x[2]))",eta=eta) , pSpace)

34 p1 top = interpolate(Expression("(1/pi)*exp(pi*x[0])*sin(pi*x[2]) −\

35 (exp(eta) + exp(eta*x[2]))",eta=eta) , pSpace)

36 p1 back = interpolate(Expression("(1/pi)*exp(pi*x[0])*sin(pi*x[1]) −\

37 (exp(eta*x[1]) + 1.0)",eta=eta) , pSpace)

38 p1 front = interpolate(Expression("(1/pi)*exp(pi*x[0])*sin(pi*x[1]) −\

39 (exp(eta) + exp(eta*x[1]))",eta=eta) , pSpace)

40 p2 left = interpolate(Expression("(1/pi)*(sin(pi*x[1])+sin(pi*x[2])) +\

41 10.0 * (exp(eta*x[1])+exp(eta*x[2]))",eta=eta) , pSpace)

42 p2 right = interpolate(Expression("(1/pi)*exp(pi)*(sin(pi*x[1])+sin(pi*x[2])) +\

43 10.0 * (exp(eta*x[1])+exp(eta*x[2]))",eta=eta) , pSpace)

44 p2 bottom = interpolate(Expression("(1/pi)*exp(pi*x[0])*sin(pi*x[2]) +\

45 10.0 * (1.0 + exp(eta*x[2]))",eta=eta) , pSpace)

46 p2 top = interpolate(Expression("(1/pi)*exp(pi*x[0])*sin(pi*x[2]) +\

47 10.0 * (exp(eta) + exp(eta*x[2]))",eta=eta) , pSpace)

48 p2 back = interpolate(Expression("(1/pi)*exp(pi*x[0])*sin(pi*x[1]) +\

49 10.0 * (exp(eta*x[1]) + 1.0)",eta=eta) , pSpace)

50 p2 front = interpolate(Expression("(1/pi)*exp(pi*x[0])*sin(pi*x[1]) +\

51 10.0 * (exp(eta) + exp(eta*x[1]))",eta=eta) , pSpace)

52 bcs = []

53

54 #== Define normal vector, h avg, and penalty parameters ==#

55 n = FacetNormal(mesh)

56 h = CellSize(mesh)

57 h avg = (h('+') + h('−'))/2

58 eta u, eta p = Constant(10.), Constant(10.)

59

60 #== Define variational forms ==#

61 a = dot(w1, alpha1*v1)*dx + dot(w2, alpha2*v2)*dx \

62 − div(w1) * p1 *dx − div(w2) * p2 * dx \

63 + q1 * div(v1) * dx + q2 * div(v2) * dx +\

64 q1 * fact * (p1 − p2) * dx − q2 * fact * (p1 − p2) * dx −\

65 0.5 * dot( alpha1 * w1 − grad(q1),invalpha1 * (alpha1 * v1 + grad(p1)) ) * dx −\

66 0.5 * dot( alpha2 * w2 − grad(q2),invalpha2 * (alpha2 * v2 + grad(p2)) ) * dx +\
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67 jump(w1,n) * avg(p1) * dS + jump(w2,n) * avg(p2) * dS −\

68 avg(q1) * jump(v1,n) * dS − avg(q2) * jump(v2,n) * dS +\

69 eta u * h avg * avg(alpha1) * (jump(w1,n) * jump(v1,n)) * dS +\

70 eta u * h avg * avg(alpha2) * (jump(w2,n) * jump(v2,n)) * dS +\

71 (eta p/h avg) * avg(1/alpha1) * dot(jump(q1,n),jump(p1,n)) * dS +\

72 (eta p / h avg) * avg(1 / alpha2) * dot(jump(q2,n),jump(p2,n)) * dS

73

74 L = dot(w1,rhob1)*dx + dot(w2,rhob2)*dx −\

75 0.5 * dot( alpha1 * w1 − grad(q1),invalpha1 * rhob1 ) * dx −\

76 0.5 * dot( alpha2 * w2 − grad(q2),invalpha2 * rhob2 ) * dx −\

77 dot(w1,n) * p1 left * ds(1) − dot(w2,n) * p2 left * ds(1) −\

78 dot(w1,n) * p1 right * ds(2) − dot(w2,n) * p2 right * ds(2) −\

79 dot(w1,n) * p1 bottom * ds(3) − dot(w2,n) * p2 bottom * ds(3) −\

80 dot(w1,n) * p1 top * ds(4) − dot(w2,n) * p2 top * ds(4) −\

81 dot(w1,n) * p1 back * ds(5) − dot(w2,n) * p2 back * ds(5) −\

82 dot(w1,n) * p1 front * ds(6) − dot(w2,n) * p2 front * ds(6)

83

84 #== Solver options ==#

85 parameters twofields = {

86 "ksp type": "gmres",

87 "pc type": "fieldsplit",

88 "pc fieldsplit 0 fields": "0,2",

89 "pc fieldsplit 1 fields": "1,3",

90 "pc fieldsplit type": "schur",

91 "pc fieldsplit schur fact type": "full",

92 "pc fieldsplit schur precondition": "selfp",

93 "fieldsplit 0 ksp type": "preonly",

94 "fieldsplit 0 pc type": "bjacobi",

95 "fieldsplit 1 ksp type": "preonly",

96 "fieldsplit 1 pc type": "fieldsplit",

97 "fieldsplit 1 pc fieldsplit type": "additive",

98 "fieldsplit 1 fieldsplit 0 ksp type": "preonly",

99 "fieldsplit 1 fieldsplit 0 pc type": "hypre",

100 "fieldsplit 1 fieldsplit 0 pc hypre boomeramg strong threshold": 0.75,

101 "fieldsplit 1 fieldsplit 0 pc hypre boomeramg agg nl": 2,

102 "fieldsplit 1 fieldsplit 1 ksp type": "preonly",

103 "fieldsplit 1 fieldsplit 1 pc type": "hypre",

104 "fieldsplit 1 fieldsplit 1 pc hypre boomeramg strong threshold": 0.75,

105 "fieldsplit 1 fieldsplit 1 pc hypre boomeramg agg nl": 2,
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106 "ksp rtol": 1e−5

107 }

108

109 #== Solve problem ==#

110 solution = Function(wSpace)

111 A = assemble(a, bcs=bcs, mat type='aij')

112 b = assemble(L)

113 solver = LinearSolver(A,P=None,options prefix="twofields ",\

114 solver parameters=parameters twofields)

115 solver.solve(solution,b)

116 v1sol,p1sol,v2sol,p2sol = solution.split()

117

118 #== Define exact solutions ==#

119 p1 ex = Function(pSpace)

120 p2 ex = Function(pSpace)

121 v1 ex = Function(vSpace)

122 v2 ex = Function(vSpace)

123 p1 exact = Expression("(1/pi)*exp(pi*x[0])*(sin(pi*x[1]) +\

124 sin(pi*x[2])) − (1/(1.0*1.0))*(exp(3.316625*x[1]) +\

125 exp(3.316625*x[2]))", degree = 5)

126 p2 exact = Expression("(1/pi)*exp(pi*x[0])*(sin(pi*x[1]) +\

127 sin(pi*x[2])) + (1/(1*0.1))*(exp(3.316625*x[1]) +\

128 exp(3.316625*x[2]))", degree = 5)

129 v1 exact = Expression(("−1*exp(pi*x[0])*(sin(pi*x[1]) +\

130 sin(pi*x[2]))","−1*exp(pi*x[0])*cos(pi*x[1]) +\

131 (3.316625/1.0)*exp(3.316625*x[1])","−1*exp(pi*x[0])*cos(pi*x[2]) +\

132 (3.316625/1.0)*exp(3.316625*x[2])"), degree = 5)

133 v2 exact = Expression(("−0.1*exp(pi*x[0])*(sin(pi*x[1]) +\

134 sin(pi*x[2]))","−0.1*exp(pi*x[0])*cos(pi*x[1]) −\

135 (3.316625/1.0)*exp(3.316625*x[1])", "−0.1*exp(pi*x[0])*cos(pi*x[2]) −\

136 (3.316625/1.0)*exp(3.316625*x[2])"), degree = 5)

137 p1 ex = interpolate(p1 exact, pSpace)

138 v1 ex = interpolate(v1 exact, vSpace)

139 p2 ex = interpolate(p2 exact, pSpace)

140 v2 ex = interpolate(v2 exact, vSpace)

141

142 #== L2 error norms ==#

143 L2 p1 = errornorm(p1 ex,p1sol,norm type='L2',degree rise= 3)

144 L2 v1 = errornorm(v1 ex,v1sol,norm type='L2',degree rise= 3)
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145 L2 p2 = errornorm(p2 ex,p2sol,norm type='L2',degree rise= 3)

146 L2 v2 = errornorm(v2 ex,v2sol,norm type='L2',degree rise= 3)

D Mathematical Proofs for Interface Condition

D.1 A proof of the minimum power theorem

Based on the first-order optimality condition it will suffice to show that

δPcoupled[vfree,vpor; δvfree, δvpor] :=

[
d

dε
Pcoupled[vfree + εδvfree,vpor + εδvpor]

]
ε=0

= 0

∀(δvfree, δvpor) ∈ W .

(D.1)

The positive definite Hessians will ensure that the extremum is in fact a minimum. The

Gâteaux variation can be written as follows1

δPcoupled[vfree,vpor; δvfree, δvpor] =

∫
Kfree

∂Φfree

∂Dfree
· δDfree dΩ (D.2)

+

∫
Kpor

(
∂Φpor

∂vpor
· δvpor +

∂Φpor

∂Dpor
· δDpor

)
dΩ

+

∫
Γint

(
∂Ψ

∂
∗
vfree

· δ ∗vfree +
∂Ψ

∂
∗
vpor

· δ ∗vpor +
∂Ψ

∂vn
· δvn

)
dΓ

−
∫
Kfree

γbfree · δvfree dΩ−
∫

Γt
free

tp
free(x) · δvfree(x) dΓ

−
∫
Kpor

γφporbpor · δvpor dΩ−
∫

Γt
por

tp
por(x) · δvpor(x) dΓ.

(D.3)

Using the conditions (8.46a)–(8.46c) under the requirement (R1), we obtain the following

δPcoupled[vfree,vpor; δvfree, δvpor] =

∫
Kfree

Textra
free · δDfree dΩ +

∫
Kpor

(
ipor · δvpor + Textra

por · δDpor

)
dΩ

1δDfree := 1
2 (grad[δvfree] + grad[δvfree]T) and δDpor := 1

2 (grad[δvpor] + grad[δvpor]
T).
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+

∫
Γint

(
∂Ψ

∂
∗
vfree

· δ ∗vfree +
∂Ψ

∂
∗
vpor

· δ ∗vpor +
∂Ψ

∂vn
· δvn

)
dΓ

−
∫
Kfree

γbfree · δvfree dΩ−
∫

Γt
free

tp
free(x) · δvfree(x) dΓ

−
∫
Kpor

γφporbpor · δvpor dΩ−
∫

Γt
por

tp
por(x) · δvpor(x) dΓ.

(D.4)

Noting the internal constraints (8.31b) and (8.32b), utilizing the decomposition of the

Cauchy stresses (8.29), and invoking the Green’s identity, we obtain the following

δPcoupled[vfree,vpor; δvfree, δvpor] = −
∫
Kfree

(div[Tfree] + γbfree)︸ ︷︷ ︸
= 0 due to (8.31a)

·δvfree dΩ

−
∫
Kpor

(div[Tpor] + γφporbpor − ipor)︸ ︷︷ ︸
= 0 due to (8.32a)

·δvpor dΩ

+

∫
∂Kfree

(Tfreen̂free) · δvfree(x) dΓ−
∫

Γt
free

tp
free(x) · δvfree(x) dΓ

+

∫
∂Kpor

(Tporn̂por) · δvpor(x) dΓ−
∫

Γt
por

tp
por(x) · δvpor(x) dΓ

+

∫
Γint

(
∂Ψ

∂
∗
vfree

· δ ∗vfree +
∂Ψ

∂
∗
vpor

· δ ∗vpor +
∂Ψ

∂vn
· δvn

)
dΓ.

(D.5)

Noting the decomposition of the boundaries ∂Kfree and ∂Kpor, given by equations (8.6)

and (8.7), we obtain the following

δPcoupled[vfree,vpor; δvfree, δvpor] =

∫
Γt

free

(
Tfreen̂

ext
free − tp

free(x)
)︸ ︷︷ ︸

= 0 due to (8.31c)

·δvfree(x) dΓ (D.6)

+

∫
Γv

free

(
Tfreen̂

ext
free

)
· δvfree(x) dΓ

+

∫
Γt

por

(
Tporn̂

ext
por − tp

por(x)
)︸ ︷︷ ︸

= 0 due to (8.32c)

·δvpor(x) dΓ (D.7)

+

∫
Γv

por

(
Tporn̂

ext
por

)
· δvpor(x) dΓ

+

∫
Γint

(Tfreen̂free) · δvfree(x) dΓ +

∫
Γint

(Tporn̂por) · δvpor(x) dΓ
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+

∫
Γint

(
∂Ψ

∂
∗
vfree

· δ ∗vfree +
∂Ψ

∂
∗
vpor

· δ ∗vpor +
∂Ψ

∂vn
· δvn

)
dΓ.

(D.8)

Invoking that δvfree(x) and δvpor(x), respectively, vanish on Γvfree and Γvpor (see §8.2.5),

and using the first interface condition (8.33a) and the notation introduced in (8.25), we

obtain the following

δPcoupled[vfree,vpor; δvfree, δvpor] =

∫
Γint

(
n̂free ·Tfreen̂free − n̂por ·Tporn̂por +

∂Ψ

∂vn

)
· δvn dΓ

+

∫
Γint

(
Tfreen̂free +

∂Ψ

∂
∗
vfree

)
· δ ∗vfree dΓ

+

∫
Γint

(
Tporn̂por +

∂Ψ

∂
∗
vpor

)
· δ ∗vpor dΓ. (D.9)

Finally, by utilizing the interface conditions (8.33b)–(8.33d) we have established that

the first variation of Pcoupled vanishes.

D.2 A proof of the uniqueness theorem

On the contrary, assume that

{v(1)
free(x), p

(1)
free(x),v(1)

por(x), p(1)
por(x)} and {v(2)

free(x), p
(2)
free(x),v(2)

por(x), p(2)
por(x)},

are two solutions to the coupled Stokes-Darcy-Brinkman equations for the prescribed

data. That is, {v(1)
free(x), p

(1)
free(x)} and {v(2)

free(x), p
(2)
free(x)} satisfy the Stokes equations in

Kfree, and {v(1)
por(x), p

(1)
por(x)} and {v(2)

por(x), p
(2)
por(x)} satisfy the Darcy-Brinkman equations

in Kpor. Moreover, v
(1)
free, v

(2)
free, v

(1)
por and v

(2)
free satisfy

div
[
v

(1)
free

]
= 0 and div

[
v

(2)
free

]
= 0 in Kfree; (D.10)

div
[
v(1)

por

]
= 0 and div

[
v(2)

por

]
= 0 in Kpor. (D.11)
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Since the pairs {v(1)
free(x),v

(1)
por(x)} and {v(2)

free(x),v
(2)
por(x)} are both kinematically ad-

missible, the minimum power theorem implies that

Pcoupled

[
v

(1)
free(x),v(1)

por(x)
]

= Pcoupled

[
v

(2)
free(x),v(2)

por(x)
]
. (D.12)

Using the definition of Pcoupled given by equation (8.53), the above equation can be

expanded as

1

2

(
Φfree

[
v

(1)
free

]
− Φfree

[
v

(2)
free

])
+

1

2

(
Φpor

[
v(1)

por

]
− Φpor

[
v(2)

por

])
+

∫
Γint

(
Ψ

[
∗
v

(1)

free,
∗
v

(1)

por, v
(1)
n

]
−Ψ

[
∗
v

(2)

free,
∗
v

(2)

por, v
(2)
n

])
dΓ

=

∫
Kfree

γbfree ·
(
v

(1)
free − v

(2)
free

)
dΩ +

∫
Γt

free

tp
free ·

(
v

(1)
free − v

(2)
free

)
dΩ

+

∫
Kpor

γφporbpor ·
(
v(1)

por − v(2)
por

)
dΩ +

∫
Γt

por

tp
por ·

(
v(1)

por − v(2)
por

)
dΩ. (D.13)

Noting the rate of internal dissipation in the Stokes model, it is easy to establish the

following

1

2

(
Φfree

[
v

(1)
free

]
− Φfree

[
v

(2)
free

])
=

1

2
Φfree

[
v

(1)
free − v

(2)
free

]
+

∫
Kfree

2µD
(2)
free ·

(
D

(1)
free −D

(2)
free

)
dΩ.

(D.14)

Using equation (D.11)2 the above equation can be written as

1

2

(
Φfree

[
v

(1)
free

]
− Φfree

[
v

(2)
free

])
=

1

2
Φfree

[
v

(1)
free − v

(2)
free

]
+

∫
Kfree

T
(2)
free ·

(
D

(1)
free −D

(2)
free

)
dΩ,

(D.15)

where

T
(2)
free = −p(2)

freeI + 2µD
(2)
free. (D.16)

On similar lines, one can establish the following relation

1

2

(
Φpor

[
v(1)

por

]
− Φpor

[
v(2)

por

])
=

1

2
Φpor

[
v(1)

por − v(2)
por

]
+

∫
Kpor

T(2)
por ·

(
D(1)

por −D(2)
por

)
dΩ

252



+

∫
Kpor

µK−1v(2)
por ·

(
v(1)

por − v(2)
por

)
dΩ,

(D.17)

where

T(2)
por = −p(2)

porI + 2µD(2)
por. (D.18)

We note the fields under the second solution satisfy the balance of linear momentum;

that is:

div
[
T

(2)
free

]
+ γbfree = 0 in Kfree and (D.19)

div
[
T(2)

por

]
+ γφporbpor = µK−1v(2)

por in Kpor, (D.20)

and the prescribed tractions on the external boundary; that is:

t
(2)
free := T

(2)
freen̂free = tp

free on Γtfree and (D.21)

t(2)
por := T(2)

porn̂por = tp
por on Γtpor. (D.22)

Using the interface conditions (8.33b)–(8.33d), we have the following

1

2
Φfree

[
v

(1)
free − v

(2)
free

]
+

1

2
Φpor

[
v(1)

por − v(2)
por

]
+

∫
Γint

(
Ψ

[
∗
v

(1)

free,
∗
v

(1)

por, v
(1)
n

]
−Ψ

[
∗
v

(2)

free,
∗
v

(2)

por, v
(2)
n

])
dΓ

=

∫
Γint

 ∂Ψ

∂
∗
v

(2)

free

·
(
∗
v

(1)

free −
∗
v

(2)

free

)
+

∂Ψ

∂
∗
v

(2)

por

·
(
∗
v

(1)

por −
∗
v

(2)

por

)
+

∂Ψ

∂v
(2)
n

·
(
v(1)
n − v(2)

n

) dΓ.

(D.23)

Noting the functional form of Ψ, the above equation reduces to the following

1

2
Φfree

[
v

(1)
free − v

(2)
free

]
+

1

2
Φpor

[
v(1)

por − v(2)
por

]
+

∫
Γint

Ψ

[
∗
v

(1)

free −
∗
v

(2)

free,
∗
v

(1)

por −
∗
v

(2)

por, v
(1)
n − v(2)

n

]
dΓ = 0.

(D.24)
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Using the fact that Φfree[·], Φpor[·] and Ψ[·] are individually norms (and hence individually

non-negative), each term in the above equation is individually zero. This further implies

that

v
(1)
free(x) = v

(2)
free(x) ∀x ∈ Kfree, (D.25a)

v(1)
por(x) = v(2)

por(x) ∀x ∈ Kpor, (D.25b)

∗
v

(1)

free(x) =
∗
v

(2)

free(x) ∀x ∈ Γfree, (D.25c)

∗
v

(1)

por(x) =
∗
v

(2)

por(x) ∀x ∈ Γpor, and (D.25d)

v(1)
n (x) = v(2)

n (x) ∀x ∈ Γint. (D.25e)

The balance of linear momentum in Kfree and Kpor, respectively, implies that:

grad
[
p

(1)
free(x)− p(2)

free(x)
]

= 0 ∀x ∈ Kfree and (D.26a)

grad
[
p(1)

por(x)− p(2)
por(x)

]
= 0 ∀x ∈ Kpor, (D.26b)

which further implies that:

p
(1)
free(x) = p

(2)
free(x) + C1 ∀x ∈ Kfree and p(1)

por(x) = p(2)
por(x) + C2 ∀x ∈ Kpor, (D.27)

where C1 and C2 are arbitrary constants. Using the interface condition given by equation

(8.33b) and noting that the velocity fields are continuous fields, we conclude that C1 =

C2 = C and

p
(1)
free(x) = p

(2)
free(x) + C and p(1)

por(x) = p(2)
por(x) + C ∀x ∈ Γint. (D.28)

Physically, the constant C fixes the datum for the pressure field. This completes the

proof.
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