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Abstract

In recent years, expert systems have gained a large 
popularity in Computer Science as a result of the 
improvement made in Artificial Intelligence research and the 
announcement of the fifth generation computers. However, 
the design and implementation of large computerized 
knowledge bases have raised new data management problems.

This thesis explores the new problems facing 
conventional Data Base Management Systems (DBMSs). It 
surveys the knowledge representation in Databases, 
Artificial Intelligence, and Programming Languages in order 
to search representation schemes for DALI, a Knowledge Base 
Management System. The concepts of DALI are discussed and 
the data model S-diagram used for knowledge base design is 
described. Furthermore, the features of DALI are compared 
with those of DBMSs; the advantages and disadvantages of 
DALI are examined. In its first version, the framework of 
DALI contains a schema compiler, a pattern matcher, and a 
storage structure program. The design and implementation of 
these essential components are described in detail.
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Chapter 1
Introduction

With the advent of the expert systems and the fifth 
generation computers, database management systems have faced 
new problems. These problems include (see also [Eick86]):
1. Knowledge Bases (KBs) in expert systems contain not only 

facts, but also rules and control knowledge (i.e., 
objects that have inferential capabilities). However, 
conventional database management systems can only handle 
facts concerning the Universe of Discourse (UoD).

2. Most expert systems are written in LISP; therefore, data 
management systems must be capable of handling 
S-expressions, the data structure for LISP. But so far, 
no such system is available for handling large 
computerized LISP-based applications.

3. Knowledge bases usually contain uncertain knowledge. But 
conventional data management systems do not provide 
special features to handle these "fuzzy" data.

4. Algorithms like forward chaining, backward chaining, and 
pattern matching are frequently used for accessing data 
in the KB. Nevertheless, conventional database 

management systems do not provide special data structures 
suitable for an efficient implementation of these

1
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algorithms.
5. The internal representation of data in a knowledge-based 

system might change with time for performance reasons. 
When the organization of the physical layer changes, it 
should not affect the user interface layer. This can be 
accomplished by implementing abstract data types in 
different levels. Nonetheless, many database systems do 
not support this capability.

6. Rules stored in knowledge bases are usually very complex
tens to hundreds of conditions are quite usual, and 

manual checking of rule consistency would be very time 
consuming. However, conventional database management 
systems do not contain any automated tools for enforcing 
rule integrity in the knowledge bases.

One way to solve these problems is to enhance the 
capabilities of conventional database management systems so 
that they handle the "fuzzy" data as well as the knowledge 
base rules. An alternative to this is to develop a new data 
management system with designs pertinent to the needs of the 
expert systems. We will call this new system as Knowledge 
Base Management System (KBMS). In the last few years, some 
ad hoc solutions have been found to solve the above 
mentioned problems. However, a generalized system which can 
handle any large class of knowledge base applications has 
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yet to be created.

This thesis discusses the concepts of a knowledge base 
management system called DALI (an acronym for 
Data-management for L_lSP-knowledge-bases) . DALI is a 
research project with an objective to study the data 
management problems in knowledge bases.

This thesis also reports the development of the first 
KBMS prototype. The system developed in this thesis 
consists of: a schema compiler, a pattern matcher, and a 
storage structure program. The schema compiler checks the 
syntax and semantics of a schema and generates, if the 
schema is error free, a program which contains all the 
Knowledge Base Manipulation Functions (KBMFs) that are 
declared as predefined operations in the schema (a schema is 
where the data classes and simple value sets are defined). 
The pattern matcher is used to match patterns specified in 
the Knowledge Base Manipulation Language (KBML) against the 
data in the KB during data retrieval. It is also used to 
match patterns specified in the schema against the values 
given in the KBML during type checking. Finally, the 
storage structure program serves as an interface between the 
KBML and the KB. These essential components constitute the 
central issue of the thesis. A synopsis of the chapters is
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outlined in the following paragraphs.

In chapter 2, we survey the knowledge representation of 
databases, artificial intelligence, and programming 
languages. The purposes are two-fold: to review the 
current research and to select representation schemes for 
the DALI system.

Chapter 3 describes the basic concepts of DALI. It 
also explains the functions of its components and discusses 
the advantages and disadvantages of using this knowledge 
base management system. Lastly the features of DALI are 
compared with those of DBMS.

Chapter 4 introduces the data model of the KBMS. It 
also examines the syntax of the KBML.

Chapter 5 covers the features and the implementation of 
the pattern matcher. The pattern matching language is 
applied in both the schema language and the knowledge base 
manipulation language.

Chapter 6 discusses the design and implementation of 
the schema compiler as well as the data dictionary. This 
chapter also shows how to use the schema language to define 
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a conceptual schema. The term "schema language" is used 
rather than "data definition language" because the former is 
more meaningful pertaining to the conceptual schema.

Chapter 7 describes the design and implementation of 
the last component of DALI — the storage structure program. 
In addition, the selection of data structure for the DALI-KB 
is discussed and the features of the Xerox 1186 Artificial 
Intelligence System, in which DALI is implemented, are 
mentioned.

Chapter 8 gives the summary and conclusions of the DALI 
system. It also outlines future research on DALI.

Since terms used in the database literature have not 
been standardized, we will follow the terminology and 
standardization suggested by the ISO workgroup WG3 [Grie82] 
in this thesis.



Chapter 2
A Review of Knowledge Representation

With the ever-increasing complexity of computer 
systems, researchers are searching for development tools, 
techniques, and high level concepts for representing 
knowledge in every area of Computer Science, particularly in 
Artificial Intelligence (Al), Databases, and Programming 
Languages.

In the following sections, we will give an overview of 
Knowledge Representation in these three areas. First, we 
will study the tools and techniques that are used to 
describe objects, operations, and constraints in Databases. 
Next, we will turn to Knowledge Representation in Artificial 
Intelligence. As Knowledge Representation is the central 
issue in Al research, we will discuss the Representation 
Schemes [Haye74], Last but not least, we will look at some 
programming techniques that are dominant in Computer 
Science.

2.1 Databases

For many years, data models have been used to describe 

6
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entities that are perceived in the Universe of Discourse as 
well as relationships between them, before going into a 
detailed logical and physical database design. Data models 
are a collection of mathematically well defined concepts; 
they are used to help define attributes of, operations on, 
and relationships among objects of the real world that have 
to be expressed in a computer. In addition to these, they 
also help describe integrity rules over the objects and 
their operations. For instance, an integrity rule on an 
employee database may state that the date of resignation 
must be later than the date of employment. Data models also 
provide a formal basis for tools such as Data Definition 
Language (DDL), Data Manipulation Language (DML), and Query 
Language (QL) that are implemented by a database management 
system (DBMS).

Earlier data models stress the form of data that would 
facilitate for storage and/or manipulation in a computer; 
that is, good performance gained a large attention. 
Furthermore, the access path structure was also emphasized 
so that retrieval of information could be optimized. This 
group of data models constitute the classical data models. 
The classical data models are the hierarchic, the network, 
and the relational data models.
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Hierarchic data models represent objects in a tree 
structure, using one to many binary relationships. The 
advisors and students relationship provides an example of a 
hierarchy. An advisor may advise many students, but a 
student can only have one advisor.

Network data models are the superset of hierarchic 
models — children in a tree can have multiple parents. An 
example of this is class registration. Students may 
register for many classes, and each class may contain many 
students. Therefore, both the relationship student to class 
and the relationship class to student are one to many 
relationships.

Relational data models [Codd70] are based on the 
mathematical concept of a relation. A relation is a 
two-dimensional table where each column is referred to as an 
attribute and each row is referred to as an n-tuple. A 
relation can be used to describe both objects and many to 
many, n-ary relationships. No two rows in the relation are 
identical and the order of the rows is not important.

In recent years, data models have stressed the meanings 
(semantics) of the information; hence, semantic rules for 
objects and their operations play significant roles in these 
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data models. These models are called semantic data models. 
Semantic data models comparatively provide more modelling 
powers than the classical data models do; that is, they can 
capture more meaning with their richer and more expressive 
concepts.

2.2 Artificial Intelligence

The basic problem of knowledge representation in Al is 
the development of a representation scheme [Haye74] with 
which to specify a knowledge base. The early designs for 
knowledge representation emphasized heuristic search 
techniques; whereas, the current designs stress for the need 
for storing expert knowledge together with control knowledge 
in a system. The well known representation schemes [Brod84] 
are logical, network, procedural, and frame-based. Each is 
discussed in the following sections.

2.2.1 Procedural Representation Schemes

Procedural Representation Schemes represent knowledge 
in terms of a collection of active agents or processes. 
They are influenced mostly by LISP. In fact, LISP once was 
a favorite representation scheme due to its symbolic nature. 
Procedural schemes beyond LISP involve control structures 
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and activation mechanisms offered for processes. The 
advantage of these schemes is that the need for wasteful 
search is eliminated because they allow the specification of 
direct interactions between facts. The major drawback is 
that procedural knowledge bases, like programs, are hard to 
understand and modify. This category is represented by 
PLANNER.

2.2.2 Logical Representation Schemes

Logical Representation Schemes are almost counterparts 
of Codd's Relational Model [Codd70] in Database Management. 
They represent knowledge by means of logical formulas which 
are composed of constants, variables, functions, predicates, 
logical connectives, and quantifiers. Their advantages are

* Availability of inference rules
* Availability of clean formal semantics
* Simple notation
* Economic representation of knowledge

On the other extreme, their drawbacks are
* Lack of organizational principles needed in the 
knowledge base

* Difficulty in representing procedural and heuristic 
knowledge
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Several languages have combined logical schemes with 
others to gain more advantages. For example, both PROLOG 
and FOL combined logical schemes with procedural schemes.

2.2.3 Network Representation Schemes

Network schemes exist in a wide variety of forms. In 
general, they represent knowledge in terms of a collection 
of objects (nodes) and binary relationships (edges) between 
them.

Network Representation schemes offer organizational 
principles to a knowledge base. These principles include: 
Classification, Aggregation, Generalization, and Partitions. 
They also offer a good scheme for information retrieval due 
to their path nature. Further, their graphical notation 
makes it easier to implement a network knowledge base.

The only major drawback of network schemes is the lack 

of formal semantics and standard terminology.

Both PSN and KL-ONE are built in part by the network 
schemes.
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2.2.4 Frame-Based Representation Schemes

Frame-Based Representation Schemes were first 
introduced by Minsky [Mins75] in 1975. He proposed to 
combine ideas from semantic networks, procedural schemes, 
linguistics, etc. to develop a new representation scheme. 
The Frame-Based Representation schemes are a collection of 
complex data structures called frames. Each of these frames 
has slots for objects. Different kinds of information are 
stored in these frames, e.g. the default values for their 
objects and the actions for any unexpectancy. The 
structural form of these frames follows some of the 
organizational principles and the "looser" principles as 
well. An example of a "looser" principle is the notion of 
similarity between two frames.

FRL KRL and KL-ONE all contain frames in their 
knowledge bases.

2.3 Programming Languages

Knowledge Representation in programming languages can 
be classified into four paradigms: procedure-oriented, 
object-oriented, data-oriented, and rule-oriented.
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2.3.1 Procedure-Oriented Programming

In procedure-oriented programming, procedures, which 
are composed of instructions, when invoked, will change the 
shared data structure (e.g. a knowledge base) 
independently. Procedures are considered as active entities 
because they can create side effects in the shared data 
structure; on the other hand, data are treated as passive 
entities because they are being manipulated by procedures. 
Most of the programming languages today are 
procedure-oriented. For instance, LISP and its dialects, 
such as INTERLISP, FRANZLISP, ZETALISP, etc., are all 
paradigms of procedure-oriented programming languages.

2.3.2 Object-Oriented Programming

In object-oriented programming, actions are invoked by 
sending messages between objects belonging to one or more 
types. A type is a template which holds data and operations 
for its instances. It can be created not only by specifying 
data objects and methods in it, but also by inheriting from 
other types (usually called super types). Once a type is 
defined, the instances (or objects) of it can be created 
from then on.
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Actions are defined as methods in a type and operations 
in object-oriented programming are performed by sending 
messages. When a message is received by an object, the 
message will be checked against the selectors and the 
corresponding method will be invoked. The implementation of 

methods are usually isolated from where the selectors are. 
The isolation of the actual implementation of methods has 
several advantages:

(1) It offers top-down design methodology with successive 
refinement.

(2) It allows program verification without the actual 
working environment.

(3) It eases program maintenance.

Smalltalk, derived from SIMULA, is the pioneer of 
object-oriented programming. Its inheritance is in 
hierarchical form — the simplest case of network, each 
class specifies only one super class. Nonetheless, some may 
support network inheritance. Symbolics 3600 [Symb84] and 
LOOPS [BoSt83] fall in this paradigm.

The Symbolics 3600 system uses ZETALISP, a dialect of 
LISP, as its principal language. Object-oriented 
programming techniques, which deal with instances of types 
and generic operations defined on those types, are used 
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throughout the system. Types in the 3600 system are 
abstract types known as flavors; whereas, the objects, which 
are instances of types, are called flavor instances (see 
Fig. 2.1)

Flavor

Flavor Flavor Flavor 
instance instance instance

Fig. 2.1 Hierarchical Structure 
of Symbolic 3600 Objects

Flavors are classified as "base" flavors, "mixin" 
flavors, and "user-defined" flavors. Base flavors serve as 
the foundation for building a flavor family while mixin 
flavors serve to implement particular needs of other 
flavors. Finally, user-defined flavors are built out of the 
base and mixin flavors to suit the user's applications.

Symbolics 3600 provides support for object-oriented 
programming through a collection of language features known 
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as the Flavor system. With the Flavor system, the users 
define the flavors — one of the many user-defined types in 
ZETALISP — and methods, which are generic operators, 
associated with them in one part of a program. Then, in 
another part of the program, instances of the flavors are 
instantiated and manipulations of the instances are 
performed by sending messages which request that specific 
operations be performed.

A flavor definition contains information about instance 
variables, methods, names of its component flavors, and 
declarations of relationships and interdependencies with 
other methods and flavors. Methods and instance variables 
can be local to objects or inherited from component flavors. 
When a new flavor definition is built from component 
flavors, the method definition for this flavor has control 
over the methods from the component flavors.

LOOPS which adds object-oriented programming and more 
to the procedure-oriented programming of INTERLISP is worth 
mentioning in this programming technique. It provides 
classes and instances as INTERLISP file objects. It also 
provides user extendible property lists which store 
documentation and information in classes, variables, and 
methods. Moreover, it provides composite objects which work 
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as follows. Given templates for related objects, they are 
instantiated as a group.

Unlike Symbolics 3600, LOOPS has three kinds of 
objects; namely, instance objects, class objects, and 
metaclass objects. They form a hierarchical structure and 
are depicted in Fig. 2.2.

Metaclass

Class Class ... Class

instance instance

Fig. 2.2 Hierarchical 
Structure of LOOPS Objects

From Fig. 2.2, it can be easily seen that the instances 
of a class are instances and the instances of a metaclass 
are classes. A class contains information about instance 
variables, class variables, methods, and a list of other 
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classes called "super classes". While instance variables 
are used to specify default values to its instances, class 
variables may be used by methods.

Methods, instance variables, and class variables can be 
inherited recursively from a super class or all its multiple 
super classes. In the case of inheritance of multiple super 
classes, names conflict is resolved by using a depth-first 
left to right precedence. For example, if A has a superlist 
(B C), and B has a superlist (X Y), the inheritance order 
will be B, X, Y, and C. Suppose X has a method Ml for 
selector Si, and C has M2 for Si, Ml from X will be used 
instead of M2 from C. In fact, any super of B with a method 
for Si has precedence over the one from C. Although 
inheritance for methods and class variables are made at run 
time, it is not necessary true for the instance variables.

Private instance variables which are not shared with 
other instances of the same class must be defined directly 
by the users.

Operations are invoked by sending messages. Messages 
received are checked against the selectors. When matches 
are found, the corresponding methods will be invoked which 
might cause variables changed as a side effect.
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Another programming language worth mentioning is Ada.
Ada is an all-purpose language; its capabilities outperform 
any other programming languages in common use in many areas. 
Ada provides object-oriented programming through the 
features of generic program units and packages [Youn83].

A package allows the specification of a set of 
logically related entities. It consists of two parts: a 
package specification and a package body. The specification 
part declares the entities which are visible outside of the 
package. In general, it includes constants, variables, 
types, and the specification of program units, such as 
subprograms, tasks, and packages. On the other hand, the 
package body contains the implementation of the entities 
declared in the specification part. However, entities in 
this part are not visible outside the package body. Since a 
package encapsulates a set of data objects and their related 
operations, it is easy for it to implement abstract data 
types and various system resources such as common data 

pools, I/O buffers, etc.

A generic program unit is 
instances of that unit. The 
generic instantiation and 
compile-time. A generic unit 

a template for creating 
instance creation is called 

it happens during the 
allows parameter passing so
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that the characteristics of the instance can be determined. 
For example, in its simplest case, the instantiation of a 
stack needs the supply of a name as the actual parameter to 
be identified by the program.

The way Ada works as object-oriented programming is 
that templates are defined as generic package units — all 
the data objects and the operations are defined inside these 
units. A copy of package is made via the generic 
instantiation in the compile-time. During generic 
instantiation, a name is given to the new copy and the 
actual parameters will substitute for the formal parameters. 
When compilation is done, objects should have been created. 
Then operations on these objects are invoked by procedure 
call statements in the run-time.

2.3.3 Data-Oriented Programming

In data-oriented programming, a mechanism is needed to 
invoke a procedure or function when a special variable is 
changed.

Data-oriented programming is suitable for one program 
to monitor the behavior of another program. Since both 
programs are isolated from each other, modification of codes 
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in one program would not affect the other.

Indeed data-oriented programming has an opposite effect 
to object-oriented programming. In data-oriented 
programming, procedures or functions are invoked as a side 
effect when data are changed while in object-oriented 
programming, variables are altered as a side effect when 
messages invoke procedures to perform operations.

Loops includes both of these mechanisms and more in its 
programming environment.

LOOPS uses the mechanism active value, in data-oriented 
programming, to trigger the invocation of a predefined 
procedure or function. Every time when access to a variable 
occurs, LOOPS will check whether the variable has an active 
value. If so, the specified procedure or function will be 
invoked for actions.

As mentioned above, data-oriented programming is 
appropriate for interfacing between independent processes. 
It may be well-suited for writing simulation programs. For 
example, in a traffic simulation, one can create a viewer, 

an independent process from the traffic simulation, which 
will update the display positions of automobiles. Suppose, 
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active value, say POSITION, is being defined as its traffic 
coordinate system for each automobile. This active value 
will invoke the procedure to send update messages to the 
viewer when simulation process puts a new value into 
POSITION. As another example, one can apply active values 
to a debugging program in order to keep track of references 
to particular variables.

2.3.4 Rule-Oriented Programming

Rules are simply condition-action pairs. They specify 
actions to be taken when certain conditions are satisfied. 
Unlike other programming paradigms, rules make it convenient 
for describing flexible responses to a wide range of events. 
Rules, in this programming environment, are usually arranged 
in a predefined order set called a production system. A 
production system contains control structures which affect 
the behavior of actions; that is, they make the decision of 
which productions to fire.

Generally, all production system languages share the 
following common characteristics:

(1) Every production system language uses conditional 
statements called productions.

(2) The interpreter which is made up of high level 
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functions has access to data memory, production 
memory, and state memory. Production memory stores 
all the productions (i.e., conditional statements) and 
any static relations (e.g. a linear ordering) between 
productions; it should have no size limit. Data 
memory is a temporary workspace that stores the 
currently relevant knowledge processed by the 
productions and the static relations between the data. 
Unlike production memory, the size of data memory is 
limited. State memory stores the information that 
both data memory and production memory are not 
responsible for. For instance, information like the 
name of the last production to fire can be stored in 
state memory for reference purposes.

(3) The interpreter in a production system language 
repeatedly matches the productions in production 
memory against the data in data memory and the 
information in state memory, then it chooses the 
productions with TRUE antecedents to fire; as a 
result, changes in data memory will occur. The 
interpreter itself is also responsible for effecting 
changes to state memory when necessary. This is 
called the recognize-act cycle.

Production system languages use different strategies to 
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fire productions. Some production system languages may 
execute the actions for every satisfied condition on each 
cycle, some may use simple decision procedures to select 
some or all productions to fire, and some may even use 
complex decision procedures with more intelligence to choose 
which production to fire.

Some languages allow productions, in the selection 
process, to read state memory as well as data memory so that 
they have the role in choosing which productions to fire. 
On the contrary, others allow only the interpreter to have 
access to state memory.

Production system languages have been used for building 
expert systems for many years. Some of the well-known 
production system languages are OPS [Schm77] and AGE 
[AielSl].

OPS is a production system language designed for the 
Instructable Production System (IPS) project at CMU, which 
attempted to answer the question of how suitable the 
production system representation is for large general 
problem solving programs. It has all the common 
characteristics of production system languages mentioned 
above. But, the production system does not have access to
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state memory. This restriction causes some problems to the 
language. The obvious one is OPS becomes slow because 
conflict resolution in the selection process is solely 
handled by the interpreter.

The OPS interpreter performs an exhaustive search of 
productions to insure that an instantiation of a production 
will be found when there exists one. Among all the legal 
instantiations of all productions are found on each cycle, 
only one is selected for execution. The interpreter is 
responsible for handling conflict resolution since the 
information in state memory is not open to the productions. 
In performing conflict resolution, OPS makes use of five 
rules. The first rule is always executed, and the rest of 
the rules will be applied, on the condition that the first 
rule is successful, in the given order until all but one 
have been rejected.

In summary, the first rule guarantees a fair chance for 
each instantiation of production. The second rule chooses 
the instantiation with the most recency. The third rule is 
the extension to the second rule by which the instantiations 
with the greatest number of condition elements are more 
preferable. The fourth rule gives preference to the 
instantiation of the most recently created production.
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Finally the last rule randomly selects an instantiation.

Actions in OPS are simple functions that will modify 
the contents of data and production memory. OPS includes a 
complete set of primitive actions, assert and delete, that 
would effect the changes to the contents of data memory. 
The way that OPS manipulates lists is comparable to that 
LISP does.

Three primitive functions, READP, BUILD, and EXCISE, 
are given to the system in order to perform self 
modification. READP brings the production into data memory, 
EXCISE deletes it from production memory before OPS modifies 
the production in data memory with its general processing 
capabilities, and finally BUILD deposits the modified 
version to production memory.

For input and output, OPS has two functions, READ and 
WRITE, to interact with the outside world. READ accepts 

data from the users and places them in data memory. In 
contrast, WRITE puts the instantiated forms to the users' 
terminal.

AGE is a software tool which contains knowledge about 
constructing knowledge-based programs. Therefore, AGE 
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itself is a knowledge-based system. It came out of 
Standford University and is implemented in INTERLISP. It 
was initially designed for Al scientists who were familiar 
with current problem solving techniques and production-rule 
representations of knowledge. Its framework is a collection 
of building block programs with an intelligent front-end to 
guide the users in building knowledge-based programs. This 
process involves augmentation and modification of the 
framework provided by AGE.

AGE employs the Blackboard model which allows 
incremental hypothesis formation. The Blackboard model has 
been used in HEARSAY-II [LeEr77] and CRYSALIS [EnNi77]. A 
blackboard-based program consists of three components, the 
Blackboard, the Knowledge Sources (KS's), and the Control.

A blackboard is a global data base; it is used as a 
medium for communication and interaction among the KS's. 
The hypotheses in the blackboard, which are generated by 
inference rules in the KS's, are organized in a hierarchical 
structure. In general, the blackboard represents the 
analysis level of task domain hierarchically.

Knowledge Sources which are represented as sets of 
production rules contain the knowledge, provided by the 
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users, of the task domain. They respond to the changes in 
the blackboard.

Rules in the KS's consist of a left-hand-side (LHS) and 
a right-hand-side (RHS). The RHS will be fired when the set 
of conditions in the LHS is evaluated to TRUE. Fired rules 
will take one of the follow actions.

(1) PROPOSE a change in a hypothesis
(2) EXPECT some changes may occur in the hypotheses
(3) ACHIEVE a particular value or a state

Each inferential rule generated by the RHS is assigned 
a certainty value or probability by AGE. Moreover, "single" 
or "multiple" hit strategy can be used for the rules.

The control components contain mechanisms that allow 
the users to (a) invoke the KS's conditionally and (b) 
select interested items off the blackboard. They are often 
considered to be a higher level KS which can manipulate a 
set of domain-specific KS's. Above all, they are 
responsible for invoking appropriate problem solving methods 
and of course appropriate KS's in a specific situation as 
well.

AGE has been used to rewrite some programs: CRYSALIS
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PUFF (with two different versions), and EMYCIN. The results 
are very satisfactory. In its long range goal, AGE will 
help people with less Al knowledge write knowledge-based 
programs.



Chapter 3
DALI — A Knowledge Base Management System

DALI [Eick86] is a research project on data management 
of large computerized knowledge bases (KBs). It attempts to 
solve the problems facing knowledge base management systems.

In this chapter, we will first introduce the prototype 
of DALI and explain the functions of the essential 
components of it. Then we will discuss the advantages and 
disadvantages of using DALI. Lastly, we will examine the 
similarities and the differences between DALI and a DBMS.

3.1 Introduction to DALI

DALI, a LlSP-based data management system, uses a 
semantic-net-like knowledge representation approach. It is 
intended to solve new data management problems that arise 
from large computerized knowledge bases which describe the 
expertise of specific applications such as cardiac decease, 
computer system configurating, etc.

A DALI-KB consists of a set of classes. Classes are 
defined by way of the schema language; they can be arbitrary 
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data types. A class may be a subset of other class, and all 
classes are subsets of Class KB. Furthermore, a class may 
overlap with other classes.

Classes contain entities. Entities are characterized 
by their attributes. Attribute values distinguish class 
members. In DALI, entity numbers are used to refer to 
entities. An entity number functions as a unique 
identification to an entity; it will not be changed 
throughout the life of the KB.

Attributes assign members of a range class to members 
of a domain class. Attributes are divided into two groups: 
simple attributes and role attributes. Simple attributes 
are lexical types (see chapter 4) and role attributes are 
non-lexical types.

DALI provides a schema language, a pattern matching 
language, a knowledge base manipulation language, and a 
storage structure language. The schema language is used to 
define simple value sets and data classes. It can also be 
used to specify restrictions on memberships of class. For 
example, if a class is limited to one hundred members, DALI 
will automatically check this restriction whenever a new 
member is created in that particular class.
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The pattern matching language is used to define 
patterns in simple value sets and attribute constraints. It 
is also used to specify selection criteria in the knowledge 
base manipulation language.

In DALI, the knowledge base manipulation language and 
the storage structure language form a two-layer architecture 
between the end users and the KB. The KBML is a high level 
interface language used by the users for accessing the data 
of the KB while the storage structure language receives 
calls from the KBML to change data in the KB physically. 
The advantage of having a multi-layer architecture is that 
the internal representation of DALI is transparent to the 
user; therefore, principle of information hiding is 
achieved.

The knowledge base manipulation language is composed of 
a set of high level data manipulation functions — we will 
call them KBML-functions. These functions can be embedded 
in a LISP program or applied interactively on the top level 
of the data management system.

With the KBML-functions, KBs can be loaded into or 
unloaded from the memory. The advantage of having the KB 
residing in the memory is that data accessing would be much 
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quicker. New entities can be created and assigned entity 
numbers to them. They can also be connected to an already 
existing entity since entities may be members of more than 
one class. When entities are no longer valid in a class, 
they can be eliminated. Attribute values in an entity can 
be replaced by new values. Furthermore, attribute values 
can be appended to or deleted from an entity. The KBML 
provided by DALI can also be used for data retrieval and KB 
navigation. In a DALI-KB, the values of role attributes are 
entity numbers; therefore, by using the entity numbers, one 
can navigate from one class to another. The data 
manipulation language also allow sequential read and print 
of a class.

DALI also observe data integrity in the knowledge base. 
Whenever an entity is created in or deleted from the KB by 
the KBML, consistency rules are enforced automatically. 
This is very important because if contradictions or 
inconsistencies occur in the KB, the inference engine may 
deduce contradictory answers for different queries.

3.2 Essential Components of DALI

In its first version, the framework of DALI is composed 
of a schema compiler, a set of storage structure functions, 
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and a pattern matcher. These components and their 
inter-relationships are shown in Fig. 3.1. The schema 
compiler checks the syntax of a schema. If no error occurs 
in the schema, it will produce an entry containing the 
intermediate codes of the compiled schema and store it in 
the data dictionary, a global variable. These intermediate 
codes will be used by the KBMF-code generator (code 
generator for short) which is a sub-component of the schema 
compiler. The code generator generates a program which 
contains all the allowed data manipulation functions that 
will be used by the end users for accessing the KB. The 
data manipulation functions produced contain LISP 
expressions that will validate the arguments and check the 
consistency of data. When validations are done and no 
infringement occurs, the KBML-functions will call their 
corresponding storage structure function to perform the job 
physically. Some data manipulation functions may contain 
patterns as arguments. In that case, the pattern matcher is 
called upon to perform pattern matching.

All these components mentioned above are essential to 
DALI; they are also the focus of this thesis and will be 
discussed in detail in the later chapters. In this section, 
we will briefly describe the functions of each component.
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Fig. 3.1 Inter-relationships of DALI components
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3.2.1 Schema Compiler

The schema compiler accepts as input the conceptual 
schema and produces as output a program that contains a set 
of KBML-functions. Its functions include

1. checking the syntax and semantics of a conceptual 
schema (CS)

2. building a data dictionary entry based on the CS
3. creating a listing for the schema
4. printing diagnostic messages on a listing
5. generating high level functions which serve as an 

interface between the user and the storage structure 
programs.

3.2.2 Storage Structure Program

The storage structure program is a set of low level 
data manipulation functions; they implement the high-level 
KBML in the respect of data operations. Its functions are:

1. to manipulate the physical data of the KB
2. to hide the internal representation of the KB from the 

user

3. to protect the KB from any intentional or unintentional 
destruction of the physical data

4. to serve as an interface between the KBML and the
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physical data.

3.2.3 Pattern Matcher

The pattern matcher does pattern matching in both the 
schema language and the KBML. The functions of it are:

1. to do data matching during data retrieval from the KB
2. to do type checking during entity instantiations.

3.3 Advantages and Disadvantages of DALI

Like any other system, DALI has its advantages and 
disadvantages. But its advantages overshadow its 
limitation. The advantages of DALI are given below:

1. Object-oriented programming is supported; therefore, 
arbitrary data types can be defined by the conceptual 
schema language.

2. Data integrity is done by the KBMS automatically; as a 
result, user programs become shorter.

3. Information hiding is attained because the user does 
not know the internal representation of the KB.

4. Internal representation can be changed without any 
changes in the user program.

5. The maintenance cost is decreased because the
centralization of the data management functions results
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in less redundancy in codes as well as data.

On the other extreme, its disadvantages are summarized as 
follows:

1. The user may lose some freedom due to the restrictions 
enforced by the KBMS.

2. Smaller applications may not gain the advantages 
because of the software overhead.

3. The structure of a project may be altered due to the 
fact that data management functions are centralized.

3.4 DALI vs. DBMS

DALI shares four basic similarities with a DBMS.
1. A schema language is used to define the semantics of 

the conceptual schema.
2. A set of data manipulation functions is used to 

navigate or manipulate the objects of the database.
3. Some mechanisms are implemented into the data 

management system to insure data integrity in the 
database.

4. The conceptual view of data is separated from the 
physical view.

On the other end, DALI is different from a DBMS in 



39

three major ways:
1. DALI is implemented by LISP since Al-programs are 

mostly written in LISP.
2. DALI supports semantic-net-like representation, widely 

used in Al-programs.
3. DALI uses a different approach in the use of data 

dictionary. The data dictionary in a conventional DBMS 
is used during the run-time by the DBML while our 
approach is that the data dictionary is used during the 
compile-time to help generate a KBML program and is not 
used again during the run-time of the KBML.



Chapter 4
The Data Model for DALI

Data models have been used to define the semantics of 
entities that are perceived in the Universe of Discourse. 
They are a collection of mathematically well-defined 
concepts that are used to help define attributes of, 
operations on, and relationships among objects as well as 
integrity rules over the objects and their operations.

The data model we will be using for knowledge base 
design is called S-diagram [EiRa85]. It is a graphical data 
model which was influenced by the binary relation model 
[Abri74] and the SDM [McLe78].

4.1 Concepts of S-diagram

The example given in Fig. 4.1 provides a high level 
representation of the concepts of S-diagram.

A class in S-diagram is represented using an oval, and 
it can be either of the two kinds — lexical or non-lexical. 
A lexical class is a primitive data type such as INTEGER or 
REAL. However, a knowledge base is usually LISP-based, thus

40
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Fig. 4.1 S-diagram of Treatment
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an additional data type called SEXPR is taken into account. 
SEXPR can be either type ATOM or type LIST. A lexical class 
in S-diagram is denoted with its name in capital letters.

On the contrary, a non-lexical class is not any of 
these primitive data types, e.g., class hospital in 
Fig. 4.1. So, in order to define this type and store it in 
a computer, we need to describe its attributes 
(characteristics of a class) in terms of lexical classes. A 
non-lexical class in S-diagram can be easily recognized as 
its name has at least one non-capital letter.

Using S-diagram, it is possible to specify the 
relationships between two classes — the subclass 
connection. The subclass connection is represented by the 
symbol —S—>; it implies inheritance from superclasses; 
that is, characteristics of superclasses will be reflected 
in their subclasses. Inheritance in S-diagram is in 
hierarchical form.

An attribute in S-diagram is represented by an arrow, 
which connects a domain class to a range class, accompanied 
by its name. An attribute may assign to a member of the 
domain class zero, one, or many members of the range class; 
likewise, each member of the range class may reference to 
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zero, one, or many members of the domain class via an 
attribute. These entity associations are called the 
cardinality of an attribute.

The cardinality of an attribute describes the
functionality between the domain and range classes. Let
A = attribute
Kl = domain class
k2 = range class
ml = minimum number of members of Kl referenced from

a member of K2 via A
m2 = maximum number of members of Kl referenced from

a member of K2 via A
nl = minimum number of members of K2 connected to a

member of Kl via A
n2 = maximum number of members of K2 connected to a

member of Kl via A
The cardinality of A, combinations of nl and n2, is 
tabulated in Table 4.1; whereas, the cardinality of the 
converse of A, A“1 is shown in Table 4.2. The "*" in the 

tables carries the meaning "many".
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Table 4.2 Cardinality of the 
Converse of an Attribute

1 nl | n2 | label combination |

I ° I * | multivalued, optional |

I ° 1 | optional |
I 1 1 1 | (no label) |
1 1 1 * | multivalued |

Table 
of an

4.1 Cardinality 
Attribute

1 ml | m2 | label combination |

1 0 11 1
* | (no label) |i ।1 1

1 0 11 1
1 1 1| unique |

1 1
1 1 1 1 1 1| unique, onto |l ।1 1
I 1 1 * 1 1| onto |

The labels in Table 4.1 and Table 4.2 are represented 
graphically in an S-diagram. Fig 4.2 shows the graphical 
symbols of the labels.

Finally, the S-diagram may also express X-dependencies, 
the union of general existence dependencies and general
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Label 

multivalued

optional

unique

onto

Graphical symbol

Fig. 4.2 Labels in S-diagram
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functional dependencies (see [EiRa85] for details). 
Furthermore, the semantics of S-diagram can be expressed in 
terms of a set of X-dependencies (also described in 
[EiRa85]).

4.2 Examples of Using an S-diagram

In this section, we will give two examples showing how 
to describe classes and attributes using an S-diagram and 
explaining the semantics of them. The first example is to 
describe a LISP class while the second is a registration 
application.

4.2.1 Example One — LISP Class Definition

In this example, we want to define a class which is a 
LISP type; that is, each of its members is a LISP program. 
The S-diagram, Si, of this example is shown in Fig. 4.3.

Four classes are defined in Si, two lexicals and two 
non-lexicals. Class LISP-program is defined as having only 
one attribute, namely construct. Class lisp-type is a 
subset of LIST, which in turn is a subset of SEXPR. 
Therefore lisp-type inherits the characteristics of these 
two lexical classes.
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Fig. 4.3 S-diagram SI
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Since the attribute construct does not have the label 
multivalued, a LISP-program must belong to no more than one 
lisp-type. However, the label optional is not there too; 
therefore, all LISP-programs must belong to one and only one 
lisp-type. Finally, the non-existence of labels onto and 
unique implies that the knowledge base can contain one or 
more LISP programs which have similar constructs.

4.2.2 Example Two — Registration Application

In this application (see Fig. 4.4), INTEGER and TEXT 
are primitive data types while Student, Graduate-student, 
Teacher, Course, and Classroom are not. Graduate-student is 
a subset of Student. In the following, we will only explain 
the semantics carried by the attributes advised-by and 
enrolled-in. Then we will discuss some integrity rules 
which are not shown in the S-diagram S2.

The attribute advised-by connects Graduate-student to 
Teacher, and the label optional tells us that nl=0, n2=l, 
ml=0, and m2=*. Its semantics are described as follows: 
(1) a teacher can advise zero to many students; (2) if a 
graduate student is on non-thesis option, he does not need 
an advisor.
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Fig. 4.4 S-diagram S2
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Next, the attribute enrolled-in, connecting Student to 
Course, has the label multivalued. Its semantics is that a 
student can enroll in more than one course.

The labels optional, onto, and unique which do not 
appear in the attribute also imply some semantics:
1. A course will not be open if no one enrolls in it 

(because of the absence of the labels onto and unique).
2. A student must enroll in at least one course (because the 

label optional is not there).

Some integrity rules are not shown in S2. For example, 
a teacher cannot teach two or more courses at the same 
scheduled time. Similarly, a room cannot be assigned to two 
courses during the same period of time. These integrity 
rules can be expressed by introducing a new label to 
S-diagram. However, the discussion of this label is outside 
the scope of this thesis.

4.3 The Knowledge Base Manipulation Language

As mentioned in Chapter 2, data models provide a formal 
basis for tools such as DDL, DML, and QL that are 
implemented by a DBMS. In this section, we will discuss the 
Knowledge Base Manipulation Language in the DALI system.
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The KBML is composed of the following functions: $KB-LOAD, 
$KB-UNLOAD, $KB-CREATE, $KB-DELETE, $KB-CONNECT, 
$KB-DISCONNECT, $KB-RETRIEVE, $KB-GET, $KB-FETCH, 
$KB-REPLACE, $KB-ADD-ATTR, $KB-DEL-ATTR, $KB-REWIND, 
$KB-READ, $KB-PRINT, $KB-BELONGS-TO. A KBML-function can be 
nested inside another, and virtually there is no limitation 
on the number of levels of nesting. In the following 
paragraphs, the syntax of this language will be examined 
(see Appendix II for the BNF of the KBML) and examples will 
be given for illustration.

The KBML-function $KB-LOAD loads the KB, specified in 
the argument, as well as the associated KBML program into 
memory; whereas, $KB-UNLOAD has the opposite effect of 
$KB-LOAD. Their formats are respectively.

($KB-LOAD <kb-name>)
($KB-UNLOAD <kb-name>)

The KBML-function $KB-CREATE creates a new entity and 

inserts membership to a class. It takes two arguments: the 
first one is the name of the class to which the new entity 
belongs while the second one is an association list which 
contains the attribute value pairs. Its format is

($KB-CREATE <class-name> <a-list>)
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e.g.
($KB-CREATE 'STUDENT '((s-name Miller) 

(ssn 123456789)))
will create an entity of STUDENT with attributes s-name 
equal to "Miller" and ssn equal to "123456789". When the 
"create" function is successfully finished, it returns an 
entity number. The entity number functions as an 
identification of the entity; it will not be changed during 
the life of the KB.

$KB-CONNECT appends the additional attributes 
(attributes of subclass) to an already existing entity and 
inserts membership to a class. The function is of three 
arguments: the first one is an entity number, the second is 
a class name, and the last one is an association list that 
specifies additional properties of the entity. Its format 
i s

($KB-CONNECT <entity-no> <class-name>
<additional-attributes>)

e.g.
($KB-CONNECT 2 'GRADUATE-STUDENT '((advised-by 5)))

will connect the additional attribute "advised-by" (from 
GRADUATE-STUDENT) to the entity 2 (superclass of 
GRADUATE-STUDENT, perhaps STUDENT) and insert membership 2 
to GRADUATE-STUDENT. It returns the entity number if the 
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connection succeeds.

$KB-DISCONNECT releases the attributes of a class 
specified in its arguments and deletes the membership from 
the indicated class.

($KB-DISCONNECT <entity-no> <class-name>)

e.g.
($KB-DISCONNECT 2 'GRADUATE-STUDENT)

will discharge all the attributes of GRADUATE-STUDENT in 
entity 2 and delete membership 2 from GRADUATE-STUDENT. 
When disconnection is done, the entity number will be 
returned.

$KB-DELETE ends the life of an entity and removes 
membership from all classes that it belongs to. $KB-DELETE 
returns the entity number and its format is

($KB-DELETE <entity-no>)

$KB-BELONGS-TO checks an entity number or a value 
whether it belongs to a class or a simple value set 
respectively. It returns a T if true otherwise a NIL. Its 
format is

($KB-BELONGS-TO <entity-no> <class-name>) 
or
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($KB-BELONGS-TO <value> <svs-name>)

The $KB-RETRIEVE function returns a set of entity 
numbers. These entity numbers represent all the entities in 
a particular class that satisfy the predicate specified in 

the retrieve function. Its format is

($KB-RETRIEVE <class-name> [<selection-criteria>]) 

where <selection-criteria> is the predicate to be satisfied. 
Mostly the selection criteria are involved with pattern 
matching language (see Chapter 5 for details).

Examples:
1. ($KB-RETRIEVE 'STUDENT '((s-name (Steve Miller)))) 

returns a set of entity numbers, possibly empty, from class 
STUDENT whose attribute s-name has the exact value of "Steve 
Miller".

2. ($KB-RETRIEVE 'STUDENT '((s-name ($ Miller))
(born-in Texas))) 

retrieves all the students who were born in Texas with the 
last name equal to "Miller". Note that the "$" is used as a 
place holder in pattern matching; it is explained in detail 
in Chapter 5.

3. ($KB-RETRIEVE 'STUDENT '((s-name $X $X)))
retrieves all the students whose last names are also their 
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first names.

4. ($KB-RETRIEVE 'TEACHER '((rank ($ professor))
(salary (#@ (greaterp ## 30000)))))

returns a set of entity numbers whose rank is either 
assistant professor or associate professor and whose salary 
is over $30,000 a year.

5. ($KB-RETRIEVE 'GRADUATE-STUDENT
'((advised-by (#@ (car ($KB-RETRIEVE 'TEACHER

'((t-name (Christoph Eick))))))))) 
retrieves all graduate students whose advisor is Christoph 
Eick.

The function $KB-GET retrieves the attribute values of 
an entity of a class. It takes as arguments an entity 
number and a list of selected attribute names. Its format 
is

($KB-GET <entity-no> <attributes>)

e.g.
($KB-GET 2 '(s-name ssn))

will return the values of s-name and ssn of entity 2 in the 
form of an association list, e.g. ((name (David Lee)) (ssn 
123456789)).

$KB-RETRIEVE and $KB-GET can be combined into one step 
as $KB-FETCH. $KB-FETCH returns a list of association 
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lists. For example,

(((name (David Lee)) (ssn 123456789))
((name (John Smith)) (ssn 987654321)))

Its format is
($KB-FETCH <class-name> <attributes>

[<selection-criteria>])

$KB-REPLACE modifies attribute values of an entity. 
The old attribute-value pairs will be returned. Its format 
is

($KB-REPLACE <entity-no> <new-attribute-value-pairs>)

e.g.
($KB-REPLACE 2 '((ssn 420538928) (name (John Lee)))) 

will replace the old attribute values of ssn and name by 
420538928 and (John Lee) respectively.

$KB-ADD-ATTR appends a value to an attribute. However, 
if the attribute has the property optional and does not 
exist in the entity, $KB-ADD-ATTR will insert the attribute 
along with the value to it. The return value is the entity 
number. The format of $KB-ADD-ATTR is

($KB-ADD-ATTR <entity-no> <attribute-name>
<attribute-value>)
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$KB-DEL-ATTR does the reverse action of $KB-ADD-ATTR. 
When the last value in an attribute is deleted, the 
attribute name will be removed as well. $KB-DEL-ATTR 
returns the entity number. The format of this function is

($KB-DEL-ATTR <entity-no> <attribute-name> 
<attribute-value>)

$KB-READ extracts and returns the attributes of a 
class, specified in its argument, from the entity indicated 
by the class-pointer. Class pointers are set to NIL when 
the KB is loaded. Therefore, before the read function can 
be executed, $KB-REWIND should be called to reset the class 
pointer to the top of a class. After the read function is 
executed, the class pointer will point to the next entity in 
that class. The format of $KB-REWIND and $KB-READ is 
respectively

($KB-REWIND <class-name>)

($KB-READ <class-name>)

Finally, the function $KB-PRINT works in the same way 
as $KB-READ except that return values will be directed to 
the system printer instead of the console. Its format is

($KB-PRINT <class-name> <attributes>)



58

4.4 An Example Program

In this section, we will give an example program using 
the KBML-functions in a LISP program. The following program 
will increase the salary of those employees who earn less 
than $1,000 a month when "flag" equals to 1. It prints out 
all the employees' name and salary when "flag" equals to 2.

(Defineq (example-program (flag)
(let ((class 'EMPLOYEE) 

(new-salary nil)) 
(cond

((equal flag 1)
(for entity-no

in ($KB-RETRIEVE class
'((salary (#@ (lessp ## 1000))))) 

do (setq new-salary 
(times 1.1

(cadr ($KB-GET entity-no '(salary))))) 
($KB-REPLACE entity-no 

'((salary ,new-salary)))))
((equal flag 2)

(for entity-no
in ($KB-RETRIEVE class)

do (print
($KB-GET entity-no '(name salary)))))))))



Chapter 5
Pattern Matcher

This chapter introduces the pattern matching language. 
The pattern matching language is used in the schema language 
to specify as a pattern the restrictions on the simple value 
sets. It is also used in the KBML as part of the selection 
criteria. The design and implementation of the pattern 
matcher are also discussed in this chapter.

5.1 The Pattern Matching Language

Pattern matching is the process of comparing two 
symbolic expressions to determine if one is similar to the 
other [WinsSl, Wile84]. Though most pattern matching 
languages vary in the forms and expressive power, their 
concept or idea is more or less the same.

Pattern matching has been used in artificial 
intelligence for many years. Programs, for example, which 
deal with reasoning always need to access to knowledge about 
the world. This knowledge about the world might be 
expressed as pattern-like elements. The advantage of using 
pattern-like elements is that they can represent general 
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knowledge. For example, (cause (hit $x $y) (hurt $y)).

In this section, we will introduce the constructs of 
this language in detail (see Appendix I for the BNF of the 
pattern matching language) and examples will be given to 
help describe this sophisticated, though easy to understand, 
language.

In the rest of this chapter, we will assume a knowledge 
base with the following assertions:

(A B C D E)
(W (X Y) Z)

(p Q () R)
(L 3 M)

5.1.1 Identical Matchings

In its simplest case, a pattern can be any 
S-expressions. When this is the case, the match will be 
true only if the pattern and the assertion are exactly the 
same. For example, if we match the pattern

(ABODE) 
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against the knowledge base, the result, in this case, is 
true. But it is false had the pattern changed to

(A B C D).

5.1.2 Place Holders

We increase the flexibility of our pattern matching 
language by adding two special symbols "$" and Both of
these symbols, indeed, serve as place holders and neither is 
bound to a value as a result of matching.

The first symbol "$" can match any atom or list in the 
corresponding position. As an example of this, let us 
consider the following pattern:

(W $ Z)

Since this pattern matches (W (X Y) Z) in the knowledge 
base, the match succeeds, but no value binds to this symbol.

The second symbol "*" works in the same fashion as the 
first one except that it can match zero, one or more 
positions in the assertion. For instance, matching
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(P Q * R) or
(L 3 M *)

against the knowledge base will succeed, but matching

(* G)

will fail.

As we can see from the previous example, in
(L 3 M *) matches zero positions in the assertion (L 3 M) in 
the knowledge base. However, "$" is not capable of doing 
the same thing even though we have not given an example for 
it.

5.1.3 Pattern Matching Variables

In some cases, we would like to bind a value to a 
variable in its first occurrence so that this variable can 
be used as identical matching in the subsequent matches. 
Thus, pattern matching variables are included in this 
language.

A pattern matching variable is formed by attaching the 
special symbol "$" to a variable name. For instance, both 
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"$p" and "$ANY" are pattern matching variables while "$*" 
and "p$" are not.

When a pattern matching variable is encountered in the 
pattern, the system will first look for its binding value. 
If its binding value is found, the system will use this 
value for matching. On the other hand, if there is no 
binding value to this variable, the pattern matching 
variable will match like a place holder. If the match 
succeeds, the value of it will bind to this variable; 
otherwise not. Let us look at some examples:

Example 1
(A $VAR1 C D E)

When this pattern matches against the assertion (ABODE) 
in the KB, the match succeeds and $VAR1 is bound to B, 
represented by ($VAR1 B).

Example 2
(A $X $X D E)

In this example, the pattern changes to a new form and the 

same assertion is being matched against. Since $X has no 
previous binding the first time, it will get the binding of 
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B. When $X is encountered the second time, the current 
binding of $X, which is B, will be used to match against C. 
The match fails at this point.

As mentioned earlier, knowledge about the world is 
often represented by pattern-like elements. Therefore, we 
might, sometimes, need to match a pattern against an 
S-expression that contains pattern matching variables too. 
But doing this may lead to some nasty problems unless we 
have some appropriate rules for binding variables. We adopt 
the unification rules that were explained in [Wile84], and 
we briefly restate them in here.

The unification rules state that when matching two 
items with variables in them, we first look for the binding 
value of that variable. If there is one, we will use it for 
continuous matching; otherwise, we will use the variable 
itself. However, when matching a variable against itself, 
we do not want to put that variable in the binding list 
because it will cause the searching of the value of that 
variable infinitely. To see why we do not want to do this, 
let us look at an example of this situation. Suppose we 
have

(A $X $X $X E) 
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against
(A $Y $Y $Y E)

When we match §X against $Y the first time, we bind $Y to $X 
since $X has no previous binding. Now when we match $X 
against $Y the second time, we will use the current binding 
of $X which is $Y. Since $Y does not have a current 
binding, we will bind $Y to $Y and put it into the binding 
list. When $X is matched against $Y the third time, we, 
again, get the current binding of $X, namely $Y, matched 
against $Y. But this time $Y has the binding $Y. So, an 
indefinite loop is created when the pattern matcher keeps on 
searching the current binding of $Y.

Another problem which the unification rules should deal 
with is called circularities. Circularities happens when 
the system attempts to match a variable against an item 
which contains the same variable. For example,

(A $X $X D) 
against

(A $Y (C $Y) D)

In a situation like this, the pattern matcher will endlessly 
substitute $Y for (C $Y). Thus, the unification rules 
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should declare the match a failure.

5.1.4 Optional Occurrences

Our pattern matching language also observe the 
importance of optional occurences. An optional occurrence 
is denoted by a pair of curly brackets ({}). When an 
element is surrounded by the brackets, it means that this 
element can either exist in the assertion or not. For 
example, if a pattern contains an optional occurrence like 
the following:

(A {B} C)

the system should match

(A B C) or
(A C)

Note that only an atom or a list is allowed inside the 
brackets. Any special symbols or pattern matching variables 
will get an error message.
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5.1.5 Restriction Functions

Restriction functions are implemented into the pattern 
matching language. They are indicated by a pound sign (#) 
followed by an at sign (@). A restriction function has the 

general format:

(#@ (<arbitrary LISP function> [<arguments>]))

Orbitrary LISP function> is any legitimate LISP 
functions. The system will pass this function to the 
interpreter without checking the meaning of it. Therefore 
if an arbitrary LISP function is not carefully chosen, it 
might cause run time errors or unexpected effects.

<arguments> is optional because some LISP functions may 
take zero arguments. If a LISP function takes one or more 
arguments, one of them must be "##". "##" is the special
symbol we choose to denote the value of the corresponding 
position in the assertion.

Example 4
(L (#@ (NUMBER? ##)) M)

will succeed only if the first element is "L", the second 
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element is a number, and the last element must be "M".

Example 5
(L (#@ (NOT (NUMBER? ##))) M)

In contrast to the previous example, this one shows that the 
second element in the list must not be a number.

Example 6
(ABC (#@ (ATOMP ##)) E)

will succeed because (A B C D E) is in the knowledge base.

Example 7
(W (#@ (ATOM ##)) Z)

will fail when matching against the knowledge base because 
the second element in (W (X Y) Z) is a list.

Example 8
(P Q (#@ (LISTP ##)) R) 

will match (P Q () R) in the knowledge base.
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5.1.6 Permutation Functions

Sometimes we may want to match an assertion with 
certain elements in it; however, they need not necessarily 
be in any particular orders. For example, (a b c) or 
(c b a) are both acceptable. To reflect this need, we 
provide a function called #PERM that enables us to match the 
arbitrary permutation of elements El, E2, . . . , En. 
Suppose we specify a pattern:

(A (#PERM BCD) K R)

The pattern will successfully match any of the following 
S-expressions:

(A B C D K R)
(A B D C K R)
(A C B D K R)
(A C D B K R)
(A D B C K R)
(A D C B K R)

5.1.7 Regular Expression Functions

In our pattern matching language, we also provide 
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regular expression functions. They are indicated by special
symbols and "#&. The general format for
regular expression functions is:

(<operator> <expression>)

<operator> can be one of the following:

#* () (<expression>) (<expression> <expression>)
(<expression> <expression> <expression>). . .

#+ (<expression>) (<expression> <expression>)
(<expression> <expression> <expression>). . .

#& repetition of <expression>
#/ any one of the occurrences in <expression>

While and "#&" are of one argument, "#/"
can take more than one.

Examples:

(1) (#* (A))
will match the pattern (()) ((A)) ((A) (A)) ((A) (A)
(A)) ...

(2) (#+ A)



71

will match the pattern (A) (A A) (AAA) ...

(3) (#& (A))
will match the pattern (A) (A) (A) ...

(4) (#& (A (#& (#@ (LISTP ##) ) ) C) )
will repeatedly match the successive lists with the 
first element in a list equal to A, followed by one 
or more lists, and then an atom C. Note that this 
example shows the recursive call to #& and it is the 
only regular expression function which allows 
recursive calls.

(5) (#/ A B C)
will match either A or B or C.

5.2 The Design and Implementation of the Pattern Matcher

The pattern matcher is composed of several functions. 
Each function is an implementation of the patterns described 
in section 1. The pattern matcher contains two parameters: 
patternl and pattern2. Patternl is the match expression 



72

which may contain any combination of match functions and 
match variables; pattern2 is the S-expression to be matched. 
The pattern matcher scans the expression in patternl so as 
to find out which function should be called to match the 
S-expression. For example, when the special symbol is 
detected following the symbol the pattern matcher will 
call the module which is responsible for restriction 
function matching.

Most of the pattern matcher functions are implemented 
using recursive functions. An association list is used as 
an internal data structure to store the binding, 
variable-value pairs. In fact, this list is also the return 
value of the pattern matcher. When a NIL is returned, it 
means patternl and pattern2 are not a match. However, when 
a non-empty list is returned, it means the match is 
successful. If the list returned is (NIL), it is 
interpreted as a successful match without bindings; 
otherwise, the matching variable and their binding values 
are represented by an association list, e.g., 
((($A B) ($X 1))) .



Chapter 6
Schema Compiler

In this chapter we will discuss the syntax of the 
schema language (see Appendix III for the BNF of the schema 
language) and examine the data structure that is employed 
for the data dictionary. We will also discuss the design 
and implementation of the schema compiler. Before we get to 
these topics, we would like to, first, discuss the 
restrictions that are imposed on the schema language.

6.1 Restrictions on the Schema Language

We enforce some restrictions, for perusal purposes, on 
the schema language. These restrictions are explained in 
the following.

* Every keyword must be in small letters.
* An identifier (such as data class names, attribute 

names, etc.) must begin with a letter followed by zero 
or more characters. It can be of any length but not 
zero, and special symbols except the hyphen are not 
allowed.

* Simple value sets can be declared in any arbitrary order 
and so can data classes. However, all the simple value 
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sets have to be defined prior to any of the data classes 
definition.

* The schema is in free format, i.e., the user can start a 
line at any column. But, for readability it is 
suggested that the user indent a line properly.

6.2 Syntax and Semantic Rules of the Schema Language

A schema contains a line of identification followed by 
zero or more simple value set declarations and one or more 
data class definitions. In the following paragraphs, we 
will look at the syntax of schema identification, simple 
value sets, and data classes.

6.2.1 Schema Identification

The first line of a schema gives an identification.
Its syntax is a simple one.

schema <SCHEMA-NAME>

The first word "schema" is used as a keyword while
<SCHEMA-NAME> is a user-defined name.
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6.2.2 Simple Value Set Declarations

Simple value sets are equivalent to data types in high 
level programming languages. They are established by being 
defined as a subset of the system predefined simple value 
sets: INTEGER, REAL, ATOM, LIST, and SEXPR. These
predefined sets need not necessarily be declared in the 
schema. For example, the simple value set POS-INTEGER can 
be derived from the simple value set INTEGER by specifying a 
pattern which restricts values of it to positive integers. 
Simple value sets established from system predefined sets 
can serve as supersets for further derivations.

The syntax of a simple value set definition has three 
lines.

simple value set <SVS-NAME> 
subset Of <SUPERSET-NAME> 
where <PATTERN> 

or
simple value set <SVS-NAME> 

subset Of <SUPERSET-NAME> 
where instances are <LIST>

The first line is composed of the keywords "simple 
value set" followed by an identifier, the name of a simple 
value set. The second line specifies the superset of the 
currently defined simple value set. We use the keywords 
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"subset of" followed by an identifier to denote this. 
Finally the "where" clause is expressed in the last line. 
The "where" clause can be either a pattern or a list of 
instances. If it is a pattern, it must be a list containing 
patterns recognized by the pattern matcher. Otherwise, it 
should be a list of enumerating atoms following the keywords 
"where instances are". Some examples of simple value set 
declarations are given in Fig. 6.1.

simple value set COLOR
subset of LIST 
where instances are (red orange yellow green 

blue indigo purple)
simple value set PRIMARY-COLOR

subset of COLOR
where instances are (red blue green)

simple value set POS-INTEGER
subset of INTEGER
where (#@ (GREATER? ## 0))

Fig. 6.1 Examples of Simple Value Sets

The first simple value set COLOR is declared as a list 
of seven elements. Its superset is LIST, which is a subset 
of SEXPR. Both LIST and SEXPR are predefined in the system; 
therefore, they do not need to be declared as a simple value 
set in the schema.
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The second simple value set is called PRIMARY-COLOR. 
It restricts itself to red, blue, and green out of simple 
value set COLOR. As mentioned above, the order of these two 
simple value sets is not important because the schema 
compiler can take care of forward references.

The last simple value set is not in the same form as 
the previous two. It employs the second form of the "where" 
clause, which is a pattern. The simple value set 
POS-INTEGER specifies that the number has to be a positive 
integer number. The special symbol ## is used as a place 
holder in pattern matching. The real values will be 
substituted into these places during the run time.

6.2.3 Data Class Definitions

The syntax of data class definitions is more 
complicated than that of the simple value sets. Like the 
simple value set, a data class might be a subset of other 
class. Furthermore, it might overlap with some other 
classes. The structure of data class definition is shown in 
Fig. 6.2.
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data class <CLASS-NAME> 
subset Of <SUPERCLASS-NAME> 
overlaps with <OTHER-CLASS>

simple attributes: 
<ATTRIBUTE-NAME> 
property: <PROPERTY-VALUES> 
default: <VALUE> 
constraints: <PATTERN> 
type: <SIMPLE-VALUE-SET-NAME>

<ATTRIBUTE-NAME>

role attributes: 
<ATTRIBUTE-NAME>
property: <PROPERTY-VALUES> 
default: <VALUE> 
constraints: <PATTERN> 
type: <CLASS-NAME>

<ATTRIBUTE-NAME>

entity local constraints: <CONSTRAINT-FUNCTION>
general constraints: <CONSTRAINT-FUNCTION> 
predefined operations: <PRIMITIVE-OPERATIONS>

Fig. 6.2 Structure of Data Class
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The order of the keywords except those (property, 
default, constraints, and type) used to describe attributes 
(see Fig. 6.2) is very important because the schema compiler 
scans the text using the above order. Although Fig 6.2 
shows all the keywords that a data class could possibly 
have, a data class does not necessarily have to have all 
these specifications. If, for example, a data class does 
not overlap with other class, the line "overlaps with" will 
not appear in the definition.

Types in simple attributes are expected to be simple 
value sets; whereas, types in role attributes must be any of 
the data class names defined inside the schema. 
<PROPERTY-VALUES> are values defined in the S-diagram. They 
can be any combination of these: unique, optional, 
multivalued, and onto. <VALUE> is the default value to be 
used if the attribute-value pair is omitted in the argument 
when an entity is instantiated. Finally <PATTERN> is a 
pattern to be satisfied by the attribute.

Entity local constraints are constraints that apply to 
entities in a particular class only. They have to be a 
boolean LISP expression — either a T or a NIL is returned.

General constraints are arbitrary LISP expressions, and 
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they apply to a class instead of entities.

Finally, predefined operations are data manipulation 
functions that allow the user to manipulate entities in a 
particular class. Data manipulation functions are denoted 
by the prefix Functions that are currently 
implemented in the system include: $KB-CREATE, $KB-DELETE, 
$KB-CONNECT, $KB-DISCONNECT, $KB-RETRIEVE, $KB-FETCH, 
$KB-GET, $KB-REPLACE, $KB-ADD-ATTR, $KB-DEL-ATTR, 
$KB-REWIND, $KB-READ, and $KB-PRINT. These are considered 
to be the primitive operations in the system. If this line 
is omitted, all operations will be assumed.

6.3 Data Structures of the Data Dictionary

A data dictionary is actually a small data base which 
contains all the necessary information that is required to 
generate a KBML program. This information may be called 

intermediate codes.

In LISP, a property list can be used for storing 
information because it is easy to deposit or retrieve 
information to or from it via LISP functions DEFPROP and 

GET. Nonetheless, a property list itself is not enough to 
be a candidate because it can store property value only.
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Fortunately, with some modifications a property list can be 
generalized to a frame. A frame has room to specify more 
than property values, for example, default values, messages, 
computed values, and inherited values.

One way to define a frame [WinsSl] is as a nested 
association list. On the highest level is the frame name 
and each sub-level is a nested association list. To 
demonstrate the use of a frame as a data dictionary, we give 
the following example.

Example

(REGISTRATION
(simple-value-set TEXT)
( TEXT

(pattern (#@ (LITATOM ##))))
(data-class STUDENT GRADUATE-STUDENT TEACHER) 
(STUDENT

(superset-of GRADUATE-STUDENT)
(attribute-names sname ssn)
(sname

(category simple)
(type TEXT))

( ssn
(category simple)
(type INTEGER))

(operations $KB-CREATE $KB-RETRIEVE))
(GRADUATE-STUDENT

(subset-of STUDENT)
(attribute-names advised-by)
(advised-by

(category role)
(type TEACHER)
(property optional)))

(TEACHER
(attribute-of GRADUATE-STUDENT)
(attribute-names rank)
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( rank
(category simple)
(type TEXT))
(default assistant professor)

(general-constraints
(LESS? ($KB-RETRIEVE SELF) 10)))

In this example, REGISTRATION is the frame name. It 
contains three sub-levels. Basically, the first levels 
store the names of simple value sets and data classes; the 
second levels store superset names, subset names, attribute 
names, general constraints, local entity constraints, and 
predefined operations; and the third levels store attribute 
properties such as data types, default values, attribute 
constraints, and cardinality of attributes.

The data dictionary is implemented using abstract data 
types. The operators associated with it are $DD-GET, 
$DD-INHERIT, $DD-INHERIT-SVS, $$DD-BACK-INHERIT, $DD-PUT, 
$DD-DELETE, and $DD-APPEND. $DD-GET gets a value from a 
slot; whereas, $DD-PUT deposits a value to it. $DD-INHERIT 
not only gets a value from a specified slot, but also 
inherits values from its superclasses. $DD-INHERIT-SVS is a 
variation of $DD-INHERIT since it is specialized in 
inheriting simple value sets only. $DD-BACK-INHERIT 
virtually does the opposite task of $DD-INHERIT. Instead of 

inheriting its superclasses, it looks for subclasses as well 
as classes which overlap with it. $DD-DELETE removes a slot 
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from a data dictionary entry. Lastly, $DD-APPEND appends a 
value to a slot. If the slot is not found, it will create 
one before the value is appended to it.

6.4 The Design of the Schema Compiler

The schema compiler uses a one pass technique with 
three phases grouped into it. The first phase is lexical 
analysis, the second phase is syntax analysis, and the third 
phase is KBMF-code generation. The operations of these 
phases are interleaved, with control alternating among them.

Error handling interacts with all three phases. When 
an error in the source program is detected during the first 
two phases, it is reported to the error routine; however, 
the schema compiler will not terminate there because it 
attempts to detect as many errors as possible in one 
compilation.

6.4.1 Lexical Analysis

In the first phase, the lexical analyzer or scanner is 
called. The input of the lexical analyzer is, of course, 
the conceptual schema while the output of it is a stream of 
tokens.
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A token is a group of characters that logically belong 
together [AHU 78]. What is called a token depends on the 
language at hand. In most languages, a constant, an 
identifier, an operator symbol, a keyword, and a punctuation 
symbol are treated as a token. In the schema language we 
are dealing with, there is no operator symbol. However, we 
have something called "list" that most languages do not 
have. A list is also called a token because it is treated 
as a singly logical entity in LISP. In summary, the lexical 
analyzer will recognize the following as tokens:

1. constants — Either integers or real numbers.
e.g., 1, 200, 3.46

2. identifiers — Begin with a letter followed by zero or 
more characters.
e.g., ID1, EMPLOYEE

3. lists — Elements surrounded by parentheses. Elements 
can be either lists or word-like objects called atoms 
[WinsSl]. When an element is a list, it forms an 
hierarchical structure.
e.g., (a b c), (the following is a list (1 2 3))

4. keywords — All keywords are in small letters The
following are named as keywords in the schema language: 
schema, simple, value, set, subset, of, where,
instances, are, data, class, overlaps, with, 
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attributes, type, default, property, constraints, role, 
entity, local, general, predefined, and operations. 
Note that these keywords are not reserved; the user can 
use them as identifiers.

5. punctuation symbols — Only two punctuation symbols are 
used in the schema language. They are comma and colon.

6. special symbols — Special symbols are mainly used in 
the pattern matching language. These symbols are: #@, 
##, #PERM, #*, #+, #&, and #/.

7. property values — The values of attribute property 
include: unique, optional, onto, and multivalued.

8. predefined operations — Thirteen operations are
currently implemented: $KB-CREATE, $KB-DELETE,
$KB-CONNECT, $KB-DISCONNECT, $KB-RETRIEVE, $KB-FETCH, 
$KB-REPLACE, $KB-GET, $KB-ADD-ATTR, $KB-DEL-ATTR,
$KB-REWIND, $KB-READ, and $KB-PRINT.

The lexical analyzer interacts with four functions: 
$SCAN-A-NUMBER, $SCAN-A-WORD, $SCAN-A-LIST, and
$SCAN-A-PUNCTUATION. It always reads one character ahead. 
Therefore, a proper function would be called based on the 
current character. For example, if the current character is 
a number, it will call the function $SCAN-A-NUMBER; a letter 
or special symbol "$" or will invoke $SCAN-A-WORD; a 
right-parenthesis will invoke $SCAN-A-LIST; and a comma or 
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colon will invoke $SCAN-A-PUNCTUATION.

The lexical analyzer is responsible for producing a 
source listing and identifying any illegal input characters. 
It can also filter out unnecessary blanks embedded in the 
text.

The lexical analyzer is not called to produce the 
entire sequence of tokens on an intermediate file. Rather, 
it is called as a function by the syntax analyzer each time 
a new token is desired.

6.4.2 Syntax Analysis

The second phase of the schema compiler is called 
syntax analysis. Its input is the output of the lexical 
analyzer. The syntax analyzer checks the pattern of input 
whether or not it matches the specification for the source 
program.

The syntax analyzer is composed of three functions: 
$CHK-SCHEMA-NAME, $CHK-SVS, and $CHK-DATA-CLASS. 
$CHK-SCHEMA-NAME is first called to check the first line of 
the schema. Once it is done, it will give control to 
$CHK-SVS to analyze the syntax of all the simple value sets.
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When it is finished, the last function $CHK-DATA-CLASS 
should be called to do syntax analysis for all data classes.

Since the complexity of the schema language is small, 
the parsing techniques are not necessary at this stage. The 
syntax analyzer uses a simple scheme; that is, it analyzes 
the contexts of a conceptual schema word by word. Instead 
of building a parse tree in this phase, the syntax analyzer 
builds an entry in the data dictionary. This entry contains 
the intermediate codes for the currently compiled schema. 
When a source line is detected error free in the first two 
phases, the intermediate codes of this line will be inserted 
into the entry, using the data dictionary operators. Each 
entry in the data dictionary is unique; therefore, before 
the first phase begins, the schema compiler checks if the 
data dictionary entry has already been created. If so, it 
will prompt the users whether the old entry should be 
overwritten. If the answer is no, the compilation is 
aborted.

If anything unexpected happens during syntax analysis, 
the error routine is invoked for error handling and the 
error flag is incremented by one. When a flaw is found in a 
keyword during syntax analysis, the rest of the line will be 
skipped because there is no way to tell what exactly the 
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keyword is and it makes no sense to scan the rest of the 
line. The scanner then tries to return a possible keyword 
following the erroneous line, and the syntax analysis 
resumes from there.

When the second phase is finished, the schema compiler 
will check the value of the error flag. If the value is 
greater than zero, it will call $DD-DELETE to remove the 
entry from the data dictionary and compilation is aborted; 
otherwise, the third phase begins.

6.4.3 KBMF-code Generation

The KBMF-code generator produces a set of 
KBML-functions which will be used by the end users for 
accessing the knowledge base. It takes as input the data 
dictionary and generates as output a program containing all 
the KBML-functions which were specified as predefined 
operations in the conceptual schema. KBML-functions 
generated can be compiled so that they can run quicker than 
the symbolic codes. Before the design and implementation of 
the KBMF-code generator is discussed, we would like to 
describe the context of a KBML program.
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6.4.3.1 An Overview of KBML Program

Fig. 6.3 shows the layout of a KBML program. Basically 
a KBML program contains several KBML-functions. The number 
of functions produced depends on the number of allowed 
operations specified in the conceptual schema. Suppose, a 
conceptual schema defines four classes, HUMAN-BEINGS, 
PATIENT, HOSPITAL, and TREATMENT. The permissible 
operations for HUMAN-BEINGS are $KB-CREATE, $KB-DELETE, and 
$KB-RETRIEVE; for PATIENT $KB-CONNECT, $KB-DISCONNECT, 
$KB-RETRIEVE, and $KB-READ; for HOSPITAL $KB-CREATE and 
$KB-DELETE; and for TREATMENT $KB-CREATE, $KB-DELETE, and 
$KB-READ. When this conceptual schema is compiled, the 
syntax analyzer will transform all these predefined 
permissible operations for each class into intermediate 
codes and store them in the data dictionary. Next, when the 
program generator is invoked, it will generate, in reference 
to the data dictionary, a program with six functions in it, 
namely, $KB-CREATE, $KB-DELETE, $KB-CONNECT, $KB-DISCONNECT, 
$KB-READ, and $KB-RETRIEVE.
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(Defineq (<kbml-function> (<class-name> ...) 
cond ((not (atom <class-name>))

($error code)
nil)

(t (cond ((equal <class-name> <value>)

)
((equal <class-name> <value>)

)(T ($ertor code))) 
(cond ((null error)

(<dbml-function>
<class-name> ...))

(t ($error code)))))
(Defineq (<kbml-function> (<class-name> ...)

) )

Fig. 6.3 Layout of KBML Program
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Although the contexts of these functions are different 
from each other, they do have few things in common. First, 
in the outset of each function, all the parameter values 
will be tested. For instance, a class name have to be an 
atom and a criteria must be an association list. Second, a 
conditional clause is used to test the names of all the 
permissible data classes. In the last example, the 
permissible data classes for $KB-CREATE are HUMAN-BEINGS, 
TREATMENT, and HOSPITAL only. Creating entities for PATIENT 
will cause an error message. Similarly, the permissible 
data classes for $KB-RETRIEVE are HUMAN-BEINGS and PATIENT; 
for $KB-DELETE HUMAN-BEINGS, HOSPITAL, and TREATMENT; for 
$KB-CONNECT and $KB-DISCONNECT PATIENT only; and for 
$KB-READ TREATMENT and PATIENT. Third, an error routine is 
called whenever a flaw or violation is detected. Fourth, 
their corresponding low level function will be called upon 
to manipulate the physical data of the Klj when all the 
validations are done and no errors have been found.

On the other hand, the differences of the contexts of 
these KBML-functions are explained in the following 
paragraphs.

The contexts of $KB-CREATE and $KB-CONNECT are most 
complicated. Before checking the redundant attribute value 
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pairs, they insert default values for the missing arguments. 
Then they go on checking the optional attributes, the 
attribute types and constraints, the cardinality of 
attributes between the domain and range classes, the general 
constraints, and the entity local constraints. For 
$KB-CONNECT, it also checks whether the entity number is 
allowed for the connection of the additional attributes.

The contexts of $KB-DELETE and $KB-DISCONNECT look more 
or less the same. They insure the cardinality of attributes 
is not violated when an entity is deleted from all classes 
or disconnected from an entity.

For $KB-RETRIEVE, it needs to verify the attribute 
names in the selection criteria. Likewise, $KB-FETCH checks 
the same things as $KB-RETRIEVE plus the validation of the 
selected attribute names.

The contexts of $KB-REPLACE, $KB-ADD-ATTR, and 
$KB-DEL-ATTR not only verify attribute names, but also 
perform data integrity tests. When $KB-DEL-ATTR deletes the 
last attribute value, it may cause consistency violation if 
that attribute is not optional. Similarly, when 
$KB-ADD-ATTR puts an additional attribute value to a 
non-multivalued attribute, the operation should be rejected.
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For $KB-REPLACE, it must insure that the new values will not 
violate any of the consistency rules.

Functions like $KB-GET, $KB-REPLACE, $KB-ADD-ATTR, and 
$KB-DEL-ATTR do not carry a class name in their parameter. 
Therefore, their class name and attribute names can only be 
verified from the KB during the run time.

Finally, $KB-REWIND, $KB-READ, and $KB-PRINT have the 
simplest contexts. All of them have no attributes to 
verify; however, $KB-READ and $KB-PRINT need to pass the 
attribute names of the requested class to their 
corresponding low level function.

All of these high-level functions generated by the code 
generator are machine-independent. In other words, things 
changed in the low-level functions would not affect the code 
generator program.

6.4.3.2 The Design of the KBMF-code Generator

The KBMF-code generator is composed of twelve functions 
along with the driver program. Each function except one is 
responsible for generating a KBML-function. For example, 
$GEN-KB-CREATE will generate $KB-CREATE. For $GEN-KB-RP, it 
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is responsible for generating two functions: $KB-READ and 
$KB-PRINT. The driver program opens a file with its name 
equal to the schema name to store the generated codes 
(KBML-functions). Then it will call each function in 
sequence to generate the codes if necessary.

The first thing for each function to do is to check 
with the data dictionary to see whether there is a need to 
generate this particular KBML-function. If not so, control 
will go back to the driver program and the next function is 
called.

In each function, templates are declared at the 
beginning of it. These templates are program segments; they 
contain some place-holders which will be substituted by the 
values retrieved from the data dictionary. A list called 
LINE is used to temporarily store the generated codes before 
they are written to the file opened by the driver program. 
The reason is that I/O frequency will be reduced; as a 

result, the program generator is more efficient. Finally, a 
stack is needed to temporarily store the right-parentheses 
because in some situations, when the left parenthesis of a 
list is appended to LINE but the list is not yet finished, 
the right parenthesis should be pushed onto the stack; and 
when it comes to the end of the list, the right parenthesis
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will be popped out from the stack and appended to LINE.

6.4.4 Error Handling

$WRITE-ERRMSG, the error handler is invoked when a flaw 
is occurred in the source program during compilation. The 
error handler takes as a parameter an error code, and it 
stores the corresponding diagnostic message into a global 
list called ERRMSG. These error messages will not be output 
to the listing file until the end of the source line is 
reached. Despite the error occurs in the source line, the 
syntax analyzer will continue checking the rest of the 
schema in order to detect as many errors as it can in one 
compilation.

At the end of each source line, a routine named 
$SC-PRINT-ERR-MSG is invoked to check the contents of 
ERRMSG. If it is not null (or empty), its contents will be 
printed underneath the source line; otherwise, no action 
will be taken.

6.4.5 The Forward References Problem

The forward references problem is inevitable in a 
one-pass compilation. To explain what the forward 
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references problem is, consider the following example. 
Suppose in a schema specification, role attribute hosp-name 
is defined as with type equal to HOSPITAL, e.g.,

role attributes:
hosp-name

type: HOSPITAL

The problem arises here: if HOSPITAL, a data class name, is 
defined ahead of the current data class, the parser will 
accept it as a legitimate type; however, if HOSPITAL has not 
yet been defined, the parser will not have any knowledge, at 
that point of time, whether or not this data class is 
defined later in the schema. This creates the forward 
references problem.

The syntax analyzer may solve the problem by using a 
list to store all the unresolved names. Each time when a 
new data class is compiled, the data class name is checked 
against this list. If a match is found, the unresolved name 
is deleted from the list. So at the end of the compilation, 
the undefined data class names remain unresolved. These 
names will be output to the listing file along with the 

diagnostic error message.



Chapter 7
Storage Structure Program

In the last two chapters, we discussed two of the 
components of DALI — the pattern matcher and the schema 
compiler. This chapter discusses the last component — the 
storage structure program. First, the selection of data 
structure for the DALI-KB will be discussed. Next, the 
roles of the storage structure program are described. Then 
the design and implementation are discussed. Lastly, the 
features of the Xerox 1186 Al system in which DALI is 
implemented are mentioned.

7.1 Selection of Data Structure for DALI

In our KBMS, we should allow sequential access and key 
access. Sequential access is used when the whole class must 
be traversed. For example, $KB-RETRIEVE needs to traverse a 
class sequentially to find out which entities that satisfy 
the selection criteria. On the other hand, key access is 
used when an entity number is available and quick access is 
needed. Furthermore, key access is also used to check 
whether an entity number belongs to a certain class.

97
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For sequential access, we choose to use a list as the 
data structure. This list stores all the memberships 
(entity numbers) of a class. Sequential mode is also 
involved in key access because the entity numbers in the 
sequential list will be used as the keys to access the 
contents of the entities.

For key access, we need to find some data structure 
which allows quick access with an entity number as a key. 
Some candidates are B-tree [AHU 83], hashing [Mehl84], and 
hash arrays (an INTERLISP-D data structure). Hash arrays 
provide a mechanism for associating arbitrary LISP objects 
("hash keys") with other objects ("hash values") such that 
the hash value associated with a particular hash key can be 

quickly obtained.

In order to compare their performances, we conducted 
some empirical tests. The B-tree was implemented using the 
record package in INTERLISP-D. The record package is an 
abstract data type; it has operations like CREATE, FETCH, 
REPLACE, WITH, and TYPE?. In our program the non-leaf node 
was declared as

(Datatype Btree
(Firstchild Lowofsecond Secondchild

Lowofthird Third))
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and the leaf node as

(Datatype Leaf23 (element23))

The B-tree program was implemented in ADT too. The 
operators associated with the B-tree were BTREE-CREATE, 
BTREE-INSERT, BTREE-DELETE, BTREE-RETRIEVE.

The hashing program was also implemented using ADT's. 
The collision problem was resolved by linear rehashing. The 
operators associated with hashing were HASH-CREATE, 
HASH-INSERT, HASH-DELETE, and HASH-RETRIEVE.

Since there are micro-coded functions for creating hash 
arrays, putting a hash key/value pair in a hash array, and 
quickly retrieving the hash value associated with a given 
hash key; the hash array program simply used these 
micro-coded functions to implement the operations: 
HARRAY-CREATE, HARRAY-INSERT, HARRAY-DELETE, and
HARRAY-RETRIEVE.

The tests were executed in the manner described as 
follows and the results listed in Table 7.2.

1. Two thousand records were inserted into a 2-3 tree.
2. One thousand records were then deleted.
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3. The elapsed time was recorded.
4. One thousand records were retrieved, but 50% of them 

were not in the 2-3 tree.
5. The time consumed was marked down.
6. A separate test was performed after the above 

operations.
7. One thousand records were retrieved from the 2-3 tree 

with no misses.
8. The elapsed time was marked down.
9. Procedures 1-8 were repeated with hashing and hash 

array.

The results of these tests are tabulated as follows:

Table 7.2 Empirical Test Results

1 B-tree 1 Hashing 1 Hash Array
INSERT |
and |

DELETE |
892441

1
39908 1 31722

RETRIEVE | 
(50% not | 

found) |
81432 1 12332

1
36238

RETRIEVE |
(100% |
found) |----------- +—

81432
—+—

17624
-+-

5013
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The empirical results show that when these three data 
structures run on the Xerox 1186 workstation, hash array is 
much faster than hashing and B-tree for inserting or 
deleting a record. It also outperforms its competition in 
data retrieving.

In summary, hash array was chosen as the data structure 
for our DALI-KB. The hash key is the entity number and the 
hash value is an association list. The first 
attribute-value pair of the association list will be used to 
store all the class names the entity belongs to.

7.2 An Overview of the Storage Structure Program

The storage structure program is a set of low-level 
functions which directly modify the physical data of the 
knowledge base. These functions are one-to-one 
correspondences to the high level KBML-functions. The 
purpose of having this layer is that when changes are made 
in this layer due to performance reasons (e.g. the data 
structure for the KB is changed), they would not affect 
anything in the user interface layer. Low level functions 
are indicated by using the prefix "$DB-".

All of these low-level functions are machine-dependent.



102

The users are not permitted to access these functions; as a 
result, they would not intentionally or unintentionally 
destroy the contents of the KB.

7.3 The Design of the Storage Structure Program

For each of the data manipulation functions, we will 
implement a function which knows the data structure of the 
KB. This low level function is responsible for performing 
the request from the high level function. When requests are 
performed, things are changed in the KB. For instance, 
entity numbers can be reused when entities are deleted. 
Therefore, some data structure is needed to keep track of 
the status of the KB when things are changed. We will call 
it the Knowledge Base Table. The Knowledge Base Table 
contains the information like the next available entity 
number, the recycled entity numbers, the memberships of each 
class, and the class pointers. The Knowledge Base Table is 
currently an association list. Fig. 7.1 shows an example of 
how the information is stored in the table.
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((RECYCLED-ENTITY-NOS (2 14 1))
(NEXT-ENTITY-NO 15)
(MEMBERSHIP (TEACHER (3 6))

(STUDENT ( 4 5 7 9 10) )
(GRADUATE (5 9))
(COURSE (8 11 12 13 ) ) )

(CLASS-POINTER (TEACHER NIL)
(STUDENT 7)
(GRADUATE NIL)
(COURSE 8)))

Fig 7.1 An Example of the Knowledge Base Table

Since the low level functions work closely with the 
Knowledge Base Table, it is logically to design the table as 
an abstract data type. The operations in the Knowledge Base 
Table are $KBT-GET-MBRSHIP, $KBT-DELETE-MBRSHIP, 
$KBT-INSERT-MBRSHIP, $KBT-GET-ENTITY-NO, $KBT-GET-CLASS-PTR , 

$KBT-RECYCLE-ENTITY-NO, and $KBT-RESET-CLASS-PTR.
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$KBT-GET-ENTITY-NO first searches for the recycle list. 
If it is not empty, the first element will be taken out and 
returned. Otherwise, the value of NEXT-ENTITY-NO will be 
returned and NEXT-ENTITY-NO is incremented by one.

$KBT-DELETE-MBRSHIP, $KBT-INSERT-MBRSHIP, and 
$KBT-GET-MBRSHIP all deal with attribute MEMBERSHIP. The 
first operator deletes the entity number from the class 
membership list specified in its argument, the second 
operator inserts a member to the list, and the last one 
returns the whole list.

$KBT-GET-CLASS-PTR returns the current class pointer; 
whereas, $KBT-RESET-CLASS-PTR rewinds the class pointer to 
the top of a class.

Finally, $KBT-RECYCLE-ENTITY-NO deposits an entity 
number to the recycle list.

With these operators, the storage structure programs 
can easily do the house-keeping work. For example, when an 
entity is deleted from the KB, $DB-DELETE sets the hash 
value to NIL, then it calls $KBT-DELETE-MBRSHIP to delete 
memberships from all classes and finally it calls 
$KBT-RECYCLE-ENTITY-NO to recycle the entity number.
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7.3 Implementation Notes

DALI is currently installed in the Xerox 1186 Al 
system. The 1186 is a single user workstation. The central 
processor is implemented in Schottky TTL technology, based 
on a high-speed version of the Advanced Micro Devices 2901C 
bit slice processor with custom LSI and gate arrays are used 
for microinstruction latching and decoding and bus 
arbitration. In order to improve performance, an 
independent coprocessor (Intel 80186) is used for handling 
all I/O devices (except the display controller). Eight 
thousand hand-tuned microcode instructions for LISP and 
Prolog are installed in the writeable control store for 
maximizing the performance of an integrated symbolic 
programming environment.

Other features include a keyboard, a three-button 
optical mouse, a high resolution bit-mapped graphical 
display, an integral Ethernet II controller, a 1.6 MB main 
memory, a 80 MB local rigid disk, a 5 1/4" floppy disk drive 
(360 KB formatted), and two serial communications ports: an 
RS-232-C DTE communications port and an RS-232-C DCE printer 
port.

DALI is implemented using INTERLISP-D which amplifies 
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the power of LISP. For many years, various implementations 
of INTERLISP have been used for large, knowledge-based 
systems and advanced user-interfaces. It is specially 
designed to take advantage of the technology of the 
high-powered, single-user, networked workstations that it 
runs on. Moreover, windows, mouse input, graphics, and 
communications all fit neatly within the language.

The time for one 48-bit microinstruction executed from 
a writeable 8K word control store is one cycle (125 
nanoseconds). The system uses a multitasking scheme where 
cycles are grouped into clicks, with three cycles in one 
click. During each click (375 ns), three microinstructions 
and one simultaneous memory reference is accomplished. On 
the average, a one-bye LISP instruction takes about 562 
nanoseconds or at a rate of 1.77 MIPS.

The memory system provides exactly one access per 
click: the first cycle of a click sends an address, the 
second cycle delivers a word to be written, and the last 
cycle returns the word which has been read. Thus, a 32-bit 
data fetch is accomplished in 750 nanoseconds, yielding a 
memory bandwidth of 41 Mbits/sec.



Chapter 8
Summary and Conclusions

The first prototype of DALI has been implemented on the 
Xerox 1186 Al system. It contains a schema compiler, a 
pattern matcher, and a storage structure program. The 
schema compiler is slow at this stage. However, this is not 
a major problem because usually a schema is not compiled 
very often — probably once every three months. The pattern 
matcher is very versatile. It not only covers a large 
variety of patterns, but also handles the combinations of 
them. The performances of the storage structure program are 
satisfactory since the data structure of the KB was selected 
via some empirical tests. Moreover, the storage structure 
program was implemented using abstract data types; 
therefore, when better data structure is found, the abstract 
data types are easily modified.

The architecture of DALI is multi-layered. This allows 
less changes to be made when it is installed on other 
systems. In a multi-layer architecture, only the lower 
level layer has to be modified. The changes in the lower 
level layer is inevitable because the internal data 
structure vary differently from machine to machine.

107
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Besides, in the performance standpoint, it is too costly not 
to use machine-dependent codes. When DALI is installed on a 
system not using INTERLISP-D language, some macros have to 
be written to convert the differences between the two 
dialects. But in general, this is not so hard to 
accomplish. Furthermore, codes in the low level layer have 
to be rewritten.

DALI will be enhanced in the future. The future 
research works include the following:
1. Exception handling will be added to DALI to ensure the

appropriate execution of operations. When any
violations of rule constraints occur, the exception
handler is called to recover from errors.

2. The on-line documentation and help files will be
extended so that DALI becomes more user-friendly.

3. A graphical-oriented data modelling tool which will 
simplify knowledge base design will be implemented.

4. The schema language will be expanded so that
user-defined operations can be defined by the language. 
User-defined operations are built upon the primitive 
KBML-functions.

5. Forward chaining and backward chaining techniques will 
be accompanied with pattern matching for accessing the 

KB. DALI should allow good performances for the 
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implementation of these algorithms.
6. Additional storage structures have to be provided for 

the internal representation of the KB. The knowledge 
base designer will have to choose which storage 
structure that is well suited for a particular 
application.

7. Some mechanisms will be implemented to handle rules and 
uncertain knowledge in the KB.

8. An inference engine will be used as the front-end 
driver.

9. A user view definition facility (VDF) will be added to 
DALI. This facility will allow the user to view a 
certain part of the KB as his own knowledge base.

10. A performance analysis tool for DALI will be 
implemented.

11. A security software will be developed to protect the KB 
from any unauthorized users.

12. Inverted files will be installed to the system.

These features are projected to be finished within two 
years and number 1, 4, and 7 have been already under
exploration by other students in their master theses.

All in all, DALI is a user-friendly and easy-to-use 
knowledge base management system. It is designed for large 



110

computerized knowledge bases; therefore, in the long run, it 
can cut down the maintenance cost, software overhead, and 
the length of the application programs. And because DALI 
supports object-oriented programming, it will help people 
with less Al knowledge write knowledge-based programs.



Appendix I
The BNF of the Pattern Matching Language

<pml> ::=
(<patte rns>)

<patterns> ::=
<pattern>
|<patterns> <pattern>

<pattern> ::=
<s-expression>
|<place-holder>
|<pm-variable>
|<optional-occurrence>
j <pm-function>

<s-expression> ::= 
atom

| list
<place-holder> ::=

*
1$

<pm-variable> ::= *
$letter{letter|digit)

<optional-occurence> ::=
{<s-expression>}

<pm-function> ::=
<restriction-function>
|<permutation-function>
|<regular-expression-function>

<restriction-function> ::=
(#@ <lisp-function>)

<lisp-function> ::=
LISP function

<permutation-function> ::=
(#PERM <permutation-list>)

<permutation-list> ::=
<s-expressions>
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<s-expressions> ::=
<s-expression>
|<s-expressions> <s-expression>

<regular-expression-function>
(<regular-expression-symbol> <s-expression>)

<regular-expression-symbol> ::=
#* | #+ | #& I #\



Appendix II

The BNF of Schema Language

<schema-language> ::=
schema <id> <schema-description>

<id> ::=
identifier

<schema-description> ::= 
[<svs-list>] <data-class-list>

<svs-list> ::=
<svs>
|<svs-list> <svs>

<svs> ::=
simple value set <id> <svs-option>

<svs-option> ::= 
subset of <id> where <restrictions>

<restrictions> ::=
<pattern>
|< instances>

<pattern> ::=
<pml> (see Appendix I)

< instances> :: =
instances are <instance-list>

<instance-list> ::= 
list

<data-class-list> ::=
<data-class>
|<data-class-list> <data-class>

<data-class> ::= 
data class <id> [subset of <id>]

[overlaps with <id>] <class-description>
<class-description> ::=

<simple-attr-declaration> <role-attr-declaration>
<class-attributes>

113
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<simple-attr-declaration> ::=
simple attributes: <simple-attr-list>

<simple-attr-list> ::=
<simple-attr-desc>
|<simple-attr-list> <simple-attr-desc>

<role-attr-declaration> ::= 
role attributes <role-attr-list>

<role-attr-list> ::= 
<role-attr-desc>
|<role-attr-list> <role-attr-desc>

<simple-attr-desc>
<id>
property : <property-values>
default : <term> 
constraint : <pattern> 
type : <svs-name>

<role-attr-desc> ::=
<id>
property : <property-values> 
default : <number> 
constraint : <pattern> 
type : <data-class-name>

<term> ::= 
atom

| list
<number> ::=

integer

<property-values> ::=
<property>
|<property-values> , <property>

<property> ::=
unique | optional | multivalued | onto

<class-attributes> ::=
[<local-constraint>] [<general-constraint>] <operations>

<local-constraint> ::=
entity local constraints : <expression> 

<general-constraint> ::=
general constraints : <expression>
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<expression> ::=
LISP expression

<operations> : : =
predefined operations : Cope ration-1ist>

<operation-list> ::=
<kbml-operation>
|<operation-list> , <kbml-operation>

<kbml-operation> ::=
$KB-CREATE
|$KB-DELETE
|$KB-CONNECT
|$KB-DISCONNECT
|$KB-RETRIEVE
|$KB-GET
|$KB-FETCH
|$KB-REPLACE
|$KB-ADD-ATTR
|$KB-DEL-ATTR
|$KB-REWIND
|$KB-READ
|$KB-PRINT



Appendix III

The BNF of the Knowledge Base Manipulation Language

<kbml> ::=
($KB-LOAD <class-name>)
|($KB-UNLOAD <class-name>)
|($KB-CREATE <c1ass-name> [<attr-val-pairs>]) 
|($KB-DELETE <entity-no>)
|($KB-CONNECT <entity-no> <class-name>

[<attr-val-pai rs>])
|($KB-DISCONNECT <entity-no> <class-name>)
|($KB-RETRIEVE <class-name> [<criteria>]) 
|($KB-GET <entity-no> [<attr-list>]) 
|($KB-FETCH <class-name> [<attr-list>] [<criteria> ] ) 
|($KB-REPLACE <entity-no> <attr-val-pairs>)j($KB-ADD-ATTR <entity-no> <attr-name> <attr-value>) 
|($KB-DEL-ATTR <entity-no> <attr-name> <attr-value>) 
|($KB-BELONGS-TO <type> <value>) 
|($KB-REWIND <class-name>) 
|($KB-READ <class-name>) 
|($KB-PRINT <class-name>)

<class-name> ::=
identifier

<attr-val-pairs> ::=
<attr-val-pai r>
|<attr-val-pairs> <attr-val-pair>

<attr-val-pair> ::=
(<attr-name> <s-expressions>)

<attr-name> ::=
identifier

<attr-value> ::=
<s-expression>

<s-expressions> ::=
<s-expression>
|<s-expressions> <s-expression>

<s-expression> ::= 
atom

| list
<entity-no> ::=

116
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positive integer
<attr-list> : : =

(<attr-names>)
<attr-names> ::=

<attr-name>
|<attr-names> <attr-name>

<criteria> : : =
(<criterium-list>)

<criterium-list> ::=
<criterium>
|<criterium-list> <criterium>

<criterium> ::=
(<attr-name> <expressions>)

<expressions> ::=
<expression>
|<expressions> <expression>

<expressions> ::=
<s-expression>
|<pml> (see Appendix I)
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