
FPGA Remote Laboratory Using IoT Approaches

by
Alexander Michael Magyari

A thesis submitted to the Department of Electrical and Computer Engineering,
Cullen College of Engineering

in partial fulfillment of the requirements for the degree of

Master of Science

in Computer and Systems Engineering

Chair of Committee: Dr. Yuhua Chen

Committee Member: Dr. Jinghong Chen

Committee Member: Dr. Yi-Lung Mo

University of Houston
December 2021

Copyright 2021, Alexander Michael Magyari

DEDICATION

In memory of my mother, whom I hope to have made proud with the presentation of

this thesis and the completion of my degree.

iii

ACKNOWLEDGEMENTS

I would like to thank my advisor, Dr. Yuhua Chen. I attribute both my academic

and current career successes to her continued guidance and encouragement throughout

my undergraduate and graduate studies.

I would also like to thank my father, whose consistent interest in my work has led

to many long talks about the technological frontier. Lastly, I would like to thank my

fiancée, Nicole, for keeping me healthy and sane throughout the pandemic that inspired

this work.

iv

ABSTRACT

Field-Programmable Gate Arrays (FPGAs) are high-end devices that are not easily

shared between multiple users. In this work, a remotely accessible FPGA framework

using accessible Internet of Things (IoT) approaches was developed. This was created

to provide a method for students to receive the same level of educational quality in a

remote environment that they would receive in a typical, in-person course structure for

a university-level digital design course. Keeping cost in mind, the functionality of an

entry-level FPGA and a Raspberry Pi Zero was combined to provide IoT access for

laboratory work. Previous works in this field allow only one user to access an FPGA

at a time, which requires students to schedule time slots. This design is unique in that

it gives multiple users the ability to simultaneously interact with one individual top-

level design on an FPGA. This novel design has the benefit for classroom presentations,

collaboration and debugging, and eliminates the need for restricting student access to a

time slot for FPGA access. Further, the hardware wrapper is lightweight, utilizing less

than 1% of tested FPGA chips, allowing it to be integrated with resource-heavy designs.

The application is meant to scale with large user bases; there is no difference between

how many users can interact with the remote design, regardless of the complexity of the

design. Further, the number of users who can interact with a single project is limited

only by the bandwidth restrictions imposed by Google Firebase, which is far beyond

any practical number of users for simultaneous access.

v

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

ABSTRACT . v

LIST OF TABLES . viii

LIST OF FIGURES . ix

CHAPTER 1: INTRODUCTION . 1

CHAPTER 2: RELATED RESEARCH . 4

Internet of Things . 4

Field-Programmable Gate Arrays . 6

FPGA Network Bridging Methods . 6

Network Interfacing via Soft Core Processors 7

Soft Core Network Implementations 8

System on Chip Network Bridge . 8

Raspberry Pi Assisted FPGA Network 10

BeagleBone Assisted FPGA Network 10

Modern Works Integrating FPGAs onto the IoT 12

FPGAs in Remote Classrooms . 14

Significance of Proposed Work . 16

CHAPTER 3: MATERIALS AND METHODS 17

Remote FPGA Framework Implementation 17

System Architecture Design . 18

Mobile Application . 20

Google Firebase Real-Time Database . 21

Raspberry Pi to FPGA Interface . 23

vi

Remote FPGA Hardware Wrapper . 24

FIFO Buffer . 27

UART Digital Serializer/Deserializer 27

Generated Input Manager . 28

Generated Output Manager . 29

Embedded Student Module . 30

Python Compiler Wizard . 30

CHAPTER 4: RESULTS . 32

Experimental Results . 32

Resource Usage . 37

Latency . 38

Discussion . 40

CHAPTER 5: CONCLUSIONS . 42

REFERENCES . 44

APPENDICES

PYTHON WIZARD . 50

INPUT MANAGER TEMPLATE . 83

OUTPUT MANAGER TEMPLATE . 86

REMOTE TOP MODULE TEMPLATE 91

vii

LIST OF TABLES

3.1 Application class implementations. 21

3.2 Raspberry Pi Pin connections. 24

3.3 DE0-CV pin reference values. 26

3.4 Signals of the custom-logic FIFO module. 27

3.5 UART Configuration Properties. 28

3.6 Signals of the custom-logic UART module. 29

3.7 Signals of the generated Input Manager. 29

3.8 Signals of the generated Output Manager. 30

4.1 Resource usage for various FPGA chip sets. 38

4.2 Server response times. 39

viii

LIST OF FIGURES

2.1 Systems within the Internet of Things. 5

2.2 Full system on chip products. 9

2.3 Comparison of Raspberry Pi Models [28]. 10

2.4 Comparison of BeagleBone Models [29]. 11

3.1 Remote access implementation flow. 18

3.2 Remote access system architecture. 19

3.3 Database architecture. 22

3.4 Hardware wrapper architecture. 25

4.1 DE2-115 on an iPad. 33

4.2 DE0-CV on an iPhone. 34

4.3 Multiple functionalities of the user application. 35

4.4 Complete remote access FPGA system. 36

4.5 Python Wizard user interface. 37

4.6 FPGA hardware wrapper synthesis report. 38

4.7 Signal round-trip latency histogram. 39

ix

CHAPTER 1: INTRODUCTION

With the presence of the Covid-19 Virus, declared a pandemic by the World Health

Organization on March 11th, 2020, the professional and educational world saw a

sudden shift to an online presence. Sixty percent of higher education institutes denoted

that the current outbreak has increased their presence of online learning [1]. This shift

called for the immediate development of tools that could better sustain online working

environments than those that were already present. The removal of the classroom in a

teaching environment also reduces the amount of interaction between teaching

assistants, classroom peers, and professors. While this improves safety by reducing the

transmission of Covid, this has a significant impact on the quality of learning [1].

Specific to courses that require expensive laboratory equipment, remote learning

disenfranchises students from access to high end equipment, such as

Field-Programmable Gate Arrays (FPGAs). These two key factors are especially

prominent in the realm of digital design, as student interaction with teaching assistants

on FPGA devices is pivotal when debugging hardware designs.

This work seeks to increase the viability of a remote classroom specific for higher

education in a digital-design curriculum. Specifically, this proposed method seeks to

replicate the availability for direct teaching–assistant interactions with students on

FPGA development boards in a collaborative, remote environment. Further, this was

accomplished using tools that would be affordable to an average student. By providing

a tool that is both affordable and accessible to students, the proposed method will

mitigate the negative effects of remote learning.

Development efforts were focused on integrating a variety of systems to provide a

multi-platform, multi-user interactivity tool referred to as the Remote FPGA. The

Remote FPGA platform implements the necessary hardware modules to allow for

remote access for a single, top-level design at a time. The work develops a method in

which a design can be accessed via the Internet of Things (IoT) approach. This was

accomplished by integrating an FPGA with a Raspberry Pi Zero. The user utilizes a

1

tool, developed in Python, to embed the top module design into a set of hardware

modules that allows the FPGA to communicate with the Raspberry Pi via a universal

asynchronous receiver transmitter (UART). This tool has an easy to follow graphical

user interface (GUI) that will output a remotely accessible FPGA project that can be

readily uploaded to the FPGA/Raspberry Pi system.

Once the user has incorporated the remote FPGA hardware wrapper into their

design, it can be accessed via a cross-platform application that has the potential to be

deployed on both Android, iOS, and Windows based devices. The application displays

the remote development board interface and provides both input and output

functionality. This increases remote lab mobility and accessibility; users no longer

need access to a desktop computer or the physical development board to interact with

their remote laboratory. The physical inputs on the development board are disabled to

prevent interference with the remote access application. The Remote FPGA System

also adds the ability to add various peripheral devices that are not already on the

development board, such as seven segment displays, a variety of light emitting diodes

(LEDs), push buttons, and slide switches.

Further, multiple users can access the same FPGA via the application at the same

time. User inputs and outputs are reflected on all applications that are connected to

the FPGA in real-time. This allows for multiple users to collaborate simultaneously

on the same project, and is useful in laboratory grading and debugging. The ability to

collaborate and have a number of users working on the same FPGA is unique to this

work; other developments in online FPGA platforms allow only one user to connect to

any given FPGA at a time [2]–[7]. Only allowing one user to access an FPGA remotely

at a time is an issue, and it leads to further difficulties: students must schedule a time

slot to work on a remote FPGA which in turn limits the amount of time that students can

have FPGA access, and students do not have the ability to collaborate on projects with

their teammates or teaching assistants. This work remediates these issues by removing

the limit on the number of users that can access a single FPGA.

2

This proposed method was successfully implemented in a digital design course at

the University of Houston. The design methodology was tested in the Spring of 2021,

where students could access a completed lab with means to clarify instructions for

expected inputs and outputs. Future plans include having students purchase their own

development kit so as to allow for the upload of their own labs. This work was

launched on multiple development boards from Intel in conjunction with a Raspberry

Pi Zero, bringing the total of this technology to approximately $120 per user.

The following sections of this paper are organized as follows. Chapter 2 describes

the related research in the field. Chapter 3 discusses the implementation of the proposed

method. Chapter 4 discusses the outcome of this work. Finally, Chapter 5 concludes

the work and describes the value and future works of the proposed method.

3

CHAPTER 2: RELATED RESEARCH

This work involves a novel application for FPGAs onto the IoT, and seeks to unite

these two concepts and further the availability of remote learning applications. A

background on both the IoT and the various methods for integrating an FPGA onto the

IoT are provided.

Internet of Things

The Internet of Things (IoT) comes with modern developments in smart homes,

cars, and wearable devices as the availability for communication between various

sensors and processors emerges with widely available internet access. The IoT is

defined as a system that contains a variety of smart devices that can communicate with

each other without the need for human interaction [8]. While IoT, at its core, operates

independently of human interaction, it provides a communication for a variety of

systems which may involve human input. These system pathways include

Human-to-Machine (H2M), Human-to-Human(H2H), and Machine in Humans (MiH)

[9]. These systems, along with examples, are shown in Figure 2.1.

Within each of the aforementioned systems, a variety of components can

communicate between themselves. A component on the IoT has the ability to transmit

data, receive data, or use a combination of both. A component can be or contain any

one, or more, of the following [8]:

• Internet Access: Access to the internet, which is provided via a processing unit,

is an essential feature of any IoT device. Internet access allows the device to

communicate to other devices within an IoT system without the need for human

interaction [8].

• Platforms: A platform is any wired or wireless communication method that

allows for a device to communicate with an Internet Service Provider (ISP) to

4

Figure 2.1: Systems within the Internet of Things.

provide internet functionality. Possible platforms include Wi-Fi, Ethernet, 5G,

Bluetooth, and Zigbee [9].

• Devices: This includes smart devices which integrate sensing and processing

capabilities. In the following examples, the term ”smart” refers to the device’s

ability to collect data via peripheral sensors and process that data before making

it available to the user or another IoT device. Examples include smart watches,

smart phones, smart cars, and smart homes [9].

• Sensors: Sensors are often peripheral devices such as barometers,

speedometers, proximity sensors, audio and video sensors, and thermometers.

Sensors are utilized for data acquisition. This data can then be either stored,

processed, or sent to another IoT Device [10].

5

• Data Storage: Depending on the particular use-case of the device, it may be

optimal to store data that is acquired via either via internet access or on-board

processing. Options for data storage include either local storage or uploading the

data to the cloud [10].

FPGAs can play a vital role as any one of the components listed above. In many

cases, FPGAs can provide IoT functionality that would not be possible with a classical

microprocessor in an IoT system.

Field-Programmable Gate Arrays

FPGAs fall into the semiconductor category between microprocessors and

Application-Specific Integrated Circuits (ASICs). FPGAs balance the programability

of a microprocessor with the parallel processing power and speed of an ASIC [11].

FPGAs rely on a hardware description language (HDL), such as Verilog or Very High

Speed Integrated Circuit Language (VHDL), to describe a set of complex logic

functions [11], [12].

FPGAs integrate some powerful features from both a conventional ASIC and a

microprocessor[11], [12]. Similar to an ASIC, the FPGA design is able to often rely on

a clock operating in the mega- to gigahertz range. This means that basic digital

instructions can be processed within anywhere from a few nanoseconds to a few

hundred picoseconds [13]. Similar to a microprocessor, on the other hand, FPGAs can

be reprogrammed, whereas ASICs cannot. The ability to reprogram an FPGA allows

engineers to expand and modify digital designs without being required to reconstruct a

digital circuit manually [11]. FPGAs constitute a wide range of modern applications,

from digital signal processing [13], [14] to machine learning [14], [15], and from

image processing [15] to data mining [16], and other functions not mentioned here.

FPGA Network Bridging Methods

An FPGA die itself does not have the physical means for network connections.

However, designs for interpreting networking information can be implemented. From

6

connecting an FPGA to various network interfaces such as wireless antennas or

Ethernet ports, to communicating with System on Chips (SoCs) that have the means

for network capabilities, to instantiating soft core processors to handle the heavy

lifting of network communication, there exists a multitude of opportunities for

integrating an FPGA design with the IoT. These possibilities are described in the

following subsections.

Network Interfacing via Soft Core Processors

FPGAs are often resource constrained, whether it be a limitation of power, logic

units, or timing. To combat this, soft core processors are often used in lieu of complex,

resource-heavy Register Transfer Level (RTL) designs. Soft core processors are

microcontrollers, but rather than being physical devices implemented in silicon, they

are instantiated in HDL. As processors, they can process compiled C code similar to a

traditional processor, and as an HDL instantiation, they can be reconfigured to fit the

designer’s needs [17]. Engineers can configure the soft core processor to work with

any hardware module such as a SPI or AXI bus, and they can customize features such

as memory size or the instruction set architecture of the device [18]. This flexibility

opens up a plethora of opportunities for integrating an FPGA with the IoT network.

While the soft core is not a means for connecting directly to a network, it does

provide the means to efficiently interpret the data from a network, such as an Ethernet or

WiFi connection. With a soft core working as a piece of middle-ware between an FPGA

and an active network, complex functionality such as integration, repeated division, and

register mapping can be offloaded from HDL. This has the potential to save engineers

both time and resources [19].

Further, many soft core IPs are freely available for use. Examples of readily

available soft core processors include the Z-scale from Berkley [20] and the ORCA

from VectorBlox, both of which utilize RISC-V processing [19]. These open-source

soft-core processors can serve as free alternatives to their hardware and private IP

counterparts, opening the door for research where funding is an issue.

7

Soft Core Network Implementations

With the wide configurability of the soft core processor comes a wide range of

potential applications for integration with the IoT on an FPGA. Huang et al. developed

an IoT sensor hub that collected data from various sensors before uploading the data

to the network [21]. Following the acquisition of data on a sensor, a hardware module

within the FPGA processes the data and stores it on the instantiated soft core processor.

The processor manages all of the incoming data before uploading it to the network via

an Ethernet interface [21].

Further on regarding the topic of IoT sensor integration, Myint et al. developed a

water quality monitoring system by combining the functionality of an FPGA and an

instantiated NIOS-II soft core processor [22]. Myint utilized a UART serial connection

to interface the instantiated processor with a Zigbee hardware communication module.

This design method allows for wireless monitoring of water quality by measuring

features such as water temperature and water level [22]. By relying on the

functionality of the soft core processor, Myint did not have to develop the complex

HDL required to communicate with the Zigbee module, and could instead rely on a

simpler implementation in C.

System on Chip Network Bridge

With the increase in network access methods such as WiFi, Bluetooth, and 5G

networks, comes the ever-increasing difficulty of utilizing this wide array for network

communication tools in IoT. To remedy this, there exists a wide variety of SoCs that

can provide a simple method for integrating a device, such as an FPGA, with the

internet, and thereby forming a bridge to the IoT network. An SoC includes the

various hardware components necessary for computational processing and data storage

within a single chip [23].

Typically, ready-made SoCs are designed to support operating systems such as

Linux or Microsoft Windows. Further, in the following examples of SoCs, methods for

Internet access are integrated into the chip design as well. Examples of modern SoCs

8

that utilize components for IoT access such as Ethernet and WiFi include the

Raspberry Pi, Arduino, Beaglebone, Intel Galileo, and the Adafruit Feather [24].

These systems are shown in Figure 2.2.

Figure 2.2: Full system on chip products.

The aforementioned SoCs, outside of providing easy access to the IoT for an

FPGA, offer multiple methods for interfacing with the FPGA, such as USB, GPIO, and

Ethernet. The following subsections discuss some of these examples in more depth.

9

Raspberry Pi Assisted FPGA Network

While the Raspberry Pi offers much more functionality than a network connection,

the Linux system coupled with various network interfaces makes for a simple

opportunity to integrate network access with an FPGA. With models spanning various

sizes and functionalities, the Raspberry Pi has found its way into multiple networking

designs for FPGAs, such as image processing for the IoT [25], smart buildings [26],

and health monitoring systems [27].

Most Raspberry Pi models have various serial communication protocols such as I2C,

UART, and SPI, which allow them to quickly integrate with FPGAs using packaged

Intellectual Property (IP). This benefit can make for rapid prototyping and deliverables.

The networking capabilities of the various Raspberry Pi models are summarized in

Figure 2.3. In this figure, models rated for 1000BaseT Wired Ethernet surpass the

rating for 10/100 Wired Ethernet, however, the 10/100 Wired Ethernet bandwidth is

still technically supported. This is indicated by a shaded teal box in Figure 2.3.

Figure 2.3: Comparison of Raspberry Pi Models [28].

BeagleBone Assisted FPGA Network

The BeagleBone line of SOCs operates similarly to a Raspberry Pi. They have a

variety of microprocessors, depending on the particular board, and have the capacity to

10

run a variety of Linux operating systems. Further, the BeagleBone products implement

various network functionalities, ranging from gigabit Ethernet speeds to Bluetooth to

WiFi functionality. The various network capabilites of the BeagleBone SoCs are

summarized in Figure 2.4. Similar to Figure 2.3, the shaded teal boxes in the 10/100

Wired Ethernet column indicated that the 10/100 Wired bandwidth is supported, but

the official rating of the BeagleBone model exceeds 10/100 Wired Ethernet.

Figure 2.4: Comparison of BeagleBone Models [29].

Various FPGA networking projects have implemented the BeagleBone, as it is a

versatile chip with quick set up times for network functionality as its processing power

can be coupled with its onboard wired and/or wireless connections. Examples of

works relying on a BeagleBone variant for networking include remote laboratory

interfaces [30] which rely on the BeagleBone’s network capabilities for interfacing an

FPGA with the IoT, and remote DC motor control [31] which utilizes the onboard

Ethernet controller of a BeagleBone to allow IoT access for an HDL design.

11

Modern Works Integrating FPGAs onto the IoT

While integrating FPGAs onto the IoT is far from a trivial task, FPGAs have a

variety of uses and implementations as an IoT device [32]–[37]. IoT ready FPGAs are

currently being utilized for online methods, including digital image processing, smart

grid energy management, managing complex timing systems, broadcasting video

recording solutions, data encryption, medical diagnoses and monitoring, and storage

system solutions [32]. These topics open discussion not only for IoT FPGA

applications, but also for the various methods of interfacing an FPGA with the Internet.

A popular method for providing an IoT interface with an FPGA is the Raspberry

Pi [32], [38]. A wireless monitoring system, proposed by Gophane et al., utilizes a

combination of sensors alongside a Spartan 6 FPGA working in series with a Raspberry

Pi 3 [38]. Gophane et al. further utilizes the functionality of the IoT by integrating their

FPGA system with an Internet storage cloud for allowing access to the data acquired

by the FPGA. While their work did not utilize the onboard WiFi of the Raspberry Pi 3,

they were able to implement a ZigBee module to provide the IoT connectivity for the

Raspberry Pi [38].

One further FPGA IoT integration method utilizes SoC FPGAs [39]. SoC FPGAs

are available from multiple manufacturers such as Xilinx and Intel. These models of

FPGAs include on-board processors, such as ARM Cortex-M3s or ARM Cortex-A9s

[39]. Further, FPGA devices that do not have an on-board central processing unit

(CPU) can utilize soft core processors, which essentially convert the FPGA into a SoC

model [39]. By utilizing an SoC FPGA, Basilino et al. successfully implemented an

IoT message processing system in which they increased processing performance by

308% [39].

Once an FPGA has been integrated with the IoT, there are a seemingly endless

amount of applications. With the combined power of parallel processing provided by

the FPGA along with Internet access, researchers are able to tackle an incredible amount

of issues. For example, Kang et al. [33] utilize an IoT-capable FPGA for transmitting

and mining data from an external server. The FPGA gives the ability to process the data

12

extracted from the server with an improved collection rate of over 200% and an increase

in energy efficiency of 15% [33].

One further application of an FPGA in the realm of IoT is edge computing, which

was researched by Ferdian et al. [34]. By relying on an FPGA with IoT access rather

than a conventional microprocessor, Ferdian et al. utilized an FPGA as an IoT node to

process and encrypt data before transmitting it. The edge computing provided by the

FPGA is able to reduce the needed data bandwidth by 66% by encrypting and

compressing the data as compared to raw, unprocessed data [34]. Further, as the FPGA

can process data in parallel, Ferdian demonstrated that the processing speed of the

FPGA remained constant even when presented with an increasing amount of sensors

[34].

An interesting application of an IoT FPGA is presented by Sung et al., in which a

multitude of sensor data is processed by an FPGA and then hosted on a web page with

means for a home care system [35]. The FPGA sends data to a server via a wired RS-

485 connection where users can view the various sensor data. Further, by harnessing the

power of IoT, the FPGA can trigger an alert email to the user in the case that a sensor is

detecting foreboding data, such as a temperature above 28 ◦C [35].

One common FPGA application is facial recognition; Peng et al. takes one step

further and integrates this service with IoT [36]. By building a deep neural network

interface on a Zynq FPGA combined with Internet connectivity provided over Ethernet,

Peng is able to accurately detect front faces [36]. The data, while processed in the deep

neural network on the FPGA, is transmitted over Ethernet where it is checked against

a database. The stored database data is then compared to the transmitted data from

the FPGA, where information can then be loaded about the registered face [36]. This

method allows a remote camera to detect and recognize an individual via an external

FPGA node.

One additional application of IoT-capable FPGA devices is a vehicle monitoring

system, developed by Wang et al. [37]. A system is realized in a Xilinx Zynq-7000

with dual-core Arm Cortex A9s that is integrated with a 4G module, providing

13

wireless Internet access from within a moving vehicle [37]. The FPGA, with the power

of parallel processing, is able to monitor up to six digital cameras and global

positioning system (GPS) tracking while transferring data to the client [37].

FPGAs in Remote Classrooms

The topic of remote access FPGAs for student laboratory access is documented in

various discussions [2]–[7], primarily with a focus of either viewing an FPGA via a

webcam [2], [3], [7], or emulating the development board via a web application [4],

[5]. The increase in online lab settings may be attributed to the slow movement of

educational courses from in-person to online prior the quick shift from the pandemic.

Current works rely on a point to point transmission, that is, only one user can access

a remote FPGA lab at a time [2]–[7]. This prevents users from collaborating on team

projects and makes it difficult for students to work with teaching assistants.

For example, Hashemian et al. utilizes LabView and the Xilinx Spartan3 platform

to create a remote FPGA server in which students can directly interact with an FPGA

to view lab assignments [2]. Hashemian et al. rely on a Windows XP remote access

terminal to provide direct access to the FPGA as if the user were directly interacting

with it. The PC accessed via the remote terminal shows a webcam focusing on the

FPGA alongside the LabView GUI that provides functionality for interacting with the

FPGA inputs [2].

Similarly, Morgan et al. realize a remote FPGA application with a webcam and

GUI pair on a Xilinx Nexys 2 [3]. Morgan also developed a method in which users

are given the ability to view finite state machines on the Nexys, and interaction with

the FPGA server is done via a web application as opposed to a remote desktop link.

Further, students have the ability to upload their own modules to the FPGA server.

In another approach [4], Mohsen et al. developed a system in which multiple

concurrent users can utilize a system of FPGA devices simultaneously. A user logs

into a web server and is assigned a Universal Serial Bus (USB) port corresponding to

an unused FPGA device. Once logged in, the user has the capability to upload their

14

design module and interact with the FPGA via a serial console. Outputs from the

FPGA are viewable via a webcam interface. With this method, the amount of users is

directly limited by the amount of available FPGA devices.

Another idea exists in which an FPGA lab is built around the remote access

capability of the device, rather than a series of labs. Schwandt et al. prove the ability of

an FPGA in a single remote lab setting [5]. This remote FPGA implementation allows

students to upload an image which is then processed via a pre-loaded FPGA lab, and

the output is shown directly to the user. The primary function of this lab is not to

provide remote functionality, but to prove the ability of an FPGA in a remote setting.

One of the developments in the realm of remote FPGAs utilizes a Nexys 3 for remote

access. Peinado et al. developed an admin panel in which user access to remote FPGA

servers can be tracked and limited by various amounts of time [6]. This is to ensure

that remote FPGA servers are available for use and that a few students cannot consume

all the available resources for an indefinite amount of time. Peinado et al. do not use

a webcam to show the board, but instead, they utilize a GUI and a serial monitor for

input and output from the FPGA. Further, they utilize an Arduino to simulate various

peripheral devices on the Nexys [6].

One final implementation of an online digital design laboratory, the Cyber Lab,

combines multiple FPGA devices implemented as a data server and as an experimental

platform for students. The Cyber Lab expands functionality beyond one FPGA, giving

students the ability to process large sets of data in parallel on multiple devices. The

Cyber Lab again utilizes the popular set up of a webcam for showing the FPGA

interface. Further, the Cyber Lab implements a scheduler via a web server to ensure

that all students who wish to access the available FPGAs have the ability to do so [7].

15

Significance of Proposed Work

This work defines a new technique for integrating IoT access to a variety of

development boards. A method is provided for simple IoT peripheral access for any

FPGA design. This is completed through the development of a tool for embedding IoT

access into any Verilog hardware design. Further, this work allows multiple users to

collaborate on one FPGA device, unlike any previous works. By loading the user

application GUI, all users can directly interact with the design while seeing the

interactions from other users in real time. Further, the application reports low latency

results, which are further summarized in Chapter 4. This collection of benefits allows

users to interact with the FPGA development board remotely while providing an

experience similar to interacting with the FPGA development board in person.

16

CHAPTER 3: MATERIALS AND METHODS

Remote FPGA Framework Implementation

The remote access FPGA package is produced with all of the utilities required to

quickly begin hosting FPGA interactivity on the IoT. The user must begin with a

hardware design that is compatible with one of the supported development boards,

including an existing pinout. Next, the user would utilize the included Python Wizard,

which implements the necessary hardware modules needed for remote access. The

Python Wizard will output a copy of the user project that is now remote access ready.

This new project is then synthesized, implemented, and flashed to the FPGA via the

Intel Quartus Application. For the final step, the user would copy a configuration file

entitled “wpa supplicant.conf” to the SD card with the necessary information to

connect to the local WiFi network. The contents for the configuration file must be

exactly as shown in Listing 1, with network name being replaced with the name of the

network, and network password being replaced with the password of the network [40].

Listing 1: Rasperry Pi network configuration file.

ne twork ={

s s i d =” network name ” ;

psk =” n e t w o r k p a s s w o r d ” ;

}

The design will then be ready for remote access from the included cross-platform

application. The design flow for implementing the remote access FPGA system can be

seen in Figure 3.1.

17

Figure 3.1: Remote access implementation flow.

System Architecture Design

The remote access FPGA system requires multiple hardware and software modules

to function, including developments in Python, Typescript, Google Firebase [41], and

Verilog HDL. With means for communicating user input and output values with the

Raspberry Pi, the student module must work in conjunction with an interactivity

hardware module that is integrated into the user design via the Python Wizard. The

interactivity module arranges for outputs from the student module to be packed into a

serial bitstream to be sent to the Raspberry Pi, and simultaneously interprets incoming

bitstreams as inputs for the student module. An interactivity module template, also

referred to as the hardware wrapper, is designed, and the wrapper is modified by the

Python Wizard so as to fit the design of the user’s module and copied into a new

Quartus project along with a copy of the user project. The wizard further implements

the necessary wires to drive the user defined signals from the interactivity module

according to the serial inputs received from the Raspberry Pi. Similarly, the wires are

18

also implemented from the user module to the interactivity module to drive the serial

outputs to the FPGA. The user module remains unmodified by the Python Wizard; it is

only moved from being a top-level module to an embedded module in the wrapper,

with the inputs and outputs now being driven by the interactivity module. The entire

system architecture is shown in Figure 3.2.

Figure 3.2: Remote access system architecture.

The Raspberry Pi grants the FPGA the ability to communicate with Google

Firebase, which is a cloud-based system that manages the two-way communication

between the Raspberry Pi and the mobile device. The mobile device—the remote user

endpoint—allows for the interactivity between remote users and the physical FPGA.

Google Firebase is the only portion of this work to have a one-to-many relationship

with the user base. Each user application is communicating directly with Google

Firebase, and any changes within the database are interpreted directly by the

Raspberry Pi. There is only one data stream between a Raspberry Pi and Google

Firebase at any time, regardless of the number of active users. This allows for the

framework to scale directly with the user base, as the number of users who can access

an FPGA remotely is limited only by the bandwidth restrictions from Google Firebase.

Similarly, the amount of Remote FPGA projects that can be hosted is limited only by

data constraints imposed by Google Firebase [41]. Each individual module is further

described in later sections.

19

Mobile Application

The mobile application was developed via the Ionic development platform. Ionic

increases application functionality by providing a cross-platform development

environment that utilizes web-based programming languages, such as TypeScript.

Once an application is developed through Ionic, the Ionic command line interface

allows the designer to export the application to iOS and Android platforms. Further,

Ionic formats all visuals, such as buttons, fonts, and text alignment to be consistent

with each respective platform.

The mobile application implements various objects to display the binary FPGA pin

values in realtime. The objects and their associated properties are modeled after the

physical peripheral devices and are shown in Table 3.1. Each object is assigned a

”name,” which is used for identification within the application. Further, each object is

also given a negative logic variable, which determines if it is using a pull up or pull

down resistor network. Each peripheral is assigned a pin object which is an active

listener to the Firebase Realtime Database, and is responsible for updating its parent

peripherals depending on the values received from the database.

20

Table 3.1: Application class implementations.

Class Properties

SevenSegment

Name: String
NegativeLogic: Bool
SegmentImage: String
Pins: Array<Pin>

LED

Name: String
NegativeLogic: Bool
LEDImage: String
PinConnect: Pin

Slide

Name: String
NegativeLogic: Bool
PinConnect: Pin
Flipped: Bool

PushButton

Name: String
NegativeLogic: Bool
PinConnect: Pin
Depressed: Bool

Pin

Assignment: String
Direction: Int
Value: Int
Parent: Array<Peripheral>

Further, the mobile application actively monitors the Google Firebase Realtime

Database, specifically listening for any changes to an FPGA table. Upon the reception

of a pin modification, the application updates the corresponding peripheral in the GUI.

Google Firebase Real-Time Database

Google Firebase is a real-time database, meaning that all changes are automatically

updated to any program that has an active listener attached to that database. Google

Firebase is an ideal candidate for the remote access FPGA application, as all changes

from both the FPGA and the mobile application must be immediately reflected on the

opposite end of the data line. Further, Google Firebase relies on NoSQL, storing

JavaScript Object Notation (JSON) objects rather than the typical Structured Query

Language (SQL) table hierarchy. The default JSON object that is passed between the

Raspberry Pi and mobile application through Google Firebase is shown in Figure 3.3.

21

Each individual FPGA is identified within the database by the unique hardware ID

located on the Raspberry Pi. This provides a uniquely identafiable key that the mobile

application can use to request updates on pin values. Within each individual FPGA table

is the users self-denoted ID and the peripheral values of the FPGA. The included pins in

this table are all pins from the FPGA’s General Purpose Input/Outputs (GPIOs), LEDs,

seven segment displays, push buttons, and slide switches. All outputs are mutable from

the Raspberry Pi, and all inputs are mutable from the user application.

Figure 3.3: Database architecture.

22

Raspberry Pi to FPGA Interface

The Raspberry Pi model was selected with two key parameters in mind:

affordability and on-board WiFi. Very few pins are required for connection with the

FPGA, so GPIO availability is not an issue with any Raspberry Pi model. With these

two requirements, the ideal candidate is the Raspberry Pi Zero-W, a small version of

the original Pi with a manufacturer’s suggested retail price (MSRP) of $10. The pin

connections and signal names for the DE0-CV and DE2-115 development boards from

Intel are described in Table 3.2. The DE0-CV and DE2-115 development boards

utilize Cyclone V and Cyclone IV-E FPGAs from Intel, respectively. Further, the

development boards have peripherals that allow the user to interact with the FPGA

without the need for any additional circuit building, such as LEDs, slide switches, and

push buttons. These peripherals are deactivated when the remote FPGA wrapper is in

use, as the peripherals are accessed via the mobile application instead. Both of the

aforementioned development boards were utilized for testing purposes with the remote

FPGA wrapper.

The benefit of serializing the data from the FPGA is that there are only three

necessary data connections from the Raspberry Pi, despite the management of all of

the input and output signals from the FPGA. This is accomplished by encoding the pin

values for the user-selected board and transmitting them over UART to the Raspberry

Pi.

23

Table 3.2: Raspberry Pi Pin connections.

Raspberry Pi Pin DE0-CV Pin DE2-115 Pin Signal Name Signal
Description

2 5V 5V 5[V] Power Five-volt
power
supply.

6 Gnd Gnd Ground Common
ground.

7 J17 AH23 Reset Software
controlled
FPGA reset.

8 G12 AH26 R-Pi UART TX Serial
transmit
line.

10 K16 AG26 R-Pi UART RX Serial
receive line.

11 G15 AG23 UART Error Active
high upon
transmission
error.

With means to transmit pin changes for both inputs and outputs, data including

the modified pin along with the new pin value must be sent back and forth between

the Raspberry Pi and FPGA. Pin values for various development boards are extracted

from a local JSON file loaded on the Raspberry Pi, and the correct file is loaded based

on configuration data that is loaded to the FPGA via the compilation wizard. Once

the pins have been extracted, they are sorted alphabetically and enumerated in binary

values. Binary pin values for the DE0-CV board are shown in Table 3.3.

Remote FPGA Hardware Wrapper

The Python Wizard embeds the user design into the Remote FPGA Hardware

Wrapper. The abstract FPGA system diagram is shown in Figure 3.4. The hardware

wrapper is composed of four modules that drive the student module: a UART for

communication with the Raspberry Pi, a First In First Out Buffer (FIFO) for storage of

data as it as received by the wrapper, an input manager for driving signals to the

student module, and an output manager for receiving output signals from the student

module.

24

Figure 3.4: Hardware wrapper architecture.

25

Table 3.3: DE0-CV pin reference values.

Pin # Pin Pin # Pin Pin # Pin Pin # Pin
0000000 A12 0100000 D13 1000000 M18 1100000 U1
0000001 A13 0100001 D17 1000001 M20 1100001 U13
0000010 A14 0100010 E14 1000010 M21 1100010 U15
0000011 A15 0100011 E15 1000011 M6 1100011 U16
0000100 AA1 0100100 E16 1000100 M7 1100100 U17
0000101 AA10 0100101 F12 1000101 M8 1100101 U2
0000110 AA13 0100110 F13 1000110 N1 1100110 U20
0000111 AA14 0100111 F14 1000111 N19 1100111 U21
0001000 AA15 0101000 F15 1001000 N2 1101000 U22
0001001 AA17 0101001 G11 1001001 N20 1101001 U7
0001010 AA18 0101010 G13 1001010 N21 1101010 V13
0001011 AA19 0101011 G16 1001011 N9 1101011 V14
0001100 AA2 0101100 G17 1001100 P14 1101100 V16
0001101 AA20 0101101 G18 1001101 P16 1101101 V18
0001110 AA22 0101110 H10 1001110 P17 1101110 V19
0001111 AB12 0101111 H14 1001111 P18 1101111 V20
0010000 AB13 0110000 H18 1010000 P19 1110000 V21
0010001 AB15 0110001 J11 1010001 P9 1110001 W16
0010010 AB17 0110010 J13 1010010 R15 1110010 W19
0010011 AB18 0110011 J18 1010011 R16 1110011 W2
0010100 AB20 0110100 J19 1010100 R17 1110100 W21
0010101 AB21 0110101 K17 1010101 R21 1110101 W22
0010110 AB22 0110110 K19 1010110 R22 1110110 W9
0010111 B12 0110111 K20 1010111 T12 1110111 Y14
0011000 B13 0111000 K21 1011000 T13 1111000 Y15
0011001 B15 0111001 K22 1011001 T14 1111001 Y16
0011010 B16 0111010 L1 1011010 T15 1111010 Y17
0011011 C1 0111011 L17 1011011 T17 1111011 Y19
0011100 C13 0111100 L18 1011100 T18 1111100 Y20
0011101 C15 0111101 L19 1011101 T19 1111101 Y21
0011110 C16 0111110 L2 1011110 T20 1111110 Y22
0011111 C2 0111111 L8 1011111 T22 1111111 Y3

26

FIFO Buffer

To account for the relatively slow read and write times of the UART module, a

FIFO is put in place to hold data during transmit and receive procedures. The FIFO is a

configurable buffer that will hold data until it can be used. Data is loaded into the buffer

such as a queue: new data is loaded at the back of the queue, and when new data is

requested from the buffer, the oldest data is retrieved. Both FIFOs are configured with

an 8-bit width. The FIFO on the input side has a depth of 16 words and the FIFO on

the output side has a depth of 64 words.

Table 3.4: Signals of the custom-logic FIFO module.

Name Direction Width Description
Load In 1b When asserted, the FIFO loads the value

DataIn into the buffer.
DataIn In FIFO WIDTH The data to store into the buffer.

hasData Out 1b Asserted when the FIFO contains data.
dataOut Out FIFO WIDTH The oldest data in the buffer.

nextValue In 1b When asserted, the FIFO sends the next
data value stored in the buffer to dataOut.

UART Digital Serializer/Deserializer

The UART is comprised of two main components: a serializer and a deserializer.

The serializer allows for parallel data to be transmitted to the Raspberry Pi. By

receiving a parallel input vector of some n bits, the serializer will sequentially shift the

bits out to the Raspberry Pi one at a time. The deserializer is the contrary to the

serializer. The deserializer will receive a sequential series of bits from the Raspberry

Pi and shift them into a parallel vector of n bits. These two components make up the

”receiver/transmitter” of the UART module. The length of the bit vectors, also known

as the amount of data frames, must be known at the time of design for both devices on

either end of the UART. Further, both devices must know the order of bits that are to

be transmitted through the UART. Otherwise, even if a bit vector is serialized, it may

be serialized backwards.

27

Further, the UART is configured as half-duplex, meaning that it will attempt to not

transmit and receive at the same time. This is to allow for use with a wide variety of

devices. While the UART will not transmit data when receiving data, it does have the

ability to receive data while transmitting. While this breaks the property of a

traditional half-duplex UART, this allows for the incorporation into system with a full

duplex UART. Signal descriptions for the UART module are described in Table 3.5.

Table 3.5: UART Configuration Properties.

UART Property Value
Configuration Half- Duplex

Baud Rate 256,000
Data Frames 8

Parity One Bit Even
Bit Order Most Significant Bit First

The other half of the UART acronym, ”Universal Asynchronous,” refers to the

communication method’s lack of a shared clock. Both devices on either end of the

UART transmission lines can operate on their own individual clock, however, they

must know how many bits are to be transmitted per second, referred to as the baud

rate. With the baud rate in mind, the deserializer can sample the bit line according to

its own clock and determine the state of the incoming bit. The UART signal

descriptions are listed in Table 3.6.

Generated Input Manager

The Input Manager module is one of the modules that must be compiled via the

Python Wizard. Depending on the amount of user inputs detected from the top module

to be embedded into the system for remote access, the Input Manager will have the

same exact corresponding outputs. For example, if the embedded module has five input

signals with a width of four bits, the Input Manager will have a generated five outputs

with width of four bits. In this manner, as the Input Manager receives an updated user

input from the FIFO, it will decode the pin value from the most significant seven bits,

and then set the corresponding signal to the value in the least significant bit. It will

continue this cycle as long as the FIFO contains data.

28

Table 3.6: Signals of the custom-logic UART module.

Name Direction Width Description
RX In 1b Incoming bit via UART.

RXError Out 1b Asserted on a timing or parity
error.

TX Out 1b Bit being transmitted via UART.
Incoming Deserializer->Serializer 1b Asserted if there is an incoming

UART transmission.
sendData In 1b Asserted when the FIFO has data

to send.
DataIn In 8b Data to transmit.
Read Out 1b Asserted when the serialized has

finished sending data and is
ready for new data to transmit.

DataReady Out 1b Asserted for one clock cycle
when the deserializer has new
data to load into the FIFO.

ParallelData Out 8b The data to be loaded into the
FIFO.

Table 3.7: Signals of the generated Input Manager.

Name Direction Width Description
dataIn In 8b Data meant to be decoded from the FIFO.
Read In 1b Asserted when data has been sent to the

embedded module so that new data may be
decoded.

dataAvailable Out 1b Asserted when the FIFO is not empty.
Input[N] Out q bits Corresponding signals going to the embedded

student module with a width of q bits.
Generated via the Python Wizard.

Generated Output Manager

Similar to the Input Manager, the Output Manager handles all of the embedded

FPGA module outputs. The Output Manager has a corresponding input wire for each

output of the embedded student module. The Output Manager then encodes the signal

based on the pin assignment of the updated output from the student module. The

encoding of the signal is determined by the Python Wizard via a JSON file. For

example, if the FPGA toggles an output on a wire that has an assigned pin value of

AA15 to a logic high, from Table 3.3 it can determine that the encoded value will be

8’b00010001. This is done by taking the pin value from the table, 7’b0001000, and

29

concatenating it with a single bit value of 1, which represents the logical value that

should be assigned to the pin. This data is then output to the FIFO, so that it can be

transmitted to the Raspberry Pi.

Table 3.8: Signals of the generated Output Manager.

Name Direction Width Description
dataOut Out 8b The packed and encoded pin and pin value.

dataReady Out 1b Asserted when new data has been encoded.
output[N] In 1 bits Embedded module outputs to be encoded with

width of q bits. This signal is also routed to the
physical peripherals on the FPGA development
board.

Embedded Student Module

The embedded student module is a user defined module, which is embedded into

the Remote FPGA framework when the Python Wizard is run. This is the module that

users will view on the mobile application. Both inputs and outputs are determined by

the user design. All inputs are wired to the Input Manager, with the exceptions of

system clocks. The system clocks are wired through the top-level module through to

the embedded module. Outputs are both wired to the Output Manager and exposed on

the top-level module so that they may be viewed on the mobile application as well as

the physical FPGA device.

Python Compiler Wizard

The embedded module signals must be adapted to fit the remote access hardware

wrapper. One could do this manually, but it is a long and meticulous procedure that

should be automated. For this reason, the Python Wizard was developed. The

information required by the Python Wizard includes the project folder destination, the

destination for the new, remote-enabled project, the user .qsf constraint file, the user

source code location, the name of the top module, and the development board that

should be displayed within the user application. The Python Wizard then creates the

inputs and outputs for the interactivity module from a template file as needed relative

30

to the top-module from the user. Next, the tool embeds the original top module into the

generated interactivity module. Instead of overwriting the user project, the Python

Wizard creates a new folder and project with the remote-access implementation.

The Python Wizard utilizes the basic user interface features of the tkinter library

from Python. There are some basic input checks built into the wizard , such as

confirming the folder locations and the correct file extensions. Once the build has been

completed, the user can open the new Quartus project, recompile, and flash the FPGA

with their new remote access-enabled project. The tool is limited in that it only works

with HDL top modules that are implemented via Verilog. The Python Wizard is robust

enough to detect the signal width and direction regardless of where it was defined in

the code. As long as the original design is robust enough to synthesize prior to the

implementation of the hardware wrapper, the Python Wizard will succeed in

integrating remote functionality.

31

CHAPTER 4: RESULTS

Experimental Results

By utilizing the Ionic platform, a GUI for interacting with the FPGA remotely via

a variety of mobile and PC devices was successfully implemented. The devices

include PCs, Macs, devices utilizing iOS, and devices utilizing Android OS. Further,

the application interface allows for users to interact with one another via the same

FPGA lab simultaneously, regardless of the user platform. For example, a user with

iOS devices, a user with a PC, and a user with an Android device can all interact with

the same lab simultaneously.

When the user first opens the remote access FPGA application, they are greeted by

a server browser page that lists all of the available FPGA devices for connectivity. Any

FPGA that is connected to Google Firebase via the Raspberry Pi will be displayed here

by the ID number. Upon selecting a device, the user will be taken to the display screen

for their selected FPGA laboratory.

The layout is loaded from Firebase, with the default values being stored on the

Raspberry Pi in a JSON file. All input and output peripherals that are by default on

the physical board are listed in the device view. The DE2-115 development board from

Intel is shown in Figure 4.1, and the DE0-CV development board from Intel is shown

in Figure 4.2.

As can be seen in both views, all development board peripherals are displayed.

The seven segment displays are shown at the top, labeled as SS[x], where x is the ID

of the display device. The LEDs are shown underneath, labeled by their default pin

connection, followed by the slide switches, again labeled by their pin connects. The

last set of on-board peripherals, the push buttons, are shown at the very bottom. All

connected users can interact with the design. This is to encourage collaboration between

students and teaching assistants during the debugging/presentation of a project. All user

inputs are sequenced, and the input that is last received by the Raspberry Pi server will

32

Figure 4.1: DE2-115 on an iPad.

be the one reflected on the FPGA as all inputs are sequentially loaded into a FIFO.

Further, three buttons can be seen in the menu toolbar. They are, in order from left to

right: the back button, the add peripheral button, and the list peripheral button.

The back button simply allows the user to exit the view for the current FPGA and

return to the FPGA server selection screen. The add peripheral button will allow the

user to add a new input or output to a GPIO pin located on the development board.

This functionality can be seen in Figure 4.3a. For this new peripheral to work, the

GPIO pin must be assigned to a signal in the original Quartus project before the remote

connectivity wrapper is added to the project. All LEDs are grouped according to their

33

Figure 4.2: DE0-CV on an iPhone.

color: red, green, and miscellaneous. The rows will wrap to the next row if their length

exceeds with width of the view port.

One additional feature of the view FPGA screen is that all interactions from other

users on an application connected to the FPGA are seen in real-time. For example, if

a user holds down the button at pin U7, the button will be shown as pressed in the live

view for all other users connected to the same FPGA server. This is to further emulate

an environment where all users are working on the same project in the same room.

The view peripheral button, shown as the list icon in the menu toolbar, is particularly

useful as it lists the properties, including the assigned pin, for each displayed peripheral

device. Further, this is where a user can remove a device from the view. Within the view

peripheral screen, users can select which devices they would like to examine by type:

LED, slide switch, seven segment display, or push button. This functionality is shown in

34

Figure 4.3b. By swiping left on a peripheral, a delete button is exposed, which can then

be used to remove that peripheral from the display. All modifications to peripherals,

including additions and deletions, are reflected on all connected users’ screens.

(a) Adding a peripheral to the view.

(b) View peripheral properties.

Figure 4.3: Multiple functionalities of the user application.

The lowest-cost experimental result consists of a DE0-CV development board,

which implements a Cyclone V FPGA, and a Raspberry Pi Zero. The total academic

cost for the system is $120 at the time of the writing. An image of the Raspberry

Pi/DE0-CV combination can be seen in Figure 4.4.

35

Figure 4.4: Complete remote access FPGA system.

The Python Wizard is essential for incorporating a student lab with the remote IoT

capabilities. The Python wizard requires seven inputs: the user ID, the Quartus project

folder, the Verilog source code folder, the top module for the project, the folder to

put the newly built Quartus project, the target development board, and an option to

synchronize the seven segment display updates. If the Sync SSD box is left unchecked,

the displays will update on the GUI one bit at a time, as opposed to smooth transitions

between numbers. Any errors along the way will be displayed under “Build Result”;

otherwise, “Build Completed!” will be displayed. The GUI for the Python Wizard can

be seen in Figure 4.5.

36

Figure 4.5: Python Wizard user interface.

Resource Usage

The remote FPGA hardware wrapper was designed to be as lightweight as

possible, so as not to utilize a large amount of resources on the physical FPGA. This is

pertinent as the hardware wrapper for remote applications must utilize as little

hardware as possible to allow the user to develop a complex hardware design.

Resource utilization for various FPGA chip sets is shown in Table 4.1. Adaptive Logic

Modules (ALMs) are the fundamental building block on Intel FPGAs, as they are

37

composed of two or more look up tables (LUTs) that are used to implement the

user-designed digital logic [42]. Note that in the remote FPGA application, the

hardware wrapper utilizes less than 1% of available ALMs on the tested platforms.

This is ideal for a light-weight development platform such as the remote-access tool.

The final synthesis report is shown in Figure 4.6.

Table 4.1: Resource usage for various FPGA chip sets.

FPGA Device ALM Utilization
DE-0 Dev Board 141 (<1%)
DE2-115 Dev Board 342 (<1%)
Cyclone VE Dev Board 271 (<1%)
Cyclone V SoC Dev Kit 265 (<1%)
Arrow SoCKit 267 (<1%)

Figure 4.6: FPGA hardware wrapper synthesis report.

Latency

Due to the interactive nature of the remote FPGA Lab, latency between a remote

FPGA and a user application is a critical component for correctly interpreting inputs

and outputs from the FPGA. With means to measure round-trip data latency between

38

the user application and FPGA, data was timed as it traveled from the user application

to the FPGA for processing, and back again to the application. A lightweight hardware

module was loaded to the DE0-CV board in which an output LED was assigned to an

input switch, so that the data was immediately reflected in the user application upon

reception of an input.

The latency test began timing data transmission upon the flip of a slide switch via

the user interface, and ended when the application realized the corresponding updated

LED pin. This test was run 10,000 times. The results are displayed in a histogram

which is shown in Figure 4.7, and the statistics are summarized in Table 4.2.

Table 4.2: Server response times.

Statistic Value
Total Tests n 10,000
Maximum 6050 [ms]
Minimum 2.75 [ms]
Results greater than 1 [s] .38%
Results less than .2 [s] 74%
Population Mean σ 196 [ms]
Standard Deviation µ 112 [ms]

Figure 4.7: Signal round-trip latency histogram.

39

Discussion

The remote FPGA platform that was developed provides a modern approach when

compared to other remote lab methods [2], [3], [7]. By utilizing the Ionic development

platform, convenient, mobile access to student laboratories is provided. Students can

harness the power of an FPGA by using a personal mobile device to access their remote

FPGA design as opposed to having to be in the presence of the physical development

board. Further, the approach utilizes cloud applications for communicating changes

on the FPGA. By introducing communication via the cloud, the need for a webcam

has been eliminated, in turn reducing the overall cost, network usage, and setup time

of the system. This is beneficial for both university engineering departments and their

respective students, as reduced costs increases the ability to scale the system, and in

turn, increases accessibility for students.

This novel design also opens up the possibility for collaboration on student projects

by allowing multiple users to access the same remote lab simultaneously. As opposed to

single user access [2]–[7], simultaneous access capability enables collaboration, project

presentation for online classes, and remote grading capabilities for teaching assistants.

As each user application accesses the cloud instead of directly accessing the FPGA,

there can be an unlimited amount of users for a single FPGA without reducing quality.

Further, the remote access FPGA allows users to expand upon the development

possibilities of an FPGA that this methodology utilizes by giving users the ability to

add and remove peripheral devices. For example, if a student were to decide on the

classical red–yellow–green stoplight lab, the remote FPGA application gives that

student the ability to add additional multicolor LEDs and push buttons necessary to

complete their project, despite the fact that the physical FPGA development board may

only have red LEDs. This can all be done without incurring the financial cost of

buying the physical peripheral or going through the process of setting up a physical

resistor network, allowing the students to focus on the digital design aspect of the lab

as opposed to the set-up of electronic components.

40

Future directions for this work are still being explored as well. The remote FPGA

system was designed to scale, as the hardware wrapper is portable between FPGA

manufacturers and the peripherals displayed in the applications are loaded via a

modifiable JSON-file. By adding other JSON files that include peripheral information

and pin connections for other development boards, the mobile application can be

expanded to include other FPGA board types.

41

CHAPTER 5: CONCLUSIONS

In this work, an IoT solution for remote digital design laboratories was proposed. A

system architecture which includes a cross-platform web application, Google Firebase

access, Raspberry Pi, and a host FPGA device was presented. This novel design is

unique from other works in that it allows multiple users to collaborate remotely on

one FPGA, which is useful for debugging, classroom-style presentations, and group

projects. Further, this design does not rely on the use of webcams for displaying FPGA

output to the user and can be accessed via a variety of devices such as computers, mobile

phones, and tablets. All outputs are still reflected on the physical FPGA development

board as well as within a cross-platform application.

The Remote FPGA hardware wrapper can be added to any FPGA project with the

Python Wizard, significantly reducing setup times for remote access. The Python

Wizard is designed to require minimal user input for simplicity: after loading the user

design, various input parameters can be selected via the user interface to customize the

remote accessibility of the design. For example, users can choose the development

board layout they wish to display within the remote access application and input their

user ID for server identification purposes.

Once the user design is being accessed via the remote access application, the user

has further ability to customize the FPGA interface layout. While the default user

interface layout replicates that of the development board selected in the Python

Wizard, the user can add, remove, or modify existing peripheral devices such as LEDs,

seven segment displays, slide switches, and push buttons. Further, these additional

peripheral devices can be connected to a virtual pull-up or pull-down resistor network,

allowing for either positive or negative logic implementations.

All user inputs within the application, such as button presses and toggle switches,

are reflected within all other users’ applications that are accessing the same design. For

example, if one user pushes and holds down a button on their screen, and another user

42

is accessing the same design via the remote access application, then that pressed button

will be reflected on both of their screens.

The hardware wrapper utilizes a UART for communicating signal inputs and

outputs, a FIFO for managing signal data packets, and an input and output manager for

driving signals to the user’s hardware module. Both the input and output manager are

generated via the Python Wizard. The input manager drives the input signals on the

user module according to data received by the UART, and the output manager reads

the user module output signals and loads them into the UART to be transmitted to the

Raspberry Pi.

The hardware wrapper design requires less than 1% of hardware resources on tested

FPGA chips, and data latency from the application to the FPGA and back has an average

round trip time of 196 ms. This delay is an acceptable rate, as it is a near instantaneous

response to the user input. This design was developed using the DE0-CV and DE2-115

boards from Intel, but can easily replicate the peripheral devices of other development

board with the use of an updated JSON file.

Future plans for this work include adding more JSON board support files for Intel

based development boards. Further, new developments are planned that aim to add a

password protection feature to the user application to prevent unauthorized users from

accessing student projects.

43

REFERENCES

[1] G. Marinoni, H. Van’t Land, and T. Jensen, “The impact of covid-19 on higher

education around the world,” IAU Global Survey Report, 2020.

[2] R. Hashemian and J. Riddley, “Fpga e-lab, a technique to remote access a

laboratory to design and test,” in 2007 IEEE International Conference on

Microelectronic Systems Education (MSE’07), IEEE, 2007, pp. 139–140.

[3] F. Morgan, S. Cawley, F. Callaly, S. Agnew, P. Rocke, M. O’Halloran,

N. Drozd, K. Kepa, and B. McGinley, “Remote fpga lab with interactive control

and visualisation interface,” in 2011 21st International Conference on Field

Programmable Logic and Applications, IEEE, 2011, pp. 496–499.

[4] A. E.-R. Mohsen, M. Y. GadAlrab, Z. elhaya Mahmoud, G. Alshaer, M. Asy, and

H. Mostafa, “Remote fpga lab for zynq and virtex-7 kits,” in 2019 IEEE 62nd

International Midwest Symposium on Circuits and Systems (MWSCAS), IEEE,

2019, pp. 185–188.

[5] A. Schwandt and M. Winzker, “Make it open-improving usability and availability

of an fpga remote lab,” in 2019 IEEE Global Engineering Education Conference

(EDUCON), IEEE, 2019, pp. 232–236.

[6] Ó. Oballe-Peinado, J. Castellanos-Ramos, J. A. Sánchez-Durán,

R. Navas-González, A. Daza-Márquez, and J. A. Botın-Córdoba, “Fpga-based

remote laboratory for digital electronics,” in 2020 XIV Technologies Applied to

Electronics Teaching Conference (TAEE), IEEE, 2020, pp. 1–5.

[7] N. Fujii and N. Koike, “Iot remote group experiments in the cyber laboratory: A

fpga-based remote laboratory in the hybrid cloud,” in 2017 International

Conference on Cyberworlds (CW), IEEE, 2017, pp. 162–165.

[8] N. K. Jumaa, O. A. Abdulhameed, and R. H. Abbas, “A theoretical background

of iot platforms based on fpgas,” Communications on Applied Electronics, vol. 7,

pp. 6–10, 2018.

44

[9] A. Nauman, Y. A. Qadri, M. Amjad, Y. B. Zikria, M. K. Afzal, and S. W. Kim,

“Multimedia internet of things: A comprehensive survey,” IEEE Access, vol. 8,

pp. 8202–8250, 2020.

[10] S. A. Dehkordi, K. Farajzadeh, J. Rezazadeh, R. Farahbakhsh, K. Sandrasegaran,

and M. A. Dehkordi, “A survey on data aggregation techniques in iot sensor

networks,” Wireless Networks, vol. 26, no. 2, pp. 1243–1263, 2020.

[11] Z. A. O. Nasri Sulaiman, M. Marhaban, and M. Hamidon, “Design and

implementation of fpga-based systems-a review,” Australian Journal of Basic

and Applied Sciences, vol. 3, no. 4, pp. 3575–3596, 2009.

[12] A. Upegui and E. Sanchez, “Evolving hardware by dynamically reconfiguring

xilinx fpgas,” in International Conference on Evolvable Systems, Springer, 2005,

pp. 56–65.

[13] A. Al-Safi, A. Al-Khayyat, A. M. Manati, and L. Alhafadhi, “Advances in fpga

based pwm generation for power electronics applications: Literature review,” in

2020 11th IEEE Annual Information Technology, Electronics and Mobile

Communication Conference (IEMCON), IEEE, 2020, pp. 0252–0259.

[14] S. Rasoulinezhad, D. Boland, and P. H. Leong, “Mlblocks: Fpga blocks for

machine learning applications,” in The 2021 ACM/SIGDA International

Symposium on Field-Programmable Gate Arrays, 2021, pp. 228–228.

[15] X. Wang, C. Li, and J. Song, “Motion image processing system based on multi

core fpga processor and convolutional neural network,” Microprocessors and

Microsystems, vol. 82, p. 103 923, 2021.

[16] P. Liu, W. Qingqing, and W. Liu, “Enterprise human resource management

platform based on fpga and data mining,” Microprocessors and Microsystems,

vol. 80, p. 103 330, 2021.

[17] V. Jayakrishnan and C. Parikh, “Embedded processors on fpga: Soft vs hard,” in

Proceedings of the 2019 ASEE North Central Section Conference, 2019.

45

[18] R. Höller, D. Haselberger, D. Ballek, P. Rössler, M. Krapfenbauer, and

M. Linauer, “Open-source risc-v processor ip cores for fpgas—overview and

evaluation,” in 2019 8th Mediterranean Conference on Embedded Computing

(MECO), IEEE, 2019, pp. 1–6.

[19] Z. Zang, Y. Liu, and R. C. Cheung, “Reconfigurable risc-v secure processor and

soc integration,” in 2019 IEEE International Conference on Industrial

Technology (ICIT), IEEE, 2019, pp. 827–832.

[20] J. M. Szefer, W. Zhang, Y.-Y. Chen, D. C. 3, K. Chan, W. X. Li, R. C. Cheung,

and R. B. Lee, “

rapid single-chip secure processor prototyping on the opensparc fpga platform,”

in 22nd IEEE International Symposium on Rapid System prototyping, IEEE,

2011.

[21] S.-Z. Huang and R.-Q. Chen, “Fpga-based iot sensor hub,” in 2018

International Conference on Sensor Networks and Signal Processing (SNSP),

IEEE, 2018, pp. 139–144.

[22] C. Z. Myint, L. Gopal, and Y. L. Aung, “Reconfigurable smart water quality

monitoring system in iot environment,” in 2017 IEEE/ACIS 16th International

Conference on Computer and Information Science (ICIS), 2017, pp. 435–440.

DOI: 10.1109/ICIS.2017.7960032.

[23] M. S. BenSaleh, S. M. Qasim, A. A. AlJuffri, and A. M. Oheid, “Design of an

advanced system-on-chip architecture for internet-enabled smart mobile

devices,” in 2018 30th International Conference on Microelectronics (ICM),

IEEE, 2018, pp. 323–326.

[24] R. A. Ghate, S. K. Tilekar, and S. V. Chavan, “Comparative study of intelligent

and smart development platforms employed for internet of thing’s applications,”

Turkish Journal of Computer and Mathematics Education (TURCOMAT),

vol. 12, no. 12, pp. 810–821, 2021.

46

[25] A. Rupani, P. Whig, G. Sujediya, and P. Vyas, “A robust technique for image

processing based on interfacing of raspberry-pi and fpga using iot,” in 2017

International Conference on Computer, Communications and Electronics

(Comptelix), IEEE, 2017, pp. 350–353.

[26] Q. Huang, K. Rodriguez, N. Whetstone, and S. Habel, “Rapid internet of things

(iot) prototype for accurate people counting towards energy efficient buildings.,”

J. Inf. Technol. Constr., vol. 24, pp. 1–13, 2019.

[27] Y. Wang and S. Jang, “A pulse sensor interface design for fpga based multisensor

health monitoring platform,” 2019.

[28] R. P. Foundation, Raspberry pi documentation. [Online]. Available: https://

www.raspberrypi.org/documentation.

[29] B. Foundation, Beaglebone documentation. [Online]. Available:

https://beagleboard.org/boards.

[30] I. Jaziri, L. Charaabi, and K. Jelassi, “Remote web-based control laboratories

using embedded linux and field-programmable gate array,” Proceedings of the

Institution of Mechanical Engineers, Part I: Journal of Systems and Control

Engineering, vol. 232, no. 9, pp. 1146–1154, 2018.

[31] I. Jaziri, L. Chaarabi, and K. Jelassi, “A remote dc motor control using

embedded linux and fpga,” in 2015 7th International Conference on Modelling,

Identification and Control (ICMIC), 2015, pp. 1–5. DOI:

10.1109/ICMIC.2015.7409332.

[32] M. Elnawawy, A. Farhan, A. Al Nabulsi, A. Al-Ali, and A. Sagahyroon, “Role

of fpga in internet of things applications ,” in 2019 IEEE International

Symposium on Signal Processing and Information Technology (ISSPIT), IEEE,

2019, pp. 1–6.

[33] S. Kang, J. Moon, and S. Jun, “Fpga-accelerated time series mining on low-

power iot devices,” in 2020 IEEE 31st International Conference on Application-

47

specific Systems, Architectures and Processors (ASAP), 2020, pp. 33–36. DOI:

10.1109/ASAP49362.2020.00015.

[34] R. Ferdian, R. Aisuwarya, and T. Erlina, “Edge computing for internet of things

based on fpga,” in 2020 International Conference on Information Technology

Systems and Innovation (ICITSI), IEEE, 2020, pp. 20–23.

[35] G.-M. Sung, C.-T. Lee, and C.-R. Chen, “Iot-based home care system with a

fpga development board by using rs-485 interface and verilog hdl,” in 2020 IEEE

International Conference on Systems, Man, and Cybernetics (SMC), IEEE, 2020,

pp. 3370–3374.

[36] L. Peng, Z. Xin, and G. Ping, “Design and implementation of remote deepface

model face recognition system based on sbrio fpga platform and nb-iot module,”

in 2019 2nd International Conference on Safety Produce Informatization

(IICSPI), IEEE, 2019, pp. 505–509.

[37] S. Wang, Y. Hou, F. Gao, and X. Ji, “A novel iot access architecture for vehicle

monitoring system,” in 2016 IEEE 3rd World Forum on Internet of Things (WF-

IoT), IEEE, 2016, pp. 639–642.

[38] K. C. Gophane and P. Bhaskar, “Fpga based adaptive iot framework for distinct

applications,” in 2018 Fourth International Conference on Computing

Communication Control and Automation (ICCUBEA), IEEE, 2018, pp. 1–6.

[39] L. R. Brasilino and M. Swany, “Low-latency coap processing in fpga for the

internet of things,” in 2019 International Conference on Internet of Things

(iThings) and IEEE Green Computing and Communications (GreenCom) and

IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data

(SmartData), IEEE, 2019, pp. 1057–1064.

[40] Raspberry pi documentation. [Online]. Available: https : / / www .

raspberrypi.org/documentation/computers/configuration.html.

48

[41] “Realtime database limits - firebase realtime database ,” Google , 2021.

[Online]. Available:

https://firebase.google.com/docs/database/usage/limits.

[42] “Fpga architecture,” Intel Altera, Jul. 2006. [Online]. Available: https://www.

intel.com/content/dam/www/programmable/us/en/pdfs/literature/

wp/wp-01003.pdf.

49

PYTHON WIZARD

1 # -*- coding: utf-8 -*-

2 """

3 Created on Thu Dec 3 18:12:57 2020

4

5 @author: Alexander Magyari

6 """

7 import re

8 import json

9 import collections

10 import shutil

11 import errno

12 from pathlib import Path

13 import os

14 import glob

15 from tkinter import Tk, StringVar, IntVar, filedialog, messagebox,

Label, Entry, Button, N, CENTER, Checkbutton, OptionMenu

16

17 RX_DICT = {

18 ’comment’: re.compile(r’//(?P<comment>.*)\n’),

19 ’commentBlockStart’: re.compile(r’/*(?P<commentStart>.*)\n’),

20 ’commentBlockEnd’: re.compile(r’(?P<commentEnd>.*)\n’)

21 }

22

23

24 ###

25 ############## Initialize tkinter window ################

26 ###

27

28 def main():

50

29 locs = {

30 "buiild_loc_dest": "",

31 "source_code_folder_dest": "",

32 "top_mod_dest": "",

33 "project_fold_dest": "",

34 "pin_map_dest": ""

35 }

36

37 # If board are added here, the board pinouts must be

38 # uploaded to the fpga "boards" folder as a .json, and the

39 # board index in this list be updated in the RPi file as well.

40 # It is important that new boards are appended to the end of the

41 # list!

42

43 boards = [

44 "DE0-CV",

45 "DE2-115"

46]

47

48 default_prgrm_output = "Build Result: "

49 prgrm_output = default_prgrm_output + ""

50 prgrm_output_wrapper = [default_prgrm_output, prgrm_output]

51 root = Tk()

52 PSID = StringVar()

53 sync_ssds = IntVar()

54

55 # # This is the section of code which creates the main window

56 root.geometry(’600x700’)

57 root.configure(background=’#F0F8FF’)

58 root.title(’Virtual FPGA Image Builder’)

59

51

60 Label(root, text=’Seven Digit ID’, bg=’#F0F8FF’, font=(’arial’, 12,

’normal’)).place(relx=0.5, y=50, anchor=CENTER)

61 Entry(root, width=25, textvariable=PSID).place(relx=0.5, y=80,

anchor=CENTER)

62

63 #

64 # # This is the section of code which creates the a label

65 Label(root, text=’Source Code Folder’, bg=’#F0F8FF’, font=(’arial’,

12, ’normal’)).place(relx=0.5, y=225, anchor=CENTER)

66 # # This is the section of code which creates the a label

67 source_code_folder_label = Label(root, text=’No folder selected’,

bg=’#F0F8FF’, font=(’arial’, 10, ’italic’), width=100,

anchor=CENTER)

68 source_code_folder_label.place(relx=0.5, y=285, anchor=CENTER)

69 # # This is the section of code which creates a button

70 Button(root, text=’Select Folder’, bg=’#838B8B’, font=(’arial’, 12,

’normal’), command=lambda: browse_for_sc_folder(locs, root,

source_code_folder_label)).place(relx=0.5, y=255, width=150,

anchor=CENTER)

71

72

73 #

74 # # This is the section of code which creates the a label

75 Label(root, text=’Select Top Module’, bg=’#F0F8FF’, font=(’arial’,

12, ’normal’)).place(relx=0.5, y=325, anchor=CENTER)

76 # # This is the section of code which creates the a label

77 top_module_label = Label(root, text=’No module selected’,

bg=’#F0F8FF’, font=(’arial’, 10, ’italic’), width=100,

anchor=CENTER)

78 top_module_label.place(relx=0.5, y=385, anchor=CENTER)

79 # # This is the section of code which creates a button

52

80 Button(root, text=’Load Module’, bg=’#838B8B’, font=(’arial’, 12,

’normal’), command=lambda: browse_for_top_mod(locs,

top_module_label)).place(relx=0.5, y=355, width=150,

anchor=CENTER)

81

82 #

83 # # This is the section of code which creates the a label

84 Label(root, text=’Project Folder’, bg=’#F0F8FF’, font=(’arial’, 12,

’normal’)).place(relx=0.5, y=125, anchor=CENTER)

85 # # This is the section of code which creates the a label

86 pinmap_label = Label(root, text=’No folder selected’, bg=’#F0F8FF’,

font=(’arial’, 10, ’italic’), width=100, anchor=CENTER)

87 pinmap_label.place(relx=0.5, y=185, anchor=CENTER)

88 # # This is the section of code which creates a button

89 Button(root, text=’Load Map’, bg=’#838B8B’, font=(’arial’, 12,

’normal’), command=lambda: browse_for_project_folder(locs, root,

pinmap_label)).place(relx=0.5, y=155, width=150, anchor=CENTER)

90

91 #

92 # # This is the section of code which creates the a label

93 Label(root, text=’Build Location’, bg=’#F0F8FF’, font=(’arial’, 12,

’normal’)).place(relx=0.5, y=425, anchor=CENTER)

94 # # This is the section of code which creates the a label

95 build_location_label = Label(root, text=’No location selected’,

bg=’#F0F8FF’, font=(’arial’, 10, ’italic’), width=100,

anchor=CENTER)

96 build_location_label.place(relx=0.5, y=485, anchor=CENTER)

97 # # This is the section of code which creates a button

98 Button(root, text=’SelectFolder’, bg=’#838B8B’, font=(’arial’, 12,

’normal’), command=lambda: browse_for_build_loc(locs, root,

53

build_location_label)).place(relx=0.5, y=455, width=150,

anchor=CENTER)

99

100 # y = 525

101 user_board = StringVar(root)

102 user_board.set(boards[0])

103 board_dropdown = OptionMenu(root, user_board, *boards)

104 board_dropdown.place(relx=0.5, y=525, anchor=CENTER)

105

106 c1 = Checkbutton(root, text=’Sync SSDs’, variable=sync_ssds,

onvalue=1, offvalue=0)

107 c1.place(relx=0.5, y=575, anchor=CENTER)

108

109 # # This is the section of code which creates a button

110 Button(root, text=’Build!’, bg=’#6E8B3D’, font=(’arial’, 10,

’italic’), command=lambda: build_program(prgrm_output_wrapper,

locs["source_code_folder_dest"], locs["top_mod_dest"],

locs["project_fold_dest"], locs["buiild_loc_dest"],

locs["pin_map_dest"], PSID.get(), program_output_label,

build_config_variable(sync_ssds.get()), build_board(boards,

user_board.get()),

boards.index(user_board.get()))).place(relx=0.5, y=650,

width=150, anchor=CENTER)

111

112

113 # # This is the section of code which creates the a label

114 program_output_label = Label(root, text=prgrm_output, bg=’#F0F8FF’,

font=(’arial’, 8, ’normal’))

115 program_output_label.place(relx=0.5, y=605, width=500, anchor=N)

116 root.mainloop()

117

54

118 root.quit()

119

120

121

122

123

124 class Port:

125

126 def __init__(self, n="", ic=False, d="input", w=0, p=None):

127 self.name = n

128 self.is_clock = ic

129 self.direction = d

130 self.width = w

131 self.ports = p

132

133 def set_port_width(self):

134 for _ in range(self.width):

135 self.ports.append("emptyPort")

136

137 def set_port(self, port_number, value):

138 self.ports[port_number] = value

139

140 def build_board(board_array, board):

141 loc = board_array.index(board)

142 return binary_for_verilog(loc, 8)

143

144 def build_config_variable(sync_ssds):

145 """

146

147

148 Parameters

55

149 ----------

150 sync_ssds : INT

151 Determines if the FPGA should sync seven segment display output.

1= y, 0 = n

152

153 Returns

154 -------

155 8 bit int as string formatted for verilog, defined as follows:

156 {empty, empty, empty, empty, empty, empty, empty, sync_ssds}

157

158 """

159 config_var = 0

160 config_var += sync_ssds

161

162 return binary_for_verilog(config_var, 8)

163

164

165

166 def copy_folder(src, dst):

167 """

168 Copys a folder

169

170 Parameters

171 ----------

172 src : STRING

173 folder to copy.

174 dst : STRING

175 location to copy folder to.

176

177 Returns

178 -------

56

179 None.

180

181 """

182 try:

183 if Path(dst).is_dir():

184 if not any(file.endswith(".qsf") for file in

os.listdir(dst)):

185 print("Trying to copy to non-empty and non-project based

directory!")

186 return

187 else:

188 shutil.rmtree(dst)

189 shutil.copytree(src, dst)

190 except OSError as exc: # python >2.5

191 if exc.errno == errno.ENOTDIR:

192 shutil.copy(src, dst)

193 else: raise

194

195

196 def first(iterable, default=None):

197 """

198 Returns the first match in an iterable

199

200 Parameters

201 ----------

202 iterable : LIST

203 list to check for a match in .

204 default : ANY, optional

205 Item to return if no match is found. The default is None.

206

207 Returns

57

208 -------

209 TYPE

210 DESCRIPTION.

211

212 """

213 for item in iterable:

214 return item

215 return default

216

217

218 def _parse_line(line):

219 """

220 Do a regex search against all defined regexes and

221 return the key and match result of the first matching regex

222

223 """

224

225 for key, rx in RX_DICT.items():

226 match = rx.search(line)

227 if match:

228 return key, match

229 # if there are no matches

230 return None, None

231

232

233 def remove_comments(string):

234 """

235 Removes comments from verilog file.

236

237

238 Parameters

58

239 ----------

240 string : TYPE

241 Code to remove comments from

242

243 Returns

244 -------

245 TYPE

246 Input code sans comments

247

248 """

249 pattern = r"(\".*?(?<!\\)\"|\’.*?(?<!\\)\’)|(/*.*?*/|//[^\r\n]*$)"

250 # first group captures quoted strings (double or single)

251 # second group captures comments (//single-line or /* multi-line */)

252 regex = re.compile(pattern, re.MULTILINE|re.DOTALL)

253 def _replacer(match):

254 if match.group(2) is not None:

255 return ""

256 else:

257 return match.group(1) # captured quoted-string

258 return regex.sub(_replacer, string)

259

260

261 def binary_for_verilog(digit, length):

262 bin_basic = bin(int(digit)).replace("0b", "")

263 while len(bin_basic) < length:

264 bin_basic = "0" + bin_basic

265 bin_basic = str(length) + "’b" + bin_basic

266 return bin_basic

267

268

269 def convert_embedded_digits_to_binary(string, max_digit):

59

270 start_loc = string.find("{{CONVERT_TO_BINARY:")

271 min_length = len(bin(max_digit).replace("0b", ""))

272

273 while start_loc > 0:

274 end_loc = string[start_loc:].find("}}") + start_loc

275 digit_to_convert = string[start_loc +

len("{{CONVERT_TO_BINARY:"):end_loc]

276 digit_converted = binary_for_verilog(digit_to_convert,

min_length)

277 string = string[:start_loc] + digit_converted + string[end_loc +

len("}}"):]

278 start_loc = string.find("{{CONVERT_TO_BINARY:")

279 print("Req bits ", max_digit, min_length)

280 return string

281

282 # this is the function called when the button is clicked

283 def browse_for_sc_folder(dic, root, source_code_folder_label):

284 def_location = "../."

285 if dic["project_fold_dest"] != "":

286 def_location = dic["project_fold_dest"]

287 dic["source_code_folder_dest"] = filedialog.askdirectory(

288 parent=root,

289 initialdir=def_location,

290 title=’Select your source code folder’)

291 if not any(fname.endswith(’.v’) for fname in

os.listdir(dic["source_code_folder_dest"])):

292 messagebox.showinfo(

293 "Warning!",

294 "The selected folder has no .v files! This surely is not

your source code folder.")

295 dic["source_code_folder_dest"] = ""

60

296 else:

297 source_code_folder_label.configure(text=

298 ["source_code_folder_dest"])

299

300

301 # this is the function called when the button is clicked

302 def browse_for_top_mod(dic, top_module_label):

303 def_location = "../."

304 if dic["source_code_folder_dest"] != "":

305 def_location = dic["source_code_folder_dest"]

306 elif dic["project_fold_dest"] != "":

307 def_location = dic["project_fold_dest"]

308 dic["top_mod_dest"] = filedialog.askopenfilename(

309 initialdir=def_location, title="Select top module",

310 filetypes=[("Verilog files", "*.v")])

311 if dic["top_mod_dest"]:

312 top_module_label.configure(text=dic["top_mod_dest"])

313

314

315 # this is the function called when the button is clicked

316 def browse_for_project_folder(dic, root, pinmap_label):

317 dic["project_fold_dest"] = filedialog.askdirectory(

318 parent=root,

319 initialdir="./..",

320 title=’Select your main project folder’)

321 file_count = 0

322 for fname in os.listdir(dic["project_fold_dest"]):

323 if fname.endswith(’.qsf’):

324 dic["pin_map_dest"] = dic["project_fold_dest"] + "/" + fname

325 file_count += 1

326

61

327 if file_count == 0:

328 dic["project_fold_dest"] = ""

329 messagebox.showinfo("Warning!",

330 "Your main project folder must be the location

of a precompiled "+

331 "Quartus Project. There should be a .qsf file

in this folder.")

332 elif file_count > 1:

333 dic["project_fold_dest"] = ""

334 messagebox.showinfo("Warning!",

335 "There are multiple .qsf files located in this

folder. Please ensure"+

336 " only one .qsf file exists.")

337 elif dic["buiild_loc_dest"] == dic["project_fold_dest"]:

338 dic["project_fold_dest"] = ""

339 messagebox.showinfo("Warning!",

340 "The selected folder is the same as your build

folder. You must select"+

341 " a different folder.")

342 else:

343 pinmap_label.configure(text=dic["project_fold_dest"])

344

345

346 # this is the function called when the button is clicked

347 def browse_for_build_loc(dic, root, build_location_label):

348 dic["buiild_loc_dest"] = filedialog.askdirectory(parent=root,

349 initialdir="./../Build",

350 title=’Select folder to

build new ’+

351 ’project’)

352 if dic["buiild_loc_dest"] == dic["project_fold_dest"]:

62

353 dic["buiild_loc_dest"] = ""

354 messagebox.showinfo("Warning!",

355 "The selected folder is the same as your main

project folder. You"+

356 " must select a different folder.")

357 else:

358 build_location_label.configure(text=dic["buiild_loc_dest"])

359

360

361

362 def set_build_output(string, program_output_label):

363 print(string)

364 program_output_label.configure(text=string)

365

366 def build_program(program_output_text, source_code_folder_dest,

top_mod_dest,

367 project_fold_dest, buiild_loc_dest, pin_map_dest,

people_soft_id,

368 program_output_label, configuration_variable,

board_to_use, board_name):

369 try:

370 print(people_soft_id)

371 error_message = ""

372 if len(people_soft_id) != 7:

373 error_message += "\nPSID must be exactly 7 digits long!"

374 if not people_soft_id.isdigit():

375 error_message += "\nPSID must only be numbers!"

376 if not source_code_folder_dest:

377 error_message += "\nNo source code folder selected!"

378 print(source_code_folder_dest)

379 if not top_mod_dest:

63

380 error_message += "\nNo top module verilog file selected!"

381 if not project_fold_dest:

382 error_message += "\nNo project folder selected!"

383 if not buiild_loc_dest:

384 error_message += "\nNo build location selected!"

385 if error_message:

386 set_build_output(program_output_text[0] + error_message +

"\nBuild not completed.", program_output_label)

387 return

388

389 ###

390 ################## Create Build Folder ##################

391 ###

392 build_folder = buiild_loc_dest + "/build"

393 copy_folder(project_fold_dest, build_folder)

394 shutil.copy("inc/basefiles/FIFO.v", build_folder + "/src")

395 shutil.copy("inc/basefiles/deserializer.v", build_folder +

"/src")

396 shutil.copy("inc/basefiles/serializer.v", build_folder + "/src")

397

398 port_list = []

399 ###

400 #### Extract port size and direction from top module ####

401 ###

402 student_module_instance = ""

403 with open(top_mod_dest, ’r’) as file:

404 no_comments = remove_comments(file.read())

405 no_tabs = re.sub(r’(^[\t]+)’, ’’, no_comments, flags=re.M)

406 no_new_lines = re.sub(r"\n*", "", no_tabs)

407 lines = no_new_lines.split(’;’)

408 for line in lines:

64

409 if line.startswith(’module’):

410 student_module_instance = line

411 ports =

line[line.find("(")+1:line.find(")")].split(’,’)

412 for port in ports:

413 p = Port("newPort", False, "undef", 1, [])

414 port_string = port.split()

415 actual_name = port_string[len(port_string) - 1]

416 p.name = actual_name.strip()

417 if len(port_string) > 1:

418 if port_string[0] == "output":

419 p.direction = "output"

420 if port_string[0] == "input":

421 p.direction = "input"

422 width_str = port_string[len(port_string) - 2]

423 b_one = width_str.find("[")+1

424 b_two = width_str.find("]")

425 if not (b_one == 0 and b_two == -1):

426 width = width_str[b_one:b_two]

427 width = width.replace(" ", "")

428 width = width.replace("[", "")

429 width = width.replace("]", "")

430 width = width.split(":")

431 width = int(width[0]) - int(width[1]) + 1

432 p.width = width

433 port_list.append(p)

434

435 if line.startswith(’input’):

436 line = line[5:len(line) + 1]

437 no_extra_space = re.sub(r"(\s+)", " ", line)

438 b_one = no_extra_space.find("[")+1

65

439 b_two = no_extra_space.find("]")

440 width = no_extra_space[b_one:b_two]

441 if b_one == 0 and b_two == -1:

442 width = 1

443 port_names = line.split(’,’)

444 else:

445 width = width.replace(" ", "")

446 width = width.replace("[", "")

447 width = width.replace("]", "")

448 width = width.split(":")

449 width = int(width[0]) - int(width[1]) + 1

450 port_names = no_extra_space[b_two +

1:len(line)].split(’,’)

451 for p in port_names:

452 actual_name = p.split()

453 actual_name = actual_name[len(actual_name) - 1]

454 po = first(x for x in port_list if x.name ==

actual_name.strip())

455 if po is not None:

456 po.direction = "input"

457 po.width = width

458

459

460 if line.startswith(’output’):

461 line = line[6:len(line) + 1]

462 no_extra_space = re.sub(r"(\s+)", " ", line)

463 b_one = no_extra_space.find("[")+1

464 b_two = no_extra_space.find("]")

465 width = no_extra_space[b_one:b_two]

466 if b_one == 0 and b_two == -1:

467 width = 1

66

468 port_names = line.split(’,’)

469 else:

470 width = width.replace(" ", "")

471 width = width.replace("[", "")

472 width = width.replace("]", "")

473 width = width.split(":")

474 width = int(width[0]) - int(width[1]) + 1

475 port_names = no_extra_space[b_two +

1:len(line)].split(’,’)

476 for p in port_names:

477 actual_name = p.split()

478 actual_name = actual_name[len(actual_name) - 1]

479 po = first(x for x in port_list if x.name ==

actual_name.strip())

480 if po is not None:

481 po.direction = "output"

482 po.width = width

483

484 for port in port_list:

485 port.set_port_width()

486

487 ###

488 ########## Extract port mapping from .qsf file ##########

489 ###

490 with open(pin_map_dest, ’r’) as file:

491 lines = file.readlines()

492 for line in lines:

493 if line.startswith("set_location_assignment"):

494 info =

line[len("set_location_assignment"):len(line)-1]

495 pin = info.split()[0]

67

496 location = info.split()[2]

497 b_one = location.find("[")+1

498 b_two = location.find("]")

499 if b_one == 0 and b_two == -1:

500 loc_number = 0

501 else:

502 loc_number = location[b_one:b_two]

503 location = location[0:b_one - 1]

504

505 pf = first(x for x in port_list if x.name ==

location.strip())

506 if pf is not None:

507 pf.set_port(int(loc_number), pin[4:len(pin)])

508

509

510 ###

511 ######## Load pin list for binary enumeration ###########

512 ###

513 pin_dict = {}

514 pin_reset_vals = {}

515 print("BN: " + str(board_name))

516 if board_name == 0:

517 json_data = json.load(open(’inc/de0-cv.json’, ’r’))

518 elif board_name == 1:

519 json_data = json.load(open(’inc/de2115.json’, ’r’))

520 else:

521 print("File not found. Board code: " + str(board_name))

522 counter = 0

523 for key, value in json_data[’Pins’].items():

524 pin_dict[key] = 0

525 counter += 1

68

526 pin_reset_vals[key] = value

527 pin_dict = collections.OrderedDict(sorted((pin_dict.items())))

528 counter = 0

529 for key, value in pin_dict.items():

530 pin_dict[key] = str(format(counter, ’015b’))

531 counter += 1

532 print(key, ":", pin_dict[key])

533

534

535 ###

536 ###### Build Replacement Strings for Build files ########

537 ###

538 input_list_string = ""

539 input_reset_string = ""

540 input_process_string = ""

541

542 output_list_string = ""

543 output_pin_parameters = ""

544 output_reg_init_string = ""

545 output_reset_string = ""

546 output_logic_string =

"\t\t\t\t\t{{CONVERT_TO_BINARY:2}}:\n\t\t\t\t\tbegin\n"

547 max_output_state = 3

548 nested_ifs = 0

549 for p in port_list:

550 reset_value = ""

551 for i in range(p.width):

552 if p.ports[i] in pin_dict:

553 reset_value += str(pin_reset_vals[p.ports[i]])

554 else:

555 p.is_clock = True

69

556

557 ### Build input strings

558 if p.direction == "input" and not p.is_clock:

559 ### {{INPUT_LIST_HERE}} Modifier

560

561 if len(input_list_string) > 0:

562 input_list_string += ", "

563 input_list_string += "output reg "

564 if p.width - 1 > 0:

565 input_list_string += "[" + str(p.width - 1) + ":0] "

566 input_list_string += "stu_" + p.name

567 ### {{RESET_INPUTS_HERE}} Modifier

568 input_reset_string += "\t\t\t" + "stu_" + p.name + " <= "

+ str(p.width) + "’b"

569 # for b in range(p.width):

570 # input_reset_string += "0"

571 input_reset_string += reset_value

572 input_reset_string += ";\n"

573 ### {{PROCESSED_INPUTS_HERE}} Modifier

574 for b in range(p.width):

575 input_process_string += ("\t\t\t\t\t\t15’b" +

pin_dict[p.ports[b]]

576 + ": " + "stu_" + p.name)

577 if p.width - 1 > 0:

578 input_process_string += "[" + str(b) + "]"

579 input_process_string += " <=

___DATA_TO_PROCESS___[0];\n"

580

581 ### Build Output strings

582 if p.direction == "output" and not p.is_clock:

583 ### {{OUTPUT_LIST_HERE}} Modifier

70

584 if len(output_list_string) > 0:

585 output_list_string += ", "

586 output_list_string += "input "

587 if p.width - 1 > 0:

588 output_list_string += "[" + str(p.width - 1) + ":0] "

589 output_list_string += "stu_" + p.name

590 ### {{OUTPUT_PARAMETERS_HERE}}

591 param_string = "parameter "

592 if p.width - 1 > 0:

593 param_string += "[" + str(p.width * 15 - 1) + ":0] "

594 param_string += "PIN" + "stu_" + p.name + " = "

595 if p.width - 1 > 0:

596 param_string += "{"

597 for b in reversed(range(p.width)):

598 param_string += "15’b" + pin_dict[p.ports[b]]

599 if b != 0:

600 param_string += ", "

601 if p.width - 1 > 0:

602 param_string += "}"

603 param_string += ";\n"

604 output_pin_parameters += param_string

605 ### {{OUTPUT_CACHE_HERE}}

606 register_string = "reg "

607 if p.width - 1 > 0:

608 register_string += "[" + str(p.width - 1) + ":0] "

609 register_string += "CACHEstu_" + p.name + ";\n"

610 output_reg_init_string += register_string

611 ### {{RESET_CACHE_HERE}}

612 output_reset_string += "\t\t\t\tCACHEstu_" + p.name + "

<= 0;\n"

613 ### {{OUTPUT_LOGIC_HERE}}

71

614 if nested_ifs > 5:

615 output_logic_string += ("\t\t\t\t\t" +

"{{CONVERT_TO_BINARY:" + str(max_output_state) +

616 "}}:" + "\n\t\t\t\t\tbegin\n")

617 nested_ifs = 0

618 max_output_state += 1

619 if nested_ifs != 0:

620 output_logic_string += "\n\t\t\t\t\t\telse\n"

621 if_statement = "\t\t\t\t\t\tif (" + "CACHEstu_" + p.name

+ " != " + "stu_" + p.name

622 if_statement +=

")\n\t\t\t\t\t\tbegin\n\t\t\t\t\t\t\tdataReady <=

1’b1;\n"

623 output_logic_string += if_statement

624 if p.width - 1 == 0:

625 nested_if_body = "\n\t\t\t\t\t\t\tdataOut <= " +

"PIN" + "stu_" + p.name + "[14:7];"

626 nested_if_body +=

"\n\t\t\t\t\t\t\tSECOND_HALF_OF_SIGNAL <= {" +

"PIN" + "stu_" + p.name + "[6:0], stu_" + p.name +

"};"

627 nested_if_body += "\n\t\t\t\t\t\t\tCACHEstu_" +

p.name + " <= stu_" + p.name + ";\n"

628 output_logic_string += nested_if_body

629 nested_ifs += 1

630 else:

631 nested_if_body = ""

632 for b in range(p.width):

633 if nested_if_body != "":

634 nested_if_body = "\n\t\t\t\t\t\t\telse\n"

635 """

72

636 nested_if_body += "\t\t\t\t\t\t\tif " +

"(CACHEstu_" + p.name + "[" + str(b) + "] ^ "

+ "stu_" + p.name + "[" + str(b) + "] == 1’b1)"

637 nested_if_body += "\n\t\t\t\t\t\t\tbegin"

638 nested_if_body += "\n\t\t\t\t\t\t\t\tdataOut <=

{" + "PIN" + "stu_" + p.name + "[" + str((b +

1) * p.width - 1) + ":" + str(b * p.width) +

"], stu_" + p.name + "[" + str(b) + "]};"

639 nested_if_body += "\n\t\t\t\t\t\t\t\tCACHEstu_" +

p.name + "[" + str(b) + "] <= stu_" + p.name +

"[" + str(b) + "];"

640 nested_if_body += "\n\t\t\t\t\t\t\tend"

641 """

642 nested_if_body += "\t\t\t\t\t\t\tif " +

"(CACHEstu_" + p.name + "[" + str(b) + "] ^ "

+ "stu_" + p.name + "[" + str(b) + "] == 1’b1)"

643 nested_if_body += "\n\t\t\t\t\t\t\tbegin"

644 nested_if_body += "\n\t\t\t\t\t\t\t\tdataOut <=

{" + "PIN" + "stu_" + p.name + "[" + str(b *

15 + 14) + ":" + str(b * 15 + 7) + "]};"

645 nested_if_body +=

"\n\t\t\t\t\t\t\t\tSECOND_HALF_OF_SIGNAL <= {"

+ "PIN" + "stu_" + p.name + "[" + str(b * 15 +

6) + ":" + str(b * 15) + "], stu_" + p.name +

"[" + str(b) + "]};"

646 nested_if_body += "\n\t\t\t\t\t\t\t\tCACHEstu_" +

p.name + "[" + str(b) + "] <= stu_" + p.name +

"[" + str(b) + "];"

647 nested_if_body += "\n\t\t\t\t\t\t\tend"

648 output_logic_string += nested_if_body

649 nested_ifs += 1

73

650 output_logic_string += "\n\t\t\t\t\t\t\tCURRENT_STATE <=

" + "{{CONVERT_TO_BINARY:" + str(1) + "}};\n"

651 output_logic_string += "\t\t\t\t\t\t\tNEXT_STATE_BUFFER

<= " + "{{CONVERT_TO_BINARY:" + str(max_output_state

- 1) + "}};\n\t\t\t\t\t\tend"

652 if p == port_list[-1] or nested_ifs > 5:

653 output_logic_string +=

"\n\t\t\t\t\t\telse\n\t\t\t\t\t\tbegin\n\t\t\t\t\t\t\t

654 CURRENT_STATE <= "

655 if p == port_list[-1]:

656 output_logic_string +=

"{{CONVERT_TO_BINARY:2}};\n"

657 else:

658 output_logic_string += "{{CONVERT_TO_BINARY:" +

str(max_output_state) + "}};\n"

659 output_logic_string +=

"\t\t\t\t\t\tend\n\t\t\t\t\tend"

660 # t = output_logic_string.rsplit(str(max_output_state), 1)

661 # output_logic_string = "2".join(t)

662 output_logic_string =

convert_embedded_digits_to_binary(output_logic_string,

max_output_state - 1)

663 if max_output_state <= 2:

664 current_state_size_string = ""

665 else:

666 current_state_size_string = "[" +

str(len(bin(max_output_state).replace("0b", "")) - 1) +

":0] "

667

668

669 ### Build strings for generated top module

74

670 to_student_wire_list = ""

671 input_module_input_list = ""

672 from_student_wire_list = ""

673 output_module_input_list = ""

674 student_clock_list = ""

675 # format student module

676 student_module_instance = student_module_instance[len("module ")

+ student_module_instance.find("module "):]

677 student_module_instance = re.sub(r"(\s|,|\()input\s", r"\1",

student_module_instance)

678 student_module_instance = re.sub(r"(\s|,|\()output\s", r"\1",

student_module_instance)

679 student_module_instance = re.sub(r"(\s|,|\()wire\s", r"\1",

student_module_instance)

680 student_module_instance = re.sub(r"(\s|,|\()reg\s", r"\1",

student_module_instance)

681 student_module_instance = re.sub(r"(\s|,|\()\[.*?\]\s", r"\1",

student_module_instance)

682 student_module_instance += ";"

683 student_module_instance =

student_module_instance[:student_module_instance.find("(")]

+ " student_module_instance " +

student_module_instance[student_module_instance.find("("):]

684 for p in port_list:

685 if p.direction == "input" and not p.is_clock:

686 to_student_wire_list += "\t wire "

687 if p.width - 1 > 0:

688 to_student_wire_list += "[" + str(p.width - 1) + ":0]

"

689 to_student_wire_list += "toStudentModule_" + p.name +

";\n"

75

690 input_module_input_list += ", " + "toStudentModule_" +

p.name

691 student_module_instance = re.sub(r"(\s|,|\()" + p.name +

r"(\s|,|\))", r"\1" + "toStudentModule_" + p.name +

r"\2", student_module_instance)

692 elif p.is_clock and "M9" not in p.ports:

693 student_clock_list += ", " + "input studentClock_" +

p.name

694 student_module_instance = re.sub(r"(\s|,|\()" + p.name +

r"(\s|,|\))", r"\1" + "studentClock_" + p.name +

r"\2", student_module_instance)

695 elif p.is_clock:

696 student_module_instance = re.sub(r"(\s|,|\()" + p.name +

r"(\s|,|\))", r"\1" + "clk" + r"\2",

student_module_instance)

697 if p.direction == "output" and not p.is_clock:

698 from_student_wire_list += ", output wire "

699 if p.width - 1 > 0:

700 from_student_wire_list += "[" + str(p.width - 1) +

":0] "

701 from_student_wire_list += "fromStudentModule_" + p.name

702 output_module_input_list += ", " + "fromStudentModule_" +

p.name

703 student_module_instance = re.sub(r"(\s|,|\()" + p.name +

r"(\s|,|\))", r"\1" + "fromStudentModule_" + p.name +

r"\2", student_module_instance)

704

705 ###

706 ############# Build User Inp/Out Manager ################

707 ###

708 # print(input_list_string)

76

709 # print(input_reset_string)

710 # print(input_process_string)

711 # print(output_list_string)

712 # print(output_pin_parameters)

713 # print(output_reg_init_string)

714 # print(output_reset_string)

715 # print(output_logic_string)

716 # print(to_student_wire_list)

717 # print(from_student_wire_list)

718 # print(output_module_input_list)

719 # print(input_module_input_list)

720 # print(student_module_instance)

721 # print(student_clock_list)

722 with open(’inc/basefiles/inputManager.v’, ’r’) as file:

723 data = file.read()

724 data = data.replace(’{{INPUT_LIST_HERE}}’, input_list_string)

725 data = data.replace(’{{RESET_INPUTS_HERE}}’,

input_reset_string)

726 data = data.replace(’{{PROCESSED_INPUTS_HERE}}’,

input_process_string)

727

728 with open(build_folder + ’/src/inputManager.v’, ’w’) as

filetowrite:

729 filetowrite.write(data)

730

731

732 with open(’inc/basefiles/outputManager.v’, ’r’) as file:

733 data = file.read().replace(’{{MAX_STATE}}’,

str(max_output_state - 1))

734 data = convert_embedded_digits_to_binary(data,

max_output_state - 1)

77

735 data = data.replace(’{{BOARD_DATA_HERE}}’, board_to_use)

736 data = data.replace(’{{CONFIG_DATA_HERE}}’,

configuration_variable)

737 data = data.replace(’{{OUTPUT_LIST_HERE}}’,

output_list_string)

738 data = data.replace(’{{OUTPUT_PARAMETERS_HERE}}’,

output_pin_parameters)

739 data = data.replace(’{{OUTPUT_CACHE_HERE}}’,

output_reg_init_string)

740 data = data.replace(’{{RESET_CACHE_HERE}}’,

output_reset_string)

741 data = data.replace(’{{STATE_LOGIC}}’, output_logic_string)

742 data = data.replace(’{{CURRENT_STATE_SIZE}}’,

current_state_size_string)

743 data = data.replace(’{{PSID_HERE}}’,

binary_for_verilog(people_soft_id, 24))

744

745 with open(build_folder + ’/src/outputManager.v’, ’w’) as

filetowrite:

746 filetowrite.write(data)

747

748 with open(’inc/basefiles/remoteFPGATOP.v’, ’r’) as file:

749 data = file.read()

750 data = data.replace(’{{EXPOSED_WIRES}}’,

from_student_wire_list)

751 data = data.replace(’{{INPUT_TO_STUDENT}}’,

to_student_wire_list)

752 data = data.replace(’{{INPUT_WIRES}}’,

input_module_input_list)

753 data = data.replace(’{{STUDENT_MODULE}}’,

student_module_instance)

78

754 data = data.replace(’{{OUTPUT_WIRES}}’,

output_module_input_list)

755 data = data.replace(’{{STUDENT_CLOCKS}}’, student_clock_list)

756

757 with open(build_folder + ’/src/remoteFPGATOP.v’, ’w’) as

filetowrite:

758 filetowrite.write(data)

759

760

761 ###

762 ################## Modify .qsf file #####################

763 ###

764 files = glob.glob(build_folder + ’/*.qsf’)

765 if len(files) > 1:

766 print("More than one .qsf file found! Argghh :(")

767 with open(files[0], ’r’) as file:

768 lines = file.readlines()

769 final_data = ""

770 for line in lines:

771 if line.strip().startswith(’set_global_assignment -name

TOP_LEVEL_ENTITY’):

772 line = ’set_global_assignment -name TOP_LEVEL_ENTITY’

+ ’ remoteFPGATOP’

773 elif line.strip().startswith(’set_location_assignment

PIN_’):

774 port = line.strip()[line.strip().rfind(" "):]

775 p = line.strip().find(’set_location_assignment PIN_’)

+ len(’set_location_assignment PIN_’)

776 q = line.strip()[p:].find(" ")

777 pinName = line.strip()[p:q + p]

778 p = port.rfind("[") + 1

79

779 if p != 0:

780 q = port.rfind("]")

781 port = port[:p - 1]

782 if (pinName == "G12" or pinName == "K16" or pinName

== "G15" or pinName == "J17" or pinName == "M9")

and (board_name == "DE0-CV"):

783 print("Warning: Pins required for VFPGA detected

in student module. Skipping pin: " + pinName)

784 continue

785 if (pinName == "AH26" or pinName == "AG26" or pinName

== "AG23" or pinName == "AH23" or pinName == "Y2")

and (board_name == "DE0-CV"):

786 print("Warning: Pins required for VFPGA detected

in student module. Skipping pin: " + pinName)

787 continue

788 matchedPort = first(x for x in port_list if x.name ==

port.strip())

789 if matchedPort is None:

790 print("Warning: unknown port match.")

791 else:

792 if matchedPort.direction == "input" and not

matchedPort.is_clock:

793 continue #Dont add this line.

794 elif matchedPort.is_clock:

795 line = line.replace(port, " studentClock_" +

matchedPort.name)

796 else:

797 line = line.replace(port, "

fromStudentModule_" + matchedPort.name)

798

799 final_data += "\n" + line.strip()

80

800

801 final_data += "\nset_global_assignment -name VERILOG_FILE

src/FIFO.v\n"

802 final_data += "set_global_assignment -name VERILOG_FILE

src/outputManager.v\n"

803 final_data += "set_global_assignment -name VERILOG_FILE

src/inputManager.v\n"

804 final_data += "set_global_assignment -name VERILOG_FILE

src/remoteFPGATOP.v\n"

805 final_data += "set_global_assignment -name VERILOG_FILE

src/serializer.v\n"

806 final_data += "set_global_assignment -name VERILOG_FILE

src/deserializer.v\n"

807 #DE0 CV

808 if board_name == 0:

809 final_data += "set_location_assignment PIN_G12 -to RX\n"

810 final_data += "set_location_assignment PIN_K16 -to TX\n"

811 final_data += "set_location_assignment PIN_G15 -to RXError\n"

812 final_data += "set_location_assignment PIN_J17 -to rst\n"

813 final_data += "set_location_assignment PIN_M9 -to clk\n"

814 final_data += "set_global_assignment -name IOBANK_VCCIO 3.3V

-section_id 7A\n"

815 #DE2 115

816 if board_name == 1:

817 final_data += "set_location_assignment PIN_AH26 -to RX\n"

818 final_data += "set_location_assignment PIN_AG26 -to TX\n"

819 final_data += "set_location_assignment PIN_AG23 -to

RXError\n"

820 final_data += "set_location_assignment PIN_AH23 -to rst\n"

821 final_data += "set_location_assignment PIN_Y2 -to clk\n"

81

822 # final_data += "set_global_assignment -name IOBANK_VCCIO

3.3V -section_id 1\n"

823

824

825 with open(files[0], ’w’) as file:

826 file.write(final_data)

827

828 set_build_output("Build Complete!", program_output_label)

829 except Exception as e:

830 program_output_text[1] = str(e) + "\nBuild not completed."

831 set_build_output(program_output_text[1], program_output_label)

832

833

834

835 if __name__ == ’__main__’:

836 main()

82

INPUT MANAGER TEMPLATE

1 module inputManager(input [7:0] ___DATA_IN___ ,

2 input ___DATA_AVAILABLE___ ,

3 output reg ___READ___ ,

4 input ___INPUT_MANAGER_CLOCK___ ,

5 input ___INPUT_MANAGER_RESET___ ,

6 {{ INPUT_LIST_HERE }});

7 parameter ___START_READ_STATE___ = 1’b00 ,

8 ___END_READ_STATE___ = 2’b01 ,

9 ___WRITE_STATE___ = 2’b10 ,

10 ___WAIT_STATE___ = 2’b11;

11 reg [1:0] ___INPUT_MANAGER_STATE___;

12 reg [15:0] ___DATA_TO_PROCESS___;

13 reg __DATA_READ_COUNTER__;

14 always @(posedge ___INPUT_MANAGER_CLOCK___)

15 begin

16 if (___INPUT_MANAGER_RESET___ == 1’b0)

17 begin

18 {{ RESET_INPUTS_HERE }}

19 __DATA_READ_COUNTER__ <= 1’b0;

20 ___READ___ <= 1’b0;

21 ___DATA_TO_PROCESS___ <= 0;

22 ___INPUT_MANAGER_STATE___ <=

23 ___START_READ_STATE___;

24 end

25 else

26 begin

27 case (___INPUT_MANAGER_STATE___)

28 ___START_READ_STATE___:

29 begin

83

30 if (___DATA_AVAILABLE___ == 1’b1)

31 begin

32 ___READ___ <= 1’b1;

33 if (__DATA_READ_COUNTER__ == 1’b0)

34 begin

35 ___DATA_TO_PROCESS___[15:8] <=

36 ___DATA_IN___;

37 __DATA_READ_COUNTER__ = 1’b1;

38 end

39 else

40 begin

41 ___DATA_TO_PROCESS___[7:0] <=

42 ___DATA_IN___;

43 __DATA_READ_COUNTER__ = 1’b0;

44 end

45 ___INPUT_MANAGER_STATE___ <=

46 ___END_READ_STATE___;

47 end

48 end

49 ___END_READ_STATE___:

50 begin

51 ___READ___ <= 1’b0;

52 if (__DATA_READ_COUNTER__ == 1’b1)

53 begin

54 ___INPUT_MANAGER_STATE___ <=

55 ___WAIT_STATE___;

56 end

57 else

58 begin

59 ___INPUT_MANAGER_STATE___ <=

60 ___WRITE_STATE___;

84

61 end

62 end

63 ___WAIT_STATE___:

64 begin

65 ___INPUT_MANAGER_STATE___ <=

66 ___START_READ_STATE___;

67 end

68 ___WRITE_STATE___:

69 begin

70 case (___DATA_TO_PROCESS___[15:1])

71 {{ PROCESSED_INPUTS_HERE }}

72 endcase

73 ___INPUT_MANAGER_STATE___ <=

74 ___START_READ_STATE___;

75 end

76 endcase

77 end

78 end

79 endmodule

85

OUTPUT MANAGER TEMPLATE

1 module outputManager(output reg [7:0] dataOut ,

2 output reg dataReady ,

3 input clk ,

4 input rst ,

5 {{ OUTPUT_LIST_HERE }});

6

7 //PSID reg

8 parameter [23:0] PSID = {{ PSID_HERE }};

9 reg [3:0] ConfigCounter;

10

11 //Pin List

12 {{ OUTPUT_PARAMETERS_HERE }}

13 parameter STATE_RUN = 1’b0, STATE_WAIT = 1’b1;

14 reg {{ CURRENT_STATE_SIZE }} CURRENT_STATE;

15 reg {{ CURRENT_STATE_SIZE }} NEXT_STATE_BUFFER;

16 reg [1:0] SECOND_HALF_COUNTER;

17 reg [7:0] SECOND_HALF_OF_SIGNAL;

18 // Cache List

19 {{ OUTPUT_CACHE_HERE }}

20

21

22 always @(posedge clk)

23 begin : CATCH_CHANGED_VALUES

24 begin

25 if (rst == 1’b0)

26 begin

27 {{ RESET_CACHE_HERE }}

28 dataReady <= 1’b0;

29 dataOut <= 8’b00000000;

86

30 CURRENT_STATE <= 0;

31 NEXT_STATE_BUFFER <= 0;

32 SECOND_HALF_OF_SIGNAL <= 0;

33 SECOND_HALF_COUNTER <= 0;

34 ConfigCounter <= 4’b0000;

35 end

36 else

37 begin

38 case (CURRENT_STATE)

39 {{ CONVERT_TO_BINARY:0}}:

40 begin

41 case (ConfigCounter)

42 4’b0000:

43 begin

44 dataOut <= {{ CONFIG_DATA_HERE }};

45 dataReady <= 1’b1;

46 ConfigCounter <= 4’b0001;

47 end

48 4’b0001:

49 begin

50 dataReady <= 1’b0;

51 ConfigCounter <= 4’b0010;

52 end

53 4’b0010:

54 begin

55 dataOut <= {{ BOARD_DATA_HERE }};

56 dataReady <= 1’b1;

57 ConfigCounter <= 4’b0100;

58 end

59 // Skipped a case whoops

60 4’b0100:

87

61 begin

62 dataReady <= 1’b0;

63 ConfigCounter <= 4’b0101;

64 end

65 4’b0101:

66 begin

67 dataOut <= PSID[23:16];

68 dataReady <= 1’b1;

69 ConfigCounter <= 4’b0110;

70 end

71 4’b0110:

72 begin

73 dataReady <= 1’b0;

74 ConfigCounter <= 4’b0111;

75 end

76 4’b0111:

77 begin

78 dataOut <= PSID[15:8];

79 dataReady <= 1’b1;

80 ConfigCounter <= 4’b1000;

81 end

82 4’b1000:

83 begin

84 dataReady <= 1’b0;

85 ConfigCounter <= 4’b1001;

86 end

87 4’b1001:

88 begin

89 dataOut <= PSID[7:0];

90 dataReady <= 1’b1;

91 ConfigCounter <= 4’b1010;

88

92 end

93 4’b1010:

94 begin

95 dataReady <= 1’b0;

96 ConfigCounter <= 4’b1011;

97 end

98 4’b1011:

99 begin

100 CURRENT_STATE <= {{ CONVERT_TO_BINARY:2}};

101 end

102 endcase

103 end

104 // Send second half of data

105 {{ CONVERT_TO_BINARY:1}}:

106 begin

107 case (SECOND_HALF_COUNTER)

108 2’b00:

109 begin

110 dataReady <= 1’b0;

111 SECOND_HALF_COUNTER <= 2’b01;

112 end

113 2’b01:

114 begin

115 dataReady <= 1’b1;

116 dataOut <= SECOND_HALF_OF_SIGNAL;

117 SECOND_HALF_COUNTER <= 2’b10;

118 end

119 2’b10:

120 begin

121 dataReady <= 1’b0;

122 if (dataReady == 1’b1)

89

123 begin

124 CURRENT_STATE <= NEXT_STATE_BUFFER;

125 end

126 else

127 begin

128 if (NEXT_STATE_BUFFER ==

129 {CONVERT_TO_BINARY:{{ MAX_STATE }}}})

130 begin

131 CURRENT_STATE <= {{ CONVERT_TO_BINARY:2}};

132 end

133 else

134 begin

135 CURRENT_STATE <= NEXT_STATE_BUFFER + 1’b1;

136 end

137 end

138 SECOND_HALF_COUNTER <= 0;

139 end

140 endcase

141 end

142 {{ STATE_LOGIC }}

143 endcase

144 end

145 end

146 end

147 endmodule

90

REMOTE TOP MODULE TEMPLATE

1 module remoteFPGATOP(

2 input RX,

3 output wire RXError ,

4 output wire incomingMessage ,

5 output wire TX ,

6 output wire transmitting ,

7 input clk ,

8 input rst{{ EXPOSED_WIRES }}{{ STUDENT_CLOCKS }}

9);

10

11 // Wires between deserializer and FIFO_In

12 wire [7:0] parallelDataIn;

13 wire deserialDataReady;

14

15 // Wires between FIFO_In and Input manager

16 wire FIFOInHasData;

17 wire [7:0] FIFOInDataOut;

18 wire inputManagerReadData;

19

20 // Generated Wires between Input Manager and Student Module

21 {{ INPUT_TO_STUDENT }}

22

23 // Wires between output manager and FIFO_Out

24 wire [7:0] FIFOOutDataIn;

25 wire FIFOOutLoadData;

26

27 // Wires between FIFO_out and Serializer

28 wire FIFOOutHasData , serializerReadData;

29 wire [7:0] FIFOOutDataOut;

91

30

31 deserializer Deserializer(RX ,

32 deserialDataReady ,

33 incomingMessage ,

34 parallelDataIn ,

35 RXError ,

36 clk ,

37 rst);

38

39 FIFO FIFOToStudent (parallelDataIn ,

40 deserialDataReady ,

41 inputManagerReadData ,

42 FIFOInHasData ,

43 FIFOInDataOut ,

44 clk ,

45 rst);

46

47 inputManager InputManager (FIFOInDataOut ,

48 FIFOInHasData ,

49 inputManagerReadData ,

50 clk ,

51 rst{{ INPUT_WIRES }});

52

53 {{ STUDENT_MODULE }}

54

55 outputManager OutputManager (FIFOOutDataIn ,

56 FIFOOutLoadData ,

57 clk ,

58 rst{{ OUTPUT_WIRES }});

59

60 FIFO #(. WIDTH (8), .DEPTH (64))

92

61 FIFOFromStudent(FIFOOutDataIn ,

62 FIFOOutLoadData ,

63 serializerReadData ,

64 FIFOOutHasData ,

65 FIFOOutDataOut ,

66 clk ,

67 rst);

68

69 serializer Serializer (FIFOOutDataOut ,

70 FIFOOutHasData ,

71 TX,

72 serializerReadData ,

73 transmitting ,

74 clk ,

75 rst);

76

77

78 endmodule

93

