SOLUTION OF A GENERALIZED

AIR POLLUTION MODEL

BY ORTHOGONAL COLLOCATION

A Thesis
Presented to
the Faculty of the Department of
Chemical Engineering

The University of Houston

In Partial Fulfillment
of the Requifements for the Degree of

Master of Science in Chemical Engineering

by
Miguel T. Fleischer

December, 1975



ACKNOWLEDGMENTS

I would like to express sincere gratitude to Dr. Frank
L. Worley, Jr. for his invaluable advice and guidance through-
out the course of this work.

Special thanks are due to the Devartment of Chemical
Engineering for financial support. I would also like to acknow-
ledge the staff of the Engineering Systems Simulation Laboratory
for their assistance in the use of the computer facilities.

Finally, I am glad to dedicate this thesis to my wife,
Jackie, and my son, David, whose patience and love have made

all of this possible.



SOLUTION OF A GENERALIZED

AIR POLLUTION MODEL

BY ORTHOGONAL COLLOCATION

An Abstract of a Thesis
Presented to
the Faculty of the Department of
Chemical Engineering

The University of Houston

In Partial Fulfillment
of the Requiréments for the Degree of

Master of Science in Chemical Engineering

by
Miguel T. Fleischer

December, 1975



ABSTRACT

Turbulent'atmospheric diffusion from single or multiple
point sources was simulated using the K-~theory and solved by
a new numerical technique, orthogonal collocation. The physical
and chemical behavior of pollutant svecies in the atmosphere
was described by the 3-dimensional, unsteady-state diffusion
equation including chemical reactions. Orthogonal collocation
was used to reduce the vartial differential equation govern-
ing the mean concentration of contaminants to first-order
ordinary differential equations. This system of equations was
then solved in a digital computer.

Mean wind velocities and turbulent diffusivities were
represented by empirical equations. Several meteorological
parameters were incluéed in these equations so that a variety
of atmospheric conditions can be simulated. These parameters
and other information required to solve an air pollution
problem must be specified as input data by the user.

The present method was evaluated by comparing the results
to existing experimental atmospheric concentration profiles.
Good agreement was found in all cases. In addition, the sen-
sitivity of the present model to variations in atmospheric con-
ditions was analyzed by means of a parametric study. Prover

responses were observed in all cases.
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CHAPTER I

INTRODUCTION

There has been increasing interest in bringing the air
pollution problem under control. This problem can be repre-
sented as a system consisting of three basic components:
emission sources, the atmosphere, and receptors. Once the
pollutants are emitted from sources, they are transported,
dispersed, and transforméd according to the laws of physics
and chemistry throughout the entire atmosphere. Finally,
these air pollutants are detected by receptors, such as human
beings, animals, plants, and materials, producing in some
cases undesirable effects.

In order to understand the cause-effect relationship of
pollutant emission and dispersion on the air quality, a study
of the three components previously discussed should be car-
ried out. Understanding of the physical and chemical be-
havior of pollutant species in the atmosphere plays then an
important role in the relation of source emissions to air

quality standards.



The objective of an air pollution model is to describe
mathematically the spatial and temporal history of contami-
nants released into the atmosphere.

Several air pollution models have been developed so far,
but they have had only limited success. An improved disper-
sion model based on the X-theory and solved using a new numeri-
cal technique is presented in this thesis. The atmospheric
processes involving air pollutants are described by the
3-dimensional, unsteady-state diffusion equation including
chemical reactions. Ortﬁogonal collocation, a weighted residual
method, reduces the partial differential equations governing
the mean concentration of pollutant species to first-order
ordinary differential equations. This system of equations
is solved then in a digital computer.

The present work ;s validated with existing experimental
data. In addition, its sensitivity to variations in atmospheric

conditions is analyzed by means of a parametric study.



Chapter II

THEORETICAL BACKGROUND

There are two fundamental ways of describing the
physical and chemical behavior of pollutant species in the
turbulent atmosphere. The first is the so-called Eulerian
approach, where the behavior of species is described rela-
tive. to fixed coordinates. The second is the statistical
approach, where concentration changes are described from a
statistical point of view by considering the paths of
individual elements of fluid, and is thus Lagrangian in
nature.

The objective of any air pollution model is to predict
pollutant concentrations at given points. These concen-
trations are caused by emissions from sources, and there-
fore a source~oriented point of view is the natural one in

this case.

Eulerian Approach

Consider s species in a fluid. The concentration of
each must, at each instant, satisfy a material balance
taken over a volume element. Therefore, the concentration
of each species must satisfy the continuity equation usually

known as the instantaneous diffusion equation,



BCi
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— 4+ — u.C, = Y {Di 5;;

+ R, (C,,...,C ) (2.1)
. i 7l

j 3 s

i=1, 2, ..., s

where the subscript j represents the three coordinate

directions: x(axial), y(lateral), and z(vertical); and

c; = the instantaneous concentration of species 1

uj = the jth component of the fluid velocity

Di = the molecular diffusivity of species i in the carrier
fluid, and

Ri = the rate of generation of species i.

Since atmospheric flows are turbulent, it is conven-
tional to divide the instantaneous quantities into mean
and fluctuating facts,

C. = <C,> + C;
i i i

- (2.2)
u., = u. + u!
J J J

It should be néted that the mean fluid velocities are
usually determined by temporal averaging and the mean
concentrations always represent ensemble averages. This is
the reason why a different notation has been used for the
mean values of the velocities and the concentrations.

Substitution of equation (2.2) into equation (2.1)

gives
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Ri(<C1> + Cl,eeee, <CS> + Cé) (2.3)

Taking an average of equation (2.3) over a large

ensemble of realizations of the turbulence, one obtains

the following equation governing <Cy>

8<Ci> 5 5 9<C.>
= — — 1] 1
5t Tt Ix. (uj<ci>) = 3% 105 3%, <ujci>}+
J J J
]
+ <Ri(<cl> + Cls «ney <C> + CS)> (2.4)

The most common means of representing the turbulent
fluxes <u3 Ci> is by the so-called K-theory, in which a
turbulent diffusivity is defined by

9<C.>
i

33 ij (2.5)

-<u! C!> =K
3 i

Ignoring the molecular diffusion when compared with
the turbulent diffusion, and assuming the atmosphere to be

incompressible, the final expression for the diffusion

equation becomes

3<Ci> N ﬁ 3<Ci> _ 3 {K 3<Ci> }+
ot j 93X, 9X.. jj  9X.
J 3 3 J3J 3
+ <Ri(<Cl>, cees <Cs>)> (2.6)

It should be pointed out that the effec£ of concentra-

tion fluctuations on the rate of reaction, i.e., terms such as

<CiC3> that arise from cases where Ri is a nonlinear function of



the Ci' were neglected in the development of equation (2.6).
The conditions for this approximation to be valid will be

discussed in Chapter IV,

Lagrangian Approach

The Lagrangian approach to turbulent diffusion is
concerned with the behavior of representative fluid
particles. The development of a general equation for the
mean concentration <C(x,t)> follows that of Seinfeld [22].

o o ©

<C(x,t)> = J J J Q(x,t/xo,to)<C(xo,to)>dxO +

OO e CO = OO

o 0 o t

+ I J J J Q(x,t/x",t")s(x',t")dt'dx' (2.7)
~oomoome £
where O(x,t/x*,t*) is the transition probability density
for the particle, that is, the probability density that if
the particle is at a position x* at time t* will undergo a
displacement to x at t, and S(x,t) is the spatial~temporal
distribution of particle sources.

Therefore, the first term on the right-hand side of
equation (2.7) represents those particles present at tg,
and the second term on the right-hand side accounts for
particles added from sources between t' and t.

As can be observed from equation (2.7), the applica-

bility of the Lagrangian approach rests on the ability to



evaluate the transition probability Q. This is a difficult
task because complete.knowledge of the turbulence properties
required to determine Q is generally not available. This
problem has been usually overcome by assuming that Q obeys
a multidimensional Gaussian distribution, but it is known
that this assumption is valid only if the turbulence is
stationary and homogeneous. By using that assumption then,
one is limited to apply the Lagrangian approach only to

some atmospheric cases.

Moreover, the development of equation (2.7) was done
for cases where the particles were not undergoing chemical
reactions. First-order reactions can be included rather
easily in the development of a similar equation, but there
is no convenient way of incorporating nonlinear chemical
reactions in the Lagrangian approach to turbulent diffusion.

The Eulerian method is very useful in air pollution
modeling because the Eulerian statistics are easy to
measure and as it will be seen later, possible to repre-
sent in an analytical form suitable for computer programs.
In addition, the mathematical expressions can be directly
applied to situations where chemical reactions take place.

Unfortunately, the Eulerian approach can be solved
only by approximate solutions, e.g., the K-theory, and this
leads to the problem of accurately predict the eddy

diffusivities.



The main objective of the present work is to obtain a
model which can be applied to any atmospheric dispersion
problem with chemical reactions. Because of the previous
analysis of the two approaches that can be used to describe
atmospheric diffusion, it was decided to use the Eulerian
method as the basis of the present model. As will be seen
later, this is the most common approach used although it
leads to limited success. The reason being the numerical
techniques with which the equations have been solﬁed.
Another objective of the present work is to investigate
the possibility of a better numerical method for solving

the general diffusion équation.



Chapter III

REVIEW OF PREVIOUS WORK

FEulerian Models

The basic mathematical statement for description of
the temporal and spatial distribution of chemical species
by this approach is the mass balance or continuity equa-
tion. This expression, equation (2.6) in this study, plus
the appropriate initial and boundary conditions complete
the general description.

Exact solutions to this set of equations have not
been published. However, it is possible to obtain appro-
ximate solutions using numerical techniques.

During the past years, several models have been pre-
sented in the literature, ranging from very simple ones
like the box model to general cases solved by finite-

difference techniques.

Box Model

The simplest air pollution model, though not the first,
is the box model, which has been discussed by Sklarew [25].
This model consists of an imaginary box which bounds.the
atmosphere over a city with the top of the box being at a
constant mixing height, the height at which there is no

further vertical diffusion. The concentration in the box
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is calculated from a simple material balance on the air flow
and pollutant emissions, thus, it is not sufficient for
anything more than gross estimates, by offering a quick

result for long-term concentrations.

Grid Model

Sklarew [25] proposed a different approach on urban
air pollution modeling, the grid model. 1In this model,
the region of interest is divided into a three dimensional
grid.of cells where the diffusion equation of the Eulerian
approach is solved. The time—dgpendent solution is obtained
numerically from difference equations.

Lagrangian particles representing a definite amount
of pollutant are advected and diffused through the
Eulerian grid. 1In order to do this, a pseudo-velocity
vk isdéfined as

v* = u - D'VC/C (3.1)

-~

where D' is a diffusivity tensor and § is the wind velocity
averaged throughout the cell surrounding each grid point.
The defined V¥ then is just the sum of the wind velocity
and the velocity corresponding to the diffusion flux.

Therefore, the diffusion equation is reduced to

_— = - Y(V*Ci)+ Ri + sources (3.2)
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This equation is solved in time-steps in the following
sequence: the pollutant concentration in each cell of the
grid is given by the particles in the cell. The cell
average concentration is updated by advancing the chemical
reactions for a time-step and by adding (and/or substracting)
pollutant from sources (and/or sinks) within the cell.
Finally, the Lagrangian particles are advected and diffused
using the pseudo-velocity, and thus transported at the
boundary of each cell for a specific period of time.

As it can be observed, this model is a mixture of the
Eulerian and Lagrangian approaches. In spite of being a
more general model as compared to the previous one, it
has the disadvantage that the grid size necessary for a

desired accuracy can result in prohibitive computing time.

Two Dimensional Unsteady State Models

Much of the recent work on air pollution modeling
centers on solving a simplified diffusion equation, a two
dimensional unsteady state case, which includes only the
x-component of the wind velocity and the vertical turbulent
diffusion coefficient, In almost all these models, the
solutions are obtained by using a finite—difference £ech—
nique.

For these cases, equation (2.6) for a single species

becomes
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3<C> . = 3<C> _ 3 5<C>
¢ T Y T3x T 3z {Kz 3z

} (3.3)

Runca and Sardei [21] solved equation (3.3) using a
mixed Lagrangian-Eulerian finite difference scheme. 1In
this model, the emission rate of the source is taken as a
boundary condition. The wind velocity and diffusion coef-
ficient are considered to be only functions of z.

Equatioﬁ (3.3) is solved with the method of fractional
steps: the concentration field at time t+At is obtained
from‘that at time t by separating the contributions due
to the advection and diffusion terms of equation (3.3).

In the first step, the foliowing advection equation
is solved by a Lagrangian technique over the time interval

At with the concentration field at time t as initial

condition:

3C aC _

et ulz) 5 =0 (3.4)
The diffusion equation,

C _ D ¢ _

3t " 3z (Kp(lgp} =0 (3.5)

the second step, is solved with a conventional Eulerian
finite-difference scheme over the same time interval. The
initial condition is provided by the concentration field
obtained from the first step, and the solution of the
second step is an approximation of the concentration field

at time t+At.
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A different model was presented by Egan and Mahoney
[6], where equation (3.3) was also solved, but the source

emission rate Q, was included in the same governing equa-

tion:
3C , = 9C _ 3 3C
tu == §E{KZ 55} + 0 (3.6)

E

To simulate transport through an urban area, the region was
divided into a number of grid elements, and the partial
derivatives in equation (3.6) were approximated by finite
differences corresponding to the dimensions of the urban
grid elements. Equation (3.6) was solved by an unconven-
tional scheme using moments of concentration distribution.

A slightly more difficult diffusion equation was
solved by Eschenroeder and Martinez [7]. A simplified
chemical kinetic scheme was included in the governing

equation,

i g5 _i_ 9 _i
+ U = 5 {Kz + R, (3.7)

i=1, 2, ..., s
where Ri is the production rate for the ith species and
s is the number of species.

The numerical solution of equation (3.7) followed a
Crank-Nicholson type implicit finite difference scheme.
Since fields for u and szeregmescribed by meteorology
inputs, the nonlinearity was confined only to some members

of the Ri terms. In a later paper, Eschenroeder and
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Martinez [8] reported that a number of difficulties were
encountered in using the Crank-Nicholson method and the

approach was abandoned.

General Solutions

Some recent work has been done to solve the general
expression of the diffusion equation. One of these models
was developed by Roth et al [20]. The governing equation

solved was the following:

9<C;> . 3<Cy> _ 3<Cy>  9<C;> 3 3<C, >
TR Tra oy R el - S e
+ Ri(<cl>,..,<cs>) + Q. (x,y,2,t) (3.8)

i=1, 2, .e., s
where KZ is the vertical eddy diffusivity, Ri is the rate
of formation of species i by chemical reaction, and Q is
the rate of emission of species i from sources.

Equation (3.8), plus initial and boundary conditions,
was applied for the prediction of pollutant concentrations
over a fifty mile square area. This region was divided
into a grid of 625, 2x2 mile squares, where 198 grid squares
were source-free. The grid actually used in the solution of
equation (3.8) was a three-dimensional array of ten layers
of cells occupying the space between the ground and the
inversion base. Therefore, each cell had a two mile square

base and a height of (H-h)/10, being H and h the elevations
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of the inversion base and ground above sea level, respec-
tively.

To represent the surface winds, Roth et al. constructed
maps of wind speed and wind direction for hourly time
intervals, using data gathered at the network of ground-
based monitoring stations. In the absence of wind field
aloft data, the surface values were used as the basis to
calculate wind velocities to all levels between the ground
and the inversion base.

A model for the vertical turbulent diffusivity was
developed based on the work done by Eschenroeder and
Martinez [7].

Finally, the model was completed by a simplified
kinetic mechanism involving 12 species and 14 reaction
steps. The mathematical representation included four
coupled nonlinear differential equations (five other
species were expressed by steady-state relations, and the
remaining three species were products that could have also
been represented by differential equations, but it was not
done) that were solved by a modified Gear's method.

A fractional step finite-difference method was selected
to be the numerical technique for the modei. In this type
of solution, a multidimensional problem is replaced by a
succession of simpler lower dimensional problems. Therefore,

the four-dimensional partial differential equation (3.8) in
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(x,v,2,t) was split into three two-dimensional equations
in (x,t), (y,t), and (z,t), with the inclusion of the
reaction and elevated source terms in the (z,t) fragment.
The solution in (z,t) is implicit, while the solution in
(x,t) and (y,t) is explicit. Each of these two-dimensional
equations was then integrated in succession over one time
step, and the terms in each of the three partial differen-
tial equations was approximated by finite-difference
expressions.

It should be pointed out that this model cannot
handle point or line sources, the emissions therefore
averaged over relatively large distances.

Another recent model in which a solution to the
general expression of the diffusion equation was obtained,
was developed by Shir and Shieh [24]. This model was used

to study SO, distributions in the St. Louis metropolitan

2
area during 25 consecutive days. The region of interest
was divided into a three-~dimensional grid system of
30x40x14 = 16,800 grid points. The horizontal grid sizes
Ax and Ay were of 1524m and the vertical size 20m, 25m, or
(H~200)/4 m, values depending on the heights of the vertical
grids (H represents the mixing height). Tﬁe horizon£al

grid sizes were chosen according to the grid size of the

emission source inventory.
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The equation solved in this model was the diffusion

equation for a single species,

aC _ 2 9 aC
3% * V VC = KHVHC + §E{Kv 55}+ Q0 + R (3.9)
where C is the mean concentration of 802, v = (u,v,w) is

the mean wind vector, Q is the source strength rate, R is

the chemical reaction rate, K, is the horizontal eddy

H
diffusivity, and KV is the vertical eddy diffusivity.

The hourly averaged surface wind field for the total
region was obtained by using a weighted interpolation
scheme. Data collected at some stations were interpolated
to a square grid, which had a size of five area source
dimensions. From this wind field, a linear interpolation
was used to obtain a wind vector at each grid point.

Since upper layer wind data weré not available, the

vertical wind profiles at each grid location was assumed

to be of power law from

v =v_ (2P (3.10)

where V and Vs are the upper and surface wind at the height
z and Zg respectively. The power constant p was deter-
mined by using equation (3.10) and data gathered at heights
of 140m and 39m. The vertical component of the wind vector
was calculated from the horizontal winds through the
continuity equation. Finally, a constant wind direction

with height was assumed in the model.
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A turbulence transport model developed by Shir [23]
was used to calculate the eddy diffusivities. Under neu-
tral conditions, the vertical component of the eddy

diffusivity vector is expressed as
K = u,l 9=k _z exp(- 22) (3.11)
* ! o H :

where u,, ko and H are the friction velocity, the von
Karman constant, and the height of the boundary layer,
reséectively.

Under non-neutral conditions, an eddy diffusivity,
Ks’ at the surface layer (z=10m) is calculated using
another model, and then extrapolated to higher altitudes

by the assumption that

_ 2
K, = K, (3.12)

In this model, the horizontal eddy diffusivity was
assumed to be constant.

Finally, the time-dependent source emission rate was
averaged over a 2-hour period for each source, and the
chemical reaction rate of 802 expressed by

R = -kC (3.13)
where k is the reaction rate constant with a given value
of 1074 sec7l.

A second-order, central finite-difference scheme was

used to integrate the advection and horizontal terms, and
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the Crank-Nicholson method was used for the vertical
diffusion term.

In this model,; 2-hour and 24-hour averaged variations
of 50, concentrations for the 25-day period were obtained,
and compared with experimental measurements for the same
term average concentrations, at 10 monitoring stations.

In their analysis of the results, Shir and Shieh concluded
that the 2-hoﬁr data were consistently larger than the

24-hour data.

Statistical Models

As it was previously discussed, one of the problems
in the Lagrangian approach is the evaluation of the tran-
sition probability density function.. The most common way
that has been used to overcome this problem has been to
assume that the transition probability density function,
Q(x,t/x*,t*) obeys a Gaussian distribution. This assumption has

given rise to several models, which will be discussed next.

Gaussian Plume Models

The best known of the oractical models based on
statistical theory is the Gaussian Plume model. This
model was the first recognized continuous point source air
pollution model. Most of the existing urban air pollution

models are Gaussian Plume models. The concentration of
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gas or aerosols at a point (x,y,z) due to a continuous

source with an effective emission height L, is given by

<C(x,y,2)> = exo [— %(%—)2]

2ﬂcyozu y

2 cz

exp [— %(EZE)Z] + exp [— 1 Z+L)2J (3.14)

The following assumptions are made:

1) The dispersion process is at steady state conditions.

2) The plume spread has a Gaussian distribution in both
the horizontal and vertical planes, with standard
deviations of plume concentration distribution Oy and

O, respectively, thch are function of only the
atmospheric stability and distance x from the source.

3) The mean wind speed affecting the plume, u, is oriented
in the x-axis and is a constant value for any height.

4) A constant emission rate of pollutants, Q.

5) A total reflection at the earth's surface,

6) No wind shear; and

7) The pollutants are chemically non-interacting.
Typically then, in these models the rate of disper-

sion is a function of the atmospheric stability class and

the travel time or distance from the source. The lateral

and vertical distributions are assumed to be Gaussian

around the plume centerline. The relation between the

horizontal and vertical dispersion coefficients, oy and
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O, and the Pasquill-Gifford stability categories and
downwind distance from the source can be found in Turner
{30].

;t can be observed then that the Gaussian Plume
formula is not flexible enough to include all possible
variations that the air motion .experiences under urban

atmospheric conditions.

Gaussian Puff Models

To describe more accurately the general unsteady
state atmospheric diffusion case, some Puff models have
been developed by Robefts et al [19] and others. In
a Puff model, source emissions are broken into a series
of instantaneous puffs instead of a continuous plume.

The distribution within a puff is assumed Gaussian in the
three directions.

In the Puff model, the entire cloud or puff is
assumed to be simultaneously transported along a trajec-
tory given by the mean flow. It is also assumed that the
constant standard deviations (or diffusivities) are inde-
pendent of height, up to an inversion height, that there
is no wind shear, and that the pollutants are chemically

non-interacting.
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Monte Carlo Methods

In a Monte Carlo method, averages of a desired
quantity, in this case concentration, are obtained by
repeating the process many times using the same initial
conditions. Each repetition is called a realization and
is controlled by the random forces acting during its
particular flight.

A recent model using a Monte Carlo method was deve-
loped by Bullin [4]. In this model, the turbulent diffu-
sion process was simulated by allowing & large number of
particles representing a definite amount of pollutant to
diffuse through the fléw field according to the following

stochastic Markovian equation

dx.
j_ 2D 1/2
o= U () + [—f,;] N (t) (3.15)

where ﬁj is the instantaneous velocity in the jth direc-
tion, D is the molecular diffusivity, Nj is the jth inde-
pendent Gaussian white noise with zero mean, Pj is the
power spectral density of the jth white noise, and the
subscrift j denotes the three coordinate directions in
the Cartesian space.

After a specified time, the location of each particle
was recorded and the concentration distribution was calcu-
lated by counting the number of particles wifhin cells

of specified size and dividing by the cell volume.
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This model was solved on a hybrid computer, where
equation (3.15) was programmed for repeated solutions on
an analog computer with stochastic variables uj and Nj
being provided as inputs.

As it can be observed, the Gaussian distribution
assumption was again incorporated in the model, and no

reactions were involved in the simulation of turbulent

diffusion in the atmosphere.
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Chapter IV

ORTHOGONAL COLLOCATION

In view of all air pollution problems and the need
for air quality improvement, air pollution modeling has
great practical importance. This is the reason why much
consideration has been given to this subject during
recent years,

Several air pollution models have been developed so
far, but since this subject is very complex, most of
those models have been simplified. It is evident that the
more simplifications iﬁcluded the less applicable a model
is and the poorer the results can be.

It is well known that a majér factor that charac-
terizes diffusion processes in the atmosphere is the state
of atmospheric turbulence. A general model which includes
temporal and spatial variations of meteorological para-
meters can provide a good description of atmoépheric
diffusion processes.

As it was discussed in Chapter II, the Eulerian
approach will be used for solving the atmospheric diffusion
problem in the present work.

A finite-difference scheme has been the most widely
used numerical technique for solving the partial differen-

tial equations resulting from a model based on the
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Fulerian approach. The application of this technique to a
general problem gives rise to a very complex model,
usually with a large number of grids and in most of the
cases then requires much computer time to obtain accurate
results, In addition, most of those models cannot handle
point sources, and artificial diffusion errors are usually
present in the results.

- There is a need then to keep working with the diffu-
sion equation in its more general from as a tool for solving
air pollution problems, and to investigate the feasibility of
using another type of numerical technique which could have
better properties than'the finite-difference method. This

new technique, orthogonal collocation, is discussed next.

Theory
The orthogonal collocation method belongs to the class
of weighted residual methods. It was presented by
Villadsen and Stewart [31], Finlayson [11], and Villadsen
[32], who give details about its theory, some of which
will be presented next. They also discuss several appli-
cations, mainly one or two-dimensional problemns.
The method of weighted residuals is a'general method
of obtaining solutions to differential equations. The

unknown solution is expanded in a set of trial functions,

which are specified, but with adjustable constants (or
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functions), which are chosen to give the best solution to
the differential equafion.

The trial function is chosen in such a way that will
satisfy the boundary conditions for all selections of the
adjustable constants. This trial function then is sub-
stituted into the differential equation forming a residual.
If the trial function were the exact solution, the residual
would be zero. In the weighted residual method, the
adjustable constants are chosen so that the residual is
forced to be zero in an average sense.

Let us begin considering a boundary-value problem in
one independent variable, x. A general type of differen-

tial equation can be written as

LV(y) = 0 in v
(4.1)

y) =0 in S
where x is the position vector and S the surface or
boundary. In the céllocation method, the dependent
variable y is approximated by a series eﬁpansion containing
N undetermined parameters. These parameters are then
calculated by applying equation (4.1) at N pre-selected
points.

In the orthogonal collocation method, the series

expansion consists of a set of orthogonal polynomials and

the collocation points are chosen as the zeroes of the
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polynomials, which make the weighted residuals to be zero
in an average seﬁse.
Therefore, for the system given by equation (4.1),
the solution is approximated by
N

y(x) = yo(x) +i£1 aiPi(x) (4.2)

c.xj (4.3)

where Pi(x) = 0 3

J

(e o

is a poiynomial such that successive polynomials are
orthogonal to all polynomials of order less than i, with
respect to some weighting function w(x)>0 :

N )

Ja w(x)Pn(x)Pi(x)dx =0 , n=0,1,...,i-1 (4.4)

Depending on the weighting function w(x) and the

interval a<x<b, several types of polynomials can be
obtained. Choosing w(x) =1, a = -1, b =1, and the first
polynomial Po(x) = 1, the resulting polynomials, Pi(x),
are called Legendre polynomials.

If the weighting function is defined as

wix) = (1-x)%(1+x) P (4.5)
and the same previous interval is used, the Jacobi poly-

nomials, Pi(a'B)(x), are obtained [1l]. It follows then that

P, (x) = Pi(O’O)(x) | (4.6)

The polynomial Pi(x), as defined by equation (4.3), has

i roots in the interval a<x<b, which serve as collocation
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points. From now on, let N equal the number of those
interior collocation points.

Let us now consider polynomials which have additional
convenient properties: the solution of a problem is éought
in the domain 0<x<1 and is required to be symmetric about
x=0. Then, it can be expanded in terms of powers of x2.

A suitable trial function is
2, N1 2
y(x) = y(1) + (1-x%) I aiP.(x ) (4.7)
. i
i=0
where the a, are undetermined constants and the Pi(xz),

polynomials of degree i in x2 that can be constructed

using an orthogonality condition like equation (4.4):

1
2, a-1 2 2 _
Jo(l—x )X Pn(x )Pi(x Jdx = Gisin (4.8)

n=1,2,...,i-1

where a 1,2,3, for planar, cylindrical, or spherical
geometry.
The polynomials defined by equation (4.8) are
Jacobi polynomials [20], and the constant Gi is given by
(r(3)1%r (3+1) T (1+2)

G. = (4.9)
1 (4i+a+2)r(i+§)r(i+%+1)

The coefficients of orthogonal polynomials in a new
interval 0<x<1 can also be computed from the old interval

polynomials, -1<x<1, by the following relation [23]:
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[ 2D

If fi(x) =

J £ (x) = f. (2
3 ch- ' i(X) = i( x-1)

0 (4.10)

% =
c.xJ
J

j

1 e

0
where f:(x) stands for the shifted polynomial. It should
be pointed out that if the interval of orthogonality is
changed, the weighting function w(x) changes for the

Jacobi polynomials, and remains the same (=1) for the
Legendre polynomials.

A set of N equations is needed in order to determine
the N coefficients ai,-and therefore completely define the
solution in the form of the trial function. This can be
obtained by substituting equation (4.7) into the differ-
ential equation (4.1) and setting the residual formed
equal to zero at the N collocation points Xj' These points
are thé roots to the Nth polynomial, PN(xz) = 0 at xj.

The application of the method as described above
becomes more confused as N increases (and also if the
dimension of the differential equation increases). As a
simplef and more attractive alternative to this method, as
it will be seen later, the collocation equations can be
obtained in terms of the solution at the collocation
points, y(xj). In this method, if the solution at a differ-
ent point than a collocation point needs to be obtained,
it has to be interpolated by using all the known values of

y(xj) at the collocation points.
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For this purpose, equation (4.7) can be rewritten as
v (x) N (4.11)
i=1 *
where the di are undetermined coefficients and the (N+1)
collocation point is at x=1. If equation (4.1l1l) is
evaluated at the collocation points, the following expres-
sion is obtained:
y(xj) =§gl x:‘?i—?‘di (4.12)
i=1
The same procedure can be done for the first deriva-

tive and the Laplacian,

N+1 . 2i-2
dy =3 dx"~ ~ d. (4.13)
ax [x. . dx X. 1
j i=1 J
N+1 :
viyl. =1 v a, (4.14)
X. . X 1
J i=1 ]

These equations can be rewritten in matrix notation

as follows (the squére matrices have (N+1)x(N+1l) elements):

y = 0d (4.15)
Vy = Rd (4.16)
2 _ B
vy = Ta (4.17)
where
0. =272 o ax2172
ji — 73 ! ji = dx xj'
2, 2i-2
Tji = V7 (x )lx (4.18)



31

The first derivative and Laplacian can be written in
terms of the solution Y(xj) by solving 4 from equation

(4.15) and substituting it into equations (4.16) and

(4.17)
= =—l - =
Vv = RQ "y = Ay (4.19)
2 3 = - - —3
V~y = Q ¥ = B¥ (4.20)
Finally then, the derivatives can be expressed as
dy N+1
Vy = Ix Ix. =.E Ajiyi for j=1,...,N+1 (4.21)
j i=1
2 N+1
vy =153+ 2gh, =1 By,
ax j i=1
for j=1,...,N+1 (4.22)
where a=0,1, or 2 for plane parallel, cylindrical, or
spherical symmetry, respectively, and
(dXO) . (—d_}izN) 1 [ Ny "’l
dx Xy dx Xq
[Aji] = : : 0] (4.23)
(9x2, ..........(dsz)
dx XN+l ax XN+1




FV'?‘(X°) e e
) 1
[By;1 = )
.
V(X)) . eeeeeveea .
i *N+1
[ 1 xi..
ol = . .
2
1 XN+l
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(4.24)

(4.25)

Integrals of the solution over the volume V can be

calculated with high accuracy via the summation formula

o

where the quadrature weights are given by

[Wj] = [I

1 a-1
J fF(x)x dx = I

1

o]

W.f

j=1

xo+a—ldx’ I

|

(xj)

(o)

1l
x2+a_ldx,...,

o .

1

1

(4.26)

(4.27)
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Examination of equations (4.23), (4,24), and (4.25)
reveals that only the collocation points are needed in
order to compute matrices A and B. Once the weighting
function w(x), the interval of integration a<x<b, and the
number of interior points are specified, these collocation
points can be easily calculated.

Let us now consider a more general problem, such as
the problem being studied in the present work, in which
the symﬁetry property is removed. In this case then,
both even and odd powers of x are included in the ortho-
gonal polynomials in the interval 0 to 1.

In first order differential equations, where only
one initial condition needs to be satisfied, a suitable
>trial function can be of the form

N
y(x) = y(0) + x.Z aiPi(X) (4.28)
i=0

In this case, y is a polynomial of degree (N+1l) in
x, and (N+1) equations are needed in order to compute the
undetermined constants a; - These equations can be obtained
by subétituting equation (4.28) into the first order
differential equation at the N interior collocation points,
and at the end of the interval x=1,

For second-order differential equations, a general

expression for the trial function can be of the form
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N
y(x) = bt+cx+x(l-x) T a.P.
i=1 * Y7

l(x) (4.29)

This expression contains (N+2) constants that can
be determined by N conditions provided by the residuals
evaluated at the N interior collocation points, the N roots
to PN(x)=O, and two conditions provided by boundary condi-
tions at x=0 and x=1.

If those two boundary conditions were given as y(0)
and y (1), equation (4.29) would remain as

N

y(x) = y(O)[l—X]+y(l)x+X(l—x).Z
l:

. a,P;_;(x) (4.30)

and therefore only N equations, at the N collocation points,
~are needed to specify the solution, y(x).
In equation (4.28) as well as in equation (4.30),
the polynomials are defined by equation (4.4) with a=0
and b=1l. A general expression for the weighting function

w(x) can be obtained from equation (4.8) in the following

way:
1 246.a-1. ,.2 2
J (1-u”) u P.(u™)P.(u")du = G, §.. (4.31)
o i j i Yij

Substitute x=u2 , dx=2udu:
1 . g -1
0(l—x) X Pi(x)Pj(x)dx = 2Gi Gij (4.32)
& a B -~ %

or Jo(l—X) X Pi(x)Pj(x)dx = Gi Gij (4.33)
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Therefore, for a non-symmetric problem, the weighting

function is

w(x) = (l—x)axB (4.34)
This weighting function, as it was discussed before,
corresponds to shifted Jacobi polynomials, and it follows
then that if a=8=0, i.e., w(x)=1l, the polynomials obtained
are shifted Legendre polynomials.

In this case, it is also convenient to express the
collocation equations in terms of the solution at the
collocation points, y(xj), rather than in terms of the
undetermined parameters, a; - The matrices representing
the first and second derivatives, and the approximate
expfession representing integrals, are given by the same
formula as equations (4.19), (4.20), and (4.26), but with

different definitions for the elements of the matrices,

which now have (N+2)x(N+2) elements:

i-1

L. = X 4,35

Q51 = %5 ( )

R,, = (i-1)x, "2 (4.36)
J1 J

T, o= (i-1) (i-2)x, 73 (4.37)
J1 J

In this case, the quadrature weights are
1 1 1
twy) =t x%ax, [Txax, ..o, [ axi 1™t 4.3

o (o] o
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Finally, the derivatives can be expressed in terms of
the solution, y(xj), at the collocation points, following
the same procedure as for the symmetrical case, but with

different values for matrices A and B:

N+2
Vy =i£1 Ajiyi for j=1,...,N+2 (4.39)
2 N+2
V'y = ¥ B..Y. for j=1,..,.,N+2 (4.40)
i=1 I *

Thé procedure to solve a one-dimensional differential
equation using this alternative orthogonal collocation
method (with matrices A and B) is similar for both, the
symmetrical and the noﬁ—symmetrical cases. Equations
(4.21) and (4.22) for the first case, and equations (4.39)
and (4.40) for the non-symmetrical case can be used to
express the first and second derivatives in the ordinary
differential equation. This equation is then reduced to coupled
algebraic equations, with the unknowns being the solutions
at the collocation points.

The boundary conditions at x=0 and x=1 can be substi-
tuted into those equations so that only N unknowns, at
the interior collocation points, and N equations remain
to be solved.

As was discussed before, once the interval and the
problem are specified (i.e., symmetric or non-symmetric),

matrices A and B depend only on the number of collocation
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points. If the same number of points is always used in
the solution of a problem, these matrices have to be
computed only once. Therefore, it might be enough to
just include them as iﬁput data rather than having a
subroutine to calculate them every time the program is
run again.

Several tables and some algorithms for the interval
0<x<1 and different weighting functions and number of
collocation points are presented in [1], [11], [31], and
[32]. These tables give values of the orthogonal points,
matrices A and B, and ?he guadrature weights Wj for the
symmetric case in different geometries, and also for the
non-symmetric case.
| In order to have more flexibility with respect to
the number of points and the weighting function to be
used, fwo subroutines (JCBI and DFOPR presented in
Appendix A) were ineluded in the computer program in this
study. These algorithms were developed by Michelsen [16].

"JCBI" computes the roots of an Nth degree Jacobi
polynoﬁial and the derivatives at these points of the
polynomial or the polynomial multiplied by x, by (x-1),
or by both (including one or both interval end points x=0
and x=1). 1In this algorithm, the weighting function is

given by equation (4.34).
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From the quantities calculated in "JCBI", subroutine
DFOPR computes the matrices for the first and second
derivatives, and also the quadrature weights.

Let us now consider a more complicated problem, the
solution to a two-dimensional differential equation, where
the solution ¢ is a function of the independent variables
x and vy.

- The trial function for the symmetrical case (about
x=0 and y=0) can be obtained as an extension of equation
(4.7). A suitable polynomial expression for ¢(x,y) and
subject to the symmetry conditions, and also to the
boundary conditions ¢(x,1) = ¢(1,y) = 0, is

N-1 M-1

2 2
)iio jzoaijPi(X )Pj(Y ) (4.41)

0 (x,y) = (1-x2) (1-y2

Here, Pi(xz) and Pj(yz) are defined in the same way
as it was done before, with the use of equation (4.8) for
planar geometry.

As has been discussed before, this is not the best
way of solving differential equations by orthogonal collo-
cation. It is evident that the confusion becomes worse
for two-dimensional problems. Therefore, let us discuss
the alternative method where matrices A and B are uséd.
Furthermore, let us analyze non-symmetric cases for being

more general cases.
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The trial function can be rewritten then as
N+2 - M+2 521 4-1
$(x,y) =T T d..x y? (4.42)
j=1 §=1 ]
where N and M are the number of interior collocation points
in the x and y directions, respectively.
Let us analyze the x-direction first. Knowing that

the partial derivatives with respect to x are at constant

y, the following substitution can be made into equation

(4.42):
M+2 .
e, =1 4.y’ (4.43)
j=1 *
Substituting equation (4.43) into equation (4.42)
and evaluating it at the collocation points, X, s One
obtains
N+2 .
6|, =1 x e, (4.44)
k i=1

The first and second derivatives of equation (4.42)

evaluated at the collocation points are

N+2 .
3¢' : i-2
- =3z {(i-1)x e. (4.45)
oxX xk i=1 k i
2 N+2 .
3—%IX -3 (i-l)(i—2)x1‘3ei (4.46)
X k i=1

Using matrix notation, and solving for e for the first
and second derivatives, the previous expressions can be

rewritten as
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¢ = Qe (4.47)
2 - Ro 1o = Ad (4.48)
32 ==-1] - =
__% =TQ ~¢ = Bo (4.49)
ox ~ ~

where matrices Q, R, and T are defined by equations (4.35)
through (4.37).

The same procedure can be used in analyzing the
y~direction. One arrives at the same equations (4.47)
through (4.49), but changing Xy by Yy 1 the collocation
points in the y-direction, the derivatives now with respect

to y, and performing a similar substitution as before,
+ .
f. =1 d.,.x (4.50)

It follows then that the same A and B matrices can
be used for problems in one or two dimensions.

It should be péinted out that in the latter case, after
the first and second derivatives and the.boundary condi-
tions are substituted into the differential equation, a
system of (NxM) algebraic equationé remains to be solved.

Partial differential equations can also be reduced to
coupled ordinary differential equations, if it is not
desired to go further and reduce them to algebraic equations.
When both dimensions are collocated, and the differential

equation is reduced to algebraic equations, the notation
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used (indices) is very important and can give rise to
confusion.

Let us illustrate everything that has been said before
by setting the collocation equations for an example pre-
sented by Villadsen and Stewart [31].

The differential equation and the boundary conditions
are:

33% + 33%-= -1 (4.51)
ox Y%
v=0 at x=+1 'and at y=+1

This problem is symmetric about x=0 and y=0. Using
the matrix B to represent the second derivative, and
‘collocating the same number of points, N, in either

direction, the collocation equations are

N N
izl Bjivik +i£1 Bkivji = -1 (4.52)
for j=1,...,N
k=1l,...,N

where the index j represents the x-direction, and k the

y-direction. The boundary points v v =0 have

N+1,k '3j,N+1
already been substituted into equation (4.52). Equation
(4.51) then has been reduced to a system of (NxN) algebraic
equations, i.e., equation (4.52).

A similar analysis as done previously can be made for

problems in more than two dimensions. It follows that,
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as derived before, the same matrices and procedure can be
used to reduce partial differential equations to coupled
ordinary differential equations or algebraic equations by

using the orthogonal collocation method.

Comparison to Finite Difference Techniques

Examination of the orthogonal collocation method, as
presented previously, where a problem is solved for the
solution at the collocation points rather than for the
arbitrary coefficients in the expansion, leads to the
conclusion that the equations which must finally be solved
are more compact and easier to formulate, than those
associated with conventional finite difference techniques.
| Once a problem is converted into partial differential
equations with the initial and boundary conditions known,
and eaéh term in these equations expressed as a funtion of
the independent variables, the development of the colloca-
tion equations presents no difficulty.

The orthogonal collocation method is therefore a
simple humerical technique most suitable for machine
computation and with proven fast conversion.

Most of the previous models for solving air pollution
problems neglect some of the terms in the general diffusion
equation, so that the resulting equation is less complicated

to solve. The use of the orthogonal collocation method,



43

as discussed before, will not introduce extra complica-
tions in the formulation of the final equations and their
solution if those terms are not assumed to be negligible.
Therefore, it will not be more difficult if a general
case (four independent variables, the three directions
and time) is solved, even with a non-linear reaction term.

Another advantage of the collocation method is that a
much smaller number of points may be used since the solu-
tion atAeach point is influenced directly by the value at
all the collocation points, as is the case for the exact
solution, instead of depending directly on only neighbor-
ing grid points as is the case in finite difference
schemes. In this respect then, the collocation method
.requires less computation time than a finite difference
solution of comparable accuracy. This has been proved in
several applications, some of them discussed next.

Ferguson and Finlayson [9] applied orthogonal collo-
cation to a linear unsteady-state diffusion problem in a
slab. They reported that the collocation solution is more
accurate than finite difference solutions which use three
to twelve times as many spatial grid points (they only
collocated in the spatial coordinate and solved the result-
ing ordinary differential equations).

Ferguson and Finlayson also solved the diffusion of

mass and energy in a spherical catalyst pellet with an
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exothermic first-order irreversible reaction. Here, they
again collocated only.in the x-direction and these equa-
tions were integrated using Hamming's method. 1In this case,
Ferguson and Finlayson demonstrated that the number of
collocation points can be about ten times less than the
number of finite difference grid points for equivalent
accuracy. In terms of time, the best collocation solution
was about twenty times (or more) as fast as a finite
difference solution of about the same accuracy.

Finlayson“[lo] used orthogonal collocation to solve
a two-dimensional (axial and radial directions) packed
bed reactor under the assumptions of constant physical
properties, plug flow, and a reaction governed by the
conversion and temperature. Collocation was applied in
the radial axis, and the resulting differential equations
integrated using the Runge-Kutta method and the Euler
method.

Comparison between collocation solutions and finite
difference calculations using a Crank-Nicholson implicit
method were reported to be in some cases from two to four
times faster for equivalent accuracy. In some other
cases, the collocation method was twice as fast and ten
times as accurate or four times as fast and five times

as accurate.
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Finlayson [11] also applied collocation in the axial
direction in place of the Runge-Kutta method used before,
and solved the resulting set of algebraic equations by an
iterative procedure proposed by Villadsen [32]. The solu-
tion obtained by this way was about three times faster than
the one usiné the Runge-Kutta method for equivalent ac-
curacy.

’ Finlayson [l1l] also solved the problem of tubular
reactors with only axial dispersion (concentration and
temperature) . “For this case, when orthogonal collocation
was applied, the governing equations were reduced to a
set of nonlinear algebraic equations for the concentration
and temperature at the collocation points. He used the
Newton—-Raphson method to solve them, and compared this
solution to those given in the literature using finite
difference schemes.

Finlayson used six collocation points in order to
obtain the same accuracy as reported for both a 100-grid
point finite difference solution for the isothermal case

and 481 grid points for the non-isothermal case.

Application to Turbulent Diffusion in the Atmosphere

As was discussed before, only finite-difference has
been used previously to solve for the concentration dis-

tribution in atmospheric diffusion processes. The analysis
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made in the preceding section leads to the conclusion that
air pollution modeliﬁg could be improved by the use of the
orthogonal collocation method as the numerical technique
for solving the general diffusion equation. This equation,
for a single species which will be the case studied in

(1)

the present work , 1s repeated here for convenience.

e aC aC 3C _ 3 aC.

- 9 aCc 3
3t T Wax t Y3y T Wz T 5% Kx %)+ ay(Ky 5yt
] 9C
t 57(K, 55 *+ R (4.53)

Some of the attractive properties that orthogonal
collocation has are its flexibility and easy handling of
any variable or component in the diffusion equation, as
Acompared to other numerical methods used in previous
works. The model does not increase in difficulty if all
the terms involved in equation (4.53) are incorporated in
it. That is, a similar amount of work in formulating the
collocation equatioﬁs, but not computer time in solving
them, has to be done if three instead of two dimensions
are considered in the model. The same reasoning applies
for all the components of the windAvelocity and turbulent

diffusivity, and the chemical reactions. Therefore, it is

(1) Symbols indicating averaged quantities will be
omitted henceforth. All velocities and concentra-
tions, however, continue to be time averaged quanti-
ties. '
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not necessary to assume that some terms are negligible
in order to be able éo obtain results, which in such a
case would be applicable only for some particular situa-
tions.

With the present approach then, it is possible to
simulate many types of atmospheric conditions. But to
do so, it is necessary to express all the properties in
equation (4.53) in an analytical form. This has been
done in a flexible way by introducing several parameters
in the expressions representing those properties, so
that different input data can be supplied if different
atmospheric conditions are to be tested.

Before applying orthogonal collocation to the pre-
sent model, let us obtain those expressions for the
initial and boundary conditions, turbulent diffusivities,

velocity profiles, and chemical reaction.

Initial and Boundary Conditions

The initial conditions necessary for an unsteady
state model can be expressed as follows,

cC=2cC at t=0 and any (x,y,2) (4.54)

where Cy is a constant and in general can be a function

of ¥, y, and z.
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These conditions are required to start the calcu-
lations performed by the integrating subroutine, and
therefore are generated in the MAIN of the computer
program. For all the cases studied in the present work,
there was no background concentration and thus CB was
equated to zero.

The boundary conditions at the ground, z=0, and at
the inversion base, z=H, are obtained by assuming that
both completely reflect the diffusing pollutant, i.e.,

§§.= 0 at z=0,H for any x and y (4.55)

These two boundar? conditions for the z direction
are converted into collocation equations and then incor-
'porated in the diffusion equation, as it will be seen
later in this chapter. 1If for a particular case the
gradient in equation (4.55) is not equal to zero, e.qg.

9C

—Kz Nz = Qs(x,y,t) at z=0 for any x and y (4.56)

where Qs(x,y,t) is the surface flux of fhe pollutant
studieq, the collocation equations resulted from condi-
tions (4.55) have to be changed. |

The bulk transport of the pollutant is due primarily
to the effect of the x-component of the wind velocity.
Therefore, it can be assumed that at certain distance in

the y-direction, the mean concentration is negligible, i.e.
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c » 0 at y= “Ymax' Ymax for any x and z (4.57)

where 2cymaX is the entire region of interest. 1In general,

c = f£(x,z2,t) at y= -~y Y

max’ “‘max
for any x and z (4.58)

This can also be included in the model by changing the

resulting collocation equations from conditions (4.57).

" For the purposes of solving equation (4.53), it is
necessary to define the location of the sources. These
sources can be defined with the aid of a boundary condi-
tion in the x-direction.

Let us consider a general case, i.e., a multiple
source problem, where there is more than one source
involved. If the position of the ith source is defined
by the coordinate point (JS(i), KS(i), LS(i)), the

boundary condition related to the ith source is given by

Co(i,t) at x=JS(i), y=KS(i), z=LS(1)

c = (4.59)
0 at x=JS(i) and any other y and z

where Co(i,t) is the ith source concentration, and in
general a function of time. For the purpose of studying
different situations, each Co’ assumed constant in the
present model, and its position is supplied as input'in—
formation. The way of handling multiple source will be

discussed in detail in Chapter V.
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As a convention, and knowing that for any case there
will be at least one source, the first source will always
be at x=0, that is JS(1)=0. Therefore, if the problem
involves only one source, the boundary condition in the
x-direction is given by

c, (1) at x=0, y=KS(1l), z=LS(1)

C = (4.60)
0 at x=0 and any other y and z

— Sometimes the emission rate (mass/time) and not the
source concentration is given as information. This pro-
blem can be overcome by the use of quadrature weights in
orthogonal collocation.and will be discussed later in
Chapter V.

There is no need for a second boundary condition in
the x-direction, due to the assumption of negligible
turbulent diffusivity in this direction. This will be

discussed in the next section.

Turbulent Diffusivities, Kj

Eschenroeder and Martinez [7] assumed a trapezoidal
shaped vertical profile from the ground up to the inver-
sion base for K_, the tufbulent diffusion coefficient in
the vertical direction. At low levels, Kz increases
linearly with z to some constant value. At intermediate

levels, Kz then is constant. As the mixing depth top is
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approached, KZ decreases linearly with increasing z.
The ground level and inversion layer values are assumed
to be equal. The maximum constant value is expected to

vary with wind speed approximately like

K, = 50 (a+5) m?/min (4.61)

where u is in m/s. This equation starts applying from
an elevation of 40 to 100 meters, depending upon meteoro-

logical conditions:

Figure 4.1: Variations of Diffusivity
with Height

z (m) 4

50(u + 5)

40-100

’
Kz(mz/min)
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Eschenroeder et al. [8] reviewed their previous work
based on more experimental data and concluded that equa-
tion (4.61) gives an estimate of vertical diffusivity
only in the neutral stability range, and that temperature
gradients are apparently far more influential than wind
speed in detérmining vertical diffusi#ity values.

As an improvement on their previous approach, the
depéndence on wind speed was dropped, and the diffusivity
profiles were reconstructed to represent the broad
stability cateéories (defined by Pasquill and Gifford
[30]), as shown in Figure 4.2.

The knee height A, where the constant values for Kz
apply, varies between 25m to 75m above the ground, depend-
ing on the height range of the model and the mesh interval
size.

Eschenroeder et al. assumed constant diffusivity
profiles all the way to the top because of their little
influence for the space and time scales in their calcu-
lations at the top of the mesh.

In the present model, the calculation procedure for
the turbulent diffusivities is based upon the latter
approach used by Eschenroeder et al. [8]. Using their
approach, K, will depend only on the stability class and
the vertical direction. Some slight changes were made in

that approach and are now discussed.



Figure 4.2:

Vertical Diffusivity Profiles.
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An additional stability class, between the neutral
and unstable, was incorporated in the model so that the
six classes presented by Turner [13] could be taken into
account.

The knee height A, was made dependent on the stabili-
ty class, as suggested by Pasquill [18], so that the more
unstable the conditions, the higher the knee.

" The last change made to Eschenroeder's approach was
to remove their assumption of constant diffusivity pro-
files from intermediate levels all the way to the top.

As the mixing depth top is approached then, the turbulent
diffusivities decrease linearly with increasing z, and
the ground level and inversion layer values are assumed
to ke equal. This is done for the last 100 meters of

the z-dimension, with H>300m.

Taking all these changes into account, Figure 4.2
remains as shown in-Figure 4.3.

This model was implemented in the computer program

by using the following equations(l):

For ISTB<4:
Kz = COEFK(ISTB) « 2/A(ISTB) + 60., for z<A(ISTRB)
Kz = COEFK(ISTB) + 60., for A(ISTB)<z<(H-100)
K_ = COEFK(ISTB) . (H-2z)/100 + 60., for z>(H-100)

2
(1) In the computer program the units for Kz are m" /min.
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Vertical Diffusivity Profiles

in the Present Model.

Figure 4.3
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where, COEFK(l) = 2940
COEFK(2) = 540
COEFK(3) = 258
COEFK (4) = 90

For ISTB = 5: K

I
(o) TN
=
I

for ISTB

A(1)
A(2)
A(3)
A(4)

1l
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125
125
100 (4.62)

75

60 mz/min, for any z

30 mz/min, for any z

- In order to have a flexible model, the stability

class, ISTB, is supplied as input information by the user,

Because of .the fact that once it is defined it

remains the same during the simulation, the algorithm

that calculates the turbulent diffusivities at each

orthogonal point was incorporated in the MAIN of the

computer program.

In the region of interest, the turbulence is almost

perfectly isotropic, and even below 100 meters, the degree

of isotropy seems to be sufficiently high in order to

consider, as Sutton [28] has suggested, that Ky varies

in an identical way as K-

In addition, most of the

previous models, discussed in Chapter III, considered a

constant turbulent diffusivity in the y direction. This

suggested then to relate, in the present model, Ky to Kz

in the following manner:

]
Ky = « KZ(ISTB)

(4.63)
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where « is a positive constant which has to be supplied
as input information by the user, and K; is the maximum
constant value for Kz and thus dependent only on the
stability class.

In the present model, the turbulent diffusivity in
the x-direction will be neglected as compared to the mean
wind velocity. The reason being that its behavior is not
well understood and in most of the cases it has no signi-

ficant effect on the results [24],

Velocity Profiles

bavies [5], Pasquiil [17]1, Smith [26], Tennekes and
Lumley [29], and others have developed expressions for
the velocity profiles especially in the mean flow direc-
tion. Two equation forms have been used often in previous

studies. A semi-logarithmic form for rough flows, of the
type
Uy

u(z) = kg

1n(Z-) - (4.64)
(o]

where u, is the friction velocity, Kothe von Karman's
constant, and z, a length characterizing the effect of

the surface roughness.
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The second is a power law equation which has the

following form:

a(z) = u ) (4.65)

4
1427
where ﬁl is the mean velocity at a reference height Zqs
and m is a constant.

For this problem, the latter form describes in a
better way the mean velocity in the x-direction. There-
fore, equation (4.65) will be used in the diffusion
equation.

This form of the velocity profile is used for the
lower part of the z dimension, that is from the ground
level to the knee height A, previously defined, and from
this elevation up to the mixing depth top a constant
value for the velocity is used, UST. This means then
that u will depend on the stability class, z, and the

parameters ug m, and UST.

Zqs
Usually UST, the geostrophic wind speed, is the
easiest value to obtain whether by experimental data or
previous records of the zone in question. This is the
reason why UST is required as input information in the
model.
Having in mind further adjustments for u, the con-

stant m has also to be provided as input information by

the user. This exponent m is a number which varies from
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0.1 to 0.4, depending on the roughness of the ground sur-
face as well as on atmospheric stratification. The rougher
the terrain, i.e., the larger the surface obstructions,

the thicker will be the affected layer of air, and the

more gradual will be the increase of velocity with height.
Thus, as theAroughness increases, the exponent m increases,
as it is shown in Table 4,1 which was presented by

Seinfeld [22]:

TABLE 4.1 : ESTIMATES FOR m in eq. (4.65)

Type of terrain

open country suburbs urban

m .16 .28 .40

The stability limits of m, also presented by Seinfeld

[22]), are:
.83 very stable
m = 1/7 neutral
.02 very unstable

For purposes of continuity calculations (see Chapter
V) the ground level value for the mean wind velocity in
the x-direction, UGR, is also taken into consideration in
the model and is supplied as input information. If its

value is not known at the moment of simulating a case,
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as it happened in this work, it can be assumed to be equal
to the friction velocity, u,.
The algorithm for obtaining u then, as used in the

MAIN program, is described by the following equations:

For ISTB < 4:
u = UGR for z = 0
u = UST(ETT%TﬁT)AM for 0<z<A(ISTB)
u = UST for z>A(ISTB)
For ISTB>4 : (4.66)
u = UGR for z = 0
u = UST ' for z > 0

In almost all the previous works in air pollution
‘modéling, the y-component of the mean wind velocity as
well as the z-component are assumed to be negligible.

As it was discussed before, the present model does
not increase in difficulty byv including more than one
component for the mean wind velocity. 1In spite of this,
it has been difficult to obtain equation forms for the
other two components of the wind velocity. Therefore,
it will be assumed that W, the vertical component is
negligible, and that Vv, the y-component is some fraction
of wu.

To make a general case for this study, let us con-

sider that v also varies with respect to time in a linear
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dependence until it reaches its maximum value. Because
of this dependency on time, the algorithm used to its
calculation, as described by the following equations, was
~incorporated in a subroutine called FCT:

t

v % PuTEﬁ

for 0<t<TCH (4.67)

v = Pu for t>TCH
where P is a constant that will determine the direction
of the mean wind velocity, and TCH another parameter that
will specify the time required for Vv to change from its
value at t=0 to its maximum value, P.u. Both, P and TCH
have to be supplied as'input information in the computer

program by the user.

Chemical Reactions

In the development of equation (2.6), the general
diffusion equation, an approximation concerning the
chemical reaction term was made: the term <Ri(<Cl>+C',
ceeeay <CS>+CS')> was replaced by <Ri(<Cl>, ooy <Cs>)>,
i.e., the effect of concentration fluctuations on the
rate of reaction was neglected. This is true only for
first-order reactions, however, conditions under which
this assumption is valid can be obtained for higher order
reactions.

Lamb [15] analyzed this problem for a two-dimensional

turbulent fluid transporting a single chemical species
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involving a nonlinear chemical reaction (second-order
reaction). In this case, the chemical reaction term is
expressed by

2 2

R = ~k[<C>" + <C'">] (4.68)

He concluded that the replacement of equation (4.68)

2

by -k<C>“ is valid when the reaction process is slow com-

pared with turbulent transport and the characteristic
length and time scales for changes in the mean concentra-
tion field are large compared with the corresponding
scales for turbulent transport.

Although these conditions were derived for a rela-=
tively simple two-dimensional case, the essential aspects
" of those restrictions were found to apply to the general
three-dimensional equation as well. In addition, they give
indication of the conditions of validity for general R, .

Let us turn our attention now to the mechanisms of
removal of sulfur dioxide in the atmosphere, since this
will be the chemical species used to validate the present

model. -

Although a great deal of importance has been given

a good

to sulfur oxides, in particular sulfur dioxide, the chemis-

try of sulfur dioxide in the atmosphere is still far from

being fully understood.

The removal of 802 in the atmosphere is quite complex

and can take place through several mechanisms. It has
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been suggested that atmospheric 802 can undergo oxidation
to sulfates by mainly two mechanisms: catalytic
(heterogeneous) oxidation and photochemical (homogeneous)
oxidation. However, sulfur dioxide is removed from the
atmosphere not only by oxidation, but also by sedimenta-
tion, rainou£ and washout.

Photochemical oxidation of SO, is apparently a

2

gas;phase process consisting of several chemical reactions.
In the presence of air, SO2 is oxidized to SO3 when

exposed to solar radiation, and if water is present, the
SO3 is rapidly converted to sulfuric acid. The conversion

of 802 to 503 involves excited 802 molecules, oxygen, and
oxides of sulfur other than 802. Although photochemical

oxidation of SO, can take place in clean air, the more

2
important process of 802 photooxidation occurs in atmos-
pheres containing hydrocarbons and oxides of nitrogen.
In this case, the rate of conversion of SO2 to SO3
increases markedly over that observed in pure air.
Catalytic oxidation is the principal process for 802
conversion under conditions of high humidity and high
particulate concentration. It occurs in aqueous solution,
involves both water and dissolved 02, and requires the

presence of a catalyst. The overall reaction can be

expressed as
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cat.
2SO2 + 2H20 + O2 —_— 2H2804 (4.69)

Catalysts for this reaction include several metal salts,
such as sulfates and cﬁlorides of manganese and iron.
However, most of the recent work has been dedicated to
manganous salts only.

The same reaction can also occur without the presence
of a catalyst, as discussed by Worley [34], and shown in

the following equations,

s0, + H,0 —>HSO

+
5 2 3 + H (seconds) (4.70)

2HSOS + O, —29:5 250> + 2u" (hours)

=N

In the sedimentation or deposition process, 802

"behaves as if it were a particle with a settling velocity.
Rainout and washout also serve as additional removing
mechanisms. Rainout is the incorporation of gaseous 802
in cloud droplets, While washout is the removal of 802
by rain falling through air masses below the cloud level.
Once 802 is absorbed, it is converted via oxidation (4.70)-
the heterogenous aspect causes apparent 802 level to fall.
As it can be observed, a model that would take into
account all the possible mechanisms for 502 removal in

the atmosphere and all the variables involved would be

quite complex.
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Because of the fact that the processes previously
discussed are not very well understood yet, and the
incorporation and thus the study of such a complex model
is not the main objective in the present work, only
photochemical oxidation will be considered here. Further-
more, the reéctions taking place in a system of 802,
hydrocarbons, NOX, and air are probably the least well
undérstood of all those in atmospheric chemistry, and thus
will not be considered either.

Since data for photochemical oxidation in clean air
are extremely scattered, a simplified first order reaction
model will be used to represent 802 removal from the at-
mosphere,

R = -kC (4.71)
where k is the reaction rate constant. The value of

5.8x10_5 per minute or 0.35% loss of SO, per hour, used

2
by Hallidy and Anderson [12] in their work will be the
rate constant in the present model, and must be supplied

as input information in the computer program.

Development of the Collocation Equations
The diffusion equation to be solved, and the
corresponding initial and boundary conditions, under the

assumptions previously discussed, are:
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aC 9C aC _ 3 " 9C 3 9C

T + U + v—a—y— = -3—1—,—(Ky -5—17) + _B—E(KZ '5'2) + R (4.72)
cC=0 at t=0, and any (x,y,2) (4.73)
%% =0 at z=0,H for any x and y (4.74)
C (1) at x=0, y=KS(1l), z=LS(1l)
o _ 0 (4.75)
0 at x=0, and any other y
and z
c=20 at ¥= ~Yoox’ Ynax (4.76)
for any x and z
In equation (4.72), the velocity orofiles are
assumed to be,
u= y(z,ISTB) (4.77)
v =n(z,t,ISTB) (4.78)
the turbulent diffusivities,
| K, = £ (ISTB) (4.79)
K, = t(z,ISTB) (4.80)
and the rate of reaction, |
R = -kC (4.81)

For this problem, let us transform the spatial
coordinates to vield limits of 0 to 1 by the following

procedure:

(*) The multiple sources case will be discussed in
Chapter V.
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R
x* = = (4.82)
max
§_¥_+ 1
Y*'_“I‘n'a"}'{"i'—' (4.83)
z* = % (4.84)

For simplicity, from now on the asterisk will be
dropped out from the independent variables, x*, y*, and
z*,

Substituting equations (4.77) through (4.84) into

equation (4.72) one obtains
2

Yo Yo Yo ac _ 5%¢
st Pt ey TR3 e T R T2 Y
y
2
+ R 3—%.— kC (4.85)
YA
where
R, (z) = y(z,ISTB) 1 (4.86)
max
R,(z,t) = n(z,t,ISTB) §—l~— (4.87)
%
max
_d{z(z,IsTB)} 1
Ry(z) = °C = (4.88)
: H
_ 1
R5 = E(ISTB). 5 (4.89)
4y
max

R, (z) = ¢(z,ISTB) ;% (4.90)
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There are many ways in which orthogonal collocation
can be applied to equation (4.85), but it is chosen to
collocate only in the three directions, x, vy, and z, so
that a system of ordinary differential equations with
respect to time is left to be solved. The reason of
doing this ié because the solution ofAthe diffusion
equation is primarily wanted at any instant of time.

If the emission source is put in the middle of the
interval in the y-direction, and only the x-component of
the wind velocity is taken into account, then by examining
the boundary conditions it can be concluded that this
problém would be symmetric with respect to y. Since this
is only a particular case, it is better to apply the
equations for a non-symmetric case to every direction.

In doing this, let Nx’ Ny' and Nz be the number of
collocation points in the x, y, and z directions, respec-

tively, and C the mean concentration at the point

k2
(x., Ykl Z,Q,) .

J
Equation (4.85) remains then as,
dc NX+2 Ny+2
jkg (1) (2) _
gt Ry () E Aji Cikg T Ry (2,t) T ALY Cjig
i=1 i=1 .
N +2 Ny+2
(3) (2)
5(2) T AJT'CL . =R I B I'C., +
i=1 i Tjki 5 i=1 ki 7jig
N, _+2
2 (3
+ Re (2) ¢ Byi CJki - kcjkz (4.91)

i=1
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I

for Jj=1, ..., Nx+2

k

l' e e oy Ny+2

=1, ..., Nz+2

As discussed before, matrices A and B depend on the
number of collocation points. For a general case, that
number of points can be different for each direction and
therefore, A and B would be different. Furthermore, Nx’
N_, and NZ could be changed between runs. These reasons
lead to the conclusion that it is better to include
subroutines JCBI and DFOPR in the computer program rather
than putting matrices A and B as input data each time the
collocation points are changed.

In equation (4.91), the indices of matrices A and B
represent the direction and thus the way they are computed,
i.e., (1), (2), and (3) stand for the x, y, and z
directions, respectively.

The application of orthogonal collocation to the
boundary conditions, equations (4.74) through (4.76),

gives the following expressions:

N +2
s A o t z=0 - (4.92)
20 811 Gk T at z= ‘ .
i=1

N +2

Z o (3)

_E AN +2,icjki = 0 at z=1 (4.93)
i=]1 Z
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Co(l) at point source
Clkg 0 elsewhere (4.9
lez = 0 at y=0 (4.95)
CjN +29 0 at y=1 (4.96)
b4

Equations (4.92) and (4.93) can also be written as

N_+1

(3) z (3) (3) _
211 C5ke *LE) P11 Cgki t Piw +2Ckn 42 T 0 (4-97)
N, +1
(3) (3)
C + Z A .C.
ANZ+2 173kl j=2 N +217jk1
(3)
z z z
Solving for Cjkl and CjkNZ+2 one obtains:
Nz+l
(3) 5 (3) (3) (3)
'i§2 (Ay,"A N_+2i AN 421 P1i )65k
CjkN 42 = T (4.99)
'z Ab(]3) A3 a(3),(3)
z+2l lNz+2 11 Nz+2NZ+2
(3) Nz+l (3)
AlNz+2CjkN +2 +i£2 A1: Coki
C5k177 NE) (4.100)
ll

These expressions can be simplified by defininé,

_ A (3) (3) _ A (3),(3)
DEN = ANZ+21A1NZ+2 All ANZ+2NZ+2 (4.101)
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A{i)Aé3121 B Aé3izlA{i)
APAl (i) = e o T (4.102)
so that equation (4.99) remains as
N, +1
Cjsz+2 =i£2 APAl(i)Cjki (4.103)

In cases where there is no inversion layer at the

maximum elevation, H, as it has been assumed so far, a

new boundary condition at this point can be assumed as
cC=20 at z=H for any x and y (4.104)

This condition can be easily included in equation

(4.103) :

N_+1

z
=l£2 APAL (1) Cjki INVRS (4.105)

Cixn_+2
A
where INVRS=1 means that there is inversion at z=H, and
INVRS=b means that there is no inversion and the concen-
tration at z=H is equal to zero.

By substituting equations (4.94) through (4.96),

equation (4.91) remains as follows:
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N +2 N +1
) + S(4) + R, (2) s aWe 4 ro(2,0) LN -
dt ] 1Y P51 Tike AR A T A B Y )
i=2 i=2
N +1
_ (3) _ (3) _
Ry(R)Ap77°Cypq ~ Ry(A) T Agi7Chyy
i=2
N+
_ (3) _ (2)
R (Q)AQN +2%5kn_+2 T Fs iiz ki Cyie T
Nz-l-l
(3) (3)
+ Re(2)Bp17Cypy * R6(2)i§2 Bei Cski T
+ r.(2)B3) - kC (4.106)
6 RN +2C jkN +2 k2 .
And rearranging,
dcjkg = -5(3j) - R (2)N§+2A(l)c +
dt ] 1YL By Vike
1=2
+ [R3(2)A(3) + R (SZ,)B(3)]C k1 +
- (3) (3)
* IRy (WA 42 * Re(“)BzNZ+z]CjkNZ+2 +
NZ+1
(3) (3)
+ I IRgIAGT + R(B1Cs, +
i=2
Ny +1 ,
(2) _ (2 . .
+ T [RgB] Rz(z,t)Akiicji2 KCip, (4-207)

i=2
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or,
.13} R ANNEY
— = -s(j) - Rl(sz)ii2 Aji CiksL + 12361(!&)0jkl +
Nz+1
+ R362(5L)CjkN +2 +'§ R361(5L,1)Cjki +
. Z i=2 )
Ny+l
-+_§ RSZI(R,k,l,t)Cin - kcij (4.108)
i=2
for =2, eees NX+2
k=2, ..., Ny+1
=2, ..., Nz+l
where
(1) -
f Rl(Ls(l))Ajl Co(l) at k=KS(1)
2=LS (1)
S(3j) = ﬁ (4.109)
t ) 0 elsewhere

and C. and C are given by equations (4.100) and

jkl jsz+2
(4.105), respectively.

Equation (4.108) gives then a set of (Nx+l)(Nv)(Nz)
first-order ordinary differential equations to solve for
the concentration as a function of time at the orthogonal

collocation points in the three directions, x, y, and z.
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Chapter V

FORMULATION OF CALCULATIONAL SCHEME

Calculation Procedure

It has previously been shown that the solution to
the turbulent diffusion process in the atmosphere can be
obtained by the use of the K-theory, which can be accom-
plished by solving a partial differential equation.
Orthogonal collocation simplifies this, reducing that
equation to a system of first-order ordinary differential
equations with respect  to time,

The basic calculational procedure then is to solve
.that system of equations (4.108) on a digital computer.
There are several methods that can be used for this pur-
pose, but in this work it was decided to use RKGS, a
subroutine furnished by IBM [14] which in essence is a
fourth~order Runge-kutta method.

In addition to RKGS, two other subfoutines must be
supplied: A function subroutine, called FCT in the com-
puter program (see Appendix A), where the system of first-
order ordinary differential equations to be solved are
provided; and an output subroutine, called OUTP in the
computer program, which Qill print the results computed

by RKGS.
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In RKGS, the integration is performed with respect
to time, and therefore the solution of the problem can
be obtained at any moment. However, it is usually desired
to print it only at every defined interval of time.
Having this in mind, an algorithm that uses a variable
called PRDEL‘was incorporated in OUTP so that it will
allow the computer to print the results only every PRDEL
uni£s of time.

Due to the nature of orthogonal collocation, small
oscillations can be introduced in the solution of the
problem. Although these are part of the true solution of
the collocation equations, there might be small negative
concentrations as output for points that follow zero
levels of concentration. Because of this, and by sugges-—
tions of Stewart [27] and Villadsen [33], a subroutine
called ZERO is always called before printing the results.
This subroutine will convert all the concentration values
that follow the zero level to zero. This testing is done
in all three directions.

Because of the fact that actual data are available
as average concentratioﬁs, the computer program contains
a subroutine called AVG, which will convert the solution
to a time average solution, so that a comparison to
experimental data can be performed. To do this, AVG

subroutine computes the time average concentrations at
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every collocation point for three consecutive points in
time; i.e., 0, t, and.Q, where t is any point in time,

© (=t-PRDEL) is the time between the pollutant release (t=0)
and the initiation of the averaging time, and

Q (=t+PRDEL) is the end of the averaging time. In order
to reduce the program storage requirement, AVG subroutine

is performed by direct-access input/output statements.

Multiple sources

In Chapter IV, orthogonal collocation was applied to
problems involving only one point source. The same re-
sulting collocation equations can be used to multiple
_source cases, but the calculational procedure is different.

As it was previously discussed, the concentration
at the source is considered here as the boundary condition
in the x-direction. If the problem involves only one
source, the input information required to solve it con-
sists of Co(l), the concentration at the source, KS(1)
and LS(l), the location of the point source in the y and
z directions, respectively (JS(1) in this case is equal
to zero, i.e., x=0), and XMAX, YMAX, and H, the dimensions
in the three directions. The calculation of the solution
starts at TINIT, the initial time and ends at ENDS, the
end of the simulation time. Intermediate results are

computed at every interval of integration time, PRMT(3),
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but are printed only every PRDEL units of time. TINIT,
ENDS, PRMT(3), and PRDEL are also required as input
information.

The calculation procedure for cases involving more
than one source is different than the one previously pre-
sented. The reason being the interaction that occurs on
the concentration distribution due to the multiple sources.

In order to describe the calculation procedure for
multiple sources, let us analyze a situation that involves
three point sources. 1In this case, the source concen-
trations, Co(i) are still considered as boundary condi-
tions in the x-direction, but while the first source is
-loéated at x=0, the following ones can be located in
general at x>0. The entire domain in the x~direction is
divided into three portions, so that the first source is
located at x=0, the second at XMAX(l), and the third at
XMAX (2). 1In order'to define completely each source, its
position in the y and z directions must-be supplied by
the values of KS(i) and LS(i), respectively, where i
indicates the number of the source. This case then can
be represented as it is shown in Figure 5.1.

The input information given by TINIT, ENDS, PRMT(3),
PRDEL, NX, NY, NZ, YMAX, and H is the same for each
source. The number of sources, NSRCS, must also be

supplied as input information, and in the present model
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NSRCS < 3. If more than three sources are to be consider-
ed, changes should be made in the dimension and common
statements, initial conditions, and RKGS call statements.

The results for the first portion of Figure 5.1
are the same as if they were computed for a single source
problem, but'for the next portions this is different. The
concentrations in the second portion not only depend on
Co(é), but also on the mass flux that comes from the first
portion. The same reasoning applies for subsequent por-
tions.

The calculation procedure then is as follows: at
every interval of integration time, the concentration
values at any orthogonal point in the y-z plane at
x=XMAX (1) are recorded and used, with CO(2), as boundary
conditions for the second portion. The same procedure is
also utilized for the following portions. This method
can be implemented in the computer program by two ways:

(1) Integrating the three portions at the same time for
every interval of time, printing every PRDEL units of
time, and continuing to do this until ENDS is reached.
This can be done by integrating first the 1ast portion
for one interval of time. The values recorded for the
preceding portion at the previous interval of time are
used as boundary conditions for the interval of time and

the portion in question. After this calculation is over,
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the same procedure can be applied for the next portion
going backwards, and continuing to do this until the
first portion is reached. 1In this way, the same storage
can be used to record the values at x=XMAX(1l) and XMAX(2)
for every interval of time. Furthermore, once the values
are printed,-the concentration distribution at time=0 are
not used any more and that storage can be utilized for
the next PRDEL units of time.

(2) Integrating the first portion between TINIT and ENDS
and recording all the values, then integrating the next por-
tion i all the way, using the values at x=XMAX(i-1) for
every interval of integration time recorded previously,
and continuing to do this until the last portion is
reached. Then, at every PRDEL units of time the solution
for that portion and the ones in the disk can be printed.
The simulation stops when ENDS is reached for that last
portidn. It is evident that this method will require
more storage capacity than the previous one.

An analysis made on both methods indicated less
computational time for the latter way. Therefore, the
second method was put in the system.

It should be pointed out that the position of any
source can be located only at orthogonal collocation
points. That position, given by KS and LS, must be

supplied with point numbers. For example, if N,=7 and
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the location of a source is at one half of the z-diamen-
sion, LS should be 5 (the total number of collocation

points is 9, including z=0 and z=1).

Continuity

In the present model, the conceniration at the source,
Co(i), is used to represent the source, and therefore is
a réquired input information. Unfortunately, the emis-
sion rate is, in many cases, the only information that is
available. One of the objectives of the present study is
to obtain a general model that would also compute the
concentration distribution when only the emission rate
of the source is given.

There is a need then to develop a calculational

procedure which would compute a concentration equivalent
to the emission rate. The concept of continuity can be
used for this purpose. Moreover, the flux at any x is
a valuable piece of information that can be obtained
from the results of an air pollution model. Therefore,
a general continuity calculation will be obtained and
then used for the particular problem of computing Co(i)
from the emission rate Q(i).

The flux across any plane normal to the x axis can

be expressed by the following equation:
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H YMAX .
J J Ce+u dydz = Q.. (5.1)
0-YMAX J
where C is the mean concentration at any point in the
vy—-z plane, u its corresponding x-component of the mean
wind velocity, and Q. the mass rate at x=xj.

If there was no %echanism of removal in a model
involving one source, the pollutant would be not created
or lost within the region of interest, and at steady state
Qx. would be the same for any value of x, and equal to
Q(l). For a multiple source case, Qx. would be equal to
the sum of the constant emission rateg for a particular
source and its precedings. In such a case,the continuity
condition should be included in the model, but since
removal is taken into account in the present study, the
values-of Qx. will vary along the x direction.

Transfoiming the spatial coordinates into an inter-
val between 0 and 1, equation (5.1l) remains as follows:

11
JJ Ceu (2-YMAX-H)dydz = Q_ (5.2)
00 J

Using the gquadrature weights, the double integral
can be transformed into a double summation leading to the

following collocation equation
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N +2 N_+2

Hne B

(2) (o (3) ) Y o
W awt) ey e 2omaxen) = ij (5.3)

I~

1 =1

for j=2, ..., Nx+2

But from the boundary conditions in the y direction,

cjl£=chY+22 = 0 3=2, ..., N_+2 (5.4)

L

l’ .I.’ Nz+2

Finally. then, equation (5.3) remains as

N +1 N +2

™~ N

w‘Z)(k)w‘3)(z)ciju(z)(2-YMAx-H) (5.5)

for j=2, ..., NX+2

Equation (5.5) was included in the model (in subrou-
tine OUTP) so that the mass flux can be known at any
time and at any position in the x direction. In a case
of no removal, these values, if they were equal as it
will be shown in the next chapter, serve as a proof of
the validity of the model and the numerical technique
used.

In the case of using equation (5.5) to calculate
the equivalent Co(i), Qx. is equated to the constant rate
of emission, Q(i), and ail the concentrations but the
one at the point source are made equal to zero. Equation

(5.5) becomes then
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oti) = w? ks(1)w) @si)c (Wu@s(i)) (2-vmax-1) (5.6)

for i=1, ..., NSRCS
Therefore, whenever Q(i) is the only information
available, the equivalent concentration at the source can
be calculated from the following equation:

Q1)
w (xs1)) w3 (ns(i)) w(Ls(i)) 2-YMAX-H

Co(i) = (5.7)
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Chapter VI

PRESENTATION AND ANALYSIS OF RESULTS

The objective of the current study was to demonstrate
the suitability of the present method to simulate diffu-
sion in the atmosphere. To do this, experimental cases
are simulated with the present model, and the results
compared to the corresponding experimental data. Unfor-
tunately, at the present moment there are almost no
experimental data available in the literature. This is
the reason why only the Project Prairie Grass diffusion
data at O'Neill, Nebraska, were considered. Four cases
from this Project were simulated and the results compared
to the experimental data.

In addition, a parametric study was performed, and
the sensitivity of the present model to variations in the
atmospheric conditibns analyzed. This was done by simu-

lating several hypothetical cases.

Comparison to Experimental Values

The atmospheric diffusion data from Runs #20, #24,
#45, and #54 of the Project Prairie Grass data [2, 3, 13]

were used as a test of the present method.
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Project Prairie Grass was a field program designed
to provide experimenfal data on the diffusion of a tracer
gas in the atmosphere. The sulfur dioxide tracer gas
was released for ten minutes over a flat prairie at
O'Neill, Nebraska. The emission was done at about 50
centimeters above the ground and the gas was sampled
along semicircular arcs from 50 meters to 800 meters from
the source. Samplers were placed at 1.5m above the
ground. In addition, concentration profiles along the
vertical were measured from samplers located at nine
levels on each of six towers positioned along the 100m arc.

In the experiments, the entire sampling network was
~put in operation just before the start of the gas release
and the operation continued until the tracer was trans-
ported beyond the 800m arc, Although the actual measure-
ments Qere of total exposure for each gas release, the
investigators reported average concentrations for a ten
minute sampling time. It was estimated that the concen-
tration measurements were accurate to within about 10%.

Séveral meteorological measurements were taken during
the tracer release. BAmong others, the mean wind velocity
at two meters above ground. These values were used in
the present model to simulate the mean wind velocity pro-

file.
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The source strengths Q, and the mean wind velocities

at 2 meters u for the four cases simulated in the

ll

present study were as follows:

Table 6.1 : Source Strengths and Mean Velocities (at 2m)

for Experimental Cases Simulated

Run No. 0(g/s) u, (m/s)
20 l01.2 9.38
24 41.2 5.86
45 : 100.8 6.02
54 ' 43.4 3.94

In the present model, concentration profiles were
simulated using the power law equation for the mean wind

velocity as

= uy (2ot (6.1)
pA
1
where uy corresponds to the value given in Table 6.1 for
an elevation of z. = 2m, and z = elevation in meters.

1

It can be observed that the source emission rate is
the only available information related to the source.
Therefore, the equivalent concentration at the source,
Co(l), was calculated using equation (5.7) with the source

strength Q(1l) given by Table 6.1.
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Since no data for the turbulent diffusivities were
available, the four cases were simulated assuming a=1,
i.e., the turbulent diffusivities in the y and z directions
were the same; and a stability class 4, i.e., neutral
stability. In addition, INVRS was made equal to zero,
i.e., no inversion at the maximum elevation; and a first-
order reaction with k = 5.8x10—5 min—l was assumed for
all cases.

In addition to the experimental walues, the concen-
tration profiles calculated by the present method were
also compared to the ones (#45 and #54) obtained by the
statistical method developed by Bullin [4].

Simulated vertical profiles at the centerline for
Runs #20, #24, and #45, and at 20m from the centerline
for Run #54 (no experimental data for the centerline were
available) are compared with the limited experimental
data available in Figures 6.1 through 6.4. There is
good agreement between experimental and simulated vertical
profiles except for Run #45, where the concentration
values near ground level were much lower than the experi-
mental ones. The reason for this discrepancy is a higher
simulated velocity profile, u,, as compared to the actual
one u_. This difference, especially near ground level,

can be observed in Table 6.2.



Table 6.2 : Comparison Between Actual and
Theoretical Values for the Mean

Velocity in Run #45

z (m) u_ (m/s) ug (m/s)
0.25 3.78 4.50
0.5 4,60 4,96
1.0 5,31 5.46
2.0 6.02 6.02
4.0 6.65 6.63
8.0 7.35 7.31
16.0 7.88 8.05

Another reason for the discrepance in Run #45 can be due
to a possible smaller simulated turbulent diffusivity in
the z direction. fhis was checked by simulating the same
problem, but with stability class 3, i.e., semi-unstable.
The results are also plotted in Figure 6.3, and it can
be observed that the concentration values increased and
thus the difference between the experimental and theore-

tical values decreased.
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Horizontal concentration profiles for the four cases
at 1.5m above ground and at downwind distances of 200m and
400m are shown in Fiqures 6.5 through 6.8. In general,
the agreement between experimental and simulated values is
good.

" The méss flux (g/s) across y-z planes at any x were
also calculated using the results obtained for the concen-
tration. These values are given in Figures 6.1 through
(6.8) for all the four cases analyzed. The comparison of
these values with the experimental data shows good agree-
ment with an average difference of about 1.39%, and a

maximum of 2.67%.
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Figure 6.1: Comparison of Vertical Concentration

Profile.
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Figure 6.2: Comparison of Vertical
Concentration Profile,
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® Run # 24 Prairie Grass
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Figure 6.5: Comparison of Horizontal Concentration Profile.
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Figure 6.6: Comparison of Horizontal Concentration Profile.
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Figure 6.7: Comparison of Horizontal Concentration Profile.
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Figure 6.8: Comparison of Horizontal Concentration Profile.
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Hypothetical Cases

Concentration pfofiles were simulated for all the
hypothetical cases shown in Table 6.3. Vertical profiles
at the centerline (y=0) and at several downwind locations
for cases 4 through 6 are shown as a function of time in
Figures 6.9 through 6,12. As it would be expected,
there is a peak in the concentration at the elevation of
the effective emission height. The value of this concen-
tration peak increases as the atmospheric stability
increases.

The concentration distribution for cases 1 through 7,
at the steady state and for different x and vy locations
~are shown in Tables 6.4 and 6.5, These correspond to an
elevation of the effective emission height and the ground
level, respectively.

Tébles 6.6 and 6.7 show case 8, where a velocity in
the y direction is ‘included, This case is explained as a
function of time so that the development of the plume
can be clearly visualized.

Tﬁis parametric study, i.e., cases 1 through 8, will
be analyzed in more detail in the next section.

A multiple source case is shown in Table 6.9, and
each source acting individually is shown in Table 6.8.
The effect of their interaction can be obtaiﬁed by

comparing both Tables.



Table 6.3 : Hypothetical Cases Simulated

(1) (3)

SOURCE SOURCE STABILITY RATE OF
CASE Igg{]Rggs LOCA(TION STRENGTH (2) UusT REAC?IST .
m) (kg/s) CLASS ALPHA (m/s) (min™t) AM P(%)
1 1 (0,0,150) 5 D 1 5 0 .25 0
2 1 (0,0,150) 5 D 2 5 0 .15 0
3 1 (0,0,150) 5 D 2 5 0 .25 0
4 1 (0,0,150) 5 D 2 5  5.8x10 ° .25 0
5 1 (0,0,150) 5 B 2 5  5.8x107° .25 0
6 1 (0,0,150) 5 E 2 5  5.8x107° .25 0
7 1 (0,0,252.5) 5 D 2 5  5.8x10°° .25 0
8 1 (0,0,150) 5 D 2 5  5.8x107° .25 5
9 1 (0,-284.1, 3 D 2 5  5.8x10° .25 0
252.5)
10 2 (0,0,150) 5 D 5.8x107° .25
(10000,-284.1, 3 D 5.8x10 > .25
252.5)

(1) The value in the z direction refers to the effective emission height.

00T

(2) Using Pasquill-Gifford definition for stability categories.

(3) Rate of reaction for a first-order reaction.
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It should be noted that the concentration distribu-
tion due to each source acting individually is at the
steady state. This occurs when the time between the
start of release and the initiation of the averaging
time, 0, is equal to 80 minutes and the end of the averag-
ing time, Q, is equal to 90 minutes. However, when both
sources are put together, the steady state is reached
after a longer time.

For all of the cases simulated without reaction,
the differences between the mass flux at any x location,
at steady state, and the constant source emission rate
were not more than 4% of the emission rate. These results
show the validity of the model in computing the concentra-
tion distribution, and also that the present method can

handle continuity calculations.
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Figure 6.9: Vertical Concentration Profiles for
Hypothetical Cases 4, 5 and 6.
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Figure 6.10: Vertical Concentration Profiles for
Hypothetical Cases 4, 5 and 6.
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Figure 6.11: Vertical Concentration Profiles for
Hypothetical Cases 4, 5 and 6.
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Figure 6.12: Vertical Concentration Profiles for
Hypothetical Cases 4, 5 and 6.
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Sensivity Analysis

The merit of anf model depends on its ability to
represent the actual physics and chemistry.

It is evident from the diffusion equation that both
the turbulent diffusivities and the velocity profiles have
a direct influence on the values calculated by the present
model. This is the reason why, as was previously dis-
cussed, general expressions are provided for the turbulent
diffusivities and the velocity profiles by means of several
parameters. In this way, different functional relation-
ships can be easily tested with the present model.

All the parameters given in Table 6.10 must be
supplied as input information by the user. Therefore,
these parameters can be selected to obtain the best set
which will represent the actual conditions of the
problem to solve.

The influence of these parameters on the concentra-
tion distribution is discussed next. The basis of this
analysis is the parametric study on hypothetical cases
previoﬁsly presented.

The influence of AM can be observed from a comparison
between cases 2 and 3. As the wind velocity increases,
i.e., AM decreases, the values for the mean concentration
at a same position decrease. This effect is.more evident

for the concentration distribution at the ground level.
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Table 6.10 : Parameters in Turbulent

Diffusivity and Velocity

Profiles
ISTB the stability class
ALPHA the coefficient in the equation for the

y-component of the turbulent diffusivity

vector
UST the geostrophic wind speed
AaM the exponent in the power law equation for

the velocity profiles

P the constant that determines the direction
of the mean wind velocity

TCH the parameter that specifies the time required
for the y-component of the wind velocity to
change from its value at t=0 to its maximum

value, P-u

A comparison between cases 1 and 3 shows the effect
of alpha on the concentration distribution. An increase
in alpha (Case 3) means an increase in the y-component
of the turbulent diffusivity vector, and thus more dis-
persion occurs in the y-direction. The net effect, as

can be observed in Tables 6.4 and 6.5, is that the
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concentration at the centerline decreases, and at any
y different than zero increases, when compared to the values
at same x and z for case 1.

The effect of the chemical reaction on the concentra-
tion distribution can be observed from a comparison
between cases 3 and 4. The concentration values at any
location, x, v, z, in case 4, where a chemical reaction
occurs, are smaller than the values in case 3, where the
rate of reaction is zero.

A comparison between cases 4, 5, and 6 shows the
effect of the atmospheric stability on the concentration
distribution. As the atmospheric stability increases, the
concentration values at the centerline increase, and the
concentration distribution at ground level decreases. It
can also be observed that as the instability increases,
the pollutant dispersion increases, and the x-position of
the maximum ground level concentration moves closer to
the source.

Cagé 7 shows the effect of the stack height on the
concentration distribution. It is evident that as the
stack height increases, the concentration values at
ground level decrease (compare with case 4).

Finally, the effect of the y-component of the wind
velocity (case 8) is shown in Tables 6.6 and 6.7. In this

case, V was directed in the positive y-direction (from
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-YMAX to YMAX), and the net effect is to move the plume
more towards that difection.

From this analysis it can be concluded that the
present model responds to variations in atmospheric con-
ditions. Furthermore, the results indicate good agreement
when compared to an actual response one would expect.

There are two additional parameters that will also
influence the results of the present work. Although they
do not affect the solution as much as the previous ones,
some attention should be devoted to them.

One arises because of the use of RKGS subroutine for
solving the system of first-order ordinary differential
. equations. This parameter is the upper error bound,
which must be supplied as input information by the user,
and is‘called PRMT(4) in the computer program.

Neither the truncation errors nor estimates of them
are obtained in the calculational procedure performed by
"RKGS". Therefore, control of accuracy'and adjustment
of the step size is done by comparison of the results due
to double and single step size calculations.

The procedure is the following: a test value § (see
RKGS [14]), which is an approximate measure for the local
truncation error, is compared to the given tolerance
PRMT(4). If § is greater the PRMT(4), the s£ep size or

increment of integration of the independent variable is
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halved, and the procedure starts again. However, if § is
less than PRMT(4), the results are assumed to be correct.
It can be observed that the larger the value of
PRMT(4), the faster the integration is performed. This
indicates a decrease in the computing time required, but
there is a possibility of obtaining less accurate results.
In order to avoid this inaccuracy on the results,
the value of PRMT(4) is usually given small, i.e., in the
range of 10"3 to 10—5. However, its value and the value
for PRMT(3), the initial step size, are actually depen-
dent on the problem to be solved. Unfortunately, there
is no general formula to evaluate these parameters. There-
fore, for each particular problem, their values have to
be studied in order to obtain a fast and accurate solution.
In the present work, this study was performed in the
following way: initially, a small value for PRMT(4) was
given, i.e., 10—5. .Then, this upper error bound was
increased and the results for the concentration distribu-
tion compared to the previous ones. This procedure was
stopped when a change in the second decimal on the
concentration values was observed. The corresponding
PRMT (4) was then used thereafter, for all the other cases
solved.
A similar procedure was performed to obtain the best

value for PRMT(3). In this case, several values were
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tested and the corresponding computing times compared.
It should be pointed out that this parameter affects only
the number of bisections done on it, which is also related
to the given tolerance PRMT(4).

For the present study, the best values obtained for

these two parameters are given in Table 6.11.

Table 6.11 : PRMT(3) and PRMT(4) Values

Used in the Simulations

Prairie Grass Hypothetical

"~ Runs Cases
PRMT (3) .05 min 2.5 min
PRMT (4) .01 min 1.0 min

It can be observed that the values of PRMT(3) and
PRMT(4) for the Prairie Grass runs are much smaller than
those for the hypothetical cases. The reason being the
much smaller dimensions in the three coordinate directions,
and thus a smaller step size of integration and smaller
upper error bound were needed. | .

Orthogonal collocation introduces a second parameter
that can affect the solution of the model. It is evident

that the number of equations increases as the number of
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orthogonal points used to obtain the solution is increased.
This situation will therefore increase the computer time
requirements.

Having this in mind, the present method was developed
for a variable number of orthogonal points in the x, vy,
and z directions. They must be supplied as input infor-
mation by the user, and can be changed from one simulation
to another. However, in the present program there is a
restriction to use not more than 15 points in each direc-
tion and the product (Nx+l)*Ny*Nz be less than 700. The
reason being dimension and common statements presently
used in the computer program. Actually, no limit exists
except for computer capacities and time requirements to
solve the problem.

A similar analysis to the one performed for PRMT(4)
was doﬁe for the number of orthogonal points needed to
obtain accurate results. It was concluded that 5 to 10

points in each direction were enough.

Facilities at U. of H. and Time Requirements

The computer facilities at the University of Houston
consist of a UNIVAC 1108 digital computer at the University
Computing Center and of an IBM 360 Model 44 digital
computer in the Engineering Systems Simulation Laboratory

of the Cullen College of Engineering.
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The computer time required to simulate atmospheric
diffusion by the present method depends on the type of
problem to be solved. For all the hypothetical cases
simulated, with the exception of cases 5 and 10, the ratio
of CPU time to real time was about 1/93 on the UNIVAC and
1/16 on the IBM. Case 5 was solved with a ratio of 1/53
on the UNIVAC and 1/10 on the IBM,'and the two sources
case had a ratio of 1/46 and 1/7, respectively.

The computer time required to solve each of the
Prairie Grass runs was higher than the hypothetical cases.
The reason being the small dimensions in the x, y, z
directions, and thus a very small diffusion time. This
required, as it was previously discussed, a very small
step size in the integration of the differential equations
and a very small upper error bound. In these cases, the
ratio 6f CPU time to real time was about 1/2 on the UNIVAC

and 3/1 on the IBM.
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Chapter VII

SUMMARY OF RESULTS AND RECOMMENDATIONS

Turbulent diffusion from single or multiple point
sources in the atmosphere was successfully simulated using
the K-theory and a new numerical technique, orthogonal
collocation,

Excellent agreement was observed between simulated
and experimental concentration profiles for ground level
emission sources. The present model had also an excellent
response to variations in atmospheric conditions. This
was obtained by simulating hypothetical elevated source
cases.

Empirical equations were used to describe the mean
wind velocities and the turbulent diffusivities. Several
parameters were included in these equations so that many
atmospheric conditions can be simulated by the present
technique.

The present method has several very significant
advantages over other available methods, i.e.,

1.) A general 3-dimensional, unsteady state problem can
be solved using a simpler numerical technique.'

Accurate results can be obtained in very reasonable

amount of computer time.
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3.)

4.)

5.)

6.)
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The method can handle multiple sources put at any
position, depending only on the orthogonal points
considered.

Several meteorological effects are taken into
consideration.

Mean velocities and turbulent diffusivities can be
functions of all three position coordinates, time,
and meteorological conditions.

Cases with or without an inversion layer, and with
or without generation or deposition at the ground
level can be solved.

The concentration'at the source or the emission rate
can be given as input information. The method will
also calculate the flux across y-z planes at
x=constant.

Chemical reactions in the atmosphere can be incor-
porated.

Most of the assumptions involved in the present

method are in the input information.

Although the present model gives an improved method

for solving atmospheric diffusion problems; it should be

extended such that any general case could be solved.

These extensions should include:



1.)

2.)

3.)

4.)

5.)

130

A better representation of true dispersion processes
by means of improving the expressions for turbulent
diffusivity and mean wind velocity profiles;

The incorporation of more realistic chemical reac-
tions and in general any type of removal processes;
The incorporation of other atmospheric effects such
as the Coriolis effect;

Improvements in orthogonal collocation such as
removing the restriction on the position of each
point source; and

Extension to area and line sources.
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APPENDIX A

COMPUTER PROGRAM LISTING

The computer program used in the present work is shown
next. All statements are written in Fortran IV. This
program can be executed in IBM 360 or UNIVAC 1108 digital

computers.



PAGE 1

1: C e e e 32 32 A we e s Kk e e A e sk sk e e i ke sie e fe e e e 3 3 ke ol e A R R e e e e e ek A e R xR g ek Aol on ok el xRk MA TN 1N
2: C MAT, 2D
32 C MADCL FOR ATMPSPHERIC DIFFUSION RY NRTHOSAMNAL COLLOCAT ITON MA [N 30
4 2 C MAIN 40
": € MIGUFL T. FLEISCHER MATIM 50
5 C MAIN AU
I {. A e A e e e el 7o ki i 3 s Aok Sk e SR ok i i e el s e e e sl 3 s AR e e Xe e e s et ok o e ol R ek R ok Ak e ok RORRORR K MA [N 70
3: C MATH 40
9: C MATN 30
10: € NOMENCLATUR™ MAIN 16O
11: ¢ MATN 110
12: ¢ MATIN 120
13: C FTINITLENDS = IQITIAL AND FIMNAL SIMULATION TIMES rMaIN 10
l4: C Y — COMNCENTRATION (USFDr FOIR PKGCA) MATN 140
19: C CC{IyJsKyL)= CONCENTRATINON AT POTIMT (JeK,L) DUE PRIMARILY TN MATM 1490
142 C ITH. SOURPCFE (USTH FIR QUTPUT) MAIN 160
17: C LlJyKyL) - CONCENTRATINNY AT POLINT (JoK,L){USED FOR ZERNI AND AVCIMAIN 170
18: C X = NUMEER 1IF POINTS IM X DIRECTIUN MAT™ 140
1?2: € oY = NUMBER NFE PCIMTS IM Y DIRECTIOLN MAIN 140
20: C HZ - NUMRER NF POINTS IN 7 DIRECTICN MATM 200
21: C XMAX(T) = MAXIMUMN DISTAMC: FROM THE TTH. SOURCE IN THE MAIN 1)
22: C DIRLCTICM MATIMN 220
23: C YMA X = MAXIMUM DISTANCE It Y DIRFCTION MAIN 230
24: C H = MAXIMUM HETGHT ARNVE TERIAT MATIN 240
25: C AKY 9 AKZ = TURRVRULENT Enky DITFUSIVITICL I Y AND Z 1V IRFCTIONS MATIM 250
206 € LLPHA - CONJSTANT US* D TO CALCULATT AKY MATN 261
27: O Uy Vyn = COMPONENTS MNF MEANL WD VRLOCTITY VECTOR MATN 270
28: C STy \M = PARAMFTERS I U EXPKESSION MAIM 290
29: C TCH = TIML wWHEN V. BECOMES 100 % AATIN 2930
30 L P = CHONSTANT 0S50 T3 SPECIFY THt VALUE QOF vV MATM 300
31 C HGR = VELNCITY AT LPOUND LEVEL MATM 210
32: C AK = RAT:= 0OF RFACTIOM ATt 320
33 C ISTE - STABILITY CLASS (1 v©~RY UNSTADLF, A VERY STARLE) MAIN 3.0
34: C INVRS - 100 0, TF 1 THERPE IS5 TIVERSTION AT 7=H; ITF O THELRE ITMAIN 240
5: C MO IRV EZRSINNM MATN 3°0

9€T



36
37
3¢
37
40
41
42
43
44
45
46
47
48
49
50
51
52
53
Y4
55
56
57
5 R
59
60
51
62
o}
6o
65
Le
67
&8
69
0
71

-

.
.
-
-
-
-
-
-
.
-

-
-
.
-
-
-
.
-

OO0

CoOOCeoe

MSRCS - NUM2_k 0OF SNUYRCES
KSITYLSITI)= POSITION OF [TH, SQURCE TP

THE Y AND Z DIRECTIONS

Coer) - CONCENTRATION AT ITH. SUURCL

EFXTERNAL FCT,0UTP

DNIMENSTION PRYT(5),YILT00),Y2(T700),Y3(T70N)y0ERYLI{T700) T ERYZ2(T0ULO),
LuERY I{T700) yAUXK(8,700) s FA{LD ) FP(15),FCI1NH ), R00OT(15),vEC(15),
2X7ELS )9 AMYLLS) o AKZLLO) oDAKZ(15) 4CNEFE (4) yDAN(4) » TDFKN(4)

DEFINE FILE 2(2000,225,U, TIPNT)
TFRFLIE FILD 4(200,225,U,1P01 1)
JFFINE FILE 4(200,225,U,1PNINT)

COMMNON /HLKT/ A1(15,15)9yA2015,15),A3(15,1%)yb1(15,15),P2(15,15),

1E3(15915)aR1I{15)4RI(1I5)9RH(15)yPH(15)yRIET(15),RBIE2(15),1PAL(15),
223610155 15) 00700} ,U{15) o VILo) o XXX {35310) yXYY(L15) o XZ7{15) s X"AX(3),
BYMAXy Hy AK gy TCHy Py KSE3) g LSEL) 9T 00 3) gNXg Y s M7y NLyM2 3 N3 KX 4 KY ¢K7
4y LU1S ) W2 L15) 9 M3 LL10)sMNSRESH IFLUYMFLG,CC(3,15915,15)PFDELSPRMTH,
5INVRS

KEAD AND WRITEC IMPUT DATA

UATA CPEFK/234). 4540442558 449730./

DATA DKM/ 1254912549 10044570.7
WRITE(6,209)

WRITH(EL 42006)

REFAN{S5,100) TINIT,ENDSSPRMT(2),P?1T (&)
WRITH(6,2N0) TINITLENDSyPRPMT(3),PRMT(4)
READ{5,109) NSR(CES

WRITC(6,209) MNSRCS

CEAL(S5,106) PRDEL

WRITH(64208) PROUCL

READ(H,101) MX,yRY N2

WRITI(E4201) NX, WY N?

PEAD(G,102) YMAX,H

PALE

MATHM
MATN
MAIN
MAT®
MATN
MATIN
MATM
MAIN
MATN
MATM
MATN
MAIN
MATIN
MATM
MA T}
MATM
MAT™M
MATN
MA T
MATM
MA TN
MATIN
MATN
MET®
MAT
MATHN
MATIM
MATMN
MVAIN
MATH
MATMN
MATH
MATMN
MATN
MATN
MATMN

350
370
A%
20
400N
410
420
4 50
440
450
L6,0
470
4+N
4370
£90
510
520
530
540
5L40)
Dot
570
E )
L0
601
&LN
€20
€ 30
6£410)
£ 50
660
70
63
10
700
710

LET



723
T73:
T4
75:
76
17:
79:

-

79:

]2 :
333

H5 e
8o 2
eT:

38z

91:
92:
332
V42
952

q7:

9n:

992
100
101z
102
103:
104:
105:
106
167:

OO0

WRITEA{A,202) YMAX, K

rnN g5 I=1,NSRCS

READIS,1C4) KS(T) LSUI)LCO(I)yXMAX(T)
RE WRITL(64204) KSOT)ZLSUI)COC0T) o XTAX(T)

READ{S5,105) TISThy INVRS,ALPLHA, A

WwRITF (€ 42C7) ISTRLZINVRS,ALPHA,AK

PEAD(S5,1113) USTLUGR,AM,TCil,P

WPITHE{64,203) USTHUGR,AM,TCH,P

PAGE

MVATN
MATM
MA TN
MATN
MAT |
MATHM
MATN
MAT"

720
730
T40
7.0
Te0
770
780
730

INITIAL COMDITIONS

51

52

L ITM= (NX+ L MY &y7
PRMTI=PRINT(3)

g 51 I=1,NDIM
wil)=n,

Y1(I)=n,

Y2(1)=C,

Y3(1I1)=0,

cUM=0.

KK=MhTIM=-1

AN 82 I=1,KK
HERYLI(I)Y=1./7FLOAT(NDIM)
SUN=SUM+EDERYL1(])
DCEYLINDIM)=1,-5U0°
1o B& I=14.KDIM
DERY2 (T)=LERYLI(T)
HERY (T )=DERYL(T)
v1=NX+2

N2=NY+2

N3I=NI+ 2

KX=NX+1

KFY=NY+1

K7=M74]

RO 53 I=1,MSPCC

YA LM ROO
MATIN H10
MATIMN #20
MAIN 210
MAIN R4N
MAIN R.LO
MATN 24,0
MATN PTO
MAIN K30
MATY R0
MAIN 2300
MAIN 919
MAIN 320
MAIM 9.0
MAIN 940
MATIE 9.0
MATIM 960
MAIN 970
MATIE 98N
MAIN 290
MAINTOCD
MATNVIOLND
MATIM1020
MATIM1030
MAINTIO4N
MAININSD
MAIMTIOO
MAIMNINTO

8€T



108
109:
110:
111:
112:
113
114:
115:
116:
117:
118:
119:
120:
121:

122:

123:
124:
125:
17262
127:
1729:
129:
130:
131:
132:
133:
134:
135:
1s6:
137:
138:
1,9:
140:
141:
147:
143:

OO o000

OO0

53

CA
A

Y 5s J=1,M1
Y 53 K=2,KY
D 53 L=1,N3
CCLTyJyKyalL) =0,

LCULATIME rF ORTHHUGONAL PHIMTS, CUADRATURY

TYICFS A AND R

X NIRECTION

20

70

RO

60

Y

CALL JCPT(NX g lgly0Dea0egyFAZIFRyFLyROANT)

L0 20 I=1,M1

XXX{(Lly I)=PODT(L)+AMAX( 1)

IFINSPRCS.EGQWLL) SN TN 20

KXX{? 3 L) =RUNDTOT I EXIAX{2)+XMAX (1)
IF(NSRCS.EX.2) GO TO 20
AXXA(3,1)=POOT(I)%\VAX(3)+XMAX(2)
LOMTENUE

D 6n I=1,11

CALL DFOPR(NX,y 1y 1y Ty lsFAyF42FCHyRIOTyVEC)
1070 K=1,N1

AL{T,K)=VEC(K)

CALL UFDPR(NX g1yl T4 25FAyFHaFCHRNNDT,VECD)
N80 K=1,N1

B1(T,K)=vLEC(K)

CONT IMUE

CALL DEOPRAINX s1lal s Iy 33y FASFLSFC,RIINT W)

NDIRPTFCTTON

CALL JCOTUINY s leleDey ey FAZF3,FC,RNNT)

NETCHTS,

AL

PACT

MAINIOCO
MATIN100
MATHI10U
MATINTILLO
MATANTILZ20
MAIM11 40
MATN1140
MATNTIL O
MATNLL LD
MATIMILTO
MATNTLI®O
MATNIT R0
MATI1200
MATMLI210
MAIMN1220
MATIN1Z2 30
MATM1 240
PAINLZEN
MAIN]1 260
MATM12T7U
MATIN 1280
MAINLIZ7D0
MATNT IO
"AIM1310
MATNL32D
MATNL240
MATM 1340
MATINTIRSY
MATNLI3AN
MAT'1479
MATINT3O
MATN1390
MATM1GUY
MAIN141U
MAT' 1a2N
MaInN1430

6ET



144:
145:
1452
147:
148:
1493:
150:
151:
152:
153:
154:
15%:
1562
157:
158:
159:
160
161:
122
1432
lé4:
1A5:
165:
167:
168:
1593
170:
171:
172:
173:
174:
175:
1752
177:
17%:
173:

OO

OO0

71

81
ol

L0 21 I=14N2

XYY(I)=RIOCT () %2 ., xYMAY =Y MAX

N6l I=1,N2

CALL DFOPRUNY Ly 1s Ty Ly FALFRZFTRUNT,VFL)
O 71 K=1,N2

A2 (T ,K)=VvLC (K)

CALL DFOPR(IMY 19 ley Iy 29yFAGFR R PLINT,,VIC)
11 81 K=1,N2

21 ,K)=vCL(K)

CLUMTINUE

CALL DFNPRI{MNY 31919933 FAZFD FosROIDTHW2)

7 DIRFCTINN

32

12

K2
62

CALL JCPTINZylelsOas0asFAZFBaFC,,2NNT)

LO 92 I=1,N3

LZLT)=RONT(1)

DI 22 TI=1403

YZZ{1)=RNONT(T)*H

Do 62 I=1,N3

LALL DFOPRINM7 4149191431 4FALFP4FCL,RNICT,vEC)
un 72 K=1,N3

AVA(I,K)=VELL(K)

CALL ﬁF()P{(NZyI,I,I'Z 1FA‘\,F‘§,FL,P[‘IPT7VF‘C)
N B2 K=1,N3

W3 (1,K)=VEC(K)

CNMTINMUC

CALL DFOPRUINT g Ly Lyl y29FA3FP FCL,,RPONT, 4 3)

CALCULATION CF FXPRESSIONS USFL IN 'NUEL

IF(ISTE.GE.5) 500 T 10

PAGF

MAIN1440
MATMN14%0
MATN1GAD
MATINTIGTOD
MATMYL4X0
MAIN1490
MATHMLIS0ON
MAINTISTO
MAINLS20
MAINIS 40
MATNLS 40
MATMINEN
MAINLISAD
MATHLIONTO
MATIMLSSO
MAINLISAIO0
MATNTEOD
MATN1FALO
MAINT62D
MAINT1E 30
MATN1640)
MATT 1€ 50
MAIN16AD
MATMILTO
MATMLE 30
MAINL1AYO
MATNLITOO0
MATNM1T10
MAINLT720
MAINLIT 30D
MAINL1T740
MATN1T750
MAINLTA0
MAINLTTO
MATHLITFHD
MATINTIT7O0

-

0F%T



180
1#1:
182:
193:
18¢4:
135:
1f6:
187:
18R:
1893
190:
191z
192:
193:
194:
195
136:
137:
198:
193:
200:
201:
202:
203
204
206:
2063
207:
208:
209
210:
211:
212:
213:

2142

215:

11

&)

S

i

41

U(1l)=UGR
TOFKNCTISTH)=DKN(TISTR)Y /H
TUSKN=1.-100,./H

po 2 L=21”'$
TRE{XZ(L)=-TOFK{{ISTR)) 11412412
AKZ (P )=COEFK(IST Y ¥X7 (L)Y /TORRN(ICTR)+EN,
PAKZ(L)Y=COCFK(ISTE)/DKMOISTER)
LEL)=USTR(XZ{L)%®H/DKNETISTD) ) =% AM
oO TY 16

[F(X7(L)-TDSKN) 13413,14
AKZ(L)Y=CCEFK(ISTR)+0N,
LAKZ(L)=Nn,

oO TN 15
AKZIL)=CNIFK(IST ) &M% (1. =XZ(L))/100.+00,
DAKZIL)==-CNeFK(ISTH)Y /100,

UL )=UST
AKY(L)=ALPHAR(COEFK(ISTP)Y+60.)
LONTINUC

o0 TN 50

ITF(ISTR.FLLG) GO Tt 40

13 L=?,H5

AKZ({L)=¢n,

u{L)=usrT

NMAKZ(L)=0.

AY(L)=ALPHAXAKZ (L)

S0 70 50

PN 4 L=2,"3

AKZ(L)=30.

BL)I=UST

NAKZLEL)Y =0,

AKY(L)Y=ALPHARAK7Z (L)

CONMTINUE

10 41 L=2,KZ

KA(L)Y=DAKZ{L) /11%%D2
RS(L)=AKY (L) /(4. xYHAX %)
(L) =AKZ (L )}/ H¥%%x2

PASH

MAINTECO
MATILRID
MATMLIRZ20
MAIMLIEZ20
MATIMLY 4N
MATMIRKEO
MATIMTIHEO
MAIN12 Y0
MATHLIARD
MAT 112930
MATMIO9ODND
MAINIOLO
MAIMLIO20
MAIMTIAI 30O
MAIMN1940
MATMI9TY
MATNT1950
MATINTIOTOD
MATINLIGRD
MATHN1930
MATNZ20O00
MAIN20LN
MAT™2021)
MAIN?NLOD
MAINZO4S)
MATMZ2050
MAINZ2GCO
MAINZ20TO
MAIN2NOKO
MAIMN?2020
MATINZ 100D
MAIM2110
MATM2120
MAIMN21,0
MAINZ2140
MAT 2150

IvT



216
217:
218:
219:
220z
221
222:
223:
224:
225:
22462
227:
228%:
229:
230:
231z
232:
2333
234:
235:
236:
237:
2382
239:
240:
241:
2422
243:
244 ¢
245:
24061
247
2482
2493
250:
251:

OO0

COOO0

31

32

uw 3N L=2,KZ
W36L{L)Y=RI(L)*®AB(L,2}+R6E(L)*IM3(L, 1)

S 30200 =P 3(L) A3 (L yN3)+RE(L) %33 (L,N3)

WEN=A3 (N3, LIFAS(1,N3)=A301, 1) ¥A3(MNS,N3)

1031 I=2,KZ
APALIT)=(A3LL 1) ¥A3(N3,T)=A3INY,L)XxAS(1,1))/DEN
MY 32 L=2,K7

N 32 [=2,.K7
RAOEI(LyT)=k3(L)®AS(L,TI+RE(LI*PI(L, 1)

WRITE IMITIAL CONDITINNS

MELC=1

[FLS=0

PRMT(1)=0,

PRNMT(2)=0.

CALL TUT?{Ca s Y1 e4nTRYL Ny tUIM,PRMT)

INTEGRATIO ULIMNG RKCS

)3

MELG=2?

PRUT(L)=TINIT

PRMT (2)=C1IDS

IFLG=1

CALL RKGS({PRMT, YL, UERYLyMUIMy ITHLFE,FCT,NUTP,AUX)
[F{NSRCSLEQL.L) GO TO 59

[FLG=2

CALL RKLS(IPRMTZY2,DERY?2,MDIM, ITILELFLT,AUTP, ALIX )
[FINSPCS.EC.2) GO TO 59

[FLG=2?

CALL PKOOL(PRMT aY 34 DERY 3, NDIM, THLFZFCT,,NUTP, AUX)
COMTINUL

PASE

MAINZ21ELD
MATMNTL1T70
MATNZ1 30O
MAIN2140
MATIM22C0D
MAIMNZ2210
MAINZ2?22D
MATM?2 40
MAINZZ240
MAINZ2Z2L0
MATMZ22 00
MAIMD22T7D
MAIN22¢0
VATHMNZ2230
MATM2300
MATIMZ2310
MATINZ2320
MAIN2330)
MAIN? 340
MAINP3LD
MAINZ236U
MAI™MN?370
MAINZ23EN
MATNM2330
MATM24 30
MAINZ4 10
MATIMZ2420
MAIM24730
MATNZ2440
MAT!2450
MATNZASO
MAIN24T70
MPAINZ4AD
MaIN24 30
MAT V2500
MATI251N

[AAN



NP G PR N N R NN PO
CX2CC LAV g BT

28 40 s0 o8 60 40 41 44 20 es se 68 oy

N
c
VP R0 0NN W

J
o

(3

256
2673
26L8:
269:
270
271:
272:
2732
274:
27%:

216

o

100 FORMAT(4F10,5)

101 FORMAT(315)

102 FNRMAT(2F15.7)

103 FARMAT(S5F 10, 3)

104 FORPMAT(21L,42F1%44)

105 FNRMAT(2I2,F10.2,01.12.3)

104 FORMATIF1Q.4)

109 FORPMAT(I3)

200 FORMAT(SX 4P TINIT
IF L2yt MINI L, 5X,v2PMT(4) =

SV FSal e DX PENMDG =V,FAL Ty MY, BRXy 'PRMT({3) ="

',FR.S'/)

201 ENRMAT S, "MY =1, 13,5, ™Y =0,13,5X,""7 =v,13,/)
202 ENRAATISK , PYMAX =0, F 2.1, MP,0X, M1 =9,FR,2," M1,/)
203 FORMAT(EX,'UST =" ,F8,2," M/MIN' yuX "G =V F9, 2,7 M/IINY, 5%, 1A

=t ,F6.2)

1,F7.),5X,'TCH =',f‘5.17' “[J'y}‘,")
=1 CO =',F3.2,!

204 FHRMAT (R4, 'K s 139 3Xy 0 LG =t ,14,2%X,!?
LTYXMAX =t ,F o 1,0 M1/

205 FOYMATOLOI(/) 555X, YINPUT DATAY)

206 FNRPMAT [ 37T X, tadedeoe woxiekty, / /)

207 FIRMAT(S5X 9 STAGILITY CLASS =%, 14,5,
Le24LXy " 0K =4,E17,2,% 1/MIN",/)

| BEAYAREN ='71315X,.

208 FORMAT(OX, 'PRUKFL =0, F/Hh,2," M ', /)
07 FORMATIOX y " MHUMIEDP NF SNURE=, =4 14,/)
STNP
END

14

Mo/CUSMT, 3K,

PAS:Z

MAINDE 20
MATNZS 30
MAIM2540
MATHNZ2S S0
MATNZS AN
MATNZ2F TV
MAT?25 40
MAINZ25 10
MATMNZ2600
MATN?/H1D
MATINZ620)
MATHIZEA 3D
MATI™M2¢ 4D
MATLZ65)
MATNZ2600
MATIiI26T70
MATMP2613D
MATI2E9)
MATNZ2T0O0D

ALPHA =*, F7IMAIN?T71D

MATHZ2T720
MATIMN?T 50
MATHN?2T740
MAINZ2TH0
MATINZT7¢0

€EVT
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21:
22: C
23:
243
25:
263

O

]

28
29

32:
3%

315: C

SUBRIUTIIF FCTUX,Y,0DFRY)

THIS SUBRNUTINE COMPYTES TH-

SYSTFM TO SIVEN VALULS NFE X(TIME)

JIMENSION Y(T700),0FRY(T00),PACLTUN) »L7N(T700YCZLIT00),CZ2(T00),
ICZI(T700),CYY(T00)4R2(15)yRH2TI(15+19%+105),0CC(15,415)

COMMON /RLKL/ AL(L15415)4%2(15,15),A3(15,1%),1n1(15,15),h2(1%5,15),
Li 301591509 RLELIL)yR3BIL5)425019)4R4G{(15)4R3A1(17)4R362(15),4PAL1(10),
ZRAATLLINH1IS)yI(T00)4UCLS) s VILD ) 9 XXX (39 15) o XYY(L1G)y XZ7(15H)yXMAX(3},
IYMAX HoAK g TCH 3Py KS{3Y yLSET3) 9LO(3) yNX g IY 9 NZyNT s M2y N3y KXy KYHKZ,y

Gy T015) 9w 2015) s w30 L5) s NSRCSHIFLGWVFLGCL(3915,515415) yPROEL,PRMTS,

5TMNVRS

IMTESTR YARL 3 VAR? W VARS yVARa g VARS , VAFRF, yVART

D TM= (NX+ 1) MY RN T
0 4 L =2,Kk7
4 R1I(LY=U(L)Y/XMAX(TIFLSG)

VARTATIAN I THE V VELOCITY

[TFIX=-TCLH)Y 1,7,2
1 CONTINUL

ST L=2vKZ

VL) =PRU(LY*(X/TCH)
£ R2(L)=vIL)I/{2.%YM\X)
0O TN 3
LINTINUL
N6 L=24KZ
VIL)=Pxy(L)
O R2(LY=VIL)YI/ (2 %Y MUX)
3 CUMTINUE

[S)

COMPUTATION N+ THE NCRIVATIVES

NERIVATIVES(RTTHT
Y{CONCEJTRATION)

HAMD SINES)

PAGH-

FCT
FCT
FCT
FCT
FCT
FCT
FCT
FCT
FCT
FCT
FCT
=CT
FCT
FCT
FCT
FCT
FCT
FCT
FCT
FCT
FCT
FeT
FCT
FCT
FCT
FCT
FCT
FCT
FCT
FCT
FCT
FCT
FLT
FCT
FCT

1N
29
50
40
)
£9
70
40
10

10

110
129
150
149
150
1.0
170
150
1730
200
210
220
240
240
250
2.0
210
240
230
300
210
370
3,0
340
3,0

AAN



36
37

o]

39
41)

42

1o
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-
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33

33

10

40

11
20

N33 L=2,KZ

N0 33 K=2,KY

tig 33 I=2,KY

RO2T (Lo Ky I)=RE(L)HP2IK,1)=R2(LI*A?(K,y])
(1 29 LL=1,NDI™

L7N(LL)=0.

LZI(LL)=u.

LZ2{LLyr=n,

CYK{LL)Y=N,

J=1

JJI=KX

IF(IFLG.EWw.1) GO T 35
IX=TFIX(X/(PAMT3-,01))
[IFK=(IFLG-2)}*9T7T+(IX+1)

PEAD(4'TIRK) ((COCLIK L) pK=2,KY)sL=14:{3)
CONTINUE

sl LK——'(_'KY

BN 51 LZ=2,K7

vl 50 Ld=Jd,Jd

JARL=KS(IFLG-1)

VARZ2=LS(IFLG=-1)

VARZ=LJ=-(J-1)+1

TF(IFLS.ER.1) SO TN 40
IF(LK.EQWKSUTIFLN) JAND L LZL TWLLSTIFLG) )Y 60 T 10
PAC{LJ)=0,

IF(CCC(VARLIZVARZ).HT0e) PACILIYI=COCILK, L7 )XAT(VART, ])
N1 20

PACILJY)Y=COLIFLGIFAL( VAR, 1)
IF{CCCIVARLyWAR2)Y.GCT0e) PACILI)=PAC(ILIIHCLCILK L7 )%*a2 (VAR 3,1)
ST 20

[TF{LK EGoKS{L)ANDJL7aFQ.LS(1)) U T 11
PAC(LJI)I=0.

o T 20

PAC(LJ)YI=COU(1)*AL(VAP,1)

CUNTINUE

paCt

FCT
FCT
FCT
FCT
FCT
FCT
FCT
FCT
FCT
FCT
FCT
FCT
FCT
FLT
FCT
FCT
FCT
FCT
FCT
FCT
FCT
FCT
FCT
FCT
FCT
FCT
FCT
FCT
FCT
FCT
FCT
FC1
FCT
FCT
FCT
FCT

3£
370
310
390
400
410
42 )
431
4y')
45D
400
470
480
430
50U
51N
£2u
540
540
550
S END
570
590
30
6010
Gl
H2n
(ﬁ_)")
640
(o0
&0
670
¢ <0
(L3I0
700
710

SV



T2:
73:
74
15:
753

78
79
50:
R1:
R2:
K3z
R4 2
852
86:

B2
89:
303
31:

160 I=1,KX
VARG =T +1
VARS=[+J-1
60 PAC(LJI=PAC(LUI+AL(VAR3,VARPL)RY(VARN)
ve 70 Iz/’KZ
VARE=LJ+KX%(I-LZ)
CZ2(LJ)Y=CZ2(LIY+APATLT )Y (VARPGIXFLOAT(IMNVRS)
CZO0MLIY=CZOLIY+A 31, IY%Y(VAPOH)
70 LZTILIY=CZTI(LJY+306TLL7,1)%Y(VAPH)
LML) =(-A3(I G N3 XCZ2(LU)Y-C70(LI))/A3(1,1)
o 80 I=2,KY
VART=LJ+(I-LK)*{K/=1)%*KX
HO CYK(L ) =CYK(LJ)+RHS2T{(LZyLKyI )XY (VART)

PAGF

FCT
FCT
FCT
FCT
FCT
FLT
FCT
FCT
FLT
FCT
FCT
FCT
FCT

HO DERYILY)==-RILL7 ) PACILI)I+R3EL(L7)4CZL01 J)+RBE6E2(LZY*CZ2(LJ)+CZI(LJIIFCT

1+CYK(LJ)Y+Q(LJ)-AK=Y (I .))
J=JJ+1
JJ=J+Kx-1
51 CUMTINUE
RETURN
FND

FCT
FCT
FCT
FCT
FCT
FCT

720
740
740
750
T
770
740
T30
200
1N
K20
230
#4090
RH0
0
HT0
8¢0
£ 90
9C0
910

91



1: SUBROUTI F JCBTINsNOGZMLyALFESFALZFR,FC,.00T) JCtH I 1n
2: C JCPT 20
3: C JCF 1 50
43 C THIS SUCROUTINMNT COMPUTES THFE ROOTS 10F AN NTHJDEGPEE JACTRT PNOLYNOVMIALJCHI 4()
5: L AN THE DERIVATIVES NF THF POLYNOMIAL AT THEFESH POINTS JCu 1 1)
H: G Jeo1roen
7: C JOBIT 70
33 L i = THE NUMDER OF IMTERIN? POINTS JCHI a0
I3z C a0 - 1 0 0 [F X=0 IS INCLUDED DR WOT RIORAR | 20
1n: C 41 - SAMIZ AS MO, FPR THE POINT ¥=1 JCrl 16"
11: C L 4B"™ - THE OUANTITIFS ALFA AND BETA £0NR THE WFIGHTING JCrI 110
12: C FUNCTION JCET 120
13: C FALFU L FC =~ THC FIRSTZSECOMD A THIRD LTRIVATIVES F THL JCPT 1130
14: ¢ POLY IOMITAL AT THZ RLOTS JCBT 140
1s: C 0NT - DUTPUT ARRAY CONTAINING THO MN+N0O+N1 ROOTYS NOF THE Jetl 150
16: C POLY INMIAL Jjcrtr 1.0
17: C JCRI 170
18: JCHT 120
19: DBIMEMSTON FA(L)«Full),FC(1),RDONT( 1) Jonr 140
20: AR=AL+PE JCBTI 2¢CN
21: AD=R&=AL JCHTI 210
22: AP=R=%AL JCtT 220
233 FA(LY=(AN/(AR+2,.)+1.)/2. JCRIT 2350
24: Fr{l)=n, JCI'T 240
25: tN10 I=2,41 JCcI 290
263 J1=FLDAT(I)-1. JCHT 2.0
27: I=AP+2,.%7] JCBI 270
24z FAIY=(AR/ZXA0/{T7+2,)+1.) /2 JCLI 280
29: IF(I-2) 11,12,11 JCCT 24D
30z 12 FH(T)=(Ar+AP+21)/772/2/(7+1.) JURT 300
31: NTO 10 JCPT 310
32: 11 [=1%] JCPT 132N
33 Y=21%(A"+/1) JCPI 340
343 Y=Y%{AP+Y) JCPT 349

35: FPCI)=Y/7/702-1.) JCHT 350

LPT
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23
21

26

20

26

35
37
38

CONTINUF

A=l

L0 20 I=1,N

[1=1-1

x11=0.

Xti=1.

Xhl=0,

XN1=0,

039 J=17’\l
(P=(FALJ)=X)=XN=Fb(J)*XD

XPL=(FA(J)=X)EXNL=-FB(J )} *XD1-XN

X=X 4

X1=XN1

XN=XP

fM1=XKP1

IC=1.

I=XN/XN1

IF(IYl) 21,21,22
nr23 J=1,11
IC=2L-2/7(X-RNOIOT(J))
I=1/17C

X=¥=7

IF{ ARS(7)-1.E-7 )} 2A426+25

neNTLI)=x
X=X+0.,00U5
CONTINUEG

F T=N+NO+MN ]
IF(NO=-1) 35,36,135
tN42 [=1,M
J=aN+]1-1

PAOT(J+1) =ROOT( )
<ONT(1) =N,
IF{N1-1) 38,37,39%
RODT{NT)=1.

e 40N I=1,NT
X=PONT(I)

)
e
[@g]
T

JCiI
JC 1
JC 1
JCHI
JCF1I
JCRI
Jerl
Jeri
JCRIT
JCi 1
JC i1
JCu1
NN |
JCHI
JCHI
JCBI
JCHI1
Joil
JURI
JCHI
JCI'1
JCRI
JOiHI
JCil
JCFI
Junl
JC1
JCIU
JCUI
JCN1
JICHI
JOBI
JCU1
JCil
JCPI
JCN1

350
270
20
230
40N
410
420N
40
440
4,0
4 4 ()
470
L 30

430

500
510
5e¢N
54t
540
£-0
541
570
240
£
eCn
E 10
620
63D
£4)
A0
661
L1n
680
€13
7CH
710

~N

8VT



T3:
14 :

75:

77: 41
78:
79:
R0z
8l: 40
82:
83:

FA(L)=1.
F4{1)=0.
FC(TI) =0,

1N a0 J=1,MT

IF(J-T) «14,40,4]
Y=X-R0O0OT (J)
FCOIY=Y4ECL (L) +3,%F0(T)
FRLI)=YRFR(I)+2,%FA(T)
FA(T)=Y%FA(T])

CONTINUE

w ETUP

END

JCBI
Jeil
JCH I
JOKI
JCHI
JCI'I
JCF I
JCHI
JCI1
JCt 1
JCRT
JC 1

72)
730
740
750
Tu0
770
770
790
800
R10
o0
230

6¥%T
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PAGF

SUTROUTINFE OFUPR(C IyNOG MLy I, 10,FAFB,FCH,RONTLVECT) CFOP 10
C DFE NP 20
C LFCP L0
L THIS SUFAOUTINE CALCULATES THE A AND P PATRICES AMD THE QUAURATURE CFOP 4
C WEIOHTS FROM THE GUANTITIES [DERIVED I SUFROUTINL JCHI LFCP ny
(. DEOIP 40
C DFL,P 70
C Py NOy N1 - SAME AS JCPI NPFOP X0
C I - DIFFLERENTIAL NPTRATNR AT X=RCNT(T1) NENP 30
C Ib - INDILATOR, T.Fe 1 FUR MLTRIX Ay 2 FUR MATRIX R, DFOP 10N
C 3 FIR NUADRATURFE WFIGHTS W CFOP 110
C FAyFP»FC - COMPUTED IMN JUCosl NFECP 120
C PAcT - CUMPUTED T JOBI DENP 130
C VECT = CONTAINS THEF COMPUTLD VeCTAR DENP 1497
C DFCP 1.V
C DEOP 1.0
CIMENSTIO L FACL) »FECL),FCLL) 4 RONT(1) yvICT(]) DFOP 17N
JT=N+NN+N T NDEUP 180
[F(IY=3) 1,10,10 CFOP 150
1 Do 20 J=1,0T CFOP 2uN
IF(J-1) 21,2,21 DEFOP 210
2 IF(IL=-1) 5,445 WP 229
4 VECT(I)=FE(I)/FA(I)/?. yFnp 230
JOT0 20 DFUP 241
5 VFCT(T)=FC{TL)/FACL)Y/ 3, NEOP 2.0
oNTO 20 vFUP 2¢0
21 Y=RODIT(LTI)=-ROIT(JI) LFOPL 270
VECT(J)=FA(L)Y/FA(J)/Y NELP 200
IF(IN=2) 20,222,290 JFOP 230
22 VECTO ) =VECTOJYR(FRIT)Y/FA(T)-2.7Y) NFCP 300
20 CONTINUF DFCP 310
wNTO S0 NEFONP 379
10 Y=0,. NEOP 33N
IF{IU=-4) 31,30,31 DEOIP 340

31 U 25 Jd=1,.07 NECP 350

0ST



217

26

24
2h

30

37
16
32
3
35
60
1
50

X=R1JT(J)
An=xX%F{1l,~X)

[IF{ND) 2F427,25%
AX=AX/X/X

IF(MNL) 28,423,283
NX=AX/{le=X)/(1la=X)
VECT I =AX/FALJ)Y/FALY)
Y=Y+VECT(J)

SNTN 50

N 35 J=1,MT
X=RONT(J)

IFINQ) 36437,36
AX=14/X

IF{NL) 3R, 33, 38
PA=1a/(1.-X)
VILLTOJY=aX/FA(J)/FALY)
Y=Y+VECT(J)

061 J=1,NT
VICT( ) =VECT () /Y
PETUY

END

PALE

"FCP
NENP
NFNOP
LFOP
DFEQP
DEOP
LFOP
nEre
LFEOP
nEnp
DECP
PROP
LFCP
DFCP
LDENP
DFLP
LFCP
OFOopP
DFENP
DFOp
CECP

’%‘J()
379
330
3120
400
410
420
449
440
4 Q)
461
470
490
4390
500
517
520
530
547
5.0
560

TST



1: CUPRIOUTTIE DUTP (Y 3 Yy HERYy IHLF 4MDIN yPRMT)
2: (
3: C
4: C THIS SUARAUTINE GIVES THE NUIPUT OF THL mnNneg
5: C
62 C
7z C PRNEL - THU INTERVAL AT WHICH THE RESULTS WILL ¢FE PRINTED
H:2 C I OR THETA = TIM[D PETWEE™ THL PNLLYTAMT RELEASE(TIMIT) A THF
9: C TAITIATION CF THE AVERAGING TIME
10: C N EGA - FNU OF THE AVERAGING TIMt
11: C CX(T,d) - FLUX ACPOSS Y=Z2 PLAGE AT Y' JTH. POIMT oUE T I Til.
12: C AND PRECLOING SOURCLS
13: C
14: C
15: DIMEMNSINTT PRMT(S5) 3 Y{(TOD) g t/ERY (7NN ), LIC(TON}L,CZ1(TN0),LZ22(T700),
153 1159 15,19),0MX(3,15) ,1HL(3,50)
17: COMMON /PEKLIZ ALCLS9 191032015, 15 A3 15,15)421015,15),02(15,15),
18: 113015 915)sR1I019) 9 R3(15)yRG{1DP)yRL (13)9R3FL{LIN)HRIA2(L15)APALI(LY),
1932 236T0L5,310),0700)30015) ¢ VIL10) o XXX{3,15) XYY (15)4XZZ{15),XMAX(2),
203 BYMAXy Hea AR g TCHe Py KS{3YaLGU 3 92003) gN Xy IY g N7 gNL gM2 o NI yKXoKY (K7,
21: G115 W2 (LS ) g W3 (15) o NSPLSyIFLGyMFLS 000 44154159 15)yPROELPRMT S,
22: SINVRE
23: INTESER VARLIOZ VAR LI VARLIZ VAR 14,VvARL4,VART )
24: IFLAS=IFLG
25: [F(MFLS.C0Q.1) 5N TO 15
263 IFINSRCS.NELL) GIH TN 79
27: [FIX.FRN0) T1I11=0
2R: IF(X.FQ.0.0) GO T 71
29: VAT=FLOAT(IIII)
303 AATL=AAT-X/PPDLEL
31: IAL=TFIX(AATIL%10.)
323 IF(IY1.Ewa0) SN TN 71
33: GO TN H00
342 70 IF{X.REOL0,0) T1I=0
35: IF(X.TQsN0) 50 T 71

PAGF

nuTpe
nuTP
nyTPe
cuTte
aurte
onTe
ruTP
nruTe
auTyp
nutTe
auTek
nyTe
nuTPe
curTp
cuTP
nuTe
Cute
auTw
oure
cuype
nuTHe
nuTe
nuTpP
nuyTe
nuTP
nuTe
cuilp
auTe
ouTP
cyTP
MyTP
auTe
auTe
NUTP
nuTP

17
20
30

40

(S
70
)
10
10N
110
120
140
147
19
1450
170
120
130
200
210
22V
23N
240
2.0
260
270
297
290
3010
417
320
339
$4a0
250

(AN



S ]

nwI=FLOAT(TY)

AT1=AT-X/PRIMT(3)
[1=IFIX(AIL1*100,)
IF(Il.EQ.V) "0 T 71

S0 T0 HOO
CONTINUF

J=1

JJd=KX

N2 Tb=1,.0Y
L Ld=d,4J
LZO(LI) =0,
GCZ2{LJd)=n.
105 I=24K2

VARLD=LJ+¥X*(I-2)
CZ2(LJI=CZ2(LI)+APATLT &Y (VARLIO)=FLOAT(IMVRS)
CZ0MLYI=CZOILII+A3(L, 1)%Y{VAR1Q)
LZLILI)=(=A3(1,N3)*CZ2(LJ)-C70(LI))/7301,1)

COMTINUE
JEThaNZdw A+1
JI=J+KX=-1
LOMTI MUE
IND=2

tl=1

I 2=kX

10 Kz._’KY
J=2

L 21 I=r1,M2
LJsKe1)=CZ1{T)
J=J+1

13=M]

[4=M2

) 20 L=2,k/7
J=2

1l 31 T =M3,M4
COJyKyL)=Y(1])
J=J+1

PAGE

nuyTe
nyTe
cuTte
ayTe
OuTP
cure
auTe
auTp
cuTp
cuT®
oyTe
nyTP
cute
nyTe
nuTe
ruy 2
ouTe
nuTe
(AR
nuTe
ouTe
mrITe
cuTe
aure
cuTp
Curp
ayuTe
cuTe
cute
auTe
auTe
ruTe
cure
nuTe
TP
cure

30
379
380
730
400
410
420
430
440
454
4¢0
470
G4 - 0)
430
520
510
520
40
540
5050
500
570
5 R0
%0
£ 0
610
€20
A 30
640
£ 5)
£
HTO
620
AS0
T0O0
710

M

€ST



c3 20

79: 22

32

PR A

100
101:
102:
103: 0
104:
105
106: 30
107:

H3=M4q+1

Pa=T J0aKX

[MDh=1TND+1

CONTINUE

J=2

LN 22 1=M1,M2
CUJIykyN3)=C22(1])

J=Jd+1

Ml=M4

N2=M4

COMT INUF

LALL ZERD(C)
[FENSRCS.ELLL)Y OO TN 65
IX=IFIX{X/(PRMT3-,01))
[TUk=(IFLGC-1)%*37+(IX+1)

WRITE(4YTIEK) ((CUMLaKyL) o¥=2,KY),L=1,43)

[I=11+1

IF(X.EQa,0) TII=0

TF(X.INJ.0Y SN TU 1°¢

All=CLOAT(ITIT)

ATTLI=ATI-X/PRDOFL

TT1=TFIX(AITL1%100,)

IF(ITLl.C00) 50 T 67

BT BOO

CUINT INUF

[TT=1T11+1

TFUIFLGFelo AND G ISRCSaEDL1) TTIT=1111+#1
TIX=TFIX(X/(PROEL=-.01))
TF(IFLS4EWGMSRES) N TN RO

(q9n J=7,rv1
[RLK=Jd+({TFLG-1) %4 )15+ 1¥*]1)H
WRITF(2'IILK) ((CUJyKyL)yK=2,KY),L=1,%3)
THL(TLFLG,IIX+1)=1HLF

0 T 800

CALL AVSG(C,IIX,IFLAG)
TF{IIXeFLala At MORCSLENGLY 50 TH /00

PAGHE

auTe
ouTPe
ouTe
ouTP
curte
rPuTR
nutp
cuTe
nyTe
auTe
Ccurte
ryie
uuyTe
ryTe
cutpe
CcUTP
gute
cCuTe
nuyrte
cuTp
NyTP
nyTeR
nyTte
nuTP
curpe
ouTe
cuTe
curn

720
750
T4
7.0
7¢0
770
T RO
74N
SO0
810
820
£150
R40
()
H(}O
*70
70
840
07
910
929
939
940
950
940
970
Q)
970

AUTP1CL)
ouTP101n
CUTP10290
nUTP1030
(TP 1040
auTP1OYHY
auTP1OLO
aUTP10O70

ST



108:
109:
110:
111:
112:
113:
114:
1135:
116:
117:
118:
119:
120z
121:
122:
1232
124:
125
126:
127:
12R:
129:
130:
131:
132:
133:
134:
135:
1362
137:
138:
139:
1402
141:
142:
143:

74
78

75

IF(IIXsEDG1Y GO TO T4
i &7 J=2,.N1

Vw0 67 K=?'KY

L €T L=1,N3
LC(IFchJ,K,L)=C(J9K7L)
[F{(Xet Qa0 oJ T 8OO
T=X=2.%PPDEL
I[HL{IFLG,IIX+1)=THLF
[F(NSPCS.Fuel) LI TO 18
LIFLS=TFLSG
[ITL>=TIFLG-1
IF(IIFLG.EN.O) GO TO 1%
LN 75 J=2,M1

IPLI=J+(ITFL5-1) =4 3%15+11x%15
LFADC2YINLT) ((CUJaKyL) 9K=2,3KY ) L=1,4N3)

LL AVG(C,TIX,1IFLG)

TFCITXeENaLloANDLTIIFLGLEQG])

N Y J=79N1

it 7o K=?24,KY

Wi 746 L=1,N3
CCLTITFRFLG s Ky L)=C(JyK,L)
GO TY 78

T=0.

[IX=0

91 J=1,4,NSRECS
IHL(J,1)=0

[IF(MFLGC.ECLLY S TO 16
CALL AVS(C,IIX,IFLAG)
ITT=111+1

o TO 8LO

CUNTIMNULE

VAR]11=K5(1)

VAP 1?2=LS(1)
CCl1y1sVARLIL,VARL2)=CN(1)
[T (NSRCS.ENL.L) O TO 16
Y 17 T=2,MSRCS

PAGE

AUTP1INOKO
QUTP1030
CuTPl1lno
ouTP11l10
ouTPllen
CUTP1I13D
CUTP114v
CUTP11 0
IUTPL1160
ouTeP1170
AUTP 1140
CuTPl1-0
CUTP1200
nUTP121U
nuTPpl122n
CHTP1230
QUT21240)
nuTP124Hu
AUTELIZ20LD
Cuteizru
JuTP129n
onTP1240
CUTP1300
AUTP1410
ouTP 1324
HUTP13 40
CurTpPl124n
QuTP13%D
NUTP1360
CUTnP137n
NUTP13+49
NUTP1390
CUTPL400
CUTP1selo
NUTP1420
AUTP 1430

QqT



l44:
145
146
147:
148:
149:
150:
151:
152:
153:
154:
155:
156:
1572
1o8:
159:
160
161:
102:
1632
104:
16%5:
166:
167:
1¢R:
109:
170:
171:

177: C

173:
174:
175:
176:
177:
178:
173:

17
16

53

40

50

200

VAR13=T1-1
VARL4=KS(1)
VARL®=LS(T)

CCIVARL34M1,VARTI4 s VARLS) =CC{VART 3,11 ,VAR]14,VAR]IS)+CO(])

WRITF{6,131)
WRITL(64204)
HRITe(64210)
WRITF(E,215)
WRITF(6,208)
L=113+1

L=L-1
WRITE(E,205)
0 41 K=2,KY
wRITF(OL134)
CONT INUF

TeXe (THLUY,TTIX+1) 4J=1,NSRCS)

XXX(l,l)y((XXX(Jyl)yI=?1”1)yJ=17M5HCC)

X77(L)

XYY(K) 9CU ULl oKy )y ((CCUToaJdsKyL)pd=2,N1)y I=14NSRCS)

IF(L.EN.L) GO TO 40

20 T 53
CONTINUE

M) 50 I=1,NSRCS

b 50 Jd=1,M1
OX(I,J)=0.

RIB] 52 K=21KY
DN L? L=1,N3

CX(T 9 J)=0X({T 3 J)+CLIT o JpKy L) HULL) *w2 (k) %=w (L)

UX(TyJ)=X(T4d)/60000%H*2%YMAX

CONTINUE
WRITL(6,4220)
COMTINUF

QACL 1)y (UOX (g D)1= 4MT )9y Jd=1,NSHLS)

11 FORMAT(8(/) 430X, THETA

134
2 0%
2NN
209
210

110Xy ' IHLF

=1,313)

FORMAT(LIX 'Y=y Frhel,* ™

FORMAT(// 432X ,*X
FORMATL// 45X, 2

=',F6.2"

DIRECTINY
JIRECTION =',F10.1,°

'115F9.2)

FORMAT (34 Xy ¥ ekaolmdkd ook fok gk e 1)
FORMAT(11xyFYaly1Xxy14F3.1)

MIMY 3 /330Xy *OMESA =1,F6,2,y"!

(M=TFLS) Y, /)

My //)

PATC

OUTP 1440
ruTP16L0
auTPlann
nuTP 1470
CUTPL14rN
CuTPl4 0
ouTPLEno
CUTPLS1OD
rUTP1S520
ryTP1F 30
MITP1540
fUTPLEEN
AuUTP1=60
QUTPLIETY
OUTPLISED
auTP1LS M)
CUTP15CO
CUTPLELD
CUTP1620
oureles)
AUTP1E40
cuTrl6 »n
NUTP1660
NnuTP1AT70O
AUTPL1LAO
AUTPLEYIN
ayTrP17Co
NUTPLITLO
CUuTP1720
nAUTP1T7.0
UlITP1740
CUTR21750
ouTe17en
TP L1770
CuTP1L7TY O
nuTP1 790

96T



180:
181:
182:
1R3:

215 FNRMAT(// 538X, *CINCENTRATIONIM3/CULM) 1)
220 FOPMAT(4(/) 91X, QX (5R/SFC)=1 , 15F% ,?)
RFTUR Y
EN

PAGEH

OUTPLIRNO
OUTP 1K LA
UTPIRCO
OUTPLE3D

LST



PALE

1: SURROUTIMNE ZERO(C)H LEKN 1N
2: L TR 20
3: ¢ ZEPN 30
42 C THIS SUPROUTINE CLEANS THE OUTPUT OF THE MNbel JERN 44)
5: .. 5. N B¢,
r: C 7FE1M) 0
T: OIMENSTON Cl15415,15) JERLY 70
g3 COMMON /1T LK1/ AL (1543159 )902(154315)3A3(15,315)sr1(15415)s0201%5415), YANREA =0
9: 1n3(15515) o= (15) 23015 )sP5(10) sRHITE)ZRICTI(LY)4R3I62(15),APALI15), ZF2C 10
10: 2361015, 15),QCT70UYU0L19)VILS) o XXX 3,317) 3 XYY(L1E) 4 XZ2(15) XMAXK(3), ZERD 100
11: 3YMAXyHy AK g TCHy Py KS U3 ) yLSE3)9C0 03 ) 3 MX 1Y 3" 2y ML 2y 33 KXy KY,ZKZ, 2Ern 110
e GATCLD) ow2015) g W3 {L15) yNSRCSHIFLG,y 'FLGCCU 39152159 15)yPPUELSPR AT 3, JEY 120
13: 51 4VRS JFEYNY 140
14: J=2 7e20 140
15: 56 k=kS(IFL%) IF T 159
16: L=LS{IFLR) Ze=() 160
17: IF(C(JyKyL)LF.0e) GN TO 1O FTEMY 170
182 12 L=L+1 ZERMO 190
13: IF{L.GTi3) GO TN 14 ITRC 170
202 IF(ClJyKyL)LELOUL) O TN 20 7RO 20N
21: CNTN 12 IERN 210
22: 14 L=LSUIFLD) Itrn 220
23: 15 L=l -1 IFR0) 230
24: IF(L.LT.1) GO TO 30 VT 240
251 [F(C(JyK L) LELDL) S50 TO 2, Zenn 250
26 0 TN 15 IER() 260
273 20 1NN 21 I=L4N3 IR0 270
28: 21 CUJys¥,e1)=0. LERN 2x0
27: G T 14 ZFERNY 20
3N 25 L{JyKeL)=0, 7ck0 A0D
31: L=t-1 ZFERD 310
323 IF(L.EW.T) 0 TN 30 ZEwl 320
33: SN TN 25 IFRD 349
342 A0 L=IS{IFLL) ZERN 340

35: K=KSUIFL™) ZeErn 3.0

8ST



o7

403

50

N6t

tnN:

bh e
67
AR
672
70:
71:

R7

39
4()
JR
68

L=LS(IFLY)

K=K+1

Iyn=1

[IF(K.ECLMNZ2)Y 70 T 32
ITF(C{JyKyL)eLELDL) 5
ofd T 37

LM 34 I=1,M3
Cldsk,1)=0,
IF(IYD.FDLL) o) T BRH

S0 TO 46

1O 80 =K ,.KY

LiJyIsL)=0,

0T 87

TN =K

LIJyKIND,L) =0,
IF(KINDFQL,1}Y S0 TO KT
Kirh=KwIt =1

GO T A8

CONMTIMUL

[F(IYDJECGL) GN T 33

SnoT0 51

L=L+1

[F(L.TLM3) SO T 38
IF(C{JyKyL)eLELO.) 5N TN 359
o) TN 37

0N 4N I=L,N3

‘J(J'Kyl)ZOo

L=LS(IFLN)

L=L-1

IF(L.GE.1) GO TO 63
[F{IYD.EDLL) SN T 33
TFCIYDLRG.2)Y G T 51
IF(C(JyKyL)LELOL,) GO TN 42
;r] TN L8

LUJdyK,yL)=0,

L=L-1

n 10 35

PASE

TERD
7ERIM)
TERN
7Ewn
7ER0O
IERD
JERD
1ER0)
ERn
LERD
IF(Y
ZFR0
IeRkD
LEwn
ZEXN)
Len
[ERN
IERD
7ERD
LEFN
ZF-1
FLRN
IERD
ZEP(
ZEPI)
ZERL
JERD
ZErn
7FRO
ZEFD
IF1 O
7ERN
LERT
7=RMN
JE N
7ERFD

2/ 0)
470
300
390
4000)
419
420
4 30
440
450
46l
47y
4 41)
410
500
510
520
53N
s40n
560
540
570
590
530
€00
510
£2G6
& 50
b4l)
£50
6HGO
0
~ 10
F) )()
700
710

2

6ST



IF(L.CF1) GO TO 42
IF(IYD.Ewal) SO TN 33
IF(IYN.EN.2)Y 6O T 51
L=LS{IFLG)

K=KS({IFL.)

L=LS{IFLY)

K=K-1

IYn=2

IF(K.,EQ.1) GO TH 40
G T 52

J=J+1
IF(J.
il I
1 058
111 58
.00 58
LITyKy
CONTIMNY
RETURM
SN

<)

R =0 -

o~ i n

Ml)y 50 T A0

™

o= N G

PACE

IFRO
YASRAR
IFER{
ZER(D
YANCAR
IF 0
7FRM
LExD
JANNY!
ZER()
IENN
ZERND
IFPRN
IErRQ
JERN
820
LFRD
LF KD
LERN
ZERN

20
750
740
750
700
770
Te0
790
&00
Q10
#20
230
240
2 a0
pLN
£ 70
820
230
9Cn
910

09T



15:

23:

27:

33:

IaNeNeNaleNe!

THIS SURROUTINE COMPUTES THI AVERAGE CONCENTRATICMS
TIMe =

25

SURRNDUTINE AVG(C,IT,.1FLAG)

2XPROIFL)

DIMENSINYN C(15915415),0(15,15,15)

COMMMDIL JOLKL/Z AL(LS9e15)53A2(15, 151, A2(15, 1), 1015,15),32(15,1%),
30159 15) 9PLLLIS) 9 RE(ID)IHRE(LN) 4 Re (1N )93 1 (15)4R362(15),4LPAT(LS),
PR3AT(LSy15),0C0LT00) 2 ULLB) 3 VL) o XXX{3,15) o XYY(L1E)XZ7(15) 4 XI*AX(4),
AYMAX s Hy AK 3 TCH Py KS {3 )31 SO3)5COU3) o IXs" 1Yy M7 3Ly N2yN3 KX 4WKY 4 KZ,
GULELIS) gW2EL15) sWa (19) yMSROG,IFLTyMFL G, CO 073 15,15915)3PRUEL,PR™ T,
DIHVRS

IF(TTI.oT.2) 50 T2 20

M=TI+1

£ 10 J=2,N1
IPLK=J+(TFLAG=-1)%]15+(M=1) %45
WRITE(B'IVPLK) ((ClJsKybL ) yK=24KY)ybL=1,M3)
[F(IT.ERQ.2) S0 TN RO

RETHAN

pM=2

(R 15 J=2,M1
ThLK=Jd+{TFLAG=-1)*]1%+{M=-1) ¥45
TEADC3YITLK) (DS KL )9 K=2,KY)yL=1,"3)
pM=1

27 J=2,4,N1
[PLK=J+(TFLAG=1)®154+4(M=1) %45
VRITZ(3VICLK) ((D(JyKyL)yK=2,KY)ylL=1,"13)
M=

1.0 35 Jd=2,111
[PUK=J+(TFLAG-1)%]15+(M=-1) %45
READ(E3IYTIELK) ((O(JyKyL )Yy K=243KY )L =1,"3)
M= D

LO 45 J=24N1

(AVLCKAGING

PASE

av
AV
AV
AV
AV
AV
AV G
AVE
AV,
AV
AV S
AVS
AV
Av 5
AVL
AV"I
AVG
AV,
AVT
AV G
AV(
AV,
AV,
Av 6
AVC
AV
Av i,
AV
AvC
Avi,
AV L
AV,
AV
AVE
AVGS

10
20
50
4n

§¢)
70
HU
10
1C0
110
121)
130
140
1.0
140
170
180
170
LN
210
220
230
240
2,50
7\10
270
230
210
3IC0
210
220
370
340
315990

T9T



37:
382
39:
402
41:
42

442

58:

60:

45

g &

g0

1?

73

ITFLK=J+(IFLAG-1)®17+(M=-1)=%45
WRTITIAAIYIELK) ({0 {JyW gL}y K=2,KY)yL=1,"13)
=3

in bHL o J=2,n1
IVWLK=J+{TFLAG=1)} %10+ (M=1) %45
WRITE(2ZVPTRLK) ((ClJgKyL) ¢K=243KY),yL=1,MN2)
CUNT INUE

M=1

N 70 J=7,M1
IFLK=J+(IFLAG=1)*15+(M=1) %45
READ(3IYIBLK) ({ClJyKyL)yK=2,
M:?

un 71 J=2,4N1
[TPLK=J+({IFLAG=1)%15+(M=1) %45
PEADCITYITLK) ((D{JsKyL)gK=2,KY)ylL=1,"3)
noo7? J=7,N1

RIS I K=21KY

W 72 L=14N3

CUJe e LY =C(JaKyL)+D(JyKyl)

M=173

o 73 J=24N1
IPLK=J+(IFLAC=-1) %15+ (M=1) %45
FEADEAYTIALK) ({DOJyKaL) 9 K=2,KY)yL=1,"13)
1 T4 J=272,N1

hn 74 K=2 ,KY

(N 74 L=1,N3

ClJaF o L)=(ClIyK L)+ JsK4L) )/ 3,

RETUNN

M

KY)sl=1sN3)

PAGF

Av 7
AV
AV G
AV o
AV
Av s
AV,
AV
AvVaS
AWV
AVG
AV,
AV S
AV S
AV
AV
AV L
AVS
AV
AV S
AVo
AV
AV,
AV
AV
AV G
AV
AV
AV

240
370
370
390
400
419
470
44y
440
450
4 410)
479
450
410
o0
510
52N
540
540
550
c 40
c70
5.0
& 94)
6CO
610
620
€30

40

29T



PALL

1: SUPMRNUTINE REKSSIPRMT ZYL,NDTRY yMDTIM, [HLF,FCT,,UTP, AUX) FKGS 10
723 C RKGS 2N
33 C RKJGS 4)
4: (C THIS SU ROAUTINE SOLVLES A SYSTFM NE FIRST NRIER ARPIMARY  IFFIRENTIAL PKGS 40
o8 L EGQUATIONS WITH GIVEN INITIAL COUIDITIONS RK TS L0
62 C RKLS (0
7: . RK 7SS 70
Q: PRMT - A InPUT ODTPUT VFCTOR WITH DIMENSTION GREATER MR RK 2S 10
9 C FQUAL TN % RKS 730
10: C PRMT (1) - LOWER ROUND OF TH' IMTFRVAL RK3S 190
11: C PRMT{2) - UPPFR BOUND OF THF INTF VAL RKGS 110
12: C PRMT (3) - THITIAL INCREMENT OF THE T IEPEMNDENT VARIABLE RKCS 120
13: C PRMT(4) - UPPER ERR[OR FOUND RKSS 140
14: C PRMT(S) - MO THPUT PARAMETFL, IT IS ) UNLFSS THE USFP wANTS TO RKGS 140
153 C TERYINATE RKLS AT ANY CUTPUT PAINT RKGS 1499
16 C peE"yY - I"PUT VECTNR OF (LRRIR WLIGHTS. LATERON IS ThL VveCT0O? RKLS 1¢0)
17: NF NERIVATIVES RKGS 1706
18: ¢ NDITM - THF MREP OF EQUATINNS INM THE SYSTeM RK3S 1%0
19: C THLF - THF dUMNPER OF RISECTINS NF THE INITIAL INCPEMENT RKLS 140
20: L nUX — AN AUXTLTARPY STHURAGT ARRAY (R ROVS AND MO IM LOLUMMS) RKSS 260
21: C PESLS 210
22: C PK",S 2720
23: PIMENMSTIOM Y1) sDERY (L) 2»AUX (B 1)y A(4)4F(4),C(6),PRUT(]1) RKGS 240
242 by 1 I=slaNHIM PKLS 240
252 1 AUX(ByI)=.006666AT#DERY(T) RKLS 2.0
262 X=PRMT (1) RKTS 260
27: KEMD=PRMT(2) RKGS 270
29: H=pP} T{ 3) RK (S 2RO
29: PPMT(5)=). RKLS 2140
3N CALL FCT(X,.Y,4DLRY) RKSS 300
31: C RKCS 310
32: C  ERRuUP TEST RK3S 320
33: C KKSZ 3.0
342 [TF{HR{XE D=X)) 38, 37,42 RKGS 340

]

35: C RK3GS 3450

€9T



EYa C PREPAPATIONS FNR RUNABF=KUTTA METHNND
37: .

STe P

IR 2 M(1)=.5

ERH A(2)=,.792293°2

40 A(3)=1.707107

41 N (4)=.16656667

423 A{1)=2.

43 fr(2)=1.

44 3 f’(:‘)zlo

45: F{4)=",

462 Cll)=.5

47: L{2)=.292R8932

48 (.(3 )—1 707107

49 cl4)

50: (C

51: C PREPARLTINNIS OF FIRST RUMGE-KLTTA STEP
323 C

533 PN 3 I=1,NDIM

543 AUY(1,1)=Y(I)

55: WUX(2,1)=0ERPY(])

Y MWIX(3,1)=0.

57: 3 AUX{4,1)=0.

582 IPTC=0

H9: H=H+H

60: IHLF==-1

Ol STEP=0

62: [FND=0

63:

G4: C  STAKT CF A RUNSGT=-KUTTA STCP
65: C

62 4 TFO(X+FH=XENDNYXH) Ty 5
67 5 H=XT 'N=X

fHRS  LRFI'D=1

69: C

T0: C RECHRDIIZ OF INITIAL VALUFES NF THIS
71:

PAGLE

Rk G5
RK 58S
RKGS
RK.GS
RK3S
RK S
QK )C)
RK S
RK S
PRKCH
RKLS
RK S
Rk UGS
p\K’JS
RK ™S
RK LS
RKLS
RKGS
RE S
RK €
KKTS
RKGS
RKCS
R¥~5§
PKIS
RKCS
RK LS
RKGS
R¥. S
RKG>
pK IJ
RK 1S
RKLS
RS
K 5S

300
370
340
340
41
410
4 /()
4 50
4 4()
4451
444)
470
440
410
00
510
/0
540
54N
510
560
SRAY)
E 0y
530
6No
610
620
f30)
N
A L0
ISV
£T0
£ 4{)
610
7C0
71u

¥oT1



75

-
™~
s 08 o

77

9332

95
IHe

992
100:
101:
102
103:
104:
| AR
106
1N7:

el

T CALL DUTP(Xa Y LE YT FC,MLIM,PPHMT)
[F(PRMT (%) )4N,R,40

8 ITEST=0

9 ISTEP=I5TFP+]

START OF INHLERMOST RUMGe-KUTTA L 0P

J=1

L0 AJ=A(J)
dJd=8(J)
cJd=C{(J)
11 I=1,RU1IM
Pl1=H*DERY (1)
K2=AJR(RLI=-PIXAUX(L,1))
Y(I)=Y{I)+R?
RI2=R2+R2+°92

1Y AUX(CO T )=AUX(6,T)+RZ2=-CJ%R]
IF{J-4)12,15,15

12 J=J+1
IF(J=-3)1%,14,13

13 X=X+,5%H

14 CALL FCT(X.YyUERY)
“NT0 10

THST OF ACCURACY
15 TFAIT=ST) 110420
IN LCASE ITEST=0 THERt I° MO POSSIPILITY HP°

15 2 17 T=14NLIM

17 \WXta, I)=YL1)
ITEST=1
[STEP=ISTEP+ISTFP=2

19 IHLF=T1HLF+1
X=X —H

TESTING

NCCURACY

PLGLC

KBS
PKST
RKCS
RKNS
RK S
PKSS
RKGS
RK GS
RKGS
RKNS
RK S
RKGS
LKnS
K G S
RKZS
RK 35S
RK (S
RKCS
RKS
RKSS
RK S
PKGS
RKSS
PK S
RKGS
RKTS
PK,S
RKGS

720
750
T4t)
750
7.0
770
7+0
710
800
210
20
230
840
50
20
£ 70)
ann
813N
400
710
9N
710
eV
RNV
9.0
970
()
9 Iin

RK551GOI0
PK3S1ININ
RK.5S 1020
RKSS1040
RKTS1N40
PKGS10C G
PKGSINLD
PKRSINTD

G9T



10R:
109:
110z
111:
112:
113:
114:
115
1142
117:
118:
119:
120:
121:
122:
123:
124:
125:
126:
127:
12R:
129:
130:
131:
132:
133:
134:
135
1362
137:
138:
13732
140
l141:
l42:
143:

D0

(@]

DD

o O

[

OO0

H=.5%H

L1 T=1 4NN

Y(TI)=AUX(1l,1)

{EFRY(T)=AUX(2,1)
17 "UX(5,T)=AUX{3,1)

LNTO 9

IN CASE TTEST=1 TCSTIMNSG OF ACCURACY IS PASSIFLF

20 IMOU=ISTFEP/2
TFCISTEP=-IMON=IMIN)Z2]1,423,21
21 CALL FCT(X,Y4DERY)
BN 22 T=1,NUIM
A\UXS,1)=Y(1)
27 AUX{T,I)=0FRY(])
6NTO0 9

COMPUTATION (F TEST VALUE D=SLT

2?3 NELT=0,
124 T=1,NDTH

24 HFLT=PELT+AUX(8B,1)*ARS{AUX(4,1)=-Y (1))
[FIDELT=PRMT(4)) 28,28, 75

ERRTP TS TUN GREAT

25 TF(IHLF-10)26,36,136
245 00N 27 I=1,N0DIM

27 AUX(4y T)Y=2UX(5,1)
[STERP=ISTIO+ISTL? -4
X=x=

TEND=D

JNTU 18

RCSULLT VALUFYS AE G0

PAGE

RKSS1040
RK(GS1090
RKLS110N
Rkustillo
PKGS1120
RKGS11 39
RK3S11%0
RK5S11%0
REKLSLITLO
RKCS1I1TD
RKOS11HO
PKLSTILIYD
Prr51200
R¥5S1210
PKAHS122N
RKLS512430
PK(,S124u
RKGS12,0
Rk 35S1200
RK.,S127)
KK5S12#0
PKGS1290
RKLS1300
RK7S12319
RK51329
RK(CS51330
RK5S1340
RK 5513350
KK CS1360
RK551370
RK(GS13RN
PK3S13110
RK5714 30
RK38141N
FRGS1420
2KG5S14 30

991



144:
la5:
1462
147:
149:
149:
150:
1%1:
152:
154:
154:
155:
1562
1.7:
158:
159:
160:
151:
162:
163:
164:
165:
166:
lo7:
168:
153
170:
171:
172: C
173: C
174: C
1735:

176:

177:

1782

177:

OC O

28 CALL FCT(X,Y,DERY)
LN 29 T=14NDIM
TUX{1,1)=Y{(T)
AUX(2, T)Y=DERY(T)
WIX{3,T)=AUX(69 1)
Y(T)=AUX(O,1)

29 DERY(L)="1X{T7,1)
CALL NUTPAX=1iy Yy NERYy ITHLF o NDIL 44022 T)
[FIPRMT () )40,3044)

30 0 31 I=14NDIM
Y(I}=AUX(1l,1}

31 LERY(I)=AUX(2,1)
[IPFC=1IHLF
IF(IEND)A2,37, 39

INCREMENT SETS NOURLTH

32 IHLF=THLF-1

1$TEP=ISTCP/?

H=H+H

ITF(IFLF)443%,33
33 IMAL=IST P/D

[IFCISTEP=IMND=1IMTM)4,34,4
34 TF(UFLT=-,02%2RNT(4))35,35,4
35 THLF=THLF-1

[STEP=ISTEP/2

H=H+H

010 4

RETURMNS TN CALLING P?JCRAM

35 THLF=11
CALL FCT(XsY,0FRY)
LT 39

37 IHLF=12
COTO 39

paGr

RK™G1441%)
RKGS1450
RKG514450
QK LI1470
RK5S14 40
FK51430
RK2IZ17)H0
PK5S1510
RKSS1020
Rk 551% 30
PK 5;€15640
RK5S15,)
RKGS1E 4N
RKJ51570
R 55150
RKGS1590
RKLT16U0
RKTS161U
PKLS1L2TD
RK G516 30
RKCS1640
RKGS1A LY
RK3S1FA60)
RK5S1670
RKGS51690
RKC2S16 13D
RKLS1700
RKASLI710
AKGSLT2D
RKLE1T30
RK3S1744
RKSS1750
RKCS17,0
RKS17740
PKTS17%0
RKuLS1730

LOT



180: 38 IHLF=13

181: 33 LALL NUTPXsY s DF2Y 3 ThLFy N1 IM,PRMT)
182: 40 RETURM

183: D

PALE

RKLS1®00
RKLS1810
RKTS19220
RK3518140

891
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APPENDIX B

INPUT DATA REQUIRED

As examples, the input information for the hypothetical
cases 8 and 10 are given next.

IAPLT DATA ‘
I T (Case #8)
YIMT = .0 PRMTI2) = 2.5C FIN PRMT(4) = 1.CCCCO

NUMBER OF SCLRCES =

ENCS = 90.0 MIN

1

PRCEL = 5.C0 NIN

Nx s € NY = 7 YRR

YHAX = 7C0.0 M = S505.C0 M

KS = ¢ LS = 4 cC = 35,45 FG/CULY X¥AX = 113500.0 ¥

STARILITY CLASS = 4 IAVRS = 1 ALPHA = 2.CC AKX & (. 5€E~C4 1/VIN

UST = 3CC.CC M/FIN WGR = 30.C0 F/NVIA M = 0.250 TCH = 15.0 PIN P = 0.0%
mer o (Case #10)

TIKIT = 0.¢C EACS = 90.0 PIN PRHT(3) = 2.50 VIN PRMT(4) =  1.€€CCO

NUPBER CF SOURCES = 2

PROEL = 5.C0 KIN

NK = & NY « 7 NZ = 7

YHAX 5 26C.0 ¥ B = 505.C0 ¥

KS e 5 LS 4 €O~  35.45 HG/CU.M  XWAX = 1CCCO.O ¥

KSe 4 LS 5 CO =  21.27 PG/CU.F  XVAX = 2CO0.C M

STABILITY CLASS = 4 INVRS = 1 ALPHA = 2.C0 AK & C.SEE-C4 1/VIN

UST = 3€0.€C M/PIN LWGR = 30.C0 F/¥IN AM & 0.250 TCH = [S.C MIN P s 0.0
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APPENDIX C
NOMENCLATURE
a Constant in equation (4.8)
a; Parameters defined by equation (4.2)
aij ) Parameters defined by equation (4.41)
i Matrix defined by equation (4.19)
AM Represents the exponent m
b Constant in equation (4.29)
8 Matrix defined by equation (4.20)
c Constant in equation (4.29)
5 Coefficients in equation (4.3)
Ci Instintaneous concentration of species i,
mg/m
CB Background concentration
Co(i) Concentration at ith source
di Coefficients defined by equation (4.11)
dij Coefficients defined by equation (4.42)
Di Molecular diffusivity of species i, m2/min
D' Eddy diffusivity tensor used in equatlon (3. l)
ei Constants defined by equation (4. 43)
fj Constants defined by equation (4.50)
G Constant given by equation (4.9)



INVRS

ISTB

(JS,KS,LS)

k

k
o

N

N

NSRCS
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Constant in equation (4.33)

Maximum height above terrain (in some cases refers
to the elevation of the inversion base)

Constant used in equation (4.105)

Stability class (1 very unstable, 6 very stable)
(x,y,2) coordinate position of a point source
Reaction rate constant, min

Von Karman's constant

Turbulent diffusivity, m/min

Height defined by equation (3.11)

Effective emission height, m

Exponent in equation (4.65)

Number of interior collocation points

jth independent Gaussian white noise

Number of sources

Exponent in equation (3.10)

Constant in equation (4.67)

First orthogonal polynomial

ith orthogonal polynomial

Power spectral density of the jth white noise
Initial step size of integration

Upper error bound in "RKGS"

Source emission rate, mg/m3min

Strength of ith continuous point source, kg/s
Matrix used in orthogonal collocation theory

Mass rate through y-z plane at x = constant, kg/s
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Q(x,t/x*,t*) Transition probability density function

R Matrix used in orthogonal collocation theory

Ri Rate of generation of species i

s Number of species

S(x,t) Spatial—tempofal distribution of particle sources

t Time,'min

T Matrix used in orthogonal collocation theory

TCH Parameter in equation (4.67)

u Velocity in x-direction, m/min

u . Variable in equation (4;31)

uj jth component of fluid velocity, m/min

ux Friction velocity

UGR Mean wind velocity in the x-direction at ground
level

USsT Geostrophic wind sveed, m/min

v Velocity in-'y-direction, m/min

v* Pseudo-velocity defined by equation (3.1)

w Velocity in z-direction, m/min

w(x) Weighting function

Wj Quadrature weights

X Cartesian coordinate in mean wind direction

X Refers to independent variable in orthogonal
collocation theory

xj Collocation points

X Maximum distance in the x-direction

max
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Y Cartesian coordinate in horizontal direction

Yy Refers to dependent variable in orthogonal colloca-
tion theory

Ynax Maximum distance in the y-direction

z Cartesian coordinate in vertical direction
z Characteristic surface roughness length

zy Reference height

Greek Symbols

o Constant in equation (4.63)

o Exponent in equation (4.5)

v Gradient vector

V2 Laplacian

8 Exponent in equation (4.5)

r Gamma function

§ Test value used in "RKGS"

éij Kronecker delta function

A Knee height, m

4 Function that represents K,

n Function that represents v

) Time between the pollutant release and the initiation
of the averaging time, min

£ Function that represents Ky

o Standard deviation

é(x,y) Function of the independent variables x and vy,

given by equation (4.41)
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Y Function that represents u
Q End of the averaging time, min
Superscripts

L Denotes the fluctuating component when used in a
concentration or velocity variable

Denotes the mean value when used on a velocity
variable

* Refers to shifted polynomials

= Refers to a matrix

Subscripts

i ith species

i Index in collocation equations

i Index used in orthogonal collocation theory

j jth direction .in Cartesian coordinates

3 Index used in orthogonal collocation theory

j Represents the x-direction in collocation equations
k Represents the y~direction in collocation egquations
L Represents the z-direction in collocation equations
n Index used in orthogonal collocation.theory

S Denotes ground level

b14 Refers to x coordinate direction

y Refers to y coordinate direction

z Refers to z coordinate direction

~ Denotes a vector quantity
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Brackets

< > Denotes ensemble averages



