SOLUTION OF A GENERALIRED
AIR POLLUTION MODEL BY ORTHOGONAL COLLOCATION

A Thesis
Presented to the Faculty of the Department of
Chemical Engineering The University of Houston

In Partial Fulfillment
of the Requirements for the Degree of Master of Science in Chemical Engineering

by

Miguel T. Fleischer
December, 1975

ACKNOWLEDGMENTS

I would like to express sincere gratitude to Dr. Frank L. Worley, Jr. for his invaluable advice and guidance throughout the course of this work.

Special thanks are due to the Department of Chemical Engineering for financial support. I would also like to acknowledge the staff of the Engineering Systems Simulation Laboratory for their assistance in the use of the computer facilities.

Finally, I am glad to dedicate this thesis to my wife, Jackie, and my son, David, whose patience and love have made all of this possible.

SOLUTION OF A GENERALIZED
AIR POLLUTION MODEL
BY ORTHOGONAL COLLOCATION

> An Abstract of a Thesis Presented to the Faculty of the Department of

Chemical Engineering
The University of Houston

In Partial Fulfillment of the Requirements for the Degree of Master of Science in Chemical Engineering
by
Miguel T. Fleischer
December, 1975

ABSTRACT

Turbulent atmospheric diffusion from single or multiple point sources was simulated using the K-theory and solved by a new numerical technique, orthogonal collocation. The physical and chemical behavior of pollutant species in the atmosphere was described by the 3-dimensional, unsteady-state diffusion equation including chemical reactions. Orthogonal collocation was used to reduce the partial differential equation governing the mean concentration of contaminants to first-order ordinary differential equations. This system of equations was then solved in a digital computer.

Mean wind velocities and turbulent diffusivities were represented by empirical equations. Several meteorological parameters were included in these equations so that a variety of atmospheric conditions can be simulated. These parameters and other information required to solve an air pollution problem must be specified as input data by the user.

The present method was evaluated by comparing the results to existing experimental atmospheric concentration profiles. Good agreement was found in all cases. In addition, the sensitivity of the present model to variations in atmospheric conditions was analyzed by means of a parametric study. Proper responses were observed in all cases.
Chapter Page
I INTRODUCTION 1
II THEORETICAL BACKGROUND 3
Eulerian Approach 3
Lagrangian Approach 6
III REVIEW OF PREVIOUS WORK 9
Eulerian Models 9
Box Model 9
Grid Model 10
Two Dimensional Unsteady State Models 11
General Solutions 14
Statistical Models 19
Gaussian Plume Models 19
Gaussian Puff Models 21
Monte Carlo Methods 22
IV ORTHOGONAL COLLOCATION 24
Theory 25
Comparison to Finite Difference Techniques 42
Application to Turbulent Diffusion in the Atmosphere 45
Initial and Boundary Conditions 47
Turbulent Diffusivities, K_{j} 50
Chapter Page
Velocity Profiles 57
Chemical Reactions 61
Development of the Collocation Equations 65
V FORMULATION OF CALCULATIONAL SCHEME 74
Calculation Procedure 74
Multiple Sources 76
Continuity 81
VI PRESENTATION AND ANALYSIS OF RESULTS 85
Comparison to Experimental Values 85
Hypothetical Cases 99
Sensitivity Analysis 120
Facilities at U of H and Time Requirements 126
VII SUMMARY OF RESULTS AND RECOMAENDATIONS 128
BIBLIOGRAPHY 131
APPENDIX 134
A. Computer Program Listing 135
B. . Input Data Required 169
C. Nomenclature 170

LIST OF EIGURES

Figure Page
4.1 Variations of Diffusivity with Height 51.
4.2 Vertical Diffusivity Profiles 53
4.3 Vertical Diffusivity Profiles in the Present Model 55
5.1 Multiple Sources Representation 78
6.1 Comparison of Vertical Concentracion Profile with Project Prairie Grass Data 91
6.2 Comparison of Vertical Concentration Profile with Project Prairie Grass Data 92
6.3 Comparison of Vertical Concentration Profile with Project Prairie Grass Data 93
6.4 Comparison of Vertical Concentration Profile with Project Prairie Grass Data 94
6.5 Comparison of Horizontal Concentration Profile with Project Prairie Grass Data 95
6.6 Comparison of Horizontal Concentration Profile with Project Prairie Grass Data 96
6.7 Comparison of Horizontal Concentration Profile with Project Prairie Grass Data 97
6.8 Comparison of Horizontal Concentration Profile with Project Prairie Grass Data 98
6.9 V́erical Concentration Profiles for Hypothetical Cases 4, 5 and 6 102
6.10 Vertical Concentration Profiles for Hypothetical Cases 4, 5 and 6 103
6.ll Vertical Concentration Profiles for Hypothetical Cases 4, 5 and 6 104
6.12 Vertical Concentration Profiles for Hypothetical Cases 4, 5 anã 6 105
Table Page
4.1 Estimates for m in Equation (4.65) 59
6.1 Source Strengths and Mean Velocities (at 2 m) for Experimental Cases Simulated 87
6.2 Comparison Between Actual and Theoretical Values for the Mean Velocity in Run \#45 89
6.3 Hypothetical Cases Simulated 100
6.4 Concentration Distribution for Hypothetical Cases 1 Through 7 106
6.5 Concentration Distribution for Hypothetical
Cases 1 Through 7 107
6.6 Concentration Distribution for Hypothetical Case 8 108
6.7 Concentration Distribution for Sypothetical
Case 8 109
6.8 Concentration'Distribution for Hypothetical Cases 4 and 9 110
6.9 Concentration Distribution for Hypothetical Case 10 115
6.10 Parameters in Turbulent Diffusivity and Velo- city Profiles 121
6.11 PRMT(3) and PRMT(4) Values Used in the Simulations 125

CHAPTER I

INTRODUCTION

There has been increasing interest in bringing the air pollution problem under control. This problem can be represented as a system consisting of three basic components: emission sources, the atmosphere, and receptors. Once the pollutants are emitted from sources, they are transported, dispersed, and transformed according to the laws of physics and chemistry throughout the entire atmosphere. Finally, these air pollutants are detected by receptors, such as human beings, animals, plants, and materials, producing in some cases undesirable effects.

In order to understand the cause-effect relationship of pollutant emission and dispersion on the air quality, a study of the three components previously discussed should be carried out. Understanding of the physical and chemical behavior of pollutant species in the atmosphere plays then an important role in the relation of source emissions to air quality standards.

The objective of an air pollution model is to describe mathematically the spatial and temporal history of contaminants released into the atmosphere.

Several air pollution models have been developed so far, but they have had only limited success. An improved dispersion model based on the K-theory and solved using a new numerical technique is presented in this thesis. The atmospheric processes involving air pollutants are described by the 3-dimensional, unsteady-state diffusion equation including chemical reactions. Orthogonal collocation, a weighted residual method, reduces the partial differential equations governing the mean concentration of pollutant species to first-order ordinary differential equations. This system of equations is solved then in a digital computer.

The present work is validated with existing experimental data. In addition, its sensitivity to varịations in atmospheric conditions is analyzed by means of a parametric study.

Chapter II

THEORETICAL BACKGROUND

There are two fundamental ways of describing the physical and chemical behavior of pollutant species in the turbulent atmosphere. The first is the so-called Eulerian approach, where the behavior of species is described relative to fixed coordinates. The second is the statistical approach, where concentration changes are described from a statistical point of view by considering the paths of individual elements of fluid, and is thus Lagrangian in nature.

The objective of any air pollution model is to predict pollutant concentrations at given points. These concentrations are caused by emissions from sources, and therefore a source-oriented point of view is the natural one in this case.

Eulerian Approach

Consider s species in a fluid. The concentration of each must, at each instant, satisfy a material balance taken over a volume element. Therefore, the concentration of each species must satisfy the continuity equation usually known as the instantaneous diffusion equation,

$$
\begin{array}{r}
\frac{\partial C_{i}}{\partial t}+\frac{\partial}{\partial x_{j}} u_{j} C_{i}=\frac{\partial}{\partial x_{j}}\left\{D_{i} \frac{\partial C_{i}}{\partial x_{j}}\right\} \tag{2.1}\\
+R_{i}\left(C_{1}, \ldots, C_{s}\right) \\
i=1,2, \ldots, s
\end{array}
$$

where the subscript j represents the three coordinate directions: $x(a x i a l), y(l a t e r a l), ~ a n d ~ z(v e r t i c a l) ; ~ a n d ~$ $C_{i}=$ the instantaneous concentration of species i
$u_{j}=$ the j th component of the fluid velocity $D_{i}=$ the molecular diffusivity of species i in the carrier fluid, and
$R_{i}=$ the rate of generation of species i.
Since atmospheric flows are turbulent, it is conventional to divide the instantaneous quantities into mean and fluctuating facts,

$$
\begin{align*}
& c_{i}=\left\langle c_{i}\right\rangle+c_{i}^{\prime} \\
& u_{j}=\bar{u}_{j}+u_{j}^{\prime} \tag{2.2}
\end{align*}
$$

It should be noted that the mean fluid velocities are usually determined by temporal averaging and the mean concentrations always represent ensemble averages. This is the reason why a different notation has been used for the mean values of the velocities and the concentrations.

Substitution of equation (2.2) into equation (2.1) gives

$$
\begin{align*}
\frac{\partial}{\partial t}\left(\left\langle C_{i}\right\rangle+C_{i}^{\prime}\right)+ & \frac{\partial}{\partial x_{j}}\left\{\left(\bar{u}_{j}+u_{j}^{\prime}\right)\left(\left\langle C_{i}\right\rangle+C_{i}^{\prime}\right)\right\} \\
& \frac{\partial}{\partial x_{j}}\left\{D_{i} \frac{\partial}{\partial x_{j}}\left(\left\langle C_{i}\right\rangle+C_{i}^{\prime}\right)\right\}+ \\
& R_{i}\left(\left\langle C_{1}\right\rangle+C_{i}^{\prime}, \ldots,\left\langle C_{s}\right\rangle+C_{s}^{\prime}\right) \tag{2.3}
\end{align*}
$$

Taking an average of equation (2.3) over a large ensemble of realizations of the turbulence, one obtains the following equation governing $\left\langle C_{i}\right\rangle$

$$
\begin{gather*}
\frac{\partial\left\langle C_{i}\right\rangle}{\partial t}+\frac{\partial}{\partial x_{j}}\left(\bar{u}_{j}\left\langle C_{i}\right\rangle\right)=\frac{\partial}{\partial x_{j}} \quad\left\{D_{i} \frac{\partial\left\langle C_{i}\right\rangle}{\partial x_{j}}-\left\langle u_{j}^{\prime} C_{i}^{\prime}\right\rangle\right\}+ \\
+\left\langle R_{i}\left(\left\langle C_{l}\right\rangle+C_{i}^{\prime}, \ldots,\left\langle C_{s}\right\rangle+C_{S}^{\prime}\right)\right\rangle \tag{2.4}
\end{gather*}
$$

The most common means of representing the turbulent fluxes <u' $C_{i}>$ is by the so-called K-theory, in which a turbulent diffusivity is defined by

$$
\begin{equation*}
-\left\langle u_{j}^{\prime} C_{i}^{\prime}\right\rangle=k_{j j} \frac{\partial\left\langle C_{i}\right\rangle}{\partial x_{j}} \tag{2.5}
\end{equation*}
$$

Ignoring the molecular diffusion when compared with the turbulent diffusion, and assuming the atmosphere to be incompressible, the final expression for the diffusion equation becomes

$$
\begin{align*}
\frac{\partial\left\langle C_{i}\right\rangle}{\partial t}+\bar{u}_{j} \frac{\partial\left\langle C_{i}\right\rangle}{\partial x_{j}}= & \frac{\partial}{\partial x_{j}}\left\{K_{j j} \frac{\partial\left\langle C_{i}\right\rangle}{\partial x_{j}}\right\}+ \\
& +\left\langle R_{i}\left(\left\langle C_{1}\right\rangle, \ldots,\left\langle C_{s}\right\rangle\right)\right\rangle \tag{2.6}
\end{align*}
$$

It should be pointed out that the effect of concentration fluctuations on the rate of reaction, i.e., terms such as $\left\langle C_{i}^{\prime} C_{j}^{\prime}\right\rangle$ that arise from cases where R_{i} is a nonlinear function of
the C_{i}, were neglected in the development of equation (2.6). The conditions for this approximation to be valid will be discussed in Chapter IV.

Lagrangian Approach

The Lagrangian approach to turbulent diffusion is concerned with the behavior of representative fluid particles. The development of a general equation for the mean concentration $\langle C(x, t)\rangle$ follows that of Seinfeld [22].

$$
\begin{align*}
<C(x, t)>= & \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} Q\left(x, t / x_{0}, t_{0}\right)<C\left(x_{0}, t_{0}\right)>d x_{0}+ \\
& +\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{0}^{t} Q\left(x, t / x^{\prime}, t^{\prime}\right) S\left(x^{\prime}, t^{\prime}\right) d t^{\prime} d x^{\prime} \tag{2.7}
\end{align*}
$$

where $Q\left(x, t / x^{*}, t^{*}\right)$ is the transition probability density for the particle, that is, the probability density that if the particle is at a position x^{*} at time t^{*} will undergo a displacement to x at t, and $S(x, t)$ is the spatial-temporal distribution of particle sources.

Therefore, the first term on the right-hand side of equation (2.7) represents those particles present at t_{o}, and the second term on the right-hand side accounts for particles added from sources between t ' and t.

As can be observed from equation (2.7), the applicability of the Lagrangian approach rests on the ability to
evaluate the transition probability Q. This is a difficult task because complete.knowledge of the turbulence properties required to determine Q is generally not available. This problem has been usually overcome by assuming that Q obeys a multidimensional Gaussian distribution, but it is known that this assumption is valid only if the turbulence is stationary and homogeneous. By using that assumption then, one is limited to apply the Lagrangian approach only to some atmospheric cases.

Moreover, the development of equation (2.7) was done for cases where the particles were not undergoing chemical reactions. First-order reactions can be included rather easily in the development of a similar equation, but there is no convenient way of incorporating nonlinear chemical reactions in the Lagrangian approach to turbulent diffusion. The Eulerian method is very useful in air pollution modeling because the Eulerian statistics are easy to measure and as it will be seen later, possible to represent in an analytical form suitable for computer programs. In addition, the mathematical expressions can be directly applied to situations where chemical reactions take place. Unfortunately, the Eulerian approach can be solved only by approximate solutions, e.g., the K-theory, and this leads to the problem of accurately predict the eddy diffusivities.

The main objective of the present work is to obtain a model which can be applied to any atmospheric dispersion problem with chemical reactions. Because of the previous analysis of the two approaches that can be used to describe atmospheric diffusion, it was decided to use the Eulerian method as the basis of the present model. As will be seen later, this is the most common approach used although it leads to limited success. The reason being the numerical techniques with which the equations have been solved. Another objective of the present work is to investigate the possibility of a better numerical method for solving the general diffusion equation.

Chapter III

REVIEW OF PREVIOUS WORK

Eulerian Models

The basic mathematical statement for description of the temporal and spatial distribution of chemical species by this approach is the mass balance or continuity equation. This expression, equation (2.6) in this study, plus the appropriate initial and boundary conditions complete the general description.

Exact solutions to this set of equations have not been published. However, it is possible to obtain approximate solutions using numerical techniques.

During the past years, several models have been presented in the literature, ranging from very simple ones like the box model to general cases solved by finitedifference techniques.

Box Model
The simplest air pollution model, though not the first, is the box model, which has been discussed by Sklarew [25]. This model consists of an imaginary box which bounds the atmosphere over a city with the top of the box being at a constant mixing height, the height at which there is no further vertical diffusion. The concentration in the box
is calculated from a simple material balance on the air flow and pollutant emissions, thus, it is not sufficient for anything more than gross estimates, by offering a quick result for long-term concentrations.

Grid Model

Sklarew [25] proposed a different approach on urban air pollution modeling, the grid model. In this model, the region of interest is divided into a three dimensional grid of cells where the diffusion equation of the Eulerian approach is solved. The time-dependent solution is obtained numerically from difference equations.

Lagrangian particles representing a definite amount of pollutant are advected and diffused through the Eulerian grid. In order to do this, a pseudo-velocity ${\underset{\sim}{v}}^{*}$ is defined as

$$
\begin{equation*}
\underset{\sim}{v^{*}}=\underset{\sim}{\bar{u}}-D^{\prime} \underset{\sim}{\nabla} C / C \tag{3.1}
\end{equation*}
$$

where D^{\prime} is a diffusivity tensor and $\underset{\sim}{u}$ is the wind velocity averaged throughout the cell surrounding each grid point. The defined ${\underset{\sim}{v}}^{*}$ then is just the sum of the wind velocity and the velocity corresponding to the diffusion flux. Therefore, the diffusion equation is reduced to

$$
\begin{equation*}
\frac{\partial C_{i}}{\partial t}=-\underset{\sim}{\nabla}\left({\underset{\sim}{*}}^{*} C_{i}\right)+R_{i}+\text { sources } \tag{3.2}
\end{equation*}
$$

This equation is solved in time-steps in the following sequence: the pollutant concentration in each cell of the grid is given by the particles in the cell. The cell average concentration is updated by advancing the chemical reactions for a time-step and by adding (and/or substracting) pollutant from sources (and/or sinks) within the cell. Finally, the Lagrangian particles are advected and diffused using the pseudo-velocity, and thus transported at the boundary of each cell for a specific period of time.

As it can be observed, this model is a mixture of the Eulerian and Lagrangian approaches. In spite of being a more general model as compared to the previous one, it has the disadvantage that the grid size necessary for a desired accuracy can result in prohibitive computing time.

Two Dimensional Unsteady State Models
Much of the recent work on air pollution modeling centers on solving a simplified diffusion equation, a two dimensional unsteady state case, which includes only the x-component of the wind velocity and the vertical turbulent diffusion coefficient. In almost all these models, the solutions are obtained by using a finite-difference technique.

For these cases, equation (2.6) for a single species becomes

$$
\begin{equation*}
\frac{\partial\langle C\rangle}{\partial t}+\bar{u} \frac{\partial\langle C\rangle}{\partial x}=\frac{\partial}{\partial z} \quad\left\{K_{z} \quad \frac{\partial\langle C\rangle}{\partial z}\right\} \tag{3.3}
\end{equation*}
$$

Runca and Sardei [21] solved equation (3.3) using a mixed Lagrangian-Eulerian finite difference scheme. In this model, the emission rate of the source is taken as a boundary condition. The wind velocity and diffusion coefficient are considered to be only functions of z.

Equation (3.3) is solved with the method of fractional steps: the concentration field at time $t+\Delta t$ is obtained from that at time t by separating the contributions due to the advection and diffusion terms of equation (3.3).

In the first step, the following advection equation is solved by a Lagrangian technique over the time interval Δt with the concentration field at time t as initial condition:

$$
\begin{equation*}
\frac{\partial C}{\partial t}+u(z) \frac{\partial C}{\partial \bar{x}}=0 \tag{3.4}
\end{equation*}
$$

The diffusion equation,

$$
\begin{equation*}
\frac{\partial C}{\partial t}-\frac{\partial}{\partial z}\left\{K_{z}(z) \frac{\partial C}{\partial z}\right\}=0 \tag{3.5}
\end{equation*}
$$

the second step, is solved with a conventional Eulerian finite-difference scheme over the same time interval. The initial condition is provided by the concentration field obtained from the first step, and the solution of the second step is an approximation of the concentration field at time $t+\Delta t$.

A different model was presented by Egan and Mahoney [6], where equation (3.3) was also solved, but the source emission rate Q, was included in the same governing equation:

$$
\begin{equation*}
\frac{\partial C}{\partial t}+\bar{u} \frac{\partial C}{\partial x}=\frac{\partial}{\partial z}\left\{K_{z} \quad \frac{\partial C}{\partial z}\right\}+Q \tag{3.6}
\end{equation*}
$$

To simulate transport through an urban area, the region was divided into a number of grid elements, and the partial derivatives in equation (3.6) were approximated by finite differences corresponding to the dimensions of the urban grid elements. Equation (3.6) was solved by an unconventional scheme using moments of concentration distribution.

A slightly more difficult diffusion equation was solved by Eschenroeder and Martinez [7]. A simplified chemical kinetic scheme was included in the governing equation,

$$
\begin{align*}
\frac{\partial C_{i}}{\partial t}+\bar{u} \frac{\partial C_{i}}{\partial \dot{x}}=\frac{\partial}{\partial z}\left\{K_{z} \frac{\partial C_{i}}{\partial z}\right\} & +R_{i} \tag{3.7}\\
i & =1,2, \ldots, s
\end{align*}
$$

where R_{i} is the production rate for the $i t h$ species and s is the number of species.

The numerical solution of equation (3.7) followed a Crank-Nicholson type implicit finite difference scheme. Since fields for $\overline{\mathrm{u}}$ and K_{z} were prescribed by meteorology inputs, the nonlinearity was confined only to some members of the R_{i} terms. In a later paper, Eschenroeder and

Martinez [8] reported that a number of difficulties were encountered in using the Crank-Nicholson method and the approach was abandoned.

General Solutions

Some recent work has been done to solve the general expression of the diffusion equation. One of these models was developed by Roth et al [20]. The governing equation solved was the following:

$$
\begin{gather*}
\frac{\partial\left\langle C_{i}\right\rangle}{\partial t}+\bar{u} \frac{\partial\left\langle C_{i}\right\rangle}{\partial x}+\vec{v} \frac{\partial\left\langle C_{i}\right\rangle}{\partial y}+\bar{w} \frac{\partial\left\langle C_{i}\right\rangle}{\partial z}=\frac{\partial}{\partial z}\left\{K_{z} \frac{\partial\left\langle C_{i}\right\rangle}{\partial z}\right\}+ \\
+R_{i}\left(\left\langle C_{1}>, \ldots,<C_{s}>\right)+Q_{i}(x, y, z, t)\right. \tag{3.8}\\
i=1,2, \ldots, s
\end{gather*}
$$

where K_{z} is the vertical eddy diffusivity, R_{i} is the rate of formation of species i by chemical reaction, and Q_{i} is the rate of emission of species i from sources.

Equation (3.8); plus initial and boundary conditions, was applied for the prediction of pollutant concentrations over a fifty mile square area. This region was divided into a grid of $625,2 \times 2$ mile squares, where 198 grid squares were source-free. The grid actually used in the solution of equation (3.8) was a three-dimensional array of ten layers of cells occupying the space between the ground and the inversion base. Therefore, each cell had a two mile square base and a height of $(H-h) / 10$, being H and h the elevations
of the inversion base and ground above sea level, respectively.

To represent the surface winds, Roth et al. constructed maps of wind speed and wind direction for hourly time intervals, using data gathered at the network of groundbased monitoring stations. In the absence of wind field aloft data, the surface values were used as the basis to calculate wind velocities to all levels between the ground and the inversion base.

A model for the vertical turbulent diffusivity was developed based on the work done by Eschenroeder and Martinez [7].

Finally, the model was completed by a simplified kinetic mechanism involving 12 species and 14 reaction steps. The mathematical representation included four coupled nonlinear differential equations (five other species were expressed by steady-state relations, and the remaining three species were products that could have also been represented by differential equations, but it was not done) that were solved by a modified Gear's method.

A fractional step finite-difference method was selected to be the numerical technique for the model. In this type of solution, a multidimensional problem is replaced by a succession of simpler lower dimensional problems. Therefore, the four-dimensional partial differential equation (3.8) in
(x, y, z, t) was split into three two-dimensional equations in $(x, t),(y, t)$, and (z, t), with the inclusion of the reaction and elevated source terms in the (z, t) fragment. The solution in (z, t) is implicit, while the solution in (x, t) and (y, t) is explicit. Each of these two-dimensional equations was then integrated in succession over one time step, and the terms in each of the three partial differential equations was approximated by finite-difference expressions.

It should be pointed out that this model cannot handle point or line sources, the emissions therefore averaged over relatively large distances.

Another recent model in which a solution to the general expression of the diffusion equation was obtained, was developed by Shir and Shieh [24]. This model was used to study SO_{2} distributions in the St . Louis metropolitan area during 25 consecutive days. The region of interest was divided into a three-dimensional grid system of $30 \times 40 \times 14=16,800$ grid points. The horizontal grid sizes Δx and Δy were of 1524 m and the vertical size $20 \mathrm{~m}, 25 \mathrm{~m}$, or ($\mathrm{H}-200$)/4 m, values depending on the heights of the vertical grids (H represents the mixing height). The horizontal grid sizes were chosen according to the grid size of the emission source inventory.

The equation solved in this model was the diffusion equation for a single species,

$$
\begin{equation*}
\frac{\partial C}{\partial t}+\nabla V C=K_{H} \nabla_{H}^{2} C+\frac{\partial}{\partial z}\left\{K_{v} \frac{\partial C}{\partial z}\right\}+Q+R \tag{3.9}
\end{equation*}
$$

where C is the mean concentration of $S O_{2}, V=(u, v, w)$ is the mean wind vector, Q is the source strength rate, R is the chemical reaction rate, K_{H} is the horizontal eddy diffusivity, and K_{V} is the vertical eddy diffusivity.

The hourly averaged surface wind field for the total region was obtained by using a weighted interpolation scheme. Data collected at some stations were interpolated to a square grid, which had a size of five area source dimensions. From this wind field, a linear interpolation was used to obtain a wind vector at each grid point.

Since upper layer wind data were not available, the vertical wind profiles at each grid location was assumed to be of power law from

$$
\begin{equation*}
v=v_{s}\left(\frac{z}{z_{s}}\right)^{p} \tag{3.10}
\end{equation*}
$$

where V and V_{s} are the upper and surface wind at the height z and z_{s}, respectively. The power constant p was determined by using equation (3.10) and data gathered at heights of 140 m and 39 m . The vertical component of the wind vector was calculated from the horizontal winds through the continuity equation. Finally, a constant wind direction with height was assumed in the model.

A turbulence transport model developed by Shir [23] was used to calculate the eddy diffusivities. Under neutral conditions, the vertical component of the eddy diffusivity vector is expressed as

$$
\begin{equation*}
K_{v}=u_{*} \ell \quad, \quad \ell=k_{o} z \exp \left(-\frac{4 z}{H}\right) \tag{3.11}
\end{equation*}
$$

where u_{*}, k_{o} and H are the friction velocity, the von Kármán constant, and the height of the boundary layer, respectively.

Under non-neutral conditions, an eddy diffusivity, K_{s}, at the surface layer $(z=10 \mathrm{~m})$ is calculated using another model, and then extrapolated to higher altitudes by the assumption that

$$
\begin{equation*}
K_{v}=K_{s} \frac{\ell}{\ell_{s}} \tag{3.12}
\end{equation*}
$$

In this model, the horizontal eddy diffusivity was assumed to be constant.

Finally, the time-dependent source emission rate was averaged over a 2 -hour period for each source, and the chemical reaction rate of SO_{2} expressed by

$$
\begin{equation*}
\mathrm{R}=-\mathrm{kC} \tag{3.13}
\end{equation*}
$$

where k is the reaction rate constant with a given value of $10^{-4} \mathrm{sec}^{-1}$.

A second-order, central finite-difference scheme was used to integrate the advection and horizontal terms, and
the Crank-Nicholson method was used for the vertical diffusion term.

In this model, 2 -hour and 24 -hour averaged variations of SO_{2} concentrations for the 25 -day period were obtained, and compared with experimental measurements for the same term average concentrations, at 10 monitoring stations. In their analysis of the results, Shir and Shieh concluded that the 2 -hour data were consistently larger than the 24-hour data.

Statistical Models

As it was previously discussed, one of the problems in the Lagrangian approach is the evaluation of the transition probability density function. . The most common way that has been used to overcome this problem has been to assume that the transition probability density function, $Q\left(x, t / x^{*}, t^{*}\right)$ obeys a Gaussian distribution. This assumption has given rise to several models, which will be discussed next.

Gaussian Plume Models
The best known of the practical models based on statistical theory is the Gaussian Plume model. This model was the first recognized continuous point source air pollution model. Most of the existing urban air pollution models are Gaussian Plume models. The concentration of
gas or aerosols at a point (x, y, z) due to a continuous source with an effective emission height L, is given by

$$
\begin{align*}
<C(x, y, z)> & =\frac{Q}{2 \pi \sigma_{y} \sigma_{z}} \exp \left[-\frac{l}{2}\left(\frac{y}{\sigma_{y}}\right)^{2}\right] x \\
& \left(\exp \left[-\frac{l}{2}\left(\frac{z-L}{\sigma_{z}}\right)^{2}\right]+\exp \left[-\frac{1}{2}\left(\frac{z+L}{\sigma_{z}}\right)^{2}\right]\right) \tag{3.14}
\end{align*}
$$

The following assumptions are made:

1) The dispersion process is at steady state conditions.
2) The plume spread has a Gaussian distribution in both the horizontal and vertical planes, with standard deviations of plume concentration distribution σ_{y} and σ_{z}, respectively, which are function of only the atmospheric stability and distance x from the source.
3) The mean wind speed affecting the plume, u, is oriented in the x-axis and is a constant value for any height.
4) A constant emission rate of pollutants, Q.
5) A total reflection at the earth's surface.
6) No wind shear; and
7) The pollutants are chemically non-interacting.

Typically then, in these models the rate of dispersion is a function of the atmospheric stability class and the travel time or distance from the source. The lateral and vertical distributions are assumed to be Gaussian around the plume centerline. The relation between the horizontal and vertical dispersion coefficients, σ_{y} and
σ_{z}, and the Pasquill-Gifford stability categories and downwind distance from the source can be found in Turner [30].

It can be observed then that the Gaussian Plume formula is not flexible enough to include all possible variations that the air motion experiences under urban atmospheric conditions.

Gaussian Puff Models

To describe more accurately the general unsteady state atmospheric diffusion case, some Puff models have been developed by Roberts et al [19] and others. In a Puff model, source emissions are broken into a series of instantaneous puffs instead of a continuous plume. The distribution within a puff is assumed Gaussian in the three directions.

In the Puff model, the entire cloud or puff is assumed to be simultaneously transported along a trajectory given by the mean flow. It is also assumed that the constant standard deviations (or diffusivities) are independent of height, up to an inversion height, that there is no wind shear, and that the pollutants are chemically non-interacting.

Monte Carlo Methods
In a Monte Carlo method, averages of a desired quantity, in this case concentration, are obtained by repeating the process many times using the same initial conditions. Each repetition is called a realization and is controlled by the random forces acting during its particular flight.

A recent model using a Monte Carlo method was developed by Bullin [4]. In this model, the turbulent diffusion process was simulated by allowing a large number of particles representing a definite amount of pollutant to diffuse through the flow field according to the following stochastic Markovian equation

$$
\begin{equation*}
\frac{d x_{j}}{d t}=u_{j}\left(x_{j}, t\right)+\left[\frac{2 D}{P_{j}}\right]^{1 / 2} N_{j}(t) \tag{3.15}
\end{equation*}
$$

where u_{j} is the instantaneous velocity in the jth direction, D is the molecular diffusivity, N_{j} is the jth independent Gaussian white noise with zero mean, P_{j} is the power spectral density of the j th white noise, and the subscript j denotes the three coordinate directions in the Cartesian space.

After a specified time, the location of each particle was recorded and the concentration distribution was calculated by counting the number of particles within cells of specified size and dividing by the cell volume.

This model was solved on a hybrid computer, where equation (3.15) was programmed for repeated solutions on an analog computer with stochastic variables u_{j} and N_{j} being provided as inputs.

As it can be observed, the Gaussian distribution assumption was again incorporated in the model, and no reactions were involved in the simulation of turbulent diffusion in the atmosphere.

Chapter IV

ORTHOGONAL COILLOCATION

In view of all air pollution problems and the need for air quality improvement, air pollution modeling has great practical importance. This is the reason why much consideration has been given to this subject during recent years.

Several air pollution models have been developed so far, but since this subject is very complex, most of those models have been simplified. It is evident that the more simplifications included the less applicable a model is and the poorer the results can be.

It is well known that a major factor that characterizes diffusion processes in the atmosphere is the state of atmospheric turbulence. A general model which includes temporal and spatial variations of meteorological parameters can provide a good description of atmospheric diffusion processes.

As it was discussed in Chapter II, the Eulerian approach will be used for solving the atmospheric diffusion problem in the present work.

A finite-difference scheme has been the most widely used numerical technique for solving the partial differential equations resulting from a model based on the

Eulerian approach. The application of this technique to a general problem gives rise to a very complex model, usually with a large number of grids and in most of the cases then requires much computer time to obtain accurate results. In addition, most of those models cannot handle point sources, and artificial diffusion errors are usually present in the results.

- There is a need then to keep working with the diffusion equation in its more general from as a tool for solving air pollution problems, and to investigate the feasibility of using another type of numerical technique which could have better properties than the finite-difference method. This new technique, orthogonal collocation, is discussed next.

Theory

The orthogonal collocation method belongs to the class of weighted residual methods. It was presented by Villadsen and Stewart [31], Finlayson [11], and Villadsen [32], who give details about its theory, some of which will be presented next. They also discuss several applications, mainly one or two-dimensional problems.

The method of weighted residuals is a general method of obtaining solutions to differential equations. The unknown solution is expanded in a set of trial functions, which are specified, but with adjustable constants (or
functions), which are chosen to give the best solution to the differential equation.

The trial function is chosen in such a way that will satisfy the boundary conditions for all selections of the adjustable constants. This trial function then is substituted into the differential equation forming a residual. If the trial function were the exact solution, the residual would be zero. In the weighted residual method, the adjustable constants are chosen so that the residual is forced to be zero in an average sense.

Let us begin considering a boundary-value problem in one independent variable, x. A general type of differential equation can be written as

$$
\begin{array}{ll}
\mathrm{L}^{\mathrm{V}}(\mathrm{y})=0 & \text { in } \mathrm{V} \\
\mathrm{~L}^{\mathrm{S}}(\mathrm{y})=0 & \text { in } \mathrm{S} \tag{4.1}
\end{array}
$$

where x is the position vector and S the surface or boundary. In the collocation method, the dependent variable y is approximated by a series expansion containing N undetermined parameters. These parameters are then calculated by applying equation (4.1) at N pre-selected points.

In the orthogonal collocation method, the series expansion consists of a set of orthogonal polynomials and the collocation points are chosen as the zeroes of the
polynomials, which make the weighted residuals to be zero in an average sense.

Therefore, for the system given by equation (4.1), the solution is approximated by

$$
\begin{equation*}
y(x)=y_{o}(x)+\sum_{i=1}^{N} a_{i} P_{i}(x) \tag{4.2}
\end{equation*}
$$

where $\quad p_{i}(x)=\sum_{j=0}^{i} c_{j} x^{j}$
is a polynomial such that successive polynomials are orthogonal to all polynomials of order less than i, with respect to some weighting function $w(x) \geq 0$:

$$
\begin{equation*}
\int_{a}^{b} w(x) P_{n}(x) P_{i}(x) d x=0 \quad, n=0,1, \ldots, i-1 \tag{4.4}
\end{equation*}
$$

Depending on the weighting function $w(x)$ and the interval $a \leq x \leq b$, several types of polynomials can be obtained. Choosing $w(x)=1, a=-1, b=1$, and the first polynomial $\mathrm{P}_{\mathrm{o}}(\mathrm{x})=1$, the resulting polynomials, $\mathrm{P}_{\mathrm{i}}(\mathrm{x})$, are called Legendre polynomials.

If the weighting function is defined as

$$
\begin{equation*}
w(x)=(1-x)^{\alpha}(1+x)^{\beta} \tag{4.5}
\end{equation*}
$$

and the same previous interval is used, the Jacobi polynomials, $P_{i}(\alpha, \beta)(x)$, are obtained [1]. It follows then that

$$
\begin{equation*}
P_{i}(x)=p_{i}(0,0)(x) \tag{4.6}
\end{equation*}
$$

The polynomial $P_{i}(x)$, as defined by equation (4.3), has i roots in the interval $a \leq x \leq b$, which serve as collocation
points. From now on, let N equal the number of those interior collocation points.

Let us now consider polynomials which have additional convenient properties: the solution of a problem is sought in the domain $0 \leq x \leq 1$ and is required to be symmetric about $x=0$. Then, it can be expanded in terms of powers of x^{2}. A suitable trial function is

$$
\begin{equation*}
y(x)=y(1)+\left(1-x^{2}\right) \sum_{i=0}^{N-1} a_{i} P_{i}\left(x^{2}\right) \tag{4.7}
\end{equation*}
$$

where the a_{i} are undetermined constants and the $P_{i}\left(x^{2}\right)$, polynomials of degree i in x^{2} that can be constructed using an orthogonality condition like equation (4.4):

$$
\begin{align*}
\int_{0}^{1}\left(1-x^{2}\right) x^{a-1} P_{n}\left(x^{2}\right) P_{i}\left(x^{2}\right) d x & =G_{i} \delta_{i n} \tag{4.8}\\
n & =1,2, \ldots, i-1
\end{align*}
$$

where $a=1,2,3$, for planar, cylindrical, or spherical geometry.

The polynomials defined by equation (4.8) are Jacobi polynomials [20], and the constant G_{i} is given by

$$
\begin{equation*}
G_{i}=\frac{\left[\Gamma\left(\frac{a}{2}\right)\right]^{2} \Gamma(i+1) \Gamma(i+2)}{(4 i+a+2) \Gamma\left(i+\frac{a}{2}\right) \Gamma\left(i+\frac{a}{2}+1\right)} \tag{4.9}
\end{equation*}
$$

The coefficients of orthogonal polynomials in a new interval $0 \leq x \leq 1$ can also be computed from the old interval polynomials, $-1 \leq x \leq 1$, by the following relation [23]:

If $\quad f_{i}(x)=\sum_{j=0}^{i} c_{j} x^{j} \quad, \quad f_{i}^{*}(x)=f_{i}(2 x-1)$

$$
\begin{equation*}
=\sum_{j=0}^{i} c_{j}^{*} x^{j} \tag{4.10}
\end{equation*}
$$

where $f_{i}^{*}(x)$ stands for the shifted polynomial. It should be pointed out that if the interval of orthogonality is changed, the weighting function $w(x)$ changes for the Jacobi polynomials, and remains the same (=1) for the Legendre polynomials.

A set of N equations is needed in order to determine the N coefficients a_{i}, and therefore completely define the solution in the form of the trial function. This can be obtained by substituting equation (4.7) into the differential equation (4.1) and setting the residual formed equal to zero at the N collocation points x_{j}. These points are the roots to the Nth polynomial, $P_{N}\left(x^{2}\right)=0$ at x_{j}. The application of the method as described above becomes more confused as N increases (and also if the dimension of the differential equation increases). As a simpler and more attractive alternative to this method, as it will be seen later, the collocation equations can be obtained in terms of the solution at the collocation points, $y\left(x_{j}\right)$. In this method, if the solution at a different point than a collocation point needs to be obtained, it has to be interpolated by using all the known values of $y\left(x_{j}\right)$ at the collocation points.

For this purpose, equation (4.7) can be rewritten as

$$
\begin{equation*}
y(x)=\sum_{i=1}^{N+1} d_{i} x^{2 i-2} \tag{4.11}
\end{equation*}
$$

where the d_{i} are undetermined coefficients and the ($N+1$) collocation point is at $x=1$. If equation (4.11) is evaluated at the collocation points, the following expression is obtained:

$$
\begin{equation*}
y\left(x_{j}\right)=\sum_{i=1}^{N+1} x_{j}^{2 i-2} d_{i} \tag{4.12}
\end{equation*}
$$

The same procedure can be done for the first derivative and the Laplacian,

$$
\begin{align*}
& \left.\frac{d y}{d x}\right|_{x_{j}}=\left.\sum_{i=1}^{N+1} \frac{d x^{2 i-2}}{d x}\right|_{x_{j}} d_{i} \tag{4.13}\\
& \left.\nabla^{2} y\right|_{x_{j}}=\left.\sum_{i=1}^{N+1} \nabla^{2}\left(x^{2 i-2}\right)\right|_{x_{j}} d_{i} \tag{4.14}
\end{align*}
$$

These equations can be rewritten in matrix notation as follows (the square matrices have $(N+1) x(N+1)$ elements):

$$
\begin{align*}
& \underset{\sim}{y}=\overline{\bar{Q}} \underset{\sim}{d} \tag{4.15}\\
& \underset{\sim}{\nabla} y=\overline{\bar{R}} \underset{\sim}{d} \tag{4.16}\\
& \nabla_{\sim}^{2} y=\overline{\bar{T}} \underset{\sim}{d} \tag{4.17}
\end{align*}
$$

where

$$
\begin{align*}
Q_{j i}=x_{j}^{2 i-2}, \quad R_{j i} & =\left.\frac{d x^{2 i-2}}{d x}\right|_{x_{j}} \\
T_{j i} & =\left.\nabla^{2}\left(x^{2 i-2}\right)\right|_{x_{j}} \tag{4.18}
\end{align*}
$$

The first derivative and Laplacian can be written in terms of the solution $\dot{Y}\left(x_{j}\right)$ by solving $\underset{\sim}{d}$ from equation (4.15) and substituting it into equations (4.16) and (4.17):

$$
\begin{align*}
& \nabla \underset{\sim}{y}=\overline{\overline{\mathrm{R}}} \overline{\overline{\mathrm{Q}}}^{-1} \underset{\sim}{y} \equiv \overline{\overline{\mathrm{~A}} \underset{\sim}{y}} \tag{4.19}\\
& \nabla_{\sim}^{2} \underset{\sim}{y}=\overline{\overline{\mathrm{T}}}^{\overline{\mathrm{Q}}^{-1} \underset{\sim}{y}} \equiv \overline{\overline{\mathrm{~B}}} \underset{\sim}{y} \tag{4.20}
\end{align*}
$$

Finally then, the derivatives can be expressed as

$$
\begin{align*}
& \nabla y=\left.\frac{d y}{d x}\right|_{x_{j}}=\sum_{i=1}^{N+1} A_{j i} y_{i} \quad \text { for } j=1, \ldots, N+1 \tag{4.21}\\
& \nabla^{2} y=\left[\frac{d^{2} y}{d x^{2}}+\frac{a}{x} \frac{d y}{d x}\right]_{x_{j}}=\sum_{i=1}^{N+1} B_{j i} Y_{i} \\
& \text { for } j=1, \ldots, N+1 \tag{4.22}
\end{align*}
$$

where $a=0,1$, or 2 for plane parallel, cylindrical, or spherical symmetry, respectively, and

$$
\left[B_{j i}\right]=\left[\begin{array}{ccc}
\nabla^{2}\left(x^{0}\right) & \left.\left.\right|_{x_{1}} \ldots \ldots \ldots \ldots \nabla^{2}\left(x^{2 N}\right)\right|_{x_{1}} \tag{4.24}\\
\vdots & \vdots & \vdots \\
\vdots & \vdots \\
\vdots & \vdots \\
\left.\left.\nabla^{2}\left(x^{\circ}\right)\right|_{x_{N+1}} \ldots \ldots \ldots \ldots \nabla^{2}\left(x^{2 N}\right)\right|_{x_{N+1}}
\end{array}\right]\left[\begin{array}{l}
\\
\vdots
\end{array}\right]^{-1}
$$

$$
[Q]=\left[\begin{array}{cccc}
1 & x_{1}^{2} \ldots \ldots \ldots & x_{1}^{2 N} \tag{4.25}\\
\vdots & \vdots & & \vdots \\
\vdots & \vdots & & \vdots \\
\vdots & \vdots & & \vdots \\
1 & x_{N+1}^{2} \ldots \ldots \ldots & x_{N+1}^{2 N}
\end{array}\right]
$$

Integrals of the solution over the volume V can be calculated with high accuracy via the summation formula

$$
\begin{equation*}
\int_{0}^{1} f(x) x^{a-i} d x=\sum_{j=1}^{N+1} w_{j} f\left(x_{j}\right) \tag{4.26}
\end{equation*}
$$

where the quadrature weights are given by

$$
\begin{align*}
{\left[W_{j}\right]=\left[\int_{0}^{1} x^{o+a-1} d x,\right.} & \int_{0}^{1} x^{2+a-1} d x, \ldots, \\
& \left.\int_{0}^{1} x^{2 N+a-1} d x\right][Q]^{-1} \tag{4.27}
\end{align*}
$$

Examination of equations (4.23), (4.24), and (4.25) reveals that only the collocation points are needed in order to compute matrices A and B. Once the weighting function $w(x)$, the interval of integration $a \leq x \leq b$, and the number of interior points are specified, these collocation points can be easily calculated.

Let us now consider a more general problem, such as the problem being studied in the present work, in which the symmetry property is removed. In this case then, both even and odd powers of x are included in the orthogonal polynomials in the interval 0 to 1.

In first order differential equations, where only one initial condition needs to be satisfied, a suitable trial function can be of the form

$$
\begin{equation*}
y(x)=y(0)+x \sum_{i=0}^{N} a_{i} P_{i}(x) \tag{4.28}
\end{equation*}
$$

In this case, Y is a polynomial of degree ($N+1$) in x, and ($N+1$) equations are needed in order to compute the undetermined constants a_{i}. These equations can be obtained by substituting equation (4.28) into the first order differential equation at the N interior collocation points, and at the end of the interval $\mathrm{x}=1$.

For second-order differential equations, a general expression for the trial function can be of the form

$$
\begin{equation*}
y(x)=b+c x+x(1-x) \sum_{i=1}^{N} a_{i} P_{i-1}(x) \tag{4.29}
\end{equation*}
$$

This expression contains ($N+2$) constants that can be determined by N conditions provided by the residuals evaluated at the N interior collocation points, the N roots to $P_{N}(x)=0$, and two conditions provided by boundary conditions at $\mathrm{x}=0$ and $\mathrm{x}=1$.

If those two boundary conditions were given as $y(0)$ and $y(1)$, equation (4.29) would remain as

$$
\begin{equation*}
y(x)=y(0)[1-x]+y(1) x+x(1-x) \sum_{i=1}^{N} a_{i} P_{i-1}(x) \tag{4.30}
\end{equation*}
$$

and therefore only N equations, at the N collocation points, are needed to specify the solution, $y(x)$.

In equation (4.28) as well as in equation (4.30), the polynomials are defined by equation (4.4) with $a=0$ and $b=1$. A general expression for the weighting function $w(x)$ can be obtained from equation (4.8) in the following way:

$$
\begin{equation*}
\int_{0}^{1}\left(1-u^{2}\right)^{\alpha} u^{a-1} P_{i}\left(u^{2}\right) P_{j}\left(u^{2}\right) d u=G_{i} \delta_{i j} \tag{4.31}
\end{equation*}
$$

Substitute $\quad x=u^{2}, d x=2 u d u:$

$$
\begin{align*}
& \int_{0}^{1}(1-x)^{\alpha} x^{\frac{a}{2}-1} P_{i}(x) P_{j}(x) d x=2 G_{i} \delta_{i j} \tag{4.32}\\
& \int_{0}^{1}(1-x)^{\alpha} x^{\beta} P_{i}(x) P_{j}(x) d x=G_{i}^{*} \delta_{i j} \tag{4.33}
\end{align*}
$$

Therefore, for a non-symmetric problem, the weighting function is

$$
\begin{equation*}
w(x)=(1-x)^{\alpha} x^{\beta} \tag{4.34}
\end{equation*}
$$

This weighting function, as it was discussed before, corresponds to shifted Jacobi polynomials, and it follows then that if $\alpha=\beta=0$, i.e., $w(x)=1$, the polynomials obtained are shifted Legendre polynomials.

In this case, it is also convenient to express the collocation equations in terms of the solution at the collocation points, $y\left(x_{j}\right)$, rather than in terms of the undetermined parameters, a_{i}. The matrices representing the first and second derivatives, and the approximate expression representing integrals, are given by the same formula as equations (4.19), (4.20), and (4.26), but with different definitions for the elements of the matrices, which now have $(\mathrm{N}+2) \mathrm{x}(\mathrm{N}+2)$ elements:

$$
\begin{align*}
& Q_{j i}=x_{j}^{i-1} \tag{4.35}\\
& R_{j i}=(i-1) x_{j}^{i-2} \tag{4.36}\\
& T_{j i}=(i-1)(i-2) x_{j}^{i-3} \tag{4.37}
\end{align*}
$$

In this case, the quadrature weights are

$$
\begin{equation*}
\left[W_{j}\right]=\left[\int_{0}^{1} x^{0} d x, \int_{0}^{1} x d x, \ldots, \int_{0}^{1} x^{2 N+1} d x\right][Q]^{-1} \tag{4.38}
\end{equation*}
$$

Finally, the derivatives can be expressed in terms of the solution, $y\left(x_{j}\right)$, at the collocation points, following the same procedure as for the symmetrical case, but with different values for matrices A and B :

$$
\begin{array}{ll}
\nabla y=\sum_{i=1}^{N+2} A_{j i} Y_{i} & \text { for } j=1, \ldots, N+2 \\
\nabla^{2} y=\sum_{i=1}^{N+2} B_{j i} Y_{i} & \text { for } j=1, \ldots, N+2
\end{array}
$$

The procedure to solve a one-dimensional differential equation using this alternative orthogonal collocation method (with matrices A and B) is similar for both, the symmetrical and the non-symmetrical cases. Equations (4.21) and (4.22) for the first case, and equations (4.39) and (4.40) for the non-symmetrical case can be used to express the first and second derivatives in the ordinary differential equation. This equation is then reduced to coupled algebraic equations, with the unknowns being the solutions at the collocation points.

The boundary conditions at $x=0$ and $x=1$ can be substituted into those equations so that only N unknowns, at the interior collocation points, and N equations remain to be solved.

As was discussed before, once the interval and the problem are specified (i.e., symmetric or non-symmetric), matrices A and B depend only on the number of collocation
points. If the same number of points is always used in the solution of a problem, these matrices have to be computed only once. Therefore, it might be enough to just include them as input data rather than having a subroutine to calculate them every time the program is run again.

Several tables and some algorithms for the interval $0 \leq x \leq 1$ and different weighting functions and number of collocation points are presented in [1], [11], [31], and [32]. These tables give values of the orthogonal points, matrices A and B, and the quadrature weights W_{j} for the symmetric case in different geometries, and also for the non-symmetric case.

In order to have more flexibility with respect to the number of points and the weighting function to be used, two subroutines (JCBI and DFOPR presented in Appendix A) were included in the computer program in this study. These algorithms were developed by Michelsen [16].
"JCBI" computes the roots of an Nth degree Jacobi polynomial and the derivatives at these points of the polynomial or the polynomial multiplied by x, by ($x-1$), or by both (including one or both interval end points $x=0$ and $x=1$). In this algorithm, the weighting function is given by equation (4.34).

From the quantities calculated in "JCBI", subroutine DFOPR computes the matrices for the first and second derivatives, and also the quadrature weights.

Let us now consider a more complicated problem, the solution to a two-dimensional differential equation, where the solution ϕ is a function of the independent variables x and y.

The trial function for the symmetrical case (about $x=0$ and $y=0$) can be obtained as an extension of equation (4.7). A suitable polynomial expression for $\phi(x, y)$ and subject to the symmetry conditions, and also to the boundary conditions $\phi(x, 1)=\phi(1, y)=0$, is

$$
\begin{equation*}
\phi(x, y)=\left(1-x^{2}\right)\left(1-y^{2}\right) \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} a_{i j} P_{i}\left(x^{2}\right) P_{j}\left(y^{2}\right) \tag{4.41}
\end{equation*}
$$

Here, $P_{i}\left(x^{2}\right)$ and $P_{j}\left(y^{2}\right)$ are defined in the same way as it was done before, with the use of equation (4.8) for planar geometry.

As has been discussed before, this is not the best way of solving differential equations by orthogonal collocation. It is evident that the confusion becomes worse for two-dimensional problems. Therefore, let us discuss the alternative method where matrices A and B are used. Furthermore, let us analyze non-symmetric cases for being more general cases.

The trial function can be rewritten then as

$$
\begin{equation*}
\phi(x, y)=\sum_{i=1}^{N+2 \cdot} \sum_{j=1}^{M+2} d_{i j} x^{i-1} y^{j-1} \tag{4.42}
\end{equation*}
$$

where N and M are the number of interior collocation points in the x and y directions, respectively.

Let us analyze the x-direction first. Knowing that the partial derivatives with respect to x are at constant y, the following substitution can be made into equation (4.42) :

$$
\begin{equation*}
e_{i}=\sum_{j=1}^{M+2} d_{i j} y^{j-1} \tag{4.43}
\end{equation*}
$$

Substituting equation (4.43) into equation (4.42) and evaluating it at the collocation points, x_{k}, one obtains

$$
\begin{equation*}
\left.\phi\right|_{x_{k}}=\sum_{i=1}^{N+2} x_{k}^{i-1} e_{i} \tag{4.44}
\end{equation*}
$$

The first and second derivatives of equation (4.42) evaluated at the collocation points are

$$
\begin{align*}
& \left.\frac{\partial \phi}{\partial x}\right|_{x_{k}}=\sum_{i=1}^{N+2}(i-1) x_{k}^{i-2} e_{i} \tag{4.45}\\
& \left.\frac{\partial^{2} \phi}{\partial x^{2}}\right|_{x_{k}}=\sum_{i=1}^{N+2}(i-1)(i-2) x^{i-3} e_{i} \tag{4.46}
\end{align*}
$$

Using matrix notation, and solving for e for the first and second derivatives, the previous expressions can be rewritten as

$$
\begin{align*}
& \underset{\sim}{\phi}=\overline{\bar{Q}} \mathrm{e} \tag{4.47}\\
& \frac{\partial \underset{\sim}{\phi}}{\partial \underset{\sim}{x}}=\overline{\overline{\mathrm{R}}}^{-1} \underset{\sim}{\phi}=\overline{\overline{\mathrm{A}}} \underset{\sim}{\phi} \tag{4.48}\\
& \frac{\partial^{2} \phi}{\partial{\underset{\sim}{x}}^{2}}=\overline{\overline{\mathrm{T}}} \overline{\bar{Q}}^{-1} \underset{\sim}{\phi}=\overline{\overline{\mathrm{B}}} \underset{\sim}{\phi} \tag{4.49}
\end{align*}
$$

where matrices Q, R, and T are defined by equations (4.35) through (4.37).

The same procedure can be used in analyzing the y-direction. One arrives at the same equations (4.47) through (4.49), but changing x_{k} by y_{ℓ}, the collocation points in the y-direction, the derivatives now with respect to y, and performing a similar substitution as before,

$$
\begin{equation*}
f_{j}=\sum_{i=1}^{N+2} d_{i j} x^{i-1} \tag{4.50}
\end{equation*}
$$

It follows then that the same A and B matrices can be used for problems in one or two dimensions.

It should be pointed out that in the latter case, after the first and second derivatives and the boundary conditions are substituted into the differential equation, a system of (NXM) algebraic equations remains to be solved.

Partial differential equations can also be reduced to coupled ordinary differential equations, if it is not desired to go further and reduce them to algebraic equations. When both dimensions are collocated, and the differential equation is reduced to algebraic equations, the notation
used (indices) is very important and can give rise to confusion.

Let us illustrate everything that has been said before by setting the collocation equations for an example presented by Villadsen and Stewart [31].

The differential equation and the boundary conditions are:

$$
\begin{equation*}
\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}=-1 \tag{4.51}
\end{equation*}
$$

$\mathrm{v}=0$ at $\mathrm{x}= \pm 1$ and at $\mathrm{y}= \pm 1$
This problem is symmetric about $\mathrm{x}=0$ and $\mathrm{y}=0$. Using the matrix B to represent the second derivative, and collocating the same number of points, N, in either direction, the collocation equations are

$$
\begin{align*}
& \sum_{i=1}^{N} B_{j i} v_{i k}+\sum_{i=1}^{N} B_{k i} v_{j i}=-1 \tag{4.52}\\
& \text { for } \\
& \\
& j=1, \ldots, N \\
& k=1, \ldots, N
\end{align*}
$$

where the index j represents the x -direction, and k the y -direction. The boundary points $\mathrm{v}_{\mathrm{N}+\mathrm{l}, \mathrm{k}}=\mathrm{v}_{\mathrm{j}, \mathrm{N}+\mathrm{l}}=0$ have already been substituted into equation (4.52). Equation (4.51) then has been reduced to a system of (NxN) algebraic equations, i.e., equation (4.52).

A similar analysis as done previously can be made for problems in more than two dimensions. It follows that,
as derived before, the same matrices and procedure can be used to reduce partial differential equations to coupled ordinary differential equations or algebraic equations by using the orthogonal collocation method.

Comparison to Finite Difference Techniques

Examination of the orthogonal collocation method, as presented previously, where a problem is solved for the solution at the collocation points rather than for the arbitrary coefficients in the expansion, leads to the conclusion that the equations which must finally be solved are more compact and easier to formulate, than those associated with conventional finite difference techniques.

Once a problem is converted into partial differential equations with the initial and boundary conditions known, and each term in these equations expressed as a funtion of the independent variables, the development of the collocation equations presents no difficulty.

The orthogonal collocation method is therefore a simple numerical technique most suitable for machine computation and with proven fast conversion.

Most of the previous models for solving air pollution problems neglect some of the terms in the general diffusion equation, so that the resulting equation is less complicated to solve. The use of the orthogonal collocation method,
as discussed before, will not introduce extra complications in the formulation of the final equations and their solution if those terms are not assumed to be negligible. Therefore, it will not be more difficult if a general case (four independent variables, the three directions and time) is solved, even with a non-linear reaction term.

Another advantage of the collocation method is that a much smaller number of points may be used since the solution at each point is influenced directly by the value at all the collocation points, as is the case for the exact solution, instead of depending directly on only neighboring grid points as is the case in finite difference schemes. In this respect then, the collocation method requires less computation time than a finite difference solution of comparable accuracy. This has been proved in several applications, some of them discussed next.

Ferguson and Finlayson [9] applied orthogonal collocation to a linear unsteady-state diffusion problem in a slab. They reported that the collocation solution is more accurate than finite difference solutions which use three to twelve times as many spatial grid points (they only collocated in the spatial coordinate and solved the resulting ordinary differential equations).

Ferguson and Finlayson also solved the diffusion of mass and energy in a spherical catalyst pellet with an
exothermic first-order irreversible reaction. Here, they again collocated only in the x-direction and these equations were integrated using Hamming's method. In this case, Ferguson and Finlayson demonstrated that the number of collocation points can be about ten times less than the number of finite difference grid points for equivalent accuracy. In terms of time, the best collocation solution was about twenty times (or more) as fast as a finite difference solution of about the same accuracy.

Finlayson [10] used orthogonal collocation to solve a two-dimensional (axial and radial directions) packed bed reactor under the assumptions of constant physical properties, plug flow, and a reaction governed by the conversion and temperature. Collocation was applied in the radial axis, and the resulting differential equations integrated using the Runge-Kutta method and the Euler method.

Comparison between collocation solutions and finite difference calculations using a Crank-Nicholson implicit method were reported to be in some cases from two to four times faster for equivalent accuracy. In some other cases, the collocation method was twice as fast and ten times as accurate or four times as fast and five times as accurate.

Finlayson [ll] also applied collocation in the axial direction in place of the Runge-Kutta method used before, and solved the resulting set of algebraic equations by an iterative procedure proposed by Villadsen [32]. The solution obtained by this way was about three times faster than the one using the Runge-Kutta method for equivalent accuracy.

Finlayson [1l] also solved the problem of tubular reactors with only axial dispersion (concentration and temperature). For this case, when orthogonal collocation was applied, the governing equations were reduced to a set of nonlinear algebraic equations for the concentration and temperature at the collocation points. He used the Newton-Raphson method to solve them, and compared this solution to those given in the literature using finite difference schemes.

Finlayson used six collocation points in order to obtain the same accuracy as reported for both a 100-grid point finite difference solution for the isothermal case and 481 grid points for the non-isothermal case.

Application to Turbulent Diffusion in the Atmosphere
As was discussed before, only finite-difference has been used previously to solve for the concentration distribution in atmospheric diffusion processes. The analysis
made in the preceding section leads to the conclusion that air pollution modeling could be improved by the use of the orthogonal collocation method as the numerical technique for solving the general diffusion equation. This equation, for a single species which will be the case studied in the present work ${ }^{(1)}$, is repeated here for convenience.

$$
\begin{align*}
\frac{\partial C}{\partial t}+u \frac{\partial C}{\partial x}+v \frac{\partial C}{\partial y}+w \frac{\partial C}{\partial z} & =\frac{\partial}{\partial x}\left(K_{x} \frac{\partial C}{\partial x}\right)+\frac{\partial}{\partial y}\left(K_{y} \frac{\partial C}{\partial y}\right)+ \\
& +\frac{\partial}{\partial z}\left(K_{z} \frac{\partial C}{\partial z}\right)+R \tag{4.53}
\end{align*}
$$

Some of the attractive properties that orthogonal collocation has are its flexibility and easy handling of any variable or component in the diffusion equation, as compared to other numerical methods used in previous works. The model does not increase in difficulty if all the terms involved in equation (4.53) are incorporated in it. That is, a similar amount of work in formulating the collocation equations, but not computer time in solving them, has to be done if three instead of two dimensions are considered in the model. The same reasoning applies for all the components of the wind velocity and turbulent diffusivity, and the chemical reactions. Therefore, it is
(1) Symbols indicating averaged quantities will be omitted henceforth. All velocities and concentrations, however, continue to be time averaged quantities.
not necessary to assume that some terms are negligible in order to be able to obtain results, which in such a case would be applicable only for some particular situations.

With the present approach then, it is possible to simulate many types of atmospheric conditions. But to do so, it is necessary to express all the properties in equation (4.53) in an analytical form. This has been done in a flexible way by introducing several parameters in the expressions representing those properties, so that different input data can be supplied if different atmospheric conditions are to be tested.

Before applying orthogonal collocation to the present model, let us obtain those expressions for the initial and boundary conditions, turbulent diffusivities, velocity profiles, and chemical reaction.

Initial and Boundary Conditions

The initial conditions necessary for an unsteady state model can be expressed as follows,

$$
\begin{equation*}
C=C_{B} \quad \text { at } t=0 \quad \text { and any } \quad(x, y, z) \tag{4.54}
\end{equation*}
$$

where C_{B} is a constant and in general can be a function of x, y, and z.

These conditions are required to start the calculations performed by the integrating subroutine, and therefore are generated in the MAIN of the computer program. For all the cases studied in the present work, there was no background concentration and thus C_{B} was equated to zero.

The boundary conditions at the ground, $z=0$, and at the inversion base, $z=H$, are obtained by assuming that both completely reflect the diffusing pollutant, i.e.,

$$
\begin{equation*}
\frac{\partial C}{\partial z}=0 \quad \text { at } z=0, H \text { for any } x \text { and } y \tag{4.55}
\end{equation*}
$$

These two boundary conditions for the z direction are converted into collocation equations and then incorporated in the diffusion equation, as it will be seen later in this chapter. If for a particular case the gradient in equation (4.55) is not equal to zero, e.g.

$$
\begin{equation*}
-K_{z} \frac{\partial C}{\partial z}=Q_{S}(x, y, t) \text { at } z=0 \text { for any } x \text { and } y \tag{4.56}
\end{equation*}
$$

where $Q_{S}(x, y, t)$ is the surface flux of the pollutant studied, the collocation equations resulted from conditions (4.55) have to be changed.

The bulk transport of the pollutant is due primarily to the effect of the x-component of the wind velocity. Therefore, it can be assumed that at certain distance in the y-direction, the mean concentration is negligible, i.e.

$$
\begin{equation*}
c \rightarrow 0 \quad \text { at } y=-y_{\max }, y_{\max } \text { for any } x \text { and } z \tag{4.57}
\end{equation*}
$$

where $2 \cdot y_{\max }$ is the entire region of interest. In general,

$$
c=f(x, z, t) \text { at } y=-y_{\max }, y_{\max }
$$

$$
\text { for any } \mathrm{x} \text { and } \mathrm{z}
$$

This can also be included in the model by changing the resulting collocation equations from conditions (4.57).

For the purposes of solving equation (4.53), it is necessary to define the location of the sources. These sources can be defined with the aid of a boundary condition in the x-direction.

Let us consider a general case, i.e., a multiple source problem, where there is more than one source involved. If the position of the ith source is defined by the coordinate point (JS(i), KS(i), LS(i)), the boundary condition related to the ith source is given by

$$
c= \begin{cases}C_{0}(i, t) & \text { at } x=J S(i), y=K S(i), z=L S(i) \tag{4.59}\\ 0 & \text { at } x=J S(i) \text { and any other } y \text { and } z\end{cases}
$$

where $C_{0}(i, t)$ is the ith source concentration, and in general a function of time. For the purpose of studying different situations, each C_{o}, assumed constant in the present model, and its position is supplied as input information. The way of handling multiple source will be discussed in detail in Chapter V.

As a convention, and knowing that for any case there will be at least one source, the first source will always be at $x=0$, that is $J S(1)=0$. Therefore, if the problem involves only one source, the boundary condition in the x-direction is given by

$$
C= \begin{cases}C_{0}(1) & \text { at } x=0, y=K S(1), z=L S(1) \tag{4.60}\\ 0 & \text { at } x=0 \text { and any other } y \text { and } z\end{cases}
$$

Sometimes the emission rate (mass/time) and not the source concentration is given as information. This problem can be overcome by the use of quadrature weights in orthogonal collocation and will be discussed later in Chapter V.

There is no need for a second boundary condition in the x-direction, due to the assumption of negligible turbulent diffusivity in this direction. This will be discussed in the next section.

Turbulent Diffusivities, K_{j}
Eschenroeder and Martinez [7] assumed a trapezoidal shaped vertical profile from the ground up to the inversion base for K_{z}, the turbulent diffusion coefficient in the vertical direction. At low levels, K_{z} increases linearly with z to some constant value. At intermediate levels, K_{z} then is constant. As the mixing depth top is
approached, K_{z} decreases linearly with increasing z. The ground level and inversion layer values are assumed to be equal. The maximum constant value is expected to vary with wind speed approximately like

$$
\begin{equation*}
\mathrm{K}_{\mathrm{z}}=50(\overline{\mathrm{u}}+5) \quad \mathrm{m}^{2} / \mathrm{min} \tag{4.61}
\end{equation*}
$$

where $\overline{\mathrm{u}}$ is in m / s. This equation starts applying from an elevation of 40 to 100 meters, depending upon meteorological conditions:

Figure 4.1: Variations of Diffusivity with Height

Eschenroeder et al. [8] reviewed their previous work based on more experimental data and concluded that equation (4.61) gives an estimate of vertical diffusivity only in the neutral stability range, and that temperature gradients are apparently far more influential than wind speed in determining vertical diffusivity values.

As an improvement on their previous approach, the dependence on wind speed was dropped, and the diffusivity profiles were reconstructed to represent the broad stability categories (defined by Pasquill and Gifford [30]), as shown in Figure 4.2 .

The knee height Δ, where the constant values for K_{z} apply, varies between 25 m to 75 m above the ground, depending on the height range of the model and the mesh interval size.

Eschenroeder et al. assumed constant diffusivity profiles all the way to the top because of their little influence for the space and time scales in their calculations at the top of the mesh.

In the present model, the calculation procedure for the turbulent diffusivities is based upon the latter approach used by Eschenroeder et al. [8]. Using their approach, K_{z} will depend only on the stability class and the vertical direction. Some slight changes were made in that approach and are now discussed.

Figure 4.2: Vertical Diffusivity Profiles.
$(1 \leq \overline{\mathrm{u}} \leq 7 \mathrm{~m} / \mathrm{s})$

An additional stability class, between the neutral and unstable, was incorporated in the model so that the six classes presented by Turner [13] could be taken into account.

The knee height Δ, was made dependent on the stability class, as suggested by Pasquill [18], so that the more unstable the conditions, the higher the knee.

The last change made to Eschenroeder's approach was to remove their assumption of constant diffusivity profiles from intermediate levels all the way to the top. As the mixing depth top is approached then, the turbulent diffusivities decrease linearly with increasing z, and the ground level and inversion layer values are assumed to be equal. This is done for the last 100 meters of the z-dimension, with $H \geq 300 \mathrm{~m}$.

Taking all these changes into account, Figure 4.2 remains as shown in•Figure 4.3.

This model was implemented in the computer program by using the following equations ${ }^{(1)}$:

For \quad ISTB ≤ 4 :

$$
\begin{array}{ll}
K_{z}=\operatorname{COEFK}(\text { ISTB }) \cdot z / \Delta(\text { ISTB })+60 ., & \text { for } z<\Delta(\text { ISTB }) \\
K_{z}=\operatorname{COEFK}(\text { ISTB })+60 \ldots & \text { for } \Delta(\text { ISTB }) \leq z \leq(H-100) \\
K_{z}=\operatorname{COEFK}(\text { ISTB }) \cdot(H-z) / 100+60 ., & \text { for } z>(H-100)
\end{array}
$$

(1) In the computer program the units for K_{z} are $m^{2} / m i n$.

Figure 4.3: Vertical Diffusivity Profiles in the Present Model.

where, $\operatorname{COEFK}(1)=2940$
$\Delta(1)=125$
$\operatorname{COEFK}(2)=540 \quad \Delta(2)=125$
$\operatorname{COEFK}(3)=258 \quad \Delta(3)=100$
$\operatorname{COEFK}(4)=90 \Delta(4)=75$
For $\operatorname{ISTB}=5: \quad K_{z}=60 \mathrm{~m}^{2} / \mathrm{min}$, for any z
for $\operatorname{ISTB}=6: \quad K_{z}=30 \mathrm{~m}^{2} / \mathrm{min}$, for any z
In order to have a flexible model, the stability class, ISTB, is supplied as input information by the user. Because of .the fact that once it is defined it remains the same during the simulation, the algorithm that calculates the turbulent diffusivities at each orthogonal point was incorporated in the MAIN of the computer program.

In the region of interest, the turbulence is almost perfectly isotropic, and even below 100 meters, the degree of isotropy seems to be sufficiently high in order to consider, as Sutton [28] has suggested, that K_{y} varies in an identical way as K_{z}. In addition, most of the previous models, discussed in Chapter III, considered a constant turbulent diffusivity in the y direction. This suggested then to relate, in the present model, K_{y} to K_{z} in the following manner:

$$
\begin{equation*}
K_{y}=\propto K_{z}^{\prime}(\text { ISTB }) \tag{4.63}
\end{equation*}
$$

where \propto is a positive constant which has to be supplied as input information by the user, and K_{z}^{\prime} is the maximum constant value for K_{z} and thus dependent only on the stability class.

In the present model, the turbulent diffusivity in the x -direction will be neglected as compared to the mean wind velocity. The reason being that its behavior is not well understood and in most of the cases it has no significant effect on the results [24].

Velocity Profiles
Davies [5], Dasquill [17], Smith [26], Tennekes and Lumley [29], and others have developed expressions for the velocity profiles especially in the mean flow direction. Two equation forms have been used often in previous studies. A semi-logarithmic form for rough flows, of the type

$$
\begin{equation*}
\bar{u}(z)=\frac{u_{*}}{k_{\mathrm{O}}} \ln \left(\frac{z}{z_{0}}\right) \tag{4.64}
\end{equation*}
$$

where u_{*} is the friction velocity, k_{o} the von Karman's constant, and z_{o} a length characterizing the effect of the surface roughness.

The second is a power law equation which has the following form:

$$
\begin{equation*}
\overline{\mathrm{u}}(\mathrm{z})=\overline{\mathrm{u}}_{1}\left(\frac{\mathrm{z}}{\mathrm{z}_{1}}\right)^{\mathrm{m}} \tag{4.65}
\end{equation*}
$$

where \bar{u}_{1} is the mean velocity at a reference height z_{1}, and m is a constant.

For this problem, the latter form describes in a better way the mean velocity in the x-direction. Therefore, equation (4.65) will be used in the diffusion equation.

This form of the velocity profile is used for the lower part of the z dimension, that is from the ground level to the knee height Δ, previously defined, and from this elevation up to the mixing depth top a constant value for the velocity is used, UST. This means then that u will depend on the stability class, z, and the parameters $\mathrm{u}_{1}, \mathrm{z}_{1}, \mathrm{~m}$; and UST.

Usually UST, the geostrophic wind speed, is the easiest value to obtain whether by experimental data or previous records of the zone in question. This is the reason why UST is required as input information in the model.

Having in mind further adjustments for u, the constant m has also to be provided as input information by the user. This exponent m is a number which varies from
0.1 to 0.4 , depending on the roughness of the ground surface as well as on atmospheric stratification. The rougher the terrain, i.e., the larger the surface obstructions, the thicker will be the affected layer of air, and the more gradual will be the increase of velocity with height. Thus, as the roughness increases, the exponent m increases, as it is shown in Table 4.1 which was presented by Seinfeld [22]:

TABLE 4.1 : ESTIMATES FOR m in eq. (4.65)
Type of terrain
open country suburbs urban
m
.16 .28 .40

The stability limits of m, also presented by Seinfeld [22], are:

$$
m= \begin{cases}.83 & \text { very stable } \\ 1 / 7 & \text { neutral } \\ .02 & \text { very unstable }\end{cases}
$$

For purposes of continuity calculations (see Chapter V) the ground level value for the mean wind velocity in the x-direction, UGR, is also taken into consideration in the model and is supplied as input information. If its value is not known at the moment of simulating a case,
as it happened in this work, it can be assumed to be equal to the friction velocity, u_{*}.

The algorithm for obtaining u then, as used in the MAIN program, is described by the following equations: For ISTB ≤ 4 :
$u=$ UGR \quad for $z=0$
$u=\operatorname{UST}\left(\frac{\mathrm{z}}{\Delta(\text { ISTB })}\right) \mathrm{AM} \quad$ for $0<z<\Delta($ ISTB $)$
$\mathrm{u}=\mathrm{UST} \quad$ for $\mathrm{z} \geq \Delta($ ISTB $)$
For ISTB>4 :
$\mathrm{u}=\mathrm{UGR}$
for $z=0$
$\mathrm{u}=\mathrm{UST}$
for $z^{>}>0$

In almost all the previous works in air pollution modeling, the y-component of the mean wind velocity as well as the z-component are assumed to be negligible.

As it was discussed before, the present model does not increase in difficulty by including more than one component for the mean wind velocity. In spite of this, it has been difficult to obtain equation forms for the other two components of the wind velocity. Therefore, it will be assumed that w, the vertical component is negligible, and that v, the y-component is some fraction of u.

To make a general case for this study, let us consider that v also varies with respect to time in a linear
dependence until it reaches its maximum value. Because of this dependency on time, the algorithm used to its calculation, as described by the following equations, was incorporated in a subroutine called FCT:

$$
\begin{array}{lll}
v=P u \frac{t}{\mathrm{TCH}} & \text { for } & 0 \leq t<\mathrm{TCH} \tag{4.67}\\
v=P u & \text { for } & t \geq T C H
\end{array}
$$

where P is a constant that will determine the direction of the mean wind velocity, and TCH another parameter that will specify the time required for v to change from its value at $t=0$ to its maximum value, $P \cdot u:$ Both, P and $T C H$ have to be supplied as input information in the computer program by the user.

Chemical Reactions

In the development of equation (2.6), the general diffusion equation, an approximation concerning the chemical reaction term was made: the term $\left\langle R_{i}\left(\left\langle C_{1}\right\rangle+C_{i}\right.\right.$, $\left.\left.\ldots . .,<C_{s}>+C_{s}{ }^{\prime}\right)\right\rangle$ was replaced by $\left\langle R_{i}\left(\left\langle C_{1}\right\rangle, \ldots,\left\langle C_{s}\right\rangle\right)\right\rangle$, i.e., the effect of concentration fluctuations on the rate of reaction was neglected. This is true only for first-order reactions, however, conditions under which this assumption is valid can be obtained for higher order reactions.

Lamb [15] analyzed this problem for a two-dimensional turbulent fluid transporting a single chemical species
involving a nonlinear chemical reaction (second-order reaction). In this case, the chemical reaction term is expressed by

$$
\begin{equation*}
R=-k\left[\langle C\rangle^{2}+\left\langle C^{2}\right\rangle\right] \tag{4.68}
\end{equation*}
$$

He concluded that the replacement of equation (4.68) by $-\mathrm{k}\langle\mathrm{C}\rangle^{2}$ is valid when the reaction process is slow compared with turbulent transport and the characteristic ' length and time scales for changes in the mean concentration field are large compared with the corresponding scales for turbulent transport.

Although these conditions were derived for a relatively simple two-dimensional case, the essential aspects of those restrictions were found to apply to the general three-dimensional equation as well. In addition, they give a good indication of the conditions of validity for general R_{i}.

Let us turn our attention now to the mechanisms of removal of sulfur dioxide in the atmosphere, since this will be the chemical species used to validate the present model. .

Although a great deal of importance has been given to sulfur oxides, in particular sulfur dioxide, the chemistry of sulfur dioxide in the atmosphere is still far from being fully understood.

The removal of SO_{2} in the atmosphere is quite complex and can take place through several mechanisms. It has
been suggested that atmospheric SO_{2} can undergo oxidation to sulfates by mainly two mechanisms: catalytic (heterogeneous) oxidation and photochemical (homogeneous) oxidation. However, sulfur dioxide is removed from the atmosphere not only by oxidation, but also by sedimentation, rainout and washout.

Photochemical oxidation of SO_{2} is apparently a gas-phase process consisting of several chemical reactions. In the presence of air, SO_{2} is oxidized to SO_{3} when exposed to solar radiation, and if water is present, the SO_{3} is rapidly converted to sulfuric acid. The conversion of SO_{2} to SO_{3} involves excited SO_{2} molecules, oxygen, and oxides of sulfur other than SO_{2}. Although photochemical oxidation of SO_{2} can take place in clean air, the more important process of SO_{2} photooxidation occurs in atmospheres containing hydrocarbons and oxides of nitrogen. In this case, the rate of conversion of SO_{2} to SO_{3} increases markedly over that observed in pure air.

Catalytic oxidation is the principal process for SO_{2} conversion under conditions of high humidity and high particulate concentration. It occurs in aqueous solution, involves both water and dissolved O_{2}, and requires the presence of a catalyst. The overall reaction can be expressed as

$$
\begin{equation*}
2 \mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2} \xrightarrow{\text { cat. }} 2 \mathrm{H}_{2} \mathrm{SO}_{4} \tag{4.69}
\end{equation*}
$$

Catalysts for this reaction include several metal salts, such as sulfates and chlorides of manganese and iron. However, most of the recent work has been dedicated to manganous salts only.

The same reaction can also occur without the presence of a catalyst, as discussed by Worley [34], and shown in the following equations,

$$
\begin{align*}
& \mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \mathrm{HSO}_{3}^{-}+\mathrm{H}^{+}(\text {seconds }) \tag{4.70}\\
& 2 \mathrm{HSO}_{3}^{-}+\mathrm{O}_{2} \xrightarrow{\mathrm{ag} .} 2 \mathrm{SO}_{4}^{-}+2 \mathrm{H}^{+}(\text {hours })
\end{align*}
$$

In the sedimentation or deposition process, SO_{2} behaves as if it were a particle with a settling velocity. Rainout and washout also serve as additional removing mechanisms. Rainout is the incorporation of gaseous SO_{2} in cloud droplets, while washout is the removal of SO_{2} by rain falling through air masses below the cloud level. Once SO_{2} is absorbed, it is converted via oxidation (4.70)the heterogenous aspect causes apparent SO_{2} level to fall.

As it can be observed, a model that would take into account all the possible mechanisms for SO_{2} removal in the atmosphere and all the variables involved would be quite complex.

Because of the fact that the processes previously discussed are not very well understood yet, and the incorporation and thus the study of such a complex model is not the main objective in the present work, only photochemical oxidation will be considered here. Furthermore, the reactions taking place in a system of SO_{2}, hydrocarbons, NO_{x}, and air are probably the least well understood of all those in atmospheric chemistry, and thus will not be considered either.

Since data for photochemical oxidation in clean air are extremely scattered, a simplified first order reaction model will be used to represent SO_{2} removal from the atmosphere,

$$
\begin{equation*}
\mathrm{R}=-\mathrm{kC} \tag{4.71}
\end{equation*}
$$

where k is the reaction rate constant. The value of 5.8×10^{-5} per minute or 0.35% loss of SO_{2} per hour, used by Hallidy and Anderson [12] in their work will be the rate constant in the present model, and must be supplied as input information in the computer program.

Development of the Collocation Equations
The diffusion equation to be solved, and the corresponding initial and boundary conditions, under the assumptions previously discussed, are:

$$
\begin{align*}
& \frac{\partial C}{\partial t}+u \frac{\partial C}{\partial x}+v \frac{\partial C}{\partial y}=\frac{\partial}{\partial y}\left(K_{y} \frac{\partial C}{\partial y}\right)+\frac{\partial}{\partial z}\left(K_{z} \frac{\partial C}{\partial z}\right)+R \tag{4.72}\\
& C=0 \quad \text { at } t=0, \text { and any }(x, y, z) \tag{4.73}\\
& \frac{\partial C}{\partial z}=0 \quad \text { at } z=0, H \text { for any } x \text { and } y \tag{4.74}\\
& C^{(*)}=\left\{\begin{aligned}
C_{0}(1) & \text { at } x=0, y=K S(1), z=L S(1) \\
0 & \text { at } x=0, \text { and any other } y
\end{aligned}\right. \tag{4.75}\\
& C=0 \\
& \text { at } y=-y_{\max } y_{\max } \tag{4.76}
\end{align*}
$$

In equation (4.72), the velocity profiles are assumed to be,

$$
\begin{align*}
& u=\psi(z, I S T B) \tag{4.77}\\
& v=\eta(z, t, I S T B) \tag{4.78}
\end{align*}
$$

the turbulent diffusivities,

$$
\begin{align*}
& \mathrm{K}_{\mathrm{y}}=\xi(\text { ISTB }) \tag{4.79}\\
& \mathrm{K}_{\mathrm{z}}=\zeta(\mathrm{z}, \dot{\text { ISTB }}) \tag{4.80}
\end{align*}
$$

and the rate of reaction,

$$
\begin{equation*}
\mathrm{R}=-\mathrm{kC} \tag{4.81}
\end{equation*}
$$

For this problem, let us transform the spatial coordinates to yield limits of 0 to 1 by the following procedure:
(*) The multiple sources case will be discussed in Chapter V.

$$
\begin{align*}
& x^{*}=\frac{x}{x_{\max }} \tag{4.82}\\
& y^{*}=\frac{\frac{y}{y_{\max }}+1}{2} \tag{4.83}\\
& z^{*}=\frac{z}{H} \tag{4.84}
\end{align*}
$$

For simplicity, from now on the asterisk will be dropped out from the independent variables, x^{*}, y^{*}, and z^{*} 。

Substituting equations (4.77) through (4.84) into equation (4.72) one obtains

$$
\begin{align*}
\frac{\partial C}{\partial t}+R_{1} \frac{\partial C}{\partial x}+R_{2} \frac{\partial C}{\partial y}-R_{3} \frac{\partial C}{\partial z} & =R_{5} \frac{\partial^{2} C}{\partial y^{2}}+ \\
& +R_{6} \frac{\partial^{2} C}{\partial z^{2}}-k C \tag{4.85}
\end{align*}
$$

where

$$
\begin{align*}
& R_{1}(z)=\psi \cdot(z, \text { ISTB }) \frac{1}{x_{\max }} \tag{4.86}\\
& R_{2}(z, t)=\eta(z, t, \text { ISTB }) \frac{1}{2 Y_{\max }} \tag{4.87}\\
& R_{3}(z)=\frac{d\{\zeta(z, \text { ISTB })\}}{d z} \frac{1}{H^{2}} \tag{4.88}\\
& R_{5}=\xi(\text { ISTB }) \cdot \frac{1}{4 y_{\max }^{2}} \tag{4.89}\\
& R_{6}(z)=\zeta(z, \text { ISTB }) \frac{1}{H^{2}} \tag{4.90}
\end{align*}
$$

There are many ways in which orthogonal collocation can be applied to equation (4.85), but it is chosen to collocate only in the three directions, x, y, and z, so that a system of ordinary differential equations with respect to time is left to be solved. The reason of doing this is because the solution of the diffusion equation is primarily wanted at any instant of time.

If the emission source is put in the middle of the interval in the y-direction, and only the x-component of the wind velocity is taken into account, then by examining the boundary conditions it can be concluded that this problem would be symmetric with respect to y. Since this is only a particular case, it is better to apply the equations for a non-symmetric case to every direction.

In doing this, let N_{x}, N_{Y}, and N_{z} be the number of collocation points in the x, y, and z directions, respectively, and $C_{j k \ell}$ the mean concentration at the point $\left(x_{j}, y_{k}, z_{\ell}\right)$.

Equation (4.85) remains then as,

$$
\begin{align*}
& \frac{d C_{j k \ell}}{d t}+R_{1}(\ell) \sum_{i=1}^{N_{x}^{+2}} A_{j i}^{(1)} C_{i k \ell}+R_{2}(\ell, t) \sum_{i=1}^{N A_{k i}^{+2}} C_{j i \ell}^{(2)}- \\
& -R_{3}(\ell) \sum_{i=1}^{N_{z}+2} A_{l i}^{(3)} C_{j k i}=R_{5} \sum_{i=1}^{N_{y}+2} B_{k i}^{(2)} C_{j i \ell}+ \\
& \quad+R_{6}(\ell) \sum_{i=1}^{N+2} B_{\ell i}^{(3)} C_{j k i}-k C_{j k \ell} \tag{4.91}
\end{align*}
$$

$$
\begin{array}{rlll}
\text { for } & j=1, & \ldots, & N_{x}+2 \\
& k=1, & \ldots, & N_{y}+2 \\
& \ell=1, & \ldots, & N_{z}+2
\end{array}
$$

As discussed before, matrices A and B depend on the number of collocation points. For a general case, that number of points can be different for each direction and therefore, A and B would be different. Furthermore, N_{x}, N_{y}, and N_{z} could be changed between runs. These reasons lead to the conclusion that it is better to include subroutines JCBI and DFOPR in the computer program rather than putting matrices A and B as input data each time the collocation points are changed.

In equation (4.91), the indices of matrices A and B represent the direction and thus the way they are computed, i.e., (1), (2), and (3) stand for the x, y, and z directions, respectively.

The application of orthogonal collocation to the boundary conditions, equations (4.74) through (4.76), gives the following expressions:

$$
\begin{align*}
& \sum_{i=1}^{N_{z}^{+2}} A_{l i}^{(3)} C_{j k i}=0 \quad \text { at } z=0 \tag{4.92}\\
& \sum_{z}^{N_{i=1}+2} A_{N_{z}}^{(3)}+2, i_{j k i}^{C_{j}=0} \text { at } z=1 \tag{4.93}
\end{align*}
$$

$$
\begin{align*}
& C_{1 k l}= \begin{cases}C_{0}(1) & \text { at point source } \\
0 & \text { elsewhere }\end{cases} \tag{4.94}\\
& C_{j l \ell}=0 \quad \text { at } \mathrm{y}=0 \tag{4.95}\\
& C_{j N_{y}}+2 \ell=0 \quad \text { at } \mathrm{y}=1 \tag{4.96}
\end{align*}
$$

Equations (4.92) and (4.93) can also be written as

$$
\begin{gather*}
A_{l l}^{(3)} C_{j k \ell}+\sum_{i=2}^{N_{z}^{+1}} A_{l i}^{(3)} C_{j k i}+A_{l N_{z}}^{(3)}+2 C_{j k N_{z}+2}=0 \tag{4.97}\\
A_{N_{z}+2(3)}^{(3)} C_{j k l}+\sum_{i=2}^{N_{z}+1} A_{N_{z}}^{(3)}+2 i_{j k i} C_{j}+ \\
+A_{N}^{(3)}+2 N_{z}+2 C_{j k N_{z}}+2=0 \tag{4.98}
\end{gather*}
$$

Solving for $C_{j k l}$ and $C_{j k N_{z}}+2$ one obtains:

$$
\begin{align*}
& C_{j k l}=-\frac{{ }^{A_{1 N}+2{ }^{(3)}{ }_{j k N}+2}+\sum_{i=2}^{N_{z}+1}{ }^{A_{l i}^{(3)} C_{j k i}}}{A_{11}^{(3)}} \tag{4.100}
\end{align*}
$$

These expressions can be simplified by defining,

$$
\begin{equation*}
\text { DEN }=A_{N_{z}}^{(3)}+21_{1 N_{z}}^{(3)}+2-A_{11}^{(3)} A_{N_{z}}^{(3)}+2 N_{z}+2 \tag{4.101}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{APAl}(i)=\frac{A_{11}^{(3)} A_{N}^{(3)}+2 i-A_{N}^{(3)}+21{ }_{z}^{(3)}}{\text { DEN }} \tag{4.102}
\end{equation*}
$$

so that equation (4.99) remains as

$$
\begin{equation*}
\mathrm{C}_{j \mathrm{KN}_{\mathrm{z}}+2}=\sum_{\mathrm{i}=2}^{\mathrm{N}_{\mathrm{z}}+1} \operatorname{APAl}(\mathrm{i}) \mathrm{C}_{j \mathrm{ki}} \tag{4.103}
\end{equation*}
$$

In cases where there is no inversion layer at the maximum elevation, H, as it has been assumed so far, a new boundary condition at this point can be assumed as

$$
\begin{equation*}
C=0 \quad \text { at } \quad z=H \quad \text { for any } x \text { and } y \tag{4.104}
\end{equation*}
$$

This condition can be easily included in equation (4.103):

$$
\begin{equation*}
C_{j k N_{z}+2}=\sum_{i=2}^{N_{z}+1} \text { APAl (i) } C_{j k i} \quad \text { INVRS } \tag{4.105}
\end{equation*}
$$

where INVRS $=1$ means that there is inversion at $z=H$, and INVRS $=0$ means that there is no inversion and the concentration at $\mathrm{z}=\mathrm{H}$ is equal to zero.

By substituting equations (4.94) through (4.96), equation (4.91) remains as follows:

$$
\begin{align*}
& \frac{d C_{j k \ell}}{d t}+S(j)+R_{1}(\ell) \sum_{i=2}^{N_{x}^{+2}} A_{j i}^{(1)} C_{i k \ell}+R_{2}(\ell, t) \sum_{i=2}^{N_{y}^{+1}} A_{k i}^{(2)} C_{j i \ell}- \\
& -R_{3}(\ell) A_{\ell l}^{(3)} C_{j k l}-R_{3}(\ell) \sum_{i=2}^{N_{z}^{+l}} A_{\ell i}^{(3)} C_{j k i}- \\
& -R_{3}(\ell) A_{\ell N_{z}}^{(3)}+2 C_{j k N_{z}+2}=R_{5} \sum_{i=2}^{N_{y}+1} B_{k i}^{(2)} C_{j i \ell}+ \\
& +R_{6}(\ell) B_{\ell 1}^{(3)} C_{j k l}+R_{6}(\ell) \sum_{i=2}^{N_{z}^{+1}} B_{\ell i}^{(3)} C_{j k i}+ \\
& +R_{6}(\ell) B_{\ell N_{z}}^{(3)}+C_{j k N_{z}}+2-k C_{j k \ell} \tag{4.106}
\end{align*}
$$

And rearranging,

$$
\begin{align*}
& \frac{d C_{j k \ell}}{d t}=-S(j)-R_{1}(\ell) \sum_{i=2}^{N_{x}+2} A_{j i}^{(l)} C_{i k \ell}+ \\
& +\left[R_{3}(\ell) A_{\ell l}^{(3)}+R_{6}(\ell) B_{\ell l}^{(3)}\right] C_{j k l}+ \\
& +\left[R_{3}(\ell) \dot{A}_{\ell N_{z}}^{(3)}+2+R_{6}(\ell) B_{\ell N_{z}}^{(3)}+2\right] C_{j k N_{z}}+2+ \\
& +\sum_{i=2}^{N_{z}^{+1}}\left[R_{3}(\ell) A_{\ell i}^{(3)}+R_{6}(\ell) B_{\ell i}^{(3)}\right] C_{j k i}+ \\
& +\sum_{i=2}^{N_{y}^{+l}}\left[R_{5} B_{k i}^{(2)}-R_{2}(\ell, t) A_{k i}^{(2)} C_{j i \ell}-k C_{j k \ell}\right. \tag{4.107}
\end{align*}
$$

or,

$$
\begin{align*}
& \frac{d C_{j k \ell}}{d t}=-S(j)-R_{1}(\ell) \sum_{i=2}^{N_{x}+2} A_{j i}^{(1)} C_{i k \ell}+R 36 I(\ell) C_{j k l}+ \\
& +R 362(\ell) C_{j k N_{z}+2}+\sum_{i=2}^{N_{z}+1} R 36 I(\ell, i) C_{j k i}+ \\
& +\sum_{i=2}^{\mathrm{N}_{\mathrm{Y}}+1} \operatorname{R5} 2 I(\ell, k, i, t) C_{j i \ell}-k C_{j k \ell} \tag{4.108}\\
& \text { for } \quad j=2, \ldots, N_{x}+2 \\
& \mathrm{k}=2, \ldots, \mathrm{~N}_{\mathrm{y}}+1 \\
& \ell=2, \ldots, N_{z}+1
\end{align*}
$$

where

$$
S(j)= \begin{cases}R_{1}(L S(I)) A_{j l}^{(I)} C_{0}^{(1)} & \text { at } \tag{4.109}\\ & k=K S(1) \\ & \ell=L S(1) \\ 0 & \text { elsewhere }\end{cases}
$$

and $C_{j k l}$ and $C_{j k N_{z}}+2$ are given by equations (4.100) and (4.105), respectively.

Equation (4.108) gives then a set of $\left(N_{x}+1\right)\left(N_{y}\right)(N z)$ first-order ordinary differential equations to solve for the concentration as a function of time at the orthogonal collocation points in the three directions, x, y, and z.

Chapter V

FORMULATION OF CALCULATIONAL SCHEME

Calculation Procedure

It has previously been shown that the solution to the turbulent diffusion process in the atmosphere can be obtained by the use of the K -theory, which can be accomplished by solving a partial differential equation. Orthogonal collocation simplifies this, reducing that equation to a system of first-order ordinary differential equations with respect to time.

The basic calculational procedure then is to solve that system of equations (4.108) on a digital computer. There are several methods that can be used for this purpose, but in this work it was decided to use RKGS, a subroutine furnished by IBM [14] which in essence is a fourth-order Runge-Kutta method.

In addition to RKGS, two other subroutines must be supplied: A function subroutine, called FCT in the computer program (see Appendix A), where the system of firstorder ordinary differential equations to be solved are provided; and an output subroutine, called OUTP in the computer program, which will print the results computed by RKGS.

In RKGS, the integration is performed with respect to time, and therefore the solution of the problem can be obtained at any moment. However, it is usually desired to print it only at every defined interval of time. Having this in mind, an algorithm that uses a variable called PRDEL was incorporated in OUTP so that it will allow the computer to print the results only every PRDEL units of time.

Due to the nature of orthogonal collocation, small oscillations can be introduced in the solution of the problem. Although these are part of the true solution of the collocation equations, there might be small negative concentrations as output for points that follow zero levels of concentration. Because of this, and by suggestions of Stewart [27] and Villadsen [33], a subroutine called ZERO is always called before printing the results. This subroutine will convert all the concentration values that follow the zero level to zero. This testing is done in all three directions.

Because of the fact that actual data are available as average concentrations, the computer program contains a subroutine called AVG, which will convert the solution to a time average solution, so that a comparison to experimental data can be performed. To do this, AVG subroutine computes the time average concentrations at
every collocation point for three consecutive points in time; i.e., θ, t, and Ω, where t is any point in time, $\theta(=t-\mathrm{PRDEL})$ is the time between the pollutant release $(t=0)$ and the initiation of the averaging time, and $\Omega(=t+$ PRDEL $)$ is the end of the averaging time. In order to reduce the program storage requirement, AVG subroutine is performed by direct-access input/output statements.

Multiple sources

In Chapter IV, orthogonal collocation was applied to problems involving only one point source. The same resulting collocation equations can be used to multiple source cases, but the calculational procedure is different.

As it was previously discussed, the concentration at the source is considered here as the boundary condition in the x-direction. If the problem involves only one source, the input information required to solve it consists of $C_{0}(1)$, the concentration at the source, KS(1) and LS(1), the location of the point source in the y and z directions, respectively (JS(1) in this case is equal to zero, i.e., $x=0$), and XMAX, YMAX, and H, the dimensions in the three directions. The calculation of the solution starts at TINIT, the initial time and ends at ENDS, the end of the simulation time. Intermediate results are computed at every interval of integration time, PRMT(3),
but are printed only every PRDEL units of time. TINIT, ENDS, PRMT(3), and PRDEL are also required as input information.

The calculation procedure for cases involving more than one source is different than the one previously presented. The reason being the interaction that occurs on the concentration distribution due to the multiple sources.

In order to describe the calculation procedure for multiple sources, let us analyze a situation that involves three point sources. In this case, the source concentrations, $C_{0}(i)$ are still considered as boundary conditions in the x-direction, but while the first source is located at $x=0$, the following ones can be located in general at $x>0$. The entire domain in the x-direction is divided into three portions, so that the first source is located at $x=0$, the second at XMAX(1), and the third at XMAX(2). In order to define completely each source, its position in the y and z directions must be supplied by the values of $\mathrm{KS}(i)$ and $L S(i)$, respectively, where i indicates the number of the source. This case then can be represented as it is shown in Figure 5.l.

The input information given by TINIT, ENDS, PRMT(3), PRDEL, NX, NY, NZ, YMAX, and H is the same for each source. The number of sources, NSRCS, must also be supplied as input information, and in the present model

Figure 5.1: Multiple Sources Representation

NSRCS ≤ 3. If more than three sources are to be considered, changes should be made in the dimension and common statements, initial conditions, and RKGS call statements. The results for the first portion of Figure 5.1 are the same as if they were computed for a single source problem, but for the next portions this is different. The concentrations in the second portion not only depend on $C_{0}(2)$, but also on the mass flux that comes from the first portion. The same reasoning applies for subsequent portions.

The calculation procedure then is as follows: at every interval of integration time, the concentration values at any orthogonal point in the $y-z$ plane at $\mathrm{x}=\mathrm{XMAX}(1)$ are recorded and used, with $\mathrm{C}_{\mathrm{O}}(2)$, as boundary conditions for the second portion. The same procedure is also utilized for the following portions. This method can be implemented in the computer program by two ways:
(1) Integrating the three portions at the same time for every interval of time, printing every PRDEL units of time, and continuing to do this until ENDS is reached. This can be done by integrating first the last portion for one interval of time. The values recorded for the preceding portion at the previous interval of time are used as boundary conditions for the interval of time and the portion in question. After this calculation is over,
the same procedure can be applied for the next portion going backwards, and continuing to do this until the first portion is reached. In this way, the same storage can be used to record the values at $x=X M A X(1)$ and $X M A X(2)$ for every interval of time. Furthermore, once the values are printed, the concentration distribution at time $=\theta$ are not used any more and that storage can be utilized for the next PRDEL units of time.
(2) Integrating the first portion between TINIT and ENDS and recording all the values, then integrating the next portion i all the way, using the values at $x=X M A X(i-1)$ for every interval of integration time recorded previously, and continuing to do this until the last portion is reached. Then, at every PRDEL units of time the solution for that portion and the ones in the disk can be printed. The simulation stops when ENDS is reached for that last portion. It is evident that this method will require more storage capacity than the previous one.

An analysis made on both methods indicated less computational time for the latter way. Therefore, the second method was put in the system.

It should be pointed out that the position of any source can be located only at orthogonal collocation points. That position, given by $K S$ and LS, must be supplied with point numbers. For example, if $N_{z}=7$ and
the location of a source is at one half of the z-diamension, LS should be 5 (the total number of collocation points is 9, including $z=0$ and $z=1$).

Continuity

In the present model, the concentration at the source, $C_{0}(i)$, is used to represent the source, and therefore is a required input information. Unfortunately, the emission rate is, in many cases, the only information that is available. One of the objectives of the present study is to obtain a general model that would also compute the concentration distribution when only the emission rate of the source is given.

There is a need then to develop a calculational procedure which would compute a concentration equivalent to the emission rate. The concept of continuity can be used for this purpose. Moreover, the flux at any x is a valuable piece of information that can be obtained from the results of an air pollution model. Therefore, a general continuity calculation will be obtained and then used for the particular problem of computing C_{0} (i) from the emission rate $Q(i)$.

The flux across any plane normal to the x axis can be expressed by the following equation:

$$
\begin{equation*}
\int_{0-Y M A X}^{H} C \cdot u d y d z=Q_{x_{j}} \tag{5.1}
\end{equation*}
$$

where C is the mean concentration at any point in the $y-z$ plane, u its corresponding x-component of the mean wind velocity, and $Q_{x_{j}}$ the mass rate at $x=x_{j}$.

If there was no mechanism of removal in a model
involving one source, the pollutant would be not created or lost within the region of interest, and at steady state $Q_{x_{j}}$ would be the same for any value of x, and equal to Q(1). For a multiple source case, $Q_{x_{j}}$ would be equal to the sum of the constant emission rates for a particular source and its precedings. In such a case, the continuity condition should be included in the model, but since removal is taken into account in the present study, the values of $Q_{x_{j}}$ will vary along the x direction.

Transforming the spatial coordinates into an interval between 0 and 1 , equation (5.1) remains as follows:

$$
\begin{equation*}
\int_{0}^{1} \int_{0}^{1} c \cdot u(2 \cdot \operatorname{MMAX} \cdot H) d y d z=Q_{x_{j}} \tag{5.2}
\end{equation*}
$$

Using the quadrature weights, the double integral
can be transformed into a double summation leading to the following collocation equation

$$
\begin{array}{r}
\sum_{k=1}^{\mathrm{N}_{\mathrm{Y}}+2} \sum_{\ell=1}^{\mathrm{N}_{\mathrm{z}}+2} \mathrm{~W}^{(2)}(\mathrm{k}) \mathrm{W}^{(3)}(\ell) \mathrm{C}_{j k \ell} \mathrm{u}(\ell)(2 \cdot \operatorname{YMAX} \cdot \mathrm{H})=Q_{x_{j}} \tag{5.3}\\
\text { for } j=2, \ldots, N_{x}+2
\end{array}
$$

But from the boundary conditions in the y direction,

$$
\begin{align*}
C_{j l \ell}=C_{j N_{y}}+2 \ell & =0 \tag{5.4}\\
& \ell=2, \ldots, N_{x}+2 \\
& =1, \ldots, N_{z}+2
\end{align*}
$$

Finally then, equation (5.3) remains as

$$
\begin{array}{r}
Q_{x_{j}}=\sum_{k=2}^{N_{y}+1} \sum_{\ell=1}^{N_{z}+2} W^{(2)}(k) W^{(3)}(\ell) c_{j k \ell}{ }^{u(\ell)(2 \cdot \operatorname{MAX} \cdot H)} \tag{5.5}\\
\text { for } j=2, \ldots, N_{x}+2
\end{array}
$$

Equation (5.5) was included in the model (in subroutine OUTP) so that the mass flux can be known at any time and at any position in the x direction. In a case of no removal, these values, if they were equal as it will be shown in the next chapter, serve as a proof of the validity of the model and the numerical technique used.

In the case of using equation (5.5) to calculate the equivalent $C_{o}(i), Q_{x_{j}}$ is equated to the constant rate of emission, $Q(i)$, and all the concentrations but the one at the point source are made equal to zero. Equation (5.5) becomes then

$Q(i)=W^{(2)}(K S(i)) W^{(3)}(L S(i)) C_{o}(i) u(L S(i))(2 \cdot Y M A X \cdot H) \quad$ (5.6)

$$
\text { for } i=1, \ldots, \text { NSRCS }
$$

Therefore, whenever $Q(i)$ is the only information available, the equivalent concentration at the source can be calculated from the following equation:

$$
\begin{equation*}
C_{o}(i)=\frac{Q_{(i)}}{W^{(2)}(K S(i)) W^{(3)}(L S(i)) u(L S(i)) 2 \cdot Y M A X \cdot H} \tag{5.7}
\end{equation*}
$$

Chapter VI
PRESENTATION AND ANALYSIS OF RESULTS

The objective of the current study was to demonstrate the suitability of the present method to simulate diffusion in the atmosphere. To do this, experimental cases are simulated with the present model, and the results compared to the corresponding experimental data. Unfortunately, at the present moment there are almost no experimental data available in the literature. This is the reason why only the Project Prairie Grass diffusion data at O'Neill, Nebraska, were considered. Four cases from this Project were simulated and the results compared to the experimental data.

In addition, a parametric study was performed, and the sensitivity of the present model to variations in the atmospheric conditions analyzed. This was done by simulating several hypothetical cases.

Comparison to Experimental Values
The atmospheric diffusion data from Runs \#20, \#24, \#45, and \#54 of the Project Prairie Grass data [2, 3, 13] were used as a test of the present method.

Project Prairie Grass was a field program designed to provide experimental data on the diffusion of a tracer gas in the atmosphere. The sulfur dioxide tracer gas was released for ten minutes over a flat prairie at O'Neill, Nebraska. The emission was done at about 50 centimeters above the ground and the gas was sampled along semicircular arcs from 50 meters to 800 meters from the source. Samplers were placed at 1.5 m above the ground. In addition, concentration profiles along the vertical were measured from samplers located at nine levels on each of six towers positioned along the 100 m arc.

In the experiments, the entire sampling network was put in operation just before the start of the gas release and the operation continued until the tracer was transported beyond the 800 m arc. Although the actual measurements were of total exposure for each gas release, the investigators reported average concentrations for a ten minute sampling time. It was estimated that the concentration measurements were accurate to within about 10%.

Several meteorological measurements were taken during the tracer release. Among others, the mean wind velocity at two meters above ground. These values were used in the present model to simulate the mean wind velocity profile.

The source strengths Q, and the mean wind velocities at 2 meters u_{1}, for the four cases simulated in the present study were as follows:

In the present model, concentration profiles were simulated using the power law equation for the mean wind velocity as

$$
\begin{equation*}
\overline{\mathrm{u}}=\mathrm{u}_{1}\left(\frac{\mathrm{z}}{\mathrm{z}_{1}}\right) \cdot 14 \tag{6.1}
\end{equation*}
$$

where u_{1} corresponds to the value given in Table 6.1 for an elevation of $z_{1}=2 m$, and $z=$ elevation in meters.

It can be observed that the source emission rate is the only available information related to the source. Therefore, the equivalent concentration at the source, $C_{o}(1)$, was calculated using equation (5.7) with the source strength $Q(1)$ given by Table 6.1.

Since no data for the turbulent diffusivities were available, the four cases were simulated assuming $\alpha=1$, i.e., the turbulent diffusivities in the y and z directions were the same; and a stability class 4, i.e., neutral stability. In addition, INVRS was made equal to zero, i.e., no inversion at the maximum elevation; and a firstorder reaction with $k=5.8 \times 10^{-5} \mathrm{~min}^{-1}$ was assumed for all cases.

In addition to the experimental values, the concentration profiles calculated by the present method were also compared to the ones (\#45 and \#54) obtained by the statistical method developed by Bullin [4].

Simulated vertical profiles at the centerline for Runs \#20, \#24, and \#45, and at 20 m from the centerline for Run \#54 (no experimental data for the centerline were available) are compared with the limited experimental data available in Figures 6.1 through 6.4. There is good agreement between experimental and simulated vertical profiles except for Run \#45, where the concentration values near ground level were much lower than the experimental ones. The reason for this discrepancy is a higher simulated velocity profile, u_{s}, as compared to the actual one u_{a}. This difference, especially near ground level, can be observed in Table 6.2.

Table 6.2 : Comparison Between Actual and Theoretical Values for the Mean Velocity in Run \#45

$z(\mathrm{~m})$	$u_{a}(\mathrm{~m} / \mathrm{s})$	$u_{\mathrm{s}}(\mathrm{m} / \mathrm{s})$
0.25	3.78	4.50
0.5	4.60	4.96
1.0	5.31	5.46
2.0	6.02	6.02
4.0	6.65	6.63
16.0	7.35	7.31
		8.05

Another reason for the discrepance in Run \#45 can be due to a possible smaller simulated turbulent diffusivity in the z direction. This was checked by simulating the same problem, but with stability class 3 , i.e., semi-unstable. The resulis are also plotted in Figure 6.3, and it can be observed that the concentration values increased and thus the difference between the experimental and theoretical values decreased.

Horizontal concentration profiles for the four cases at 1.5 m above ground and at downwind distances of 200 m and 400 m are shown in Figures 6.5 through 6.8. In general, the agreement between experimental and simulated values is good.

The mass flux (g / s) across $\mathrm{y}-\mathrm{z}$ planes at any x were also calculated using the results obtained for the concentration. These values are given in Figures 6.1 through (6.8) for all the four cases analyzed. The comparison of these values with the experimental data shows good agreement with an average difference of about 1.39\%, and a maximum of 2.67%.

Figure 6.1: Comparison of Vertical Concentration Profile.

Figure 6.2: Comparison of Vertical Concentration Profile.
$y=0 \quad x=100 m$
© Run \# 24 Prairie Grass

- Present Method
$Q_{x}=41.7 \mathrm{~g} / \mathrm{s}$
$Q(1)=41.2 \mathrm{~g} / \mathrm{s}$

Figure 6.3: Comparison of Vertical
Concentration Profile.
$y=0 \quad x=100 m$
© Run \# 45 Prairie Grass
-a- Bullin' Method

- Present Method
$Q_{x}=101.3 \mathrm{~g} / \mathrm{s}$
$Q(1)=100.8 \mathrm{~g} / \mathrm{s}$
z (m)

Figure 6.4: Comparison of Vertical Concentration Profile. $y=0 \quad x=100 m$

Figure 6.5: Comparison of Horizontal Concentration Profile.

Figure 6.6: Comparison of Horizontal Concentration Profile.

Figure 6.7: Comparison of Horizontal Concentration Profile.

Figure 6.8: Comparison of Horizontal Concentration Profile.

Hypothetical Cases

Concentration profiles were simulated for all the hypothetical cases shown in Table 6.3. Vertical profiles at the centerline ($\mathrm{y}=0$) and at several downwind locations for cases 4 through 6 are shown as a function of time in Figures 6.9 through 6.12. As it would be expected, there is a peak in the concentration at the elevation of the effective emission height. The value of this concentration peak increases as the atmospheric stability increases.

The concentration distribution for cases 1 through 7, at the steady state and for different x and y locations are shown in Tables 6.4 and 6.5. These correspond to an elevation of the effective emission height and the ground level, respectively.

Tables 6.6 and 6.7 show case 8 , where a velocity in the y direction is included. This case is explained as a function of time so that the development of the plume can be clearly visualized.

This parametric study, i.e., cases l through 8, will be analyzed in more detail in the next section.

A multiple source case is shown in Table 6.9, and each source acting individually is shown in Table 6.8. The effect of their interaction can be obtained by comparing both Tables.

Table 6.3 : Hypothetical Cases Simulated

CASE	NO. OF SOURCES	$\begin{aligned} & \text { SOURCE } \\ & \text { LI) } \\ & \text { (m) } \end{aligned}$	SOURCE STRENGTH (kg/s)	STABILITY CLASS ${ }^{(2)}$	ALPHA	$\begin{gathered} \text { UST } \\ (\mathrm{m} / \mathrm{s}) \end{gathered}$	$\begin{aligned} & \text { RATE OF } \\ & \text { REACTION } \\ & \left(\text { min }^{-1}\right) \end{aligned}$	AM	P (\%)
1	1	$(0,0,150)$	5	D	1	5	0	. 25	0
2	1	$(0,0,150)$	5	D	2	5	0	. 15	0
3	1	$(0,0,150)$	5	D	2	5	0	. 25	0
4	1	$(0,0,150)$	5	D	2	5	5.8×10^{-5}	. 25	0
5	1	$(0,0,150)$	5	B	2	5	5.8×10^{-5}	. 25	0
6	1	$(0,0,150)$	5	E	2	5	5.8×10^{-5}	. 25	0
7	1	$(0,0,252.5)$	5	D	2	5	5.8×10^{-5}	. 25	0
8	1	$(0,0,150)$	5	D	2	5	5.8×10^{-5}	. 25	5
9	1	(0,-284.1,	3	D	2	5	5.8×10^{-5}	. 25	0
		252.5)							
10	2	$(0,0,150)$	5	D	2	5	5.8×10^{-5}	. 25	0
		(10000,-284.1,	3	D	2	5	5.8×10^{-5}	. 25	0
		252.5)							

(1) The value in the z direction refers to the effective emission height.
(2) Using Pasquill-Gifford definition for stability categories.
(3) Rate of reaction for a first-order reaction.

It should be noted that the concentration distribution due to each source acting individually is at the steady state. This occurs when the time between the start of release and the initiation of the averaging time, θ, is equal to 80 minutes and the end of the averaging time, Ω, is equal to 90 minutes. However, when both sources are put together, the steady state is reached after a longer time.

For all of the cases simulated without reaction, the differences between the mass flux at any x location, at steady state, and the constant source emission rate were not more than 4% of the emission rate. These results show the validity of the model in computing the concentration distribution, and also that the present method can handle continuity calculations.

Figure 6.9: Vertical Concentration Profiles for
Hypothetical Cases 4, 5 and 6.

$$
\begin{array}{lll}
\theta=0 \min & \ldots . . . & \text { Stability Class } B \\
\Omega=10 \mathrm{~min} & - & \text { Stability Class D } \\
y=0 & & \text { Stability Class } E
\end{array}
$$

Figure 6.10: Vertical Concentration Profiles for Hypothetical Cases 4, 5 and 6.

$$
\begin{array}{lll}
\text { etical Cases } 4,5 \text { and } 0 . & \text { Stability Class } B \\
\theta=20 \text { min } & \ldots \ldots . . & \text { Stability Class } D \\
\Omega=30 \mathrm{~min} & - & \text { Stability Class } E \\
y=0 & &
\end{array}
$$

Figure 6.11: Vertical Concentration Profiles for
Hypothetical Cases 4, 5 and 6.

$$
\begin{array}{lll}
\Theta=35 \mathrm{~min} & \ldots . . . & \text { Stability Class } B \\
\Omega=45 \mathrm{~min} & \ldots & \text { Stability Class D } \\
y=0 & & \text { Stability Class } E
\end{array}
$$

Figure 6.12: Vertical Concentration Profiles for Hypothetical Cases 4, 5 and 6.

$$
\begin{aligned}
& \begin{array}{l}
\theta=80 \mathrm{~min} \\
\Omega=90 \mathrm{~min}
\end{array} \\
& y=0 \\
& \begin{array}{ll}
\text { …... } & \text { Stability Class B } \\
-\infty & \text { Stability Class D } \\
\hline & \text { Stability Class E }
\end{array}
\end{aligned}
$$

$x=1.7 \mathrm{~km}$
$x=6.2 \mathrm{~km}$
$x=10 \mathrm{~km}$
($\left(\mathrm{mg} / \mathrm{m}^{3}\right)$

Table 6．4 Concentration Distribution for Hypothetical Cases 1 Through $7 \quad(\theta=80 \mathrm{~min}, \quad \Omega=90 \mathrm{~min})$

X DIRECTICN（NETERS）
$0.0 \quad 337.7 \quad 1694.0 \quad 3806.9 \quad 6193.1 \quad 8306.0 \quad 9662.31000 C . C$

Concentraticninticl．ai

2 OIRECTICA＝IEC．CM

$r=-6 \in 4.4$	μ	C． 0	0.0	0.0	0.0	0.0	0.0	C．C	C．C	
$\boldsymbol{Y}=-519.1$	M	C．C	C． C	C． 0	C． 0	0.0	0.0	$0 . C$	O．C	
$Y=-284.1$	N	0.0	0.16	0.61	1.00	1.24	1.37	1.44	1.45	Case \＃1
$y=0.0$	μ	35.45	33.11	26.06	19.48	15.15	12.72	11．57	11.32	
$\gamma=2 E 4.1$	N	C．C	C． 16	c． 61	1．CO	1.24	1.37	1.44	1.45	
$Y=519.1$	$\stackrel{ }{*}$	0.0	0.0	0.0	c． 0	0.0	0.0	0.0	0.0	
$y=664.4$	\cdots	C． 0	C． 0	0.0	0.0	C．C	c．C	0.6	C．C	
$y=-684.4$	μ	C．C	C．C	C．C	C． 0	0.0	0.0	0.0	$0 . C$	
$Y=-519.1$	N	0.0	0.0	0.0	C． 0	0.0	0.0	0.0	0.0	
$y=-284.1$	\cdots	C． 0	0.31	1.16	1.81	2.12	2.24	2.28	2．ぐ	Case \＃2
$y=0.0$	μ	35.45	32．E8	25.22	18.18	13.63	11.11	9.52	9.67	
$y=284.1$	N	C． 0	0.31	1.16	1.81	2.12	2.24	2.28	2．2e	
$v=519.1$	N	0.0	C．C	0.0	C． 0	C．C	C．C	C． 1	C．C	
$t=664.4$	μ	C． 0	C． 0	0.0	0.0	0.0	0.0	0.0	0.0	
$y=-664.4$	$\stackrel{ }{\mu}$	C．C	$C . C$	C． 0	C． 0	0.0	0.0	0.0	C． 0	
$\mathrm{Y}=-519.1$	N	0.0	0.0	C． 0	C． 0	C．C	C．C	C．C	C． C	
$y=-284.1$	$*$	c． C	C． 31	1.16	1.81	2.12	2.25	2． 29	2.36	Case 真3
$y=0.0$	N	35.45	32.89	25.22	18．19	13.65	11.14	9.96	9.71	Case 3
$y=284.1$	N	0.0	0.31	1.16	1．91	2.12	2.25	$2 . \overline{5 S}$	2.36	
$y=519.1$	N	C． 0	6.0	C． 0	C． 0	0.0	0.0	C． 5	C．C	
$y=C \in 4.4$	N	C． 0	C．C	C．C	C． 0	0.0	0.0	0.6	C．C	
$y=-664.4$	$\stackrel{ }{4}$	C． 0	C． 0	0.0	0.0	C．C	C．C	C．C	C．C	
$y=-514.1$	\cdots	C． 0	C． 0	0.0	0.0	0.0	0.0	C．C	C．C	
$\boldsymbol{Y}=-$－ 84.1	${ }^{\text {N }}$	C． 0	C． 31	1.16	1.81	2.12	2.24	2.29	2.29	
$y=0.0$	\cdots	35.45	32.28	25.22	18.18	13.63	11.12	5.44	9.65	
$y=284.1$	$\stackrel{ }{*}$	0.0	C． 31	1.16	2.81	2.12	2.24	2．89	2.25	Case \＃4
$Y=519.1$	$\stackrel{ }{N}$	C． 0	C．C	C． 0	C． 0	0．c	0.0	$0 . \mathrm{C}$	0.0	
$Y=664.4$	$\stackrel{ }{N}$	0.0	0.0	0.0	0.0	0.0	c． 0	0.1	C．C	
$Y=-6 \in 4.4$	${ }^{\mu}$	C． C	C． 0	C． 0	0.0	0.10	0.41	1.34	$1.8 C$	
Y $=$－ 519.1	μ	C．C	C．C	C．C	C． 0	0.22	0.41	0.33	0.27	
$Y=-284.1$	\cdots	0.0	0.95	2．13	2.11	1．St	$1 . \varepsilon 1$	1．7e	1.78	
$y=0.0$	\cdots	35.45	26.83	12.15	6.44	3.98	3.19	2.72	2．t4	Case $\# 5$
$y=284.1$	μ	C．C	C． 95	2.13	2.11	1.96	1.81	1.78	1.78	Case in
$y=519.1$	μ	0.0	0.0	C． 0	C． 0	C．$\overline{\text { e }}$	C． 41	C． 33	C． 27	
$V=664.4$	N	c． 0	C． 0	0.6	0.0	0.10	0.41	1． 24	1．EC	
$\mathrm{V}=-684.4$	\cdots	0.0	0.0	0.0	0.0	C．C	C．${ }^{\text {c }}$	0．c	0.0	
$y=-519.1$	N	C． 0	C． C	0.0	C． 0	C．C	C． C	C．C	c． C	
$y=-2 E 4.1$	M	C． 0	C． 13	0.58	1.08	1.47	1.70	1.82	1.25	
$Y=0.0$	\cdots	25.45	34．38	$3 \mathrm{C.6J}$	$2 t .02$	22.13	19.48	18.68	17.74	Case \＃6
$Y=284.1$	$\stackrel{ }{*}$	0.0	C． 13	0.58	1.08	1.47	1.76	1．E2	1．85	
$y=\$ 19.1$	$\stackrel{ }{N}$	C． 0	C． 0	0.0	0.0	0.0	0.0	C． C	C．C	
$y=164.4$	\cdots	C． C	C．C	C．C	C． 0	0.0	0.0	$0 . \mathrm{C}$	0.0	
	\cdots	C． 0	C．O	0.0	0.0	0.0	C． 0	C．C	C．C	
$V=-519.1$	$\stackrel{\sim}{\sim}$	C．C	C．C	C．C	C． 0	0.0	0.0	$0 . C$	$0 . \mathrm{C}$	
$Y=-284.1$	\cdots	0.0	0.01	0.18	C． 57	C． 95	1.21	1.23	1.36	
7\％C．O	$\stackrel{ }{*}$	C． 0	1．cB	3.91	5.70	6.14	c． CO	¢．E1	5.78	Case ${ }^{\text {f }}$
Y＝ 284.1	\cdots	C． C	C．CI	C． 18	C． 57	0.95	1.21	1.23	1．36	
$y=514.1$	$\stackrel{\mu}{\mu}$	0.0	0.0	C． 0	c． 0	c． C	0.0	$0 . \mathrm{C}$	0.0	
$y=864.4$	\cdots	C． 0	C．C	C． 0	C． 0	c．c	C．C	C．l	C．C	
2 OIR	E C	CA	252.5							
$V=-864.4$	μ	C． 0	C． 0	0.0	C． 0	C．C	C．C	C．C	C．C	
Y＝－517．1	\cdots	C． 0	C． 0	0.0	0.0	0.0	0.0	C．${ }^{\text {c }}$	C．${ }^{\text {C }}$	
$Y=-284.1$	4	C．C	C． 29	1.11	1.77	2.11	2.24	2.28	2.29	
$Y=0.0$	$\stackrel{ }{*}$	32.14	30.35	24．CC	17.77	13．5t	11.12	C． 56	9.75	
Y． 284.1	$\stackrel{\sim}{*}$	0.0	C．2）	1.11	1.77	2.11	2． 24	2.88	\％．es	Case 7
$y=519.1$	μ	C．C	C．C	C．C	C． 0	C． 0	0.0	0.1	C． C	
$v=604.4$	$*$	0.0	0.0	C． 0	C． 0	c． C	C．C	0.1	C．C	

Table 6.5 Concentration Distribution for Hypothetical Cases l rhrough $7 \quad(\theta=80 \mathrm{~min}, \Omega=90 \mathrm{~min})$

X DIRECTION (HETERS)
$0.0 \quad 337.7 \quad 1694.6 \quad 3806.9 \quad 6193.1 \quad 8306.0 \quad 9662.3 \quad 100 c 0.0$

CONCENTRATION(NG/CL.*)
(4*******************

Table 6.6 Concentration Distribution for Hypothetical Case $\ddagger 8$
(Direction (meters)
$0.0 \quad 337.71694 .0 \quad 3806.9 \quad 6193.18306 .0$ Qtez.3 1CCCC.C

CCNCENTRATIONIMG/CL.MI

2 OIRCCTICA = 150.0 N

$y=-664.4$	N	0.0	0.0	0.0	0.0	C.C	C. C	C.C	C. C			
$y=-519.1$	N	6.0	c. 0	0.0	0.0	0.0	0.0	$0 . \mathrm{C}$	C.C			
$y=-284.1$	M	c. C	C.C	c. C	c. 0	C. 0	0.0	0.0	0.0			
$y=0.0$	$\stackrel{ }{*}$	35.45	22.36	11.81	1.08	c.c	C. C	C. C	c. C	$\theta=$	0	min
$y=284.1$	N	6.0	C. 88	1.93	0.34	C. 0	0.0	C.C	C.C	$\Omega=$	10	min
$y=519.1$	M	C. 0	6.6	C. 0	C. 0	c. 0	0.0	0.0	0.0	$\Omega=$	10	min
$y=664.4$	γ	0.0	0.0	0.0	C. 0	C. 0	0.0	0.6	0.C			
$y=-664.4$	N	0.0	0.0	0.0	0.0	C. C	C.C	C.c	C. C			
$y=-519.1$	N	c. 0	0.0	0.0	0.0	0.0	C. 0	0.0	0.0			
$y=-264.1$	M	c. C	C.C	C. C	0.0	C. 6	0.0	0.C	0.0	$\theta=$	5	$m i n$
$y=0.0$	\checkmark	35.45	33.13	19.83	5.07	C. C	C. 5	C.C	C. C	$\Omega=$	15	min
$t=264.1$	*	C. ${ }^{\text {c }}$	1.53	4.78	2.84	$0 . c$	0.0	C.C	C.C	$\Omega=$		min
$y=519.1$	M	C.C	C. C	C. C	C. 0	0.0	0.0	O.C	0.0			
$Y=664.4$	μ	0.0	0.0	0.0	C. 0	C.C	C.C	C. ${ }^{\text {c }}$	C. C			
$\rangle=-$ ct4.4	\cdots	c. 0	C. 0	0.0	0.0	0.0	0.0	0.1	c.c			
$y=-519.1$	M	C. C	C. C	C. 0	C. 0	C. 0	0.0	O.C	$0 . \mathrm{C}$			
$y=-284.1$	*	0.0	C. 0	0.0	C. 0	C. 0	c. 0	C. C	c.c			
$y=C .0$	N	35.45	32.60	23.57	9.19	1.23	0.0	C.C	c. ${ }^{\text {c }}$	$\Omega=$	20	min
$y=$ こE4.1	$\stackrel{ }{*}$	C. C	1.95	7.64	7.40	1.72	0.0	$0 . C$	$0 . C$			
$y=519.1$	\cdots	0.0	0.0	0.0	c. 0	c. 12	C. 0	0.0	0.0			
$y=664.4$	\cdots	0.0	O.C	0.0	C. 0	C.C	C.C	C.C	0.6			
$y=-664.4$	μ	C.C	C.C	C.C	C. 0	C. C	0.0	0.c	$0 . c$			
$\boldsymbol{\gamma}=-519.1$	N	0.0	0.0	0.0	C. 0	C.C	0.0	0.0	C. 6			
$y=-284.1$	$\stackrel{ }{\mu}$	C. 0	C. C	0.0	C. 0	0.0	0.0	0.5	C.C		20	min
$y=C .0$	M	35.45	32.77	22.15	10.86	3.87	0.79	0.18	0.08			
$y=284.1$	N	0.0	2.23	9.6 C	14.26	9.E8	3.3 C	0.82	0.45	$\Omega=$	30	min
$y=519.1$	N	0.0	C. 0	0.0	C. 04	3.85	2.65	C. 59	C. 33			
y* CE4.4	$\stackrel{ }{\mu}$	C.C	c. C	0.0	0.0	0.0	0.21	0.14	0.65			
$y=-864.4$	-	C. 0	C. 0	0.0	0.0	0.0	0.0	C.C	C.C			
Y=-519.1	μ	C. C	C. C	C. 0	C. 0	C. 0	0.0	$0 . c$	0.c			
$Y=-284.1$	\cdots	0.0	c. 0	C. 0	C. 0	C. C	0.0	C. 6	C. C			
Y= $C .0$	-	35.45	32.71	22.29	9.92	2.65	0.C	c. 6	c.e		40	$m i n$
$y=824.1$	${ }^{\mu}$	C. C	-2. 29	9.71	14.60	12.15	0.0	0.0	C. C	$\Omega=$	50	\min
$y=519.1$	${ }^{\mu}$	0.0	0.0	0.0	0.12	t. $1 t$	c. C	0.0	0.0			
$\boldsymbol{T}=664.4$	\cdots	C. 0	0.0	0.0	c. 0	C.C	C.C	C.C	C. C	-		
Y=-t64.4	\cdots	c. 0	0.0	0.0	0.0	0.0	0.0	C.C	0.6			
Y=-519.1	\cdots	C.C	C. 6	C. 0	C. 0	0.0	0.0	$0 . \mathrm{C}$	O.C			
Y=-284.1	$\stackrel{N}{*}$	0.0	0.0	0.0	C. 0	c.c	c. 0	0.1	0.0			
I= $C .0$	V	35.45	32.71	22.28	9.92	2.64	C.C	C.C	C. C			
y= 884.1	$\stackrel{\sim}{\sim}$	C. 0	2.28	9.73	14.57	12.21	0.0	0.6	0.0	$\Omega=$	90	min
Y= 519.1	\sim	C.c	0.0	0.0	0.10	t. 79	0.0	$0 . C$	0.0			
V = 664.4	N	C. 0	c. 0	C. 0	C. 0	C.C	C. ${ }^{\text {c }}$	C. C	C. 6			

Table 6.7 Concentration Distribution for Hypothetical Case \#8

X DIRECTION (METERS)
C.0 237.7 $2694 . C \quad 3806.9 \quad 6193.18306 .0 \quad 4662.3 \quad 100 C 0.0$

CCNCENTRATION(mG/CU.N)

Table 6.8 Concentration Distribution
 - ciacerica friters)
 ($\Omega=10 \mathrm{~min}$)

0.0 270.1 1355.23645 .54554 .54044 .07725 .0 10c0.C

a onectsck. ses.e.

acincetion. 483.1.

P--tet.4	\%	C.c	C. 6	c. 6	C. 0	C.C	0.0	0.6	0.0	c.0	C. 6	C.C	C. 0	c.a	0.0	0.c	C.C
Va-514.8	\%	0.0	0.0	0.0	c.0	c.c	0.0	0.0	0.0	0.0	0.0	0.0	c. 0	C.C	0.0	0.6	0.0
- $=$-2E4.1	-	c.0	c. 0	0.0	C.0	C.t	C. 5	0.6	0.6	0.0	0.0	0.0	c.0	C. C	C.E	c. C	c. C
\% $0 . C$	-	c. 0	C. 6	0.0	0.0	0.0	0.0	$0 . c$	0.0	C. 0	C.0	0.0	0.0	C. 0	0.0	$0 . c$	c. 6
$7=204.2$	\cdots	C. 0	0.0	0.0	c. 0	0.0	0.0	0.0	0.0	6.0	0.0	0.0	6.0	C.c	c. 0	c.c	0.0
7. 310.1	-	c.0	c.0	0.0	5.0	c. 6	C. 6	c.t	c. 6	c.0	0.0	0.0	6.0	C.C	c.e	c.e	C. 6
**ect.4	\cdots	C. 0	c. 0	0.0	0.0	0.0	0.0	0.0	0.0	d. 0	c.e	c.0	0.0	0.0	c.0	C.C	c. 6

2ciatciaca - 434.7\%

Y-0-464.4	V	0.0	0.0	0.0	0.0	c. 0	0.0	0.6	0.0	0.0	0.0	0.0	C. 0	C.C	0.0	O.C	0.0
7--519.1	*	6.0	6.0	0.0	C. 0	$6 . C$	C.E	C. 6	C. 6	C.0	0.0	0.0	C. 0	C.C	c.c	C.t	C. 6
-0-3t4. 1	-	C.C	c. 0	0.0	0.0	0.0	0.0	0.6	0.0	C. 0	C. 0	0.0	0.0	0.0	0.0	$0 . \mathrm{C}$	0.6
T. 0.0	\%	C.C	C. C	C. 5	C. 0	C. 0	0.0	0.6	0.0	C. 0	C.C	C. 0	C. 0	c. C	$0 . C$	O.C	0.6
7-284.1	7	0.0	C. 0	0.0	C. 0	C. C	C. 6	C. 1	C. 6	0.0	0.0	0.0	C. 0	C.C	C.C	C. 6	C.C
7* 519.1	-	6.0	c. 0	c. 0	0.0	0.0	0.0	0.6	0.6	6.0	c. 0	0.0	0.0	0.0	c. 0	C.C	c. C
V= tct.4	-	C. 5	C.C	c. 0	0.0	0.0	0.0	0.6	0.0	C. 0	C.C	C. 0	C. 0	c. 0	0.0	0.6	0.6

2OBECTICA: 3:5.0.

Y=-664.4	c.o	0.0	0.0	6.0	S.t	c. C	C. 6	c.t	0.0	C.0	0.0	c. 0	c.c	C.C	C.C	C.t
-5519.1	C.0	6.0	0.0	0.0	0.0	0.0	C. 6	C.C	6.0	C.CI	0.00	0.08	0.0	0.c	c.e	C. 6
$7 \mathrm{~F}-364.1$	c.e	C.C	c. 0	c. 0	0.0	0.0	0.0	0.0	C. 6	C. 43	1.25	C. 51	c. 0	0.0	c.e	0.0
7- 0.0 \%	0.0	0.0	0.0	0.0	C.C	C.C	C. 6	C. 6	0.0	0.00	C.04	C. 03	C.C	C.C	C. C	C.C
**2E4.1*	0.6	c. 6	0.0	c. 0	0.0	0.0	0.6	6. 6	0.0	0.0	0.0	0.0	0.0	0.0	c. ${ }^{\text {c }}$	c.e
	c. 6	C. 6	c. 0	c.0	c. 0	0.0	0.6	0.0	6.0	c. 6	G. 6	C. 0	c. 0	0.0	0.5	c. ${ }^{\text {c }}$
V* 664.4 .	0.0	0.0	E.0	c. 0	c. 0	0.0	0.6	C. 6	0.0	0.0	0.0	C. 0	C.c	0.0	O. C	c. 6

2ntectick = 232.5\%

te-te4.4	p	6. 6	C. 0	0.0	0.0	0.0	0.0	0.6	C.C	C. 0	C. 2	0.0	c. 0	0.0	0.0	$\boldsymbol{C} \cdot$	C.C
7-0517.1	\cdots	c.e	C.C	C.e	C. 0	0.0	0.0	$0 . C$	0.0	C.C	6.19	C. 34	6.23	6.c	0.0	c.e	c.c
7-724. 1	\cdots	0.0	0.01	0.0E	C. 03	C. 6	0.0	C. C	c. C	21.21	13. 58	9.36	2.13	C.C	C.E	c. C	C. C
$\cdots \mathrm{c} . \mathrm{C}$	*	c. 0	c. 83	1.74	C. 33	0.0	0.0	0.6	c. C	6.0	0.10	c. 31	C. 14	c.0	0.0	c. 6	C. C
1* itu.l	$\stackrel{ }{*}$	C.C	C. ${ }^{\text {cl }}$	C. 68	C. 03	c.0	0.0	$0 . C$	0.6	6.6	C.C	C.C	C. 0	E.C	0.0	$0 . \mathrm{C}$	c. 6
7-51.-1	*	0.0	0.0	0.0	C. 0	c. 0	0.0	6.C	0.0	0.0	0.0	0.0	c. 0	c.c	C.C	c.c	0.0
V= 54.4	-	c.a	C. 0	0.0	C.0	c.C	C.C	6.6	c. C	0.0	0.0	0.0	6.0	C.C	c. ${ }^{\text {c }}$	C. C	C. 5

$$
t \text { CIEECTICA } \quad 180.0 \mathrm{~m}
$$

7--2ts.4	C.C	c.c	6.0	c. 0	$0 . \sigma$	0.0	$0 . C$	0.0	C.C	c. C	C.c	E. 0	C.C	0.0	0.5	$0 . C$
7-314.1*	0.0	0.0	c. 0	C. 0	c.c	0.01	$0 . c$	0.0	0.0	0.01	0.08	c. 08	c.e	C. 5	c. 6	0.0
10-284.1	6.0	C. 24	0.32	c. 16	C.C	C.C	C. C	0.6	c. 0	c.43	1.19	c. 51	C.c	C. 6	c. 5	c. C
Y* C.C	13.45	22.13	12.04	1.15	C. ${ }^{\text {c }}$	0.0	O.C	0.0	c. 0	c. 60	0.04	0.03	0.0	0.0	0.6	$0 . c$
ve 144.1\%	C.O	0.24	c. 92	c. 10	c. 0	0.0	$0 . C$	0.0	6.0	0.0	0.0	S.c	c. 5	0.6	0.6	0.0
7. 319.1	C. 0	c.c	0.0	c. 0	C.C	c. C	6.6	C. 5	6.0	c.e	0.0	6.0	C. 0	c.c	C. 6	6.6
7-6t4.4	C.0	6.0	0.0	0.0	0.0	0.0	$0 . c$	0.0	c.0	c.e	0.0	0.0	0.0	0.0	c.e	c.c

4 cieccirch 63.3

F- 5 - 64.4	*	0.0	0.0	0.0	0.0	c.c	0.0	$0 . c$	0.0	0.0	0.0	0.0	c. 0	c. 0	0.0	0.c	0.0
$t=-14.1$	*	C. 0	c.e	0.0	c. 0	C.C	6.6	C. C	6.6	0.0	0.6	0.0	C. 0	C.C	C.C	C.C	C. 6
to-284.1	${ }^{*}$	C. 0	C. 2.2	0.17	0.04	0.0	0.0	0.0	0.0	C.0	C.0	0.0	9.0	0.0	0.0	0.6	6.6
Y. 0.0	-	c.e	1.34	2.51	c. 41	C.c	0.0	0.0	0.0	c.0	C.C	C. 0	C. 0	c. C	0.0	$0 . C$	$0 . c$
V- 244.1	-	0.0	C. 62	0.12	6.04	C. C	C. C	C. C	C. 6	0.0	0.0	0.0	C. 0	C.C	C. C	C. 6	c. C
\%- 519.1	-	C. C	c. 0	0.0	0.0	0.0	0.0	C.t	0.6	0.0	c. 0	0.0	0.0	0.0	0.0	c.t	6.6
F= 464.4	-	C. 0	C. 6	C. 0	c. 0	0.0	0.0	0.0	0.0	C.0	C.C	C. 0	C. 0	6.0	0.0	C.C	0.0

2otaccica. 12.5

7--644.4	V	C. 0	0.0	0.0	c. 0	C.C	c. 6	C.t	C.C	E. 0	0.0	0.0	c. 0	C.C	C. 8	C. 6	C. 6
7--913.1	-	C. 0	C.c	0.0	0.0	0.0	0.0	0.6	0.6	c.0	C.C	0.0	0.0	0.0	c. 0	C.C	6.6
te-iet.1	-	C. 6	C. 6	C. 6	C. 60	6.0	0.0	0.0	0.0	C.0	C.C	6. 0	C. 0	0.0	0.0	O.C	0.0
Ye 0.0	-	0.0	0.0	0.0	0.07	C.C	C. 5	C. 6	C. C	0.0	0.0	0.0	c. 0	c. C	c. 6	C. ${ }^{\text {c }}$	c. 6
\% 284.1	-	c. 5	c. 0	0.0	0.00	0.0	0.0	$0 . C$	C. 5	0.0	0.0	0.0	0.0	0.0	c.0	c. 6	C. 6
\%- 319.1	*	c.e	C.e	c. 0	6.0	0.0	0.0	$0 . t$	0.0	C. 0	C.C	C.C	6.0	c. 0	0.0	c. C	C.C
V= 464.4	\cdots	0.0	0.0	0.0	0.0	c. 0	0.0	0.6	c. 5	0.0	0.0	0.0	6.0	c.e	c. 0	0.6	C.C

Ve-644.4	c. 0	c. 0	6.0	0.0	0.0	0.0	C.C	0.1		6.8	0.0	0.0	0.0	0.0	0.0	C. 6	C.c
V=-519.1	C.C	C. 5	c. 6	C. 0	0.0	0.0	$0 . C$	0.0		c. 0	C. 6	6.0	6.0	c. 0	0.0	0.6	$0 . c$
F--28-. 1 -	0.0	0.0	0.0	C. 60	0.0	0.0	C.C	c. 6		0.0	0.0	0.0	6.0	C. 0	C.C	C. 1	6.6
ve 6.0	C. 0	6.0	0.0	0.00	0.0	0.0	0.6	C.C		0.0	0.0	0.0	C. 0	0.0	0.0	C. 5	C.C
*) 7ec.l	4.6	C. 6	C. 6	C. 60	0.0	0.0	O.C	0.0		0.9	C. ${ }^{\text {c }}$	C. C	c. 0	C. 0	0.0	0.6	$0 . C$
Va 517.1 "	0.0	0.0	0.0	c. 0	c. 0	0.0	0.c	0.0	-	0.0	0.0	0.0	c. 0	c.c	0.0	0.6	0.0
te 444.4	0.0	0.0	0.0	4.0	C.C	6.6	C.C	6. 6		0.4	0.0	0.0	C.0	$6 . C$	c.C	C. 6	C. 6
Gatchistcle	4149.76	344.84	2400.54	219.56	0.0	0.0	4.6	0.6		2854.46	2004.28	1737.14	474.70	0.0	0.0	C.C	C. 6

Table 6.8 Continuation

$$
\begin{aligned}
& (\theta=10 \mathrm{~min}) \\
& (\Omega=20 \mathrm{~min})
\end{aligned}
$$

CONCERTAATIOMIMGTCLAM

cacentanticniPGICL.*:
**************日***

E CIRECIEA 503.0 m

te-644.4	6.0	'0.e	c. 0	0.0	0.0	0.0	0.6	0.0	0.0	C.0	0.0	0.0	0.0	0.0	C.R	c.e
--5iv.l	0.0	0.0	6.0	c.0	c. 0	0.0	0.0	0.0	6.6	6.6	C.C	c.a	0.10	0.00	0.6	0.0
7--246.1	C.0	6.0	0.0	0.0	C. 6	C.C	0.1	c. 6	0.0	0.0	C. 0	0.0	C.Ci	6.65	C. 6	C. 6
+* C.c m	C. 0	c.0	0.0	0.0	C. 0	0.0	0.0	0.0	0.0	C. 0	0.0	0.0	0.60	0.60	c.t	c. 6
+a 2e4.1	C. 0	0.0	0.0	6.0	0.0	0.0	0.0	0.0	C. C	C. 6	C. 0	c. 0	0.0	0.0	$0 . \mathrm{c}$	c. 6
7- 318.1\%	C. 0	0.0	0.0	6.0	C. 0	C.C	C. 1	c.C	0.0	0.0	0.0	c. 0	c. C	0.0	0.1	C.C
- 184.4	C. 0	c. 6	0.0	0.0	0.0	0.0	0.0	0.6	0.0	0.0	0.0	c. 0	0.0	0.0	C.c	C. 0

IEInctitch. 482.8 .
$76-664.4$
$7 .-519.17$
$70-864.1$
740.0
7.284 .1
7.218 .1 84

- bIAECIICA

0.0	0.0
$c .0$	$c .0$
$c .0$	$c . c$
$c . c$	$C .6$
0.0	$c . c$
$c .0$	$C .0$
$c . c$	$c . c$

0.0	$c .0$
$c .0$	$c .6$
0.0	0.0
$c .0$	$c .0$
$c .0$	6.6
0.0	0.0
$c .0$	0.0

$E . c$
$c . c$
$c . c$
$c . c$
0.0
$c . c$
$c . c$

$V=-644.4$ $v=-519.1$
$10-519.15$
Y= 0.0%

$y=319.1 \%$

6.0
6.0
6.6
0.0
0.0
6.6
0.0

C.0	0.0	C. 0	C.t	C.e	C.C	. 6
C.0	0.0	0.0	0.0	0.0	C.c	. 6
c. 5	C.C	c. 0	0.00	0.0	0.5	. 0
0.0	0.0	0.0	C.C2	C.C	C.C	C.c
C.0	C. 0	0.0	0.00	0.0	0.1	C
C. 6	C. 0	c. 0	c. 0	0.0	$0 . c$. 0
0.0	c. 0	c.0	C.C	0.0	0.C	C.C

6060608

0.0	c.0	c. 6	c. 0	0.6	0.0
0.0	C.0	C.Cl	C.Ct	C. 6	6.6
0.0	0.0	0.63	0.63	C.C	0.6
0.0	0.0	C.co	C.CO	0.6	0.0
0.0	c. 0	C.C	C.t	C. C	C.C
0.0	0.0	C. 0	C. 0	C.C	c. C
C.C	C. 0	C.C	0.0	0.6	0.0

1 OIRECJICN \quad 3Es.C

C.C	C. 0	0.0	0.0
c.c	C. 6	C. 0	C. 0
0.0	0.0	c.0	c. 0
9.0	C.C	6.0	0.0
C. 6	C.C	C. C	C.0
0.0	0.0	C. 0	0.0
C.0	C.0	6.0	6.0

0.0	0.0
0.0	0.0
6.00	0.0
0.02	0.0
0.00	0.0
0.0	0.0
$6 . c$	$C . c$

$0 . c$	$0 . c$
0.0	0.0
$c .5$	$0 . c$
$0 . c$	$0 . c$
0.0	0.0
0.5	0.0
$0 . c$	$0 . c$

0.0	0.0	0.0	C. 0	C.C	C.C	cos
C. 0	C.Cl	0.14	0.36	0.28	0.07	$0 . \mathrm{c}$
C. 0	C. 55	$2.2 t$	2.87	1.55	0.36	0.6
0.0	C.O1	0.08	C. 22	C. 12	C.C4	C. 6
6.0	C.C	0.0	0.0	0.0	0.0	5.6
C. C	C.C	C.E	C. 0	C. 6	0.0	0.6
0.0	0.0	0.0	C. 0	6.6	6.6	C. 6

[^0]4cinection - 232.5N
$t=-\cos .4 ?$
$y=-51 \%-1$
$y=-284.1$
v=-2ect $c-1$
7. $2 e^{4.1}$
" 884.1 \%

C.C	6.5	c. 0	c. 0	c. 0
0.0	0.0	0.0	c. 0	c.c
C. 0	C.CL	0.19	0.37	C. 13
6.0	1.03	4.00	3.80	C. 81
6.9	0.01	0.18	0.37	0.13
6.0	C. 6	6.0	C. 0	C. 0
C. 0	C. 5	0.0	0.0	0.0

0.0
0.0
6.0
0.0
0.0
$c .0$
0.0

$0 . c$	0.6
$0 . c$	0.0
$c . c$	$c . c$
$0 . c$	0.0
$0 . c$	0.0
$c . c$	$6 . c$
$0 . c$	0.0

C. 0	C.c	0.0	0.0	0.0	$0 . C$
C.C	c. 35	1.61	1.32	c. 75	0.15
21.27	E0.el	14.73	10.75	$4 . C 8$	C.ts
c. 0	C.t3	0.56	0.80	0.47	c. 10
C. C	C.C	C.C	C. 0	C. 0	0.0
0.0	C. C	c. 0	c. 0	c.e	c.e
0.0	O.C	0.0	C.c	0.0	0.0

6.6	$C .6$
0.6	0.0
6.6	6.6
6.6	6.6
6.6	6.6
6.6	6.6
$6 . C$	$C .6$

2 CiRECTICA - isc.0\%

2 DIRECTICA. 25.3 .

7--644.4	\cdots	c. 0	0.0	0.0	C.0	6.6	C. 6	C. 1	C.E	0.0	0.0	c. 0	c. 0	c.c	c. 0	0.6	0.0
Pe-str. 1	-	C. 0	c.0	0.0	0.0	0.0	0.0	0.6	6.6	c. 0	0.0	c. 0	C. 0	C.Cl	C.Cl	c.c	C. 5
7--30t.1	μ	6.0	C. 61	c. 29	C.49	0.15	0.0	0.0	0.0	c. 0	c.c	0.0	0.0	c.c4	c. 03	$0 . c$	c. 6
\#* 0.0	$\stackrel{\square}{*}$	0.0	1.13	3.97	4.76	1.64	6.6	C. 6	C. 6	C. 0	0.0	0.0	C. 0	C.CO	Q.Cc	c. 5	0.6
Ye 2e4.1	\cdots	c. 6	C. 01	0.29	0.49	0.15	0.0	0.6	C. 6	0.0	0.0	0.0	C. 0	C. ${ }^{\text {c }}$	C.C	C. 6	6.6
ve 519.1	\%	6.6	c. 6	c. 0	0.0	0.0	0.0	0.0	0.0	c. 0	c. 0	0.0	0.0	0.0	0.0	c.e	c. 6
7e 864.4	n	0.0	0.0	0.0	c. 0	0.0	0.0	0.6	c.C	c. 0	C. 6	C. 0	c. 0	c. 6	0.0	0.1	0.0

7--184.4	\cdots	C. 0	c. 0	0.0	0.0	0.0	0.0	0.6	C.t	0.0	0.0	0.0	6.0	C.t	c.e	c.t	C.C
Ve-518.1	-	6.6	C.c	C.C	c. 0	0.0	0.0	0.0	0.0	C.0	c.0	0.0	0.0	0.0	C. 0	0.0	C.c
$7-284.1$	\cdots	0.0	0.0	0.0	6.09	0.64	0.0	C. 5	6.6	2.0	6.6	C. 0	C. 0	c. C	0.60	0.e	0.0
$7=c . c$	-	C. 0	c. 0	c. 0	0.70	0.24	0.0	c. C	6.6	0.0	0.0	0.0	C. 0	C. 6	C.C	C. 8	C.C
+-284.1	\cdots	c. 0	C.C	c. 0	c. 09	c. 04	0.0	$0 . C$	0.0	c. 0	c.e	0.0	0.0	0.0	0.6	c.c	C. 6
70310.1	\cdots	0.0	0.0	0.0	c. 0	c.0	0.0	0.6	0.0	c.e	c.t	C. 0	6.0	c.c	0.0	0.8	0.0
7.464 .4	-	c.0	0.0	0.0	c.0	6.6	6.6	C.C	c. 6	0.0	0.0	0.0	0.0	C.C	C.C	C.t	C.C

* ciecerich - 0.0.

 4

0.0	0.0	C.0	c. 0	c. 0	0.0	$0 . C$	0.0
C. 0	C. 0	6.0	6.0	C.C	C.C	C.C	6.5
C. C	C. 10	1.14	1.20	0.31	0.0	$0 . C$	0.0
39.45	12.12	25.44	12.27	2.14	0.0	$0 . E$	0.0
0.0	0.30	1.19	1.20	C. 21	c. 5	c. 6	c. C
C.0	c.e	9.0	0.0	0.0	0.0	c.e	C. 6
C.C	6.6	C.C	C. 0	0.0	0.0	0.6	0.0

C.C	t.l	c.c	c.t	c.a	c.o	c.c	c. C
0.0	0.01	0.12	c. 3 e	c.i*	c.ct	C. l	C. C
C.0	C. 55	2.25	2.81	1.55	c. 31	C. 5	C. C
C. C	C. 61	C.ce	c. 22	C. 18	0.04	c.t	C.C
0.0	0.0	c. 0	C. 0	C. ${ }^{\text {c }}$	C. 0	C. 5	0.0
C.O	0.0	0,0	6.0	C.6	C.C	C.C	C. C
c. 6	C.C	0.0	0.0	C. 0	0.0	C.C	C. C

[^1]GOOGGO:

C. 6	6.0	C. 0	0.0	0.0	$0 . c$	0.0
0.0	0.0	0.0	c. 0	0.0	0.0	0.0
0.0	0.0	c. 06	C.t)	C.e	0.6	0.c
C. 0	0.0	C. 31	0.10	0.0	0.0	0.0
0.0	0.0	0.00	C.cs	0.0	0.0	0.0
0.0	0.0	C. 0	C. C	C.C	C. ${ }^{\text {c }}$	C. C
c. 0	0.0	0.0	0.0	0.0	0.0	0.0

0.0
$c .0$
6.6
0.0
$c .0$
$c .0$
$c .0$
> 0.0
6.0
6.0
0.0
$c .0$
0.0
0.0
0.0
0.0
0.6
0.0
0.0
0.0
0.0
oonnon
$C . E$
$c .0$
6.5
$c .6$
6.6
6.6
6.6

Table 6.8 Continuation
$(\theta=20 \mathrm{~min})$
notnction metrest $(\Omega=30 \mathrm{~min})$

- atefeticn chetersi

CCMCEnTRAIIONAMCICLABI
COnCEMTAATICAIMC/CL,m)

EcIAECsich * 505.0 .

V--844.4	*	0.0	0.0	c. 0	0.0	c. 0	0.0	0.0	0.0	0.0	0.0	0.0	c. 0	c.e	6.0	$0 . t$	0.0
---519.1	-	c. 0	C.t	0.0	C.0	c. ${ }^{\text {c }}$	C.t	C.t	c.e	0.0	0.0	6.0	c.e	C.Cl	C.Cl	C. 11	C.Cl
v--3t4.1	\cdots	c. 0	c.0	0.0	0.0	0.0	0.0	0.00	0.65	c. 0	c. 0	0.0	0.0	0.05	0.04	0.64	$0 . C 4$
V. 0.0	\cdots	C. ${ }^{\text {c }}$	C.c	c. 0	0.0	c. 0	0.0	$0 . \mathrm{CO}$	0.00	$6 . C$	c.C	C.c	C. 0	C.Cl	c. 01	0.61	0.01
P-264.1	-	0.0	c. 0	0.0	6.0	c. 6	C.E	C. ${ }^{\text {c }}$	O.CC	0.0	C.0	0.0	c. 0	C.C	c. 6	C. $0^{\text {a }}$	c.c
te 218.1	-	C. 0	C. 8	0.0	0.0	0.0	0.0	C.C	C.C	C. 0	c. 0	0.0	0.0	0.0	0.0	c. ${ }^{\text {c }}$	C.C
T-444.4	-	6.4	C. 6	C. 0	c. 0	c. 0	0.0	0.0	0.0	c.c	C. 6	C. 6	6.0	0.0	0.0	$0 . C$	0.0

7--2e4.4	\%	c. 0	0.0	0.0	c. 0	C. 6	C. 6	C. C	C.C	C. 0	0.0	0.0	c.c	C.c	5.6	C.t	C. C
1-- 10.1	-	C. 0	c. 0	0.0	0.0	0.0	0.0	C.C	c. 6	C. 0	C. 0	C.0	0.0	0.01	0.01	C.Ct	C.C 1
7-314.1	${ }^{+}$	C.C	C. 6	C. 0	6.0	0.0	0.0	0.60	0.00	C.C	C. 5	C.E	C. 0	c. 01	0.66	0.65	0.05
ve 0.0	-	0.0	0.0	0.0	0.0	C.t	C.C	C.ct	c. C^{6}	0.0	0.0	0.0	c.0	C.C)	C.C1	C. ${ }^{\text {c }}$	C.Ci
\%-244.1	-	c. 0	c. 0	0.0	0.0	0.0	0.0	c.Cc	$0.6 C$	c. 6	C. 0	0.0	0.0	0.0	0.0	C. 6	C.C
8. 319.1	\%	C. 0	C.C	5.0	C. 0	c. 0	0.0	0.6	0.0	C.0	C. 6	C.0	C.0	0.0	0.0	0.6	c.C
7. 464.4	\cdots	0.0	0.0	0.0	6.0	6.0	0.0	0.1	C.C	0.0	0.0	0.0	C. 0	0.6	0.0	0.6	C. 6

E ofaicitch - 424.7n

6.0	$c .0$
6.0	$C . C$
0.0	0.0
0.0	$c .0$
$c .0$	$C . C$
0.0	0.0
0.0	0.0

0.0	0.0
$c . c 2$	0.00
$c .1 .6$	0.32
0.01	$c .05$
$c .0$	0.0
$6 . c$	$c .0$
$c . c$	$C . C$

$c . c$
$c . c$
6.88
$c . c 9$
$0 . c$
$0 . c$
$c . c$
$C . c$
$C .67$
$c .26$
$c .06$
6.6
0.0
6.6

2 cimectica - 395.0 M

$1=-864.4$
$10-\$ 17.1$
$y=-\$ 17.1$
$y=-284.1$
TO 24.6 .1 M

$c .0$	$c . c$	6.0
0.0	0.0	0.0
6.0	$c .0$	0.0
6.6	$c .0$	0.0
$c .0$	0.0	$c .0$
6.0	6.0	0.0
$c .0$	$C .0$	0.0

C. 0	0.0	0.0	0.0	0.0
C. 0	C.c	0.0	$0 . c$	0.0
6.0	6.64	C.Cs	C. 02	C.t. 1
c. 0	0.25	0.26	0.10	0.06
c. 0	C.C4	0.05	$0 . c 2$	0.01
C. 0	C.C	C.C	C. 6	C. C
0.0	0.0	0.0	0.0	0.0

6.0	C.C	c. 0	6.0	0.0	0.0	0.6	C.C
0.0	0.01	0.13	C. 42	c. 72	0.68	0.47	0.41
0.0	C. 50	2.2 C	3.42	3.75	2.71	1.15	1.4
C. 6	G. 0_{0}	0.08	6.26	C. 46	0.63	0.11	C. ${ }^{2} 1$
C. 0	0.0	6.0	C. 0	c. 5	0.0	0.15	0.0
6.0	C.0	C.O	c.e	C.c	c. 5	C.C	C. ${ }^{\text {c }}$
C. 0	C. 0	0.0	0.0	0.0	0.0	c.e	c.c

Ccirectica.
252.5%

0.0	0.0	6.0	6.6	0.0
$c . c$	0.0	6.0	$6 . c$	$6 . C$
$c .62$	0.17	0.59	0.76	0.39
1.11	3.84	5.85	4.96	2.00
$c .02$	0.17	0.59	6.78	6.34
6.0	0.0	0.0	0.0	0.0
6.6	$C .0$	$c .0$	6.0	0.0

0.0	0.0
$0 . c$	$c . c$
0.12	0.07
0.53	0.32
0.12	$c .67$
$0 . c$	$c . c$
0.0	0.0

0.0	0.0	6.0	$C .0$
6.0	$C .26$	$C .98$	1.51
21.27	$2 C .16$	16.45	12.67
6.0	6.14	6.3 e	0.85
0.0	0.0	$C .0$	6.6
6.0	6.6	$C .0$	0.0
6.0	$C .6$	$C . C$	6.6

$c . c$	$c .0$
1.84	1.51
9.74	5.88
1.18	0.92
6.6	6.6
0.6	0.0
6.0	0.0

0.0
6.86
2.56
0.53
6.6
6.6
0.0

2CIEECIICA - 19C.0.

$70-\operatorname{cich}_{64} 1$

-364.1

- 517.1

2 oraccircme 4.3%

C. 0	0.0	0.0	0.0	0.0	C.C	5.8
C.C	C.C	C. 0	0.0	0.0	0.0	0.0
0.03	c.2S	0.80	C. 53	C.41	C. 16	C.C5
1.66	5.75	3.81	5.96	2.01	c.4:	C. 3
C.c 3	C. 25	0.80	0.83	0.41	0.10	0.6:
0.0	0.0	c. 0	0.0	0.0	0.0	0.0
0.0	0.0	c. 0	c.e	0.0	C.c	G.C

0.0	0.0
$c .0$	$c . c$
0.0	$c .0$
0.0	0.0
$c .0$	$c .0$
0.0	$c .0$
0.0	$c . c$

0.0	0.0	$0 . c$	$c . c$
$c . c$	$c . c 3$	0.09	$0 . c 8$
$c .0$	$c .1 \epsilon$	$c .3 e$	$c .3 c$
0.0	0.02	0.06	$c .6$.
$c .0$	0.0	0.0	0.6
$c .0$	$c . c$	0.0	$0 . c$
$c .6$	$C . c$	0.0	$6 . c$

14tecticn 12.9

ve-te4.4	\cdots	C.c
7--519.1	*	0.0
Pe-3t4.1	*	c.0
- 6.0	F	6.0
70. 286.1	-	0.0
7. 318.1	-	c.0
te 6E4.4		6.0

6.6	6.6
0.0	$c .0$
6.60	0.0
6.6	$6 . c$
0.00	0.0
6.0	0.0
6.0	9.0

0.6
0.8
0.11
0.61
0.51
6.8
0.0

6.0	$C . c$
0.0	0.0
0.0	0.0
$6 . c$	6.6
0.0	0.0
6.0	$c .0$
6.0	6.0

$C .0$
$c . c$
$c .0$
$c .0$
$6 . C$
$6 . c$
0.0

$c .0$	0.0
$c . c 1$	$c . c 1$
0.02	$c . c 3$
$c . c 0$	0.0.
$c . c$	0.0
$c . c$	$c . c$
0.0	0.0

0.6
0.11
6.64
$0 . c 1$
$c . c$
0.6
0.6

[^2]cinfcticn -

0.0	0.0	0.0	0.0	4.0	0.0	0.0	0.0
C. 0	0.0	0.0	C. 0	C.C	C.C	C.t	0.6
C. 0	C.CI	0.0	0.10	0.35	0.11	0.0	0.0
c.c	0.0	0.0	1.41	3.65	0.32	0.0	0.0
6.0	c.01	0.0	0.14	C.31	C.11	6.6	6.6
6.0	C. 0	9.0	0.0	0.0	0.0	0.6	0.0
6.0	C.c	C.0	6.0	0.6	0.0	0.0	0.0

200noon
0000000
20nnon
0000000

onnonno

Table 6.8 Continuation
 $(\theta=40 \mathrm{~min})$
 - otrection imetensi
 $(\Omega=50 \mathrm{~min})$
 - otafction enetersi

 CCACENTMATICNTVC/CL, MI

Etriciten. scs.0.

0.0	0.0
$c .0$	0.0
$c . c$	$c .0$
$c . c$	$c . c$
0.0	0.0
$c .0$	6.0
$C .0$	$8 . c$

0.0	6.0
$c .0$	$c .0$
0.0	0.0
$c . c$	$c .0$
0.0	0.0
0.0	0.0
$c .0$	6.0

$c .0$	0.0	0.0	0.0
$6 . c$	6.6	6.6	6.6
0.0	0.0	0.60	$0.6 c$
$6 . c$	0.6	0.61	0.01
$6 . c$	6.6	$6.6 c$	0.66
0.0	0.0	0.6	$c .6$
8.0	0.0	0.0	0.0

0.0	0.0
$c .0$	$c .0$
$c .0$	$c . c$
$c . c$	$c . c$
$c .0$	6.0
$c .0$	$c .0$
$c .0$	$C . c$

0.0	$c .0$
0.0	6.0
0.0	0.0
$c .0$	6.0
$c .0$	6.0
0.0	0.0
6.0	6.0

C.C	0.0	0.C	0.0
C.Cl	C.Cl	C. (3)	C.C?
0.05	0.06	0.68	C. 11
c.et	C. 01	0.12	0.41
C.C	C. $C^{\text {c }}$	C. 5	c. C
0.0	0.0	c. C	c. C
C. 0	0.0	0.c	0.0

zotmectica. 42.1

$c .0$	$c .0$	0
$c .0$	$c .0$	0
$c . c$	$c . c$	6
0.0	0.0	0
$c . c$	$c .0$	0
$c . c$	$c . c$	c
0.0	0.0	c

0.0	c. 0	C.C	t.e	C. 2	C.C
0.0	0.0	0.0	0.0	0.6	C. C
6.6	C.O.	0.0	0.0	0.60	0.00
0.0	C. 0	C.C	C.CC	C. ${ }^{\text {c }}$	C. Cl^{2}
0.0	0.0	0.0	0.0	0.60	0.CC
C. 0	C. 0	0.0	0.0	0.6	O.C
c.0	0.0	C.0	0.0	0.6	C. 6

c. 0	C.t	C.C	C. ${ }^{\text {c }}$	C.e
0.0	0.01	C.C 7	C. ${ }^{\text {c }}$	C.C4
6.0	C. 61	C.CE	0.12	0.13
6.0	C.Cl	C.Cl	C. C_{2}	C. 62
0.0	0.6	0.0	c.e	6.6
C. 0	C. 0	0.0	O.C	c. 6
C. 0	C.C	C. C	C.C	c. 6

4ctreciicme 435.7\%

Te-tta.a	\%
Yv-519.1	\cdots
7 $=-284.1$	F
I- 6.0	-
$7=$ ath.i	-
Y= 51t. 1	F
$7=464.4$	-

$c .0$	$c . c$	0.0
$6 . c$	$c . c$	$c .0$
0.0	0.0	0.0
$c .0$	$c .0$	0.0
$6 . c$	$c . c$	6.0
0.0	0.0	$c .0$
$c .0$	6.0	0.0

0.0	0.0	0.0	$c . c$	$c . c$
$c . c$	0.0	0.0	$0 . c$	0.0
$c .0$	$c . c 1$	0.01	$c . c 3$	$c . c 3$
$c .0$	0.00	0.07	0.11	6.13
$c .0$	0.01	0.01	0.03	0.01
$c .0$	$c . c$	0.0	$0 . c$	0.0
$c .0$	$C . C$	$C . c$	$c . c$	$c . c$

$c .0$	$c .0$	0.0
6.0	$C . c$	$C .0$
0.0	0.0	0.0
0.0	6.0	0.0
6.0	$C .6$	6.0
0.0	0.0	$c .0$
0.0	0.0	0.0

0.0	0.0
$c .0$	$c . c$
$c .0$	c.
0.0	0.0
6.0	$c .0$
6.0	$c . c$
6.0	c.

0.0	$0 . c$	C.C	C.C
C.C 2	0.12	0.17	0.18
C. 12	C.*S	C.t 2	C.ct
0.01	0.07	C. 11	C. 18
C. 0	0.0	C. C	C. 6
C.C	0.0	C. C	0.0
C.C	0.0	C.t	C.C

2 CIRCETICK $\quad 3$ E5.0 m

7w-tct.4	\%	C.C	C.C	c.t	6.0	0.0	0.0	0.0	0.0	C.c	C. 6	C.C	6.0	C. 0	0.0	0.6	C.t
7-53:7.1	\cdots	0.0	0.0	0.0	C. 0	C. 0	6.0	$0 . C$	0.0	0.0	0.02	C.12	0.42	C. 13	c. 9 ?	1.62	1.C!
ye-2E4.1	*	C. 0	C. 0	0.0	c. 0	C.Cs	6.17	0.37	c. 25	c. 0	C.57	2.20	3.40	3.84	3.8:	. .87	9. 31
1* C.c	\cdots	c. 6	C.c	0.0	0.0	0.31	0.185	1.16	1.21	C.C	C.CE	C.ce	c. 26	c. 46	0.61	0.10	C.is
Te 1es. 1	\checkmark	C. 0	0.0	0.0	C. 0	C.C5	0.17	0.27	0.24	0.0	0.0	c. 0	c. 0	C.c	c.e ${ }^{\text {c }}$	0.6	0.6
\% 519.1	\cdots	C. 0	c. 0	c. 0	c. 0	C. 6	c.e	C. 6	6.6	c. 0	c.0	0.0	c.e	C.C	C. C	C. ${ }^{\text {c }}$	C. 6
Ye 4et.4	n	C.C	C. 6	d. 0	0.0	0.0	0.0	Q.C	0.0	c. 0	c.C	0.0	0.0	c.c	0.0	O.C	0.6

4 CIRFCTICA $=252.5 \%$

$c .0$	$c .0$	0.0
$c .0$	$c .0$	0.0
$c . c$	$c .0$.	0.
$c . c$	$1 . c \theta$	3.
$c .0$	$c . c 1$	c.
$c . c$	$c . c c$	0.0
$c . c$	$c . c$	c.

0.0	c.0	0.0	0.0	0.0	0.0
0.0	C. 0	C. C	C. 6	C.C	C. 5
0.10	0.57	0.94	1.21	1.26	1.35
3.96	5.12	6.10	6.03	5.92	5.86
c. 14	C. 57	C.54	1.21	2.3e	2.35
0.0	0.0	C.0	0.0	C.C	c.e
C.E	C. 0	0.0	0.0	0.0	0.0

0.0	0.0	0.0	0.0	c.e	c. ${ }^{\text {c }}$	O.C	0.0
C. 0	0.26	0.99	1.57	1.87	1.5 5	1.59	1.55
21.27	$2 \mathrm{C.14}$	16.48	12.63	9.f.	A. 16	7.21	7.14
5.0	0.14	0.57	C. 85	1.16	1.28	1. 22	1.1?
C. 0	0.0	0.0	6.0	C.E	c.c	C.t	C.C
C. 0	C.e	0.0	0.0	c. 0	C. ${ }^{\text {c }}$	c. \boldsymbol{c}	$0 . \mathrm{C}$
C. 0	C. 6	C.C	c. 0	c.c	0.0	c.e	0.0

2 DiFEGICM - 15c.0.

Ye-ctic. 4	F	c. 0	C. 0	c. 0	c.c	c.c ${ }^{\text {c }}$	C. 5	C. ${ }^{\text {c }}$	c.c		0.0	C. 0	0.0	C. 0	6.6	C.C	C.C	C.E
ve- 817.1	\cdots	C.C	C. 5	c. 0	0.0	0.0	0.0	c.c	0.0		C. 0	c.01	0.13	0.42	c.73	0.71	1.63	1.C\%
Y=-284.1	\cdots	C. 6	C. 31	1.16	1.82	2.10	2.26	2.14	2.34		C.C	C. 5)	2.26	3.10	3.24	3.84	1.19	3.17
F-0.0	\cdots	35.45	32.89	25.26	10.21	13-:7	11.12	1C. 12	4. 21		0.0	c.co	0.08	C. 25	c.te	C.El	c.es	C. 76
7 124.1	*	C. 6	C. 31	1.10	1.42	2.10	$2.2 t$	2.34	2.34		c. 0	c.c	0.0	0.0	0.0	c.e	c.e	6.6
$7=513.1$	*	C.C	C. 6	6.6	C.0	6.0	0.0	0.6	0.6		C. 0	C. C	C. C	c. 0	c. 0	0.0	0.6	0.0
V= 434.4	\%	0.0	0.0	0.0	6.0	C.C	6.6	C. 6	C. 6	-	0.0	0.0	0.0	6.0	C.C	C. 6	C. C	C. 6

4 DiRECTIOA - 5.30

$7=-184.4$
$7 m-519.1 \mathrm{~m}$

\% 7 C. 8 -
= 319.1

$\begin{array}{lllll}0.0 & 0.0 & 0.0 & 0 . c & 6 . c \\ 6.0 & C .0 & 0.0 & 0.0 & 0.0 \\ C .77 & 1.21 & 1.97 & 1.12 & 1.12 \\ 7.82 & 7.67 & 7.33 & 7.21 & 7.62 \\ c .37 & 1.21 & 1.37 & 1.72 & 1.72 \\ c .0 & 6.0 & 0.00 & 0 . c & 0.0 \\ c .0 & C . C & 0.0 & 0.6 & C .6\end{array}$

6.0	$c . c$	0.0	0.0
$c . c$	$C . c$	$c . c$	$c . c$
0.0	0.0	0.0	$c . c$
0.0	$c .0$	0.0	0.0
$6 . c$	$C . c$	$C . c$	$c . c$
0.0	0.0	0.0	$c .0$
0.0	0.0	0.0	6.0

$c .0$	0.0
$c . c 4$	0.13
$c .17$	$c .84$
0.02	$c .09$
$c . c$	0.0
$c . c$	$c . c$
$c .0$	$c .6$

$\begin{array}{ll}6.6 & 6.6 \\ 0.20 & 7.22 \\ 6.32 & 6.17 \\ 6.17 & 6.16 \\ 6.6 & 6.6 \\ 0.6 & 6.6 \\ 6.6 & C .6\end{array}$

2EIPERTICM - 12.*

Ve-444.4	
	- -284.1
7.	- 6.0
	. 384.1
	- 319.1
	464.4

6.6	$c .0$
0.0	0.0
6.0	0.0
6.6	6.0
0.0	0.0
0.0	0.0
6.0	0.0

0.0	0.0	0.0	0.0	0.6
C.0	0.0	c. 0	0.1	c.C
c. 17	0.85	1.12	1.82	1.20
1.00	3.74	4.90	4.78	4.59
0.17	c.es	1.12	1.12	1. 2 C
C.0	C.E	C.C	C. 6	C.C
0.0	0.0	0.0	0.0	0.0

6.0	6.6	C.e	C. 0	C.C	0.0	$0 . C$	c.t
0.0	0.0	0.0	c. 0	C.Cs	C.c ${ }^{\text {c }}$	C.ce	C.ce
c. 0	c.t	c. 0	0.0	0.05	0.11	C. 15	C.al
C. 6	C.C	C.C	C. 0	C.OL	6.02	C.es4	C.C.4
0.0	0.0	0.0	C. 0	C.C	C.C	0.C	0.0
C.0	c. 0	0.0	c. 0	C.C	C.C	C.C	6.6
C. 0	C.C	0.0	0.0	C. 6	0.0	C.C	6.6

aciagcitca. 0.01

Y0-644.4"	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	c. 0	c.t	c.c	0.1	0.0
4--814.1	c. 0	c. 0	0.0	0.0	C. 6	6.6	C.C	$6 . C$	6.0	0.0	0.0	c. 0	C.Cl	C.C)	C.Cs	6.68
Y--184.1	C. 0	6.0	0.0	0.15	0.61	1.10	1.20	1.11	C.0	c. 0	0.0	0.0	C.c2	0.08	0.16	C. 11
1. 0.0 m	C.0	0.0	0.0	1.46	3.59	4.74	4.64	4.44	C.0	0.0	0.0	c. 0	c.ct	c.ct	0.63	0.04
t- 244.1	C. 0	0.0	0.0	0.15	C. 13	1.16	1.it	1.13	0.0	6.0	0.0	c. 0	C.C	C.C	C. 1	C.C
10 11.10 m	6.0	C.0	0.0	0.0	0.0	0.0	0.0	0.0	c. 0	C.0	0.0	0.0	0.0	$0 . C$	c. C	0.6
tecet.4m	C.C	6.6	4.0	0.0	0.6	0.0	0.0	0.0	6.0	C. 6	c. 6	6.0	C.C	0.0	0.6	0.0

Teble 6.8 Continuation
 $(\theta=80 \mathrm{~min})$
 $(\Omega .=90 \mathrm{~min})$
 CIRETICA lytens

C．0 270.11835 .23045 .54934 .54044 .8 1728．5 RCCC． 6

CACEATEDIICAIPC／CU．FI
＊＊＊＊＊＊＊＊＊＊＊日＊＊＊＊＊

Ye－ti4．4	c．a	C．0	0.0 $C .0$	0.0 C．	0.0 0.0	0.0 0.0	0.6	c．c 0.0	0.0 0.0	0.0	0.0 0.0	0.0 C．	C．C C． c，	0.0	$0 . c$	0.0
7－－517．1	6.5	C． 6	C．${ }^{\text {c }}$	6.0	0.0	0.0	0.6	$0 \cdot 6$	0.0	C． 0	0.0	C． 0	C．CI	C． 51	C．${ }^{\text {c }}$	C．${ }^{\text {？}}$
ve－384．1	0.0	0.0	0.0	C． 0	c．c	0.0	C．CC	6.65	c． 0	C． 0	0.0	0.0	0.05	0.06	0.10	C． 11
＊． 6.0	0.0	0.6	0.0	C． 0	0.0	0.0	C．C1	C．Cl	C．C	c．c	c． 0	c． 0	C．C 1	c． 01	0.12	0.08
Y－ 344.1	6.0	C． 6	6.5	c．a	c． 0	0.0	0.60	$0 . c c$	0.0	C． 0	0.0	c． 0	C．C	C． 6	C． 6	c． 5
\％ 314.1	0.0	0.0	0.0	C． 0	C． 0	0.0	0.0	0.0	c． 0	C．C	0.0	0.0	0.0	c． 0	c．C	C．C
1． 446.4	0.0	0.0	6.0	C． 0	C．C	C．C	C． 6	0.6	6.0	C．C	C． 6	C． 0	c． 0	0.0	O．C	0.0

2ctaccrion． 492.1 n

6．C	C．C	C．C	6.0	c． 0	0.0	0.6	0.0
0.0	0.0	0.0	C． 0	c． 0	0.0	0.0	0.0
6.0	C．C	0.0	C． 0	C．E	C． 5	0.60	0.60
C．C	C． 0	0.0	0.0	c． 0	0.0	0.61	0.01
C． 0	0.0	C． 0	C．0	C．C	0.0	0.60	0.00
C．O	c． 0	0.0	c． 0	6.6	C． 6	c．e	c．e
C． 0	c． 0	0.0	0.0	0.0	0.0	0.0	0．c

6.0	$C . c$	0.0
6.0	$C .0$	0.0
6.6	6.6	$C . c$
0.0	0.0	$c .0$
6.0	6.6	0.0
6.0	6.6	6.0
0.0	0.0	0.0

6.0	$C .6$
0.0	0.01
$c .0$	$0 . c 7$
6.0	6.61
0.0	0.0
$c .0$	$0 . c$
$c .0$	$C .6$

C．C	C．C	C．C
0.02	C．is	C．C4
C．OF	0.12	0.13
S．61	C．${ }^{\text {c }} 2$	C． 6 ？
0.0	C．C	C．C
0.0	0.6	c．c
C．C	C． \mathbf{t}	C．C

1 CIRECICK $\quad 439.7$

0.0	0.0	0.0	C． 0	0.0	0.0	0.0
C． 0	6.0	C． 0	C．C	C．C	C．C	C．C
c．e	0.0	0.0	0.01	0.02	0.63	$0 . c$
C． 6	6.0	6.0	C．Cs	0.07	0.11	0.12
c． 0	0.0	6.0	c． 61	C． 62	C． 63	0.6
c． 0	0.0	0.0	0.0	0.0	c．t	C．E
C．C	C． 6	c． 0	$0=0$	0.0	0.0	0.0

C．0	C． 0	0.0	0.0	0.0	$0 . \mathrm{c}$	c．e	C．C
C．c	C． 6	C． 6	C． 0	C． 02	0.11	0.17	0.15
0.0	0.0	C． 0	0.0	C． 12	C．4：	C．${ }^{\text {c }}$	C．E］
0.0	c． 0	0.0	0.0	0.01	0.01	C． 11	C．1：
C． 0	C．C	C．C	c． 0	0.0	0.0	0.1	c．e
0.0	0.0	0.0	C． 0	c．t	C． 0	C．C	0.6
6.0	0.0	0.0	c． 0	C．C	0.0	C．C	C． 6

e DIAECITCA－ 355.0

Abstract

－ectes．4． Y． 0.0 t． 224.1 － 19.1 m

2 cinectick 252.5 F

C．0	t． 0	0.0	C．0	C．t	C．C	C．f	C．t
C．0	C． 0	0.0	0.0	0.0	0.0	$0 . t$	C．C
C．C	C．C	C．C	6.0	O．65	0.17	0.26	0.21
0.0	0.0	6.0	0.0	C． 32	C． 26	1.12	1.18
C． 6	c． 0	0.0	0.0	0.05	0.17	0.76	c．${ }^{\text {t }}$
C． 6	C． 6	C． 6	c． 0	C．0	0.0	0.0	0.0
0.0	0.0	0.0	C． 0	c． 0	0.0	0.6	c．C

6.0	C．C	C．c	c． 0	0.0	c． 0	0.6	6．C
0.0	0.01	0.12	C． 42	C． 13	C． 93	1.63	1．C：
6.0	C．51	2.25	3.41	H． 84	3．0．46	3.89	3.11
C． 0	C．CC	C．ce	C． 26	C． 46	0.61	$0 . t 8$	c． 15
0.0	0.0	c． 0	C． 0	c．${ }^{\text {c }}$	c．a	c．e	c． 6
0.0	c． 0	0.0	C． 0	c．t	C．c	C． 1	c．C
6.0	C． 5	0.0	0.0	$6 . c$	0.0	0.6	C．C

2 CIRECTICA－ 150.0 m

－－6ti．4．
－－517．1
－EC4．1
1． 519.1
Y． 519.1 ．
$C . C$
6.6
0.0
6.0
6.6
0.0
$C .0$

6.0	0.0
6.0	$c . c$
0.01	0.16
1.68	3.71
6.61	6.12
0.0	6.0
6.0	0.0

0.0	0.0	c． 0	C． 0	C． 5	0.0	0.6	0.6
C． 0	C． 26	C． 99	1.57	l．fe	1.57	2．cc	2.60
21.21	2C． 14	16.48	12.03	9.85	－．1＊	7.35	1.17
c．0	0.14	0.37	6.95	1．12	1.29	1．13	1.14
6.0	0.0	0.0	6.0	C．C	C．C	C． 5	C．C
6.0	C． 0	0.0	0.0	0.0	c．c	c．e	0.5
6.0	C．C	C． 5	6.0	C．t	C．E	$0 . \mathrm{C}$	0.

Ecinctich 65．3．

C．C	C．C	C．c	c． 0	c． 0	0.0	0.6	0.0
0.0	0.0	C． 0	C．O	c．$¢$	0.0	0.6	0.0
C．O	c． 31	1.16	1.81	2.12	2.24	2.89	2.85
35.45	32.28	25.22	18．18	13.63	11.12	9.94	9.69
C．0	0.11	1.16	1.81	2.12	2.24	2.29	2.29
C． 0	c．0	c．0	C． 0	C．C	C．C	C．C	C．${ }^{\text {c }}$
C． 0	C．C	0.0	0.0	0.0	0.0	0.0	0.0

c． 0	C．0	0.0	C． 0	C．C	C．C	C．C	C． 6
C． 6	c．ci	0.13	0.42	0.72	0.73	1.64	$1 . C 8$
C．E	C．E 7	2.19	2． 39	3.14	3.81	1．8t	3.70
0.0	c．co	0.08	c． 26	c．at	C． 21	c．es	C． 11
c．c	c． C	0.0	0.0	c． 0	C． 0	C．C	C．C
C． 6	C．E	c．c	c． 0	c． 0	0.0	$0 . C$	0.0
0.0	0.0	0.0	c． 0	c．e	C． 6	C．${ }^{\text {c }}$	C．C

ctincetiche

0.0	0.0	$c .0$	$c .0$	$c .0$	$0 . c$	0.0
$c .0$	0.0	$c .0$	$c .6$	$c . c$	$6 . c$	$c . c$
6.62	0.21	0.76	1.22	1.55	1.72	1.76
1.26	5.18	7.59	7.72	7.44	1.23	7.17
0.02	$c .27$	$c .76$	1.12	1.55	1.12	$1.7 t$
$c .0$	0.0	0.0	0.0	0.0	$0 . c$	$0 . c$
$c .6$	$6 . c$	$c .0$	0.0	0.0	0.0	0.0

C． 0	c． 0	0.0	0.0	0.0	$0 . C$	c．e	C．C
6.5	C． 6	C．t	C． 0	C．C 3	0.13	C． 20	0.22
0.0	0.0	C． 0	C．C	C． 17	C． 34	6． 13	C．7）
0.0	c． C	0.0	0.0	0.02	0.09	6．17	C． 1 ：
C． 0	c． 0	C．C	C． 0	C． 0	0.0	C．C	C．C
0.0	0.0	c． 0	c． 0	C．c	c．C	C． 6	C．C
c．0	0.6	0.0	C．3	0.0	c． 0	C． 6	6.6

F－－t64．4	\％	C．O	C．E	0.0	C． 0	C． 6	C．t	C． 6	6.6	1.0	C． 6	6.0	6.0	0.6	0.0	0.6	C．C
1－－519．1	－	6.0	c． 0	0.0	0.0	0.0	0.0	0.1	c．e	0.0	0.0	－C．0	c．0	C．CI	C．cs	C．Ct	C．C？
7e＝ater．i	\％	6.6	c．C	c． 6	C． 17	0.65	1.10	1.35	1.41	0.0	c．0	c． 0	C． 0	0.05	6.11	C． 19	C．E：
7． 0.0	－	0.0	0.0	c． 0	1.42	3.14	4.24	5.24	5.31	c．c	C．c	C．c．	c． 0	c．E：	0.08	O．ca	C．C：
ve 284.1	－	c． 0	c． 0	0.0	0.17	0.65	1.10	1．35	1.41	0.0	0.0	0.0	c． 0	C．e	C．c	0.6	0.0
Y－ 319.1	－	c． 6	c．c	c．c	c． 0	0.0	0.0	0.6	0.0	C． 0	0.0	0.0	c．0	C．e	C． 6	C．C	C．C
7e 464	\cdots	0.0	0.0	0.0	c． 0	c． 0	0.0	0.0	0.0	6.0	c． 0	0.0	0.0	0.0	0.0	$0 . C$	C．C

1 olricisch e．op

の日のペのヘ osicoco
000909

1000008
1000008

$C . c$
$c . C 1$
$c .0 z$
$c . c t$
$c . c$
0.0
$c . c$
0.0
0.02
0.08
$0 . C 2$
$C . C$
0.0
0.0

0.0
6.68
$c .18$
0.04
6.6
$c . c$
$0 . c$

Table 6.9 Concentration Distribution for Case \#l0 ($\theta=0 \mathrm{~min}, \Omega=10 \mathrm{~min}$)

a ofnectica fritems

4cinection* 505.0 m

90-685.4	\cdots	c. 0	C. 0	c. 0	0.0	0.0	0.0	0.0	0.0	C.e	c. 6	C. 6	C.C	C.c	c.e	0.0
\%e-519.1	\cdots	0.0	0.0	0.0	0.0	0.0	0.0	0.6	0.0	c. 0	0.0	0.0	0.0	C.C	C.c	c.c
1--244.1	\cdots	0.0	0.0	0.0	c. 0	0.6	C. 0	0. 6	c. 0	C.C	C. 6	0.0	C. 0	0.0	0.0	0.6
- 0.0	M	c. 0	6.0	0.0	6.0	0.0	0.0	0.0	0.0	C.0	C. 6	C.C	c. 6	C.c	0.0	c. 5
Ve 2et.l	-	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	c. 0	C. 6	C.t	C. 5
Y- 315.1	\cdots	0.0	0.0	0.0	c. 0	C. 6	C.C	C.t	0.0	c. 0	C. 5	0.0	0.0	0.0	0.0	0.6
\%- 464.4	M	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C.C	C.C	C. C	C.C	C.C	0.0

4EIRECIEN. 442.1 "

7--484.4	n	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C.C	C.C	c. 6
ve-519.1	\cdots	0.0	0.0	0.0	0.0	c.e	C. 6	c. 0	C. 6	C.C	c. C	0.0	0.c	0.0	0.0	0.0
te-2e4. 1	-	c. 0	c.0	0.0	0.0	0.0	0.0	0.0	0.0	C. 5	C.C	C.C	c. C	C.C	$0 . c$	0.0
\%- 0.0	\cdots	c.e	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	c. C	C.C	C. C	C. 2
V= 284.1	r	0.0	c.0	0.0	0.0	c.e	c.0	C. 5	C.C	c. 0	0.c	0.0	0.0	C.C	0.0	0.6
7* 519.1	к	c. 0	c. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	c.c	C.e	c. C	c.c	c. c	c. 0
$7=644.4$	M	0.0	C.c	c. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	c.c	c.C	c.c	c.c

2 DEAECTIOM = 439.7\%

1--664.4	$\stackrel{\square}{*}$	0.0	0.0	0.0	0.0	c. 6	C. 6	C. 6	c. 2	C. $C^{\text {c }}$	c. C	$0 . C$	0.0	0.0	0.0	0.6
7-519.1	\%	0.0	C. 0	0.0	0.0	0.0	0.0	0.0	0.0	C. 0	C. 6	C.C	C.C	C.C	C. 0	0.0
T--284.1	*	C.0	C.C	6.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C.C	C.C	c.0	c.e
Y- 0.0	-	0.0	0.0	0.0	0.0	C. C	C.C	C. 6	C. C	C. 0	$0 . c$	0.0	C. 0	0.0	0.0	O.c
$1=384.1$	*	c. 0	C. 0	0.0	0.0	0.0	0.0	0.6	C.C	C. 6	c. 6	C. 6	C.C	C.C	0.6	$0 . c$
V= 519.1	M	6.0	C.L	C. 0	0.0	0.0	0.0	0.0	$0 \cdot 0$	0.0	0.0	0.0	c. C	C.C	c.e	0.6
Y $=164.4$	-	0.0	0.0	0.0	0.0	C.C	C. 0	C.C	c. 0	0.c	0.0	0.0	0.6	C.C	C.L	C. 6

. 2 OIRECTIOK - 355.0 .

V--264.4 k	c. 0	G.c	0.0	0.0	0.0	0.0	C.C	0.0	C.C	C. C	C.C	C. 5	C.C	0.0	0.0
70-519.1	c. 0	6.0	C. 0	C. 0	0.0	0.0	0.0	0.0	0.01	0.02	0.08	C.C	C. ${ }^{\text {c }}$	c.e	0.6
$y=-244.1$	0.0	0.0	0.0	C. 0	C. 6	C. ${ }^{\text {c }}$	C.C	C.C	C. 43	1.2 C	0.51	c.0	C.C	0.0	0.0
$y=c .0 \%$	C.C	6.0	0.0	0.0	0.0	0.0	C.C	C.C	C.CC	C. 64	C.C3	c.e	C. 5	c. 0	$0 . \mathrm{c}$
$v=204.1{ }^{\prime \prime}$	6.0	6.6	c.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	c.e	c.t	c.c	c.c
7 $=519.1 \%$	0.0	0.0	0.0	0.0	0.0	c. 6	c. 6	C. 6	C. C	Q.c	0.0	c. 0	C.C	C.C	C. 6
7- 684.4%	0.0	C.C	0.0	0.0	0.0	0.0	D.C	c. 5	C. 5	c. 6	C.c	c. 0	c.0	0.6	$0 . C$

(CIRECTICM 252.5 n

$\begin{aligned} & 7=-664.4 \\ & 7=-517.1^{\prime} \\ & 7=-284.1 \\ & 70 \\ & 7=284-1 \\ & 7 \\ & 7 \in 517.1 \end{aligned}$

0.0	6.6
0.0	0.0
6.0	0.0
6.0	6.83
0.0	0.0.
6.0	0.0
0.0	6.8

6.6	6.0	$c .0$	0.0	0.0
0.0	0.0	0.0	6.6	$c . c$
0.01	0.08	0.03	0.0	0.0
$c .83$	1.74	0.33	0.0	0.0
0.01	0.08	0.03	6.0	0.0
0.0	0.0	0.0	0.0	0.0
6.6	0.0	0.0	0.0	0.0

$0 . \mathrm{C}$	0.0	0.0	0.0	0.0	C.C
C. 5	0.6	C. 19	0.54	0.23	0.0
0.6	21.21	13.EE	9.34	2.13	O.C
0.0	0.0	C. 10	0.31	0.14	C. 6
C. C	C. C	C. 0	0.5	0.0	0.6
0.6	c. ${ }^{\text {c }}$	C. 6	c_{-6}	0.0	C. 0
0.0	0.0	c. 0	C. C	C. 6	C. 6

C.c	C.c	0.6
C.C	C.C	G.C
C. 5	c. 0	$0 . \mathrm{c}$
C. C	C. 5	a.c
C.C	C. 5	c. C
0.0	0.0	c. C
C. 6	C.C	O.C

7e-864.4	F	0.0	0.0	0.0	0.0	C.C	C.c	c.c	C.C	c. 0	0.0	0.0	0.0	c.e	c. 6	C.C
- -519.1	-	0.0	c. 0	0.0	0.0	0.0	0.0	$0 . c$	c.c	C.c1	C. 68	$0 . c 5$	c.a	$0 . c$	G.C	0.0
Y--2nt. 1	*	c. 0	c. 24	c. 82	c. 10	0.0	0.0	0.0	0.0	C.4 3	1.15	0.51	c.c	c. 5	c. 0	$0 . c$
Y- 0.0	-	35.65	22.39	12.04	1.15	0.6	0.0	0.0	c. C	C.co	0.04	0.03	0.0	C.C	c.c	C. 6
T- 204.1	\cdots	c. 0	0.24	0.52	0.10	0.0	0.0	0.c	c.c	C. 5	0.5	C. ${ }^{\text {a }}$	0.0	C.c	0.0	0.0
	\%	c.0	c. c	C. 0	0.0	0.0	0.0	0.0	0.0	C. 0	C. 6	C. 6	C.C	C.C	C. C	C.t
v. 464.4		0.0	0.0	0.0	0.0	0.0	0.0	$0 . \mathrm{c}$	0.0	0.0	0.0	0.0	0.0	C.C	C. 2	c. 6

$$
2 \text { OIRECIION }=\quad 43.3
$$

1-4-464.4	0.0	0.0	0.0	0.0	0.0	0.0	$0 . c$	0.0	c.c	c.e	0.0	0.0	0.0	0.0	0.0
t-- 19.1	c.0	C. 5	c. 0	0.0	0.0	0.0	0.0	0.0	C.C	c. C	0.6	5.6	C.t	c.c	$0 . c$
70-2e4.1	0.0	ロ.02	0.17	0.04	c. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	c.c	C. 5	0.6
** 0.0	c. 0	1.39	2.38	0.41	c.c	C.c	c. 6	c.c	c.e	c. C	C. 0	0.0	0.0	0.0	0.0
T- 244.1	c. 0	C. 02	0.12	0.04	0.0	0.0	0.0	0.0	c.c	c. 2	C. C	c.c	C. 5	C.c	0.0
7. 319.1	c.0	C. 6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	c.c	c. 6	c. 5	C. 6
v= 164.4	0.0	0.0	0.0	c. 0	c.c	c.e	C. 5	c. 0	C. 0	0.0	0.0	0.0	0.0	0.0	C.c

2 citection - 12.0

$$
\begin{aligned}
& (\theta=10 \mathrm{~min}) \\
& (\Omega=20 \mathrm{~min})
\end{aligned}
$$

COACEKIRATICAMCICU．VI

2GERCTION－492．1

Y－－ 8 ¢4．4	\％	C． 0
7－－817．1	＋	C． 0
te－284．	\cdots	C． 0
100.0	＊	c． 0
t＊206．l	＊	C． 0
$V=319.1$	${ }^{+}$	0.0
10 tetas	μ	C． 0

2 CIAECTICK－ 439.7%

1－－684．	v	C． 0	C．C	c． 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	c．c	c．c	c．e	$0 . c$
$t=-514.1$	\cdots	0.0	0.0	0.0	0.0	c．c	c． 6	C． 5	0.6	c． 0	6.5	0.0	$0 . \mathrm{Cl}$	C．Cl	0.0	0.6
t＝－2E4．1	－	6.0	c． 0	0.0	0.0	0.00	0.0	0.6	C．t	C． 6	C． 1	6.6	C．C3	C． 63	c． 6	0.6
Y＝ 0.0	\cdots	c． 0	C．C	C． 0	c． 0	c． 02	0.0	0.0	0.0	0.0	0.0	0.0	C．CO	C．cc	c．e	$0 . C$
V＝ 284.1	\cdots	0.0	0.0	0.0	0.0	C．CC	6.6	c． 1	c．C	c． 0	C．C	0.6	0.0	c．c	C．C	C．C
$y=319.2$	\cdots	0.0	C． 0	0.0	0.0	0.0	0.0	c． 6	c． 6	C．C	C．c	c．C	0.0	C．C	0.6	0.6
1． 684.4	\cdots	C．C	c． 6	c． 0	0.0	0.0	0.0	0.0	0.0	0.4	C． 0	0.0	C．C	C．C	0.6	0.6

20ificilch $3: 5.0 \%$

$V=-884.4$	\％	0.0	0.0	0.0	0.0	C．C	C．C	c．e	c． 0	C．C	0.0	0.0	0.0	c．e	C．e	C． 6
7－－519．1	＂	C． 0	0.0	0.0	0.0	0.0	0.0	C．C	C． 0	C． 61	c． 14	0.36	0.28	C．Cl	C．C	0.6
$y=-224.1$	H	C． 0	C．t	6.0	c． 0	0.00	0.0	0.0	0.0	0.55	$2.2 t$	2.21	1． 55	C． 3 C	C．e	O． 5
7． 0.0	\％	0.0	0.0	0.0	0.0	c． c_{2}	0.0	0.6	c． 0	C．Cl	c．ca	0.22	0.18	C．C4	C．C	c． 6
$y=284.1$	＊	0.0	C． 0	0.0	0.0	0.00	0.0	0.1	C．C	C．E	C．C	C．C	0.0	0.6	0.0	0．6
12 51% ． 1	－	c． 0	c．C	c． 0	c． 0	0.0	0.0	0.6	0.0	C． 0	C．C	6.6	C．C	C．C	c． 6	c． 6
7． 664.4	\cdots	0.0	0.0	0.0	0.0	C． 0	0.0	0.0	0.0	0.0	$0 . \mathrm{C}$	$0 . C$	0.0	c． 6	C．C	C． 6

> COIRGCTION = 2S2.5

Ve－fca．	－	0.0	0.0	0.0	0.0	0.0	0.0	$0 . c$	c． 6	C．C	C．e	0.0	0.0	$0 . c$	0.0	$0 . c$
7－－517－1	\cdots	c． 0	c．C	c． 0	c． 0	c． 0	0.0	0.0	0.0	C． 25	1．63	1.32	C． 75	C． 15	c．e	C．C
V1－26w－1	＊	0.0	0.01	0.18	0.37	6． 13	0.0	0.0	21.27	20.01	16.73	10.75	4.06	c．es	C．C	c．e
ve c．0	－	C． 0	1.03	4.00	3.40	C． 51	C．t	C．c	C． C	C．13	C． 51	0． 60	0.47	0.10	0.0	c．c
14 2c4．1	\cdots	C． 0	c． 01	0.19	0.37	c． 13	0.0	0.0	0.0	4.6	C．C	C． 6	C． 6	c．e	c． 5	0.6
ve 517.1	\cdots	C． 0	C． 0	0.0	0.0	c． 0	0.0	$0 . c$	0.0	0.0	0.0	0.0	C．C	C．E	6.6	C．C
\％＊ 664.4	\cdots	C．0	c．0	0.0	0.0	c．t	c． 6	c．t	c． 6	4． 5	0.0	0.0	c．c	c．c	0.0	0.0

[^3]| y－cets， 4 | 6.0 | c．c | 0.0 | 0.0 | 0.0 | 0.0 | $0 . c$ | 0.0 | c．C | c．t | c．C | c．t． | C．C | O．c | 0.0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Y－-119.1 m | 0.0 | 0.0 | 0.0 | c．0 | c． 0 | 0.0 | 0.0 | 0.0 | 0.01 | 0.13 | 0.36 | c． 20° | C．C） | c．c | 6.6 |
| 10－284．1 | 0.0 | C． 10 | 1.18 | 1.20 | c． 31 | C．C | c．c | c．c | C．${ }^{\text {E }}$ | 2．25 | 2.81 | 1.55 | c． 30 | 0.0 | $0 . C$ |
| Y－c．e | 35.45 | 32.72 | 25.44 | 12.27 | 2.14 | 0.0 | 0.6 | 0.6 | c．el | C．CE | C．${ }^{2}$ | C． 18 | c．${ }^{\text {c }} 4$ | c．e | 0.6 |
| V．2E4．1 | C．0 | c． 36 | 1．19 | 1.20 | c． 31 | 0.6 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6 | c． 6 | c．${ }^{\text {c }}$ | c．c | C． 6 |
| $v=51+$－$\%$ | C． 0 | C．0 | 0.0 | c． 0 | c． 5 | c．C | C．${ }^{\text {c }}$ | C． 6 | c．e | c．e | 0.15 | 0.0 | c．c | 0.0 | $0 . e$ |
| $v=$ ectat | C． 0 | C． 0 | 0.0 | 0.0 | 0.0 | 0.0 | c．C | 0.0 | C．C | C．C | C．C | C． 5 | 6.8 | c．e | 0.6 |

$$
1 \text { cikectick: } 05.3 \mathrm{~m}
$$

7－$=-64.4$ N
$7-519.1$
$7-24.1$
$1-2 e 4.1$
$7-0.0$
Y． 204.1 ＂
7． 519.1 ＊

noopnoo 0806ino

NOnのnom soosingo
かonのnのn Noingin

d oinctica．

1，	，	0.0
17－514．1	－	c． 0
1a－304． 1	＊	c． 0
14 5.0	\cdots	0.0
14 284．1	\cdots	0.0
y＊ 519.1	\cdots	c． 0
7－464．4		0.0

0.0	0.0
$c .0$	0.0
6.6	6.0
0.0	0.0
0.0	0.0
$c .6$	6.0
0.0	0.0

0.6
6.6
0.0
0.0
6.6
6.6
0.0

6.6	$6 . c$
0.0	0.6
0.6	$0 . c$
6.6	6.6
0.0	0.0
6.5	0.6
6.6	6.6

4 cticciticn：
6.0%

0.0	0.0	0.0	0.0	0.0
$c . c$	6.0	0.0	0.0	0.0
0.0	0.0	0.08	0.03	0.0
6.0	0.0	0.81	$c .86$	$c . c$
$c . c$	0.0	$c .08$	0.03	0.0
0.0	0.0	9.0	$c .0$	0.0
$c .0$	0.0	$C .0$	$C . c$	$C . c$

000800
000000

000000
0080808

6.6	$c . c$
0.6	6.6
0.0	0.0
6.0	6.6
$6 . c$	6.6
0.0	0.0
6.6	6.6

nonoono
onnosng
onnocio
0.0
6.6
6.6
0.0
6.6
6.8
0.0

000900
nncino

$$
\begin{array}{r}
(\theta=20 \mathrm{~min}) \\
\left(\theta_{0}=30 \mathrm{~min}\right)
\end{array}
$$

COACFMTAATICAIFG/CU.WI
cointitich ses.0.

V--644.4	*	c. 0	C.0	0.0	0.0	6.6	C.C	C.C	C. 6	C.0.	C. 5	0.5	C.C	0.0	0.0	$0 . c$
*-911.1	\%	c. 0	C. 0	0.0	0.0	0.0	0.0	0.6	C.C	C.C	C. C	C. 6	C.C1	C.til	C.Cl	0.01
1--214.1	-	c. 0	c.c	C. 0	c. 0	0.0	0.0	0.00	0.00	0.0	0.0	0.0	C.Cs	C.C4	C.C4	C.C4
-1 0.0	\%	0.0	0.0	0.0	c. 0	C.c	C.C	C. 50	C.CC	C.t	0.0	0.6	0.01	C.Cl	C.Cl	0.61
- 284.1	*	6.0	c.a	0.0	c. 0	0.0	0.0	0.60	C.CL	C.C	C. 6	C.C	C.C	C.e	C.C	$0 . C$
F- 319.1	\%	c. 0	c. 6	C. 0	C. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C.C	C. 6	C. 6	$0 . c$
7.444 .4	${ }^{\circ}$	0.0	0.0	0.0	0.0	0.0	0.0	C. 6	C.C	c. 0	0.0	0.0	0.0	C.C	C.C	C. 6

2 DizCCtich 492.1 m

$70-684.4$	F	C. 0	c. 0	0.0	0.0	0.0	0.0	0.6	O.C	C.C	c.e	C. 6	C.c	C.C	C.e	C.C
Ve-519.1	-	C.0	C.C	C. 0	c. 0	0.0	0.0	0.0	0.0	- 0	0.0	0.0	c.ci	C.Cl	C. C^{1}	C.Cl
$7=-264.1$	\cdots	0.0	0.0	0.0	c. 0	c. 5	C.C	C. 18	0.15	c.c	c. 0	0.0	O.C7	C.ce	C. 6 !	C.Cs
70.0	-	C. 0	c. 0	0.0	0.0	0.0	0.0	0.60	C.CC	C.CC	c. 6	c. C	C.Cl	C.C1	C.C.	0.61
\% 29.40 .1	ν	C. 0	C.C	e. 0	c. 0	0.0	0.0	0.60	0.06	c.0	C. 0	c. 0	C. 6	C.C	c. 6	C. C
V. 518.1	\cdots	0.0	0.0	0.0	0.0	c.a	0.0	0.0	C. C	c. 0	0.0	0.0	C. 0	C.C	C. 6	C. C
7. 864.4	V	c. 0	c. 0	0.0	0.0	0.0	0.0	0.5	O.C	C.C	G.C	c. 0	0.0	C.E	0.0	$0 . C$

2CtrECticn = 439.7

$Y=-644.4$
$Y=-319.1$
$y=-244.1$
$Y=264.6$
$Y=815-1$
$7=84.4$

$c .0$	$C . c$
0.0	0.0
$c .0$	$c .0$
$c .0$	$c . c$
0.0	0.0
0.0	$c .0$
$c .0$	$C .0$

$c . c$	$c .0$
0.0	0.0
$c .0$	0.0
$c .6$	$c .0$
0.0	0.0
$c .0$	0.0
$c .0$	0.0

0.0	0.0	0.0	$0 . c$	0.0
$c .0$	$c .0$	0.6	$c . c$	c
0.0	0.01	0.00	$0 . c 0$	0
$c .0$	0.07	0.02	0.01	0.0
$c .0$	$0 . c 1$	0.00	$0 . c 0$	0.
$c .0$	6.6	6.6	0.6	0.
$c .0$	0.0	0.0	0.0	0.0

0.0	0.0	0.0
$c . c$	$c . c$	0.0
$0 . c c$	6.5	$c . c$
0.01	$c . c c$	$c .6$
0.00	0.60	$0 . c$
0.06	6.6	$C . C$
0.0	0.0	$C .6$

0.0	$0 . c$
$c .0$	$0 . c 2$
$6 . c$	0.12
$c . c$	$c . c 1$
0.0	$0 . c$
$6 . c$	6.0
$6 . c$	$6 . C$

C.C	C.C	0.6
c.et	C.Cl	C.Cl
0.22	0.21	0.26
C.C:	C.ts	C.Cs
C.C	C.C	C-C
C.C	$0 . C$	C.C
C.C	C.C	C.C

$y=-644.4$
$t=-517.1$

0.0	0.0	0.0
6.0	0.0	0.0
6.0	$c . c$	6.0
0.0	0.0	0.0
6.0	0.0	0.0
$c .0$.	$c .0$	0.0
$c . c$	0.0	0.0

0.0	C. 0	0.0	0.6	C. 4	C.C
0.0	0.0	0.0	C.C	C.C	C.Cl
c. 0	0.04	0.05	0.02	0.01	c.et
0.0	C. 25	0.26	0.10	0.06	0.02
c.0	C.C4	C.Cs	C. Cl^{2}	C.Cl	6.65
0.0	0.0	0.0	0.0	0.0	C.CC
0.0	C. 0	0.0	0.0	0.0	0.0

$0 . C$	C.e	0.0
C. 13	C.42	C. 12
2.15	2.42	3.
C. 57	c. 26	C.
C. 6	c.e	6.6
c.c	C. C	C. C
0.0	0.0	C.C

0.0
$c .12$
3.18
$C .45$
6.6
$C . C$
$C . C$

$\begin{aligned} & c . c \\ & c .6 t \\ & z .17 \\ & c .43 \\ & c . c \\ & c . c \\ & C . C \end{aligned}$

$C .6$
0.4.
1.74
6.31
$0 . c$
$c . c$
$c . c$
$C . C$
$c .41$
$1 . E C$
$c .2 e$
$c . c$
$c . c$
$c . c$

C OIRECTION 252.5 \%

7-6464.4	c.0	6.0	0.0	0.0	c. 0	0.0	O.c	0.0	c.e	C. C	C.c	Q.c	0.6	0.6	0.6
7--519.1	6.0	c.c	6.0	C. 0	0.0	0.0	0.0	0.0	c.it	C. 58	1. 57	1.64	1.41	C. 52	C.EC
V=-284.1	0.0	0.02	0.17	0.59	0.76	0.34	0.12	21.34	20.18	16.45	12.48	9.13	8.89	1.93	2.5C
v- 6.0	0.0	1.11	3.84	5.85	4.56	2.65	C. 5.5	C.3i	c. 23	c. 54	6.97	1.16	C-73	0.61	c. 5 ?
	c. 0	6.02	0.17	0.59	0.76	0.39	0.12	$0 . C 7$	C.C	C.C	C. 6	C.C	C.C	C. 6	C.t
Ve 517.1	C. 0	C.0	0.0	c. 0	c. 0	0.0	0.0	0.0	0.01	0.0	0.0	C.C	C.C	c. 6	C. C
$7=664.4$	0.0	0.0	0.0	0.0	c. C	C. 6	C.C	C.C	C.C	0.6	6.0	0.0	C.O	0.0	0.6

zCIRECITEM. 150.0 .

P=-tt4.4	c. 0	c. 0	0.0	c.0	0.0	0.0	0.0	0.0	C.C	6.6	6.8	c.c	C.E	0.6	c.c
74-819.1 $=$	0.0	0.0	0.0	c. 0	0.0	0.0	0.0	0.0	0.01	0.13	0.42	c. 72	C.t 7	c. 41	6.41
7--284.1	c. 0	0.12	1.14	1.86	1.71	[. 13	c. 31	C. 12	C.Et	2.12	3.41	3.74	2.77	1.76	1.11
	35.45	12.97	25.05	18.50	11.09	3.74	0.94	0.5%	C. 15	c.65	6.22	C. 44	C.44	C. 31	0.28
7* 204.1 *	c. 0	C. 32	1.14	1.86	1.11	0.73	0.21	0.12	0.03	e. 0	0.0	C.c	C. 6	C.C	C.C
7. Sivel	c. 0	C. 0	0.0	C.0	c.e	c. C	c. 6	c. C	C.CC	c. C	Q.c	0.0	c. 0	0.0	0.6
Y e 4t.e.	C.O	6.0	0.0	0.0	0.0	0.0	0.6	0.6	C.C	C. 6	C. 6	c. 6	C.C	c.c	0.6

Etimectiche 65.3m

444.4*	c. 0
V-534.1	0.0
1--2e4.1	C.a
7. 0.0 :	6.0
F-204.1\%	0.0
\$- \$19.1\%	c. 0
te 463.4\%	C. 0

C.C	c. 0	0.0	e.0	0.0
$0 . C$	0.0	0.0	C.C	C.t
C.03	0.25	0.80	0.91	0.41
1.18	5.75	7.81	5.96	2.06
0.03	0.25	0.80	0.93	C.41
c.c	0.0	0.0	0.0	0.0
C. 6	0.0	C. 0	0.0	0.0

0.0
6.6
0.10
0.45
6.16
0.6
0.0
0.0
6.6
0.65
0.20
6.65
6.6
0.0
0.0
$c .0$
$6 . c$
0.08
$c . c 1$
$c . c$
$c . c$
0.0
0.0
6.6
0.0
0.0
6.6
6.6
0.0
0.0
6.6
0.60
0.6
6.6
6.0
$0 . c$
$0 . c$
6.16
$c . c$
$c .0$
$0 . c$
$c . c$
6.6
$c . c 9$
6.36
$6 . c e$
6.6
$6 . c$
6.6
6.6
0.68
0.30
6.65
6.6
6.6
6.0
$0 . c$
$0 . c 8$
0.27
6.65
6.6
0.0
$c . C$

2 Ditacticn. 12.9

0.0	0.0	0.0
$c .0$	$c .0$	0.0
6.0	$C .60$	$c .0$
0.0	0.0	0.0
$c .0$	$c . c 0$	0.0
6.0	$c .0$	$C .0$
0.0	0.0	0.0

0.0	$C . C$	$C . C$	$C . c$
0.0	0.0	0.0	$c . c$
0.20	0.37	0.13	0.01
1.25	2.23	0.61	0.01
6.20	0.37	0.11	0.61
6.0	0.0	0.0	0.6
0.0	6.0	0.0	0.0

$\begin{aligned} & C . C \\ & C . C 1 \\ & c . C l \\ & c . C 1 \\ & c . c \\ & C . c \\ & C . C \end{aligned}$

6.6
6.01
6.64
6.61
6.0
6.6
6.6
$c . c$
0.01
0.64
6.61
0.0
$c . c$
$c . c$

EOABCIIOM. C.C.

009090
0.00000
OUOOUOO
$0 \% 0090 \%$

90 = * 0

-O NOENO
0.6
0.0
0.0
0.6
0.0
0.0
6.0

9000008
000000

oonoson
0.0
6.10
0.60
0.60
6.6
6.0
0.0
6.0
$6.6 c$
$6 . c 1$
$c . c 0$
$c . c$
6.0
$c .0$
0.0
6.68
6.63
6.01
0.6
6.6
0.9
gnognoo

$$
\begin{aligned}
& (\theta=40 \mathrm{~min}) \\
& (\Omega=50 \mathrm{~min})
\end{aligned}
$$

ctafction imetensi

epinctich ses.o

ve-8e4.4	0.0	c. 0	0.0	6.0	c.t	C.e	8.8	C. 6	C.C	C.C	O.C	C. 0	0.0	0.0	0.6
t-0 18.1	C. 0	c. 0	0.0	0.0	0.0	0.0	C.C	c. 6	c.c	C. 6	C.C	C. C1	C. ${ }^{\text {c }}$	C.C 3	0.63
7-284.1	C.C	c.c	C. 0	6.0	c. 0	0.0	0.60	0.06	0.0	0.0	0.0	C.Cs	C.Ce	C.Cs	C. 11
7. 0.0	0.0	0.0	0.0	0.0	C. 5	C.C	C.C1	C. 61	C.Cl	C.C2	0.63	C.C 2	C.Ct	c. 62	0.62
- Jes. 1	c. 0	c. 0	0.0	0.0	0.0	0.0	0.60	c.cc	c.ec	C.Cl	0.61	C.CC	C.E	c.c	0.6
Ta 517.1	6. 6	6.6	C. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C.Co	C.C	C.ct	C. C
Y. 464.4	0.0	0.0	0.0	c. 0	c. 0	C.C	c. C	C. 6	C.C	0.0	0.0	c. 6	C. 5	C.C	C.C

2otaccitcm. 4.2.1\%

70-te4.4	-	C. 0	6.0	0.0	0.0	0.0	0.0	C.C	C. 6	C.C	C.C	C. 6	C.C	c.e	C.C	0.0
70-519.1		C.C	C.C	C. 0	C. 0	6.0	0.0	0.0	0.0	0.0	0.0	0.0	C.C:	C. ${ }^{2}$	C.C3	C.C4
Y=-284. 1	-	0.0	0.0	c. 0	0.0	C. 5	$6 . t$	C. 60	c. 66	C.C	c. 0	0.0	C.C7	c.ce	6.12	C. 13
v. 6.0	*	c. 0	c. 6	0.0	0.0	0.0	0.00	C.Cl	C.Ci	C.C2	C.C4	c. 54	C.C2	C.Cl	C.C2	0.62
1-384.1	=	C. 0	C. 6	c. 0	c. 0	0.0	0.0	0.00	$0 . C 6$	c.cc	C.01	0.01	c. 50	C.C	c.c	C. 6
7. 319.1	*	0.0	0.0	0.0	0.0	c. 0	0.0	0.0	C. 6	c.e	C. 0	O.C	c.co	C.C	c.e	C.c
$y=164.4$	-	c. 0	C.0	0.0	0.0	0.0	0.0	0.6	O.C	C. 5	C.C	C. C	6.0	c. C	0.0	0.6

2 fintcIICN $=\quad 4 \geq 9.7$ n

T--EE4.4	c.0	C.t	5.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C.C	C. 6	C.C	C. C
V--517.1	0.0	0.0	0.0	C. 0	0.6	0.6	C. 6	C. C	C. 6	c. C	0.0	C.c2	C. 11	0.11	C.1e
7--2t4.1*	c. 0	6.0	0.0	0.0	0.01	0.01	0.63	C.C?	C. C	C.C	c. 6	C. 13	C. 45	0.62	c.et
1* C.CM	6.0	C.C	c. 0	0.0	0.00	0.07	0.11	0.13	0.17	C. 14	C. 12	C.C)	C. $¢ 7$	c. 11	C. 12
$\mathrm{V}=284.1 \mathrm{M}$	0.0	0.0	0.0	0.0	0.01	0.02	0.03	0.03	0.03	C.C5	$0 . C 4$	c. 01	c.e	c. 6	6.1
1. 514.1\%	c. 0	c. 0	0.0	c. 0	c. 5	c. C	D. 6	c.c	c. C	c.C	$0 . c$	c.co	c.c	$0 . C$	0.6
$y=864.4 \times$	c. 0	c. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C.C	c. 6	C.C	C.C	c.c	0.6

fetkecitca. 355.0 .

1 DIRECTIOM
252.5 F

ve-464.4	\%	0.0
	\checkmark	C. 0
7--784.1	\because	C. 0
1. C.C	*	6.0
V= $\mathbf{E c t . 1}$	*	c. 0
70 319.1	H	c.e
7. 664.4	\cdots	0.0

0.0	0.0	$c .0$
6.0	0.0	6.0
0.01	0.18	0.5
1.60	3.90	5.72
$c .01$	0.10	0.57
6.6	6.6	$c .0$
0.0	0.0	0.0

$C . C$	$6 . c$
$C .0$	0.0
$C .94$	1.2
$E .16$	6.6
0.94	1.2
$c .0$	0.0
$c . c$	$6 . c$

6.6	0.6	0
0.0	$0 . c$	0
1.21	1.76	22.
6.63	5.52	3.
1.21	1.23	1
0.0	0.0	0
6.6	$C .6$	6.0

0.6	C. 6	C.t
0.6	C.zt	C. 95
21.66	21.52	17.ec
3. 26	4.54	E. 59
1.35	1.24	1.14
0.0	0.04	0.14
C. 6	C.C	0.6

6.6	6.0
1.58	1.80
13.42	16.11
3.84	1.95
6.64	6.14
0.12	$C .66$
0.6	$C .6$

0.0
1.57
8.17
1.30
6.6
$c . c$
$c . c$

$0 . c$	$0.6 c$
1.55	1.59
$7.2 c$	7.11
1.20	1.23
$c . c$	$c . c$
$c . c$	$C . c$
$0 . c$	0.6

2 ctaccitca -
1se.t p

6.0	6.0	0.0
6.6	6.6	0.0
6.0	0.11	1.16
35.43	12.29	25.20
6.0	6.21	1.16
0.0	0.0	0.0
6.0	6.0	0.0

0.0	0.0	0.0
0.0	0.0	0.0
1.82	2.10	$2.2 t$
18.21	17.37	11.10
1.82	2.10	2.26
6.0	$C .0$	6.6
0.0	0.0	0.0

0.0
0.0
2.14
10.12
2.34
0.6
0.6

$0 . c$	$c . c$
0.0	0.01
2.36	2.27
9.82	9.44
2.34	2.30
$C .6$	$C .60$
$c .6$	$6 . c$

$c . c$	$c .8$	$C . c$
0.01	0.14	0.44
2.27	4.29	4.64
4.64	7.58	4.45
2.30	2.07	1.15
$6.6 c$	6.61	0.65
6.6	6.6	0.6

nonnuni
ninnginn
ingnuma
6.6
1.63
3.16
$c .59$
6.6
6.6
6.6
0.60
1.65
3.83
6.54
6.6
0.6
0.6 Etitacticn - 15.3 n

Y=-ect. 4	6.0	$6 . t$	C. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	c.t	C.C	C.C	c. 80
70-314.1	0.0	0.0	0.0	0.0	C.C	C.C	C. 6	c.t	C.C	0.0	$0 . C$	C.E4	C.13	0.20	0.81
t-\%24.1	6.0	C.c2	0.27	0.71	1.21	1.57	1.12	1.72	1.4:	C. 81	c. 94	C. 24	C.E]	t. 11	C. 73
va 0.0	c. 0	1.12	5.85	7.61	7.67	7.53	7.21	7.03	6.88	5.39	2.49	C. 56	C.ce	C.C)	C.cs
1* 284.01	0.0	0.02	0.21	0.71	1.21	1.51	1.12	1.12	1.07	1.47	0.70	0.16	C.C	C.C	c.c
*- 319.1 .	c. 0	C. 0	0.0	0.0	0.0	0.0	0.1	C.C	C. C6	C.C)	C. 51	c.ct	C. 0	C.C	C.C
Pe 464.4 (6.0	C. C	C. 0	C. 0	0.0	0.0	0.0	0.0	c.e	C. C	C. 0	C. 6	c. C	$6 . C$	C. C

2 DIOLCTICA - 12.9 .

0.0	0.0	0.0
6.0	0.0	0.0
6.0	6.6	$c .0$
0.0	0.0	0.0
$c .0$	$c .0$	6.0
$c . c$	$c .0$	$C .0$
0.0	0.0	0.0

0.0
$c .6$
1.13
2.85
6.84
$c .161$
0.0
0.0
0.6
0.42
1.68
0.31
6.61
0.6
0.0
$0 . c 2$
$c . c 4$
0.12
$c . c 4$
6.60
6.0
$6 . c$
6.63
6.18
0.62
0.6
6.6
6.6

[^4]$C . C C$
0.67
$c .21$
$c .62$
$0 . c$
$c . c$
$c . c$

- oinctitick
6.0

00000.0 -0006io

0000890
60006 in

0.0	0.0	0.0	0.1	C.C	6.6
C. 0	0.0	0.0	0.0	0.0	$0 . c$
0. 15	0.43	1.10	1.10	1.18	0.61
1.46	3.:9	4.78	4.84	4.44	4.52
0.15	0.18	1.10	1.20	1.11	1.01
C. 0	0.0	0.0	0.0	0.0	0.00
C. 0	6.6	6.6	6.1	C.C	6.c

6.6
6.8
6.18
2.11
0.19
0.01
6.6
0.6
6.8
0.3
0.4
6.1
$0 . c$
0.6
0.0
$c . c 1$
0.65
$c .69$
6.63
$c . c 0$
0.0
0.0
6.68
6.68
6.62
6.6
6.0
6.0
ongonno
cosomot

```
(0 = 80 min)
(\Omega=90 min)
```

- alatilick inetensi

CCMCEMTEATICAIPGicu.pi

4 otalcita $=!\operatorname{scs.0}$

6.0
0.0
0.0
$c .0$
0.0
0.0
$c . c$
$C .6$
0.6
0.60
6.61
0.60
0.0
6.6
6.6
6.6
0.06
6.01
6.68
0.0
6.6
$C . c$
$c .0$
0.0
$6 . c 1$
6.06
0.0
$C .0$
0.6
6.0
0.0
6.03
$c .61$
0.0
0.6
0.0
0.0
0.0
$0 . c 6$
0.01
0.0
0.0
6.6
6.68
6.68
6.16
6.63
6.68
$C .0$
$C . C 2$
$C .11$
$C .15$
$C . C 5$
$C . C$

$0 . c 0$
$0 . C 4$
$c .18$
$c .3 c$
$c . c 3$
$c . c 1$

2 OIRCETION - 452.2 F

$\begin{aligned} & 7=-264.4 \\ & y=-519.1 \end{aligned}$	N
Y=-284.1	-
$7=6.0$	*
Y= 284.1	*
y- 319.1	\%
$y=884.4$	\%

$c .0$	0.0
$c . c$	$c .0$
0.0	0.0
$c . c$	0.0
$6 . c$	$6 . c$
0.0	0.0
0.0	0.0

0.0	0.1
0.0	0.0
0.6	6.16
0.0	0.61
0.0	$0 . c 0$
0.0	0.0
0.0	$0 . c$

$6 . c$	6.8
0.0	0.0
0.66	$6 . c$
6.61	6.62
$0 . c c$	$6.6 c$
$c .6$	$6 . c$
6.6	$C .6$

C. 6	C. C	. C
0.6	0.0	. 11
c.c	0.0	. 10
C.C4	C. 67	. 11
C.01	0.01	. C?
c.t	0.5	. CO
c. 5	C.C	. 6

[^5]1 ctrecticn
439.7%

7--484.4	\cdots	0.0	C.C	6.0	C.O	0.0	0.0	0.0	0.0	0.0	0.0	0.0	C.C	C.C	C.CC	c.ct
V--519.1	\cdots	0.0	0.0	0.0	0.0	c. 0	0.1	C. C	C.C	C.C	c.e	0.0	C.C 3	C. 12	C. 15	C.ic
$y=-284.1$	\cdots	c. 0	0.0	0.0	0.0	0.01	0.02	0.63	C.C?	C. C	C. 5	C.t	C. 24	0.41	0.91	c.es
7= 6.0	\cdots	C.C	C. 0	c. 0	0.0	c. 08	0.07	0.11	0.18	C. 1*	C. 14	C. 44	c. ${ }^{6}$	C. 51	C.ec	c.et 2
V= 2f4.1	\cdots	0.0	0.0	0.0	0.0	C.01	0.02	0.03	0.03	$0 . C 3$	C.C5	0.68	c. 12	C.15	C. 14	C. 11
$\rangle=519.1$	*	c.0	c. 0	0.0	6.0	C.e	c.e	0.6	C.C	C. C	C. 6	C.E	C.cl	C.C2	$0 . C 3$	C.C?
7- 284.4	m	c. 0	D.0	0.0	0.0	C. 0	C.6	C.C	C.C	C.E	c. 5	C.C				

1 OIRECTICA - 355.0

Y--664.4 ${ }^{\prime \prime}$	0.0	0.0	0.0	0.0	C. 0	0.0	0.8	c. 2	C.c	Q.C	0.0	C. 6	C.e	C.Cl	C.ct
7--519.1	0.0	C. 0	0.0	0.0	0.0	0.0	O.C	c. 6	C.C ${ }^{\text {c }}$	C. 13	0.43	c. 75	C. 97	1.c:	1.11
ta-iet.1	c. C	C.E	C. 0	0.0	0.05	0.17	0.26	0.21	C.ET	2.:1	3.87	4.46	4.EC	4.47	4.44
7. 0.0%	0.0	0.0	0.0	c. 0	0.32	0.86	1.12	1.18	1.23	1.65	1.f?	2.1?	2.19	2.45	E. 5
\% - 206.1\%	C.O	c. 0	C. 0	c.0	C.C5	C. 17	c.it	c. 36	C.z9	C. 34	C. 40	c. 66	C. 52	c.se	C. 57
7= 517.1 N	0.0	C. 0	0.0	0.0	c. 0	0.0	0.0	0.0	C.cc	C.6:	C.CE	C.Cs	C. 11	c. 12	c. 12
7* 664.4 \%	6.c	c. 0	0.0	c. 0	c. 0	0.0	0.0	0.0	0.0	D.c	0.0	C.C	C.C	C.C	c. 6

2 DIRECTIOM * 252.5\%

C.0	0.0	$0.0{ }^{\circ}$	c. 0
6.0	C. 6	0.0	C. 0
C. 0	0.01	0.12	C. 37
c. 0	1.c\%	3.91	9.70
C.C	C.Cl	0.18	0.57
6.5	C. 5	C. 0	c. 0
0.0	0.0	0.0	C. 0

C.C	C.C	0.6	C. C	C.E
0.0	0.0	0.0	0.0	C.zt
C. 95	1.21	1.33	22.63	21.52
4.14	C.Ce	5.81	$5.7 t$	S.fs
0.95	1.21	1.23	1.36	1.37
C. 0	c. 0	$0 . \mathrm{C}$	0.0	0.04
C.C	C.C	E. 6	c. 6	C.C

6.6	C.E	C.C
C. 54	1.60	1. 53
11.54	14.18	11.68
t.es	6.18	6.15
1.85	1. 1 C	1.:3
0.14	0.30	c.iz
C. 6	0.0	c.C

C.C	0.C2	C.C4
2.68	2.13	2.14
S.fe	¢.t?	E.fs
5.71	5.79	9.75
1.42	1.45	1.46
C.2*	C.it	c.ic
C.C	O.C	G.E

2 cinectick : $\quad 156.0 \%$

C. 0	c. 0	0.0	0.0 .	0.0	0.0
C. 0	C.C	0.0	0.0	0.0	0.0
c. 0	C. 31	1.16	1.81	2.12	2.24
35.45	32.88	25.22	18.18	23.63	11.12
C. 6	C. 31	1.16	1.81	2.12	2.24
0.0	0.0	0.0	c. 0	C.C	C. C
c. 0	C. 0	0.0	0.0	0.0	0.0

0.0	0.0
0.0	0.0
2.29	2.29
9.54	9.09
2.29	2.29
6.6	6.6
$0 . c$	6.6

$C . c$	$6 . c$
0.01	0.1
2.28	4.6
$5.5 c$	8.2
2.30	2.31
$6 . c c$	0.6
$6 . c$	$6 . C$

6.6	6.6
0.14	0.47
4.63	5.75
8.27	6.16
2.31	2.89
0.63	0.29
6.6	6.6

6.6
$c .83$
6.82
7.89
8.88
$c .17$
6.6
6.6
1.65
6.25
7.16
2.86
6.23
$6 .{ }^{2}$ 0.65
1.23
6.16
6.92
2.26
0.26
6.6

[^6]$7=-684.4$
$y=-519.1$
$7=-519.1$
VA- iE6. 0.0

- 284.1
- S19.1m
65.3 .

2 olftcilca. 12.0 .

0.0	0.0
$c .0$	0.0
6.0	$c .0$
0.0	0.0
$c .0$	0.0
6.6	$C .0$
0.0	0.0

0.0
0.0
$c .0$
0.0
0.0
0.0
0.0

0.0	$C .6$	$6 . E$	6.1
0.0	0.0	0.0	0.6
0.17	0.63	1.10	1.0
1.62	3.14	4.84	5.0
0.13	0.65	1.10	1.0
0.0	0.0	0.00	0.0
6.0	4.0	0.0	0.0

c.e	C.C	0.0	0.6	0.C
C. 6	C.C	C.C	0.10	. 16
1.41	1.tC	1.13	1.60	1.13
5.31	3.16	5.33	5.43	1.64
1.41	1.4t	1.63	L. 24	. 68
0.0	C.ec	C.C:	C.Ce	. 15
0.0	0.0	0.0	0.0	. C

$c .69$
0.32
2.45
5.34
2.22
$c .20$
6.6

COtacitom
C.e

1-864.4*	c. 0	C. 0	0.0	0.0	0.0	0.0	$6 . c$	0.6	e.t	$6 . t$	0.0	e.c	0.0	0.09	0.65
7=-811.1	C. 0	C. 6	6.0	C.O	0.0	6.0	0.0	0.0	C.C	c. C	C. ${ }^{\text {c }}$	C. 14	c. 34	c. 36	0.32
V=-284.1	0.0	0.0	0.0	0.15	0.61	1.00	1.34	1.40	1.05	1.76	1.94	$2 . c *$	2.26	2.34	2.41
- $6.0{ }^{\circ}$	6.0	0.6	0.0	1.46	1.:1	4.78	1.14	3.21	5.27	3.49	5.97	5.5\%	5.54	5.31	5.16
\% 284.1 m	c. 0	C. 0	0.0	C. 19	0.61	1.08	1.34	1.4c	1.45	1.4\%	1.14	3.08	2.21	3.73	2.21
V= 110.1	c. 0	0.0	0.0	6.0	c. C	0.0	0.E	0.0	0.00	0.01	0.04	c.15	c.id	C. ${ }^{\text {a }}$	C.ic
1-164.4M	6.0	C.0	0.0	0.0	C. 6	C.t	6.6	C.t	C. 6	C. 6	c. 6	0.6	0.0	0.0	0.6

Sensivity Analysis
The merit of any model depends on its ability to represent the actual physics and chemistry.

It is evident from the diffusion equation that both the turbulent diffusivities and the velocity profiles have a direct influence on the values calculated by the present model. This is the reason why, as was previously discussed, general expressions are provided for the turbulent diffusivities and the velocity profiles by means of several parameters. In this way, different functional relationships can be easily tested with the present model.

All the parameters given in Table 6.10 must be supplied as input information by the user. Therefore, these parameters can be selected to obtain the best set which will represent the actual conditions of the problem to solve.

The influence of these parameters on the concentration distribution is discussed next. The basis of this analysis is the parametric study on hypothetical cases previously presented.

The influence of AM can be observed from a comparison between cases 2 and 3. As the wind velocity increases, i.e., AM decreases, the values for the mean concentration at a same position decrease. This effect is more evident for the concentration distribution at the ground level.

$$
\begin{aligned}
\text { Table } 6.10: & \text { Parameters in Turbulent } \\
& \text { Diffusivity and Velocity } \\
& \text { Profiles }
\end{aligned}
$$

ISTB	the stability class
ALPHA	the coefficient in the equation for the
U-component of the turbulent diffusivity	
vector	
AM	the geostrophic wind speed
	the exponent in the power law equation for
	the velocity profiles
	the constant that determines the direction
	of the mean wind velocity
	the parameter that specifies the time required
	for the y-component of the wind velocity to
	change from its value at $t=0$ to its maximum
	value, $P \cdot u$

A comparison between cases 1 and 3 shows the effect of alpha on the concentration distribution. An increase in alpha (Case 3) means an increase in the y-component of the turbulent diffusivity vector, and thus more dispersion occurs in the y-direction. The net effect, as can be observed in Tables 6.4 and 6.5 , is that the
concentration at the centerline decreases, and at any y different than zero increases, when compared to the values at same x and z for case l .

The effect of the chemical reaction on the concentration distribution can be observed from a comparison between cases 3 and 4. The concentration values at any location, $\mathrm{x}, \mathrm{y}, \mathrm{z}$, in case 4 , where a chemical reaction occurs, are smaller than the values in case 3 , where the rate of reaction is zero.

A comparison between cases 4,5 , and 6 shows the effect of the atmospheric stability on the concentration distribution. As the atmospheric stability increases, the concentration values at the centerline increase, and the concentration distribution at ground level decreases. It can also be observed that as the instability increases, the pollutant dispersion increases, and the x-position of the maximum ground level concentration moves closer to the source.

Case 7 shows the effect of the stack height on the concentration distribution. It is evident that as the stack height increases, the concentration values at ground level decrease (compare with case 4).

Finally, the effect of the y-component of the wind velocity (case 8) is shown in Tables 6.6 and 6.7. In this case, V was directed in the positive y-direction (from
-YMAX to $Y M A X)$, and the net effect is to move the plume more towards that direction.

From this analysis it can be concluded that the present model responds to variations in atmospheric conditions. Furthermore, the results indicate good agreement when compared to an actual response one would expect.

There are two additional parameters that will also influence the results of the present work. Although they do not affect the solution as much as the previous ones, some attention should be devoted to them.

One arises because of the use of RKGS subroutine for solving the system of first-order ordinary differential equations. This parameter is the upper error bound, which must be supplied as input information by the user, and is called PRMT (4) in the computer program.

Neither the truncation errors nor estimates of them are obtained in the calculational procedure performed by "RKGS". Therefore, control of accuracy and adjustment of the step size is done by comparison of the results due to double and single step size calculations.

The procedure is the following: a test value δ (see RKGS [14]), which is an approximate measure for the local truncation error, is compared to the given tolerance PRMT(4). If δ is greater the PRMT(4), the step size or increment of integration of the independent variable is
halved, and the procedure starts again. However, if δ is less than PRMT(4), the results are assumed to be correct. It can be observed that the larger the value of PRMT(4), the faster the integration is performed. This indicates a decrease in the computing time required, but there is a possibility of obtaining less accurate results. In order to avoid this inaccuracy on the results, the value of PRMT (4) is usually given small, i.e., in the range of 10^{-3} to 10^{-5}. However, its value and the value for PRMT(3), the initial step size, are actually dependent on the problem to be solved. Unfortunately, there is no general formula to evaluate these parameters. Therefore, for each particular problem, their values have to be studied in order to obtain a fast and accurate solution. In the present work, this study was performed in the following way: initially, a small value for PRMT(4) was given, i.e., 10^{-5}. Then, this upper error bound was increased and the results for the concentration distribution compared to the previous ones. This procedure was stopped when a change in the second decimal on the concentration values was observed. The corresponding PRMT (4) was then used thereafter, for all the other cases solved.

A similar procedure was performed to obtain the best value for PRMT(3). In this case, several values were
tested and the corresponding computing times compared. It should be pointed out that this parameter affects only the number of bisections done on it, which is also related to the given tolerance PRMT (4).

For the present study, the best values obtained for these two parameters are given in Table 6.11.

Table 6.11 : PRMT(3) and PRMT(4) Values Used in the Simulations

	Prairie Grass Runs	Hypothetical Cases
PRMT (3)	.05 min	2.5 min
PRMT (4)	.01 min	1.0 min

It can be observed that the values of PRMT(3) and PRMT(4) for the Prairie Grass runs are much smaller than those for the hypothetical cases. The reason being the much smaller dimensions in the three coordinate directions, and thus a smaller step size of integration and smaller upper error bound were needed.

Orthogonal collocation introduces a second parameter that can affect the solution of the model. It is evident that the number of equations increases as the number of
orthogonal points used to obtain the solution is increased. This situation will therefore increase the computer time requirements.

Having this in mind, the present method was developed for a variable number of orthogonal points in the x, y, and z directions. They must be supplied as input information by the user, and can be changed from one simulation to another. However, in the present program there is a restriction to use not more than 15 points in each direction and the product $\left(N_{x}+1\right){ }^{*} N_{y}{ }^{*} N_{z}$ be less than 700. The reason being dimension and common statements presently used in the computer program. Actually, no limit exists except for computer capacities and time requirements to solve the problem.

A similar analysis to the one performed for PRMT(4) was done for the number of orthogonal points needed to obtain accurate results. It was concluded that 5 to 10 points in each direction were enough.

Facilities at U. of H. and Time Requirements
The computer facilities at the University of Houston consist of a UNIVAC 1108 digital computer at the University Computing Center and of an IBM 360 Model 44 digital computer in the Engineering Systems Simulation Laboratory of the Cullen College of Engineering.

The computer time required to simulate atmospheric diffusion by the present method depends on the type of problem to be solved. For all the hypothetical cases simulated, with the exception of cases 5 and 10 , the ratio of CPU time to real time was about $1 / 93$ on the UNIVAC and $1 / 16$ on the IBM. Case 5 was solved with a ratio of $1 / 53$ on the UNIVAC and $1 / 10$ on the IBM, and the two sources case had a ratio of $1 / 46$ and $1 / 7$, respectively.

The computer time required to solve each of the Prairie Grass runs was higher than the hypothetical cases. The reason being the small dimensions in the x, y, z directions, and thus a very small diffusion time. This required, as it was previously discussed, a very small step size in the integration of the differential equations and a very small upper error bound. In these cases, the ratio of CPU time to real time was about $1 / 2$ on the UNIVAC and $3 / 1$ on the IBM.

Chapter VII

SUMMARY OF RESULTS AND RECOMMENDATIONS

Turbulent diffusion from single or multiple point sources in the atmosphere was successfully simulated using the K-theory and a new numerical technique, orthogonal collocation.

Excellent agreement was observed between simulated and experimental concentration profiles for ground level emission sources. The present model had also an excellent response to variations in atmospheric conditions. This was obtained by simulating hypothetical elevated source cases.

Empirical equations were used to describe the mean wind velocities and the turbulent diffusivities. Several parameters were included in these equations so that many atmospheric conditions can be simulated by the present technique.

The present method has several very significant advantages over other available methods, i.e.,
1.) A general 3-dimensional, unsteady state problem can be solved using a simpler numerical technique. Accurate results can be obtained in very reasonable amount of computer time.
2.) The method can handle multiple sources put at any position, depending only on the orthogonal points considered.
3.) Several meteorological effects are taken into consideration.
4.) Mean velocities and turbulent diffusivities can be functions of all three position coordinates, time, and meteorological conditions.
5.) Cases with or without an inversion layer, and with or without generation or deposition at the ground level can be solved.
6.) The concentration at the source or the emission rate can be given as input information. The method will also calculate the flux across $y-z$ planes at $x=$ constant.
7.) Chemical reactions in the atmosphere can be incorporated.
8.) Most of the assumptions involved in the present method are in the input information.

Although the present model gives an improved method for solving atmospheric diffusion problems, it should be extended such that any general case could be solved. These extensions should include:
1.) A better representation of true dispersion processes by means of improving the expressions for turbulent diffusivity and mean wind velocity profiles;
2.) The incorporation of more realistic chemical reactions and in general any type of removal processes;
3.) The incorporation of other atmospheric effects such as the Coriolis effect;
4.) Improvements in orthogonal collocation such as removing the restriction on the position of each point source; and
5.) Extension to area and line sources.

BIBLIOGRAPHY

1. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions, Dover Publications, Inc., New York (1965).
2. Barad, M. L., "Project Prairie Grass, A Field Program in Diffusion", Vol I, Geophysical Research Papers No. 59, AFCRC Report TR-58-235 (i) (1953).
3. Barad, M. L., "Project Prairie Grass, A Field Program in Diffusion", Vol. II, Geophysical Research Papers No. 59, AFCRC Report TR-58-235 (ii) (1959).
4. Bullin, J. A., "Hybrid Computer Simulation of Turbulent Diffusion in the Atmosphere by Monte Carlo Methods", Ph.D. Dissertation, Dept. of Chemical Engineering, University of Houston (1972).
5. Davies, D. R., "A Note on the Two-dimensional Equation of Diffusion in the Atmosphere", Quart. Journal Royal Meteor. Soc. 80, 429 (1954).
6. Egan, B. A. and J. R. Mahoney, "A Numerical Model of Urban Air Pollution Transport", Conference on Air Pollution Meteorology, American Meteor. Soc., 8 (1971).
7. Eschenroeder, A. Q. and J. R. Martinez, "A Modeling Study to Charecterize Photochemical Atmospheric Reactions to the Los Angeles Basin Area", General Research Corporation, CR-1-152, November (1969).
8. Eschenroeder, A. Q., J. R. Martinez and R. A. Nordsieck, "Evaluation of a Diffusion Model for Photochemical Smog Simulation", General Research Corporation, EPA-R4-73012a, October (1972).
9. Ferguson, N. B. and B. A. Finlayson, "Transient Chemical Reaction Analysis by Orthogonal Collocation", Chem. Eng. J. 1,327 (1970).
10. Finlayson, B. A., "Packed Bed Reactor Analysis by Orthogonal Collocation", Chen Eng. Sci., 26, 1081 (1971).
11. Finlayson, B. A., The Method of Weighted Residuals and Variational Principles, Academic Press, New York (1972).
12. Hallidy, L. A. and J. M. Anderson, "A Model for the Dispersal of Sulfur Dioxide Over an Urban Area", Environmental Letters, 6, 55 (1974).
13. Haugen, D. A., "Project Prairie Grass, A Field Program in Diffusion", Vol. III, Geophysical Research Papers No. 59, AFCRE Report TR-58-235 (iii) (1959).
14. IBM Application Program, "System/360 Scientific Subroutine Package", H20-0166-5, IBII Co., 6th Ed., 333 (1970).
15. Lamb, R. G., "Note on the Application of K-Theory to Diffusion Problems Involving Ionlinear Chemical Reactions", Atmospheric Environment, 7, 257 (1973).
16. Michelsen, M. L., "Algorithms for Collocation Solution of Ordinary anj Partial Differential Equations", Inst. for Kemiteknik Numer. Inst. Danmarks Tekniske Højskole, December (1973).
17. Pasquill, F., Atmospheric Diffusion, D. van Nostrand, London (1962).
18. Pasquill, F., Atmospheric Diffusion, 2nd Ed., John Wiley and Sons, New York (1974).
19. Roberts, J. J. E. J. Croke, A. S. Kennedy, J. E. Nasco and L. A. Conley, "A Multiple-Source Urban Atmospheric Dispersion lodel", Argonne National Lab. Report No. ANL/ES-CC-007, May (1970).
20. Roth, P. M., S. D. Reynolds, P. J. W. Roberts and J. H. Seinfeld, "Development of a Simulation Model for Estimating Ground Level Concentrations of Photochemical Pollutants", System Applications, Inc., Report 7lSAI-21, July (1971).
21. Runca, E. and F. Sardei, "Numerical Treatment of Time Dependent Advection and Diffusion of Air Pollutants", Venice-IBM Scientific Center, Report No. 33, May (1974).
22. Seinfelct, J. H., Air Pollution, McGraw-Hill Book Co., New York (1975).
23. Shir, C. C. "A Preliminary Numerical Study of Atmospheric Turbulent Flows in the Idealized Planetary Boundary Layer", J. Atmos. Sci., 30, 1327 (1973).
24. Shir, C. C. and L. J. Shieh, "A Generalized Urban Air Pollution Model and Its Application to the Study of SO_{2} Distributions in the St. Louis Metropolitan Area", J. of Applied Meteorology, 13, 185 (1.974).
25. Sklarew, R. C., "A IJew Approach: The Grid Model of Urivan Air Pollution", APCA No. 70-79 (1970).
26. Smith, F. B., "The Diffusion of Smoke from a Continuous Elevated Point Source into a Turbulent Atmosphere", J. Fluici Mechanics, 2, 49 (1957).
27. Stewart, W. E., Personal Communication, September (1974).
28. Sutton, O. G., Micrometeorology, McGraw-Hill Book Co., New York (1953).
29. Tennekes, H. and J. L. Lumley, A First Course in Turbulence, The MIT Press, Cambridge (1972).
30. Turner, D. B., "Workbook of Atmospheric Dispersion Estimates", PHSP No. 999-AP-26 (1969).
31. Villadsen, J. V. and W. E. Stewart, "Solution of BoundaryValue Problems by Orthogonal Collocation, Chem. Eng. Sci., 22, 1483 (1967).
32. Villadsen, J. V., Selected Approximation Methods for Chemical Engineering Problems, Inst. for Kemiteknik Numer. Inst. Danmarks Tekniske H申jskole (1970).
33. Villadsen, J. V., Personal Communication, August (1974).
34. Worley, F. L., Jr., "Sulfur Dioxide Reactions and Removal Processes in the Atmosphere", AIChE Symposium Series, 70, No. 137, 98 (1974).

APPENDIX A COMPUTER PROGRAM LISTING

The computer program used in the present work is shown next. All statements are written in Fortran IV. This program can be executed in IBM 360 or UNIVAC 1108 digital computers.


```
72:
73:
74:
75:
76:
77:
10:
79:
90:
81: r.
82: C
83: C
44: C
45:
80:
87:
Q9:
97:
70:
91:
92:
`3:
94:
45:
96:
97:
9%:
44:
100:
101:
102:
103:
104:
105:
1)\:
107:
*
```

```
MRITE(A,.2O2) YMAX,H:
    | Or, I=1,NSRCS
    HFAD(5,1C4) KS(I),LS(I),CO(I),XPAX(I)
    &5. WRITL(G,204) KS(I),LS(I),CO(I),XCAX(I)
    <EAlJ(5,105) ISTH,INVRS,ALDI,A,AK
    wHITF(f,?G7) ISTR,INVKS,ALPHA,AK
    DFAO(5,1H3) |ST,IGR,AM,TCH,P
    WPITH(G,20Z) UST,USQ,AM,TCH,O
C
r.
INITIAL CONHITIONS
    \primeJLIM=(NX+1)*ソ!Y*'N'
    PRMT3=PRNT(3)
    MO 5l I= =NOIM
    w(I)=ワ.
    Y1(I)=0.
    Y2(I)=C.
bl Y 3(I)=0.
    SUN=0.
    KK=1山!IMM-1
    .)\cap 52 I =1,KK
    |[PY1(I)=1./FL\capAT(NDIM)
5 2 ~ G U N = S U N + \| E R Y I ( I ) ~
    H[EYl(N!LIM)=1.-S|N
    |\cap &f, I= I,N涪M
    |FPYZ(I)=LERYI(I)
Of, IFRRY,(I)=NERYI(I)
    11=vx+2
    NZ=1NY+2
    : 3=11L+?
    KX=NX+1
    KY=NY+1
    K7=^\ +1
    U! bs I =1,N!SOC
```

NAIN 720
MAIH 730
MAIN 740
MAIN 7.0
MAI 1 7 7 $)$
*AII 770
Mヘ1ソ780
MAI* $7 \rightarrow 0$
*aIn POO
"AIV 410
MAIN \& 20
MAIN P 30
MAIN 940
MAIV 4,0
MAIM, Ω_{1},
MAIV P70
NAIN צ 30
MAIr 9 f)
NAIV 700
MAIN 919
MAIN 720
MAIN 9:0
MAIN 940
NAIll 9 ハ1)
MAIN 7:0
MAIN 970
MAIl gon
MAIM כつO
MAIN1 OCO
NAIV101"
MAIM1020
MAIMIO 30
MAINIO4n
*"AINIO7O

```
109: Mn 3.3 J=1,N1
110: リ\cap り3 L=1,N3
111: 53 しC(I,J,K,L)=0.
112: C
113: C
114: C
115: C
116: 0
117: C
118: C
114: C
120: C
121:
122:
123:
124:
125:
1?6:
127:
179:
12%:
130:
131:
132:
133:
134:
135:
1 36:
137:
138:
1ر9:C
140: C
141: C
14?: C
143:
CALCIILATIMII FF IRTHOGONML PFIF'TS, GUANKATURF NFIGHTS, AFL
"AT:ICFS A AND R
x OIRECTIOH
C
```



```
    LO 2.? I= I,M1
    xxx(1, I)=F\cap\capT(I)\divx`"Ax(1)
    IF(NSSCS.E(v.1) <п TM 20
    x XX(?,I)=RUחT(I)*x`11 x(2)+xッ4x(1)
    IF(NSPCS.tu.2) CO TO 2n
    XXX(3,I)= FOOT(I)**NAX(3)+XMAX(2)
20 GRMITI VUE
    \[ 6r, I = 1,N1
    CALL DFOPR(NY,l,I,I,I,FA,F`,FC,RIOT,VEC)
        IM. 70) K=1,N1
70) A1(I,K)=VEC(K)
    C^LL UFIIPR(NX,1,1,I,2,FA,FH,FC,PiInT,VEC)
    |r &O K=1,N1
RO BI(I,K)=V[C(K)
6O CONTINHE
    CALL DFOPR(NX,1,1,I, 3,FA,FI,FC,RIIOT,N1)
    r
Y 1)IPRCTIMN
    (NLL JC:I(NY,I,1,J.,!),FA,FB,FC,&\capOT)
```

M＾IM！10ㄹ！
MAIV1O 70
MAIHIlOU
NAIN1110
MAIA1120
MAIMllio
MAIN．1140
MAIN1190
NAIH11un
MAIT！1170
MAIVllun
MAIN1170
MAI．11200
MAITI210
MAIN1220
MAINI230
MAI＂1740
－AIN1250
MAIN1260
MAIN127U
＂AI： 12% O
MA1A．1270
MAINI天JO
＂AIN1310
MAIV1sen
MAIV124
MAIN 1340
MAIV135．）
MAIN13ヶの
MAI！l」7り
＂AIV13，n
MへIリlı 30
NAINILUO
MAIN1410
MAIN1420
MAIN1430

144：
C
C
C

แी $21 \mathrm{I}=\mathrm{L}, \mathrm{N} 2$
$21 x Y Y(I)=R \cdot I C T(I) * 2 \cdot * Y M A X-Y M \Delta X$ \｜n $61 \mathrm{I}=\mathrm{L}, \mathrm{N}$ ？
LALL $\operatorname{DFOPK}(V Y, 1,1, I, 1, F A, F R, F=, R U M T, V+C)$
1) $71 \mathrm{~K}=1, \mathrm{~N} 2$
$71 . \wedge 2(I, K)=V E C(K)$

(n) $81 \mathrm{~K}=1, \mathrm{~N} 2$
81 ['2(I, K) $=V\left[\left(\begin{array}{l}\text { (}\end{array}\right)\right.$
()l LINATINUE

7 OIRFCTID'v
(ALL JCRI(NZ, 1, 1, O., (1.,FA,FB,FC,RTIMT)
$1092 \quad \mathrm{I}=1 \mathrm{~N}, \mathrm{~N}$
$\rightarrow 2 \times 2(I)=$ ROMT (I)
い $22 \quad \mathrm{I}=1, \mathrm{H} 3$
$22 \times 27(1)=R 1 \cap \cap(1) \times H$
1) $762 \mathrm{I}=1$, N3

Uก $72 \mathrm{~K}=1, \mathrm{~N} 3$
$7213(I, K)=V L L(K)$
CALL $\cap F O P\{(12,1,1, I, ?, F A, F \&, F L, P(I C T, V H C)$
, in $82 \mathrm{~K}=1$, N 3
K2 $1,3(I, K)=V F C(K)$
も C CNMTINU

CALGULATIGN CF FXPRFSうI ONS USFL I V MijEL
IF(ISTE.OE.5) 3(1 TH 10

MAINI440
MAIN1450
MAIN146，
MAIN1470
MAIN14と0
MAIN1490
＂ATHI500
MA1N．1510
MAIN1520
MAIV1530
Malinlato
MAIN15この
＊AIN156）
＊A111570
MAIN1540
NAIN1570
MAIN16．01）
NAINLflo
MAIA $1 \neq 2$ ）
MAIN1f．30）
MAINI A 4 O
MAIP1650
MAINIG6O
MAIN！1670
MAIN1もかっ
MAIN1んけO
vaIソ1700
MAIM1710
MAIN1720
MAIN1730
NAIN1740
MAI：ル17ラの
MA1N17t，
NAIN1770
MAIIl7ヶの
MAIN1770

181）：
1 1 1：
182：
$1<3:$
194：
135：
186：
187：
188：
187：
170：
191：
192：
193：
144：
195：
196：
177：
198：
197：
200：
201：
202：
203：
204：
205：
206：
207：
20）：
207：
210：
211：
212：
？13：
214：
＜15：
$U(1)=U G P$
TUFKソ（ISTH）$=$ UKV（ISTR）／H
TI．S，KV＝1．－100．／H
1 ก $2 L=2,13$
IF（XI（L）－TUFK＂J（ISTR））11，12，1？

1．AKL（L）＝COEFK（ISTE）／HKN（ISTE）
$U(L)=U S T *(X Z(L) * H / D K$ FV（ISTE））＊$~=~ A M$
u TH 16
12 IF（X）（L）－TUSKV）13，13，14
13 NK／（L）$=\mathrm{CCEFK}(I S T R)+\vdots \cap$ 。
－ $1 K I(L)=n$ ．
in TO 15

15 U（L）＝UST
1t）AKY（L）＝ALPHA＊（COEFK（ISTP）＋t．O．）
2 しUNTINUE
U TO bO

in $3 L=2,113$
AKZ（L）＝とい。
$U(L)=U S T$
い \triangle KZ（L）＝ 0 ．
$3 A K Y(L)=A L P H A * A K Z(L)$
， 0 T 50
40）$\cap 4 L=?, \cdots 3$
$4 K 7(L)=30$ ．
U（L）＝UうT
lıKZ（L）＝1）．
$4 \mu K Y(L)=A L P H \Delta \div \Delta K 7(L)$
50 CINTI NUJE
l？ $41 L=?, K$ ？
k $3(L)=1) \Delta k Z(L) / 11 * \% 2$

4 l ？（L）$=A K \mathrm{~L}(L) / H * * 2$

MAIN1FCO
MAIJlR10
MATIlly20
MAIM1P30
MAIN1H4？
MAINIKCO
MAINIH\＆O
M4IV1』70
Malilldio
MAI llR 70
MAIN1900
MAINlGlO
MAI＇lすご
MAIN1930
MAIN1940
＊A1＾19「
＂AIN13かっ
MAINlG70
MAIN1980
MA．I：1970
MAIけ2Oいい
M＾IA2010
MAIn202！
＊AINつの」の
NANNO4
MAINZO50
MAIM206O
M1IN2OTO
MAIN 2नाM（）
MAIN！ 0 O） 0
MAI $!21 \cap 1$
NaIN2110
MAIN2120
NAIN21，1）
MAIN2l40
MAI 121ヶก

```
        w\cap 3\cap L=?,KL
        <361(L)=R3(L)*43(L,1)+Q6(L)*F3(L,1)
3\eta , 362(L)=?3(L)**3(L,N3)+P6(L)*R3(L,V3)
        IFV=4 + (V3,1) % \ 3(1,N3)-A3(1,1)*A3(N3,N3)
        1\cap31 I=?,kL
    31 \trianglePA1(I)=(A3(1,1)*A3(113,I)-A3(N2,1)*A3(1,I))/DEN
        |! }32L=2,K
        |\cap 32 I=2,k7.
    32 R 3f,I(L,I)=k3(L)*As(L,I)+RE(L)*P3(L,I)
    MFLG=1
    IFL`=0
    PRMT(1)=0.
    PRNT(2)=0.
    (ALL RUT'(C.,Y1,HERYI,O,*UIM,PRMT)
NFLG=?
PRMT(1)=TINIT
HRMT(2)=[11DS
IFLG=1
LALL RKJS(PRMT,YI,UEKY1,NILIM,IHLF,FCT,NUTP,AUX)
IF(INSRCS.EQ.1) (OO TO 5)
IFLG=2
CALL RKISS(PRMT,Y2,NERY),N1)IM, I|LF,F(T,OUTR,AlX)
IF(NSPCS.E(.2) (i) TO 5'子
IFLG=3
CALL DKO」(PRMT,Y3,|ERY३,NHIM,IHILF,FCT,RUTP,AUX)
,a FinNTINUL
```

r
C
C
C
c
C
C
C

MAIN21も：
MAINつ170
MAIN2110
NAIN21＇20
MA1112200
14IN！2210
NAIN2つつの
MAIN12 30
－ 1 AIN 2240
MAI＇v22ر0
MAIN22！い
MAI！？ 270
MAIV22と0
NAIM2770
MAIN12300
NAINT31告
NAIN2320
MAIN 2330
MAIN？ 340
MAINア350
MAIN2360
MAI！ 17370
MAIN23：の
NAIH2370
MAIN2430
＊AIN241い
MAIVくく2＇）
MAIM2430
MA I1．2440
NAI：12450
MAIN？4力U
MAIN＇2470
＂11N24世17
NAIN24 10
MAI：7500
MA！゙」2rin

C．

100 FTKMAT（4F10．5）
101 FORNへT（315）
102 FIRMAT（2F15．7）
103 FRRMAT（5F10．3）
104 FIIPMAT（2I），2F1j．4）
105 F MDMAT（2I2，F10．2，1．12．3）
10：FOMPAT（F10．4）
10日 FIDiat（13）

MaInar20
MAI V25，30 MAIV「254
MAIN25j0
MAIN25ts）
M4I．N2「7U
NAIVフ5 10
MAIN25 11
MAINR6OO
MaINつか）
 MA1117．311
 MAIM2（4）

 MAIP12660
 L＇XMAX＝＇，FI．1，＇M1，／1
 ＂aInlota

```
MaI？ 196.41
```


MAIH2720）

MAIV1730
 ↔
Fvu

MA1リ740
MAIN2750
MAIN27：1

```
        S('BRJITI JF FCT(X,Y,DFRY)
1)
C
FCI 20
C
FCT ,IT
6 THIS SUHROUTIME COMPIJTES THE IDERIVATIVES(QI SHT HAID SIIIFSI LF THE.
FCT 40
C SYSTFM TO GIVEV VALULS DF Y(TIME) AUIO Y(CONREJTRATIUN) FCT SUO
l
FCT< < 
JIMENSION Y(700),NFRY(700),PAC(700),C7O(70U),CZ1(700),CZC(700),
1CZ1(700),CYK(700),R2(15),N52I(15,15,15),Cし心(15,15)
FCT 40
40
```



```
2R3GI(15,15), \(700),U(15),V(15),XXX(3,15),XYY(15),XZ7(15),XNAX(1), FCT 120
3YAAX,H,AK,TCH,P,KS(3),LS(3),CO(3),NX,NY,NZ,N1,N2,N3,KX,KY,KZ, FCNT, FCO
```



```
5INJVRS
    INTEF=R VIKI,VAK?,VAR3,VAK4,VAP5,VAFRI,VAR7
    .||IM=(NX+1)*!Y細
            |ि 4 l = 2, kl
        4 kl(L)=(|(L)/YMAX(IFLS)
C
C VARIATION IN THE V VELOCITY
C
        IF(X-TCH) 1,`,2
        1 CONTINUL
            |0 5 L=2,KL
            V(L)=P*U(L)*(X/TC!i)
        & LZ(L)=V(L)/(2.*Y`\X)
        <\capT\cap 3
        2 LrNTI NUE
        |n 6 L=2,KL
            V(L)=P*U(L)
        () H? (L) =V(L)/(?.*Y*^AX)
        3 CUNITINHF
C
C COMPUTATION OH THE HERIVITIVES
```

```
30:
C
    |r1 3} L=?, KZ
    10}33\textrm{K}=7,K
    1!1 31 I =2.KY
33 R S?I(L,K,I)=R5(L)*r2(K,I)-<つ(L)*Aつ(K,I)
    |!\mp@code{3G LL=1,V|I'4}
    ん7\cap(LL)=0.
    LI (LL)=J
    LZ?(LL)=の.
37 CYK(LL)=?.
    J=1
    JJ=Kx
    IF(IFLU.E&.1) UD TT ;5
    IX=IfIX(X/(P{MT}-.D)I))
    IIrK=(IFLG-2)*97+(IX+1)
    HEAO(4'IIBK) ((CCL(K,L),K=2,KY),L=1,J3)
35 CONTINUJE
    ,\cap 5l LK=2,KY
    |\cap 5l LZ=2,K?
    (17 5u LJ=J,JJ
    \checkmarkARI=KS(IFL`,-1)
    \triangleAR2=LS(IFL(i-1)
    VAR 3=LJ-(J-1)+1
    IF(IFLJ.tS.1) in TO 40
    IF(LK.EQ.KS(IFLr,).ANH!.LZ.Eけ.LS(IFL`)) ron T| In
    ッAC(LJ)=0.
    If(CCC(VIKl,VAR2).,T.0.) NAC(LJ)=CC.C(LK,I.7)*A1(VAD3,1)
    ~O T\cap 20
10 PAC(LJ)=こ0(IFL;)*AI(VAR3,1)
    IF(CCC(VARI,VAR2).OT.O.) FAC(LJ)=O\C(LJ)+CCC(LK,L/)*HI(VA?1,I)
    ?7 T7 2!
4\cap IF(LK.EG.KS(1).A`N).LI.F().LS(1)) (!) TH11
    P\wedgeC(LJ)=0.
    ४^T7 20
11 PAC(LJ)=LO(1)*Al(V\P{,1)
2O CIJNTINUE
```

FCT $\quad 3: 0$
FCT 370
FCT 340
FCT 30
FCT $4 C 0$
FCT 410
FCT 4.21
FCT $43^{\prime \prime}$
FCT 441)
FCT 45)
FCT 400
FCT 470
FCT $4 P 0$
FCT 430
FCT 5 FO
FCT \quad In
FCT F 20
FC.T 「う」
FCT 541
FCT 500
FCT 5,61$)$
FCT 579
FCT 50.
FCT L 70
FCT 611)
FCT (1, 1')
Fr.T (2,
FCT 6,0$)$
FCT
FCT 6.51
FCT $6: 0$
FCT 671$)$
FCT (s.1)
FCT $\quad 1+0$
FCT 700
FCT 710)

36：	10	LINAT INMF	
37：		$x=11$ ．	
39：		1， $1120 \mathrm{I}=1, \mathrm{v}$	
39：		$\mathrm{I} 1=\mathrm{I}-1$	
40）：	25	$\times 11=0$ ．	
41：		$x: 1=1$ ．	
42：		x $111=0$ 。	
43：		$X N 1=0$.	
44：		， 0 i） $\mathrm{J}=1, \mathrm{~N}$	
45：			
46：			
47 ：		$\mathrm{x} 11=\mathrm{X}$	
49：		$x \\| 1=x N 1$	
49：		$x \cdot y=x p$	
50 ：	30	$\times \mathrm{Pr}=\times \mathrm{Pl}$	
51：		$2 \mathrm{C}=1$.	
57：		$\underline{1}=\mathrm{X} \times 1 \mathrm{XV1}$	
53：		IF（I1）21，21，22	
54：	22	$12 ¢ 123 \mathrm{~J}=1, \mathrm{I} 1$	
55：	23		
56：	21	L＝$/ 1 / \mathrm{C}$	
57：		$x=x-7$.	
59：		IF（ 4 HS（ P ）－1．E－7） $26.26,25$	
3）：	26	POOT（I）$=x$	
60：		$x=x+0.000 \mathrm{n}$	
61：	20	Cuntinue	
62：		－ $\mathrm{T}=\mathrm{N}+\mathrm{N} 0+\mathrm{Nl}$	
33：		IF（NO－1）35，36，35	
64：	36	$1 \mathrm{r} 42 \mathrm{I}=1, \mathrm{~N}$	
65：		$\mathrm{J}=\mathrm{N}+\mathrm{l}$－ I	
66：	42	（1）OT（J＋1）＝R⿴囗才T（J）	
67：		人not（l）＝0．	
f， 9 ：	35	IF（N1－1）38，37，39	
も？	37	RCOHT（NT）＝1．	
70：	38	$1040 \mathrm{I}=1, \mathrm{NT}$	
71：		$x=$ rontil	

JCMI 150
JC 21370
JC I_{1} 354
JCHI 370
JCFI 400
JCHI 411
Jifi 42！
Jori 410
JCRI 440
JCliI 4,0
JC：II 4か0
JCい 470
JCPI＜ 20
JCEI 490
JCMI 5した
JCHI 510
JCy 5 5
ル！I 5々い
JGMI 540
JCHI 5っつ
JCH 5 56）
JCHI 5，70
JCAI 390
JCいI 5や
JCFI $\in(0$
JuBI E1い
JC＇I 620
JCl：I 63）
JCBI 640
JCrif fin
JCt 1 bet
JCBI 670
JCEI 6tin
JCいI もわい
JCfI 7Cの
JC I I 710

17：		$F \lambda(I)=1$.
7．3：		$F+(I)=0$.
74：		$t \mathrm{C},(1)=0$ ．
75：		$1 \cap 4 \% \quad J=1, N T$
76：		$I F(J-I)+1,40,41$
77：	41	$Y=X-\cap \cap \cap T(J)$
78：		$F C(I)=Y * 5 C(I)+3 . * F E(I)$
79：		
80：		$r A(I)=Y * F A(I)$
81：	4）	ClVTINUE
82：		RETUPM
83：		ENH

J（3I 72）
JCはI 730
JCII 74）
JCKI 750
JCHI 7もの
JClI 770
JCFI 7ッ0
JCFI 740
JCII タロO
JCLI 810
JCFI $9 \angle 0$
JC：I－ 30


```
    FUPR:IUTI JE OITP(X,Y,HIERY,IHLLF,VDIN,P品T)
MUTP 1)
THIS SU&ROUTIJE GIVES THE OUTP|T |F THE MO|FI
    HROEL - THE INTFRVAL AT WHISH THE RESIUTS WILL 'GE PRINTED
        I OR TIIETA - TIME JLTWEEN THL دOLLIJTNNT RFLEASE(TINIT) ANU THF
                                I JITIATION CF THE AVFIMGI`!O TIME
        |MFG1 - FNU IF THE \VFRA.jINU TI*'F
        \(I.J) - FLUX ACPOSr Y-Z PLAJE AT x' JTH. POIMT U|E TO ITH.
        ANO PRECEUT:G SOUKC: P
```



```
        Lし(1j,15,15),nX(3,15),IHL(3,50)
```



```
    2:3fI(15,1り), 2(700),1J(15),V(17),XXX(3,15),XYY(15),XZZ(15),X"AX(3),
    3Y^^X,H,AK,TCH,P,KS(3),LC(3),LO(3),NX,VY,N`,N1,N12,N3,KX,KY,KZ,
    4.1(15),W2(15),W3(15),NSPCS,IFLo,'FLIN,C(({,15,15,15),PKUEL,PRMT},
    3INVRS
    IVTEJFR VA<1O,VAR11,V\R12,VA?13,VAR14,VA!1,
    IFLA;=IFLU
    IF(MFLS.OD.1) ; T TO 15
    IF(NSRCS.NE.I) (:|l TN 7')
    IF(X.FQ.0.0) IIII=0
    IF(X.FO.O.(1) \becauseO T\cap 71
    , \triangleI=FLПAT(IIII)
    AAII=AAI-K/PPLIEL
    I^I=IfI < (AAII*IOI). )
    IF(I:1.Ev.O) ふO TM 7l
    in Tn と,00
70 IF(x.F(1.0.0) II=0
    IF(X.FO.n.(1) ふの TO 71
OUTP 1)
OUTP }3
    OUTP 20
mUTP ,C
GuTM &O
CUTP 7O
OUTP NO
nuTp 10
RUTP 10n
nUTP 110
rIUTH 120
OUTP 130
CUTP 14%
(UTP 14!)
\mathrm{ITP 1&O}
CUTP 170
ПUT" 1 %O
O|TD 1+0
\mathrm{NTP ?OO}
\capuTP 2 1.J
nUTP 2Zu
nUTP 230
nutp 240
N|lp 2,0
rilte 200
r(11P 27)
nuT? >a)
DUTH >un
rIJTP 3(in
IIUTP &1)
n(lTP z20)
RIITP 33)
OUTP 141
IUTP 2%O
```

6
C
C.
C
C
C
r
C
C
C
c

36：		－I $=$ FLCAT（II）
17：		
38：		Il＝IFIx（AIl＊ 10 O．）
39：		If（Il．to．u）r， 0 rn 71
4n：		Corommo
41：	71	CONT IVIJF
42：		$\mathrm{J}=1$
43：		$\mathrm{JJ}=\mathrm{KX}$
44：		in $2 \mathrm{IU}=1$ ，ijy
45：		1：n l LJ＝J，jJ
45：		しZO（LJ）＝の．
47：		$\therefore Z 2(L J)=0$.
48：		1．0 J $\mathrm{I}=2, \mathrm{kz}$
47：		$V 121)=L J+Y \times *(1-2)$
50：		しZ2（LJ）$=$ CZ2（LJ）＋APA1（I）＊Y（VAR1O）＊FL（IAT（INVRS）
b 1：	5	こ7п（LJ）$=(2)(L J)+13(1, I) * Y(V A 210)$
52：		
53：	1	
54：		$J=10+01 z+k x+1$
55 ：		J $1=J+K X-1$
56：	2	Lonitinue
勺7：		IN！＝2
「．4：		1 $1=1$
57：		$12=k x$
， 0 ：		H11 $\mathrm{K}=2, \mathrm{KY}$
$61:$		$\mathrm{J}=2$
62：		Lก $21 \mathrm{I}=\mathrm{Al}, \mathrm{M}$ ？
ט3：		し（J，K，l）＝CZ1（1）
64：	21	$J=J+1$
05：		$13=N 1$
Sti：		$1 \times 4=M$ ？
¢7：		$11720 \mathrm{~L}=$ ？，k．L
68：		$\mathrm{J}=2$
＋7：		
70：		C．$(J, K, L)=Y(I)$
71：		$\mathrm{J}=\mathrm{J}+1$

RUTP $3 \cdot 0$
nutp s79
CUTP 380
nUTP 370
OUTP 400
CUTP 410
NUTP $4>0$
nlltp 4 ；
fllp 440
CUTD 451
nUTP 4し0
OUTP 470
CUTP $4 \mu \mathrm{O}$
nutp 470
RuTp gon
CIIT， 510
RUTP 520
RITP 530
ROTP 540
חU＇TP 5r，
nulp 500
rutp 5．70
CUTP 5，80
（IIITP 5．70
SUTP fil）
CIITP G17
OUTD \＆． 20
rilte h30
CUTP 4,40
OUTP 1501
OUTP 600
Rifte f，70
CUTP 690
nutp 6,90
nutp 7101
CuTP 710

กuTP 7？0
73：$\quad 14=I \sqrt{1}+K x$
$I(1)=I N()+1$
RUTP 7 \｛u
luTP 7an
20）UINTIMUE
$J=2$
OUTP 7，0
CUTF 7 CD
กUTP 770
กUTP 7 （4I）
CUTP 7 ＋1
rIUTF anu
OUTP SIO
CUTP 220
rutp fisu
UUTP R＇O
CITTP μ ，（J
CUTP MUU
「UTP \＆ 70
UUTP $8 \cdot \square 0$
CUTD $8 \rightarrow 0$
NUTP 70）
CuTp 910
nulp 927
nutr $9 \rightarrow 2$
nutp 940
nUTP 9）
CUTD 9 O 0
DUTH 970
CIITP aiŋ
Curn 970
nutplres
OUTP 1010
CuTP1020
NUTPlosu
CUTP1040
OUTPLOい，
חUTP10iso
なリTP1070
IF(IIX.EN.I) C1) TU 74
נ $6.7 \mathrm{~J}=$? , in
,10 $67 \mathrm{~K}=7, \mathrm{KY}$
$1 \cap \in 7 L=1, N 3$
\& 7 LC(IFLG,J,K,L) $=\mathrm{C}(J, K, L)$
IF(X.f(U.).0) w Tn
$T=X-2 . * P P D E L$
$I H L(I F L O, I I X+1)=T H L F$
IF(NSPCS.FW.1) 心 TJ 18
74 IIFL; =IFLS
78. I I「Lう=IIFLSーl
IF(IIFLG.EO.0) rio TO 1 O.
$1 \cap 75 \mathrm{~J}=2, \mathrm{Nl}$
IILI=J+(IIFLラ-1)*4) * $15+\mathrm{IIX*1亏}$
7ヶ, :FAU(?'InLI) ((C(J,K,L), K=2,KY),L=L,N3)
- "LL AVC(C,IIX,IIFLO)

if 7 ; $J=\rightarrow, A .1$
HIT 7 E $K=2, K Y$
1) 1 7. $L=1, V 3$
76 Ci: (IIFL饣, J, K, L) $=$ C (J, K, L)
(i) TU 78
$15 \mathrm{~T}=0$ 。
I IX=0
$11 \Gamma^{\prime} \quad 1 \quad J=1$, NSRCS
$\rightarrow 1$ IHL(J, 1$)=0$
IF(NFLG.Eに.1) こU TO 16
CALL AV'I(C,IIX,IFLAr,)
$I I I=I I I+1$
w TO T \&
1R CMINTHUE
$\operatorname{VAR11=KS(1)}$
VAP1?=LS(1)

Ir(WSRCS.Eの.1) GリTH1s
いい $17 \mathrm{I}=2$.1 SHCS

OUTP 1 nso
CUTP1 $11+10$
CUTPIIIO
OuTP1110
OUTP1127
CUTPl13J
CUTP114U
CUTP11（
חUTP11：0
nUTO1170
OUTP11ヶ0
CUTP11＋0
CuTPl200
クUTP1210
nUTPl2วก
ClTP1230
nuTつ1241）
กUTP12ヶU
nutrl？u？
CUTP171J
OUTP120．
OUTP12＋0
CUTP1300
DUTPIslu
DUTP13？！
IUTP133！
CUTP1×4n
OUTP13r， 3
rUTP13t，
CUTD137n
OUTP13ヶつ
nUTP 1370
CUTP1400
CUTH1410
กUTD14ว0
ПUTP1430
$\checkmark A R 13=I-1$
$\vee A R 14=K S(1)$
$\vee A R 11_{+}=K S(1)$
$V A R 1^{\circ}=L S(I)$
17 CC（VAR13，M1，VARI4，VAR15）＝CC（VAR13，Jl，VAR14，VARI5）＋CO（I）
1由 WRITF $(5,131) T, X,(I H L(J, I I X+1), J=1$ ，NSRCS $)$
WRITL（6，204）
HRITE（6，210）$\times \times \times(1,1),((x \times x(J, I), I=2,111), J=1$, nishcr）
nRITF（ 6,215$)$
h＇LITF（ 6,208$)$
$L=113+1$
； $3 \mathrm{~L}=\mathrm{L}-1$
WRITE（t，205）XZZ1L）
lin $41 \mathrm{~K}=2, \mathrm{KY}$
NFITF（6，134）XYY（K），CC（1，1，K，L），（CC（I，J，K，L），J＝2，V1），I＝1，NSKCS）
41 CINTINUF
IF（L．E日．1）■ח TO 4
二口 TO 53
40）LINTINNE
．in $50 \quad \mathrm{I}=1$ ，VSRCS
$1,750 \mathrm{~J}=1, \mathrm{~N}$
い $x(I, J)=0$ ．
1）った $K=2, K Y$
un $\rightarrow L=1$ ，N3
「2 $4 \times(I, J)=n \times(I, J)+C L(I, J, K, L) * U(L) \div w ?(K) * w i(L)$

50 CONTINJE
WसITE（6，220）（0×（1，1），（10X（J，I），I＝？，N1），J＝1，VSt（S）
vuO LORITINUF
C．
 110 x, ＇IHLF $=1,3 \mathrm{I} 31$

？ 10 FORM T（11 x，FQ． $\left.1,1 \times, 14 F^{2} .1\right)$

חU1TP144）
RUTP14
חUTPl46）
riJTP1470
CUTP14MO
CLTP14）
CUTP1590
f，UTP1510
CuTロ1520
「uTPIFso
חIJTP1540
ruTples
NUTPI ${ }^{\circ} 0$
OUTPIF7U
ПUTP15と
mUTP1530
MUTP1500
riUTP1\＆．10
CUTO1620
OUTP16．3）
MuTPl（4）
CUTP1ヶ，$刀$
OUTP16RO
riutelatio
חUTP16．30
ก（ITP1＋40）
חUTP17CO
חuTPI71』
CUTP1720
חUTP17，0
（ルITP174n
CUTU1710
OUTO17：
riljtri770
CuTPl7：0
חUTP17ソ0

180：$\quad 215$ FORM＾T（／／，38X，＇CINICENTRATIUN（Mラ／EU．M）＇）

2FTUPV
ENI）

「uTPlRIO
OUTHIKLO
クUTP18？0
rilTP1930

36：	33	$L=L S(I F L ;)$		
－7：		$k=k+1$		
38：		$1 Y \cap=1$		
37：		IF（K．F．C．12）\quad O TO 32		
40 ：	－2	IF（CIJ，K，L）．LE．O．） 3 O T	Tח 35	
41：		טf11137		
42：	35	（「3！ $\mathrm{I}=1,13$		
$4 \mathrm{~s}=$	35	L（ J，K，I ）＝O．		
44：		IF（IYD．t（．1）ull Ti）85		
45：		吅 TO 46		
46：	85	UR 80 I $=$ K，KY		
47：	$? 0$	$L(J, I, L)=0$.		
4\％：		； $\mathrm{TH}_{6} 7$		
4．7：	H6	$\cdots{ }^{\wedge} \\|=K$		
50：	E？	（（J，KINU），L）＝＝		
勺1：		IF（KIND．FO．1） JO TO K7		
52：		KIM！＝K［ M ）－		
53：		1，0 TH R8		
34：	47	CいNTIMUL		
55：		IF（IYU．Er．1）ごへ TJ 3		
56：		－ C TC 51		
57：	37	$\mathrm{L}=\mathrm{L}+\mathrm{l}$		
58：		IF（L．1；T．ソ3）こn T！38		
5．7：		IF（ClJ，K，L）．LE．O．）， $\mathrm{O}_{\text {（ }}$	1040	
し）		， 1 T 37		
s1：	39	$1, \cap 4 \cap \mathrm{I}=\mathrm{L}, \mathrm{N} 3$		
62：	40	$1,(J, K, I)=0$.		
$63:$	j8	$L=L S\left(I F L r^{\prime}\right)$		
64：	68	$\mathrm{L}=\mathrm{L}-1$		
05：		IF（L．OE．1）GU TU 63		
65：		IF（IY）．EN．1） 3 T TU 33		
67：		IF（IYU．FI．2）3il T］ 51		
69：	か3	IF（CIJ，K，L）．LE．O．）Cr T	Tก 4？	
69：		ir Trl $\quad 8$		
70：	42	L（J，K，L）＝）。		
71：		$\mathrm{l} .=\mathrm{L}-\mathrm{l}$		

7EWJ 260
7ER1） 370
フEFの 3ッ）
ZELT 370
7ER 4 4（11）
ZE २［ 410
ZERT4 4 2
プRけ 430
2ヒUn 447
LERD 4 うい
IF？ 400
ZF20 47J
ZEkn 4 4i）

ZENI 50リ
ZER 510
フFRH 「フロ
ZERの 53n
フヒスけ 5．4の
ZEFの550
ZFいの こもっ
7「Rの570
ZERП 50ク
ZEMr rin
ZEPI もOM
ZERC 510
TERTC 6 こO
ZE以N E．30
7FRの 640
ZEHC 65U
ZFIO G6O
7ERN CTO
LERRI 6 10

lE29790
7FEの 71 n

```
    IF(L.St.1) un TO 42
    ZFPr17?0
    IF(IYN.E-w.l) 厅O Tतl 33
    IF(IYN.EO.2) GO TM 51
    ZFR|l 700
ZFUO}74
    32 L=LS(IFLu)
    k=kS(IFL:)
    )l L=LS(IFL?)
        k=k-1
        IY }\=
        IF(K.EQ.1) r_ח TU ьO
        in Tr ら2
    30 J=J+1
    IF(J.OT."ll) %ח TП &O
    ir) Tr 5!
10, % 5月 I=J,N1
    |O1, 5, K =2, KY
    L.\cap 59 L=1,N
\zeta% L(I,K,L)=0.
GO CONTIFIUL
    QETUPM
    rNH
ZERO 7;0
ZEFO 7.,N
ZF:O 770
7FRO7%n
ZEK! 770
ZFW.! &00
ZEH| & 10
ZFRO 820
ZERRI 4SO
ZFPח 44O
Z上RU н.O
7EE\cap 0!O
ZEM| &70
ZFLO RMO
\angleFKIl Q ¢0
ZFFM 9CO
ZERM 910
```

$\Delta V u 10$
C
C

20
3：C
TIML＝ $2 * P R \| H L$ ）
AVI．
$\Delta V(\quad 1$,
6
C
HIMENSION $C(15,1$ i，15），1）（15，15，15）
AVS $\in 0$

？ $2341(15,15),(1700), U(15), V(15), X X X(3,15), X Y Y(15), X Z 7(15), X P A X(1), ~ A V J \quad 111)$

JIIVR？
IF（II．jT．2）30，TJ 90
$M=I I+1$
（！） 1 （1 $J=?, N 1$
$I P L K=J+(I F L A \hat{G}-1) * 1 ?+(M-1) \div 45$
10 WPITE（3＇I！＇LK）（（C）J，K，L），K＝2，KY），L＝1，M3） IF（II．EQ．2）刀U T门 KO
KETIIAY
AV， 130
AVo 1,0
$\Delta V^{2}, \quad 1$ ． 0
AVG， 170
$A V r, 1 H 0$

$10 \mathrm{M}=$ ？ 10 V 20 O
リि15 J＝2，N1
1 HLK＝J＋（IFLAR－1）$=15+(1,-1) \div 45$
$152 F A U(3 \cdot \operatorname{IfLK})((1)(J, K, L), K=2, K Y), L=L, J i)$ $\mathrm{N}^{\circ}=1$
1 （1） $2^{r} J=2, N 1$
［PLK＝J＋（IFL13－1）$\div 15+(M-1) \div 45$
25 WRIT：（3＇ILLK）（（U）J，K，L），K＝2，KY），L＝1，＇Jマ）
$M=3$
$1.0 \quad 35 \mathrm{~J}=2$ ，ill
I $\because(\mathrm{K}=\mathrm{J}+(\mathrm{IFL} \wedge$－-1$) \div 15+(M-1) * 45$
35 KFAM（2＇IFLK）（（D）J，K，L），K＝？，KY），L＝1，＊3）
$\because=2$
した $45 \mathrm{~J}=$ ？，N1
AV： 230
AVI； 340
AVE 2，0
AV： 2.0
AVI， 270
$A V \cup 230$
avr 2,0
AVI，$\quad 3 \Gamma 0$
AV， 310
AV；$\quad 2 \angle J$
AVI； $3 ? 0$
AVG 340
1VO 350

```
35:
37:
38:
37:
40:
41:
4?:
43:
44:
45:
46:
47:
+9:
49:
50:
り1:
52:
5.3:
j4:
5ち:
)6:
57:
58:
57:
60:
61:
02:
63:
64:
```

```
    IFLK=J+(IFLAj-1)*1T+(M-1)*45
```

 IFLK=J+(IFLAj-1)*1T+(M-1)*45
 45 WRIT:(3'IELK) ((,)(J,K,L),K=2,KY),L=1,N3)
45 WRIT:(3'IELK) ((,)(J,K,L),K=2,KY),L=1,N3)
l=3
l=3
|l b', J=2,N1
|l b', J=2,N1
I \LK=J+(IFLA`,-1)*15+(M-1)*45 I \LK=J+(IFLA`,-1)*15+(M-1)*45
5! wRITH.(2'IRLK) ((C(J,K,L),K=2,KY),L=1,N!2)
5! wRITH.(2'IRLK) ((C(J,K,L),K=2,KY),L=1,N!2)
gO LUNTTNIJt
gO LUNTTNIJt
N=1
N=1
\H7) J= J,N1
\H7) J= J,N1
IFLK=J+(IFLAG-1)*15+(M-1)*45
IFLK=J+(IFLAG-1)*15+(M-1)*45
70 REAO(3'Il:LK) ((C(J,K,L),K=?,KY),L=1,N,)
70 REAO(3'Il:LK) ((C(J,K,L),K=?,KY),L=1,N,)
M=2
M=2
\mathrm{ LO 71 J=2,N1}
\mathrm{ LO 71 J=2,N1}
IHLK=J+(IFLAG-1)*1h+(M-1)*45
IHLK=J+(IFLAG-1)*1h+(M-1)*45
71 REAU(3'I「LK) ((l)(J,K,L),K=2,KY),L=1,N13)
71 REAU(3'I「LK) ((l)(J,K,L),K=2,KY),L=1,N13)
|\cap 7? J=?,N1
|\cap 7? J=?,N1
|!1 7) K=2,KY
|!1 7) K=2,KY
1:П 72 L=1,N3
1:П 72 L=1,N3
77 :(J,K,L)=C(J,K,L)+1)(J,K,L)
77 :(J,K,L)=C(J,K,L)+1)(J,K,L)
M=3
M=3
|\cap73,J=?,N1
|\cap73,J=?,N1
IPLK=J+(IFLAR:-1)*15+(M-1)*45
IPLK=J+(IFLAR:-1)*15+(M-1)*45
73 +「^U(3'I{LK) ((U(J,K,L),K=2,KY),L=1,'J3)
73 +「^U(3'I{LK) ((U(J,K,L),K=2,KY),L=1,'J3)
M7}74\textrm{J}=?,\textrm{Nl
M7}74\textrm{J}=?,\textrm{Nl
lirl }74\textrm{K}=2,\textrm{KY
lirl }74\textrm{K}=2,\textrm{KY
1\cap74 L=1,N3
1\cap74 L=1,N3
74 C(J,r,L)=(C(J,K,L)+U(J,K,L))/3.
74 C(J,r,L)=(C(J,K,L)+U(J,K,L))/3.
{ETUTN
{ETUTN
\therefore`|!

```
    \therefore`|!
```

AV, $\quad 16, n$
AV: 370
AVG $3: r$
AVu 3.10
AV: $4 C O$
AVI; 419
AVS 420
AV; 410
Avr, $4 \rightarrow 0$
AVO 4in
AV, 400
AVr, 477
AV: $\quad 4: 0$
$\Delta V ; 4+0$
$\Delta V ; \quad$ った。
$\Delta V_{1 i} 510$
AVC 5,72
$A V=530$
Av1, 540
AVこ 5っ」に
AV」 540
$\Delta V=\quad r 70$
AV, $5, j r$
$A V \cup \quad 5,11$
$\Delta V^{2}, \quad$,CO
$A V R, \quad 6 l 0$
$\Delta V, \quad 627$
$A V=630$
AV; 万40

		トKに「5	10
		RKES	27
		RKMS	1）
THI＇，SUR ROITINE SILVES A SYSTFM OF FIRST OQI E_{K} ORIIMARY I IFFERFAJIAL EQUATIOVS WITH GIVEN INITIAL COUIITIONS		R．KRSS	40
		RK．SS	， 1
		RK，S	（0）
		QKこS	70
P＇＾MT	－A I IWPUT OUTPIT VFLTMR KITH IIMEISICN GREATFR OR	RKMS	110
	FDUML TH 5	ロKこの	30
PPMT（1）	－LOWER ROUNJ IF TH：IMIFKVIL	RK：S	110
PRMT12）	－UPPF？BDUNM IFF THr INTFPVAL	RKI；S	110
－${ }^{\text {PMT }}$（3）	－INITIML INCRFNFNT OF THF I JEPFNDENT VAPI MBLE	RKCS	120
URAT（4）	－UPPER EQRIP FOUSO	RKOS	130
PRMT（5）	－NO I JPUT PARAUFTFO．IT IS ）UNLFSS THF UCFD wANTS T	RKI；S	140
	TEQAIVATF RKJs AT A＊M 「UTPIJT PTINT	RKし	1：7
11t ${ }^{\text {n }}$	－I＇JPUT VECTHR OF LRRIIR WLIGHIS．LATERON IS The VECTO？	RKOS	161
	1）F MFRIVATIVES	？KK，	170
VIIIM		RKJS	1\％（1）
［111F	－thf mumier lif rijactionis nf the in tial increnent	RKし＇	1 小）
mUX		RKこS	200
		HKGS	211
		－K，¢	210
HIMENSION		KK．，	230
いい 1 I $=1$ ，N！${ }^{\prime \prime}$		PK1，S	247
$1 \stackrel{\sim}{*}$		RKUS	2，0
$x=$ ORMT（1）		RK¢S	200
$X F * 11)=$ CKMT（2）		RKGIS	270
$\mathrm{H}=\mathrm{Pri}$ 「（3）		KKUS	280
OPM「（5）＝J．		マKGJ	210
LALL FCT（X，Y，DERY）		R．KTes	300
		RKOS	317
ERRHR TEST		PKK 5	320
		KKこっ	$3{ }^{3}$
IF $(H *$（XEVU－X） $35,37,2$		HKMis	340
		RKOS	3＇0

parec
kK ors 300
RK； 5 370
DKK．S 3911
RKiS $3+0$
2K， 54111
RKOS 410
RK＇，S $4 \% 0$
DK， $\mathrm{S}, 4$ in
RK is 44（4）

PKご，4った
RKWS 47 U
RKGOS $4 \times n$
pk is $4+0$
PKUS 500
RK：S 510
RKus 5,11
RKUS 5ion
RKOS 5an
RH．1．S 5．．n
RKie 5 en
RKOS 57：
RKCS 501
RKCS 530
RK－S G1J
PKISS 10
RKご， 620
RKuj 6， 21 ）
PKGS fan
RK． 2 S hion
RKOD（it J
RKis 670
RKISS（aid
Rkiss 6．70
RKTS 700
？ K ris 71 l

Paive
7 LALL NUTP（X，Y，DE Y Y，I ZFC，NIMM，PDFT IF（PRMT（＇，））4の，R，4n
8 ITEST＝0
\rightarrow ISTEP＝I STFP＋1
i
C START OF IMILRMOST RUNGL－KIITTA I OTP
C $J=1$
$10 \mathrm{AJ}=\mathrm{A}(\mathrm{J})$
BJ＝B（J） （ J $\mathrm{J}=\mathrm{C}(\mathrm{J})$
M $11 \mathrm{I}=1$ ，NHIM
？ $1=H *$ IJERY（I）
«2＝A）＊（R1－HJ＊AUX（，，I）） $Y(I)=Y(I)+R 2$ $R ?=R 2+R 2+Q 2$
11 Rux（i，$I)=A U X(6, I)+R 2-C . J * R 1$ IF（J－4）12，15， 15
$12 \mathrm{~J}=\mathrm{J}+1$
IF $(1,3) 1^{2}, 14,13$
$13 \mathrm{X}=\mathrm{X}+.5$ 5 H
14 CALL FCT（X，Y，LERY） －OTO 10
1.

C THST OF ACCIIRACY
C
15 IF（ITrsT）lC．1C，2
C
C
r.
15 10\％ $17 \mathrm{I}=1$ ，社IM
$1711) \times(4, I)=Y(I)$
I TEST＝1
ISTEP＝ISTEP＋ISTFP－？
14 1 HLF $=$ IHLF +1
$x=x-H$

2kus 720
PKjr 73」
RKCS 74．）
pKGS 7EO
RKOS 7 J
PK．iS 770
RKG， 7 7．0
RKGS 710
RKWS 800
RKr，s 910
RKI．S Yat
RKCS y 30
FKGS $84 n$
Qkis per
PKこS Qen
RKこの（7．）
RKTIS ayn
RKES 8 On
Qkis tu
RKirs 310
PKİS 9スロ

KKOS 740
pK is 9！ 10
RKES n． 0
RKJS 910
ロKiss 9×0
kkis 9 in
Rkíslojn
ukjsinlo
Rk．ESinco
RKjs1030
RKOSin40
pakisinus
PKusineo
PKCSS1～7）

109：
110：
111：
112：
113：
114：
115：r．
11t：
117：
118：
117：
120：
121：
127：
123：
124：
125：
126：
127：
12R：
127：
130：
131：
132：
133：
134：
135：
136：
137：
139：
137：
140：
141：
142：
143：C
C

```
C
r. IN CASE ITEST=1 TESTINF RIF ACCURACY IS PMSSITLF
C
    20 IM(IU=ISTFP/2
        IF(ISTEP-IM(N)-INTU)21,23,21
    21 CALL FCT(X,Y,DERY)
        |\cap 2? I=1, NuI!M
        \UX(5, I) = Y(I)
    2つ 1|X(7,I)=|F२Y(I)
        iOTO 4
    C
C. LIMPUTATIOQ IF TEST VALUF MELT
r
    23 जELT=0.
        |の 24 I=1,N|![!
    24 IFLT=\ELT+AUX(B,I)*^RS(AllX(4,I)-Y(I))
        IF(OELT-PQMT(4)) 2R,29,}2
C
(. ERRI| IS TUIl r,RFAT
C
    25 IF(IHLF-10)26,36,36
    PG |\cap 27 I=1,N!|IN
    27 4|) (4, I) = 111x(%,I)
        ISTEN=IST「O+ISTLO-4
        x=x-|!
        IENII=0
        \thereforeПTU 1%
C
    R[SLLT VALUFG A:E (i(111)
```

$11=.5 \div H$
 $Y(I)=\operatorname{AUX}(1, I)$
（ FR Y（I）$=$ aUX（2，I）
$13 \cdot 11 \times(5, I)=A U \times(3, I)$ 1，11TO 4

RKㄷS1040
RK（，S1040
RKCSI1On
RKuS111い
PKにS1120
RKGS113）
RK；S11＇t
RK～SS1150
RKUS11－0
RKCSS1170
RK＇S1140
PKLS114n
DKMS 1200
RKFS121U
PKと，¢1 2 ？
RKUS1231
PKGS124U
RKGS12，0
RKÜS 12,1
QK．，S127）
KKTS12н0
PKIVS12＋U
RKしSI300
RK～S1：19
RKRS 132°
PKOS1330
KKこSl340
QK， 513 ； 0
सKCS130，
RK；Sl2lO
RKGった13Mn
pK 3S13？
RK：r14．J
RKうS 1410
＋kijs 1420
2kにな1430

144：
145：
146：
147：
149：
149：
150：
151：
152：
153：
154：
15ラ：
156：
1j7：
159：
1ヶ9：
160：
151：
1し2：
16．3：
154：
165：
106：
107：
16．8：
1コ7：
171：
171：
177：
173：
174：
175：
176：
177：
179：
177：

24 CALL FCT X, Y, DERY）
$1, \cap 2 \rightarrow I=1, V$ IIIM
AUX（I，I）$=Y(I)$
Allx（2，I）＝UERY（I）
，IJX（3，I）$=1 U \times(6, I)$
$Y(I)=A U X(\Gamma, I)$
29 UERY（I）＝A11X（7，I）
LALL חUTP（X－H，Y，IL？Y，IHLF，VUI 1，Dつ．T）
IF（PNMT（1，））40，30，it J
30 In $31 \mathrm{I}=1$ ，NM M $Y(I)=A U \times(1, I)$
$31 \operatorname{LERY}(I)=11$ X $(2, I)$ IDFC＝IHLF
IF（IEND）32，3？，39
C
L INCRFME』J JETS HOURLEV
32 IHLF＝IHLF－1
I ちTEつ＝ISTCP／？
$\mathrm{H}=\mathrm{H}+\mathrm{H}$
IF（IfLF）4，33，33
33 IMПU＝IST「P／？

34 IF（UHLT－．O2ヶ）RNT（4））35，35，4
35 IHLF＝IHLF－1
ISTEP＝I STEP／2
$\mathrm{H}=\mathrm{H}+\mathrm{H}$
OTO 4
r．
RETURAS TT CALLING P MJこRNM
3： $1 H L F=11$
CALL FCT（X，Y，UFZY）
viTn 39
37 I $1 / L F=12$
$\because \because 1 T O 39$

RK「「144！
RKOS1450
KKisiri4ヶ！
RKUこ1470
RK：S14（1）
RKI；S1430
RKこE1r）o
「Kislelu
भKこS1r．20
P．K 5S 1530
PK；${ }^{-1514()}$
RK：S15，）
RKRSE15GO
RKjड1570
RK：515， 10
RKKiS15＇みl
RKuElGuO
KK：S16．1U
「Kしち1」こつ
RKこう1630
ロKこS164の
aKrisis）
RK $3 S 1+61)$
RK；S1670
RKGJS1＋MO
RKこS 16
RKUS170ח
PKOS 1710
3K（GS1771）
RKjE1730
F．K -5174
RKCSS17；0
RKCS17，0
？K；S177U
pK－S1740
RKuS17to

180：
181：
182：
183：

3． 1 HILF $=13$
33 LALL OUTH（X，Y，）F\＆Y，IHALF，NHIM，PQMT） $4 \cap$ RETUKN

ト J 1

RKUS 1400
QKjS1910
RKESIの2O
२Kこの1930

APPENDIX B

INPUT DATA REQUIRED

As examples, the input information for the hypothetical cases 8 and 10 are given next.

> IAPLT DAIA $* * * * * * *$ (Case 8)

```
TIMIT = 0.0 ENCS= 90.0 MIN PRMTIE)=2.ECPIN PRPT(4)= 1.CCCCO
NLMBER OF SCLRCES = 1
PRCEL = 5.CONIN
NX= E NY = NL = 7
YMAX = 700.0 M H=505.00 M
KS=E LS=4 CC= 35.45MG/CU.F XPAX= 10000.0%
STAEILITYCLASS = 4 IAVRS = I ALPHA = 2.CC AK = COSEEOCGIININ
UST: 3CC.CCMININ LGR = 30.COMINIA AM = 0.250 TCF = 15.0NIN P=0.0S
```


IINIT = O.C ERCS $=90.0 \mathrm{MIN}$ PRMTI31 $=2.50 \mathrm{MIN}$ PRMT(4) $=1 . C C C C O$
NuPBER CF SOURCES $\Rightarrow 2$
PRDEL $5 . C O M I N$
NX: $6 \quad N Y=7 \quad N Z=7$
man = 7CC.0\% $\quad H=505.50 \%$
$K S=5 \quad L S=4 \quad C O=35.45 M G / C U . M \quad X M A X=1 C C C O .0 \%$

STAGILITYCLASS $=4$ INVRS $\quad 1$ ALPHA 2.60 AK COSEE-C4 1/MIA

APPENDIX C

NOMENCLATURE

a	Constant in equation (4.8)
a_{i}	Parameters defined by equation (4.2)
a_{ij}	Parameters defined by equation (4.41)
$\overline{\bar{A}}$	Matrix defined by equation (4.19)
AM	Represents the exponent m
b	Constant in equation (4.29)
$\overline{\bar{B}}$	Matrix defined by equation (4.20)
C	Constant in equation (4.29)
${ }^{\text {j }}$	Coefficients in equation (4.3)
C_{i}	Instantaneous concentration of species i, $\mathrm{mg} / \mathrm{m}^{3}$
$\mathrm{C}_{\text {B }}$	Background concentration
$\mathrm{C}_{0}(\mathrm{i})$	Concentration at $i^{\text {th }}$ source
d_{i}	Coefficients defined by equation (4.11)
d_{ij}	Coefficients defined by equation (4.42)
D_{i}	Molecular diffusivity of species $i, \mathrm{~m}^{2} / \mathrm{min}$
D^{\prime}	Eddy diffusivity tensor used in equation (3.1)
e_{i}	Constants defined by equation (4.43)
f_{j}	Constants defined by equation (4.50)
G_{i}	Constant given by equation (4.9)

Gi^{*}	Constant in equation (4.33)
H	Maximum height above terrain (in some cases refers to the elevation of the inversion base)
INVRS	Constant used in equation (4.105)
IS ${ }^{\text {rin }}$	Stability class (l very unstable, 6 very stable)
(JS,KS,LS)	(x, y, z) coordinate position of a point source
k	Reaction rate constant, min^{-1}
k_{0}	Von Karman's constant
K	Turbulent diffusivity, $\mathrm{m}^{2} / \mathrm{min}$
ℓ	Height defined by equation (3.11)
L	Effective emission height, m
m	Exponent in equation (4.65)
N	Number of interior collocation points
${ }^{\mathrm{N}} \mathrm{j}$	$j^{\text {th }}$ independent Gaussian white noise
NSRCS	Number of sources
p	Exponent in equation (3.10)
P	Constant in equation (4.67)
P_{0}	First orthogonal polynomial
P_{i}	$i^{\text {th }}$ orthogonal polynomial
${ }^{\text {j }}$ j	Power spectral density of the $j^{\text {th }}$ white noise
PRMT (3)	Initial step size of integration
PRMT (4)	Upper error bound in "RKGS"
Q	Source emission rate, $\mathrm{mg} / \mathrm{m}^{3} \mathrm{~min}$
Q(i)	Strength of $i^{\text {th }}$ continuous point source, kg / s
$\overline{\bar{Q}}$	Matrix used in orthogonal collocation theory
Q_{X}	Mass rate through $\mathrm{Y}-\mathrm{z}$ plane at $\mathrm{x}=$ constant, kg / s

$Q\left(x, t / x^{*}, t^{*}\right)$	Transition probability density function
$\overline{\bar{R}}$	Matrix used in orthogonal collocation theory
$\mathrm{R}_{\mathbf{i}}$	Rate of generation of species i
S	Number of species
$S(x, t)$	Spatial-temporal distribution of particle sources
t	Time, min
$\overline{\bar{T}}$	Matrix used in orthogonal collocation theory
TCH	Parameter in equation (4.67)
u	Velocity in x-direction, m/min
u	Variable in equation (4.31)
u_{j}	$j^{\text {th }}$ component of fluid velocity, $\mathrm{m} / \mathrm{min}$
u*	Friction velocity
UGR	Mean wind velocity in the x-direction at ground level
UST	Geostrophic wind speed, m/min
V	Velocity in y -airection, $\mathrm{m} / \mathrm{min}$
v*	Pseudo-velocity defined by equation (3.1)
w	Velocity in z -direction, $\mathrm{m} / \mathrm{min}$
w (x)	Weighting function
W_{j}	Quadrature weights
X	Cartesian coordinate in mean wind direction
x	Refers to independent variable in orthogonal collocation theory
X_{j}	Collocation points
$\mathrm{x}_{\text {max }}$	Maximum distance in the x -direction

y
y
$y_{\text {max }}$
z
z_{0}
z_{1}

Cartesian coordinate in horizontal direction
Refers to dependent variable in orthogonal collocation theory

Maximum distance in the y-direction
Cartesian coordinate in vertical direction
Characteristic surface roughness length
Reference height

Greek Symbols
α
α
∇
∇^{2}
β
Γ
δ
$\delta_{i j}$
Δ
ζ
η
θ
ξ
σ
$\phi(x, y)$

Constant in equation (4.63)
Exponent in equation (4.5)
Gradient vector
Laplacian
Exponent in equation (4.5)
Gamma function
Test value used in "RKGS"
Kronecker delta function
Knee height, m
Function that represents K_{z}
Function that represents v
Time between the pollutant release and the initiation of the averaging time, min

Function that represents K_{Y}
Standard deviation
Function of the independent variables x and y, given by equation (4.41)
$\psi \quad$ Function that represents u
$\Omega \quad$ End of the averaging time, min

Superscripts

- Denotes the fluctuating component when used in a concentration or velocity variable
- Denotes the mean value when used on a velocity variable
*

Refers to shifted polynomials
$=\quad$ Refers to a matrix

Subscripts

$i \quad i^{\text {th }}$ species
i Index in collocation equations
i Index used in orthogonal collocation theory
$j^{\text {th }}$ direction.in Cartesian coordinates
Index used in orthogonal collocation theory
Represents the x-direction in collocation equations
Represents the y-direction in collocation equations
Represents the z-direction in collocation equations
Index used in orthogonal collocation theory
Denotes ground level
Refers to x coordinate direction
Refers to y coordinate direction
Refers to z coordinate direction
Denotes a vector quantity

Brackets

< > Denotes ensemble averages

[^0]: $C .6$
 0.6
 0.0
 6.6
 6.6
 0.0
 6.6

[^1]: .c
 .C
 .C
 .6
 .0
 .6

[^2]: $C . C$
 $C . C 1$
 $C . C 4$
 $C . C$
 0.0
 $C . C$
 $C . C$

[^3]: 2cirfcticn－ 150.0 m

[^4]: nognnon

[^5]: 0.80
 $c . c 4$
 6.31
 0.22
 $c . c 7$
 0.51
 $0 . c$

[^6]: 0.65
 1.84
 4.16
 6.86
 2.85
 6.87
 0.6

