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Abstract

In this dissertation we analyze the numerical results of a microscopic approach that

models pedestrian dynamics.

Firstly, we focus on a space-continuous model that represents pedestrian dynamics

by the forces acting on them. We consider that each pedestrian is driven by the

desire to reach a certain target and is influenced by the space geometry as well as

by the pedestrians surrounding them. These forces on the pedestrians are modeled

using Newton’s second law of dynamics as a guiding principle. The model results

in a high-dimensional system of second order ordinary differential equations. The

time evolution of the positions and velocities of all pedestrians is then obtained by

numerical integration.

The various parameters in our model are numerically calibrated for a simple

straight corridor and their significance to the model is analyzed. A major side effect

of spatially continuous models are oscillations and overlaps. They are also analyzed

in a quantitative manner for the same corridor.

Next, we validate our model through a serious of experiments. We compute the

evacuation time from a room with varying exit door size. Our results are compared

to the numerical results obtained for the same experiment using a kinetic theory

approach. We notice that our model had a higher rate of decrease of evacuation

times compared to the kinetic model. Then, we validate our model by comparing

with empirical results. We compare the average velocity against the mean density

of a group of people passing through a particular portion of a corridor. Our results

are in good agreement with the empirical ones. Finally, we show that our model

can reproduce self-organization of the pedestrians. We consider a bidirectional flow

of pedestrians in a corridor and successfully observe that our model reproduces lane

formation without explicitly setting the model to do so.
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Lastly, we combine our pedestrian dynamics model with a contact tracking model

to compute the average number of people getting infected by sick people inside air-

ports.
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Chapter 1

Introduction

Lately, the study of pedestrian dynamics has gained much interest from researchers

of various scientific fields. Research on this topic began with empirical observations

in 1950s to produce efficient architectural designs for public places, then moved on to

simulating pedestrian traffic flow to best analyze panic situations that might require

evacuations [27, 58]. In more recent years, the computational and analytical features

related to existing models garnered interest from applied mathematicians and physi-

cians, since many models were becoming reliable in simulating pedestrian flows. Such

successful dynamic models help in building safer structures (optimal evacuation dur-

ing a panic situation), controlling crowds during mass events, controlling the spread

of an infectious disease in its initial stages by contact tracing, and so on.

In this paper, we analyze one such application of modeling pedestrian dynamics -

contact tracing. Contact tracing is a potentially powerful disease control strategy in

which the people who were in close contact to infectious persons are traced. These

traced people are then monitored so that if they become symptomatic, they can be

efficiently isolated, resulting in reduced transmissions [22, 24].
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Contact tracing recently gained public attention because of its importance as a

control strategy in the 2014−2015 Ebola outbreaks [21, 47, 52]. Direct measurement

of the impact of contact tracing on an outbreak has also been recently considered

in relation to tuberculosis [26], but a general modeling framework for measuring the

population-level effect of contact tracing is needed for other emerging pathogens.

As contact tracing aims to identify all potential transmission routes, it suffers from

network definition issues; in addition, it is time consuming and relies on individuals

providing complete and accurate data about personal relationships.

Previous works about contact tracing have used a range of modeling methods from

individual based models on specific networks to compartmental ordinary differential

equations at the population level. See [44, 36, 39, 5, 14]. Many differential equation

models have incorporated contact tracing implicitly [3, 47], though [35] considered

it as a deterministic model with explicit contact tracing for HIV: a different setting

than an emerging outbreak.

Standard epidemic theory models describe the number of individuals (or propor-

tion of the population) that are susceptible (S) to, exposed (E) to, infected (I) with

and recovered (R) from a particular disease. This classification leads to neglecting

various details about the progression of infection. However, the simplification has

only led to successful results so far. The SIR and SIS models are the foundation

of almost all of mathematical epidemiology. The SIR model is appropriate for in-

fectious diseases that confer lifelong immunity, such as measles or whooping cough

[38, 48]. The SIS model is predominantly used for sexually transmitted diseases, such

as chlamydia or gonorrhea, where repeat infections are common [33, 25].

The focus of our work is on the initiation of disease spread in a medium size

population with a small number of infectious people. Thus, we use the contact tracing
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model as a network evaluation device by tracking only the number of people who could

potentially be infected by sick people around them. Keeping this in mind, we choose

a pedestrian dynamics model that can be expanded to track the onset of disease

spreading.

Throughout the years different approaches to model pedestrian dynamics have

been used. Depending on the scale of the model they can be categorized as macro-

scopic, microscopic and stochastic [10]. The macroscopic approach is used when crowd

dynamics is modeled as a continuum medium characterized by averaged quantities

such as mass density and mean velocity [34, 51]. As macroscopic models consider

pedestrian flow as a whole, they are used in situations where human interactions are

not closely studied. Thus, this approach is not suited for our purpose.

The microscopic approach can be further categorized as discrete or grid-based and

continuous or grid-free models. A very popular model belonging to the grid-based

category is the Cellular Automata (CA) model [13, 12, 11, 20, 56]. This describes

phenomena in space-time by assigning discrete states to a grid of space-cells. These

cells can be occupied by a pedestrian or be empty. The movement of pedestrians in

space is implemented by passing them from cell to cell (discrete space) in discrete

time.

Space-continuous or grid-free models determine the continuous movement of pedes-

trians based on forces acting on them. Each pedestrian tries to reach a certain target

and is influenced by the space geometry as well as by the actual states and positions of

the other individuals. The forces acting on people are not only physical but also social

[31]. These grid-free microscopic models, also called force-based models, are one of

the most popular modeling paradigms of continuous models because they describe the

movement of pedestrians well qualitatively. See, e.g., [28, 31, 32, 54, 45, 17, 60, 41] and
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references therein. Collective phenomena, like unidirectional or bidirectional flow in

a corridor [43, 53, 57], lane formation [31, 29, 58], oscillations at bottlenecks [31, 29],

the faster-is-slower effect [40, 46], emergency evacuation from buildings [29, 58, 42],

are well reproduced. Other advantages of these methods are the ease of implementa-

tion, and in particular parallel implementation, and the fact that they permit higher

resolution of geometry and time.

Implementations of these models often require additional elements to guarantee

realistic behavior, especially in high density situations. Force-based models can be

extended into agent based models by incorporating individual features. See, e.g.,

[19, 15, 4, 2, 6] and references therein. Agent-based models allow for flexibility,

extensibility, and capability to realize heterogeneity in crowd dynamics. Both force-

based and agent-based models may introduce artifacts due to the force representation

of human behavior, leading to unrealistic backward movement or oscillating trajecto-

ries. These artifacts can be reduced by incorporating extra rules and/or by elaborate

calibrations, at the price of increasing the computational cost.

The third approach is based on the kinetic theory/stochastic description. This

scale of observation here is between those of the previous two approaches. In a frame-

work close to that of the kinetic theory of gases, this approach derives a Boltzmann-

type evolution equation for the statistical distribution function of the position and

velocity of the pedestrians. The kinetic theory approach was introduced in [9] and

further developed in [7]. In these papers, the model is valid in unbounded domains.

The extension to bounded domains is presented in [1]. Further literature review on

this approach can in found in [8].

Most of the references cited so far have been shown to replicate various cases of

pedestrian movement qualitatively through analysis and/or numerical simulations.
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Obviously, if a model cannot represent a certain phenomenon qualitatively, there

is no hope for any quantitative agreement between model prediction and practical

experiments. However before using a model for quantitative predictions, the model

itself must be validated and the numerical method used to implement the model

must be verified [23]. A verified method is capable of correctly solving the problem

equations, while a valid model is able to correctly describe the features of the problem

(i.e., it uses the right equations). Validation of pedestrian flow models are complicated

by the lack of reliable experimental data. In addition, the few available datasets show

large differences [49, 50, 59]. In order to make the models more reliable, evolutionary

adjustment of the parameters and data assimilations have also been proposed in

[55, 37] respectively.

As stated earlier, the focus of this work is on the initiation of disease spread.

A small number of infected people are introduced into a given environment like an

airport, where a disease spread initiation could occur. Small to intermediate num-

ber of interactions occur between the pedestrians inside this environment. As most

currently used models in epidemiology cannot handle these scenarios, we model the

pedestrian dynamics using a grid-free microscopic approach, in particular, the force-

based approach. We then apply a ’tracking’ part to the model to track the disease

spread. First, we concentrate on the pedestrian dynamics model, then we trace the

disease spread.

Force-based models contain free parameters that can be adequately calibrated to

achieve a good quantitative description. However, depending on the simulated geom-

etry, the set of parameters often changes. In most works, quantitative investigations

of pedestrian dynamics were restricted to a specific scenario or geometry, see. [18].

The pedestrian dynamics model is taken from [18]. We first calibrate the model for
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pedestrian motion in corridors. We then validate the model by comparing the re-

sults obtained by our model with a kinetic model in [1] and with empirical results in

[59]. Finally, we observe the self-organized lane formation of pedestrian dynamics in

normal situations.

Next, we add the ’track’ part to that model to track the disease spread. This

updated microscopic model is used to analyze the initial disease spread in airports.

The sick people in the system are referred to as primary contacts and the people

infected by the primary are called secondary contacts. For our contact tracing model,

we consider a simple, explicit approach by introducing a sickness domain (a circle,

for simplicity) around a primary contact. A healthy but vulnerable person who is

in that sickness circle for a certain amount of time may get infected and become

a secondary contact. Finally, using the combined model, we calculate the average

number of secondary contacts produced in an environment.

The outline of this dissertation is as follows.

In Chapter 2, we introduce the problem definition for the microscopic modeling

of pedestrian dynamics. The force - based mathematical model is set up and its

advantages and disadvantages are discussed. Then, the numerical method for the

model is described.

In Chapter 3, we calibrate the parameters of the model. Each parameter of the

model is numerically analyzed to see its effect on the model.

In Chapter 4, we validate the model by comparing it with numerical experiments

that use a kinetic theory approach and with empirical results. In this chapter, we

also show that the model reproduces self-organization of pedestrians.

In Chapter 5, we present the contact tracking model used along with the pedes-

trian dynamic model to trace the initial spread of an airborne disease. We also show
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the numerical results for the contact tracking model. Sick people who board an air-

plane and reach their destination by passing through a transit airport are traced. The

numerical simulations are used to predict the average number of people that could

get infected.
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Chapter 2

Mathematical Model and

Numerical Method

2.1 Introduction

A microscopic grid free (force based) approach is considered for modeling pedestrian

dynamics. These models use Newton’s second law of motion as a guiding principle.

Each pedestrian walks towards a target and their motion is influenced by other pedes-

trians and space geometry. A pedestrian in the model is represented as a circle with

varying radius which depends on the pedestrian speed at a particular time. Avoid-

ing overlapping between pedestrians and oscillations in their trajectories is difficult

to accomplish in force based models. Increasing the strength of an interaction force

with the aim of excluding overlapping during simulations leads to oscillations in the

trajectories of pedestrians. Consequently, backward movements occur in high density

situations. Reducing the strength of the interaction force to avoid oscillations leads

inevitably to overlapping between pedestrians or between pedestrians and obstacles.
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One has to find an adequate value for the strength of the interaction force in order

to avoid unrealistic motion [18]. A drawback of representing people as circles is the

rotational symmetry, i.e. they occupy the same amount of space in all directions.

Representing a person as an ellipse is closer to the projection of required space for a

human on the plane, including the extent of the legs during motion and the lateral

swaying of the body. Ellipses seem to be superior to circles for low and medium values

of the density but we stick to representing the pedestrians in our model as circles for

now as using them posed no disadvantage to our case.

2.2 Mathematical Model

Let us consider a group of N pedestrians in a bounded geometry Ω. Each pedestrian

is modeled as a circular disk with a given radius. The dynamics of each pedestrian

over a time interval of interest (0, T ] is modeled using Newton’s second law, i.e. for

pedestrian i with mass mi and center of mass at ri the law of motion is:

mir̈i = f i, i = 1, . . . , N, (2.1)

where f i represents the total forces acting on the pedestrian. Source term f i in-

cludes the force driving the pedestrian toward his/her target and the repulsive forces

acting on pedestrian from other pedestrians, and from walls and other obstacles, to

prevent collisions and overlapping. The complexity of model (2.1) lies in finding an

appropriate description of f i.

We define the set of all pedestrians that influence the motion of pedestrian i at a

certain time t ∈ (0, T ] as:

Pi = {j ∈ N, j ≤ N : ||rj − ri|| ≤ rp},
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where ‖‖ denotes the Euclidean norm in R2 and rp is a cutoff radius for pedestrian-

pedestrian interaction. Given h > 0, the boundary ∂Ω is represented as a set of Nb

points: B = {rk ∈ ∂Ω}Nbk=0 with ||rk+1 − rk|| = h, for k = 0, . . . , Nb − 1. The set of

boundary points acting on pedestrian i at time t ∈ (0, T ] is:

Bi = {j ∈ N, j ≤ Nb : rj ∈ B and ||rj − ri|| ≤ rw}

where rw is a cutoff radius for pedestrian-wall interaction. We assume that the total

forces f i consist of three contributions:

f i = f tari +
∑
j∈Pi

f pedij +
∑
j∈Bi

f bouij , i = 1, . . . , N, (2.2)

where f tari is the force driving pedestrian i to his/her target, f pedij is the repulsive force

pedestrian j exerts on pedestrian i, and f bouij is the repulsive force due to the domain

boundary. Pedestrians try to avoid collisions and contact with other pedestrians and

boundary (i.e., wall and objects) by changing their direction. The repulsive forces

f pedij and f bouij model this attempt to avoid contact.

The driving force models the intention of a pedestrian to move to some destination

and walk with a certain desired speed vi:

f tari = mi
viei − vi

τ
, (2.3)

where ei is the unit vector directed from pedestrian i to his/her target, vi = ṙi is

the velocity of pedestrian i, and τ is a time constant. For complicated paths, we

generate a sequence of “checkpoints” along the path and for each checkpoint j we

specify a radius rj. Checkpoint j is considered to be reached when the pedestrian is

within a distance rj of it. Once the path is assigned to a pedestrian, the target is the

first checkpoint along the path and when the first checkpoint is reached the target is

updated to the second checkpoint, and so on.
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In order to define repulsive force f pedij in (2.2) we need to introduce some notation.

The vector connecting pedestrian i with pedestrian j, directed from i to j, and the

corresponding unit vector are denoted by:

rij = rj − ri, eij =
rij
||rij||

.

We assume that pedestrian i has an effective diameter di that depends linearly on

his/her velocity:

di(vi) = d0i + τd||vi||, (2.4)

d0i being his/her diameter at rest and τd being a proportionality parameter. Eq. (2.4)

accounts for the fact that a faster pedestrian has an effective larger diameter since

he/she will keep obstacles and other pedestrians at a larger distance. The effective

distance between pedestrians i and j is then:

dij = ‖rij‖ −
1

2
(di(vi) + dj(vj)). (2.5)

We can now write the repulsive force as:

f pedij = −mikij
(µvi + vij)

2

dij
eij, (2.6)

where µ is a parameter used to tune the strength of the force, vij is the component

of the velocity of i relative to j in the direction of eij:

vij =
1

2

[
(vi − vj) · eij +

∣∣(vi − vj) · eij
∣∣] =

 (vi − vj) · eij if (vi − vj) · eij > 0,

0 otherwise,

(2.7)

and kij is a coefficient that reduces the action-field of the repulsive force to the angle

of vision of each pedestrian (i.e., 180◦):

kij =
1

2

vi · eij + |vi · eij|
‖vi‖

=


vi·eij
‖vi‖ if vi · eij > 0 and ‖vi‖ 6= 0,

0 otherwise.
(2.8)
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As is intuitive, the repulsive force in (2.6) is directed in the opposite direction of eij

and its modulus is inversely proportional to the effective distance between pedestrians

i and pedestrian j. Moreover, the strength of the repulsive force f pedij depends on the

angle between vi and eij. In fact, the coefficient kij takes its maximum value (i.e.,

1) when pedestrian i is moving in the same direction as eij and it takes its minimum

value (i.e., 0) when the angle between vi and eij is bigger than 90◦. Notice that,

thanks to the definition of vij, pedestrian i feels the repulsive force due to pedestrian

j only if they are moving toward each other. So, e.g., if pedestrian j is close to

pedestrian i, but faster than and ahead of i, then f pedij = 0.

The term µvi at the numerator in eq. (2.6) prevents collisions due to an unaccept-

ably small repulsive force when the distance between the two pedestrian is small and

the relative speed is low. This is motivated by the observation that pedestrians with

a large desired speed v0i need stronger repulsive forces to avoid collisions. The case

µ = 0 corresponds to the centrifugal force model introduced in [58], which is known

to lead to realistic results only if supplemented with a collision detection technique.

See also [16] for details.

In order to define f bouij , we note that the repulsive force between a pedestrian i

and a wall is zero if i is walking parallel to the wall. In the model though, this is

not enough to avoid very small repulsive forces when the pedestrians walks almost

parallel to the wall. For this reason, we assume that each pedestrian i feels the

repulsive action of three points lying on the boundary: the closest boundary point to

pedestrian i denoted by rk, ad the two neighboring points rk−1 and rk+1 provided

that ||rk − ri|| ≤ rw. If indeed ||rk − ri|| ≤ rw, then Bi = {rk−1, rk, rk+1}, otherwise

Bi = ∅. We assume that the repulsive force exerted by boundary point j ∈ Bi on

12



pedestrian i is defined by:

f bouij = −mikij
(µwvi + vni )2

dbouij
eij, (2.9)

where kij is defined by eq. (2.8), vni is the component of the velocity normal to the

boundary and

dbouij = ‖rij‖ −
1

2
di(vi).

Thus the mathematical model is complete with the Eqs. (2.1), (2.2), (2.3), (2.6),

(2.9).

2.3 Numerical Method

2.3.1 Introduction

Now that the mathematical model for pedestrian motion has been defined, we describe

the numerical method that we will implement for the simulations. Model Eqs. 2.1, 2.2,

2.3, 2.6, 2.9 are discretized in time and we start off by calibrating the free parameters

τ , d0i , τd, rp and rw of our model to a simple geometry - a corridor. Special focus is on

calibrating the interaction constant µ. Once the parameter values are set we move on

to validating the model. Two experiments are conducted - one taken from empirical

study [59] and another from reference [1]. An experiment from [30] is also conducted

to observe a self organizing behavior of pedestrian motion, i.e. lane formation.

2.3.2 Time discretization

We introduce the time-discretization step ∆t > 0 and set tn = n∆t, for n = 1, . . . , Nt,

with Nt = T/∆t. Moreover, we denote by yn the approximation of a generic quantity

y at the time tn.
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Each pedestrian i, with i = 1, . . . , N , is assigned an initial position r0
i and an

initial velocity v0i . The position at time tn+1, with n ≥ 0 is found with the following

centered finite difference approximation of eq. (2.1):

mi
rn+1
i − 2rni + rn−1i

∆t2
= fni , n = 0, . . . , Nt − 1, i = 1, . . . , N, (2.10)

where fni is an approximation of f i in eq. (2.2) at time tn. Notice that for n = 0 in

eq. (2.10) we need r−1i , which is computed as follows:

r−1i = r0
i −∆tv0

i , i = 1, . . . , N.

The velocity of each pedestrian at time tn+1 is computed by:

vn+1
i =

rn+1
i − rni

∆t
, i = 1, . . . , N. (2.11)

Code Implementation: The numerical simulations are implemented in MAT-

LAB and are run on a shared 40-core computing server with 512 GB RAM. Each

simulation starts by initializing the pedestrian positions, velocities and paths. At

each time step, the new position of all the pedestrians are computed based on the

forces acting on them. The pedestrian velocity is then updated using this new posi-

tion.
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Chapter 3

Calibration

3.1 Introduction

The mathematical model described in Sec. 2.2 depends on several parameters. It is

necessary to understand how to calibrate these parameters, in particular τ , d0i , τd and

the cutoff radii rp and rw, in order to obtain a realistic pedestrian dynamics. Moreover,

it is important to check the sensitivity of the model to these parameter values. With

this in mind we conduct a series of experiments by varying the parameters. We

consider the domain Ω to be a straight corridor. The goal of each experiment is to

make a group of pedestrians pass through this corridor as evenly as people would

normally do.

We set Ω to be a straight corridor of length 8 m and uniform width 1.8 m. We

take a group of N = 12 people and simulate their passage through the corridor. As

we are interested in understanding the role of all the parameters in the model the

size of the group is set to be small. In a large group of pedestrians, the interaction

forces become dominant and we would be unable to see the effects of changing the

15



Figure 3.1: A schematic diagram of the straight corridor used for the calibration tests.

Here, • represents a pedestrian and • is the pedestrian X whose magnitude of the

velocity is considered for the sensitivity analysis.

target force parameters. Initially, the pedestrians are placed 4 m to the left of the

corridor, as shown in Fig. 3.1, and they are placed 1 m apart from each other. The

people are also initially at rest, i.e. v0
i = 0 for i = 1, . . . , N . Every pedestrian is

assigned the same path : checkpoint 1, then to 2 and finally 3. The width of the

corridor 1.8 m is set as the radius associated with each of these checkpoints. Each

pedestrian is assigned a desired speed vi. The desired speed of all pedestrians are

Gaussian distributed with mean 1.55 m/s and standard deviation 0.18 m/s [59]. The

simulation is run for T = 13s, the time it takes all the pedestrians in the system to

exit the corridor. We discretize this time interval [0, T ] with time step ∆t = 0.01 s.

For all the following tests we compare the magnitude of the velocity (speed) of the

pedestrian marked in red in Fig. 3.1 against time. We refer to that pedestrian as

pedestrian X. Pedestrian X was chosen as other pedestrians surround X on all sides

and thus his/her dynamics certainly depends on all the forces in the model.

Let us start by setting all the model parameters according to [18]: τ = 0.5 s,

τd = 0.53 s, rp = rw = 2 m, d0i = 0.18 m, and µ = µw = 0.2.

We consider our simulation to be unstable if either of the following happens.
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• The pedestrian’s current speed exceeds its desired speed.

• Overlaps and oscillations occur.

When the simulation is run with these parameters we notice that some of the

pedestrians attain speed greater than their desired speed. In that case the driving

force becomes negative and makes the intention of the pedestrian to move in the

direction opposite to their destination (driving force becomes a repulsive force). Thus

the system is unstable. Furthermore, if the pedestrian speed (which is greater than

the desired speed) keeps on increasing, there will eventually be a sudden burst in

the motion of the pedestrian causing unrealistic motion. This behavior occurs in our

simulation if the parameters are set as above. We also observe the occurrence of

pedestrian-pedestrian and pedestrian-wall overlaps for a large amount of time during

the run. Thus, we need to find better values for the model parameters.

3.2 Sensitivity Analysis of Model Parameters

The first issue we deal with is the speed of pedestrians becoming greater than their

desired speed. From eq. (2.4) we can see that the effective diameter is directly affected

by the speed of a pedestrian and that the proportionality parameter τd controls this

influence of the speed on the effective diameter. As a result we choose to check the

sensitivity with respect to τd first. The desired speeds of each pedestrian in this run

are retained for all the subsequent runs.

Sensitivity to τd : Fig. 3.2 displays the speed of pedestrian X for t ∈ [0, 13] s

and three different values of τd = 0, 0.10, 0.20 s. We notice that before t = 1 s the

value of τd has little influence on the pedestrian dynamics. This can be explained

by fact that τd is a proportionality parameter that multiplies the velocity magnitude.
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Figure 3.2: Speed of the pedestrian X against time for different values of τd.

For small velocity magnitude and small d0i the effective diameter di(vi) is small too.

Moreover, till t = 1 s the effective distances between pedestrians are large because

of the initial positions and the small effective diameters of pedestrians. Thus the

interaction forces eq. (2.6) acting on the pedestrians are negligible. The only force

in play till t = 1 s is the target force f tari which is independent of τd. After t = 1

s, all the forces come into play and hence the pedestrian dynamics is now affected

by the value of τd. In particular, we notice that the local maxima and minima of

speed, while occurring at the same time, decrease as τd gets larger. This is due to

the fact that τd is inversely proportional to both the repulsive forces. Thus the rate

at which the speed increases is higher for lower values of τd. Overall pedestrian X

walks towards the end of the corridor with a speed that never exceeds his/her desired

speed (1.59 m/s), as expected. The local minima of speed in the plot occurs due to
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Figure 3.3: Speed of pedestrian X against time for different values of τ .

the interaction with other pedestrians and walls.

Higher values of τd were not chosen as for this particular set of desired goal speeds

the system became unstable with the speed of some pedestrians exceeding their de-

sired speed. As τd = 0.20 s is the highest value for which the system stays stable

we fix τd = 0.20 s for the upcoming tests. We consider the model parameter τ to be

analyzed next.

Sensitivity to τ : In Fig. 3.3 we report the speed of pedestrian X over a time

interval of 13 s for three different values of τ = 0.4, 0.5, 0.6 s. We notice that for all

the values of τ the magnitude of velocity increases up to a local maximum, decreases

to a local minimum, and then oscillates towards the desired speed. As the value of τ

gets larger, the values of the local maxima and minima decrease and are reached at

a later time. This is as a result of the target force f tari being inversely proportional
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Figure 3.4: Speed of pedestrian X against time for different values of d0i .

to τ . In other words, the smaller the value of τ the more strongly the pedestrian

is pushed to the target. We also notice that, unlike τd, the value of τ does affect

the pedestrian dynamics before t = 1 s. This is by cause of, as explained earlier,

the target force f tari being the only force active at the start of the simulation. For

the rest of the simulations in this section, we will set τ = 0.5 s, indicating that the

pedestrians have a certain hurry in reaching their target. Next, we move on to check

the sensitivity of the model parameter d0i .

Sensitivity to d0i : In Fig. 3.4 we compare the speed of pedestrian X for three

different values of d0i = 0, 0.1, 0.2 m. We can see that before t = 1 s is reached the

values of d0i have no influence on speed. This is because f tari , the only force initially

acting on the pedestrians, is independent of d0i . After t = 1 s, the effect of changing d0i

is similar to the effect of varying τd. As d0i gets larger the values of local maxima and
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rp = 1 m rp = 2 m rp = 3 m

rw = 1 m unstable unstable unstable

rw = 2 m unstable stable stable

rw = 3 m unstable stable stable

Table 3.1: The stability results for different cutoff radii rp and rw values.

minima decrease, while occurring almost at the same time. For values of d0i greater

than 0.2 m the system becomes unstable with pedestrian-wall intersections and speed

of some pedestrians exceeding their desired speed. From now on, we fix d0i = 0.2 m.

This may not be a realistic diameter at rest for a person but it is the largest value for

which the model reproduces a reasonable pedestrian motion through the corridor.

Sensitivity to the cutoff radii rp and rw : The last two model parameters we

consider are the cutoff radii rp and rw. They provide the largest distance at which

a pedestrian and a boundary point could influence the dynamics of a given person

respectively. We take all the combinations of values for rp and rw reported in Table

3.1. We note that if either of the radii is small the system is unstable. The speed

of pedestrians exceed their desired speed in all the unstable cases. Among the stable

combinations we consider rp = rw = 2 m. This combination has less computational

cost than the other stable combinations. This is by reason of that the number of

pedestrians/wall points needed to compute interaction forces would be greater as the

values are higher in the other stable combinations. As a result, we set rp = rw = 2

m. Finally, we check the numerical convergence of the model with respect to the

discretization parameter ∆t.

Sensitivity to ∆t : Fig. 3.5 displays the speed of pedestrian X for t ∈ [0, 13]
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Figure 3.5: Speed of pedestrian X against time for different values of ∆t.

s and different values of ∆t = 0.05, 0.01, 0.005 and 0.001 s. We see that for all of

these values the dynamics of the pedestrian does not change substantially (within

1%). Thus, we retain ∆t = 0.01 s.

3.3 Overlaps and Oscillations

This section is devoted to the calibration of a key model parameter: the interaction

constants in repulsive forces: µ in eq.(2.6) and µw in eq.(2.9). We consider µ = µw

for now.

We say an oscillation occurs when a pedestrian’s direction deviates more than 90
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degrees away from its target direction. An overlap occurs in two scenarios. It could

happen when two of the circles representing pedestrians have a non-null intersection,

or when a boundary point lies within one such circle. During pedestrian overlaps the

effective distance between two people becomes negative.

Let us consider two pedestrians i and j that are close to each other (relative

distance dij is small). In the case where vij is small as well, the repulsive force in

eq.(2.6) with µ = 0 is not sufficient enough to keep the pedestrians far apart to avoid

overlaps. The addition of the term µvi in the equation thus ensures that there is

enough repulsion to avoid overlap. Thus large values of µ help in avoiding overlaps.

On the other hand, when vij is large and dij is small, a large value of µ may give

rise to a strong repulsive force that compels the pedestrian to deviate more than 90

degrees away from the target direction. Thus leading to oscillations. A large value of

µ might lead to oscillations in the pedestrian motion and a small value might lead to

overlaps. Our goal is to find a value for µ that is large enough to avoid overlaps and

small enough to avoid oscillations.

Following [18], we define the overlapping-proportion of a simulation as

Ov =
1

nov

t=T∑
t=0

i=N∑
i=1

j=N∑
j>i

oij, with oij =
Aij

min(Ai, Aj)
≤ 1, (3.1)

where oij quantifies the “overlap-strength”and nov is the cardinality of the set {oij :

oij 6= 0}. Ai and Aj are the areas of the circular discs of pedestrians i and j, and Aij

is their area of intersection. If nov = 0, i.e. if no overlap occurs, then Ov is set to 0.

Notice that the maximum value that Ov can be is 1.

The oscillation-proportion of a simulation is defined as

Os =
1

nos

t=T∑
t=0

i=N∑
i=1

Si, with Si =
1

2
(−si + |si|) and si =

vi · (viei))
vi

2 , (3.2)
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Figure 3.6: Overlap (Ov) and oscillation (Os) proportions against the interaction

constant µ.

where nos is the cardinality of the set {Si : Si 6= 0}. Si can be viewed as “oscillation-

strength” of pedestrian i. If nos = 0, i.e. no oscillation occurs, then Os is set to 0.

Similarly to Ov, the maximum value for Os is 1.

We now set N = 36 and retain the values of the other parameters: τ = 0.5 s,

τd = 0.2 s, d0i = 0.2 m , and rp = rw = 2 m. For different values of µ = 0, 0.1, 0.2,

0.3, 0.4, 0.5, 0.6, we run each set of simulations a 100 times. Fig. 3.6 shows us the

average values of Ov and Os from these 100 runs against µ. Each run uses random

desired velocities (Gaussian distributed with mean 1.55 m/s and standard deviation

0.18m/s) for the pedestrians.

From the top plot of Fig. 3.6 we can see that the overlap proportion decreases as µ

increases and stays 0 for large values of µ. This is consistent with our earlier analysis

that larger the value of µ smaller the overlap. Note that the overlap proportion is a
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little higher for µ = 0.1 than for µ = 0. This is cause the system became unstable (the

speed of some pedestrians exceeded their desired speed). For the same reason we also

conclude that oscillation proportion for µ = 0 and 0.1 does not hold any significance.

Thus, ignoring these two values, we see from the bottom plot that for small values

of µ there is no oscillation. As µ increases, the oscillation proportion increases too,

again staying consistent with our earlier analysis that smaller the value of µ smaller

the oscillation proportion.

We know that the pedestrians are modeled as circular discs that vary in radius

according to the velocity of the pedestrian. Thus we can assume that a pedestrian

does not physically occupy the entire disc always. Keeping this in mind, depending on

the scenario of an experiment we allow some amount of overlaps in the system, like in

the case of µ = 0.2. Choosing µ = µw = 0.3 would be ideal in this experiment yielding

no overlaps or oscillations. Choosing µ = µw = 0.2 is also adequate as some overlaps

between a large group of people passing through a narrow corridor is acceptable.

25



Chapter 4

Validation

4.1 Introduction

The process of showing that the numerical method is a good approximation to real

life problems is called validation. Validation can be done in a number of ways:

1. Validating using other numerical results.

2. Validating using empirical results.

3. Validating using analytic results.

We validate our model using the aforementioned ways 1 and 2. First, we com-

pare our results against the numerical results obtained with a kinetic theory ap-

proach. Next, we compare the macroscopic quantities computed using parameters in

our model with empirical ones. Finally, we validate using analytic results that our

model can self-organize pedestrians.
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Figure 4.1: A schematic diagram of the square room of length 10 m used as domain

where • represents a pedestrian.

4.2 Analysis of Evacuation Time from a Room with

Varying Exit Door Size

In this section we consider an experiment from [1] where a kinetic theory approach is

presented. The domain for this test is a square room of length 10 m with 48 people

inside it, split into two groups as shown in Fig. 4.1. The room has an exit door of

width wexit m which is centered at the right wall. The goal of this experiment is to

analyze the time taken by these 48 people to exit the room for varying values of wexit.

We consider 15 different values of wexit from [1.2, 4] with 0.2 m variation.

In this experiment, we first want the two groups of people to merge into a single

group and then walk out of the room. In order to implement this we assign all

pedestrians the same path. The path consists of the checkpoints marked 1, 2 and

3 in Fig. 4.1. The radius associated with checkpoint 1 differs for each pedestrian.

It varies from [1, 3] m with 0.5 m variation with respect to the initial position of
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(a) t = 0 s (b) t = 1.51 s

(c) t = 6.06 s (d) t = 12.87 s

(e) t = 14.42 s

Figure 4.2: Screenshots of the pedestrian motion during the evacuation of 46 pedes-

trians from a square room of length 10 m with exit size wexit = 2.6 m at time t = 0,

1.51, 6.06, 12.87, 14.42 s.
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the pedestrian. The closer a pedestrian is to the checkpoint position, the smaller its

radius for checkpoint 1. The radius associated with checkpoints 2 and 3 are set as

wexit m and 4 m respectively. We set dt = 0.01 s, τ = 0.50 s, d0i = 0.2m, td = 0.2 s,

rp = rw = 2 m. In evacuation scenarios people would tend to move away from walls

and would not mind being too close to other pedestrians and thus we set µ = 0.20

and µw = 0.30. The desired speed for all pedestrians is set to 1m/s. Consider the set

{0.9481, 0.8775, 0.7850, 0.6768} consisting of pedestrians’ initial speed values. These

values were computed from data in [1]. The initial speed of each person is taken

from this set depending upon the density of people around them, i.e the people in the

center of the group would have a smaller initial speed than the people at the exterior.

The pedestrian dynamics for the case with wexit = 2.6 m is displayed in Fig. 4.2.

These plots agree with the results in [1]. At t = 6.06s the two groups merge into one

with the density of the group high in the interior and low around the edges. As time

increases, at t = 12.87 s people are crowded near the exit. This flow of motion is

consistent with people exiting a room under the conditions of our experiment.

Fig. 4.3 shows us the evacuation time for all cases of varying wexit. We can see

that larger the width size of exit door, faster the people exit the room, as one would

expect. Note that in the first two cases, even though there is only a small difference

in the width of the exit size, the time difference is around 3 s which is high when

compared to other values in the plot. This happens due to over crowding near the

exit when wexit = 1.2 m, implying that this width size is small for a group of 48 people

to exit the room smoothly. Also note that for wexit = 3.4, 3.6, 3.8 m the evacuation

time is constant showing that after a while increasing the width size might not make

a difference for the evacuation time.
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Figure 4.3: Evacuation time of 48 people exiting a square room of length 10 m for

varying exit door width.

4.3 Validation Against Experimental Data

In this section we quantitatively validate our model by comparing with the empirical

results in [59]. Consider a corridor of length 8 m and uniform width 1.8 m as the space

geometry of this experiment (See Fig. 4.4). A perpendicular line passing through

this corridor is taken as a reference line. We assign 4 target checkpoints and every

pedestrian is assigned the same path : checkpoints 1, 2, 3 and 4. Checkpoint 2 and

4 each have a radius of 1.8 m (width of the corridor), denoted by bcor. Checkpoint

1 has a radius of bent m and checkpoint 3 has a radius of bexit m, which will vary

depending on the experiment. N pedestrians are placed at a distance of 4.5 m away

from the beginning of the corridor. The values of bent, bexit, and N varies for the

different experiments. See Table 4.1.

Over a time interval of length δt the macroscopic quantities flux Jδt, average ve-

locity vδt and density ρδt are calculated by using the characteristics of people crossing
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Figure 4.4: A schematic diagram of the corridor used as domain for empirical valida-

tion.

the reference line during this time interval. The flux is the rate of flow of pedestrians

during the time interval of length δt and hence is computed by:

Jδt =
Nδt

tNδt
, (4.1)

where Nδt is the total number of people who crossed the reference line during δt and

tNδt is the time taken by these Nδt pedestrians to cross the reference line.

The average velocity is given by the equation:

vδt =
1

Nδt

i=Nδt∑
i=1

vi, (4.2)

where vi is the velocity of the ith pedestrian at the time he/she crossed the reference

line.

Finally the density is computed as:

ρδt =
Jδt

vδtbcor
. (4.3)

For every experiment we will compare the computed and measured macroscopic

quantities. Following [59] we set the reference line to be 4 m from the start of the

corridor, i.e the reference line splits the corridor into two and also set δt = 10 s.
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Experiment Index N bent [m] bexit [m]

1 60 0.50 1.80

2 66 0.60 1.80

3 111 0.70 1.80

4 121 1.00 1.80

5 175 1.45 1.80

6 220 1.80 1.80

7 170 1.80 1.20

8 160 1.80 0.95

9 148 1.80 0.70

Table 4.1: The 9 different experiment values considered for empirical validation.

For every experiment we need to decide when the time interval of δt seconds

starts during the simulation. From Fig. 4.4 we can see the initial positioning of the

pedestrians. If we consider [0, δt] s as the interval of consideration for computing the

quantities for every experiment, then varying N would not make much of a difference.

Also for small values of bent, the time interval under consideration might have passed

even before the pedestrians reach the reference line. Thus we set the interval of

consideration to be [start, start + δt], where the value of start changes for the different

experiments in Table 4.1. To explain how we pick the value of start, we consider

experiment 1, which features N = 60, bent = 0.50 m and bexit = 1.80 m. Fig. 4.5

shows the computed density against average velocity for different start times. We

see that when the time interval starts during the first 10 − 30 s of the simulation,

the density values are close to each other and thus we set the start time of this
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Figure 4.5: Density against average velocity for different start times with 50 pedes-

trians, bent = 0.5 m, and bexit = 1.8 m

experiment to be 10 s after the beginning of simulation. The start time for each of

the experiments are set in a similar manner. Once the start times are decided, the

densities and average velocities during the interval of consideration are computed for

a total of 6 runs.

Fig. 4.6 shows the fundamental diagram of the density plotted against the average

velocity for each experiment in Table 4.1 using two different approaches. We can

observe from this figure that the results we obtained are in good agreement with the

empirical data in [59]. Consider experiments 1 through 6. These experiments differ

by the increasing values of both N and bent, with constant bexit. For these cases

the computed density increases too. This is expected as the larger the population,

the higher the density. Due to the fixed corridor width, as the population increases,

the speed of people decrease to allocate other pedestrians. Thus resulting in lower

average velocities. Now, consider the experiments 6 through 9. In this set, bent is
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Figure 4.6: The fundamental plots of density against average velocity for all the 9

experimental data values in Table. 4.1 using two different approaches.
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constant with decreasing N and bexit. These cases yield higher density values too.

As the length of bent is wide enough, even with a decrease in population, the density

grows higher. As bexit value reduces, people trying to exit the corridor cluster near

the exit. Consequently, the people at their back slow down. Thus, more people cross

the reference line with low velocities, inducing high densities.

In the above validation process, we validated our calibrated model with empirical

results. The important thing to note here is that our model parameters were tuned

only using a sample experiment with the same domain as the empirical experimental

setup. Considering that they were not tuned to specifically match the empirical

results, the consistent behavior of our model and the empirical results is a strong

indication that our model simulates pedestrian motion well.

4.4 Lane formation

So far the experiments had a unidirectional flow of pedestrians. In this section,

we see how the model works when we consider a bidirectional flow. In real life,

when groups of people approach each other from opposite directions, they form lanes

naturally making the pedestrian movement undisrupted (see [31, 29, 58]). A good

people dynamics model has to accommodate such natural behavior and so we test

our model against this scenario.

We split the pedestrians into two equal groups and place them in a corridor of

length 20 m and width 5 m (see Fig. 4.7). Group 1 has the objective of moving to the

right exit (target checkpoint for Group 1 with radius 5 m) and Group 2 has to move

towards the left exit (target checkpoint for Group 2 with radius 5 m). Once they

exit we reintroduce the pedestrians into the corridor from the opposite exit to mimic
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Figure 4.7: A schematic diagram of the corridor used as domain in lane formation

experiments.

periodic boundary conditions. We vary the density of pedestrians inside the corridor

ρ from 0.2 to 1.6 pedestrians/m2 with change in density ∆ρ = 0.2 pedestrians/m2.

The number of pedestrians for each experiment is thus calculated by

N = ρ ∗ A(C) (4.4)

with A(C) = 100 m2 denoting the area of corridor. Higher values of ρ were not

considered as they led to an unstable system. We take dt = 0.01 s, τ = 0.50 s,

d0i = 0.2m, td = 0.2 s, rp = rw = 2 m, µ = 0.20 and µw = 0.20 for all the cases in this

section. All pedestrians have a desired goal velocity of 1 m/s.

We note that when the simulation starts the pedestrians reduce their speed due

to their interaction with the opposite stream of pedestrians. In fact, the pedestrian

repulsive force fpedij is large as the relative velocity component vij among them will

be high (as the velocities are in opposite directions). This behavior is observed for all

pedestrians interacting with pedestrians of opposite stream. We also note that the

row of pedestrians near the wall tend to move closer to the wall when they encounter

the opposing stream of pedestrians. This is by reason of the repulsive force from

pedestrians fpedij being higher than that of the wall fwalij . The initial positioning of the
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Figure 4.8: The frozen state of 100 pedestrians induced by initially positioning two

groups of people as mirror images of each other.

Density (ρ) 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Number of pedestrians (N) 20 40 60 80 100 120 140 160

Number of lanes 2 2 2 2 2 2 4 4

Table 4.2: The number of lanes formed in each of the 8 experiments that vary by

density ρ and hence by number of pedestrians N .

pedestrians is such that once the simulation starts and they get close to the opposing

stream they have some space between them to move away from each other. If the

initial positioning of pedestrians were mirror images then, we end up with a frozen

state (see Fig. 4.8) where all the pedestrians collide head on and stop before producing

an unstable system.

Table. 4.2 reports the number of lanes formed in each of the experiments con-

sidered. We observe that as density ρ increases, the number of lanes eventually

increase too. This is displayed in Fig. 4.9 for the cases with density ρ = 1 and 1.4

pedestrians/m2. Note that the initial interaction forces in the simulations are sym-

metric as the initial positioning of the pedestrians in the two groups are symmetric
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(a) The 2− lane formation induced by 100 pedestrians

(b) The 4− lane formation induced by 140 pedestrians

Figure 4.9: On the left we have the initial positioning of the pedestrians and on the

right we have the final lane formation.

Figure 4.10: On the left we have the initial positioning (different from the cases listed

on Table 4.2) of 180 pedestrians and on the right we have the final 2-lane formation.
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(left plots in Fig. 4.9). The target forces are also symmetric due to the boundary

conditions. This leads to a symmetric lane formation (right plots in Fig. 4.9).

When we considered the case of 180 pedestrians (ρ = 1.8 pedestrians/m2), we

could not simulate a stable system for this set of initial positions. This is an indica-

tion that this model does not handle high densities well. However, when the initial

positioning was changed (see Fig. 4.10), we end up with a 2− lane and not a 4− lane

formation even though the density was high. This suggests that the number of lanes

is influenced not only by the crowd size but also by the initial positioning. When the

densities were increased further, even a change in initial positioning could not help

in achieving a stable system. This further reinforces the fact that the model does not

perform well for high densities.

In Chapter 3, we calibrated the model proposed in Chapter 2 to obtain values

for model parameters. Here, we used these tuned parameter values in the model to

simulate various experiments, in order to validate it against numerical and empirical

results. This has shown that our model works well for simple domains, where the

pedestrians have straightforward paths. We now extend our model by introducing

’contact tracking’ to trace an infectious disease. We then apply our model to more

complex domains, assigning complex paths to the pedestrians.
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Chapter 5

Contact Tracking Model and

Numerical Simulations for

Airborne Disease Spreading

5.1 Introduction

Contact tracing is a method for identifying all the people who could have been infected

by a disease as a result of direct contact with a sick person. A sick person who could

potentially infect other people with their disease/infection is termed as a primary

contact. A person is termed a secondary contact if they got infected by a primary

contact due to sufficient contact between them. Once the secondary contacts are

aware of their exposure to the disease, necessary measures could be taken to diagnose

them and later treat them if needed. Depending on the nature of the disease, sufficient

contact is influenced by factors like place, duration of contact and the vulnerability

of the healthy person. The main purpose of contact tracing is to detect the early
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symptoms of the disease on secondary contacts, observe and treat them if possible.

This process is meant to stop infections and diseases spreading further through the

community and hopefully prevent an outbreak of the disease.

To quantify the transmission dynamics from a sick individual to a healthy one,

the basic reproduction number R0 has been used to measure the average number of

secondary contacts generated. Most models predicting the severity of an epidemic

and the basic reproduction number are based on the averaged large population [14,

39, 35]. Such models typically do not work on scenarios when the number of infected

individuals is small and the size of healthy population is medium, as in the case

of airports and hospital emergency rooms. Contact tracing associated with such

environments is of paramount importance for an early suppression of an epidemic.

Our main focus is to track the transmission of an infectious disease in an airport

involving medium size populations consisting of both susceptible and non-susceptible

healthy individuals, and a small number of infectious individuals. The average num-

ber of secondary contacts, denoted by Avgsc, for various percentage of susceptible

individuals in the system are analyzed.

5.2 Mathematical Model

Let us consider a group of N pedestrians in a geometry Ω. The pedestrian dynamics

are modeled as in Chapter 2 over a time interval of interest (0, T ]. Pedestrians have a

characteristic to be one among the following - infectious (sick), non-susceptible (im-

mune), susceptible (vulnerable), infected and not infected. These characteristics are
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known as stages. Consider the following sets consisting of the indices of pedestrians:

S = {i ∈ N, i ≤ N : ith pedestrian is susceptible/vulnerable},

I = {i ∈ N, i ≤ N : ith pedestrian is infectious/sick},

where S denotes the set of all pedestrians that are vulnerable to being infected by

sick people and I is the set of all pedestrians that are infectious/sick (people who can

transmit the disease).

Initially, among the N pedestrians, we take Pimm % of the pedestrian population

to be immune (people who cannot be affected by sick people) and a small number

of people to be sick. Rest of the population would consist of people vulnerable to

the disease. Thus, in the beginning, every pedestrian is categorized into one of these

stages: sick, immune and vulnerable.

For an sick person i with position ri, we define the set of all susceptible pedestrians

that lie inside its circle of influence (sickness domain) at a certain time t ∈ (0, T ] as:

Isusi = {j ∈ S : ||rj − ri|| ≤ rs}, i ∈ I,

where ‖.‖ denotes the Euclidean norm in R2, and rs is the cutoff radius for the circle

of influence. If a pedestrian j ∈ Isusi for a continuous period of time, e.g. tvul minutes,

then they have a vs % probability of getting infected. Furthermore, j would no longer

belong to S and would be moved to either one of the following sets according to its

updated stage:

Esick = {j ∈ N, : j ∈ Isusi for tvul mins and is infected},

Esafe = {j ∈ N, : j ∈ Isusi for tvul mins and is not infected}.

Esick denotes the set of all pedestrians who have been exposed to the disease for tvul

minutes and have fallen sick. Esafe denotes the set of all pedestrians who have been
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exposed to the disease for tvul minutes but were not affected. Once a vulnerable

pedestrian moves to either of these sets, they would no longer be considered as an

element of S, i.e.,

S ∩ Esick = S ∩ Esafe = ∅.

In other words, once a pedestrian belongs to either one of the sets Esick or Esafe, they

are no longer considered to be in the pedestrian population that could get infected by

sick people. We also assume that pedestrians who belong to Esick, though infected,

will not be able to further transmit the disease.

5.3 Numerical Simulations

5.3.1 Introduction

In this chapter we consider a case where sick people enter an airport via the entrance

and board a plane. Then, they land at a different airport, deplane and enter via the

terminals into the airport and board another plane. The disease spread is not tracked

during the course of flight. By varying N , Pimm and the number of primary contacts,

a series of simulations are run to calculate Avgsc.

Consider the domain Ω to be a small portion of Houston’s William P. Hobby

Airport. The dimensions were obtained from Google Maps, See Fig. 5.1. Initially,

there are N pedestrians in the system. Each pedestrian is randomly categorized at

the start to be either sick, immune or vulnerable. The incoming flow of pedestrians

is either through the airport entry or through the terminals from deplaning. The

outgoing flow is either through the airport exit or through the terminals for boarding

the plane.
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Figure 5.1: A portion of the William P. Hobby Airport in Houston, TX. Pedestri-

ans are represented with a •. The group of pedestrians is small for representation

purposes.

Pedestrians are assigned a random path to pass through the airport. Some people

deplane, enter the airport through the terminal gate and leave the airport via the

exit corridor with the option to stop by restrooms or restaurants. Others enter

the airport through the entry corridor and walk to their alloted terminal gate with

options to use the restrooms or restaurants before they board their plane. People

are also assigned to randomly check out display monitors for their departure times

in their path. Appropriate wait times are allocated for each checkpoint that denotes

a restroom, restaurant or a display monitor. This is done to make sure that people

spend the respective wait time at these checkpoints. Finally, if a person reaches the

gate before their plane’s boarding time, they move on to one of the wait areas (see.

Fig. 5.1) near their assigned terminal gate until it is time to board.

In Chapter 2, each pedestrian was assigned checkpoints from a list of checkpoint
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positions according to their path. As the domain in this case has more complicated

shape than the previous domains used, each pedestrian’s checkpoint assignment is

now chosen in a different way. The list of checkpoints contains a checkpoint i’s

position and a radius ri associated with it. If checkpoint i is in the path of a person,

the position of that person’s checkpoint is randomly picked to be a point inside a

circle of radius ri centered at checkpoint i’s position. This makes each pedestrian’s

checkpoints unique (if truly random). Assigning checkpoints this way helps to avoid

oscillations in pedestrian motion while pedestrians are cluttered around checkpoints

that have wait times. Such an assignment also helps in well distributed pedestrian

positioning inside domain Ω.

Code Implementation: The simulations are implemented as C++ applications

in Microsoft Visual Studio. OpenGL was used to visualize the pedestrian motion

and observe the spread of disease with time. The simulations are run on a shared

40-core computing server with 512 GB RAM. Each simulation starts by initializing

the pedestrian positions, velocities, stages and paths. At each time step, the new

position of all the pedestrians are computed based on the forces acting on them. The

pedestrian velocity is then updated using this new position. Further, newly infected

pedestrians are also identified at each time step.

5.3.2 Departing from an Airport

The first airport under consideration is part of the William P. Hobby Airport in

Houston,TX - see Fig. 5.1. As the airport has 8 terminals, people who enter via the

entry , have the option to board planes through 8 different terminals. We assign only

2 groups of people to deplane and leave the airport. People who deplane only start

doing so when it is their time to arrive into the airport. Similarly, people who board
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planes only do so when it is their time to depart.

The microscopic dynamics model parameters are set as follows: dt = 0.01 s,

τ = 0.5 s, τd = 0.18 s, rp = rw = 2 m, d0i = 0.20 m, and µ = µw = 0.3. The contact

tracking model parameters are set as follows: The cut-off radius rs = 2.5 m and the

probability of getting infected, if vulnerable, vs = 90%. The latter is a realistic value

for a highly infective disease like, e.g., measles.

Each of the cases that follow vary the values of Pimm = 90%, 85%, 80%, 75%,

70%, 65%, 60%, 55% for each of their run. For each Pimm, 200 simulations are run to

calculate the average number of secondary contacts yielded denoted by Avgsc.

We will consider two cases: a simple case to test our code (case 1) and a more

realistic case (case 2).

Case 1: Set the number of pedestrians N = 400, the total time of the simulation

T = 15 minutes and the amount of time to potentially get infected tv = 1 minute.

a) Set the number of primary contacts to be 1.

b) Set the number of primary contacts to be 2.

Case 2: Set the number of pedestrians N = 1000, the total time of the simulation

T = 60 minutes and the amount of time to potentially get infected tv = 2 minutes.

a) Set the number of primary contacts to be 1.

b) Set the number of primary contacts to be 2.

Note that in Chapter 4, we concluded that our model does not perform very well

with high density of pedestrians. The two cases we have considered above are of low

densities (both with respect to the whole airport domain and with wait areas inside

the airport). As per expectation, we observed that our model could handle these

efficiently.
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Figure 5.2: Screenshot of the airport 5 minutes into the start of the simulation.

Pedestrians are represented with a • and each color represents the different stages

(immune, vulnerable, and sick).

Let us now see how a typical simulation looks like. Fig. 5.2 represents the airport

5 minutes into the start of a simulation. Red dots denote primary contacts, black

dots represent vulnerable people and green ones denote people immune to the disease.

Notice that the primary contact enters the airport via the entry and is yet to have

any effect on its surrounding people. This is not surprising since we are early into the

simulation. Some people are at restaurants, some are inside the restrooms, some are

on the way to their next checkpoint and some are in their allocated wait areas ready

to board. We also see that people are deplaning from the terminal on the right. This

figure gives us a good representation of what happens inside the airport early in the

simulation.

Fig. 5.3 shows us how the airport might look like at the end of a simulation.

Note that we have 2 different colored dots added to this system, and the number
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Figure 5.3: Screenshot of the airport after the spread of disease occurs. Pedestri-

ans are represented with • and each color represents the different stages (immune,

vulnerable, sick, infected and not infected).

of primaries now set to 2. Blue dots denote secondary contacts or infected people.

Orange dots represent people were affected by the primary contact but not infected.

Observe from Fig. 5.3 that a group of people turned blue around a primary contact

on the left in the wait area. This is a strong indicator that wait areas are a common

place to get infected. Also, there is a secondary contact on the right of the airport

with no primary in its vicinity. Given the current positions of the primaries (left),

and the current position of the secondary (right), it is evident that they could have

crossed paths in the corridor or in a restroom/restaurant of the airport, and not in a

wait area. This shows us that a secondary contact does not necessarily have to catch

the same plane as a primary.

Now that we have a good visual idea of how the simulations run, we move on to the

analysis of results from case 1 and 2. Fig. 5.4 shows the average number of secondary

contacts for varying Pimm. We note that except for the outlier at Pimm = 75% for

case 1, the curves of each case have a steady increase in slope. A trivial observation

is that for same population size, an increase in primaries causes an increase in Avgsc
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Figure 5.4: Average number of secondary contacts produced inside Hobby Airport

for varying immune percentage of pedestrians.

for the sub cases in Case 1 and 2. We also note that the difference between Avgsc of

cases in 1 increases very slowly with Pimm decrease. In case 2, the difference between

Avgsc increases faster than in case 1, implying that the larger the value of N , the

higher the rate of increase of Avgsc.

In Fig. 5.5 we compare the frequency distributions of case 1(a) (top plot) and

case 2(b)(bottom plot). These cases were chosen to compare the extreme scenarios.

Clearly, both the distributions are skewed. From the top plot we note that the

mode of every distribution is 0 but the mode of the bottom plot is non zero for all

distributions. We also note that the top plot is a concave curve and that the bottom

one is a convex one. This means that when N increases, the chances of the number

of secondary contacts being small decreases.

In Tables 5.1 and 5.2, we can see that with decrease in Pimm, the standard

deviation of the number of secondary contacts also increases. This indicates a wider

range of values for the number of secondary contacts with decrease in Pimm. This
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(b)N = 1000 with 2 primary contacts.

Figure 5.5: Frequency distribution of the number of secondary contacts produced in

200 runs inside the Hobby Airport, for varying Pimm.
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Pimm% 90 85 80 75 70 65 60 55

Avgsc 0.56 0.66 0.88 0.69 0.83 0.94 1.15 1.44

Sdsc 0.93 0.85 0.99 1.19 1.19 1.12 1.31 1.53

Maxsc 4 4 4 7 7 6 7 9

Table 5.1: The computed average number of secondary contacts Avgsc, standard

deviation for all 200 runs (Sdsc) and maximum number of secondary contacts in an

experiment among all the runs (Maxsc) for N = 400 and 1 primary contact in the

airport.

is also reinforced by Fig. 5.5, where the curves for larger Pimm values have taller,

narrower peaks as opposed to the curves with smaller Pimm values, which have shorter,

broader peaks.

Taking a bus to board the flight

An infectious disease in general has a higher chance of spreading if the sick person is

in a crowded place. Bearing this in mind we extend our previous airport geometry

to include the transportation buses that pedestrians board before they get on their

flights. Every pedestrian who departs from the airport will now have their final

checkpoint as a random position inside a bus. The checkpoint corresponding to a bus

has a wait time of 5 minutes, i.e., once a plane’s passengers are all inside the bus they

stay inside it for 5 minutes and then are assumed to board the plane, thus leaving the

simulation. Fig. 5.6 is a screenshot of how the airport with buses typically looks like,

once people have boarded the bus. The dimensions 5x12 m2 of the bus are chosen in

order to accommodate 50 pedestrians in it.
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Pimmune% 90 85 80 75 70 65 60 55

Avgsc 1.37 2.10 2.75 3.47 4.37 5.05 5.64 5.94

Sdsc 1.30 1.66 2.04 2.53 2.69 2.80 3.37 3.57

Maxsc 6 7 10 17 15 15 16 16

Table 5.2: The computed average number of secondary contacts Avgsc, standard

deviation for all 200 runs (Sdsc) and maximum number of secondary contacts in an

experiment among all the runs (Maxsc) for N = 1000 and 2 primary contacts in the

airport.

Figure 5.6: Screenshot of the Hobby airport after some pedestrians have boarded their

buses. Pedestrians are represented with a • and each color represents the different

stages (immune, vulnerable, sick, infected and not infected).
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(b) With buses.

Figure 5.7: Average number of secondary contacts produced in 200 runs for varying

immune percentage of pedestrians.
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Figure 5.8: Average number of secondary contacts for 200 runs produced only inside

the bus in Hobby airport for varying immune percentage of pedestrians.

We repeat all our previous cases in Sec. 5.3.2 to calculate Avgsc for Pimm = 90%,

80%, 70%, 60%. Fig. 5.7 shows the averages of these cases along with the ones with no

buses. From the right plot in Fig. 5.7, we see that the increase in primaries increases

Avgsc. Also, the larger the value of N , the higher the rate of increase of Avgsc when

Pimm decreases. These observations are consistent with the findings in the left plot

with no buses, which were already analyzed in Sec. 5.3.2. Note that having a high

density area such as a bus in the path of pedestrians drastically increases the rate at

which people could potentially get infected. This is observed in the bottom plot in

the case with N = 400 with 2 primaries where its Avgsc values end up having higher

values than that of the case with N = 1000 with 1 primary.

Fig. 5.8 shows us the average number of secondary contacts infected inside the

bus. We can see that the cases with the same number of primaries have average values

closer to each other. This is due to the fact that even though the difference between
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Figure 5.9: A portion of the Hartsfield-Jackson Atlanta International Airport, Atlanta

GA.

the population sizes is large, inside the bus the population size for N = 400 and 1000

differ only by 10 pedestrians. As the bus population size is larger for N = 1000, the

average values are higher than that of N = 400 for the same number of primaries.

5.3.3 Arriving at a New Airport

As stated earlier, we want to trace the disease spread caused by a sick person who

boards a flight in an airport and have a transit connection in another to reach their

final destination. We consider the case where buses are not part of the domain and

also the case where they are. We track the sick person only inside the airports and

the buses. Houston’s Hobby airport simulation covered the first part of the journey.

Now, we consider a new airport for their remaining journey. In this section, we choose
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Figure 5.10: Screenshot of the Atlanta airport at the start of the simulation. Pedes-

trians are represented with a • and each color represents the different stages (immune,

vulnerable).

our primary contacts to have a path thats starts inside a bus, move into the airport

via terminal exit and eventually board another plane by taking a bus.

A small portion of the Hartsfield-Jackson Atlanta International Airport, Atlanta

GA is taken as the new domain. The dimensions are taken from Google Maps. Fig. 5.9

shows us the map of the airport. Some people enter through the entry corridor

and board the flight - see Fig. 5.11. Some start their path from the wait areas or

restaurants inside the airport and eventually board their flights - see Fig. 5.10. Others

enter the airport through the terminals from the buses. 10% of such people move on

to board their next flight in the same airport. The rest eventually exit the airport.

All pedestrians in the system have the options to visit the restrooms and restaurants

on their way to board a plane or exit the airport. All terminals are set up to take
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Figure 5.11: Screenshot of the Atlanta airport 20 minutes into the simulation. Pedes-

trians are represented with a • and each color represents the different stages (immune,

vulnerable, sick, infected and not infected).

both incoming (people who board the plane) and outgoing(people who deplane) flow

of pedestrians.

Fig. 5.10 shows the airport at the start of a simulation. We can see that 4 buses are

filled with pedestrians near the terminals. These pedestrians would spend 5 minutes

inside the bus before they start to exit the bus. We also see some pedestrians already

inside the airport. These people are waiting to board their planes. The rest of the

pedestrians will enter the airport later as per their assigned arrival time (if deplaning)

or 15 minutes into the simulation (if entering the airport through the entry corridor).

This is seen in Fig. 5.11. Note that in Fig. 5.10, there are no sick people initially. In

this scenario, they are assigned to arrive at the airport at a later time.

As before, the microscopic dynamics model parameters are set as: dt = 0.01 s,

τ = 0.5 s, τd = 0.18 s, rp = rw = 2 m, d0i = 0.20 m, and µ = µw = 0.3. The
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contact tracking model parameters are set as: The cut-off radius rs = 2.5 m and

the probability of getting infected, if vulnerable, vs = 90%. Each of the cases that

follow vary the values of Pimm = 90%, 80%, 70%, 60% for each of their run. Each

experiment (4 in total) is run 200 times to calculate Avgsc - the average number of

secondary contacts yielded.

The two cases we consider now differ only in the number of primary contacts:

Case 1: We start by setting the number of pedestrians N = 1000, the total time

of the simulation T = 50 minutes and the amount of time to potentially get infected

tv = 2 minute. We also set the number of primary contacts to be 1.

Case 2: We set N = 1000, T = 50 minutes and tv = 2 minutes and the number

of primary contacts to be 2.

The right plot in Fig. 5.12 provides us with the average number of secondary

contacts for case 1 and 2. It shows that the larger the number of primaries, higher

the increase in Avgsc, as is trivial. The left plot in Fig. 5.12 contains data extracted

from the simulations run. It shows the average number of pedestrians infected inside

the airport only, i.e. without buses. Comparing the plots in Fig. 5.12, we can see

that having buses as part of the domain produces more than double the number of

secondary contacts produced with no buses.

Fig. 5.13 displays the average number of secondary contacts produced for N =

1000 pedestrians, in specific locations (only in buses / only inside airports). This

data was also extracted from the simulations with buses. In Fig. 5.13, consider the

Avgsc values in the case with 1 primary, domain only buses and the ones in the case

with 2 primaries, domain only inside airport. They are in close proximity to each

other, implying that being in a high density area like a bus drastically increases the

rate of increase in Avgsc.
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Figure 5.12: Average number of secondary contacts produced for N = 1000 pedestri-

ans for different Pimm in Atlanta airport without and with buses.
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Figure 5.13: Average number of secondary contacts produced for N = 1000 pedes-

trians for different Pimm in Atlanta airport, in specific locations (only inside buses /

only inside airports).

5.3.4 Conclusion

In this section, our main focus was to track the average number of secondary contacts

induced by small number of primaries involving medium size population with immune

and vulnerable people in airports. We chose to track sick people who travel through

two airports to reach their final destination. We coupled the pedestrian motion dy-

namics used in Chapter 2 with the contact tracking model in this chapter to simulate

this scenario. The results from one airport were consistent with the results from the

other. We concluded in the case with airports without buses that:

• For same size populations, an increase in primaries causes an increase in the

average number of infected pedestrians.

• The larger the population size, the higher the rate of increase in the average
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Figure 5.14: Average number of secondary contacts produced for N = 1000 pedestri-

ans for different Pimm, in both Hobby and Atlanta airports combined.
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number of infected pedestrians.

• As the population size increases, the number of secondary contacts increases.

In the case of airports with buses we further concluded that having people board a

bus to reach the planes were a costly mistake in prevention of the spread of the disease.

Being a high density area, buses drastically increased the rate at which people were

getting infected. Fig. 5.14 shows the combined average number of secondary contacts

produced by sick people who boarded a flight in Hobby and had a transit connection

in Atlanta on the way to their final destination. Clearly, having a high percentage of

immune pedestrians in the system help in making sure the number of infected people

remain small. Also, smaller number of primary contacts, shorter time spent in the

airport, lower density of people in the airport and not having buses contribute to

reduced number of secondary contacts.
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Chapter 6

Conclusion

In this dissertation we analyzed the numerical results of a microscopic approach to

modeling pedestrian dynamics.

We first set up a grid free microscopic model for pedestrian dynamics using New-

ton’s second law of motion. Pedestrians are modeled as circles with forces acting on

them. The three forces acting on a person are considered to be the target force, the

interaction forces between their neighboring pedestrians and the interaction forces

between walls or other obstacles near them. The model results in a high dimensional

system of second order ordinary differential equations. We studied the sensitivity of

the model to every model parameter to see its effect on the pedestrian dynamics.

A pedestrian exceeding their desired speed is a very good indicator of the system

becoming unstable. Thus we analyzed each parameter by varying it in a series of

experiments and observing the speed of a random pedestrian. The overlaps and os-

cillations in the system (common in force based models) were quantified and studied

by varying the interaction constant.

Once the calibration of the model was done, we proceeded to validate it. Numerical
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results from a kinetic theory approach in [1] were compared with our microscopic

model. Evacuation times were computed for varying exit door size of a square room.

Our model produced a similar evacuation time curve to that of the kinetic model

but had a higher rate of decrease of the evacuation time. Then we compared our

numerical results with the empirical results data from [59]. We considered a group of

people passing through a corridor. The macroscopic quantities such as flux, density

and average velocity were computed for a reference line in the corridor. The numerical

results were in good agreement with the empirical data. Finally, we observed a self

organizing phenomenon, i.e. lane formation in our model for bidirectional flow of

pedestrians in a corridor. We also noticed that the density and initial positioning of

the pedestrians played central roles in the number of lanes formed inside the corridor.

These validation steps show that the model is adept at simulating pedestrian motion.

Lastly, we added a contact tracking model to the existing microscopic model to

compute the number of people who could get infected (through air) by sick people

around them. We considered that a vulnerable person could potentially get infected

if around a sick person for a considerable amount of time. We computed the average

number of secondary contacts produced in the case of sick people going to an airport,

boarding a plane and reaching their destination through a transit airport. We also

considered the case where people could board a bus to reach their planes. Sick people

were traced only when inside airports or buses. We concluded that higher percentage

of immune pedestrians, smaller number of primary contacts, shorter time spent in

the airport, lower density of people in the airport and not having buses contributed

to reduced number of secondary contacts.
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6.0.1 Future work

In the specific domain of disease spreading in airports, we can simulate different

airport structures and flight boarding systems to come up with best practices that can

help reduce disease spread. For instance, it will help to know if confining passengers

to the area around gates long before departure can contribute to a reduced rate of

infection.

Our focus thus far has been on modeling spreading of diseases in airports. A nat-

ural extension of this would be to expand or change the domain under consideration

- such as inside airplanes, hospital emergency rooms and even entire communities.

Another possible extension is to widen the network of airports visited by sick people

and track disease spread across them. It would also be useful to understand spreading

behavior of particular diseases, in order to come up with specific mitigation plans.

This can be done by fine tuning the model with disease-specific features.
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