
DATA MANAGEMENT FOR KNOWLEDGE-BASED SYSTEMS

A Thesis
Presented to

the Faculty of the Department of Computer Science
University of Houston — University Park

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

By
Kam Man Law
August, 1987

Acknowledgements

I wish to express my sincere thanks to my thesis
advisor Dr. Christoph Eick for his patience and valuable
guidance. My thanks also go to the committee members
Dr. Scamell and Dr. Elmasri. Special thanks are extended to
Dr. Davidson and Dr. Scamell for reviewing and editing my
thesis.

I am also indebted to Bonnie, Iris, Dorothy, and Lex
who took messages for me throughout the last year of my
graduate study.

The biggest thanks of all go to my grandmother; my
parents; my brothers, Kam Wah, Kam Wai, and Paul; my sister,
Lai Chun; and Paul's wife, Stella. Without their
encouragement, financial support, patience, and love,
completion of this goal would have been impossible.

i i i

DATA MANAGEMENT FOR KNOWLEDGE-BASED SYSTEMS

An Abstract of a Thesis
Presented to

the Faculty of the Department of Computer Science
University of Houston — University Park

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

By
Kam Man Law
August, 1987

i v

Abstract

In recent years, expert systems have gained a large
popularity in Computer Science as a result of the
improvement made in Artificial Intelligence research and the
announcement of the fifth generation computers. However,
the design and implementation of large computerized
knowledge bases have raised new data management problems.

This thesis explores the new problems facing
conventional Data Base Management Systems (DBMSs). It
surveys the knowledge representation in Databases,
Artificial Intelligence, and Programming Languages in order
to search representation schemes for DALI, a Knowledge Base
Management System. The concepts of DALI are discussed and
the data model S-diagram used for knowledge base design is
described. Furthermore, the features of DALI are compared
with those of DBMSs; the advantages and disadvantages of
DALI are examined. In its first version, the framework of
DALI contains a schema compiler, a pattern matcher, and a
storage structure program. The design and implementation of
these essential components are described in detail.

v

Table of Contents

List of Figures.. viii
List of Tables.. ix
1 Introduction... 1
2 Knowledge Representation in Al, Databases, and

Programming Languages 6
2.1 Databases...6
2.2 Artificial Intelligence..............................9

2.2.1 Procedural Representaton Schemes 9
2.2.2 Logical Representation Schemes................10
2.2.3 Network Representation Schemes................11
2.2.4 Frame-Based Representation Schemes........... 12

2.3 Programming Languages...............................12
2.3.1 Procedure-Oriented Programming................13
2.3.2 Object-Oriented Programming.................... 13
2.3.3 Data Oriented Programming...................... 20
2.3.4 Rule Oriented Programming...................... 22

3 DALI — A Knowledge Base Management System..............30
3.1 Introduction to DALI...............................30
3.2 Essential Components of DALI...................... 33

3.2.1 Schema Compiler................................. 36
3.2.2 Storage Structure Programs.................... 36
3.2.3 Pattern Matcher................................. 37

3.3 Advantages and Disadvantages of DALI.............. 37
3.4 DALI vs. DBMS....................................... 38

4 The Data Model for DALI................................. 40
4.1 Concepts of S-diagram...............................40
4.2 Examples of Using an S-diagram.................... 46

4.2.1 Example One — LISP Class Definition......... 46
4.2.2 Example Two — Registration Application. . . .48

4.3 The Knowledge Base Manipulation Language.......... 50
4.4 An Example Program................................. 58

5 Pattern Matcher... 59
5.1 The Pattern Matching Language......................59

5.1.1 Identical Matchings.............................60
5.1.2 Place Holders................................... 61
5.1.3 Pattern Matching Variables.................... 62
5.1.4 Optional Ocurrences.............................66
5.1.5 Restriction Functions.......................... 67
5.1.6 Permutation Functions.......................... 69
5.1.7 Regular Expression Functions.................. 69

vi

5.2 The Design and Implementation of the Pattern
Matcher..71

6 Schema Compiler.. 73
6.1 Restrictions on the Schema Language................ 73
6.2 Syntax and Semantic Rules of the Schema Language .74

6.2.1 Schema Identification.......................... 74
6.2.2 Simple Value Set Declarations................. 75
6.2.3 Data Class Definitions........................ 77

6.3 Data Structures of the Data Dictionary........... 80
6.4 The Design of the Schema Compiler...................83

6.4.1 Lexical Analysis...............................83
6.4.2 Syntax Analysis................................. 86
6.4.3 KBMF-code Generation.......................... 88

6.4.3.1 An Overview of KBML Program................89
6.4.3.2 The Design of the KBMF-code Generator. . .93

6.4.4 Error Handling................................. 95
6.4.5 The Forward References Problem................ 95

7 Storage Structure Program............................... 97
7.1 Selection of Data Structure for DALI............. 97
7.2 An Overview of the Storage Structure Program . . 101
7.3 The Design of the Storage Structure Program. . . 102
7.4 Implementation Notes 105

8 Summary and Conclusions 107
Appendix I BNF of Pattern Matching Language Ill
Appendice II BNF of KBML.................................. 113
Appendice III BNF of Data Dictionary..................... 116
References... 118

vi i

2
2
3
4
4
4
4
6
6
6
7

List of Figures

.1 Hierarchical Structure of Symbolic 3600 Objects . .15

.2 Hierarchical Structure of LOOPS Objects............ 17

.1 Inter-relationships of DALI components.............. 35

.1 S-diagram of Treatment................................ 41

.2 Labels in S-diagram................................. 45

.3 S-diagram SI.. 47

.4 S-diagram S2.. 49

.1 Examples of Simple Value Sets........................ 76

.2 Structure of Data Class............................. 78

.3 Layout of KBML Program............................... 90

. 1 An Example of the Knowledge Base Table.............. 103

vi i i

List of Tables

4.1 Cardinality of an Attribute.........................44
4.2 Cardinality of the Converse of an Attribute44
7.2 Empirical Test Results.............................. 100

ix

Chapter 1
Introduction

With the advent of the expert systems and the fifth
generation computers, database management systems have faced
new problems. These problems include (see also [Eick86]):
1. Knowledge Bases (KBs) in expert systems contain not only

facts, but also rules and control knowledge (i.e.,
objects that have inferential capabilities). However,
conventional database management systems can only handle
facts concerning the Universe of Discourse (UoD).

2. Most expert systems are written in LISP; therefore, data
management systems must be capable of handling
S-expressions, the data structure for LISP. But so far,
no such system is available for handling large
computerized LISP-based applications.

3. Knowledge bases usually contain uncertain knowledge. But
conventional data management systems do not provide
special features to handle these "fuzzy" data.

4. Algorithms like forward chaining, backward chaining, and
pattern matching are frequently used for accessing data
in the KB. Nevertheless, conventional database

management systems do not provide special data structures
suitable for an efficient implementation of these

1

2

algorithms.
5. The internal representation of data in a knowledge-based

system might change with time for performance reasons.
When the organization of the physical layer changes, it
should not affect the user interface layer. This can be
accomplished by implementing abstract data types in
different levels. Nonetheless, many database systems do
not support this capability.

6. Rules stored in knowledge bases are usually very complex
tens to hundreds of conditions are quite usual, and

manual checking of rule consistency would be very time
consuming. However, conventional database management
systems do not contain any automated tools for enforcing
rule integrity in the knowledge bases.

One way to solve these problems is to enhance the
capabilities of conventional database management systems so
that they handle the "fuzzy" data as well as the knowledge
base rules. An alternative to this is to develop a new data
management system with designs pertinent to the needs of the
expert systems. We will call this new system as Knowledge
Base Management System (KBMS). In the last few years, some
ad hoc solutions have been found to solve the above
mentioned problems. However, a generalized system which can
handle any large class of knowledge base applications has

3

yet to be created.

This thesis discusses the concepts of a knowledge base
management system called DALI (an acronym for
Data-management for L_lSP-knowledge-bases) . DALI is a
research project with an objective to study the data
management problems in knowledge bases.

This thesis also reports the development of the first
KBMS prototype. The system developed in this thesis
consists of: a schema compiler, a pattern matcher, and a
storage structure program. The schema compiler checks the
syntax and semantics of a schema and generates, if the
schema is error free, a program which contains all the
Knowledge Base Manipulation Functions (KBMFs) that are
declared as predefined operations in the schema (a schema is
where the data classes and simple value sets are defined).
The pattern matcher is used to match patterns specified in
the Knowledge Base Manipulation Language (KBML) against the
data in the KB during data retrieval. It is also used to
match patterns specified in the schema against the values
given in the KBML during type checking. Finally, the
storage structure program serves as an interface between the
KBML and the KB. These essential components constitute the
central issue of the thesis. A synopsis of the chapters is

4

outlined in the following paragraphs.

In chapter 2, we survey the knowledge representation of
databases, artificial intelligence, and programming
languages. The purposes are two-fold: to review the
current research and to select representation schemes for
the DALI system.

Chapter 3 describes the basic concepts of DALI. It
also explains the functions of its components and discusses
the advantages and disadvantages of using this knowledge
base management system. Lastly the features of DALI are
compared with those of DBMS.

Chapter 4 introduces the data model of the KBMS. It
also examines the syntax of the KBML.

Chapter 5 covers the features and the implementation of
the pattern matcher. The pattern matching language is
applied in both the schema language and the knowledge base
manipulation language.

Chapter 6 discusses the design and implementation of
the schema compiler as well as the data dictionary. This
chapter also shows how to use the schema language to define

5

a conceptual schema. The term "schema language" is used
rather than "data definition language" because the former is
more meaningful pertaining to the conceptual schema.

Chapter 7 describes the design and implementation of
the last component of DALI — the storage structure program.
In addition, the selection of data structure for the DALI-KB
is discussed and the features of the Xerox 1186 Artificial
Intelligence System, in which DALI is implemented, are
mentioned.

Chapter 8 gives the summary and conclusions of the DALI
system. It also outlines future research on DALI.

Since terms used in the database literature have not
been standardized, we will follow the terminology and
standardization suggested by the ISO workgroup WG3 [Grie82]
in this thesis.

Chapter 2
A Review of Knowledge Representation

With the ever-increasing complexity of computer
systems, researchers are searching for development tools,
techniques, and high level concepts for representing
knowledge in every area of Computer Science, particularly in
Artificial Intelligence (Al), Databases, and Programming
Languages.

In the following sections, we will give an overview of
Knowledge Representation in these three areas. First, we
will study the tools and techniques that are used to
describe objects, operations, and constraints in Databases.
Next, we will turn to Knowledge Representation in Artificial
Intelligence. As Knowledge Representation is the central
issue in Al research, we will discuss the Representation
Schemes [Haye74], Last but not least, we will look at some
programming techniques that are dominant in Computer
Science.

2.1 Databases

For many years, data models have been used to describe

6

7

entities that are perceived in the Universe of Discourse as
well as relationships between them, before going into a
detailed logical and physical database design. Data models
are a collection of mathematically well defined concepts;
they are used to help define attributes of, operations on,
and relationships among objects of the real world that have
to be expressed in a computer. In addition to these, they
also help describe integrity rules over the objects and
their operations. For instance, an integrity rule on an
employee database may state that the date of resignation
must be later than the date of employment. Data models also
provide a formal basis for tools such as Data Definition
Language (DDL), Data Manipulation Language (DML), and Query
Language (QL) that are implemented by a database management
system (DBMS).

Earlier data models stress the form of data that would
facilitate for storage and/or manipulation in a computer;
that is, good performance gained a large attention.
Furthermore, the access path structure was also emphasized
so that retrieval of information could be optimized. This
group of data models constitute the classical data models.
The classical data models are the hierarchic, the network,
and the relational data models.

8

Hierarchic data models represent objects in a tree
structure, using one to many binary relationships. The
advisors and students relationship provides an example of a
hierarchy. An advisor may advise many students, but a
student can only have one advisor.

Network data models are the superset of hierarchic
models — children in a tree can have multiple parents. An
example of this is class registration. Students may
register for many classes, and each class may contain many
students. Therefore, both the relationship student to class
and the relationship class to student are one to many
relationships.

Relational data models [Codd70] are based on the
mathematical concept of a relation. A relation is a
two-dimensional table where each column is referred to as an
attribute and each row is referred to as an n-tuple. A
relation can be used to describe both objects and many to
many, n-ary relationships. No two rows in the relation are
identical and the order of the rows is not important.

In recent years, data models have stressed the meanings
(semantics) of the information; hence, semantic rules for
objects and their operations play significant roles in these

9

data models. These models are called semantic data models.
Semantic data models comparatively provide more modelling
powers than the classical data models do; that is, they can
capture more meaning with their richer and more expressive
concepts.

2.2 Artificial Intelligence

The basic problem of knowledge representation in Al is
the development of a representation scheme [Haye74] with
which to specify a knowledge base. The early designs for
knowledge representation emphasized heuristic search
techniques; whereas, the current designs stress for the need
for storing expert knowledge together with control knowledge
in a system. The well known representation schemes [Brod84]
are logical, network, procedural, and frame-based. Each is
discussed in the following sections.

2.2.1 Procedural Representation Schemes

Procedural Representation Schemes represent knowledge
in terms of a collection of active agents or processes.
They are influenced mostly by LISP. In fact, LISP once was
a favorite representation scheme due to its symbolic nature.
Procedural schemes beyond LISP involve control structures

10

and activation mechanisms offered for processes. The
advantage of these schemes is that the need for wasteful
search is eliminated because they allow the specification of
direct interactions between facts. The major drawback is
that procedural knowledge bases, like programs, are hard to
understand and modify. This category is represented by
PLANNER.

2.2.2 Logical Representation Schemes

Logical Representation Schemes are almost counterparts
of Codd's Relational Model [Codd70] in Database Management.
They represent knowledge by means of logical formulas which
are composed of constants, variables, functions, predicates,
logical connectives, and quantifiers. Their advantages are

* Availability of inference rules
* Availability of clean formal semantics
* Simple notation
* Economic representation of knowledge

On the other extreme, their drawbacks are
* Lack of organizational principles needed in the
knowledge base

* Difficulty in representing procedural and heuristic
knowledge

11

Several languages have combined logical schemes with
others to gain more advantages. For example, both PROLOG
and FOL combined logical schemes with procedural schemes.

2.2.3 Network Representation Schemes

Network schemes exist in a wide variety of forms. In
general, they represent knowledge in terms of a collection
of objects (nodes) and binary relationships (edges) between
them.

Network Representation schemes offer organizational
principles to a knowledge base. These principles include:
Classification, Aggregation, Generalization, and Partitions.
They also offer a good scheme for information retrieval due
to their path nature. Further, their graphical notation
makes it easier to implement a network knowledge base.

The only major drawback of network schemes is the lack

of formal semantics and standard terminology.

Both PSN and KL-ONE are built in part by the network
schemes.

12

2.2.4 Frame-Based Representation Schemes

Frame-Based Representation Schemes were first
introduced by Minsky [Mins75] in 1975. He proposed to
combine ideas from semantic networks, procedural schemes,
linguistics, etc. to develop a new representation scheme.
The Frame-Based Representation schemes are a collection of
complex data structures called frames. Each of these frames
has slots for objects. Different kinds of information are
stored in these frames, e.g. the default values for their
objects and the actions for any unexpectancy. The
structural form of these frames follows some of the
organizational principles and the "looser" principles as
well. An example of a "looser" principle is the notion of
similarity between two frames.

FRL KRL and KL-ONE all contain frames in their
knowledge bases.

2.3 Programming Languages

Knowledge Representation in programming languages can
be classified into four paradigms: procedure-oriented,
object-oriented, data-oriented, and rule-oriented.

13

2.3.1 Procedure-Oriented Programming

In procedure-oriented programming, procedures, which
are composed of instructions, when invoked, will change the
shared data structure (e.g. a knowledge base)
independently. Procedures are considered as active entities
because they can create side effects in the shared data
structure; on the other hand, data are treated as passive
entities because they are being manipulated by procedures.
Most of the programming languages today are
procedure-oriented. For instance, LISP and its dialects,
such as INTERLISP, FRANZLISP, ZETALISP, etc., are all
paradigms of procedure-oriented programming languages.

2.3.2 Object-Oriented Programming

In object-oriented programming, actions are invoked by
sending messages between objects belonging to one or more
types. A type is a template which holds data and operations
for its instances. It can be created not only by specifying
data objects and methods in it, but also by inheriting from
other types (usually called super types). Once a type is
defined, the instances (or objects) of it can be created
from then on.

14

Actions are defined as methods in a type and operations
in object-oriented programming are performed by sending
messages. When a message is received by an object, the
message will be checked against the selectors and the
corresponding method will be invoked. The implementation of

methods are usually isolated from where the selectors are.
The isolation of the actual implementation of methods has
several advantages:

(1) It offers top-down design methodology with successive
refinement.

(2) It allows program verification without the actual
working environment.

(3) It eases program maintenance.

Smalltalk, derived from SIMULA, is the pioneer of
object-oriented programming. Its inheritance is in
hierarchical form — the simplest case of network, each
class specifies only one super class. Nonetheless, some may
support network inheritance. Symbolics 3600 [Symb84] and
LOOPS [BoSt83] fall in this paradigm.

The Symbolics 3600 system uses ZETALISP, a dialect of
LISP, as its principal language. Object-oriented
programming techniques, which deal with instances of types
and generic operations defined on those types, are used

15

throughout the system. Types in the 3600 system are
abstract types known as flavors; whereas, the objects, which
are instances of types, are called flavor instances (see
Fig. 2.1)

Flavor

Flavor Flavor Flavor
instance instance instance

Fig. 2.1 Hierarchical Structure
of Symbolic 3600 Objects

Flavors are classified as "base" flavors, "mixin"
flavors, and "user-defined" flavors. Base flavors serve as
the foundation for building a flavor family while mixin
flavors serve to implement particular needs of other
flavors. Finally, user-defined flavors are built out of the
base and mixin flavors to suit the user's applications.

Symbolics 3600 provides support for object-oriented
programming through a collection of language features known

16

as the Flavor system. With the Flavor system, the users
define the flavors — one of the many user-defined types in
ZETALISP — and methods, which are generic operators,
associated with them in one part of a program. Then, in
another part of the program, instances of the flavors are
instantiated and manipulations of the instances are
performed by sending messages which request that specific
operations be performed.

A flavor definition contains information about instance
variables, methods, names of its component flavors, and
declarations of relationships and interdependencies with
other methods and flavors. Methods and instance variables
can be local to objects or inherited from component flavors.
When a new flavor definition is built from component
flavors, the method definition for this flavor has control
over the methods from the component flavors.

LOOPS which adds object-oriented programming and more
to the procedure-oriented programming of INTERLISP is worth
mentioning in this programming technique. It provides
classes and instances as INTERLISP file objects. It also
provides user extendible property lists which store
documentation and information in classes, variables, and
methods. Moreover, it provides composite objects which work

17

as follows. Given templates for related objects, they are
instantiated as a group.

Unlike Symbolics 3600, LOOPS has three kinds of
objects; namely, instance objects, class objects, and
metaclass objects. They form a hierarchical structure and
are depicted in Fig. 2.2.

Metaclass

Class Class ... Class

instance instance

Fig. 2.2 Hierarchical
Structure of LOOPS Objects

From Fig. 2.2, it can be easily seen that the instances
of a class are instances and the instances of a metaclass
are classes. A class contains information about instance
variables, class variables, methods, and a list of other

18

classes called "super classes". While instance variables
are used to specify default values to its instances, class
variables may be used by methods.

Methods, instance variables, and class variables can be
inherited recursively from a super class or all its multiple
super classes. In the case of inheritance of multiple super
classes, names conflict is resolved by using a depth-first
left to right precedence. For example, if A has a superlist
(B C), and B has a superlist (X Y), the inheritance order
will be B, X, Y, and C. Suppose X has a method Ml for
selector Si, and C has M2 for Si, Ml from X will be used
instead of M2 from C. In fact, any super of B with a method
for Si has precedence over the one from C. Although
inheritance for methods and class variables are made at run
time, it is not necessary true for the instance variables.

Private instance variables which are not shared with
other instances of the same class must be defined directly
by the users.

Operations are invoked by sending messages. Messages
received are checked against the selectors. When matches
are found, the corresponding methods will be invoked which
might cause variables changed as a side effect.

19

Another programming language worth mentioning is Ada.
Ada is an all-purpose language; its capabilities outperform
any other programming languages in common use in many areas.
Ada provides object-oriented programming through the
features of generic program units and packages [Youn83].

A package allows the specification of a set of
logically related entities. It consists of two parts: a
package specification and a package body. The specification
part declares the entities which are visible outside of the
package. In general, it includes constants, variables,
types, and the specification of program units, such as
subprograms, tasks, and packages. On the other hand, the
package body contains the implementation of the entities
declared in the specification part. However, entities in
this part are not visible outside the package body. Since a
package encapsulates a set of data objects and their related
operations, it is easy for it to implement abstract data
types and various system resources such as common data

pools, I/O buffers, etc.

A generic program unit is
instances of that unit. The
generic instantiation and
compile-time. A generic unit

a template for creating
instance creation is called

it happens during the
allows parameter passing so

20

that the characteristics of the instance can be determined.
For example, in its simplest case, the instantiation of a
stack needs the supply of a name as the actual parameter to
be identified by the program.

The way Ada works as object-oriented programming is
that templates are defined as generic package units — all
the data objects and the operations are defined inside these
units. A copy of package is made via the generic
instantiation in the compile-time. During generic
instantiation, a name is given to the new copy and the
actual parameters will substitute for the formal parameters.
When compilation is done, objects should have been created.
Then operations on these objects are invoked by procedure
call statements in the run-time.

2.3.3 Data-Oriented Programming

In data-oriented programming, a mechanism is needed to
invoke a procedure or function when a special variable is
changed.

Data-oriented programming is suitable for one program
to monitor the behavior of another program. Since both
programs are isolated from each other, modification of codes

21

in one program would not affect the other.

Indeed data-oriented programming has an opposite effect
to object-oriented programming. In data-oriented
programming, procedures or functions are invoked as a side
effect when data are changed while in object-oriented
programming, variables are altered as a side effect when
messages invoke procedures to perform operations.

Loops includes both of these mechanisms and more in its
programming environment.

LOOPS uses the mechanism active value, in data-oriented
programming, to trigger the invocation of a predefined
procedure or function. Every time when access to a variable
occurs, LOOPS will check whether the variable has an active
value. If so, the specified procedure or function will be
invoked for actions.

As mentioned above, data-oriented programming is
appropriate for interfacing between independent processes.
It may be well-suited for writing simulation programs. For
example, in a traffic simulation, one can create a viewer,

an independent process from the traffic simulation, which
will update the display positions of automobiles. Suppose,

22

active value, say POSITION, is being defined as its traffic
coordinate system for each automobile. This active value
will invoke the procedure to send update messages to the
viewer when simulation process puts a new value into
POSITION. As another example, one can apply active values
to a debugging program in order to keep track of references
to particular variables.

2.3.4 Rule-Oriented Programming

Rules are simply condition-action pairs. They specify
actions to be taken when certain conditions are satisfied.
Unlike other programming paradigms, rules make it convenient
for describing flexible responses to a wide range of events.
Rules, in this programming environment, are usually arranged
in a predefined order set called a production system. A
production system contains control structures which affect
the behavior of actions; that is, they make the decision of
which productions to fire.

Generally, all production system languages share the
following common characteristics:

(1) Every production system language uses conditional
statements called productions.

(2) The interpreter which is made up of high level

23

functions has access to data memory, production
memory, and state memory. Production memory stores
all the productions (i.e., conditional statements) and
any static relations (e.g. a linear ordering) between
productions; it should have no size limit. Data
memory is a temporary workspace that stores the
currently relevant knowledge processed by the
productions and the static relations between the data.
Unlike production memory, the size of data memory is
limited. State memory stores the information that
both data memory and production memory are not
responsible for. For instance, information like the
name of the last production to fire can be stored in
state memory for reference purposes.

(3) The interpreter in a production system language
repeatedly matches the productions in production
memory against the data in data memory and the
information in state memory, then it chooses the
productions with TRUE antecedents to fire; as a
result, changes in data memory will occur. The
interpreter itself is also responsible for effecting
changes to state memory when necessary. This is
called the recognize-act cycle.

Production system languages use different strategies to

24

fire productions. Some production system languages may
execute the actions for every satisfied condition on each
cycle, some may use simple decision procedures to select
some or all productions to fire, and some may even use
complex decision procedures with more intelligence to choose
which production to fire.

Some languages allow productions, in the selection
process, to read state memory as well as data memory so that
they have the role in choosing which productions to fire.
On the contrary, others allow only the interpreter to have
access to state memory.

Production system languages have been used for building
expert systems for many years. Some of the well-known
production system languages are OPS [Schm77] and AGE
[AielSl].

OPS is a production system language designed for the
Instructable Production System (IPS) project at CMU, which
attempted to answer the question of how suitable the
production system representation is for large general
problem solving programs. It has all the common
characteristics of production system languages mentioned
above. But, the production system does not have access to

25

state memory. This restriction causes some problems to the
language. The obvious one is OPS becomes slow because
conflict resolution in the selection process is solely
handled by the interpreter.

The OPS interpreter performs an exhaustive search of
productions to insure that an instantiation of a production
will be found when there exists one. Among all the legal
instantiations of all productions are found on each cycle,
only one is selected for execution. The interpreter is
responsible for handling conflict resolution since the
information in state memory is not open to the productions.
In performing conflict resolution, OPS makes use of five
rules. The first rule is always executed, and the rest of
the rules will be applied, on the condition that the first
rule is successful, in the given order until all but one
have been rejected.

In summary, the first rule guarantees a fair chance for
each instantiation of production. The second rule chooses
the instantiation with the most recency. The third rule is
the extension to the second rule by which the instantiations
with the greatest number of condition elements are more
preferable. The fourth rule gives preference to the
instantiation of the most recently created production.

26

Finally the last rule randomly selects an instantiation.

Actions in OPS are simple functions that will modify
the contents of data and production memory. OPS includes a
complete set of primitive actions, assert and delete, that
would effect the changes to the contents of data memory.
The way that OPS manipulates lists is comparable to that
LISP does.

Three primitive functions, READP, BUILD, and EXCISE,
are given to the system in order to perform self
modification. READP brings the production into data memory,
EXCISE deletes it from production memory before OPS modifies
the production in data memory with its general processing
capabilities, and finally BUILD deposits the modified
version to production memory.

For input and output, OPS has two functions, READ and
WRITE, to interact with the outside world. READ accepts

data from the users and places them in data memory. In
contrast, WRITE puts the instantiated forms to the users'
terminal.

AGE is a software tool which contains knowledge about
constructing knowledge-based programs. Therefore, AGE

27

itself is a knowledge-based system. It came out of
Standford University and is implemented in INTERLISP. It
was initially designed for Al scientists who were familiar
with current problem solving techniques and production-rule
representations of knowledge. Its framework is a collection
of building block programs with an intelligent front-end to
guide the users in building knowledge-based programs. This
process involves augmentation and modification of the
framework provided by AGE.

AGE employs the Blackboard model which allows
incremental hypothesis formation. The Blackboard model has
been used in HEARSAY-II [LeEr77] and CRYSALIS [EnNi77]. A
blackboard-based program consists of three components, the
Blackboard, the Knowledge Sources (KS's), and the Control.

A blackboard is a global data base; it is used as a
medium for communication and interaction among the KS's.
The hypotheses in the blackboard, which are generated by
inference rules in the KS's, are organized in a hierarchical
structure. In general, the blackboard represents the
analysis level of task domain hierarchically.

Knowledge Sources which are represented as sets of
production rules contain the knowledge, provided by the

28

users, of the task domain. They respond to the changes in
the blackboard.

Rules in the KS's consist of a left-hand-side (LHS) and
a right-hand-side (RHS). The RHS will be fired when the set
of conditions in the LHS is evaluated to TRUE. Fired rules
will take one of the follow actions.

(1) PROPOSE a change in a hypothesis
(2) EXPECT some changes may occur in the hypotheses
(3) ACHIEVE a particular value or a state

Each inferential rule generated by the RHS is assigned
a certainty value or probability by AGE. Moreover, "single"
or "multiple" hit strategy can be used for the rules.

The control components contain mechanisms that allow
the users to (a) invoke the KS's conditionally and (b)
select interested items off the blackboard. They are often
considered to be a higher level KS which can manipulate a
set of domain-specific KS's. Above all, they are
responsible for invoking appropriate problem solving methods
and of course appropriate KS's in a specific situation as
well.

AGE has been used to rewrite some programs: CRYSALIS

29

PUFF (with two different versions), and EMYCIN. The results
are very satisfactory. In its long range goal, AGE will
help people with less Al knowledge write knowledge-based
programs.

Chapter 3
DALI — A Knowledge Base Management System

DALI [Eick86] is a research project on data management
of large computerized knowledge bases (KBs). It attempts to
solve the problems facing knowledge base management systems.

In this chapter, we will first introduce the prototype
of DALI and explain the functions of the essential
components of it. Then we will discuss the advantages and
disadvantages of using DALI. Lastly, we will examine the
similarities and the differences between DALI and a DBMS.

3.1 Introduction to DALI

DALI, a LlSP-based data management system, uses a
semantic-net-like knowledge representation approach. It is
intended to solve new data management problems that arise
from large computerized knowledge bases which describe the
expertise of specific applications such as cardiac decease,
computer system configurating, etc.

A DALI-KB consists of a set of classes. Classes are
defined by way of the schema language; they can be arbitrary

30

31

data types. A class may be a subset of other class, and all
classes are subsets of Class KB. Furthermore, a class may
overlap with other classes.

Classes contain entities. Entities are characterized
by their attributes. Attribute values distinguish class
members. In DALI, entity numbers are used to refer to
entities. An entity number functions as a unique
identification to an entity; it will not be changed
throughout the life of the KB.

Attributes assign members of a range class to members
of a domain class. Attributes are divided into two groups:
simple attributes and role attributes. Simple attributes
are lexical types (see chapter 4) and role attributes are
non-lexical types.

DALI provides a schema language, a pattern matching
language, a knowledge base manipulation language, and a
storage structure language. The schema language is used to
define simple value sets and data classes. It can also be
used to specify restrictions on memberships of class. For
example, if a class is limited to one hundred members, DALI
will automatically check this restriction whenever a new
member is created in that particular class.

32

The pattern matching language is used to define
patterns in simple value sets and attribute constraints. It
is also used to specify selection criteria in the knowledge
base manipulation language.

In DALI, the knowledge base manipulation language and
the storage structure language form a two-layer architecture
between the end users and the KB. The KBML is a high level
interface language used by the users for accessing the data
of the KB while the storage structure language receives
calls from the KBML to change data in the KB physically.
The advantage of having a multi-layer architecture is that
the internal representation of DALI is transparent to the
user; therefore, principle of information hiding is
achieved.

The knowledge base manipulation language is composed of
a set of high level data manipulation functions — we will
call them KBML-functions. These functions can be embedded
in a LISP program or applied interactively on the top level
of the data management system.

With the KBML-functions, KBs can be loaded into or
unloaded from the memory. The advantage of having the KB
residing in the memory is that data accessing would be much

33

quicker. New entities can be created and assigned entity
numbers to them. They can also be connected to an already
existing entity since entities may be members of more than
one class. When entities are no longer valid in a class,
they can be eliminated. Attribute values in an entity can
be replaced by new values. Furthermore, attribute values
can be appended to or deleted from an entity. The KBML
provided by DALI can also be used for data retrieval and KB
navigation. In a DALI-KB, the values of role attributes are
entity numbers; therefore, by using the entity numbers, one
can navigate from one class to another. The data
manipulation language also allow sequential read and print
of a class.

DALI also observe data integrity in the knowledge base.
Whenever an entity is created in or deleted from the KB by
the KBML, consistency rules are enforced automatically.
This is very important because if contradictions or
inconsistencies occur in the KB, the inference engine may
deduce contradictory answers for different queries.

3.2 Essential Components of DALI

In its first version, the framework of DALI is composed
of a schema compiler, a set of storage structure functions,

34

and a pattern matcher. These components and their
inter-relationships are shown in Fig. 3.1. The schema
compiler checks the syntax of a schema. If no error occurs
in the schema, it will produce an entry containing the
intermediate codes of the compiled schema and store it in
the data dictionary, a global variable. These intermediate
codes will be used by the KBMF-code generator (code
generator for short) which is a sub-component of the schema
compiler. The code generator generates a program which
contains all the allowed data manipulation functions that
will be used by the end users for accessing the KB. The
data manipulation functions produced contain LISP
expressions that will validate the arguments and check the
consistency of data. When validations are done and no
infringement occurs, the KBML-functions will call their
corresponding storage structure function to perform the job
physically. Some data manipulation functions may contain
patterns as arguments. In that case, the pattern matcher is
called upon to perform pattern matching.

All these components mentioned above are essential to
DALI; they are also the focus of this thesis and will be
discussed in detail in the later chapters. In this section,
we will briefly describe the functions of each component.

35

Fig. 3.1 Inter-relationships of DALI components

36

3.2.1 Schema Compiler

The schema compiler accepts as input the conceptual
schema and produces as output a program that contains a set
of KBML-functions. Its functions include

1. checking the syntax and semantics of a conceptual
schema (CS)

2. building a data dictionary entry based on the CS
3. creating a listing for the schema
4. printing diagnostic messages on a listing
5. generating high level functions which serve as an

interface between the user and the storage structure
programs.

3.2.2 Storage Structure Program

The storage structure program is a set of low level
data manipulation functions; they implement the high-level
KBML in the respect of data operations. Its functions are:

1. to manipulate the physical data of the KB
2. to hide the internal representation of the KB from the

user

3. to protect the KB from any intentional or unintentional
destruction of the physical data

4. to serve as an interface between the KBML and the

37

physical data.

3.2.3 Pattern Matcher

The pattern matcher does pattern matching in both the
schema language and the KBML. The functions of it are:

1. to do data matching during data retrieval from the KB
2. to do type checking during entity instantiations.

3.3 Advantages and Disadvantages of DALI

Like any other system, DALI has its advantages and
disadvantages. But its advantages overshadow its
limitation. The advantages of DALI are given below:

1. Object-oriented programming is supported; therefore,
arbitrary data types can be defined by the conceptual
schema language.

2. Data integrity is done by the KBMS automatically; as a
result, user programs become shorter.

3. Information hiding is attained because the user does
not know the internal representation of the KB.

4. Internal representation can be changed without any
changes in the user program.

5. The maintenance cost is decreased because the
centralization of the data management functions results

38

in less redundancy in codes as well as data.

On the other extreme, its disadvantages are summarized as
follows:

1. The user may lose some freedom due to the restrictions
enforced by the KBMS.

2. Smaller applications may not gain the advantages
because of the software overhead.

3. The structure of a project may be altered due to the
fact that data management functions are centralized.

3.4 DALI vs. DBMS

DALI shares four basic similarities with a DBMS.
1. A schema language is used to define the semantics of

the conceptual schema.
2. A set of data manipulation functions is used to

navigate or manipulate the objects of the database.
3. Some mechanisms are implemented into the data

management system to insure data integrity in the
database.

4. The conceptual view of data is separated from the
physical view.

On the other end, DALI is different from a DBMS in

39

three major ways:
1. DALI is implemented by LISP since Al-programs are

mostly written in LISP.
2. DALI supports semantic-net-like representation, widely

used in Al-programs.
3. DALI uses a different approach in the use of data

dictionary. The data dictionary in a conventional DBMS
is used during the run-time by the DBML while our
approach is that the data dictionary is used during the
compile-time to help generate a KBML program and is not
used again during the run-time of the KBML.

Chapter 4
The Data Model for DALI

Data models have been used to define the semantics of
entities that are perceived in the Universe of Discourse.
They are a collection of mathematically well-defined
concepts that are used to help define attributes of,
operations on, and relationships among objects as well as
integrity rules over the objects and their operations.

The data model we will be using for knowledge base
design is called S-diagram [EiRa85]. It is a graphical data
model which was influenced by the binary relation model
[Abri74] and the SDM [McLe78].

4.1 Concepts of S-diagram

The example given in Fig. 4.1 provides a high level
representation of the concepts of S-diagram.

A class in S-diagram is represented using an oval, and
it can be either of the two kinds — lexical or non-lexical.
A lexical class is a primitive data type such as INTEGER or
REAL. However, a knowledge base is usually LISP-based, thus

40

41

Fig. 4.1 S-diagram of Treatment

42

an additional data type called SEXPR is taken into account.
SEXPR can be either type ATOM or type LIST. A lexical class
in S-diagram is denoted with its name in capital letters.

On the contrary, a non-lexical class is not any of
these primitive data types, e.g., class hospital in
Fig. 4.1. So, in order to define this type and store it in
a computer, we need to describe its attributes
(characteristics of a class) in terms of lexical classes. A
non-lexical class in S-diagram can be easily recognized as
its name has at least one non-capital letter.

Using S-diagram, it is possible to specify the
relationships between two classes — the subclass
connection. The subclass connection is represented by the
symbol —S—>; it implies inheritance from superclasses;
that is, characteristics of superclasses will be reflected
in their subclasses. Inheritance in S-diagram is in
hierarchical form.

An attribute in S-diagram is represented by an arrow,
which connects a domain class to a range class, accompanied
by its name. An attribute may assign to a member of the
domain class zero, one, or many members of the range class;
likewise, each member of the range class may reference to

43

zero, one, or many members of the domain class via an
attribute. These entity associations are called the
cardinality of an attribute.

The cardinality of an attribute describes the
functionality between the domain and range classes. Let
A = attribute
Kl = domain class
k2 = range class
ml = minimum number of members of Kl referenced from

a member of K2 via A
m2 = maximum number of members of Kl referenced from

a member of K2 via A
nl = minimum number of members of K2 connected to a

member of Kl via A
n2 = maximum number of members of K2 connected to a

member of Kl via A
The cardinality of A, combinations of nl and n2, is
tabulated in Table 4.1; whereas, the cardinality of the
converse of A, A“1 is shown in Table 4.2. The "*" in the

tables carries the meaning "many".

44

Table 4.2 Cardinality of the
Converse of an Attribute

1 nl | n2 | label combination |

I ° I * | multivalued, optional |

I ° 1 | optional |
I 1 1 1 | (no label) |
1 1 1 * | multivalued |

Table
of an

4.1 Cardinality
Attribute

1 ml | m2 | label combination |

1 0 11 1
* | (no label) |i ।1 1

1 0 11 1
1 1 1| unique |

1 1
1 1 1 1 1 1| unique, onto |l ।1 1
I 1 1 * 1 1| onto |

The labels in Table 4.1 and Table 4.2 are represented
graphically in an S-diagram. Fig 4.2 shows the graphical
symbols of the labels.

Finally, the S-diagram may also express X-dependencies,
the union of general existence dependencies and general

45

Label

multivalued

optional

unique

onto

Graphical symbol

Fig. 4.2 Labels in S-diagram

46

functional dependencies (see [EiRa85] for details).
Furthermore, the semantics of S-diagram can be expressed in
terms of a set of X-dependencies (also described in
[EiRa85]).

4.2 Examples of Using an S-diagram

In this section, we will give two examples showing how
to describe classes and attributes using an S-diagram and
explaining the semantics of them. The first example is to
describe a LISP class while the second is a registration
application.

4.2.1 Example One — LISP Class Definition

In this example, we want to define a class which is a
LISP type; that is, each of its members is a LISP program.
The S-diagram, Si, of this example is shown in Fig. 4.3.

Four classes are defined in Si, two lexicals and two
non-lexicals. Class LISP-program is defined as having only
one attribute, namely construct. Class lisp-type is a
subset of LIST, which in turn is a subset of SEXPR.
Therefore lisp-type inherits the characteristics of these
two lexical classes.

47

Fig. 4.3 S-diagram SI

48

Since the attribute construct does not have the label
multivalued, a LISP-program must belong to no more than one
lisp-type. However, the label optional is not there too;
therefore, all LISP-programs must belong to one and only one
lisp-type. Finally, the non-existence of labels onto and
unique implies that the knowledge base can contain one or
more LISP programs which have similar constructs.

4.2.2 Example Two — Registration Application

In this application (see Fig. 4.4), INTEGER and TEXT
are primitive data types while Student, Graduate-student,
Teacher, Course, and Classroom are not. Graduate-student is
a subset of Student. In the following, we will only explain
the semantics carried by the attributes advised-by and
enrolled-in. Then we will discuss some integrity rules
which are not shown in the S-diagram S2.

The attribute advised-by connects Graduate-student to
Teacher, and the label optional tells us that nl=0, n2=l,
ml=0, and m2=*. Its semantics are described as follows:
(1) a teacher can advise zero to many students; (2) if a
graduate student is on non-thesis option, he does not need
an advisor.

49

Fig. 4.4 S-diagram S2

50

Next, the attribute enrolled-in, connecting Student to
Course, has the label multivalued. Its semantics is that a
student can enroll in more than one course.

The labels optional, onto, and unique which do not
appear in the attribute also imply some semantics:
1. A course will not be open if no one enrolls in it

(because of the absence of the labels onto and unique).
2. A student must enroll in at least one course (because the

label optional is not there).

Some integrity rules are not shown in S2. For example,
a teacher cannot teach two or more courses at the same
scheduled time. Similarly, a room cannot be assigned to two
courses during the same period of time. These integrity
rules can be expressed by introducing a new label to
S-diagram. However, the discussion of this label is outside
the scope of this thesis.

4.3 The Knowledge Base Manipulation Language

As mentioned in Chapter 2, data models provide a formal
basis for tools such as DDL, DML, and QL that are
implemented by a DBMS. In this section, we will discuss the
Knowledge Base Manipulation Language in the DALI system.

51

The KBML is composed of the following functions: $KB-LOAD,
$KB-UNLOAD, $KB-CREATE, $KB-DELETE, $KB-CONNECT,
$KB-DISCONNECT, $KB-RETRIEVE, $KB-GET, $KB-FETCH,
$KB-REPLACE, $KB-ADD-ATTR, $KB-DEL-ATTR, $KB-REWIND,
$KB-READ, $KB-PRINT, $KB-BELONGS-TO. A KBML-function can be
nested inside another, and virtually there is no limitation
on the number of levels of nesting. In the following
paragraphs, the syntax of this language will be examined
(see Appendix II for the BNF of the KBML) and examples will
be given for illustration.

The KBML-function $KB-LOAD loads the KB, specified in
the argument, as well as the associated KBML program into
memory; whereas, $KB-UNLOAD has the opposite effect of
$KB-LOAD. Their formats are respectively.

($KB-LOAD <kb-name>)
($KB-UNLOAD <kb-name>)

The KBML-function $KB-CREATE creates a new entity and

inserts membership to a class. It takes two arguments: the
first one is the name of the class to which the new entity
belongs while the second one is an association list which
contains the attribute value pairs. Its format is

($KB-CREATE <class-name> <a-list>)

52

e.g.
($KB-CREATE 'STUDENT '((s-name Miller)

(ssn 123456789)))
will create an entity of STUDENT with attributes s-name
equal to "Miller" and ssn equal to "123456789". When the
"create" function is successfully finished, it returns an
entity number. The entity number functions as an
identification of the entity; it will not be changed during
the life of the KB.

$KB-CONNECT appends the additional attributes
(attributes of subclass) to an already existing entity and
inserts membership to a class. The function is of three
arguments: the first one is an entity number, the second is
a class name, and the last one is an association list that
specifies additional properties of the entity. Its format
i s

($KB-CONNECT <entity-no> <class-name>
<additional-attributes>)

e.g.
($KB-CONNECT 2 'GRADUATE-STUDENT '((advised-by 5)))

will connect the additional attribute "advised-by" (from
GRADUATE-STUDENT) to the entity 2 (superclass of
GRADUATE-STUDENT, perhaps STUDENT) and insert membership 2
to GRADUATE-STUDENT. It returns the entity number if the

53

connection succeeds.

$KB-DISCONNECT releases the attributes of a class
specified in its arguments and deletes the membership from
the indicated class.

($KB-DISCONNECT <entity-no> <class-name>)

e.g.
($KB-DISCONNECT 2 'GRADUATE-STUDENT)

will discharge all the attributes of GRADUATE-STUDENT in
entity 2 and delete membership 2 from GRADUATE-STUDENT.
When disconnection is done, the entity number will be
returned.

$KB-DELETE ends the life of an entity and removes
membership from all classes that it belongs to. $KB-DELETE
returns the entity number and its format is

($KB-DELETE <entity-no>)

$KB-BELONGS-TO checks an entity number or a value
whether it belongs to a class or a simple value set
respectively. It returns a T if true otherwise a NIL. Its
format is

($KB-BELONGS-TO <entity-no> <class-name>)
or

54

($KB-BELONGS-TO <value> <svs-name>)

The $KB-RETRIEVE function returns a set of entity
numbers. These entity numbers represent all the entities in
a particular class that satisfy the predicate specified in

the retrieve function. Its format is

($KB-RETRIEVE <class-name> [<selection-criteria>])

where <selection-criteria> is the predicate to be satisfied.
Mostly the selection criteria are involved with pattern
matching language (see Chapter 5 for details).

Examples:
1. ($KB-RETRIEVE 'STUDENT '((s-name (Steve Miller))))

returns a set of entity numbers, possibly empty, from class
STUDENT whose attribute s-name has the exact value of "Steve
Miller".

2. ($KB-RETRIEVE 'STUDENT '((s-name ($ Miller))
(born-in Texas)))

retrieves all the students who were born in Texas with the
last name equal to "Miller". Note that the "$" is used as a
place holder in pattern matching; it is explained in detail
in Chapter 5.

3. ($KB-RETRIEVE 'STUDENT '((s-name $X $X)))
retrieves all the students whose last names are also their

55

first names.

4. ($KB-RETRIEVE 'TEACHER '((rank ($ professor))
(salary (#@ (greaterp ## 30000)))))

returns a set of entity numbers whose rank is either
assistant professor or associate professor and whose salary
is over $30,000 a year.

5. ($KB-RETRIEVE 'GRADUATE-STUDENT
'((advised-by (#@ (car ($KB-RETRIEVE 'TEACHER

'((t-name (Christoph Eick)))))))))
retrieves all graduate students whose advisor is Christoph
Eick.

The function $KB-GET retrieves the attribute values of
an entity of a class. It takes as arguments an entity
number and a list of selected attribute names. Its format
is

($KB-GET <entity-no> <attributes>)

e.g.
($KB-GET 2 '(s-name ssn))

will return the values of s-name and ssn of entity 2 in the
form of an association list, e.g. ((name (David Lee)) (ssn
123456789)).

$KB-RETRIEVE and $KB-GET can be combined into one step
as $KB-FETCH. $KB-FETCH returns a list of association

56

lists. For example,

(((name (David Lee)) (ssn 123456789))
((name (John Smith)) (ssn 987654321)))

Its format is
($KB-FETCH <class-name> <attributes>

[<selection-criteria>])

$KB-REPLACE modifies attribute values of an entity.
The old attribute-value pairs will be returned. Its format
is

($KB-REPLACE <entity-no> <new-attribute-value-pairs>)

e.g.
($KB-REPLACE 2 '((ssn 420538928) (name (John Lee))))

will replace the old attribute values of ssn and name by
420538928 and (John Lee) respectively.

$KB-ADD-ATTR appends a value to an attribute. However,
if the attribute has the property optional and does not
exist in the entity, $KB-ADD-ATTR will insert the attribute
along with the value to it. The return value is the entity
number. The format of $KB-ADD-ATTR is

($KB-ADD-ATTR <entity-no> <attribute-name>
<attribute-value>)

57

$KB-DEL-ATTR does the reverse action of $KB-ADD-ATTR.
When the last value in an attribute is deleted, the
attribute name will be removed as well. $KB-DEL-ATTR
returns the entity number. The format of this function is

($KB-DEL-ATTR <entity-no> <attribute-name>
<attribute-value>)

$KB-READ extracts and returns the attributes of a
class, specified in its argument, from the entity indicated
by the class-pointer. Class pointers are set to NIL when
the KB is loaded. Therefore, before the read function can
be executed, $KB-REWIND should be called to reset the class
pointer to the top of a class. After the read function is
executed, the class pointer will point to the next entity in
that class. The format of $KB-REWIND and $KB-READ is
respectively

($KB-REWIND <class-name>)

($KB-READ <class-name>)

Finally, the function $KB-PRINT works in the same way
as $KB-READ except that return values will be directed to
the system printer instead of the console. Its format is

($KB-PRINT <class-name> <attributes>)

58

4.4 An Example Program

In this section, we will give an example program using
the KBML-functions in a LISP program. The following program
will increase the salary of those employees who earn less
than $1,000 a month when "flag" equals to 1. It prints out
all the employees' name and salary when "flag" equals to 2.

(Defineq (example-program (flag)
(let ((class 'EMPLOYEE)

(new-salary nil))
(cond

((equal flag 1)
(for entity-no

in ($KB-RETRIEVE class
'((salary (#@ (lessp ## 1000)))))

do (setq new-salary
(times 1.1

(cadr ($KB-GET entity-no '(salary)))))
($KB-REPLACE entity-no

'((salary ,new-salary)))))
((equal flag 2)

(for entity-no
in ($KB-RETRIEVE class)

do (print
($KB-GET entity-no '(name salary)))))))))

Chapter 5
Pattern Matcher

This chapter introduces the pattern matching language.
The pattern matching language is used in the schema language
to specify as a pattern the restrictions on the simple value
sets. It is also used in the KBML as part of the selection
criteria. The design and implementation of the pattern
matcher are also discussed in this chapter.

5.1 The Pattern Matching Language

Pattern matching is the process of comparing two
symbolic expressions to determine if one is similar to the
other [WinsSl, Wile84]. Though most pattern matching
languages vary in the forms and expressive power, their
concept or idea is more or less the same.

Pattern matching has been used in artificial
intelligence for many years. Programs, for example, which
deal with reasoning always need to access to knowledge about
the world. This knowledge about the world might be
expressed as pattern-like elements. The advantage of using
pattern-like elements is that they can represent general

59

60

knowledge. For example, (cause (hit $x $y) (hurt $y)).

In this section, we will introduce the constructs of
this language in detail (see Appendix I for the BNF of the
pattern matching language) and examples will be given to
help describe this sophisticated, though easy to understand,
language.

In the rest of this chapter, we will assume a knowledge
base with the following assertions:

(A B C D E)
(W (X Y) Z)

(p Q () R)
(L 3 M)

5.1.1 Identical Matchings

In its simplest case, a pattern can be any
S-expressions. When this is the case, the match will be
true only if the pattern and the assertion are exactly the
same. For example, if we match the pattern

(ABODE)

61

against the knowledge base, the result, in this case, is
true. But it is false had the pattern changed to

(A B C D).

5.1.2 Place Holders

We increase the flexibility of our pattern matching
language by adding two special symbols "$" and Both of
these symbols, indeed, serve as place holders and neither is
bound to a value as a result of matching.

The first symbol "$" can match any atom or list in the
corresponding position. As an example of this, let us
consider the following pattern:

(W $ Z)

Since this pattern matches (W (X Y) Z) in the knowledge
base, the match succeeds, but no value binds to this symbol.

The second symbol "*" works in the same fashion as the
first one except that it can match zero, one or more
positions in the assertion. For instance, matching

62

(P Q * R) or
(L 3 M *)

against the knowledge base will succeed, but matching

(* G)

will fail.

As we can see from the previous example, in
(L 3 M *) matches zero positions in the assertion (L 3 M) in
the knowledge base. However, "$" is not capable of doing
the same thing even though we have not given an example for
it.

5.1.3 Pattern Matching Variables

In some cases, we would like to bind a value to a
variable in its first occurrence so that this variable can
be used as identical matching in the subsequent matches.
Thus, pattern matching variables are included in this
language.

A pattern matching variable is formed by attaching the
special symbol "$" to a variable name. For instance, both

63

"$p" and "$ANY" are pattern matching variables while "$*"
and "p$" are not.

When a pattern matching variable is encountered in the
pattern, the system will first look for its binding value.
If its binding value is found, the system will use this
value for matching. On the other hand, if there is no
binding value to this variable, the pattern matching
variable will match like a place holder. If the match
succeeds, the value of it will bind to this variable;
otherwise not. Let us look at some examples:

Example 1
(A $VAR1 C D E)

When this pattern matches against the assertion (ABODE)
in the KB, the match succeeds and $VAR1 is bound to B,
represented by ($VAR1 B).

Example 2
(A $X $X D E)

In this example, the pattern changes to a new form and the

same assertion is being matched against. Since $X has no
previous binding the first time, it will get the binding of

64

B. When $X is encountered the second time, the current
binding of $X, which is B, will be used to match against C.
The match fails at this point.

As mentioned earlier, knowledge about the world is
often represented by pattern-like elements. Therefore, we
might, sometimes, need to match a pattern against an
S-expression that contains pattern matching variables too.
But doing this may lead to some nasty problems unless we
have some appropriate rules for binding variables. We adopt
the unification rules that were explained in [Wile84], and
we briefly restate them in here.

The unification rules state that when matching two
items with variables in them, we first look for the binding
value of that variable. If there is one, we will use it for
continuous matching; otherwise, we will use the variable
itself. However, when matching a variable against itself,
we do not want to put that variable in the binding list
because it will cause the searching of the value of that
variable infinitely. To see why we do not want to do this,
let us look at an example of this situation. Suppose we
have

(A $X $X $X E)

65

against
(A $Y $Y $Y E)

When we match §X against $Y the first time, we bind $Y to $X
since $X has no previous binding. Now when we match $X
against $Y the second time, we will use the current binding
of $X which is $Y. Since $Y does not have a current
binding, we will bind $Y to $Y and put it into the binding
list. When $X is matched against $Y the third time, we,
again, get the current binding of $X, namely $Y, matched
against $Y. But this time $Y has the binding $Y. So, an
indefinite loop is created when the pattern matcher keeps on
searching the current binding of $Y.

Another problem which the unification rules should deal
with is called circularities. Circularities happens when
the system attempts to match a variable against an item
which contains the same variable. For example,

(A $X $X D)
against

(A $Y (C $Y) D)

In a situation like this, the pattern matcher will endlessly
substitute $Y for (C $Y). Thus, the unification rules

66

should declare the match a failure.

5.1.4 Optional Occurrences

Our pattern matching language also observe the
importance of optional occurences. An optional occurrence
is denoted by a pair of curly brackets ({}). When an
element is surrounded by the brackets, it means that this
element can either exist in the assertion or not. For
example, if a pattern contains an optional occurrence like
the following:

(A {B} C)

the system should match

(A B C) or
(A C)

Note that only an atom or a list is allowed inside the
brackets. Any special symbols or pattern matching variables
will get an error message.

67

5.1.5 Restriction Functions

Restriction functions are implemented into the pattern
matching language. They are indicated by a pound sign (#)
followed by an at sign (@). A restriction function has the

general format:

(#@ (<arbitrary LISP function> [<arguments>]))

Orbitrary LISP function> is any legitimate LISP
functions. The system will pass this function to the
interpreter without checking the meaning of it. Therefore
if an arbitrary LISP function is not carefully chosen, it
might cause run time errors or unexpected effects.

<arguments> is optional because some LISP functions may
take zero arguments. If a LISP function takes one or more
arguments, one of them must be "##". "##" is the special
symbol we choose to denote the value of the corresponding
position in the assertion.

Example 4
(L (#@ (NUMBER? ##)) M)

will succeed only if the first element is "L", the second

68

element is a number, and the last element must be "M".

Example 5
(L (#@ (NOT (NUMBER? ##))) M)

In contrast to the previous example, this one shows that the
second element in the list must not be a number.

Example 6
(ABC (#@ (ATOMP ##)) E)

will succeed because (A B C D E) is in the knowledge base.

Example 7
(W (#@ (ATOM ##)) Z)

will fail when matching against the knowledge base because
the second element in (W (X Y) Z) is a list.

Example 8
(P Q (#@ (LISTP ##)) R)

will match (P Q () R) in the knowledge base.

69

5.1.6 Permutation Functions

Sometimes we may want to match an assertion with
certain elements in it; however, they need not necessarily
be in any particular orders. For example, (a b c) or
(c b a) are both acceptable. To reflect this need, we
provide a function called #PERM that enables us to match the
arbitrary permutation of elements El, E2, . . . , En.
Suppose we specify a pattern:

(A (#PERM BCD) K R)

The pattern will successfully match any of the following
S-expressions:

(A B C D K R)
(A B D C K R)
(A C B D K R)
(A C D B K R)
(A D B C K R)
(A D C B K R)

5.1.7 Regular Expression Functions

In our pattern matching language, we also provide

70

regular expression functions. They are indicated by special
symbols and "#&. The general format for
regular expression functions is:

(<operator> <expression>)

<operator> can be one of the following:

#* () (<expression>) (<expression> <expression>)
(<expression> <expression> <expression>). . .

#+ (<expression>) (<expression> <expression>)
(<expression> <expression> <expression>). . .

#& repetition of <expression>
#/ any one of the occurrences in <expression>

While and "#&" are of one argument, "#/"
can take more than one.

Examples:

(1) (#* (A))
will match the pattern (()) ((A)) ((A) (A)) ((A) (A)
(A)) ...

(2) (#+ A)

71

will match the pattern (A) (A A) (AAA) ...

(3) (#& (A))
will match the pattern (A) (A) (A) ...

(4) (#& (A (#& (#@ (LISTP ##))) C))
will repeatedly match the successive lists with the
first element in a list equal to A, followed by one
or more lists, and then an atom C. Note that this
example shows the recursive call to #& and it is the
only regular expression function which allows
recursive calls.

(5) (#/ A B C)
will match either A or B or C.

5.2 The Design and Implementation of the Pattern Matcher

The pattern matcher is composed of several functions.
Each function is an implementation of the patterns described
in section 1. The pattern matcher contains two parameters:
patternl and pattern2. Patternl is the match expression

72

which may contain any combination of match functions and
match variables; pattern2 is the S-expression to be matched.
The pattern matcher scans the expression in patternl so as
to find out which function should be called to match the
S-expression. For example, when the special symbol is
detected following the symbol the pattern matcher will
call the module which is responsible for restriction
function matching.

Most of the pattern matcher functions are implemented
using recursive functions. An association list is used as
an internal data structure to store the binding,
variable-value pairs. In fact, this list is also the return
value of the pattern matcher. When a NIL is returned, it
means patternl and pattern2 are not a match. However, when
a non-empty list is returned, it means the match is
successful. If the list returned is (NIL), it is
interpreted as a successful match without bindings;
otherwise, the matching variable and their binding values
are represented by an association list, e.g.,
((($A B) ($X 1))) .

Chapter 6
Schema Compiler

In this chapter we will discuss the syntax of the
schema language (see Appendix III for the BNF of the schema
language) and examine the data structure that is employed
for the data dictionary. We will also discuss the design
and implementation of the schema compiler. Before we get to
these topics, we would like to, first, discuss the
restrictions that are imposed on the schema language.

6.1 Restrictions on the Schema Language

We enforce some restrictions, for perusal purposes, on
the schema language. These restrictions are explained in
the following.

* Every keyword must be in small letters.
* An identifier (such as data class names, attribute

names, etc.) must begin with a letter followed by zero
or more characters. It can be of any length but not
zero, and special symbols except the hyphen are not
allowed.

* Simple value sets can be declared in any arbitrary order
and so can data classes. However, all the simple value

73

74

sets have to be defined prior to any of the data classes
definition.

* The schema is in free format, i.e., the user can start a
line at any column. But, for readability it is
suggested that the user indent a line properly.

6.2 Syntax and Semantic Rules of the Schema Language

A schema contains a line of identification followed by
zero or more simple value set declarations and one or more
data class definitions. In the following paragraphs, we
will look at the syntax of schema identification, simple
value sets, and data classes.

6.2.1 Schema Identification

The first line of a schema gives an identification.
Its syntax is a simple one.

schema <SCHEMA-NAME>

The first word "schema" is used as a keyword while
<SCHEMA-NAME> is a user-defined name.

75

6.2.2 Simple Value Set Declarations

Simple value sets are equivalent to data types in high
level programming languages. They are established by being
defined as a subset of the system predefined simple value
sets: INTEGER, REAL, ATOM, LIST, and SEXPR. These
predefined sets need not necessarily be declared in the
schema. For example, the simple value set POS-INTEGER can
be derived from the simple value set INTEGER by specifying a
pattern which restricts values of it to positive integers.
Simple value sets established from system predefined sets
can serve as supersets for further derivations.

The syntax of a simple value set definition has three
lines.

simple value set <SVS-NAME>
subset Of <SUPERSET-NAME>
where <PATTERN>

or
simple value set <SVS-NAME>

subset Of <SUPERSET-NAME>
where instances are <LIST>

The first line is composed of the keywords "simple
value set" followed by an identifier, the name of a simple
value set. The second line specifies the superset of the
currently defined simple value set. We use the keywords

76

"subset of" followed by an identifier to denote this.
Finally the "where" clause is expressed in the last line.
The "where" clause can be either a pattern or a list of
instances. If it is a pattern, it must be a list containing
patterns recognized by the pattern matcher. Otherwise, it
should be a list of enumerating atoms following the keywords
"where instances are". Some examples of simple value set
declarations are given in Fig. 6.1.

simple value set COLOR
subset of LIST
where instances are (red orange yellow green

blue indigo purple)
simple value set PRIMARY-COLOR

subset of COLOR
where instances are (red blue green)

simple value set POS-INTEGER
subset of INTEGER
where (#@ (GREATER? ## 0))

Fig. 6.1 Examples of Simple Value Sets

The first simple value set COLOR is declared as a list
of seven elements. Its superset is LIST, which is a subset
of SEXPR. Both LIST and SEXPR are predefined in the system;
therefore, they do not need to be declared as a simple value
set in the schema.

77

The second simple value set is called PRIMARY-COLOR.
It restricts itself to red, blue, and green out of simple
value set COLOR. As mentioned above, the order of these two
simple value sets is not important because the schema
compiler can take care of forward references.

The last simple value set is not in the same form as
the previous two. It employs the second form of the "where"
clause, which is a pattern. The simple value set
POS-INTEGER specifies that the number has to be a positive
integer number. The special symbol ## is used as a place
holder in pattern matching. The real values will be
substituted into these places during the run time.

6.2.3 Data Class Definitions

The syntax of data class definitions is more
complicated than that of the simple value sets. Like the
simple value set, a data class might be a subset of other
class. Furthermore, it might overlap with some other
classes. The structure of data class definition is shown in
Fig. 6.2.

78

data class <CLASS-NAME>
subset Of <SUPERCLASS-NAME>
overlaps with <OTHER-CLASS>

simple attributes:
<ATTRIBUTE-NAME>
property: <PROPERTY-VALUES>
default: <VALUE>
constraints: <PATTERN>
type: <SIMPLE-VALUE-SET-NAME>

<ATTRIBUTE-NAME>

role attributes:
<ATTRIBUTE-NAME>
property: <PROPERTY-VALUES>
default: <VALUE>
constraints: <PATTERN>
type: <CLASS-NAME>

<ATTRIBUTE-NAME>

entity local constraints: <CONSTRAINT-FUNCTION>
general constraints: <CONSTRAINT-FUNCTION>
predefined operations: <PRIMITIVE-OPERATIONS>

Fig. 6.2 Structure of Data Class

79

The order of the keywords except those (property,
default, constraints, and type) used to describe attributes
(see Fig. 6.2) is very important because the schema compiler
scans the text using the above order. Although Fig 6.2
shows all the keywords that a data class could possibly
have, a data class does not necessarily have to have all
these specifications. If, for example, a data class does
not overlap with other class, the line "overlaps with" will
not appear in the definition.

Types in simple attributes are expected to be simple
value sets; whereas, types in role attributes must be any of
the data class names defined inside the schema.
<PROPERTY-VALUES> are values defined in the S-diagram. They
can be any combination of these: unique, optional,
multivalued, and onto. <VALUE> is the default value to be
used if the attribute-value pair is omitted in the argument
when an entity is instantiated. Finally <PATTERN> is a
pattern to be satisfied by the attribute.

Entity local constraints are constraints that apply to
entities in a particular class only. They have to be a
boolean LISP expression — either a T or a NIL is returned.

General constraints are arbitrary LISP expressions, and

80

they apply to a class instead of entities.

Finally, predefined operations are data manipulation
functions that allow the user to manipulate entities in a
particular class. Data manipulation functions are denoted
by the prefix Functions that are currently
implemented in the system include: $KB-CREATE, $KB-DELETE,
$KB-CONNECT, $KB-DISCONNECT, $KB-RETRIEVE, $KB-FETCH,
$KB-GET, $KB-REPLACE, $KB-ADD-ATTR, $KB-DEL-ATTR,
$KB-REWIND, $KB-READ, and $KB-PRINT. These are considered
to be the primitive operations in the system. If this line
is omitted, all operations will be assumed.

6.3 Data Structures of the Data Dictionary

A data dictionary is actually a small data base which
contains all the necessary information that is required to
generate a KBML program. This information may be called

intermediate codes.

In LISP, a property list can be used for storing
information because it is easy to deposit or retrieve
information to or from it via LISP functions DEFPROP and

GET. Nonetheless, a property list itself is not enough to
be a candidate because it can store property value only.

81

Fortunately, with some modifications a property list can be
generalized to a frame. A frame has room to specify more
than property values, for example, default values, messages,
computed values, and inherited values.

One way to define a frame [WinsSl] is as a nested
association list. On the highest level is the frame name
and each sub-level is a nested association list. To
demonstrate the use of a frame as a data dictionary, we give
the following example.

Example

(REGISTRATION
(simple-value-set TEXT)
(TEXT

(pattern (#@ (LITATOM ##))))
(data-class STUDENT GRADUATE-STUDENT TEACHER)
(STUDENT

(superset-of GRADUATE-STUDENT)
(attribute-names sname ssn)
(sname

(category simple)
(type TEXT))

(ssn
(category simple)
(type INTEGER))

(operations $KB-CREATE $KB-RETRIEVE))
(GRADUATE-STUDENT

(subset-of STUDENT)
(attribute-names advised-by)
(advised-by

(category role)
(type TEACHER)
(property optional)))

(TEACHER
(attribute-of GRADUATE-STUDENT)
(attribute-names rank)

82

(rank
(category simple)
(type TEXT))
(default assistant professor)

(general-constraints
(LESS? ($KB-RETRIEVE SELF) 10)))

In this example, REGISTRATION is the frame name. It
contains three sub-levels. Basically, the first levels
store the names of simple value sets and data classes; the
second levels store superset names, subset names, attribute
names, general constraints, local entity constraints, and
predefined operations; and the third levels store attribute
properties such as data types, default values, attribute
constraints, and cardinality of attributes.

The data dictionary is implemented using abstract data
types. The operators associated with it are $DD-GET,
$DD-INHERIT, $DD-INHERIT-SVS, $$DD-BACK-INHERIT, $DD-PUT,
$DD-DELETE, and $DD-APPEND. $DD-GET gets a value from a
slot; whereas, $DD-PUT deposits a value to it. $DD-INHERIT
not only gets a value from a specified slot, but also
inherits values from its superclasses. $DD-INHERIT-SVS is a
variation of $DD-INHERIT since it is specialized in
inheriting simple value sets only. $DD-BACK-INHERIT
virtually does the opposite task of $DD-INHERIT. Instead of

inheriting its superclasses, it looks for subclasses as well
as classes which overlap with it. $DD-DELETE removes a slot

83

from a data dictionary entry. Lastly, $DD-APPEND appends a
value to a slot. If the slot is not found, it will create
one before the value is appended to it.

6.4 The Design of the Schema Compiler

The schema compiler uses a one pass technique with
three phases grouped into it. The first phase is lexical
analysis, the second phase is syntax analysis, and the third
phase is KBMF-code generation. The operations of these
phases are interleaved, with control alternating among them.

Error handling interacts with all three phases. When
an error in the source program is detected during the first
two phases, it is reported to the error routine; however,
the schema compiler will not terminate there because it
attempts to detect as many errors as possible in one
compilation.

6.4.1 Lexical Analysis

In the first phase, the lexical analyzer or scanner is
called. The input of the lexical analyzer is, of course,
the conceptual schema while the output of it is a stream of
tokens.

84

A token is a group of characters that logically belong
together [AHU 78]. What is called a token depends on the
language at hand. In most languages, a constant, an
identifier, an operator symbol, a keyword, and a punctuation
symbol are treated as a token. In the schema language we
are dealing with, there is no operator symbol. However, we
have something called "list" that most languages do not
have. A list is also called a token because it is treated
as a singly logical entity in LISP. In summary, the lexical
analyzer will recognize the following as tokens:

1. constants — Either integers or real numbers.
e.g., 1, 200, 3.46

2. identifiers — Begin with a letter followed by zero or
more characters.
e.g., ID1, EMPLOYEE

3. lists — Elements surrounded by parentheses. Elements
can be either lists or word-like objects called atoms
[WinsSl]. When an element is a list, it forms an
hierarchical structure.
e.g., (a b c), (the following is a list (1 2 3))

4. keywords — All keywords are in small letters The
following are named as keywords in the schema language:
schema, simple, value, set, subset, of, where,
instances, are, data, class, overlaps, with,

85

attributes, type, default, property, constraints, role,
entity, local, general, predefined, and operations.
Note that these keywords are not reserved; the user can
use them as identifiers.

5. punctuation symbols — Only two punctuation symbols are
used in the schema language. They are comma and colon.

6. special symbols — Special symbols are mainly used in
the pattern matching language. These symbols are: #@,
##, #PERM, #*, #+, #&, and #/.

7. property values — The values of attribute property
include: unique, optional, onto, and multivalued.

8. predefined operations — Thirteen operations are
currently implemented: $KB-CREATE, $KB-DELETE,
$KB-CONNECT, $KB-DISCONNECT, $KB-RETRIEVE, $KB-FETCH,
$KB-REPLACE, $KB-GET, $KB-ADD-ATTR, $KB-DEL-ATTR,
$KB-REWIND, $KB-READ, and $KB-PRINT.

The lexical analyzer interacts with four functions:
$SCAN-A-NUMBER, $SCAN-A-WORD, $SCAN-A-LIST, and
$SCAN-A-PUNCTUATION. It always reads one character ahead.
Therefore, a proper function would be called based on the
current character. For example, if the current character is
a number, it will call the function $SCAN-A-NUMBER; a letter
or special symbol "$" or will invoke $SCAN-A-WORD; a
right-parenthesis will invoke $SCAN-A-LIST; and a comma or

86

colon will invoke $SCAN-A-PUNCTUATION.

The lexical analyzer is responsible for producing a
source listing and identifying any illegal input characters.
It can also filter out unnecessary blanks embedded in the
text.

The lexical analyzer is not called to produce the
entire sequence of tokens on an intermediate file. Rather,
it is called as a function by the syntax analyzer each time
a new token is desired.

6.4.2 Syntax Analysis

The second phase of the schema compiler is called
syntax analysis. Its input is the output of the lexical
analyzer. The syntax analyzer checks the pattern of input
whether or not it matches the specification for the source
program.

The syntax analyzer is composed of three functions:
$CHK-SCHEMA-NAME, $CHK-SVS, and $CHK-DATA-CLASS.
$CHK-SCHEMA-NAME is first called to check the first line of
the schema. Once it is done, it will give control to
$CHK-SVS to analyze the syntax of all the simple value sets.

87

When it is finished, the last function $CHK-DATA-CLASS
should be called to do syntax analysis for all data classes.

Since the complexity of the schema language is small,
the parsing techniques are not necessary at this stage. The
syntax analyzer uses a simple scheme; that is, it analyzes
the contexts of a conceptual schema word by word. Instead
of building a parse tree in this phase, the syntax analyzer
builds an entry in the data dictionary. This entry contains
the intermediate codes for the currently compiled schema.
When a source line is detected error free in the first two
phases, the intermediate codes of this line will be inserted
into the entry, using the data dictionary operators. Each
entry in the data dictionary is unique; therefore, before
the first phase begins, the schema compiler checks if the
data dictionary entry has already been created. If so, it
will prompt the users whether the old entry should be
overwritten. If the answer is no, the compilation is
aborted.

If anything unexpected happens during syntax analysis,
the error routine is invoked for error handling and the
error flag is incremented by one. When a flaw is found in a
keyword during syntax analysis, the rest of the line will be
skipped because there is no way to tell what exactly the

88

keyword is and it makes no sense to scan the rest of the
line. The scanner then tries to return a possible keyword
following the erroneous line, and the syntax analysis
resumes from there.

When the second phase is finished, the schema compiler
will check the value of the error flag. If the value is
greater than zero, it will call $DD-DELETE to remove the
entry from the data dictionary and compilation is aborted;
otherwise, the third phase begins.

6.4.3 KBMF-code Generation

The KBMF-code generator produces a set of
KBML-functions which will be used by the end users for
accessing the knowledge base. It takes as input the data
dictionary and generates as output a program containing all
the KBML-functions which were specified as predefined
operations in the conceptual schema. KBML-functions
generated can be compiled so that they can run quicker than
the symbolic codes. Before the design and implementation of
the KBMF-code generator is discussed, we would like to
describe the context of a KBML program.

89

6.4.3.1 An Overview of KBML Program

Fig. 6.3 shows the layout of a KBML program. Basically
a KBML program contains several KBML-functions. The number
of functions produced depends on the number of allowed
operations specified in the conceptual schema. Suppose, a
conceptual schema defines four classes, HUMAN-BEINGS,
PATIENT, HOSPITAL, and TREATMENT. The permissible
operations for HUMAN-BEINGS are $KB-CREATE, $KB-DELETE, and
$KB-RETRIEVE; for PATIENT $KB-CONNECT, $KB-DISCONNECT,
$KB-RETRIEVE, and $KB-READ; for HOSPITAL $KB-CREATE and
$KB-DELETE; and for TREATMENT $KB-CREATE, $KB-DELETE, and
$KB-READ. When this conceptual schema is compiled, the
syntax analyzer will transform all these predefined
permissible operations for each class into intermediate
codes and store them in the data dictionary. Next, when the
program generator is invoked, it will generate, in reference
to the data dictionary, a program with six functions in it,
namely, $KB-CREATE, $KB-DELETE, $KB-CONNECT, $KB-DISCONNECT,
$KB-READ, and $KB-RETRIEVE.

90

(Defineq (<kbml-function> (<class-name> ...)
cond ((not (atom <class-name>))

($error code)
nil)

(t (cond ((equal <class-name> <value>)

)
((equal <class-name> <value>)

)(T ($ertor code)))
(cond ((null error)

(<dbml-function>
<class-name> ...))

(t ($error code)))))
(Defineq (<kbml-function> (<class-name> ...)

))

Fig. 6.3 Layout of KBML Program

91

Although the contexts of these functions are different
from each other, they do have few things in common. First,
in the outset of each function, all the parameter values
will be tested. For instance, a class name have to be an
atom and a criteria must be an association list. Second, a
conditional clause is used to test the names of all the
permissible data classes. In the last example, the
permissible data classes for $KB-CREATE are HUMAN-BEINGS,
TREATMENT, and HOSPITAL only. Creating entities for PATIENT
will cause an error message. Similarly, the permissible
data classes for $KB-RETRIEVE are HUMAN-BEINGS and PATIENT;
for $KB-DELETE HUMAN-BEINGS, HOSPITAL, and TREATMENT; for
$KB-CONNECT and $KB-DISCONNECT PATIENT only; and for
$KB-READ TREATMENT and PATIENT. Third, an error routine is
called whenever a flaw or violation is detected. Fourth,
their corresponding low level function will be called upon
to manipulate the physical data of the Klj when all the
validations are done and no errors have been found.

On the other hand, the differences of the contexts of
these KBML-functions are explained in the following
paragraphs.

The contexts of $KB-CREATE and $KB-CONNECT are most
complicated. Before checking the redundant attribute value

92

pairs, they insert default values for the missing arguments.
Then they go on checking the optional attributes, the
attribute types and constraints, the cardinality of
attributes between the domain and range classes, the general
constraints, and the entity local constraints. For
$KB-CONNECT, it also checks whether the entity number is
allowed for the connection of the additional attributes.

The contexts of $KB-DELETE and $KB-DISCONNECT look more
or less the same. They insure the cardinality of attributes
is not violated when an entity is deleted from all classes
or disconnected from an entity.

For $KB-RETRIEVE, it needs to verify the attribute
names in the selection criteria. Likewise, $KB-FETCH checks
the same things as $KB-RETRIEVE plus the validation of the
selected attribute names.

The contexts of $KB-REPLACE, $KB-ADD-ATTR, and
$KB-DEL-ATTR not only verify attribute names, but also
perform data integrity tests. When $KB-DEL-ATTR deletes the
last attribute value, it may cause consistency violation if
that attribute is not optional. Similarly, when
$KB-ADD-ATTR puts an additional attribute value to a
non-multivalued attribute, the operation should be rejected.

93

For $KB-REPLACE, it must insure that the new values will not
violate any of the consistency rules.

Functions like $KB-GET, $KB-REPLACE, $KB-ADD-ATTR, and
$KB-DEL-ATTR do not carry a class name in their parameter.
Therefore, their class name and attribute names can only be
verified from the KB during the run time.

Finally, $KB-REWIND, $KB-READ, and $KB-PRINT have the
simplest contexts. All of them have no attributes to
verify; however, $KB-READ and $KB-PRINT need to pass the
attribute names of the requested class to their
corresponding low level function.

All of these high-level functions generated by the code
generator are machine-independent. In other words, things
changed in the low-level functions would not affect the code
generator program.

6.4.3.2 The Design of the KBMF-code Generator

The KBMF-code generator is composed of twelve functions
along with the driver program. Each function except one is
responsible for generating a KBML-function. For example,
$GEN-KB-CREATE will generate $KB-CREATE. For $GEN-KB-RP, it

94

is responsible for generating two functions: $KB-READ and
$KB-PRINT. The driver program opens a file with its name
equal to the schema name to store the generated codes
(KBML-functions). Then it will call each function in
sequence to generate the codes if necessary.

The first thing for each function to do is to check
with the data dictionary to see whether there is a need to
generate this particular KBML-function. If not so, control
will go back to the driver program and the next function is
called.

In each function, templates are declared at the
beginning of it. These templates are program segments; they
contain some place-holders which will be substituted by the
values retrieved from the data dictionary. A list called
LINE is used to temporarily store the generated codes before
they are written to the file opened by the driver program.
The reason is that I/O frequency will be reduced; as a

result, the program generator is more efficient. Finally, a
stack is needed to temporarily store the right-parentheses
because in some situations, when the left parenthesis of a
list is appended to LINE but the list is not yet finished,
the right parenthesis should be pushed onto the stack; and
when it comes to the end of the list, the right parenthesis

95

will be popped out from the stack and appended to LINE.

6.4.4 Error Handling

$WRITE-ERRMSG, the error handler is invoked when a flaw
is occurred in the source program during compilation. The
error handler takes as a parameter an error code, and it
stores the corresponding diagnostic message into a global
list called ERRMSG. These error messages will not be output
to the listing file until the end of the source line is
reached. Despite the error occurs in the source line, the
syntax analyzer will continue checking the rest of the
schema in order to detect as many errors as it can in one
compilation.

At the end of each source line, a routine named
$SC-PRINT-ERR-MSG is invoked to check the contents of
ERRMSG. If it is not null (or empty), its contents will be
printed underneath the source line; otherwise, no action
will be taken.

6.4.5 The Forward References Problem

The forward references problem is inevitable in a
one-pass compilation. To explain what the forward

96

references problem is, consider the following example.
Suppose in a schema specification, role attribute hosp-name
is defined as with type equal to HOSPITAL, e.g.,

role attributes:
hosp-name

type: HOSPITAL

The problem arises here: if HOSPITAL, a data class name, is
defined ahead of the current data class, the parser will
accept it as a legitimate type; however, if HOSPITAL has not
yet been defined, the parser will not have any knowledge, at
that point of time, whether or not this data class is
defined later in the schema. This creates the forward
references problem.

The syntax analyzer may solve the problem by using a
list to store all the unresolved names. Each time when a
new data class is compiled, the data class name is checked
against this list. If a match is found, the unresolved name
is deleted from the list. So at the end of the compilation,
the undefined data class names remain unresolved. These
names will be output to the listing file along with the

diagnostic error message.

Chapter 7
Storage Structure Program

In the last two chapters, we discussed two of the
components of DALI — the pattern matcher and the schema
compiler. This chapter discusses the last component — the
storage structure program. First, the selection of data
structure for the DALI-KB will be discussed. Next, the
roles of the storage structure program are described. Then
the design and implementation are discussed. Lastly, the
features of the Xerox 1186 Al system in which DALI is
implemented are mentioned.

7.1 Selection of Data Structure for DALI

In our KBMS, we should allow sequential access and key
access. Sequential access is used when the whole class must
be traversed. For example, $KB-RETRIEVE needs to traverse a
class sequentially to find out which entities that satisfy
the selection criteria. On the other hand, key access is
used when an entity number is available and quick access is
needed. Furthermore, key access is also used to check
whether an entity number belongs to a certain class.

97

98

For sequential access, we choose to use a list as the
data structure. This list stores all the memberships
(entity numbers) of a class. Sequential mode is also
involved in key access because the entity numbers in the
sequential list will be used as the keys to access the
contents of the entities.

For key access, we need to find some data structure
which allows quick access with an entity number as a key.
Some candidates are B-tree [AHU 83], hashing [Mehl84], and
hash arrays (an INTERLISP-D data structure). Hash arrays
provide a mechanism for associating arbitrary LISP objects
("hash keys") with other objects ("hash values") such that
the hash value associated with a particular hash key can be

quickly obtained.

In order to compare their performances, we conducted
some empirical tests. The B-tree was implemented using the
record package in INTERLISP-D. The record package is an
abstract data type; it has operations like CREATE, FETCH,
REPLACE, WITH, and TYPE?. In our program the non-leaf node
was declared as

(Datatype Btree
(Firstchild Lowofsecond Secondchild

Lowofthird Third))

99

and the leaf node as

(Datatype Leaf23 (element23))

The B-tree program was implemented in ADT too. The
operators associated with the B-tree were BTREE-CREATE,
BTREE-INSERT, BTREE-DELETE, BTREE-RETRIEVE.

The hashing program was also implemented using ADT's.
The collision problem was resolved by linear rehashing. The
operators associated with hashing were HASH-CREATE,
HASH-INSERT, HASH-DELETE, and HASH-RETRIEVE.

Since there are micro-coded functions for creating hash
arrays, putting a hash key/value pair in a hash array, and
quickly retrieving the hash value associated with a given
hash key; the hash array program simply used these
micro-coded functions to implement the operations:
HARRAY-CREATE, HARRAY-INSERT, HARRAY-DELETE, and
HARRAY-RETRIEVE.

The tests were executed in the manner described as
follows and the results listed in Table 7.2.

1. Two thousand records were inserted into a 2-3 tree.
2. One thousand records were then deleted.

100

3. The elapsed time was recorded.
4. One thousand records were retrieved, but 50% of them

were not in the 2-3 tree.
5. The time consumed was marked down.
6. A separate test was performed after the above

operations.
7. One thousand records were retrieved from the 2-3 tree

with no misses.
8. The elapsed time was marked down.
9. Procedures 1-8 were repeated with hashing and hash

array.

The results of these tests are tabulated as follows:

Table 7.2 Empirical Test Results

1 B-tree 1 Hashing 1 Hash Array
INSERT |
and |

DELETE |
892441

1
39908 1 31722

RETRIEVE |
(50% not |

found) |
81432 1 12332

1
36238

RETRIEVE |
(100% |
found) |----------- +—

81432
—+—

17624
-+-

5013

101

The empirical results show that when these three data
structures run on the Xerox 1186 workstation, hash array is
much faster than hashing and B-tree for inserting or
deleting a record. It also outperforms its competition in
data retrieving.

In summary, hash array was chosen as the data structure
for our DALI-KB. The hash key is the entity number and the
hash value is an association list. The first
attribute-value pair of the association list will be used to
store all the class names the entity belongs to.

7.2 An Overview of the Storage Structure Program

The storage structure program is a set of low-level
functions which directly modify the physical data of the
knowledge base. These functions are one-to-one
correspondences to the high level KBML-functions. The
purpose of having this layer is that when changes are made
in this layer due to performance reasons (e.g. the data
structure for the KB is changed), they would not affect
anything in the user interface layer. Low level functions
are indicated by using the prefix "$DB-".

All of these low-level functions are machine-dependent.

102

The users are not permitted to access these functions; as a
result, they would not intentionally or unintentionally
destroy the contents of the KB.

7.3 The Design of the Storage Structure Program

For each of the data manipulation functions, we will
implement a function which knows the data structure of the
KB. This low level function is responsible for performing
the request from the high level function. When requests are
performed, things are changed in the KB. For instance,
entity numbers can be reused when entities are deleted.
Therefore, some data structure is needed to keep track of
the status of the KB when things are changed. We will call
it the Knowledge Base Table. The Knowledge Base Table
contains the information like the next available entity
number, the recycled entity numbers, the memberships of each
class, and the class pointers. The Knowledge Base Table is
currently an association list. Fig. 7.1 shows an example of
how the information is stored in the table.

103

((RECYCLED-ENTITY-NOS (2 14 1))
(NEXT-ENTITY-NO 15)
(MEMBERSHIP (TEACHER (3 6))

(STUDENT (4 5 7 9 10))
(GRADUATE (5 9))
(COURSE (8 11 12 13)))

(CLASS-POINTER (TEACHER NIL)
(STUDENT 7)
(GRADUATE NIL)
(COURSE 8)))

Fig 7.1 An Example of the Knowledge Base Table

Since the low level functions work closely with the
Knowledge Base Table, it is logically to design the table as
an abstract data type. The operations in the Knowledge Base
Table are $KBT-GET-MBRSHIP, $KBT-DELETE-MBRSHIP,
$KBT-INSERT-MBRSHIP, $KBT-GET-ENTITY-NO, $KBT-GET-CLASS-PTR ,

$KBT-RECYCLE-ENTITY-NO, and $KBT-RESET-CLASS-PTR.

104

$KBT-GET-ENTITY-NO first searches for the recycle list.
If it is not empty, the first element will be taken out and
returned. Otherwise, the value of NEXT-ENTITY-NO will be
returned and NEXT-ENTITY-NO is incremented by one.

$KBT-DELETE-MBRSHIP, $KBT-INSERT-MBRSHIP, and
$KBT-GET-MBRSHIP all deal with attribute MEMBERSHIP. The
first operator deletes the entity number from the class
membership list specified in its argument, the second
operator inserts a member to the list, and the last one
returns the whole list.

$KBT-GET-CLASS-PTR returns the current class pointer;
whereas, $KBT-RESET-CLASS-PTR rewinds the class pointer to
the top of a class.

Finally, $KBT-RECYCLE-ENTITY-NO deposits an entity
number to the recycle list.

With these operators, the storage structure programs
can easily do the house-keeping work. For example, when an
entity is deleted from the KB, $DB-DELETE sets the hash
value to NIL, then it calls $KBT-DELETE-MBRSHIP to delete
memberships from all classes and finally it calls
$KBT-RECYCLE-ENTITY-NO to recycle the entity number.

105

7.3 Implementation Notes

DALI is currently installed in the Xerox 1186 Al
system. The 1186 is a single user workstation. The central
processor is implemented in Schottky TTL technology, based
on a high-speed version of the Advanced Micro Devices 2901C
bit slice processor with custom LSI and gate arrays are used
for microinstruction latching and decoding and bus
arbitration. In order to improve performance, an
independent coprocessor (Intel 80186) is used for handling
all I/O devices (except the display controller). Eight
thousand hand-tuned microcode instructions for LISP and
Prolog are installed in the writeable control store for
maximizing the performance of an integrated symbolic
programming environment.

Other features include a keyboard, a three-button
optical mouse, a high resolution bit-mapped graphical
display, an integral Ethernet II controller, a 1.6 MB main
memory, a 80 MB local rigid disk, a 5 1/4" floppy disk drive
(360 KB formatted), and two serial communications ports: an
RS-232-C DTE communications port and an RS-232-C DCE printer
port.

DALI is implemented using INTERLISP-D which amplifies

106

the power of LISP. For many years, various implementations
of INTERLISP have been used for large, knowledge-based
systems and advanced user-interfaces. It is specially
designed to take advantage of the technology of the
high-powered, single-user, networked workstations that it
runs on. Moreover, windows, mouse input, graphics, and
communications all fit neatly within the language.

The time for one 48-bit microinstruction executed from
a writeable 8K word control store is one cycle (125
nanoseconds). The system uses a multitasking scheme where
cycles are grouped into clicks, with three cycles in one
click. During each click (375 ns), three microinstructions
and one simultaneous memory reference is accomplished. On
the average, a one-bye LISP instruction takes about 562
nanoseconds or at a rate of 1.77 MIPS.

The memory system provides exactly one access per
click: the first cycle of a click sends an address, the
second cycle delivers a word to be written, and the last
cycle returns the word which has been read. Thus, a 32-bit
data fetch is accomplished in 750 nanoseconds, yielding a
memory bandwidth of 41 Mbits/sec.

Chapter 8
Summary and Conclusions

The first prototype of DALI has been implemented on the
Xerox 1186 Al system. It contains a schema compiler, a
pattern matcher, and a storage structure program. The
schema compiler is slow at this stage. However, this is not
a major problem because usually a schema is not compiled
very often — probably once every three months. The pattern
matcher is very versatile. It not only covers a large
variety of patterns, but also handles the combinations of
them. The performances of the storage structure program are
satisfactory since the data structure of the KB was selected
via some empirical tests. Moreover, the storage structure
program was implemented using abstract data types;
therefore, when better data structure is found, the abstract
data types are easily modified.

The architecture of DALI is multi-layered. This allows
less changes to be made when it is installed on other
systems. In a multi-layer architecture, only the lower
level layer has to be modified. The changes in the lower
level layer is inevitable because the internal data
structure vary differently from machine to machine.

107

108

Besides, in the performance standpoint, it is too costly not
to use machine-dependent codes. When DALI is installed on a
system not using INTERLISP-D language, some macros have to
be written to convert the differences between the two
dialects. But in general, this is not so hard to
accomplish. Furthermore, codes in the low level layer have
to be rewritten.

DALI will be enhanced in the future. The future
research works include the following:
1. Exception handling will be added to DALI to ensure the

appropriate execution of operations. When any
violations of rule constraints occur, the exception
handler is called to recover from errors.

2. The on-line documentation and help files will be
extended so that DALI becomes more user-friendly.

3. A graphical-oriented data modelling tool which will
simplify knowledge base design will be implemented.

4. The schema language will be expanded so that
user-defined operations can be defined by the language.
User-defined operations are built upon the primitive
KBML-functions.

5. Forward chaining and backward chaining techniques will
be accompanied with pattern matching for accessing the

KB. DALI should allow good performances for the

109

implementation of these algorithms.
6. Additional storage structures have to be provided for

the internal representation of the KB. The knowledge
base designer will have to choose which storage
structure that is well suited for a particular
application.

7. Some mechanisms will be implemented to handle rules and
uncertain knowledge in the KB.

8. An inference engine will be used as the front-end
driver.

9. A user view definition facility (VDF) will be added to
DALI. This facility will allow the user to view a
certain part of the KB as his own knowledge base.

10. A performance analysis tool for DALI will be
implemented.

11. A security software will be developed to protect the KB
from any unauthorized users.

12. Inverted files will be installed to the system.

These features are projected to be finished within two
years and number 1, 4, and 7 have been already under
exploration by other students in their master theses.

All in all, DALI is a user-friendly and easy-to-use
knowledge base management system. It is designed for large

110

computerized knowledge bases; therefore, in the long run, it
can cut down the maintenance cost, software overhead, and
the length of the application programs. And because DALI
supports object-oriented programming, it will help people
with less Al knowledge write knowledge-based programs.

Appendix I
The BNF of the Pattern Matching Language

<pml> ::=
(<patte rns>)

<patterns> ::=
<pattern>
|<patterns> <pattern>

<pattern> ::=
<s-expression>
|<place-holder>
|<pm-variable>
|<optional-occurrence>
j <pm-function>

<s-expression> ::=
atom

| list
<place-holder> ::=

*
1$

<pm-variable> ::= *
$letter{letter|digit)

<optional-occurence> ::=
{<s-expression>}

<pm-function> ::=
<restriction-function>
|<permutation-function>
|<regular-expression-function>

<restriction-function> ::=
(#@ <lisp-function>)

<lisp-function> ::=
LISP function

<permutation-function> ::=
(#PERM <permutation-list>)

<permutation-list> ::=
<s-expressions>

111

112

<s-expressions> ::=
<s-expression>
|<s-expressions> <s-expression>

<regular-expression-function>
(<regular-expression-symbol> <s-expression>)

<regular-expression-symbol> ::=
#* | #+ | #& I #\

Appendix II

The BNF of Schema Language

<schema-language> ::=
schema <id> <schema-description>

<id> ::=
identifier

<schema-description> ::=
[<svs-list>] <data-class-list>

<svs-list> ::=
<svs>
|<svs-list> <svs>

<svs> ::=
simple value set <id> <svs-option>

<svs-option> ::=
subset of <id> where <restrictions>

<restrictions> ::=
<pattern>
|< instances>

<pattern> ::=
<pml> (see Appendix I)

< instances> :: =
instances are <instance-list>

<instance-list> ::=
list

<data-class-list> ::=
<data-class>
|<data-class-list> <data-class>

<data-class> ::=
data class <id> [subset of <id>]

[overlaps with <id>] <class-description>
<class-description> ::=

<simple-attr-declaration> <role-attr-declaration>
<class-attributes>

113

114

<simple-attr-declaration> ::=
simple attributes: <simple-attr-list>

<simple-attr-list> ::=
<simple-attr-desc>
|<simple-attr-list> <simple-attr-desc>

<role-attr-declaration> ::=
role attributes <role-attr-list>

<role-attr-list> ::=
<role-attr-desc>
|<role-attr-list> <role-attr-desc>

<simple-attr-desc>
<id>
property : <property-values>
default : <term>
constraint : <pattern>
type : <svs-name>

<role-attr-desc> ::=
<id>
property : <property-values>
default : <number>
constraint : <pattern>
type : <data-class-name>

<term> ::=
atom

| list
<number> ::=

integer

<property-values> ::=
<property>
|<property-values> , <property>

<property> ::=
unique | optional | multivalued | onto

<class-attributes> ::=
[<local-constraint>] [<general-constraint>] <operations>

<local-constraint> ::=
entity local constraints : <expression>

<general-constraint> ::=
general constraints : <expression>

115

<expression> ::=
LISP expression

<operations> : : =
predefined operations : Cope ration-1ist>

<operation-list> ::=
<kbml-operation>
|<operation-list> , <kbml-operation>

<kbml-operation> ::=
$KB-CREATE
|$KB-DELETE
|$KB-CONNECT
|$KB-DISCONNECT
|$KB-RETRIEVE
|$KB-GET
|$KB-FETCH
|$KB-REPLACE
|$KB-ADD-ATTR
|$KB-DEL-ATTR
|$KB-REWIND
|$KB-READ
|$KB-PRINT

Appendix III

The BNF of the Knowledge Base Manipulation Language

<kbml> ::=
($KB-LOAD <class-name>)
|($KB-UNLOAD <class-name>)
|($KB-CREATE <c1ass-name> [<attr-val-pairs>])
|($KB-DELETE <entity-no>)
|($KB-CONNECT <entity-no> <class-name>

[<attr-val-pai rs>])
|($KB-DISCONNECT <entity-no> <class-name>)
|($KB-RETRIEVE <class-name> [<criteria>])
|($KB-GET <entity-no> [<attr-list>])
|($KB-FETCH <class-name> [<attr-list>] [<criteria>])
|($KB-REPLACE <entity-no> <attr-val-pairs>)j($KB-ADD-ATTR <entity-no> <attr-name> <attr-value>)
|($KB-DEL-ATTR <entity-no> <attr-name> <attr-value>)
|($KB-BELONGS-TO <type> <value>)
|($KB-REWIND <class-name>)
|($KB-READ <class-name>)
|($KB-PRINT <class-name>)

<class-name> ::=
identifier

<attr-val-pairs> ::=
<attr-val-pai r>
|<attr-val-pairs> <attr-val-pair>

<attr-val-pair> ::=
(<attr-name> <s-expressions>)

<attr-name> ::=
identifier

<attr-value> ::=
<s-expression>

<s-expressions> ::=
<s-expression>
|<s-expressions> <s-expression>

<s-expression> ::=
atom

| list
<entity-no> ::=

116

117

positive integer
<attr-list> : : =

(<attr-names>)
<attr-names> ::=

<attr-name>
|<attr-names> <attr-name>

<criteria> : : =
(<criterium-list>)

<criterium-list> ::=
<criterium>
|<criterium-list> <criterium>

<criterium> ::=
(<attr-name> <expressions>)

<expressions> ::=
<expression>
|<expressions> <expression>

<expressions> ::=
<s-expression>
|<pml> (see Appendix I)

References

[AHU 83]
Aho, Alfred V., John E. Hopcroft, and Jeffrey D.
Ullman. Data Structures and Algorithms.
Massachusetts: Addison-Wesley Publishing Company,
1983.

[Brod84]
Brodie, M. L., et al, ed. On Conceptual Modelling.
New York: Springer-Verlag, 1984.

[EiRa85]
Eick, C. F. and Thomas Raupp. Decentralized database
design using multityped functional and existence
dependencies, 1985.

[Eick86]
Eick, Christoph F. Data Management for LISP-Knowledge
Bases, Submitted for publication, 1986.

[EnNi77]
Engelmore, R.S. and H.P. Nii. A Knowledge-based
System for the Interpretation of Protein X-ray
Crystallographic Data, Heuristic Programming Project
Memo HPP-77-2, January, 1977.

[GoHa83]
Goos, G. and Hartmanis, J., ed. The Programming
Language Ada Reference Manual. New York:
Springer-Verlag, 1983.

[Grie82]
Griethuysen J.J. van, ed. CONCEPTS and TERMINOLOGY
for the CONCEPTUAL SCHEMA and the INFORMATION BASE,
1982

[Haye74]
Hayes, P. J. Some Problems and Non-Problemx in
Representation Theory, Proc. AISB Summer Conference,
Essex Univ., Essex, Great Britian, 1974.

[LeEr77]
Lesser, V.R. and L.D. Erman. A retrospective view of
the HEARSAY-II architecture, Proc. 5th IJCAI, 1977,
pp. 790-800

[Mehl84]
Mehlhoun, Kurt. Data Structures and Algorithms 1:

118

119

Sorting and Searching. New York: Springer-Verlag,
1984 .

[Nego85]
Negoita, C. V. Expert Systems and Fuzzy Systems.
Massachusetts: The Benjamin Cummings Publishing
Company, Inc., 1985.

[Schm77]
Schmidt, J.W. Some High Level Language Constructs for
Data of Type Relation, ACM Transactions on Database
Systems, Vol. 2, No. 3, September 1977.

[StWe85]
Stubbs, Daniel F., and Neil W. Webre. Data Structure
with Abstract Data Types and Pascal. California:
Brooks/Cole Publishing Company, 1985.

[Symb84]
Symbolics Inc., Symbolics 3600 Technical Summary.
Massachusetts, 1984.

[Wile84]
Wilensky, Robert. LISPcraft. New York: W.W. Norton
& Company, 1984

[WinsSl]
Winston, Patrick, and Berthold Klaus Paul Horn. LISP.
New York: Addison-Wesley Pulbishing Company, 1981.

[Youn83]
Young, S. J. An Introduction to Ada. New York:
Ellis Horwood Limited, 1983.

