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Abstract  

 

During my dissertation I used a combination of comparative and phylogenetic approaches 

to test for selection on genic regions. Specifically, I tested for mutational and 

environmental robustness in Drosophila pre-miRNAs, as well as selection on 

synonymomous and nonsynonymous sites in mammalian protein coding genes. Contrary 

to previous claims of selection for mutational robustness in mammalian pre-miRNAs, I 

demonstrate that mutational robustness evolved neutrally in Drosophila pre-miRNas. 

Furthermore, I show that mutational robustness did not evolve as a byproduct of selection 

for environmental robustness. In Chapter 3, I identify orthologous processed pseudogenes 

and use them to test for selection on synonymous sites. By estimating the rate of 

substitution at synonymous sites in genes (𝑑𝑑𝑆𝑆), and corresponding sites in pseudogenes 

(𝑑𝑑𝜓), I demonstrate that only about ~8% of synonymous changes could possibly be 

under selection. This is in stark contrast to the ~30% previously claimed. However, I 

show that both deviations from neutrality can be caused by an increase in divergence 

between the sequences examined, in combination, with a difference in nucleotide 

composition between genes and pseudogenes. In the last part of my dissertation, I 

estimate selection on nonsynonymous sites in mammals (𝑑𝑑𝑁/𝑑𝑑𝑆𝑆), and examine the 

previously claimed positive correlation between generation time and selection. To ensure 

the correct estimation of selection, I examine the effects of sequencing errors and 

alignment quality. After accounting for phylogenetic independence, I find no correlation 
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between generation time and selection. Furthermore, I find a significant decrease in the 

efficiency of selection in monkeys, after the simian and prosimian split. 
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Chapter One: General introduction 
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Mutations occurring in functional DNA sequences may or may not alter the phenotype of 

an organism. In the event that they do, they may or may not affect the fitness of the 

organism that carries the mutation. Mutations can be deleterious, neutral or advantageous. 

In mammals, in which genomes contain vast amounts of junk DNA, most new mutations 

occur in nonfunctional regions of the genome and are, hence, neutral, i.e., are as fit as the 

fittest allele in the population. Most non-neutral mutations occurring within a population 

reduce the fitness of their carriers, i.e., are deleterious. Deleterious mutations are selected 

against and eventually removed from the population. This type of selection is called 

negative or purifying. Very rarely, a mutation is advantageous and increases the fitness of 

its carriers. Such a mutation will increase in frequency, that is, it will be subjected to 

positive or advantageous selection (Graur 2014). 

 

The fate of neutral alleles in a population is determined solely by random genetic drift, 

while the fate of deleterious and advantageous alleles could be affected by both random 

genetic drift and selection. 

  

To assesses the past effects of random genetic drift on a population, one can measure the 

neutral genetic diversity between a sample of individuals and determine the effective 

population size (𝑁𝑒). The effective population size, is the size of a so called “ideal” 

Wright-Fisher population (Wright 1931) that would experience the effects of genetic drift 

to the same degree as the population under study. 
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In 1962, Kimura derived the probability of fixation of a new allele in a diploid population 

given the effective population size 𝑁𝑒, the census population size 𝑁, and the selection 

coefficient, 𝑠, assuming codominance (Kimura 1962).  

 

(1.1) 

 

The selection coefficient is defined as the relative fitness of a phenotype relative to 

another phenotype. As shown in Figure 1.1a the probability of fixation of an allele with a 

selective disadvantage of -0.001 decreases as the effective population size approaches the 

census population size. On the other hand, the probability of fixation of an advantageous 

allele with (𝑠 = 0.01) increases Figure 1.1b. 

 

(a)                                                    (b) 

 

 

Figure 1.1: The probability of fixation of a deleterious (left) and advantageous allele 

(right) as effective population size (𝑁𝑒) approaches the census population size (𝑁). 
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These trends show that the efficiency of selection increases as random genetic drift 

decreases. According to theory, in a diploid population, selection for an advantageous 

mutation or selection against a deleterious mutation is efficient only when 2𝑁𝑒𝑠 ≫ 1 

(Kimura 1968a). If this criterion is not met, then the fate of a mutation is largely 

determined by random genetic drift.  

 

In this dissertation I use both comparative and phylogenetic methods to test for selection 

on functional sequences within eukaryotes. Given that the efficiency of selection is 

dependent on the effective population size, in Chapter 2, I examine whether there is 

selection for mutational or environmental robustness in Drosophila miRNAs. In Chapter 

3, I identify processed pseudogenes and use them as a neutral model to test for selection 

on synonymous sites (Chapter 4). Finally, in Chapter 5, using generation time as a proxy 

to effective population size, I examine whether there is a relation between the efficiency 

of selection on nonsynonymous sites and generation time. 

 

As mentioned above, in Chapter 2, I estimate selection for mutational and environmental 

robustness on precursor miRNAs (pre-miRNAs). Robustness, is the extent to which a 

genotype can produce the same phenotype in the face of perturbations (de Visser et al. 

2003). These perturbations can be mutations or environmental factors such temperature, 

salinity, or pH. Robustness has been observed at all levels of genetic organization, 

starting from individual genes (Borenstein and Ruppin 2006; Lind et al. 2010; Hietpas et 

al. 2011) to whole organisms (von Dassow et al. 2000; Baba et al. 2006; Ritter et al. 

2013). An example of robustness is the finding that functional genes while under 
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selection are not always essential. For example, in E. coli, 90% of single gene knock outs 

did not produce any lethal phenotypes (Baba et al. 2006). In ribosomal protein genes, 

95% of directed mutations were only weakly deleterious (Lind et al. 2010).  

 

The two theories proposed to explain the existence of robustness are: (1) robustness 

offers a fitness advantage and therefore is directly selected for (de Visser et al. 2003), and 

(2) robustness is a correlated byproduct of selection for another property such as function 

(Gibson and Wagner 2000; Wagner 2005).  

 

Recently, robustness has been observed in precursor miRNAs (Wagner and Stadler 1999; 

Bonnet et al. 2004; Sanjuan et al. 2007; Shu et al. 2008; Szollosi and Derenyi 2009; 

Churkin et al. 2010). These are sequences that fold in a stem-loop structure and contain 

the mature miRNA that is latter excised by the Drosha complex (Figure 1.2) (Bartel 

2004). Mature miRNAs are known to regulate the expression of genes (Bartel 2004). 

 

Robustness in pre-miRNAs has been suggested to evolve due to direct selection for 

resilience against mutations (Borenstein and Ruppin 2006; Sanjuan et al. 2007), or, 

selection for resistance against thermal fluctuations (Ancel and Fontana 2000; Szollosi 

and Derenyi 2009).  
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Figure 1.2: Secondary structure of mir-317 in Drosophila Pseudoobscura. The pre-

miRNA folds into a stem-loop hairpin structure. The horizontal line marks the location of 

the mature miRNA. 

 

Mutational robustness of a pre-miRNA can be predicted in silico by randomly mutating a 

pre-miRNA sequence and using an algorithm to predict the minimum free energy (MFE) 

structure. A mutationally robust pre-miRNA is one whose initial MFE structure is not 

heavily distorted after mutation. Thermal or environmental robustness can also be 

predicted in silico by studying the thermodynamic ensemble of a pre-miRNA. A 

thermodynamic ensemble represents the structures a pre-miRNA could fold at a given 

temperature. A pre-miRNA with low structural variation within its ensemble is defined as 

thermally robust.  

 

To test for selection for mutational or environmental robustness previous studies have 

compared the robustness of real pre-miRNAs, to the robustness of random sequences 

folding in the same stem-loop structure (Borenstein and Ruppin 2006; Szollosi and 

Derenyi 2009). In the current study, I use a different approach, and study the evolution of  

pre-miRNA robustness over the Drosophila phylogeny. Specifically, I test for direct 

selection on mutational and environmental robustness. 
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In Chapter 3, I survey completely sequenced mammalian genomes, and identify 

processed psudogenes in mammals. These pseudogenes are later used to infer 

orthologous relationships. Processed pseudogenes are regions that are assumed to be non-

functional and to evolve neutrally (Graur 2014), therefore, in Chapter 4, I use orthologous 

processed pseduogenes as a neutral model to test for selection on synonymous sites. 

 

Mutations in protein coding genes can be classified into nonsynonymous, synonymous 

and nonsense. Nonsynonymous mutations lead to changes at the amino acid level, while 

synonymous mutations do not change the same amino acid. Although mutations at 

synonymous sites do not affect the structure or function of a protein, recent studies have 

identified that synonymous sites are involved in functions, such as : (1) harboring signals 

that aid in the accurate splicing out of introns (Fairbrother et al. 2004; Carlini and Genut 

2006; Dewey et al. 2006; Parmley et al. 2006; Caceres and Hurst 2013), (2) stabilizing 

mRNA structures to avoid their degradation (Shen et al. 1999; Buratti and Baralle 2004; 

Chamary and Hurst 2005; Shabalina et al. 2006), (3) serving as binding sites for miRNAs 

and transcription factors (Hurst 2006; Gu et al. 2012; Stergachis et al. 2013) and (4) 

being part of codons that are more efficient and accurate during translation (Ikemura 

1985; Akashi and Eyre-Walker 1998; Duret 2002; Wright et al. 2004; Stoletzki and Eyre-

Walker 2007; Drummond and Wilke 2008). 

 

Assuming that most mutations are deleterious and that synonymous sites are functional, 

selection on synonymous sites can still be effectively neutral if the product of the 

effective population size and selective disadvantage is not sufficiently large. In mammals, 
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whose effective population sizes are low, evidence of selection against synonymous 

mutations has been inconsistent (Chamary et al. 2006). Specifically, the proportion of 

synonymous sites estimated to be under selection ranges from 1-39% (Ophir et al. 1999; 

Bustamante et al. 2002; Hellmann et al. 2003; Parmley et al. 2006; Eory et al. 2010; 

Caceres and Hurst 2013)  

 

In Chapter 4, I use a large sample of orthologous processed pseudogenes to estimate 

selection on synonymous sites in primates and rodents.  

 

Although selection on synonymous sites has been highly controversial, selection on 

nonsynonymous sites is clearly evident. Under the assumptions that synonymous sites are 

evolve neutrally, and that mutations at nonsynonymous sites are mostly deleterious, the 

rate of nonsynonymous substitution (𝑑𝑑𝑁) should be smaller than the rate of synonymous 

substitution (𝑑𝑑𝑆𝑆). Indeed, when using human-chimp orthologous genes, 𝑑𝑑𝑁, is estimated 

to be ten times smaller than 𝑑𝑑𝑆𝑆 (The Chimpanzee Sequencing and Analysis Consortium 

2005). The 𝑑𝑑𝑁 𝑑𝑑𝑆𝑆⁄  ratio, otherwise abbreviated as 𝜔𝜔, is frequenctly used to estimate 

selection on nonsynonymous sites, using synonymous sites as a neutral model of 

evolution (Li 1997).  

Because the efficiency of selection against deleterious mutations increases with effective 

population size, it is expected that 𝜔𝜔 should decrease. This was first hypothesized by 

Ohta and Kimura in 1971 and then was formally presented as the nearly neutral theory of 

molecular evolution (Ohta 1973). Evidence of the above theory was first shown by Ohta 

in 1972 using generation time as a proxy to effective population size. Ohta, depicted that 
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species with short generation times or large effective population sizes exhibit a lower rate 

of amino acid substitutions per nucleotide substitutions than species with longer 

generation times or low effective population sizes. Later studies confirmed the positive 

correlation between 𝜔𝜔 and generation time by comparing orthologous genes between 

mammals and insects. These however, were limited to a small number of genes and 

comparisons were mainly made between species with different life history traits. 

Differences in 𝜔𝜔 between species with different life history traits could result from 

differences in selection (𝑠) and not effective population sizes (𝑁𝑒). 

 

With the recent sequencing of a large number of genomes, a few studies have shown that 

there is a positive linear relation between 𝜔𝜔 and generation time within mammals (Figure 

1.4) (Nikolaev et al. 2007; Popadin et al. 2013) 
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Figure 1.4: A plot of the 𝜔𝜔 ratio against generation time (years) in 17 mammals. Data 

were taken from the study by Nikolaev et al. (2007). 

 

In Chapter 5, I estimate selection on nonsynonymous sites in 13 high coverage mammals. 

In estimating selection, I consider alignment quality and sequence quality both of which 

can have significant effects when estimating 𝜔𝜔 (Schneider et al. 2009). 

  

ω
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Chapter Two: Neutral evolution of robustness in Drosophila 

microRNA precursors 
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Abstract 

 

Mutational robustness describes the extent to which a phenotype remains unchanged in 

the face of mutations. Theory predicts that the strength of direct selection for mutational 

robustness is at most the magnitude of the rate of deleterious mutation. As far as nucleic-

acid sequences are concerned, only long sequences in organisms with high deleterious 

mutation rates and large population sizes are expected to evolve mutational robustness. 

Surprisingly, recent studies have concluded that molecules that meet none of these 

conditions—the microRNA precursors (pre-miRNAs) of multicellular eukaryotes—show 

signs of selection for mutational and/or environmental robustness. To resolve the 

apparent disagreement between theory and these studies, we have reconstructed the 

evolutionary history of Drosophila pre-miRNAs and compared the robustness of each 

sequence to that of its reconstructed ancestor. In addition, we “replayed the tape” of pre-

miRNA evolution via simulation under different evolutionary assumptions and compared 

these alternative histories with the actual one. We found that Drosophila pre-miRNAs 

have evolved under strong purifying selection against changes in secondary structure.  

Contrary to earlier claims, there is no evidence that pre-miRNAs have been shaped by 

direct selection for any kind of robustness. 
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Introduction 

 

Robustness or canalization is the extent to which a genotype can produce the same 

phenotype in the face of perturbations (Gibson and Wagner 2000; Meiklejohn and Hartl 

2002; de Visser et al. 2003; Flatt 2005; Wagner 2005). These perturbations can be 

genetic, such as mutation, recombination, and horizontal gene transfer, or environmental, 

such as fluctuations in temperature, food availability, or salinity. Mutational robustness is 

thought to be a fundamental property of biological systems, from individual molecules to 

gene regulatory networks (de Visser et al. 2003; Stelling et al. 2004; Kitano 2004a, 

2004b; Wagner 2005) For example, Guo et al. (2004) found that 74% of nucleotide 

substitutions preserved at least some of the function of human enzyme 3-methyladenine 

DNA glycosylase (3MDG). High tolerance against mutations has been observed in many 

other proteins (Miller 1979; Datta and Jinks-Robertson 1995; Reddy et al. 1998; Bloom 

et al. 2005). In addition, conserved elements of secondary structure from the genomes of 

RNA viruses were found to be significantly more resistant to mutations than 

nonconserved elements (Wagner and Stadler 1999). 

 

How did this high mutational robustness evolve? One possibility is that it resulted from 

direct selection for high mutational robustness (de Visser et al. 2003). The strength of 

selection for mutational robustness is at most the magnitude of the deleterious mutation 

rate (U) (Kimura 1967; Proulx and Phillips 2005). For a single RNA or protein molecule, 

the deleterious mutation rate is given by delU LPµ= , where µ is the mutation rate per 

site, per generation, L is the length of the sequence, and Pdel is the probability that a 
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mutation is deleterious. (Note that 1–Pdel is a measure of mutational robustness.) For 

example, for the human enzyme 3MDG, we have L = 894 nucleotides (nt) and Pdel = 26% 

(Guo et al. 2004). Assuming that µ = 2.5×10–8 per base pair per generation (Nachman and 

Crowell 2000), we estimate that U ≈ 5.8×10–6. Thus, selection for mutational robustness 

is expected to be weak in human 3MDG, as well as in the vast majority of individual 

gene products. 

 

The main factor determining the extent to which mutational robustness will respond to 

direct selection is the effective population size (Kimura 1968a; Wagner et al. 1997; van 

Nimwegen et al. 1999; Wilke et al. 2001; Azevedo et al. 2006; Forster et al. 2006). For 

example, a diploid population is expected to respond provided that it obeys the condition 

2𝑁𝑒𝑈 ≫ 1 (Wright 1931; Kimura 1968b; Li 1978). Therefore, according to theory, 

mutational robustness should only evolve under direct selection in taxa with high 𝑁𝑒𝑈 

such as certain RNA viruses, prokaryotes and unicellular eukaryotes (Drake et al. 1998; 

Lynch and Conery 2003). In agreement with this prediction, experimental evidence for 

evolution of mutational robustness under direct selection has only been observed in an 

RNA virus (Montville et al. 2005; Sanjuan et al. 2007). In contrast, the mutational 

robustness of individual protein or RNA molecules is expected to be effectively neutral in 

most multicellular eukaryotes (Lynch and Conery 2003), suggesting that direct selection 

is an unlikely explanation for the findings of high mutational robustness (Wagner et al. 

1997; van Nimwegen et al. 1999; Wilke et al. 2001; Azevedo et al. 2006; Forster et al. 

2006). An alternative explanation, known as congruent selection, is that mutational 

robustness evolves as a by-product of selection for another form of robustness (Ancel and 
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Fontana 2000; Meiklejohn and Hartl 2002; de Visser et al. 2003; Wagner 2005), such as 

thermodynamic stability (Ancel and Fontana 2000), robustness to recombination  

(Azevedo et al. 2006; Gardner and Kalinka 2006; Misevic et al. 2006; Szollosi and 

Derenyi 2008), or robustness to transcriptional or translational errors (Ninio 1991; Wilke 

and Drummond 2006). For example, RNA molecules alternate rapidly among several 

different low-energy secondary structures. Some molecules are more thermodynamically 

stable than others at a constant temperature. Using computer simulations, Ancel and 

Fontana (2000) showed that the thermodynamic stability of an RNA molecule is 

positively correlated with its robustness to mutation, such that selection for the ability to 

produce a given structure at constant temperature caused both thermodynamic stability 

and mutational robustness to increase. Recently, Montville et al. (2005) demonstrated that 

mutational robustness evolved congruently in strains of an RNA virus selected for high 

and low levels of co-infection. 

 

In recent years, microRNA precursors (pre-miRNAs) have emerged as a model system 

for the study of the evolution of robustness (Bonnet et al. 2004; Borenstein and Ruppin 

2006; Shu et al. 2007; Shu et al. 2008; Szollosi and Derenyi 2009). The pre-miRNAs of 

multicellular eukaryotes are not expected to respond to direct selection for mutational 

robustness because they are small molecules in organisms with small populations: if we 

assume L = 100 and Pdel = 100% (the maximum possible value), we expect that 

2NeU ≈ 2Neµ to range from 0.054 to 0.74 for the pre-miRNAs of human, mouse, 

Drosophila melanogaster, and Caenorhabditis elegans (Lynch and Conery 2003). 
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Surprisingly, Borenstein and Ruppin (2006) reported evidence for direct selection for 

mutational robustness in pre-miRNAs from, among others, the above-listed species. They 

found that these RNAs have a higher mutational robustness than random sequences with 

the same secondary structure, even after controlling for the intrinsic robustness arising 

from the pre-miRNA hairpin structure and correcting for nucleotide composition bias. 

Furthermore, real and random pre-miRNAs did not differ significantly in their 

thermodynamic stability, which led them to conclude that the high mutational robustness 

was caused by direct, rather than congruent, selection (Borenstein and Ruppin 2006). If 

correct, these results would imply that, either current population genetics theory is wrong, 

or that we have grossly underestimated the effective population sizes and/or the 

deleterious mutation rates in multicellular eukaryotes, including humans.  

 

Subsequent studies (Shu et al. 2007; Szollosi and Derenyi 2009) have challenged some of 

Borenstein and Ruppin’s results, although they have confirmed the finding that the 

mutational robustness of natural pre-miRNAs is higher than that of random sequences 

with the same structure. However, previous studies on the evolution of pre-miRNA 

robustness have two important limitations (Bonnet et al. 2004; Borenstein and Ruppin 

2006; Shu et al. 2007; Shu et al. 2008; Szollosi and Derenyi 2009). First, they assume 

that random or shuffled sequences provide adequate null models for the evolution of pre-

miRNAs, whereas natural sequences tend to evolve over much shorter sequence distances 

(Ehrenreich and Purugganan 2008; Liang and Li 2009; Nozawa et al. 2010). Second, the 

pre-miRNAs considered are not phylogenetically independent (Felsenstein 1985). Here 

we use a rigorous phylogenetic framework (Figure 2.1) to test whether or not the 
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mutational and environmental robusteness of Drosophila pre-miRNAs have been subject 

to selection during 60 million years of evolution. 

 

 

Figure 2.1: Orthologous pre-miRNA genes from Drosophila were analyzed using the 

above phylogenetic tree. (Siepel et al. 2005; Rosenbloom et al. 2010). (See 

http://tinyurl.com/drostree for original.) Divergence dates were taken from (Tamura et al. 

2004). Only evolutionary events that occurred on the tips (black lines) were counted. For 

genes found in all twelve species, inferred ancestors were used at the nodes with black 

circles. 
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Materials and Methods 

 

Assembly of orthologous pre-miRNA genes and ancestral sequence reconstruction 

 

Orthologous Drosophila pre-miRNAs were downloaded from miRBase version 14 (Sept. 

2009) (Griffiths-Jones et al. 2008). If a pre-miRNA gene had orthologs in at least 8 of the 

12 Drosophila species found in miRBase (Figure 2.1), we included it for ancestral 

sequence reconstruction.  If a species had multiple copies of a gene, we excluded all 

copies in that species. 

 

We gathered a total of 71 pre-miRNA orthologous gene sets and aligned the sequences 

for each gene using MAFFT v6.717b (globalpair/G-INS-i alignment algorithm with 

default parameters and maximum iterations at 1000) (Katoh and Toh 2008). The guide 

tree used for the alignments was the phylogenetic tree in Figure 2.1 (Siepel et al. 2005; 

Rosenbloom et al. 2010). When a gene had orthologs in fewer than 12 species, the tree 

was pruned to remove the missing OTUs. To reconstruct ancestral sequence states, we 

used the web server ANCESTORS v1.0 (http://ancestors.bioinfo.uqam.ca/ancestorWeb/), 

which implements a maximum likelihood method (Blanchette et al. 2008; Diallo et al. 

2010). Ancestry was inferred from our alignments and guide trees using the “best exact 

scenario” option and default parameters. Ancestral state reconstruction did not take into 

account the secondary structures of the sequences involved. We restricted our analyses to 

the terminal branches in the ancestral reconstruction that included at least one substitution 

and no insertions or deletions (indels), resulting in 221 usable branches. 
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Secondary structure prediction and simulation of alternative descendants 

 

For each of the 221 terminal branches included in our analysis, we predicted the 

minimum free energy (MFE) structure of the ancestor and descendant using the folding 

algorithm developed by Zuker and Stiegler (1981) and implemented in the VIENNA 

RNA package version 1.8.4 (Hofacker et al. 1994). We then simulated alternative 

descendants for each branch by randomly mutating the ancestral sequence based on the 

number of substitutions in the natural descendant and keeping sequences that had the 

same structure as our descendant sequence (Zuker and Stiegler 1981). The number of 

possible descendants that are k substitutions away from an ancestor of sequence length L 

is 3kL
k

 
 
 

 (assuming no back mutations). Because this number quickly becomes very 

large, we exhaustively searched all possible descendants for branches that contained 1 or 

2 substitutions. For branches that contained k ≥ 3 substitutions, we uniformly generated 

random descendants with replacement. For these searches, the sampling algorithm 

stopped when either it found 1,000 descendants with the same MFE structure (a success) 

or the probability of finding a descendant with the same MFE structure was less than 

610− . To estimate this probability we used pseudocounts:  

(2.1) ( ) 1same structure
2

SP
N
+

=
+

 

where S is the number of successes and N is the total number of sequences tried. 

 

In addition to simulating possible descendants with the same MFE structure, we also 

simulated possible descendants without constraining on structure. As before, we 
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uniformly generated random descendants of the ancestors of each sequence in our 221-

branch dataset. However, we simply kept the first 1,000 simulated descendants for any 

value of k. Because structure was not constrained, these sets contained some sequences 

with the same MFE structure as the natural descendant and some with a different 

structure. We refer to the two sets of simulations as structure-constrained and structure-

unconstrained, respectively. 

 

Measuring robustness  

 

Robustness is best measured as a variance (Wagner et al. 1997; Rice 1998; Gibson and 

Wagner 2000), but the robustness metrics used in previous studies of pre-miRNAs 

(Borenstein and Ruppin 2006; Shu et al. 2007; Szollosi and Derenyi 2009) do not capture 

this principle. (Note, however, that employing the metrics defined in those studies does 

not change my results qualitatively.) Here we introduce variance measures of robustness 

based on the base-pair distance (d) between two structures calculated in the VIENNA 

RNA package (Hofacker et al. 1994) (the number of base pairs present in one structure, 

but not the other).  

 

We define the mutational “fragility” of a sequence of length L as 

(2.2) 
23

1

1
3

L
i

m
i

df
L L=

 =  
 

∑   

where di is the MFE structural distance between the sequence and its mutant neighbor i. 

This statistic is inversely related to robustness ( 0mf =  for a maximally robust sequence). 
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We measure mutational robustness as 1m mr f= − . We define the environmental fragility 

of a sequence of length L as the variance of its structural ensemble: 

(2.3) 
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where dj is the distance between a sampled pair of structures from the ensemble, and N is 

the number of sampled pairs. As before, environmental robustness (or thermodynamic 

stability) is calculated as 1e er f= − . We generated ensembles via VIENNA RNA’s 

partition function folding algorithm using the default temperature of 310 K, and 

calculated fe from N = 106 sampled pairs. 

 

Drosophila pre-miRNA trees 

 

Reconstruction of the 71 pre-miRNA genes produced a total of 813 terminal branches, 

approximately half had no changes, a quarter had indels, and a quarter had only 

substitutions. The number of terminal branches with only substitutions was 221. About 

half of these branches contained a single substitution, but 18% had 4 or more 

substitutions allowing us to explore a range of evolutionary divergence values (Table 

2.1). 
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  Number of Substitutions 

  1 2 3 4 5 6+ Total 

Si
ze

 o
f N

ul
l D

is
tri

bu
tio

n 0–19 36 13 0 1 1 4 55 

20–99 75 11 0 0 0 0 86 

100–999 1 12 1 0 4 5 23 

1000+ 0 11 21 12 8 5 57 

Total 112 47 22 13 13 14 221 

 

Table 2.1: Table 1. Number of substitutions and size of structure-constrained null 

distributions per branch  

 

Two methods of simulation were used to generate structure-constrained null distributions 

for each of these 221 branches, which produced a range of sample sizes for these null 

distributions (Table 2.1). Because some branches were exhaustively searched and others 

were randomly sampled, some null distributions may have duplicated sequences. Eighty 

branches had at least 100 samples, and 86 had between 20 and 99 samples. We further 

pruned these 221 branches by estimating the mutational and environmental robustness 

values of each of the samples in their null distributions and excluding branches that had 

less than 20 unique mutational robustness values. This produced a final dataset that 

contained 165 branches. 
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Test of selection 

 

To determine whether pre-miRNA sequences have been selected for increased 

robustness, we compared the robustness of the natural sequences to null distributions 

produced in our simulations. Significance was assessed by first calculating the quantile q 

of each natural descendant’s r value in the null distribution provided by the set of 

simulated descendants selected to have the same MFE structure. Because ties between r 

values were possible, we calculated q as the mid-point of any r values in the null-

distribution that were the same as the descendants: 

(2.4) 
( ) ( )1

2j j
j j

I r r I r r
q

N

< + =
=
∑ ∑

 

where r is the robustness value (mutational or environmental) for the natural descendant, 

rj is the value for the j-th element of the null sample, N is the number of values in the null 

sample for that branch, and we is an indicator function. If the natural descendants were 

not systematically selected for robustness, then we would expect them to follow their 

associated null distributions, so that the values of q should be uniformly distributed.  

To evaluate the uniformity of the distribution of q, we used the Anderson-Darling 

goodness-of-fit test (Anderson and Darling 1952; Marsaglia and Marsaglia 2004). The 

Anderson-Darling test statistic, A, is based on the area between a sample cumulative 

distribution function (CDF) and the diagonal (the uniform CDF): 

(2.5) ( ) ( )1
1

1 2 1 ln 1
n

k n k
k

A n k x x
n + −

=

 = − − − − ∑   
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where 1 2 nx x x< < <  is an ordered set of samples (Marsaglia and Marsaglia 2004). If 

this statistic is greater than expected, then the sample is considered to deviate 

significantly from uniformity. The significance of A was measured with the statistical 

software R (R Development Core Team 2009) using the method by Marsaglia and 

Marsaglia (2004) implemented in the ADGofTest package. Because our dataset contained 

uneven sample sizes and ties, we confirmed the significance levels via simulation. We 

constructed 1000 simulated datasets by randomly sampling robustness values from the 

null distribution of each of our branches and calculating the A statistic for each dataset.   

 

Under the null hypothesis, the CDF consists of uniform order statistics, which follow a 

beta(k, n–k+1) distribution, where k is the rank of a point, and n is the sample size. From 

the null distribution, we determined the 95% concentration band for the simultaneous and 

equal-tail test of points in the CDF.  We found that a pointwise concentration band with α 

= 0.000925 rejected only 5% of uniform Monte Carlo simulations with 165 points. 

 

Results 

 

Mutational and environmental robustness have not increased 

 

If a substantial fraction of Drosophila pre-miRNAs have experienced a recent history of 

selection (direct or indirect) for increased robustness, then we might expect descendant 

(extant) pre-miRNAs to be more robust than their ancestors. When we compare the 221 

descendants and their predicted ancestors, we find that both mutational robustness (rm) 
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and environmental robustness (re) have decreased slightly (median ∆rm = –0.0015% and 

∆re = –0.0031%; Figure 2.2) and that the change is marginally statistically significant 

(paired Wilcoxon test: pm ≈ pe ≈ 0.05). These results suggest that Drosophila pre-

miRNAs have not evolved increased mutational and/or environmental robustness. 

 

 

 

Figure 2.2: Mutational and environmental robustness have not increased from ancestor to 

descendant. Comparisons of mutational and environmental robustness in the 221 natural 

pre-miRNAs used in this study with estimated values in corresponding ancestors. Lines 

are y = x diagonals. Numbers in the bottom left of panels indicate the percentage of points 

in either half of the panel. 
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Neutral evolution of both mutational and environmental robustness 

 

The previous test assumed that neutral evolution of robustness would cause robustness 

not to change (on average) between ancestor and descendant. However, this assumption 

would not be met if, for example, most mutations caused a reduction in pre-miRNA 

robustness. To take such a possibility into account we replayed the tape of pre-miRNA 

evolution (Gould 1989); we generated a null distribution of descendant pre-miRNA 

sequences at the same sequence distance (k) from the ancestor and with the same 

secondary structure as the real descendant (i.e., with base-pair distance, d = 0). Figure 2.3 

shows the resulting null distribution for mutational robustness for a representative 

sequence, the D. pseudoobscura mir-317. The null distribution allows us to measure the 

extent to which a real descendant pre-miRNA is more or less robust than expected under 

neutral evolution, when structure is the only constraint. For example, dps-mir-317 

corresponds to the q = 54.7% quantile of the null distribution, implying that it is slightly 

more robust than expected, despite being slightly less robust than its ancestor (Figure 

2.3). If the robustness of Drosophila pre-miRNAs has been evolving neutrally, then we 

expect that values of q over the entire dataset should be uniformly distributed. 
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Figure 2.3: Density plot of the structure-constrained null distribution of mutational 

robustness for dps-mir-317. The null distribution consists of 1000 sequences differing 

from the ancestor in any k = 5 nucleotide positions but with exactly the same length 

(L = 90 nt) and structure as dps-mir-317. 

 

The cumulative distribution functions (CDFs) of q for mutational and environmental 

robustness are plotted in Figure 2.4A and do not differ significantly from a uniform 

distribution (Anderson-Darling test: 0.469mp =  and 0.480ep = , N = 165). The 

insignificance of these goodness-of-fit tests was confirmed by simulation ( 0.463mp =  

and 0.481ep = ; Fig. 2.4B). These results suggest that the robustness of Drosophila pre-

miRNAs has evolved neutrally. 
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Figure 2.4: Neutral evolution of robustness. (A) The cumulative distribution function 

(CDF) of q values (black lines) of the robustness of pre-miRNAs compared to their 

corresponding structure-constrained null distributions. Anderson-Darling test statistics 

(A) and their associated p-values are also shown. The dashed lines represent the expected 

values of points in a CDF for a uniform distribution, and dotted lines mark 95% 

concentration bands (only 5% of uniform CDFs of this size are expected to have at least 

one point outside this region). (B) Histograms of the simulated distributions for each A 

statistic; p-values do not change noticeably. 

 

Strong purifying selection against changes in secondary structure 

28 
 



 

So far, we have imposed an absolute constraint on the structure of the natural pre-

miRNAs, as did earlier studies (Borenstein and Ruppin 2006; Shu et al. 2007; Szollosi 

and Derenyi 2009). Does this assumption make a difference for the outcome of our 

analysis? To test this assumption, we generated a new null distribution of descendant pre-

miRNA sequences. These were at the same sequence distance (k) from the ancestor as the 

real descendant, but their structure was not constrained in any way (i.e. we allowed any 

value of d between real and simulated descendant). We then repeated the analysis 

described in the previous section. The CDFs of q are plotted in Figure 2.5A and show a 

highly statistically significant deviation from a uniform distribution (Anderson-Darling 

test: 64 10p −< ×  for both rm and re): ~75% of descendants are more robust than expected 

(q > 0.5). 
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Figure 2.5: Strong purifying selection against changes in secondary structure. (A) CDF 

of q values of the robustness of pre-miRNAs compared to their corresponding structure-

unconstrained null distributions. (B) CDF of q values of the structural distance between 

ancestor and descendant pre-miRNAs compared to their corresponding structure-

unconstrained null distributions. (C) Median mutational robustness of the sequences from 

the structure-unconstrained null distributions binned according to their structural distance 

from the natural descendant pre-miRNA. Robustness decreases as the distance to natural 

structures increases.  
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These results are caused by variation in structure; that is, both mutational and 

environmental robustness tend to decrease as the structures of simulated sequences 

deviate more from the structure of the corresponding (natural) descendant pre-miRNA 

(Figure 2.5C). This result indicates that the constraint on structure is a crucial assumption 

of these analyses. What might cause such a constraint? One possibility is that there is 

strong purifying selection against all mutations altering the pre-miRNA structure. If so, 

then the structures of descendants should be closer to those of their ancestors than 

expected by chance. To test this prediction, we used the structure-unconstrained null 

distribution of descendant pre-miRNA sequences and employed the same approach we 

used for robustness in the previous section. Over 90% of descendants were, indeed, 

structurally closer to their ancestors than expected under neutral evolution (q > 0.5; 

Anderson-Darling test: 64 10p −< × ; Figure 2.5B).  

 

Therefore, the evolution of Drosophila pre-miRNAs is consistent with the operation of 

strong purifying selection in which the functional constraint is the secondary structure 

and both mutational and environmental robustness are evolving neutrally. 
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Discussion 

 

Theoretically, the strength of direct selection for mutational robustness is at most the 

magnitude of the deleterious mutation rate (Kimura 1967; Proulx and Phillips 2005); 

thus, direct selection for mutational robustness should not operate on the pre-miRNAs of 

multicellular eukaryotes. Against this expectation, Borenstein and Ruppin (2006) 

concluded that eukaryotic pre-miRNAs are under direct selection for mutational 

robustness. We investigated the 60-million-year evolutionary history (Tamura et al. 2004) 

of mutational and environmental robustness of Drosophila pre-miRNAs. We replayed the 

tape of pre-miRNA evolution based on several explicit evolutionary models. Our 

analyses provided no evidence that either kind of robustness evolved under any form of 

selection.  

 

Our conclusion, like those from earlier studies (Borenstein and Ruppin 2006; Shu et al. 

2007; Szollosi and Derenyi 2009), postulates the existence of a strong constraint on pre-

miRNA structure. We have shown that one plausible mechanism for this constraint—

strong purifying selection—can explain the observed pattern of evolution in secondary 

structure (Figure 2.5). Strong purifying selection can also account for the observation that 

Drosophila pre-miRNAs evolve ~30% slower than nonsynonymous sites of protein-

coding genes (Nozawa et al. 2010). Indeed, there is strong evidence that pre-miRNAs are 

subject to stringent structural constraint: the precise structure of a pre-miRNA influences 

several aspects of its maturation including recognition and cleavage by Drosha and 
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nuclear export by Exportin 5 (Zeng and Cullen 2003, 2004, 2005; Zeng et al. 2005; Han 

et al. 2006). 

 

Selection against changes in pre-miRNA structure may indirectly result in mutational and 

environmental robustness. Borenstein and Ruppin (2006) claimed that the pre-miRNAs 

of multicellular eukaryotes show signs of direct selection for mutational robustness. Our 

results refute this claim and show that inverse folding produces invalid null distributions, 

e.g., for mir-317-dps, inverse folding of random sequences (Borenstein and Ruppin 2006; 

Szollosi and Derenyi 2009) is equivalent to simulating alternative descendants without 

constraining for structure (Figure 2.6).  
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Figure 2.6: Density plot of different null distributions of mutational robustness for dps-

mir-317. Evolved null: sequences differing from the ancestor in any k = 5 nucleotide 

positions but with exactly the same structure as dps-mir-317 (structure constrained). 

Inversely folded: random sequences evolved through a random walk until their secondary 

structure matches that of dps-mir-317 exactly (Borenstein and Ruppin 2006). Random: 

random sequences with any structure. 

 

We also find no evidence that Drosophila pre-miRNAs have experienced direct selection 

for mutational robustness in the last 60 million years. This is in agreement with 

theoretical expectations. If we assume L = 95 and Pdel = 85% (Nozawa et al. 2010), then 

we predict that 2NeU ≈ 0.60 < 1 in D. melanogaster (Lynch and Conery 2003). Under 

these conditions, direct selection for mutational robustness would be ineffectual. 
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Despite the clear advantages of our approach over those employed in earlier studies, it 

does have three limitations. First, we only consider a single high-likelihood 

reconstruction of the evolutionary history of each orthologous gene. The uncertainty 

involved in ancestral state reconstruction could be incorporated into these analyses 

through Bayesian phylogenetic methods like that of Robinson et al. (2003). Second, we 

allowed nucleotide substitutions to occur anywhere in a sequence, when it is clear that 

different regions of Drosophila pre-miRNA sequences evolve at different rates (Nozawa 

et al. 2010). Third, we did not consider indels, when they have obviously played an 

important role in pre-miRNA evolution. However, there is no reason to assume that these 

limitations have biased our analyses. 

 

In conclusion, contrary to earlier claims, there is no evidence that pre-miRNAs have been 

shaped by direct selection for any kind of robustness. 
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Chapter 3: Identification of orthologous processed 

pseudogenes in mammals 
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Abstract 

 

Processed pseudogenes are formed through the reverse transcription of mature mRNAs. 

Because they are considered “dead on arrival” and to evolve neutrally, they can be used 

as a null model to test for selection. Part of my research involved using orthologous 

processed pseudognes to test for selection on synonymous sites. In this Chapter, I 

describe the procedures used to identify processed pseudogenes and corresponding 

orthologs, as well as discuss my results. 
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Introduction 

 

A pseudogene is a nongenic DNA segment that exhibits a high degree of similarity to a 

functional gene, but contains defects such as nonsense and frameshift mutations that 

prevent it from being properly expressed (Graur 2014). There are three general types of 

pseudogenes; duplicated, unitary, and processed. However, due to segmental duplications 

(Bailey and Eichler 2006) we can also have duplication of the above pseudogenes. 

Duplicated pseudogenes are formed when a functional gene is duplicated, and 

subsequently one of the copies acquires mutations that render it nonfunctional. These 

sequences usually retain the characteristics of genes, including a promoter region and an 

exon-intron structure. Unitary pseudogenes are formed when a single copy gene acquires 

a mutation that prevents it from being properly translated, or transcribed, and therefore 

becomes nonfunctional (Graur 2014). Finally, processed pseudogenes are formed through 

the reverse transcription of the mature mRNA of a gene (Esnault et al. 2000). After 

reverse transcription, the cDNA is randomly inserted back into the genome through the 

action of an endonuclease (Esnault et al. 2000). Because processed pseudogenes are 

derived from a mature mRNA product they lack the upstream promoter of a normal gene; 

therefore they are considered “dead on arrival”, becoming non-functional immediately 

after formation (Graur 2014). 

 

There are four main characteristics of processed pseudogenes: (1) they lack introns and 

promoters; (2) have a poly-A-tail at the 3’ end; (3) their flanking regions consist of direct 

repeats that are associated with insertion sites of transposable elements (Rouchka and 

38 
 



Cha 2009) ; and (4) because they are derived from a mature mRNA they show sequence 

similarity to the cDNA of their “parent” gene.  

 

Using some of the above features, studies have identified processed pseudogenes in a 

variety of species, including human and mouse (Zhang et al. 2002; Ohshima et al. 2003; 

Torrents et al. 2003; Zhang and Gerstein 2004; van Baren and Brent 2006). In human and 

mouse, the number of processed pseudogenes identified ranged from 7,000 to 9,000 

(Ohshima et al. 2003; Zhang and Gerstein 2004; van Baren and Brent 2006).  

 

In the present study, using a modified version of Zhang et al’s (2002) method, I identified 

processed pseudogenes in a set of thirteen high coverage mammalian genomes. These 

pseudogenes were then used to identify orthologs between different pairs of species. The 

current Chapter provides a detailed description of the procedures used, and compares the 

methods and results of the current study to Zhang et al.’s. 
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Materials and Methods 

 

Identification of processed pseudogenes 

 

The genomes and cDNA sequences of 13 mammalian species (human, chimp, gorilla, 

macaque, marmoset, mouse, rat, rabbit, pig, cow, dog, horse) were downloaded from the 

ENSEMBL 64 database (Flicek et al. 2012). To identify processed pseudogenes I applied 

a modified version of the method by Zhang et al. (2002). The procedure is depicted in 

Figure 3.1 and details of each step are explained below:  

 

(1). BLASTN search and initial filtering of blast hits.  

 

For each species, the set of cDNAs was blasted against each chromosome using the 

BLASTN program (Altschul et al. 1990). Hits were retained only if they had a significant 

e-value (<10-9). The hits that remained consisted of both genes and pseudogenes. Using 

the coordinates of annotated exons in ENSEMBL I removed hits that overlapped with 

exons and were left with hits to pseudogenes. A large fraction of remaining hits were 

from query cDNAs contaminated by repeats, low complexity regions, and transposable 

elements. Repeats and low complexity regions can cause false positive hits, while the 

insertion of transposable elements in exonic regions, usually causes non-functionalization 

(Abrusan et al. 2008). To identify and remove such cases from our dataset I used the 

program RepeatMasker (Smit 1996-2012). 
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(2). Further analysis of hits corresponding to a query cDNA 

 

After removing dubious hits, I further analyzed each query and its corresponding hits. 

During the first step I identified cases in which a genomic region showed significant 

similarity to two or more regions within the query cDNA. Such cases may represent 

duplications of exonic regions or low complexity regions. Because only one of the 

regions could be the homologous region I chose the one with the lowest e-value and as an 

alternative criterion the one with the highest similarity. In the second step I identified 

cases in which a query cDNA had multiple neighboring hits. I only regarded instances 

where hits were within 1000 nucleotides of each other. The space between hits may 

represent introns of duplicated pseudogenes, insertions within pseudogenes, or, regions 

between tandemly duplicated pseudogenes. If neighboring hits showed similarity to the 

same cDNA region they were identified as tandem duplications and therefore regarded as 

separate entries in the database. However, if the hits corresponded to different regions 

within the cDNA, and were in the right orientation, both query and genomic coordinates 

were merged. Such cases were regarded as duplicated pseudogenes or processed 

pseudogenes disrupted by insertions. 
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Figure 3.1: A flow chart depicting the procedure used to identify processed pseudogenes. 

The procedure included: (1) BLASTing a species set of cDNAs against its genome and 

removing dubious hits. (2) Merging neighboring hits belonging to a query. (3) Removing 
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short pseudogenes and identifying parent genes. (4) Removing duplicated pseudogenes or 

processed pseudogenes with large insertions. 

 

(3). Removing short pseudogenes and identifying parent genes 

 

At this point in our analysis the set of pseudogenes consisted of a large number of short 

sequences. These short sequences may represent heavily fragmented pseudogenes, short 

reverse transcriptions, or regions showing similarity just by chance. Such sequences were 

removed from the dataset by retaining only those that covered at least 1/3 of the query 

coding sequence. Some of the remaining pseudogenes showed significant similarity to 

cDNAs of more than one gene. In such cases, in order to identify which gene gave rise to 

the pseudogene (known as the “parent gene”), I first aligned each cDNA to the 

pseudogene using the global alignment method MAFFT (Katoh et al. 2002) and then 

estimated the percent similarity. The gene with the cDNA showing the highest similarity 

was regarded as the parent gene. To further ensure that the parent genes in our dataset 

were functional and not wrongly annotated pseudogenes I removed entries in which the 

coding sequence of the parent gene did not start with ATG, and was not functionally 

annotated by ENSEMBL. In most organisms the most common start codon is ATG with 

alternate start codons (non ATG) being rare (Kozak 1999). A coding sequence that does 

not start with an ATG initiation codon may represent one of the rare cases, or maybe a 

gene that recently became a pseudogene.  

 

(4). Filtering out duplicated pseudogenes  
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The remaining steps of our procedure were aimed at removing duplicated pseudogenes 

and retaining processed pseudogenes. To do so I used two important criteria: i) 

pseudogenes had to show similarity to more than one exon within the query cDNA and ii) 

when aligning the cDNA to the pseudogene, gaps present in the cDNA, had to be less 

than sixty in length. The former criterion was applied to remove pseudogenes created 

from single exon genes, or ones created from a single exon within a gene. Such 

pseudogenes can only be verified as processed if they have a clear poly-A-tail (Zhang et 

al. 2003) or target site duplications (Terai et al. 2010). These features however, are 

quickly lost in sequences that are nonfunctional and evolving neutrally. The latter 

criterion was applied to remove duplicated pseudogenes. Introns present in duplicated 

pseudogenes form gaps when aligned to the query cDNA. Considering that almost all 

introns in mammals are much larger than 60 bp (Zhang et al. 2003; Pozzoli et al. 2007) 

pseudogenes with smaller insertions are most likely processed pseudogenes. 
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Identification of orthologous processed pseudogenes 

 

For each of the processed pseudogenes in mouse and human I extracted the sequence that 

corresponded to the coding sequence (CDS) of the parent gene. To identify orthologous 

pseudogenes in primates and rodents I only used processed pseudogenes that included at 

least 100 nucleotides of the CDS region. These included 6931sequences in human and 

9750 in mouse. The human processed pseudogenes were used to identify orthologous 

processed pseudogenes in chimpanzee, orangutan, macaque and marmoset and the mouse 

pseudogenes were used to identify orthologs in rat. To achieve the above goal I followed 

the procedure in Figure 3.2. Details of each step are described below: 

 

(1-3). The human processed pseudogenes were blasted against each of the primate 

genomes and the mouse processed pseudogenes against the rat genome using BLASTN 

(Altschul et al. 1990). Genome sequences were downloaded from the ENSEMBL 

database (Flicek et al. 2012). The resulting hits were filtered according to their e-value 

and percent similarity. Specifically, hits with an e-value >10-9 and below a specified 

similarity (<90% in great apes, <80% in macaque, <75% in marmoset and <60% in rat) 

were removed. To further remove random hits I filtered out short sequences. Specifically, 

I retained hits whose lengths were at least 70% of the corresponding query when 

comparing human to great apes, 60% in human-macaque and human-marmoset 

comparisons, and 50% in mouse-rat. The differences in percentages were based on the 

different levels of divergence between species. Finally, I removed hits that overlapped 

annotated exonic regions. 
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Figure 3.2: A flowchart depicting the procedure taken to identify orthologous processed 

pseudogenes. The numbers in parenthesis correspond to the numbers in the text. 
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(4). The remaining pseudogenes were then ranked according to similarity to the query 

pseudogene. Orthologous pseudogenes should show the highest similarity between each 

other. To gather candidate orthologous pseudogenes I chose ones that shared a very high 

similarity. Specifically, if x% was the highest similarity, hits that had a similarity of ≤ x-

3% in the primate datasets and ≤ x-5% in the rodent data set were kept for further 

analysis. 

 

(5). After all of the above steps were performed, the remaining number of hits in each 

data set was: 9749 human-chimpanzee, 9984 human-orangutan, 34367 human-macaque, 

26834 human-marmoset and 52535 in mouse-rat. The next step, involved comparing 

flanking regions of the query pseudogenes (human and mouse) to the flanking regions of 

the corresponding subject pseudogenes (chimp, orangutan, macaque, marmoset and rat). 

This step should further narrow down the list of possible orthologs because processed 

pseudogenes are randomly inserted in the genome and therefore their flanking regions 

should most of the times share significant similarity with their orthologous counterparts. 

To perform the above step, I fetched 2000 nucleotides upstream and downstream when 

comparing human to great apes and old world monkeys, and 5000 for the human-

marmoset and mouse-rat data sets. I used longer flanking regions in the latter cases 

because of high divergence. The flanking regions in each of the six data sets were 

compared using LASTZ (Harris 2007). LASTZ is a local alignment tool that was 

developed to align long genomic regions between highly divergent species. Like BLAST 

it first finds local regions of significant similarity and then increases the sensitivity to see 

whether these local regions can be extended into longer syntenic alignments. The 
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resulting hits were then filtered according to the length of the flanking regions that 

showed significant similarity. Only hits that covered at least 30% of the flanking length 

were kept for further analysis.  

 

(6). After applying the above step the number of possible orthologs that remained was: 

6192 human-chimpanzee, 5243 human-orangutan, 3107 human-macaque, 1332 human-

marmoset and 1827 mouse-rat. Due to duplicated processed pseudogenes these sets 

included query pseudogenes that showed similarity to more than one pseudogene. To 

avoid paralogous processed pseudogenes I removed such cases resulting in 4971 human-

chimpanzee, 4535 human-orangutan, 3107 human-macaque, 1332 human-marmoset and 

1827 mouse-rat 1:1 orthologous processed pseudogenes. 

 

(7). Finally, I removed cases in which processed pseudogenes were not assigned to a 

chromosome, or in the case of human, the pseudogene was found on the Y-chromosome. 

The latter case represents instances where human pseudogenes on the Y-chromosome 

were orthologous to pseudogenes on the X-chromosome. These pseudogenes were 

located in pseudoautosomal regions which are known to undergo crossing over (Charchar 

et al. 2003). The above filtering resulted in a final data set of 4961 human-chimpanzee, 

4507 human-orangutan, 3107 human-macaque, 1332 human-marmoset and 1827 mouse-

rat orthologous processed pseudogenes. 
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Results  

 

The number of processed pseudogenes identified in each species is depicted in Figure 

3.3. Processed pseudogenes were identified using cDNAs as query sequences. Column A 

corresponds to the total number of processed pseudogenes identified for each species. 

Column B depicts the numbers of pseudogenes that consist of at least 100 nucleotides of 

the query coding region. The mean length of the processed pseudogenes is ~700 

nucleotides and the median length is 539. 

 

 

Figure 3.3: The number of processed pseudogenes identified for each species. Column A 

corresponds to the total number of processed pseudogenes identified and column B 

corresponds to the number of pseudogenes that show similarity to at least 100 nucleotides 

of the query CDS region. 

 

A B 
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74% of the processed pseudogenes consist of frameshift mutations when aligned to their 

parent CDS. Furthermore, 64% of them do not start with a start codon due to mutations or 

5’ truncations. When comparing the set of human processed pseudogenes to the set 

downloaded from pseudogene.org (Karro et al. 2007) there were 4,273 processed 

pseudogenes identified by both studies, 2,876 that were unique to the present study, and 

4,507 unique to pseudogene.org (Figure 3.4).  

 

The 4,507 pseudogenes missing from the final dataset, were not included because of the 

following reasons: 565 were located on patches (patches are additional sequences for 

alternate alleles that were not present on the primary assembly or additional sequences 

that will replace misassembled regions in the next assembly); 635 had parent genes with 

signals of transposable elements; 1701 covered only one exon of the parent gene; and 

1606 were identified as duplicated. 

  

50 
 



 

 

Figure 3.4: A Venn diagram depicting the number of common and unique human 

processed pseudogenes annotated by pseudogene.org and identified by the present study. 

 

Figure 3.5 shows the number of human genes with a corresponding number of processed 

pseudogenes. The majority of genes give rise to a single processed pseudogene, with a 

very few number producing more than two processed pseudogenes (Figure 3.5).  

  

2876 4507 4273 

Current study Pseudogene.org 
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Figure 3.5: A histogram showing the number of human genes with a specified number of 

processed pseudogenes. For example, ~2000 genes gave rise to one processed 

pseudogene.  

 

Table 3.1 shows the mean pairwise divergence between othologous pseudogenes 

estimated using the F84 model in PHYLIP (Felsenstein 1989) and Figure 3.6 depicts the 

distributions of these pairwise distances. The distances were measured for orthologous 

processed pseudogenes in which there were at least 100 aligned nucleotides after masking 

poorly aligned regions. 
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  Table 3.1: Mean pairwise divergences between 

  orthologous pseudogenes (𝑑̅𝑑). 

 

Number of 
orthologs 𝑑̅𝑑 

human-chimp 3985 0.013 
human-orangutan 3544 0.033 
human-macaque 2474 0.064 
human-marmoset 1068 0.108 
mouse-rat 1391 0.158 

 

 

Figure 3.6: Histograms of the pairwise divergences between orthologous processed 

pseudogenes.  

  

0.00 0.04 0.08

0
50

0
10

00
15

00

0.00 0.04 0.08 0.12

0
20

0
40

0
60

0
80

0

0.00 0.10 0.20
0

20
0

40
0

60
0

80
0

0.00 0.10 0.20

0
50

15
0

25
0

35
0

0.05 0.15 0.25

0
50

10
0

20
0

30
0

human-chimp human-orangutan human-macaque 

human-marmoset mouse-rat 

fr
eq

ue
nc

y 

fr
eq

ue
nc

y 

fr
eq

ue
nc

y 

fr
eq

ue
nc

y 

fr
eq

ue
nc

y 

rate of substitution 
(per site) 

 

rate of substitution   
(per site) 

 

rate of substitution     
(per site) 

 

rate of substitution   
(per site) 

 

rate of substitution   
(per site) 

 

53 
 



Discussion 

 

Using cDNA sequences as query sequences I identified processed pseudogenes in 13 high 

coverage mammalian genomes (Figure 3.3). The method applied was a modified version 

Zhang et al.’s method (2002) which is implemented by the database of pseudogenes, 

pseudogene.org (Karro et al. 2007). Despite sharing some common steps, the method 

implemented in the present study differed in some important ways. Zhang et al. used 

protein sequences as queries and TBLASTN to identify local similarities with processed 

pseudogenes. TBLASTN aligns protein sequences to a nucleotide database translated in 

all six frames. Given that processed pseudogenes do not have an intact reading frame and 

do not evolve under any selective constraints this may result in misalignments. 

 

 

 

For example, given that the CDS above is read using frame 1, and in the pseudogene 

there is a deletion at position three and a change from a G to an A at position four, 

TBLASTN may mistakenly align ACT with ACA since both code for threonine. Another 

important difference is that when using protein sequences as queries one cannot identify 

introns in untranslated regions. Finally, in the study by Zhang et al. they used similarities 

estimated from local alignments to identify the parent genes for each pseudogene, while 

in the present study I use global alignments. Because local similarity does not reflect the 
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overall similarity of a gene to its pseudogene this may result in wrongly identifying the 

parent gene. 

 

After comparing the human processed pseudogenes identified by the present study to the 

ones downloaded from pseudogene.org (Karro et al. 2007) ~60% were common to both 

data sets (Figure 3.4) however there were a large number that were unique to each study. 

The majority of pseudogenes that were unique to pseudogene.org were not included in 

the final data set because they originated from single exon genes, the parent cDNA 

consisted of regions common to transposable elements and finally they were identified as 

duplicated. I did not include processed pseudogenes to single exon genes because in these 

cases it is hard to distinguish duplicated from processed pseudogenes. In addition, I did 

not include pseudogenes whose parent cDNAs were predicted to show similarity to 

transposable elements, to ensure that the parent gene is functional. Finally, processed 

pseudogenes that were identified as duplicated by the current study formed large gaps at 

untranslated regions when aligned to the parent cDNA. These gaps could be caused by 

introns present in duplicated pseudogenes. 

 

When examining the number of processed pseudogenes originating from each parent 

gene (Figure 3.5) it seems that the majority of genes give rise to a single pseudogene with 

a very smaller number having more than two pseudogenes. Studies have shown that 

highly expressed genes produce a higher number of processed pseudogenes (Harrison et 

al. 2005). However, a higher number may also result from tandem duplications of 

processed pseudogenes (Khurana et al. 2010). 
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Assuming that processed pseudogenes are under no selective constraint they should 

accumulate frameshift mutations. After aligning processed pseudogenes to their parent 

CDSs, 74% of the processed pseudogenes contained frameshift mutations. Furthermore, 

64% of the processed pseudogenes did not contain the 5’ translation initiation codon, 

because of 5’ truncations or mutations. 

 

In addition to identifying processed pseudogenes in mammals I identified pairs of 

orthologs in primates and rodents (Table 3.1). Species belonging to the laurasiatheria 

superorder were excluded because early analysis showed that sequences in this group of 

species were too divergent. Figure 3.6, shows the distributions of pairwise distances 

between orthologs. The small number of outliers observed in great apes and old world 

monkeys may result from random errors in pairwise distances or wrongly identified 

orthologs. After removing these outliers, the resulting sets of orthologous processed 

pseudogenes were used in Chapter 4 to estimate selection at synonymous sites. 
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Chapter 4: No evidence for purifying selection on synonymous 

mutations in mammals 
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Abstract 

 

Selection on synonymous sites in mammals has been highly controversial with no 

definite conclusion. In the present study using processed pseudogenes as the neutral 

model of evolution I test for selection on synonymous sites in primates and rodents. After 

establishing that processed pseudogenes are evolving neutrally, I test for selection on 

synonymous sites by comparing the pairwise synonymous divergence between genes and 

pseudogenes. Unlike previous estimates in which synonymous sites were found to evolve 

at ~70% the rate of corresponding sites in pseudogenes, our results indicate that 

synonymous sites are evolving at very close to the neutral expectation (≥ 92%). With the 

use of simulated sequences I show that the small deviation from neutrality observed in 

the present study, and the large difference previously obtained, could result from the shift 

in GC content after pseudogene formation. 
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Introduction 

 

The question of whether synonymous sites are under selection is of great importance 

because the 𝑑𝑑𝑁 𝑑𝑑𝑆𝑆⁄  ratio used to detect selection in protein coding genes, assumes that 

synonymous sites evolve neutrally. This assumption however is being challenged, 

because numerous studies indicate possible selection on synonymous sites (Smith and 

Hurst 1998; Ophir et al. 1999; Bustamante et al. 2002; Hellmann et al. 2003; Pagani and 

Baralle 2004; The Chimpanzee Sequencing and Analysis Consortium 2005; Doherty and 

McInerney 2013). The proportion of synonymous sites estimated to be under selection, 

ranges from 1-39% (Ophir et al. 1999; Bustamante et al. 2002; Hellmann et al. 2003; 

Parmley et al. 2006; Eory et al. 2010; Caceres and Hurst 2013).  

 

The functions found to be associated with synonymous sites, and which could explain the 

signature of selection, are: (1) sysnonymous sites may harbor signals for the splicing 

machinery; (2) synonymous sites play a role in mRNA stability, (3) serve as binding sites 

for miRNAs and transcription factors (Hurst 2006; Gu et al. 2012; Stergachis et al. 2013), 

and (4) are part of codons that are more efficient and accurate during translation (Ikemura 

1985; Akashi and Eyre-Walker 1998; Wright et al. 2004; Stoletzki and Eyre-Walker 

2007; Drummond and Wilke 2008) 

 

The most frequently used methods to estimate selection on synonymous sites fall into two 

categories: (1) assessing codon usage bias (Akashi and Eyre-Walker 1998; Duret 2002; 

Wright et al. 2004; Zhou et al. 2010; Kiyohara et al. 2012; Lawrie et al. 2013) and (2) 
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measuring the difference in evolutionary divergence between synonymous sites, and 

regions that are assumed to be nonfunctional and to evolve neutrally (e.g., introns, 

ancestral repeats and processed pseudogenes) (Smith and Hurst 1998; Ophir et al. 1999; 

Bustamante et al. 2002; Hellmann et al. 2003; Comeron 2006; Eory et al. 2010). 

 

Evidence of codon bias caused by selection against codons that are translationally 

insufficient  has been primarily observed in species with large effective population sizes 

such as Drosophila melanogaster, Saccharomyces cerevisiae, Arabidopsis thaliana, and 

Caenorhabditis elegans (Duret 2002; Wright et al. 2004; Zhou et al. 2010; Lawrie et al. 

2013). In mammals, evidence of selection for translational efficiency has been weak 

(Kanaya et al. 2001; Lander et al. 2001; Chamary et al. 2006). However, it has been 

shown that selection against protein misfolding can explain most variation in codon usage 

(Drummond and Wilke 2008).  

 

Most studies comparing the divergence of nonfunctional regions (e.g., introns, ancestral 

repeats, and processed pseudogenes) to the divergence between synonymous sites, 

estimate different levels of selection. Specifically, results range from 1-39 % of 

synonymous sites being under selection (Ophir et al. 1999; Bustamante et al. 2002; 

Hellmann et al. 2003; Eory et al. 2010). Using divergences between orthologous genes, it 

was found that about 1-9 % of synonymous sites at exon-intron boundaries are more 

conserved than others (Parmley et al. 2006; Caceres and Hurst 2013). These regions were 

suggested to function as exon splice enhancers (ESE), and aid in the accurate splicing out 

of introns to form the mature mRNA. 
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In the present study, I estimate selection on synonymous sites in a variety of taxa, 

including, great apes, monkeys, and rodents. To estimate selection on synonymous sites, I 

use the set of processed pseudogenes identified in Chapter 3. After confirming that the 

majority of pseudogenes evolved neutrally I compare rates of evolution at synonymous 

sites in orthologous genes (𝑑𝑑𝑆𝑆𝑓𝑓) to the rates of corresponding sites in pseudogenes (𝑑𝑑𝑆𝑆𝜓𝜓). 

Assuming that synonymous sites are under no selection, the ratio 𝑑𝑑𝑆𝑆𝑓𝑓 𝑑𝑑𝑆𝑆𝜓𝜓�  should be 

approximately equal to 1. In addition to using orthologous genes and pseudogenes I 

estimated the ratio 𝑑𝑑𝑆𝑆𝑓𝑓 𝑑𝑑𝑆𝑆𝜓𝜓�  using the approach presented by Bustamante et al. (2002). 

Finally, using simulated data I assessed how the estimates of 𝑑𝑑𝑆𝑆𝑓𝑓and 𝑑𝑑𝑆𝑆𝜓𝜓 are affected by 

changes in GC content. 
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Materials and Methods 

 

Identification processed pseudogenes and their corresponding orthologs 

The method used to identify processed pseudogenes and corresponding orthologs is 

explained in Chapter 3. 

 

Identifying the parent genes of the orthologous processed pseudogenes 

 

The parent genes of human processed pseudogenes were used to identify orthologs in 

chimp, orangutan, macaque, and marmoset, while, mouse parent genes were used to 

identify orthologs in rat. Orthologs were downloaded from ENSEMBL 72 (Flicek et al. 

2013). Parent CDSs were downloaded for the majority of orthologous processed 

pseudogenes (4,118 human-chimp, 3,723 human-orangutan, 2,606 human-macaque, 

1,075 human-marmoset, 1,606 mouse-rat). In a few cases there were more than one 

possible candidate parents (107 human-chimp, 15 human-orangutan, 351 mouse-rat). To 

identify the parent CDS in such cases, the processed pseudogenes were aligned with their 

possible parent CDSs using MAFFT (Katoh et al. 2002). Poorly aligned regions were 

filtered out using the evaluation mode in T-COFFEE (Notredame et al. 2000), and then 

the percent similarity was estimated between the processed pseudogene and each possible 

parent. The CDS with the highest similarity was chosen to be the parent.  

 

Alignment of processed pseudogenes and parent genes by codon positions 
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Orthologous processed pseudogenes and their corresponding orthologous parent CDSs 

were aligned and low quality alignment regions were masked. After alignment, the 

reading frame of a functional coding sequence was used. Gaps in the functional 

sequences were regarded as insertions in the pseudogenes, and gaps in the pseudogenes 

as deletions in the processed pseudogenes. Codons were disregarded if there was a 

corresponding deletion in the pseudogene, they contained poorly aligned nucleotides, or 

if they represented a stop codon. For further analyses, I only kept alignments that 

contained at least 100 nucleotides. The resulting data set included the following numbers 

of codon alignments: 3,941 (human-chimp), 3,483 (human-orangutan), 2,414 (human-

macaque), 1,055 (human-marmoset), 1,372(mouse-rat). These sets are not mutually 

exclusive but consist of human orthologs that are shared by more than one set. 

 

Model of gene and pseudogene evolution 

 

The model used to analyze rates of synonymous and nonsynonymous substitution in 

genes �𝑑𝑑𝑁𝑠 ,𝑑𝑑𝑆𝑆𝑠� and pseudogenes (𝑑𝑑𝑁𝜓𝜓 ,𝑑𝑑𝑆𝑆𝜓𝜓) was developed by Yang and Nielsen (1998) 

and implemented in the PAML phylogenetic analysis package (Yang 1997). This treats a 

DNA sequence as a series of codons and specifies the substitution rate from codon i to j 

as 
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where κ is the transition-transversion ratio, ω is the 𝑑𝑑𝑁 𝑑𝑑𝑆𝑆⁄  ratio, and πj is the equilibrium 

frequency of codon j. πj is estimated from the nucleotide frequencies at the three codon 

positions (see Yang and Nielsen 1998 for details) while the set of free parameters 

estimated by maximum likelihood is {t, ω, κ} where t is the expected number of 

nucleotide substitutions per codon. From the maximum likelihood estimates of t, ω, and κ 

one can estimate the number of substitutions per synonymous site (𝑑𝑑𝑆𝑆) and the number of 

replacement substitutions per replacement site (𝑑𝑑𝑁) (Yang and Nielsen 1998). 

 

Testing the neutral evolution of processed pseudogenes  

 

To identify whether a pair of orthologous processed pseudogenes are evolving neutrally, I 

compared the log likelihood of the model in which 𝜔𝜔𝜓 could be less or equal to one to the 

log likelihood of the model in which 𝜔𝜔𝜓 was equal to one. Assuming that the former 

model represents the alternative hypothesis (H1) and the latter model the null hypothesis 

(H0), I can test if 𝜔𝜔𝜓 is significantly different from 1 by considering that two times the 

difference between the log-likelihoods of the two models Ln1-Ln0 to be asymptotically 

               0,          if codons i and j differ at more  
                than one codon position,                                                                               

 π j,    for synonymous transversion, 

 κπ j,            for synonymous transition,                       

              ωπ j,      for nonsynonymous transversion, 

              ωκπ j,       for nonsynonymous transition 

𝑞𝑞𝑖𝑖𝑖𝑖 ∝         
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distributed as a χ2 random variable with one degree of freedom. To further test whether 

there is a significant difference in the rate of substitution between nonsynonymous 

(𝑑𝑑𝑁𝜓𝜓����� ) and synonymous (𝑑𝑑𝑆𝑆𝜓𝜓����� ) sites in pseudogenes I used a bootstrap approach. 

Specifically, for 10,000 bootstrap replicates I estimated the difference between the means 

𝑑𝑑𝑁𝜓𝜓����� and 𝑑𝑑𝑆𝑆𝜓𝜓����� . Using the bootstrap distributions I estimated the 95% confidence interval 

for the ratio 𝑑𝑑𝑁𝜓𝜓�����/𝑑𝑑𝑆𝑆𝜓𝜓�����. A 95% confidence interval that included one indicated no 

significant difference. The final test used to estimate whether pseudogenes evolve 

neutrally is to estimate the ratios 𝑑𝑑𝜓1 𝑑𝑑𝜓2⁄  and 𝑑𝑑𝜓1 𝑑𝑑𝜓3⁄ . 𝑑𝑑𝜓1, 𝑑𝑑𝜓2, 𝑑𝑑𝜓3 are the pairwise 

divergences between the first, second, and third “codon” positions in orthologous 

processed pseudogenes. Assuming, that processed pseudogenes are evolving neutrally 

these ratios should be approximately equal to one. Divergences were estimated using the  

F84 model in PHYLIP (Felsenstein 1989). 

 

Simulating the evolution of orthologous processed pseudogenes 

 

I used the program DAWG (Cartwright 2005) to simulate sequences similar to the 

processed pseudogenes used in our study. For each pair of orthologous pseudogenes 

(Table 1) I used half the value of the pairwise divergence as branch lengths in our 

simulations. Pairwise divergence was estimated using the F84 model in PHYLIP 

(Felsenstein 1989). As root sequences I used the human parent CDS in the primate 

simulations and the mouse parent CDS in the rodent simulations. This captured the GC 

content at synonymous sites. The transition-transversion ratio was set at 𝜅𝜅 = 4 as it is 

observed in mammals (Rosenberg et al. 2003). To simulate the change in GC content of 
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processed pseudogenes after formation I set equilibrium nucleotide frequencies at A = 

0.30, G = 0.20, C = 0.20, T = 0.30. Indels were not included in the simulation. For all 

other parameters used in the simulation I used the default settings. After removing stop 

codons from the simulated sequences, 𝑑𝑑𝑁���� and 𝑑𝑑𝑆𝑆��� were estimated using CODEML (Yang 

1997).  

 

Annotated and simulated sequences for comparing methodologies 

 

This section outlines the procedure used to assemble a set of annotated and simulated 

sequences that were later used to compare our results with those obtained by Bustamante 

et al. (Bustamante et al. 2002).  

 

To assemble sets of sequences, similar to those used by Bustamante et al (Bustamante et 

al. 2002) I followed the procedure explained below. First I gathered a subset of 2162 

human pseudogenes in which their parent genes had a corresponding ortholog in the 

mouse or marmoset genome. Orthologous relations were downloaded using the BioMart 

tool available at Ensembl 72 (Flicek et al. 2013). Alignments of the human pseudogenes, 

the parent genes and the mouse or marmoset orthologs were built, and regions of poor 

alignment quality were removed. After the formation of codon alignments as explained in 

the above section I were left with 1990 alignments. For each codon alignment, using the 

free-ratios model implement in the program codeml, I estimated the parameters 

{𝑡𝑡𝑓 , 𝑡𝑡𝑜, 𝑡𝑡𝜓,𝜔𝜔𝑓 ,𝜔𝜔𝑜,𝜔𝜔𝜓, 𝜅𝜅}. 𝑜𝑜 represents the branch leading to the outgroup species, 𝜓𝜓 is the 

branch leading to the pseudogene and 𝑓𝑓 denotes the functional paralog (Figure 4.1).  
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Figure 4.1: In the above phylogeny 𝑓𝑓 depicts the codon sequence of a functional gene, 𝜓𝜓 

represents the codon sequence of a pseudogene, and 𝑜𝑜 represents the codon sequence of 

the outgroup. The rate of synonymous substitution was estimated over the branches 

leading to the parent gene 𝑑𝑑𝑆𝑆𝑓𝑓 and the corresponding processed pseudogene 𝑑𝑑𝑆𝑆𝜓𝜓. 

 

The above seven parameter model was compared to a nested six parameter model that 

assumed 𝜔𝜔𝜓 = 1. Sequences that rejected the null hypothesis 𝜔𝜔𝜓 = 1 at the 5% 

significance level were removed. Furthermore I removed data sets where 𝑡𝑡𝑜 < 𝑡𝑡𝜓, or if 

any of the branch lengths was greater than one. The former condition assured that the 

pseudogenes were formed after speciation, and the latter removed highly diverged 

sequences. Our final datasets included 959 codon alignments in which mouse was the 

outgroup species, and 157 in which marmoset was the outgroup. Estimates of 𝑑𝑑𝑆𝑆𝑓𝑓 and 

𝑑𝑑𝑆𝑆𝜓𝜓were only kept for sequences with at least 100 synonymous sites in order to minimize 

random fluctuations. These included 572 estimates where mouse was the outgroup, and 

104 in which marmoset was the outgroup. 

𝑓𝑓 𝑜𝑜 𝜓𝜓 

𝑑𝑑𝑆𝑆𝑓𝑓 𝑑𝑑𝑆𝑆𝜓𝜓  
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The simulations carried out to test the methodology applied by Bustamante et al. (2002) 

followed a scenario in which mouse or marmoset were the possible outgroups and the 

corresponding parent gene and pseudogene were human (Figure 4.2).  
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Figure 4.2: The phylogeny used for simulating the formation of processed pseudogenes 

after the human-mouse and human-marmoset split. o, ψ and f represent the outgroup, 

pseudogene, and parent gene, respectively. The abbreviations a, b, c and d represent the 

branches manipulated during the simulations.  

 

For each scenario I performed three simulations in which the internal branches d and c 

were equal and had the following values: 0.01, 0.03 and 0.05. In the case where mouse 

was the outgroup 𝑎 = 0.35 and 𝑏 = {0.14, 0.12, 0.10}. These branches were chosen so 

that 𝑏 + 𝑐 = 0.15. The values correspond to the approximate divergence between mouse 

and human which is ~0.5. In the case of marmoset 𝑎 = 0.07 and 𝑏 = {0.04, 0.02, 0.01}. 

These values correspond to an approximate divergence between human and marmoset of 

about 0.12-0.13. These values were based on the 46 species tree built by the ucsc genome 

browser using fourfold degenerate sites 

(http://genomewiki.ucsc.edu/index.php/Human/hg19/GRCh37_46-way_multiple_alignment) 

 

o ψ f 

a 

 b 

c d 
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Using the codon model by Nielsen and Yang (Yang and Nielsen 1998) which is 

implemented in INDELIBLE (Fletcher and Yang 2009), I simulated the sequences of the 

outgroup genes (o), parent genes ( f ), and the ancestral sequences of the genes and 

pseudogenes (Figure 3.1). Gene simulations were done using a transition/transversion 

ratio (𝜅𝜅) of 2.5 and 4.0. The value of 𝜅𝜅 = 4 is observed in mammals (Rosenberg et al. 

2003) while 𝜅𝜅 = 2.5 is the default value for INDELIBLE. The selection values (𝜔𝜔) used 

were 0.1 and 0.2. are similar to those observed in mammals (Eyre-Walker et al. 2002; 

The Chimpanzee Sequencing and Analysis Consortium 2005). In order to simulate 

sequences with a similar GC content as in the real sequences I used the codon frequencies 

estimated by a pairwise comparison of the 959 human-mouse gene orthologs in our real 

data set. Codon frequencies were estimated by CODEML (Yang 1997). Because the 

branch lengths mentioned above are expressed as number of synonymous substitutions 

per synonymous site I had to transform them to number of substitutions per codon for the 

simulation of genes. These can be derived by the equation 𝑡𝑡 = (3 𝑑𝑑𝑆𝑆  ×  𝜌𝑆𝑆1)/𝜌𝑆𝑆∗ where 𝑡𝑡 

is the number of substitutions per codon, 𝑑𝑑𝑆𝑆 is the number of substitutions per 

synonymous sites, 𝜌𝑆𝑆1 is the proportion of synonymous mutations before selection, and 𝜌𝑆𝑆∗ 

is the proportion of synonymous substitutions after selection (Yang and Nielsen 1998, 

2000). The above equation can be rewritten as 𝑡𝑡 = 3 𝑑𝑑𝑆𝑆 × (𝜌𝑆𝑆1 + 𝜔𝜔 × 𝜌𝑁1 ) where 𝜔𝜔 is the 

𝑑𝑑𝑁 𝑑𝑑𝑆𝑆⁄  ratio and 𝜌𝑁1  is the proportion of nonsynonymous mutations before selection 

(Yang and Nielsen 1998, 2000). To simulate the corresponding processed pseudogenes 

(𝜓𝜓) (Figure 3.1) I used the program DAWG (Cartwright 2005) and the ancestral 

sequence of the gene and pseudogene generated by INDELIBLE. For the GTR model 

implemented in DAWG I used the same κ values as in the gene simulations and the 

70 
 



equilibrium base frequencies for G, C, A, and T were set at 0.2, 0.2, 0.3, 0.3 respectively. 

These frequencies reflect the approximate GC content of the human genome (~40%). 

Processed pseudogenes were also simulated using the codon model implemented in 

INDELIBLE. In the first set of simulations gene and pseudogene equilibrium codon 

frequencies were set to be equal and in the second set of simulations pseudogene 

equilibrium codon frequencies were estimated using the base frequencies G=0.2, C=0.2, 

A=0.3, and T=0.3. For these simulations 𝜔𝜔 = 1. In all simulations performed indels were 

excluded, and the length of the sequences produced was 1200 nucleotides or 400 codons.  

 

To simulate the orthologous genes and pseudogenes used to test the method in the present 

study I simulated sequences whose pairwise distances 𝑑𝑑𝑆𝑆𝜓𝜓𝑎𝑎𝑎𝑎  and 𝑑𝑑𝑆𝑆𝑓𝑓𝑎𝑎𝑎𝑎(Figure 4.3) were 

0.01, 0.03, 0.06, 0.1 and 0.17. These values captured the typical pairwise divergences 

between the orthologous pseudogenes used in the present study.  

 

 

 

 

 

 

 

 

Figure 4.3: In the present study using othologous pseudogenes (𝜓𝜓𝑎𝑎,𝜓𝜓𝑏𝑏) and their genes 

(𝑓𝑓𝑎𝑎,𝑓𝑓𝑏𝑏) I estimated the rates of synonymous substitution 𝑑𝑑𝑆𝑆𝜓𝜓𝑎𝑎𝑎𝑎  and 𝑑𝑑𝑆𝑆𝑓𝑓𝑎𝑎𝑎𝑎 .  

𝑓𝑓𝑎𝑎 𝑓𝑓𝑏𝑏 𝜓𝜓𝑎𝑎 𝜓𝜓𝑏𝑏 
𝑑𝑑𝑆𝑆𝑓𝑓𝑎𝑎𝑎𝑎  𝑑𝑑𝑆𝑆𝜓𝜓𝑎𝑎𝑎𝑎  
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For each pairwise distance I performed 959 simulations using the same parameters as 

mentioned in the previous simulations. The root sequences produced by INDELIBLE 

during the simulation of genes were used by DAWG to simulate the corresponding 

pseudogenes. Equilibrium GC content was set at 40% and 𝜅𝜅 = 4 

 

Bootstrap analysis  

 

To test whether the rate of substitution at nonsynonymous sites in pseudogenes, 𝑑𝑑𝑁𝜓𝜓�����, was 

significantly different than the rate at synonymous sites 𝑑𝑑𝑆𝑆𝜓𝜓����� I computed the 95% 

confidence of the ratio 𝑑𝑑𝑁𝜓𝜓�����/𝑑𝑑𝑆𝑆𝜓𝜓����� . Using a paired bootstrap approach I sampled 

(𝑑𝑑𝑁𝜓𝜓 ,𝑑𝑑𝑆𝑆𝜓𝜓) with replacement and calculated 𝑑𝑑𝑁𝜓𝜓�����/𝑑𝑑𝑆𝑆𝜓𝜓�����. Using 10,000 bootstrap samples I 

estimated the 95% confidence intervals for the above ratio. Each bootstrap replicate is a 

random sample of the same size as the original data set. A confidence interval that 

included one indicates no significant difference. The same procedure was used for all 

ratios examined in the study, including 𝑑𝑑𝑆𝑆𝑓𝑓���� 𝑑𝑑𝑆𝑆𝜓𝜓������  and 𝑑𝑑𝑆𝑓𝑓𝑎𝑏
������� 𝑑𝑑𝑆𝜓𝜓𝑎𝑏

��������   
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Results  

 

Do processed pseudogenes evolve neutrally? 

 

Assuming that processed pseudogenes are under no selection, the ratio of 

“nonsynonymous” to “synonymous” substitutions should be approximately equal to 

one �𝜔𝜔𝜓 = 1�. To test the above assumption, for each pair of orthologs, I compared a 

model that allowed for selection to a model that assumed neutral evolution �𝜔𝜔𝜓 = 1�. 

Considering all species pairs examined the percentage of pseudogene pairs that rejected 

the null hypothesis �𝜔𝜔𝜓 = 1� at the 5% significance level ranged from 6-9 %. As a 

second test I looked at the rate in the mean rate at nonsynonymous and synonymous sites 

(𝑑𝑑𝑁𝜓𝜓�����/𝑑𝑑𝑆𝑆𝜓𝜓�����) (Table 4.1). As indicated by the results in Table 4.1, on average, 

nonsynonymous sites evolve at a rate that is ~90% the corresponding rate at synonymous 

sites.  

 

Table 4.1. Differences in the mean rate of substitution at nonsynonymous and 

synonymous sites in processed pseudogenes.  

 

 

 

 

  

Species pairs Number of            
Pairs             

𝑑𝑑𝑁𝜓𝜓�����/𝑑𝑑𝑆𝑆𝜓𝜓����� (95% CI) 𝑑𝑑𝑁𝑆�����/𝑑𝑑𝑆𝑆𝑆���� (95% CI) 

    human-chimp 3571 0.92 (0.89, 0.95) 0.86 (0.83, 0.89) 
human-orangutan 3225 0.89 (0.87, 0.91) 0.86 (0.84, 0.89) 
human-macaque  2218 0.91 (0.89, 0.93) 0.90 (0.88, 0.92) 
human-marmoset  1047 0.89 (0.87, 0.92) 0.87 (0.85, 0.89) 
mouse-rat  1306 0.94 (0.92, 0.97) 0.92 (0.91, 0.94) 
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To examine whether the difference observed was due to a bias introduced by the method, 

I simulated a set of neutrally evolving sequences and then estimated the ratio (𝑑𝑑𝑁𝑠�����/𝑑𝑑𝑆𝑆𝑠����) 

(Table 4.1). The ratio of the rate of nonsynonymous and synonymous substitutions is 

approximately the same between the simulated and pseudogene data (Table 4.1).  

 

To whether the bootstrap distributions of the pseudogenes 𝑑𝑑𝑁𝜓𝜓�����/𝑑𝑑𝑆𝑆𝜓𝜓����� were significantly 

smaller than the corresponding distributions of the simulated sequences 𝑑𝑑𝑁𝑠�����/𝑑𝑑𝑆𝑆𝑠���� I 

estimated the probability a randomly chosen difference 𝑑𝑑𝑁𝜓𝜓�����/𝑑𝑑𝑆𝑆𝜓𝜓����� was larger than 𝑑𝑑𝑁𝑠�����/

𝑑𝑑𝑆𝑆𝑠����. In all species comparisons except human-chimp and human-orangutan the results 

were insignificant. In the cases of human-chimp and human-orangutan I found the 

opposite, that is, the difference 𝑑𝑑𝑁𝑠�����/𝑑𝑑𝑆𝑆𝑠���� was significantly smaller than 𝑑𝑑𝑁𝜓𝜓�����/𝑑𝑑𝑆𝑆𝜓𝜓�����. This 

difference may be result of the simulation model not fully capturing pseudogene 

evolution. 

 

Do synonymous sites evolve neutrally? 

 

In the present study, using sets of orthologous genes and pseudogenes (Figure 4.3) I 

estimated the average ratio 𝑑𝑑𝑆𝑓𝑓𝑎𝑏
������� 𝑑𝑑𝑆𝜓𝜓𝑎𝑏

�������� . Our results indicate that synonymous sites in 

genes and pseudogenes evolve at approximately the same rate (Table 4.2). In most 

species comparisons in which the mean rate of substitution at synonymous sites (𝑑𝑑𝑆𝑆𝑓𝑓𝑎𝑎𝑎𝑎
�������) 

was lower than the corresponding rate in pseudogenes (𝑑𝑑𝑆𝑆𝜓𝜓𝑎𝑎𝑎𝑎
�������) , the difference was only 

≤8% (Table 4.2). 𝑑𝑑𝑆𝑆𝜓𝜓𝑎𝑎𝑎𝑎
������� and 𝑑𝑑𝑆𝑆𝑓𝑓𝑎𝑎𝑎𝑎

������� were also estimated over a set of simulated sequences 

74 
 



to examine whether the slight but in some cases significant difference could be the result 

of a shift in GC content when processed pseudogenes are formed. 
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Table 4.2. The average ratio of substitution rates at synonymous sites in genes and 

pseudogenes. (𝑁𝒔: number of synonymous sites between orthologs).   

                                              Observed                                            Simulations 

Species Pairs Number of pairs  
𝑁𝑠 ≥ 100           

  𝑑𝑑𝑆𝑓𝑓𝑎𝑏
������� 𝑑𝑑𝑆𝜓𝜓𝑎𝑏

�������� (95% CI)       𝑑𝑑𝑆𝑓𝑓𝑎𝑏
������� 𝑑𝑑𝑆𝜓𝜓𝑎𝑏

�������� (95% CI)     

human-chimp 1458  1.00 (0.94, 1.06)  0.91 (0.86, 0.96) 
human-orangutan 1446  0.91 (0.88, 0.95)  0.90 (0.87, 0.92) 
human-macaque 885  0.92 (0.89, 0.96)  0.92 (0.90, 0.94) 
human-marmoset 519  0.92 (0.89, 0.96)  0.92 (0.91, 0.94)  
mouse-rat 409  0.97 (0.93, 1.00)  0.88 (0.87, 0.90) 

 

Although, 𝑑𝑑𝑆𝑆𝜓𝜓𝑎𝑎𝑎𝑎  and 𝑑𝑑𝑆𝑆𝑓𝑓𝑎𝑎𝑎𝑎  were set to be equal to the neutral divergence between the 

species compared, 𝑑𝑑𝑆𝑓𝑓𝑎𝑏
������� 𝑑𝑑𝑆𝜓𝜓𝑎𝑏

��������  was estimated to be less than one (Table 4.2). In some 

cases the ratios obtained from the simulated data were significantly different from the 

observed data (Table 4.2). These differences maybe caused because the parameters used 

in the simulations do not reflect the exact evolution of the genes and pseudogenes. 

 

The effects of outgroup choice and equilibrium codon frequencies when estimating 

selection on synonymous sites 

 

Using a similar approach to the one employed by Bustamante et al. (2002) I estimated the 

rate of substitution at synonymous sites in human genes (𝑑𝑑𝑆𝑆𝑓𝑓) and pseudogenes (𝑑𝑑𝑆𝑆𝜓𝜓) 

using mouse or marmoset as an outgroup species (Figure 4.1). The results in the mean 

ratio 𝑑𝑑𝑆𝑆𝑓𝑓���� 𝑑𝑑𝑆𝑆𝜓𝜓������   (Table 4.3) are separated into estimates obtained by a set of pseudogenes  
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Table 4.3. Comparing the rate of evolution at synonymous sites in genes and  
pseudogenes using different outgroups. (𝑁𝑠: number of synonymous sites). 
                                          Number of sets 
Outgroup                           𝑁𝑠 ≥ 100                Ratio (95% CI)   
    mouse        572                    0.80 (0.74, 0.86) 
marmoset 

 
    104                    0.90 (0.75, 1.08) 

Common set 
mouse                                              93                    0.83 (0.69, 0.99) 
marmoset                    0.88 (0.72, 1.08) 

 

that were formed after the human-mouse split and a smaller set formed after the human-

marmoset split. 𝑑𝑑𝑆𝑆𝑓𝑓���� 𝑑𝑑𝑆𝑆𝜓𝜓������  estimates were also compared over a common set of 93 

pseudogenes. The common set is less than 104 because in some cases when using mouse 

as the outgroup the number of synonymous sites were less than 100. In both cases, the 

ratio 𝑑𝑑𝑆𝑆𝑓𝑓���� 𝑑𝑑𝑆𝑆𝜓𝜓������  is significantly smaller than when using using mouse as an outgroup. 

Specifically, when using mouse as the outgroup 𝑑𝑑𝑆𝑆𝑓𝑓���� 𝑑𝑑𝑆𝑆𝜓𝜓������  the average estimate of the two 

sets is ~0.82, and when using marmoset it is ~0.89 (Table 4.3). The same pattern is 

observed when using simulated sequences (Figure 4.4). The results in Figure 4.4 are 

based on simulations in which pseudogene nucleotide or codon equilibrium frequencies 

were estimated using the human GC content of 40%. As shown in Figure 4.4, all types of 

simulations resulted in a 𝑑𝑑𝑆𝑆𝑓𝑓���� 𝑑𝑑𝑆𝑆𝜓𝜓������  ratio that was significantly  
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Figure 4.4: The mean 𝑑𝑑𝑆𝑆𝑓𝑓���� 𝑑𝑑𝑆𝑆𝜓𝜓������   ratio and 95% confidence intervals estimated from 

simulated sequences. 𝑡𝑡 represents the branch length after reverse transcription and the 

units are in number of substitutions per site. Gray and blue columns represent the results 

from simulations obtained when marmoset was the outgroup. Gray columns represent 

nucleotide simulations and blue columns represent codon simulations. Black and red 

columns are the results obtained from simulations in which mouse was the outgroup. 

Black columns represent nucleotide simulations and red columns represent codon 

simulations. The results depicted in both figures were obtained using an 𝜔𝜔 = 0.2 and 

𝜅𝜅 = 4.0. 

 

smaller than one. Deviations from the expected ratio of one increased when using a 

distantly related outgroup such as mouse (black and red columns). In addition to the 

previously mentioned simulations, I also performed a set of codon simulations in which 

equilibrium codon frequencies were the same along gene and pseudogene branches. In 

these cases 𝑑𝑑𝑆𝑆𝑓𝑓���� 𝑑𝑑𝑆𝑆𝜓𝜓������  was estimated to be equal to one (Data not shown). 
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Discussion 

 

To examine whether synonymous mutations are under purifying selection I used 

processed pseudogenes as a model of neutral evolution. Although a few studies have 

shown that some processed pseudogenes are functional, and evolutionary conserved 

(Harrison et al. 2005; Frith et al. 2006; Svensson et al. 2006; Pei et al. 2012) the results of 

the present study indicate that in the majority of cases there is no evidence selection. The 

percentage of pseudogene pairs that rejected the null hypothesis �𝜔𝜔𝜓 = 1� at the 5% 

significance level ranged from 6-9 %. These sequences may represent either false 

positives (type I error), or a set of retroposed genes that are under purifying selection 

(Emerson et al. 2004; Vinckenbosch et al. 2006). In addition to this result, the ratio 

𝑑𝑑𝑁𝜓𝜓�����/𝑑𝑑𝑆𝑆𝜓𝜓����� is approximately equal to one (Table 4.1). Under the assumption that processed 

pseudogenes are non-functional, “nonsynonymous” and “synonymous” sites should 

evolve at the same rate. Although the ratio 𝑑𝑑𝑁𝜓𝜓�����/𝑑𝑑𝑆𝑆𝜓𝜓����� is slightly smaller than one the 

outcome of the simulations performed indicate that the difference in rate between 𝑑𝑑𝑁𝜓𝜓����� 

and 𝑑𝑑𝑆𝑆𝜓𝜓����� may stem from the change in GC content at “synonymous sites” after 

pseudogene formation (Table 4.1). Because processed pseudogenes are derived from the 

mature mRNA of a gene they are initially high in GC content. However, because they 

often land in regions of low GC content, they may experience a mutation pressure 

towards a GC content similar to their genomic neighborhoods.  
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After showing that the majority of processed pseudogenes do not show any evidence of 

selection, I estimated selection at synonymous sites using orthologous genes and 

pseudogenes (Table 4.2). The primate othologs depicted in Table 4.2 are not all unique 

but in the majority of cases share the same human orthologs.  

 

The results of the present study indicate that synonymous sites in genes evolve at ~ 94% 

of the rate of “synonymous” sites in pseudogenes. This is almost equal to the neutral 

expectation. The slight difference observed could be the result of selection, or a shift in 

GC content experienced by processed pseudogenes. To examine the later cause, 

𝑑𝑑𝑆𝑓𝑓𝑎𝑏
������� 𝑑𝑑𝑆𝜓𝜓𝑎𝑏

��������  was estimated using simulated sequences in which 𝑑𝑑𝑆𝑆𝜓𝜓𝑎𝑎𝑎𝑎  and 𝑑𝑑𝑆𝑆𝑓𝑓𝑎𝑎𝑎𝑎  were set 

to be equal, but the equilibrium GC content of processed pseudogenes was set at the 

genomic average (~40%). As shown in Table 4.2, 𝑑𝑑𝑆𝑓𝑓𝑎𝑏
������� 𝑑𝑑𝑆𝜓𝜓𝑎𝑏

��������  is estimated to be less than 

one, which suggests that the slight deviation from neutrality is most likely not a result of 

selection. 

 

In a previous study, Bustamante et al. (2002) estimated silent site evolution in functional 

genes (𝑑𝑑𝑆𝑆𝑓𝑓) to be ~70% of the rate of evolution in pseudogenes (𝑑𝑑𝑆𝑆𝜓𝜓). This is in stark 

contrast to the ~94% obtained in the present study. To reexamine the results obtained by 

Bustamante et al. (2002) I employed the same method and estimated the rate of 

synonymous substitution in human genes and pseudogenes using mouse or marmoset as 

an outgroup species (Table 4.3). When using mouse as the outgroup species 𝑑𝑑𝑆𝑆𝑓𝑓���� 𝑑𝑑𝑆𝑆𝜓𝜓������  is 

estimated to be between 0.80-0.83 and when using a more closely related outgroup such 

as marmoset it is estimated to be between 0.88-0.90 (Table 4.3). Similarly to the study by 
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Bustamante et al. (2002) when using distantly related species such as human and mouse 

𝑑𝑑𝑆𝑆𝑓𝑓���� 𝑑𝑑𝑆𝑆𝜓𝜓������  is largely underestimated. Our observations are confirmed by simulations 

mimicking the formation of human processed pseudogenes after the human-mouse and 

human-marmoset split (Figure 4.2). As indicated in Figure 4.4, in all types of simulations 

𝑑𝑑𝑆𝑆𝑓𝑓���� 𝑑𝑑𝑆𝑆𝜓𝜓������  is smaller than one. Furthermore, the ratio becomes even smaller when using a 

distantly related outgroup such as mouse.  

 

To examine whether the larger difference observed, when using mouse as an outgroup, is 

a result of the change in GC content experienced by processed pseudogenes, I performed 

simulations in which the same equilibrium codon frequencies were used over the gene 

and pseudogene branches (note: These simulations were done using INDELIBLE with ω 

= 1 for the pseudogene branch). The results showed no significant difference between 𝑑𝑑𝑆𝑆𝑓𝑓���� 

and 𝑑𝑑𝑆𝑆𝜓𝜓����� (results not shown). Bustamante et al. (2002) tried to remove the above effects 

by comparing genes and pseudogenes found in regions of similar GC content; however 

their approach may not have eliminated all possible effects. 

 

Using both real and simulated sequences I thus uncovered the possibility that previous 

estimates of selection on synonymous sites is part driven by the change in GC content 

after pseudogene formation. Significant selection on synonymous sites, as indicated by 

codon bias, may only happen in species such as Drosophila melanogaster, 

Saccharomyces cerevisiae, Arabidopsis thaliana, and Caenorhabditis elegans (Hershberg 

and Petrov 2008) whose effective population sizes are in the order of several hundreds of 

thousands, or millions (Charlesworth 2009; Skelly et al. 2009; Cao et al. 2011). It could 
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also be that in mammals, selection on synonymous sites is limited to a small number of 

proteins and is not common enough to be detected genome wide. 

  

83 
 



  

Chapter 5: Is there a relationship between generation time and 

selection in mammals? 
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Abstract 

 

Theory predicts that selection against deleterious mutations should increase as effective 

population size increases. Using generation time as a proxy of effective population size, 

previous studies have observed that the ratio of the divergence of nonsynonymous to 

synonymous sites (𝜔𝜔 = 𝑑𝑑𝑁 𝑑𝑑𝑆𝑆⁄ ) increases as generation time increases. Using a large 

sample of orthologous protein-coding genes I reexamined the relation between generation 

time and selection in 13 high coverage mammals. In addition, I considered the effects of 

sequence quality and alignment quality on 𝜔𝜔. My results indicate that mean selection 

within mammals can be separated into three groups with simians having the largest 𝜔𝜔 

(~0.17), horse and elephant being intermediate (~0.14), and the rest of the mammals 

having the approximate same ratio (~0.11). Unlike previous studies, within the sample of 

13 mammals, I did not observe a significant correlation between generation time and 𝜔𝜔 

after accounting for phylogenetic dependence. Interestingly, within primates there is a 

significant decrease in the efficiency of selection in monkeys after their divergence from 

prosimians. 
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Introduction 

 

One way to estimate selection on protein coding genes is by using the ratio of 

nonsynonymous to synonymous substitutions (𝜔𝜔 = 𝑑𝑑𝑁 𝑑𝑑𝑆𝑆⁄ ). The majority of protein 

coding genes are estimated to be under purifying selection (𝜔𝜔 < 1), with a very small 

proportion being under positive selection (𝜔𝜔 > 1) (Bakewell et al. 2007; Gibbs et al. 

2007; Kosiol et al. 2008). The efficiency of purifying selection on deleterious mutations 

depends on the selection coefficient (𝑠) and the effective population size (𝑁𝑒) (Ohta and 

Kimura 1971). According to theory, deleterious mutations whose selection coefficients 

are lower than 1 𝑁𝑒⁄  are subject to genetic drift, while deleterious mutations with 

selection coefficients are greater than 1 𝑁𝑒⁄  are selected against (Kimura 1968a). 

Therefore, species with large effective population sizes should have a smaller proportion 

of effectively neutral mutations than species with small effective population sizes. Using 

generation time as a proxy to effective population size studies have shown that 

nonsynonymous sites are under stronger selection in species with shorter generation 

times or large effective population sizes than species with longer generation times or 

smaller effective population sizes (Ohta 1993; Eyre-Walker et al. 2002; Piganeau and 

Eyre-Walker 2009). These however, were limited to a small number of genes and 

comparisons were mainly made between species with different life history traits. 

Differences in 𝑑𝑑𝑁 𝑑𝑑𝑆𝑆⁄  between species with different life history traits could result from 

differences in selection (𝑠) and not effective population size (𝑁𝑒). 
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With the recent sequencing of a large number of species, studies reinforced the positive 

correlation between generation time and 𝜔𝜔, within mammals (Nikolaev et al. 2007; 

Popadin et al. 2013). Examining the results provided by Nikolaev et al. (2007) it seems 

that most variation in 𝜔𝜔 is found between primates and non-primates. As shown in Figure 

5.1, species with 𝜔𝜔 ratios that are significantly above the mean are all primates with the 

exception of elephant. Here I wanted to reexamine whether the correlation is still 

significant after accounting for phylogenetic dependence (Felsenstein 1985).  

 

  

 

Figure 5.1. Estimates of 𝜔𝜔 from Nicolaev et al. (2007). Species are ranked according to 

the generation times provided in the study. The generation time for Opossum was 

obtained from Popadin et al. (2013). The red line depicts the mean 𝜔𝜔 value. 

 

Another puzzling result is the fact that chimp shows an 𝜔𝜔 ratio that is 23% larger than 

human, even though chimps have a larger effective population size (Charlesworth 2009) 
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and a similar generation time (Figure 5.1). A possible factor contributing to this 

discrepancy could be sequencing errors. Sequencing errors were previously shown to 

inflate 𝑑𝑑𝑁 𝑑𝑑𝑆𝑆⁄  and resulted in wrongly predicted instances of positive selection 

(Schneider et al. 2009). Assuming that the rate of sequencing error is constant across 

species, their effect on 𝜔𝜔 should be more prominent in lineages with a small number of 

substitutions. 

 

In this study, using a large sample of orthologous genes I reexamined the relation 

between generation time and selection and consider factors that can influence estimates 

of 𝜔𝜔, particularly alignment quality and sequencing errors (Schneider et al. 2009; 

Fletcher and Yang 2010). Finally, given the recent sequencing of a number of prosimian 

genomes I also examined how the efficiency of selection varied within primates.  
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Materials and Methods 

 

Assembling orthologous protein coding genes and estimating selection 

 

Orthologous protein coding genes were downloaded using the OMA 

browser http://omabrowser.org/ (Schneider et al. 2007). One data set included 3,878 

orthologous groups from 13 high coverage (>6X) mammalian species (human, chimp, 

orangutan, macaque, marmoset, mouse, rat, rabbit, cow, pig, horse, dog, elephant). This 

will be referred as “Mammalian” dataset. The other data set included 2,766 orthologs 

from 9 primate species (human, chimp, orangutan, macaque, marmoset, tarsier, bush 

baby, mouse lemur) in which tarsier and mouse lemur were of low coverage (≤2X). This 

will be referred as “Primate” dataset. Orthologs within each data set were aligned at the 

amino acid level using MAFFT (Katoh et al. 2002). The resulting alignments were 

duplicated, and for one of the sets badly aligned regions were masked using the 

alignment refinement mode of T-COFFEE (Notredame et al. 2000). Finally, amino acid 

alignments were used to build codon alignments. Codons corresponding to masked amino 

acids were not included. 

 

For each of the codon alignments, selection was estimated using the free ratio model in 

CODEML (Yang 1997) and the two phylogenies depicted in Figure 5.2. The phylogeny 

was trimmed according to the species being examined. After obtaining lineage specific 

estimates of selection, I only kept groups of othologs that met the following criteria: (1) 

all species had an 𝜔𝜔 < 1; (2) the number of synonymous sites was ≥100; (3) 𝑑𝑑𝑆𝑆 values 
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were 0 <  𝑑𝑑𝑆𝑆 < 0.5. The condition 𝜔𝜔 < 1 was used to remove genes that may evolve 

under positive selection. Using sequences with at least 100 synonymous sites reduced 

errors due to small sample size. The condition of 𝑑𝑑𝑆𝑆 > 0 is necessary to estimate 

selection, and finally the condition 𝑑𝑑𝑆𝑆 < 0.5 limited inflated estimates. After the above 

filtering, I was left with estimates from 1,683 orthologs for the high coverage 

“Mammalian” data set, and 1,417 for the “Primate” dataset. 

 

  

 

Figure 5.2: The alternative phylogenies for the species under study. In (B) are the 

differences from (A) (Prasad et al. 2008). 

  

 

(A) 

 

(B) 
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A brief explanation of the OMA algorithm 

 

Because our sample of orthologous genes seems small, we would like to emphasize that 

the quantity is compensated for quality, i.e., the degree of confidence in the data. This has 

to do with the manner in which the OMA algorithm works (Schneider et al. 2007). The 

steps used by the OMA algorithm to detect orthologs are as follows: 

 

(1) All-against-all: Sequences belonging to complete genomes of eukaryotes are 

downloaded from Ensembl. An all against all comparison is made using local 

dynamic programming (Smith-Waterman). To remove spurious hits they only 

keep alignments that cover 69% of the longest sequence. 

 

(2) For each pair of genomes the algorithm detects stable pairs. Stables pairs are pairs 

of sequences that have no significantly closer homolog than each other. 

 

(3) The next step involves detecting paralogs. For each stable pair identified above, a 

third genome is used to detect paralogs. In Figure 5.3, a paralogous relation is 

detected between genes X1 and Y1 using an eye witness genome Z. This step is 

done for every eye witness genome that carries orthologs to genes X1 and Y1, 

resulting in the removal of paralogs and a final dataset in which sequences are 1:1 

orthologs.  

 

(4) The final step is the formation of OMA groups. In an OMA group, every protein 

is orthologous to every other protein in the group. Consequently an OMA group 

has at most one sequence from each genome 
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Figure 5.3: Given a stable gene pair X1 and Y1, a third genome Z is used to test whether 

X1 and Y1 are orthologs. In this case X1 and Y1 show significant similarity to two 

different genes in genome Z, therefore, they are considered paralogs. 

 

Assessing Sequence Quality 

 

Sequence quality was estimated two ways. One way used whole genome shotgun reads to 

estimate the coverage for each CDS downloaded from the OMA browser. The method 

employed was a slightly modified version of the method introduced by Schneider et al. 

(2009). Specifically, for each species I downloaded its trace data (Trace 

archive, http://www.ncbi.nlm.nih.gov/Traces/home/ ). Each species set of CDSs was 

BLASTed against its corresponding trace archive. Only hits with a 98% percent identity 

and an e-value of <10-10 were considered, in order to reduce random hits or hits to reads 

belonging to duplicated genes. Sequence coverage was estimated as the number of hits 
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overlapping a position in the CDS. Sequences were considered as high coverage if ≥95% 

of their nucleotides were read at least three or more times. 

 

The second method employed quality scores for each base. These came in two forms: (1) 

raw quality scores and (2) PHRED scores. Both of these scores estimate the base calling 

accuracy for a particular base. According to the UCSC genome browser a raw quality 

score between 45-97 is considered high quality 

(http://genome.ucsc.edu/FAQ/FAQformat.html). A PHRED score ranges from 10-50 

with a score of 50 representing a 99.999% base calling accuracy (Lander et al. 2001). 

Both types of quality scores were downloaded from the UCSC genome browser 

(Karolchik et al. 2014) for all primates except bush baby. Quality scores for bush baby 

were not available but the new version of the genome is considered high coverage (137 

X) (Di Palma et al. 2011). In genomes where the quality of base calling was based on a 

PHRED score I defined high quality sequences as ones in which ≥ 95% of their bases 

had a score of 40 and above (99.99% base calling accuracy). When using a raw quality 

score I defined high quality sequences as ones in which ≥ 95% of their bases had the 

highest score found within the genome. These ranged from 45-97 depending on the 

species. 

Human and mouse genomes were not included in the analysis because their genomes 

were assembled using bacterial artificial chromosome (BAC) sequencing (Lander et al. 

2001; Church et al. 2009), and therefore are qualitatively superior to the draft assemblies 

of other species based on whole genome shotgun (WGS) sequencing. 
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Estimates of generation time 

 

The two most common definitions of generation length (time) are: (a) the average age of 

parents in the current cohort and (b) the age at which half of total reproductive output is 

achieved by an individual (Pacifici et al. 2013). In the present study I built two sets of 

two sets of generation times which I name “GT1” and “GT2”. GT1 was built using 

generation times obtained from the study by Pacifici et.al (2013). In GT1 the generation 

time for human was obtained by the study by Langergraber et.al (2012). Generation time 

in these studies was regarded as the average age of parents in the current cohort. Because 

the generation time of dog was not available, we used the estimated generation time of 

the gray wolf. The dataset GT2 was built using years to female sexual maturity (Jones et 

al. 2009) as a proxy to generation time. GTorig are the generation times used by Nikolaev 

et.al (2007). All data is depicted in Table 5.1. 

  

94 
 



 

Table 5.1: Estimates of generation time obtained for 20 mammals. 

 GT1 GT2 GTorig 
human 29 15 20 
chimp 20 11 15 
orangutan 25 9 NA 
macaque 14 3 5 
baboon 16 7 6 
marmoset 6 1 2 
tarsier 6 1 NA 
mouse lemur  6 1 NA 
bush baby  6 2 1 
rabbit 4 0.5 0.5 
mouse 1.6 0.2 0.1 
rat 1.7 0.2 0.1 
horse 8 2 NA 
dog 8 2 2 
cow 9 2 3 
pig 7 1 NA 
tenrec 5 1 0.5 
elephant 25 14 12 
armadillo 5 1 1 
opossum 2 0.4 0.3 

 

Testing for phylogenetic noindependence 

 

To remove the effects of phylogenetic dependence I used the independent contrasts test 

(Felsenstein 1985) implemented in COMPARE (Martins 2004). The phylogenies used for 

the tests, were downloaded from the UCSC genome browser (http://genome-

source.cse.ucsc.edu/gitweb/?p=kent.git;a=tree;f=src/hg/utils/phyloTrees). Branch lengths 

were estimated using whole genome alignments. 
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Estimating mean selection on nonsynonymous sites 

 

Mean selection on nonsynonymous sites (𝜔𝜔�) was expressed as 𝑑𝑑𝑁𝑤����� 𝑑𝑑𝑆𝑆𝑤������ , where 𝑑𝑑𝑁𝑤����� and 

𝑑𝑑𝑆𝑆𝑤����� represent the weighted averages of nonsynonymous and synonymous substitutions, 

respectively. Estimates were weighted according to the number of nonsynonymous and 

synonymous sites respectively. The use of weighted averages allows us to give more 

weight to longer sequences whose estimates of 𝑑𝑑𝑁 and 𝑑𝑑𝑆𝑆 would be subjected to lesser 

degrees of random error. To generate the 95% confidence intervals for 𝜔𝜔�, I used 10,000 

bootstrap samples with replacement. For each sample, I computed 𝑑𝑑𝑁𝑤����� 𝑑𝑑𝑆𝑆𝑤������  and 

estimated the mean and 95% confidence intervals using the bootstrap distribution.  

 

Results  

 

Comparing estimates of selection between low-quality and high-quality sequences 

 

Rates of nonsynonymous and synonymous substitutions that were estimated from the 

1,683 orthologs in mammals were separated into ones corresponding to high coverage 

coding sequences and ones corresponding to low coverage coding sequences. In the case 

of human and mouse all sequences were considered to be high-coverage. The 𝜔𝜔� was 

estimated for each category (Figure 5.4 A).  
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Figure 5.4: Mean selection (𝜔𝜔�) estimated by grouping 𝜔𝜔 values from high quality (blue) 

and low quality (red) orthologous sequences in mammals (“Mammalian” dataset). (A) 

Quality estimated using WGS reads for all mammals except human and mouse (B) For 

primates only, quality was also estimated using raw quality scores. All species data are 

plotted on the right hand corner. Error bars represent 95% confidence intervals. Gray bars 

represent high quality sequences. 
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Differences between low and high quality data were more prominent within primates. For 

example, in human, chimp, and orangutan, 𝜔𝜔� values from low coverage sequences were 

on average ~32% larger than in high coverage sequences. In Primates, I reexamined the 

results using raw quality scores (Figure 5.4 B). The same trend was observed using both 

types of methods.  

 

Finally, I looked at the effects of quality on 𝜔𝜔 in set of primate orthologs including 

prosimians. A significant difference between low and high quality sequences was only 

observed in great apes (Figure 5.5). 

 

         

Figure 5.5: Comparison of mean selection estimated using high quality (blue) and low 

quality (red) orthologous sequences in primates (“Primate” dataset). Quality was 

estimated using raw quality scores in simians and PHRED scores in prosimians. Error 

bars represent 95% confidence intervals.  
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To examine whether removing badly aligned regions changes estimates of mean selection 

I used a common set of 1,632 orthologs and tested whether selection differed with or 

without using alignment refinement. To remove effects of sequence quality I only used 

high quality data in each species. As shown in Figure 5.6 mean selection does not 

significantly change when considering alignment quality, however, there is a trend where 

𝜔𝜔� becomes smaller after alignment refinement. This trend causes a significant difference 

of ~10% when considering all species (Figure 5.6, right corner).  

 

 

Figure 5.6: Mean selection estimated using all codons (purple) versus codons with a high 

alignment score (green). Error bars represent 95% confidence intervals.  

 

Comparing selection within mammals 

 

Table 5.2A lists mean purifying selection (𝜔𝜔�) values in thirteen mammals. Estimates 

were based on high quality sequences. Results in Table 5.2A can be separated into three 
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groups depending on similarity in selection. Members of each group do not show any 

significant difference in selection, except in the case of macaque. The average 𝜔𝜔� ratios 

within these groups are approximately 0.17, 0.13, and 0.11, respectively. When 

examining the correlation between generation time and selection using data from the 

present study and Nikolaev et.al’s (2007) (Table 5.2B), I observe a significant positive 

correlation (Figure 5.7). Correlation remains significant even when using different sets of 

generation times (Table 5.3). 

 

Table 5.2: Estimates of selection used in correlation analysis. (A) Selection (𝜔𝜔�) in 13 

mammals (Materials and Methods: “Mammalian dataset”). (B) 𝑑𝑑𝑁 𝑑𝑑𝑆𝑆⁄  in 16 mammals. 

Values obtained from the study by Nikolaev et.al (2007).  

                  

 

 

 

 

 

 

 

 

 

 

 

 

         (A)                                                            (B) 

 𝛚�           𝐂𝐈𝟗𝟓 
human 0.160 (0.141, 0.176) 
chimp 0.165 (0.145, 0.189) 
orangutan 0.146 (0.131, 0.163) 
macaque 0.187 (0.169, 0.207) 
marmoset 0.167 (0.152, 0.183) 
horse 0.129 (0.120, 0.140) 
elephant 0.135 (0.124, 0.146) 
dog 0.106 (0.099, 0.113) 
cow 0.111 (0.105, 0.118) 
pig 0.113 (0.105, 0.122) 
rabbit 0.109 (0.100, 0.119) 
mouse 0.106 (0.099, 0.114) 
rat 0.106 (0.099, 0.114) 

 
𝜔𝜔 

human 0.29 
chimp 0.35 
baboon 0.29 
macaque 0.31 
marmoset 0.23 
bushbaby 0.17 
mouse 0.16 
rat 0.16 
rabbit 0.16 
cow 0.19 
dog 0.16 
bat 0.20 
shrew 0.16 
armadillo 0.24 
tenrec 0.19 
elephant 0.27 
monodelphis 0.20 

(B) (A) 
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Figure 5.7: Linear regressions of generation time and selection. (A) Data from present 

study. Based on 13 high coverage mammals (Table 5.1A) the  Pearson correlation was 

significant (rp = 0.64, p-value = 0.0173). (B) Data on selection and generation were 

obtained from the study by Nikolaev et. al (2007) (rp = 0.82, p-value < 0.001). These 

were based on 16 mammals except bat. Bat was excluded because its topology in the 

mammalian phylogeny is intensely debated (Tsagkogeorga et al. 2013). 

 

After applying Felsenstein’s independent contrasts test (1985) the correlations between 

generation time and selection identified by the present study became insignificant (Table 

5.3). After applying the phylogenetic contrast test to Nikolaev et al’s data the correlations 

were much larger than the present study but still insignificant (Table 5.3). Based on a two 

tailed t-test with 14 degrees of freedom, the correlations r = 0.38 and r = 0.19 gives a test 

statistic of 1.8 and 0.79. 
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Table 5.3: Correlations between selection and generation time 

(GT1, GT2, GTorig are different sets of generation times)  

Present study  
(N=13) 

  Nikolaev et.al 
(N=16) 

 GT1 GT2   GTorig GT1 GT2 
rp 0.64* 0.64*   0.82* 0.79* 0.79* 
rs 0.56* 0.65*   0.79* 0.75* 0.70* 
rpic 0.00 0.05   0.38 0.19 0.19 
rp: pearson; rp: spearman; rpic: phylogenetically independent contrast (* indicates significance) 

 

When examining selection in primates (Table 5.4), there is a significant difference in 

selection between simians and prosimians. In addition, within simians macaque shows a 

significant difference. 

 

Table 5.4: Selection estimated in great apes, monkeys, and prosimians 

(Materials and Methods: “Primate dataset”). 

 
     𝜔𝜔� 𝐶𝐼95 

human 0.191 (0.166,0.223)  
chimp 0.176 (0.160,0.192) 
orangutan 0.17 (0.157,0.183) 
macaque 0.21 (0.195,0.225) 
marmoset 0.182 (0.170,0.194) 
tarsier 0.138 (0.127,0.150) 
bush baby 0.146 (0.138,0.155) 
mouse lemur 0.135 (0.126,0.145) 
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Discussion 

 

In this study, I compared selection across the mammalian phylogeny. Selection was 

estimated over a group of thirteen high coverage mammals. As shown in Figures 5.4 and 

5.5 sequencing errors tend to inflate mean purifying selection. This is more prominent in 

the case of primates. The larger effect in primates is most likely caused by sequencing 

errors having a greater impact on branches with a small number of changes. In contrast to 

sequencing quality, alignment quality did not have a significant impact on average 

selection but caused a trend of lower 𝜔𝜔� values (Figure 5.6).  

 

After accounting for sequence quality, I examined how selection varied across 

mammalian species. As shown in Table 5.2A, in terms of average selection, the species 

examined could be separated into three groups. As in previous studies, primates showed 

the least efficiency against deleterious mutations (Nikolaev et al. 2007; Popadin et al. 

2013) with ~17% being effectively neutral. Species with the highest efficiency against 

deleterious mutations (𝜔𝜔� ≈ 0.11) were from different mammalian orders including 

Glires, Carnivora and Artiodactyla. In accordance to the negative correlation between 

generation time and effective population size primates show the highest 𝜔𝜔� (Table 5.1A).  

 

Previous studies in mammals showed a positive linear relation between generation time 

and selection (Nikolaev et al. 2007; Popadin et al. 2013). In the present study I 

reexamined the relation between generation time and selection, using data from the study 

by Nikolaev et al. (2007) and the 13 high coverage mammals studied in the present study. 
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As seen in Figure 5.7 both data sets show a significant correlation. However, after 

applying Felsenstein’s independence contrast test, correlations become insignificant 

(Table 5.3). The results remained the same even when using different sets of generation 

times. Furthermore, results remained insignificant, when omitting alignment refinement 

or when using all sequences (Data not shown).  

 

To examine whether any unresolved parts of the mammalian phylogeny had an impact on 

the results I examined selection using a phylogeny that supported the earlier divergence 

of Carnivora from Perissodactyla and Artiodactyla (Prasad et al. 2008). The results 

indicated no significant difference (Data not shown).  

 

The lack of any correlation between generation time and selection may result from the 

limited number of data from non-primate species with long generation times. With the 

sequencing of more mammalian genomes the correlation may gain support. An 

alternative explanation maybe that generation time is not a good proxy of effective 

population size. In the future, I plan to examine whether there is a relation between 

selection and long term effective population size. 

 

Interestingly, within simians macaque showed a consistently larger 𝜔𝜔 ratio, even when 

accounting for sequence quality (Table 5.2A). Although this can be due to differences in 

selection it could also be due to errors during genome assembly. An unpublished study 

that sequenced a new version of the rhesus genome (Zimin et al. 2013) found a 97% 
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percent identity with human orthologs while the older version used in the present study 

showed an 88% similarity (Gibbs et al. 2007). 

 

Given that most simians did not show any significant differences in selection I tested for 

differences in selection between simians and prosimians. As shown in Table 5.4 there is a 

significant difference in selection between prosimians and simians. Specifically in 

simians the average 𝜔𝜔� ratio excluding macaque is ~30% larger than prosimians. 

Assuming there are no significant effects caused by sequencing errors or wrongly 

annotated orthologs this may signify a significant reduction in the historical effective 

population size of simians. 
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Chapter 6: Summary 
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The efficiency of selection on deleterious and advantageous mutations is dependent on 

the product of the effective population size and selection coefficient (Wright 1931; 

Kimura 1968a). Given the very low mutation rates and effective population sizes in most 

animals selection for mutational robustness is expected to be effectively neutral. 

Contrary, to previous claims of selection for mutational robustness in mammalian pre-

miRNAs, (Borenstein and Ruppin 2006), I show that mutational robustness in Drosophila 

pre-miRNAs evolved neutrally. In addition, I show that mutational robustness did not 

evolve as a by-product of selection for robustness against thermal fluctuations (Ancel and 

Fontana 2000; Szollosi and Derenyi 2009) but most likely as a byproduct of selection to 

preserve structure and function.  

 

In Chapter 3 I identify orthologous processed pseduogenes and use them as a neutral 

model to test for selection on synonymous sites. Contrary to previous studies that 

estimated ≥25% of synonymous sites being under selection (Ophir et al. 1999; 

Bustamante et al. 2002; Hellmann et al. 2003; Eory et al. 2010) I identify a percentage 

that is closer to ≤8%. In addition, using sequence simulations I show that the deviations 

from neutrality in the current study and the study by Bustamante et al. (2002) could result 

because processed pseudogenes experience a shift in GC after they are formed.  

 

In Chapter 5 using a 13 high coverage genomes I examined the effects of sequencing and 

alignment errors when estimating purifying selection on nonsynonymous sites. Although 

alignment errors do not have any significant effects, sequencing errors tend to inflate 

𝑑𝑑𝑁 𝑑𝑑𝑆𝑆⁄ ratios. After accounting for sequencing errors I re-examined the negative 
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correlation between generation time and effective population size using the rate of 

fixation of deleterious alleles at nonsynonymous sites. As expected species with smaller 

generation times or large effective population sizes tend to be more efficient in purging 

deleterious mutations than species with longer generation times or small effective 

population sizes. However, there is no significant evidence of a linear relation between 

𝑑𝑑𝑁 𝑑𝑑𝑆𝑆⁄  and generation time. In addition, I detect a significant shift in purifying selection 

after prosimians diverged from new world monkeys. With the advent of more high 

quality mammalian genomes, re-examining the positive correlation between generation 

time and selection should become more powerful and accurate. 
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