NEURAL CHARACTERIZATION OF THE
IMPROVISATIONAL CREATIVE PROCESS

by

Jesus Gabriel Cruz-Garza

A Dissertation submitted to the Department of Electrical & Computer Engineering,
Cullen College of Engineering

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in Electrical Engineering

Chair of the Committee: Jose L. Contreras-Vidal
Committee Member: Saurabh Prasad
Committee Member: David Mayerich

Committee Member: Cristina Rivera Garza

Committee Member: Saleh Kalantari

University of Houston

December 2019



(© Copyright 2019, Jesus Gabriel Cruz-Garza



Acknowledgements

This dissertation is dedicated to my family, to my multi-national community,
and to my friends and colleagues. I thank all of those whose direct and indirect
contributions made this dissertation possible:

My PhD advisor, Dr. Jose L. Contreras-Vidal for his mentorship, guidance, and
support throughout my graduate training at the University of Houston.

My dissertation committee members Dr. David Mayerich, Dr. Saurabh Prasad,
Dr. Saleh Kalantari for serving on my dissertation committee.

Dr. Cristina Rivera Garza for her guidance and first hand introduction to current
philosophy in creative writing, as well as practical training on the practice of creative
writing. I published my first community-based book with her guidance, and I will
be forever grateful.

Dario Robleto for his deep questions, friendship, and his resolution to build mean-
ingful collaborations. His inspirational reflections on historical events in the devel-
opment of instruments to record the human heart and the brain put this research
into perspective.

Jo Ann Fleischhauer for her friendship and interest in the world of mobile brain-
body imaging; for providing the most extensive single-participant EEG dataset to
date; usability discussions; and for valuable insight into her creative process.

The members of the Non-invasive Brain-Machine Interface Systems lab: Anas-
tasiya Kopteva, Andrew Paek, Justin Brantley, Sho Nakagome, Dr. Murad Megjhani,
Dr. Kimberly Kontson, Eric Todd, Zachery R. Hernandez, Akshay Sujatha Ravin-
dran, Dr. Yongtian He, Fanghshi Zhu, Alexander Craik, Alexander Steele, David
Eguren, Dr. Atilla Kilicarslan, Dr. Manuel Cestari, and Dr. Trieu Phat Luu. As
peers, friends, and co-workers, their input was immensely valuable: long experiment
hours, discussions, and advice are central to my formation in graduate school.

Majo Delgadillo for her input, support, collaboration; for introducing me to the

il



world of music; and especially for her friendship.

Hannah Locke, Sydnee Spruiell, and Akshay Sujatha Ravindran for leading efforts
with me to create a better graduate student experience.

My community and friends Omar Pena, Pedro Hendrichs, Cristina Garcia Viesca,
and José Manuel Gonzalez, whose support helped me immeasurably, especially in the
last stages of the program.

My parents Ruperto Cruz Davila and Maria de los Angeles Garza Septlveda, my
brother Ruperto Cruz Garza, my aunts, uncles, and cousins who were always proud
about my latest developments. My family taught me about love, discipline, and
accountability. They supported my fascination with science. Their love and support

have been the pillars of my personal life.

v



Abstract

Mobile Brain-Body Imaging (MoBI) enables the study of the human creative
process in freely-behaving participants in natural settings. Past studies on human
creativity rely on neuroimaging technology that requires participants to remain in
a confined, motionless space. This limits the study design to static, queued actions
that oversimplify creative actions. Other studies rely on psychometric tests that
compare scores to brain activity at rest, which cannot claim a specific bearing on the
creative process.

The main goal of this dissertation is develop novel experimental and analytical
approaches to assay the human creative process in natural settings. To accomplish
this goal, developed two experiments: 1) We examined the creative process in profes-
sional visual artists working collaboratively, in an adaptation of the Exquisite Corpse
surrealist game; 2) we examined neural data of college students as they created com-
positions before and after a 16-week creative writing workshop. These experiments
aim to identify and characterize neural features associated with the highly dynamic
creative process. We used frequency-domain, time-domain, and functional connec-
tivity features from scalp Electroencephalography (EEG). Both classical machine
learning and deep learning approaches were deployed to identify the most relevant
features.

Two major findings were obtained. First, the functional connectivity analysis
identified patterns between right parietal with left central-frontal scalp areas dur-
ing creative execution, which were enhanced with experience. Second, the machine
learning methods successfully classified neural EEG data in both studies. In the Vi-
sual Arts experiment, the classification accuracy reached 53.5 & 2.4% for 5-classes:
two rest conditions, planning, mark making, and writing. In Creative Writing, the
classification accuracy reached 79.3 + 3.1% for 4-classes: two rest conditions, tran-

scription, and creative writing.



Overall, these findings suggest that creative execution tasks can be characterized
by a state of long-range cortico-cortical communication between multisensory inte-
gration in temporal and parietal brain regions and high-order execution and planning
areas in frontal regions of the brain. This dissertation provides evidence for common
information flow patterns in professional visual artists and student writers matching
increased flexibility for creative evocation. In conclusion, this approach provided a
better understanding of the human creative process through neural feature charac-

terizations in real world settings.
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Chapter 1

Introduction

The development of Mobile Brain-Body Imaging Technology (MoBI) with mo-
bile Electroencephalography (EEG), motion sensing, and novel denoising algorithms,
comes as a promising tool to study the neural dynamics of creative activities in
contextually relevant settings. The technological development in hardware wireless
portability, signal quality, on-device or cloud storage, and data-processing techniques
enable the study of natural cognition in real world settings. This dissertation dis-
cusses recent advances in the field of MoBI technology implementation led by the
Laboratory for Noninvasive Brain-Computer Interface Systems at the University of
Houston, for context-relevant experiments that aim to investigate the human creative
process with freely behaving participants acting on natural, real-world settings. This
approach brings the neuroscience closer to examining authentic aesthetic experiences
through improvisation, idea gestation, and education. The experimental protocols
described here provide opportunities for the creative process to occur naturally and

in response to context-relevant queues.

MoBI technology enables, for the first time in the study of the human creative
process, the possibility of its study in freely-behaving, natural settings [1, 2]. The
studies reported in this dissertation provide neuroscience data and findings that
contribute to the discussion of the neural features associated with real-world creative
production. The results and discussion provide empirical neuroscience data, while
at the same time providing evidence for the use of MoBI in real-world settings to

investigate the human creative process.

The conception of creativity with which we work here relates to an individual’s



ability to produce a composition, object, artifact, sensory experience, act or thought
that is novel, timely, with reward-eliciting attributes (valued), and relevant within a
socio-cultural context. This definition is consistent with the usage of the term in the

neuroscience literature (e.g., |3 4], 5] ©, [1]).

The nature of the human aesthetic experience, both in the production and con-
templation of art has been extensively discussed among a range of academic disci-
plines including philosophers, historians, anthropologists, artists, and more recently
by neuroscientists. The inclusion of the latter has been not been without controversy
and skepticism [7] from established schools of thought, but nevertheless a valuable
addition in the quest to understand the human creative process with empirical neu-
roscience data. As neuroscientists, we aim to apply the methods of our field and
support our conclusions with empirical data to supplement the overarching discus-
sion of the neural basis of the human creative process. Findings in the field of freely-
behaving neuroscience will provide complimentary bottom-up (data based) ideas in
the conversation about the human creative process; while the collaboration, both in
experimental design, and interpretation of results from experts in their field, provide
a much-needed top-down perspective to build a balanced body of knowledge from

which to develop cognitive neuroscience models and hypotheses for further study.

From Zeki’s seminal work on the field [§], the study of neuroaesthetics has pro-
duced valuable knowledge in the neurobiology of the aesthetic experience. In response
to Guilford’s call [9] for the study of creativity, psychometric tests had dominated
the study of human creativity for well over 60 years, often equating concepts such as
divergent thinking as a proxy for creativity; a practice that has produced varied re-
sults and has been strongly questioned [10, 11, 12, 13]. The field has since expanded
to encompass not only "aesthetic" elements, or the use of standardized psychometric
tests that study elements of human creativity, but also to study creative production

and contemplation as a process, in experiments that move closer to authentic creative



reflection.

Although neuroscience findings have been varied and inconsistent in the study of
human creativity, the modulation of activation in the pre-frontal cortex for creative
tasks [10] appears to be a common denominator in the literature. In 2014, Fink
and Benedek [14] reviewed the neuroscience in creativity literature and found robust
evidence of EEG alpha power (8-12 Hz) across the scalp being sensitive to creativ-
ity task demands, and creativity level measured through psychometric tests. Their
findings suggested that increased alpha during in creative ideation was the most
consistent finding in the neuroscience literature based on EEG. Later that year, the
same group of collaborators reported on increased functional connectivity at rest,
using fMRI and divergent thinking tests, between the inferior prefrontal cortex and

the default network in highly creative individuals [15].

As research on human creativity advanced both in findings and critical revision of
protocols, the deployment of MoBI technology in mobile, freely-behaving individuals,
had reached important milestones that allowed for its implementation in real world
settings. In 2013, time-domain feature algorithms were developed by our research
group to decode movement intent from EEG data into commands to control an over-
ground exoskeleton [I6], 17, 18]. These algorithms were implemented to investigate
the feasibility of decoding expressive movement based on Laban Movement Analysis
effort qualities through EEG data only [19]. In 2015, we conducted the first MoBI
experiment in a museum setting, analyzing brain activity data from over 350 museum
goers at the Menil Collection [20], where we were able to classify the kind of artwork
(based on image processing features) the participants were experiencing, all from
EEG data. We also found that functional connectivity in the gamma band increased
substantially during artwork viewing compared to rest, connecting parietal to frontal
areas. Further research explored the characteristics of such EEG real-world data

[21]], potential artifacts that hinder data collection, and overall suggestions for data



acquisition [22]. These advances, both in protocol and quantifications of the human
creative process by our group and others, placed us in an ideal position to explore

the human creative process in action and in context: in real world settings through

MoBI.

1.1 Overall Goal of This Dissertation

One hypothesis that motivated the research on the human creative process through
MoBI in real world settings is that there may be common neural features or neural
markers characterizing creative production, across artistic domains, and across par-
ticipants [I]. To validate this hypothesis, we implemented the same feature extrac-
tion mechanisms across the experiments discussed in this dissertation. The features
found pertaining to different stages of the creative process, both through an improvi-
sational creative production task, and through the length of a semester-long creative
writing workshop, allow for new knowledge in the characterization of proper feature

dynamics in the field.

In the improvisational visual arts experiment (Chapter @, we analyzed the band
power and connectivity features in a detailed discretization of creative actions per-
formed by the artists in order to complete their composition; based on elements of
drawing and collage. High connectivity patterns emerged in execution tasks: mark
making, and highest in writing, even when writing included pasting letters in seman-
tic patterns on the artwork. The connectivity patterns linking linking right parietal
with left central-frontal areas of the scalp electrodes emerge in opposite directionali-
ties in the creative phases of preparation (frontal to parietal) vs generation (parietal
to frontal) of creative texts (Chapter [7] These patterns are highest during creative
writing production, and consistently higher after physically experiencing the writing

process, and skill development (Chapter .



With machine learning classification techniques, we tested the relevance of the
features proposed and accurately classified creative actions based solely on EEG
features. This was corroborated with automatic feature selection and classification
using Deep Learning, in which the algorithm automatically found relevant features
in the data for classification, and our feature visualization techniques shed light onto

the features that most contributed to classification performance.

1.2 Dissertation Organization

This dissertation is organized into ten chapters. The introduction outlines the
motivation, background, and scientific questions that we aim to address. The work
described here is inherently multidisciplinary, as it lies at the intersection of neuro-
science, engineering, and theory of creative production; providing ample opportuni-
ties for broader impacts in education, creative outputs, scientific outreach, collabo-

rations.
Chapter [2| establishes the specific aims of this dissertation.

Chapter |3| presents the overall data analysis methods in signal processing and

machine learning used throughout the dissertation.

Chapter {4| addresses the implementation of trans-disciplinary experimental de-
sign, a major scientific proposal in the study of the neuroscience of the human creative
process [I], put forward through this dissertation. We discuss how the experimental
protocol of the Exquisite Corpse was implemented. We address to what extent the
sense of authenticity was obtained, from the artsits’ perspective, as well as the new
possibilities and limitations of the neuroscience study of the human creative process

in this unconstrained behavioral setting.



Chapter 5], overviews the rationale and the experimental design for the implemen-
tation of EEG recordings into a real-world creative writing workshops. The chapter
explains the experiment and workshop design, and how they relate to current phi-
losophy in creative writing as an embodied process. We address the question of

authenticity in the study of creative writing.
Chapters [6] [7], and [§] discuss experiments implemented to meet the specific aims.

Chapter [6] discusses a collaborative experimental design between neuroscience,
engineering, and the visual arts, in which we created an experimental protocol that
aimed to analyze the improvisational human creative process using MoBI. The pro-
tocol was based on the Exquisite Corpse, a game invented by the surrealists in the
1920s. A feature extraction and machine learning data analysis for MoBI in freely-
behaving settings is proposed, comparing classical and automatic feature extraction
methods and testing their performance in a classification scheme to characterize the
human creative process in terms of neural features associated with creative task

labels that aimed to discretize the creative process of six artists in the visual arts.

Chapter[7] discusses a pilot study that moves forward with the idea of using MoBI
to characterize the human creative process in real world settings, for creative writing.
We developed a MoBl-integrated creative writing course in which students wore
MoBI devices to track their brain activity as they walked and experienced the city
of Houston, and as they created their first drafts of creative texts. The findings from
this study, both in protocol performance and in neural features, provided the basis
for the experiment discussed in the following chapter. The same feature extraction
methods from Chapter [6] were used here to characterize the neural dynamics driving

the creative process of the students.

Chapter [§]is an experiment on creative writing in which four EEG data collection

sessions occurred during the course of a 16-week creative writing workshop. Before



the workshop, the students were set up with MoBI data collection equipment and
given writing prompts as pictures. During the workshop the students physically
experienced the writing prompts (locations in Houston), and their community; and
wrote creative texts from them. Those texts were discussed as a group during work-
shop hours. Two of those discussion sessions were equipped with MoBI technology.
Finally, at the end of the workshop, the students went through the same creative
writing prompts again, now with bodily experience in those locations. This chapter
analyzes the change in neural features from Before and After the workshop using
the writing prompts. The same feature extraction and classification methods as in

Chapter [6] were used for data analysis.

Chapter [9)draws conclusions from the experiments and results described in Chap-
ters[6H8} It brings together the main findings and evaluates how these findings relate
to previous studies on the human creative process. Crucially, this set of experiments
is the first to analyze the human creative process in real world, mobile settings. We
propose how these results further enhance existing models of the human creative
process, and the possibilities for the implementation of MoBI technology for further

inquiry.



Chapter 2

Specific Aims

This doctoral dissertation contains two specific aims:

Aim 1: Characterize the neural basis of the creative process during collaborative

improvisation in the visual arts.

Through the re-adaptation of the surrealists’ game, The Exquisite Corpse, we
propose an experimental protocol that aims to capture the human creative process
in the visual arts in a real-world setting. Three professional artists participated in
the experiment, incorporating elements of drawing and collage, as well as chance, im-
provisation, and collaboration. The experiment was run for two sets of three artists.
Gel-based 64-channel EEG captured their brain activity, while motion sensors in the
arms and head captured kinematic information associated to their creative produc-
tion, and three video cameras recorded the session for creative action annotation (by
human annotators). The protocol was developed in collaboration with professional
artists in an effort to achieve an authentic creative experience from the point of view
of the artists, and a neuroscientific study protocol that would enable us to under-
stand the neural dynamics associated to the improvisational creative process in the

visual arts.

EEG features in the frequency-domain, time-domain, and functional connectivity
were extracted to characterize the creative process of the artists. The feature rele-
vance was evaluated by comparing the time-course of the features with the creative
action annotations (class labels) by means of mutual information. With the selection

of relevant features, the neural data was automatically classified using support vector



machines (SVMs).

This method was compared with an automatic feature extraction method using
convolutional neural networks (CNNs) to find potential features of interest without
explicitly defining those features. We expected to uncover cortical patterns that drive

the dynamic cognitive processes involved in creative expression.

A successful automatic classification of EEG data associated to distinct phases
of the human creative process would validate the relevance and robustness of the
selected features. Classification performance was expected to provide insight into
the information shared between the tasks analyzed, and therefore into the nature of

the cognitive processes involved at each stage.

The selected features were evaluated across artists, emphasizing the analysis on
the common neural features associated to the artists’ creative process as a group. The
training and validation sets were taken from all artists. The test set was taken from
temporally isolated data samples; providing classification results for pseudo-real time
classification for an assessment of prediction power of this machine learning scheme

for visual artistic production.

Aim 2: Characterize the neural basis of creative writing during a semester long,

upper division college-level creative writing workshop.

This experiment analyzed the neural features associated to the creative writing
process in two experiments: a pilot study that involved mobile EEG, and an in-
class experiment with four data recording sessions across a 16 week workshop. The
purpose of these studies was to characterize the human creative writing process in
non-expert students, and assess changes in the neural features associated with it

after training and experience provided by the workshop.

The pilot study assessed the implementation of mobile neurotechnology in a real-

world creative writing workshop setting where students had to walk move through



physical spaces before creating their drafts; and collecting their EEG data throughout
those experiences. This study provided information on neural feature candidates to

use for creative writing characterization across students.

In the second creative writing study, classical and automatic feature extraction
algorithms were implemented to characterize the neural dynamics associated to cre-
ative writing, across students. The predictive power of the features found was as-
sessed through classification performance. Those most relevant features were com-
pared before and after the 16-week workshop to track changes in the neural processes
associated to creative writing that emerge from training: writing drafts, and physi-

cally placing their bodies through specific experiences (the writing prompts).
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Chapter 3

Data Analysis Methods

This section describes the main statistical data analysis methods implemented

throughout the dissertation.

3.1 EEG Band-Power Features

Frequency band power features is one of the most common representations of
EEG signals found in the EEG literature [23]. Band power features represent the
EEG data in terms of their power in a given frequency band per channel over a
selected time window. In the experiments described in this dissertation, the pmtm()
[24] function in Matlab was used to calculate band powers; with time-halfbandwidth
product nw = 4. The band power features were calculated for five typical frequency
bands in EEG analysis: Delta (1-4 Hz), Theta (4-8 Hz), Alpha (8-12 Hz), Beta (12-30
Hz), and Gamma (30-50 Hz).

3.2 EEG Partial Directed Coherence (PDC)

Functional connectivity is defined as the statistical association among two or
more distinct time-series and can be assessed with EEG coherence measures [25),
20]. Functional connectivity analysis was performed upon our EEG channels by
computing the PDC measure [27] in data windows under six seconds in length, known
as the short-time PDC measure [28]. PDC measures have been found to perform well

with low-density EEG [29].
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PDC is based on the concept of partial coherence [27], a technique that quantifies
the relationship between two signals while avoiding volume conduction. Volume
conduction is regarded as the most critical issue of traditional coherence. PDC
measures directional (i.e. causal) influences between the signals. PDC is formulated

using Multivariate Autoregressive models. PDC is calculated as shown below [30]:

If we have a set of n time series simultaneously recorded, x(t) = [z1(t), ..., z,(t)]"

can be represented by an autoregressive model or order p:

x(t) = At —r)+e(t), (3.1)

where A, is the coefficient matrix at time lag r with elements a;;(r), where i,j =
1,....n; and € (t) = [e1(t),...,€,(¢)]T is a vector of Gaussian white processes with
zero mean and covariance ¥. The autoregressive coefficients a;;(r) represent the
information flow from z;(t —r) on z;(t). We can regard PDC as a frequency-domain

description of Granger causality [30, 3], 27].

For PDC, we define the matrix A(f) =1 — A(f) = [a1(f),az2(f),as(f)] . Here,
the elements a;;(f) form the Fourier transform of the elements a;;(r) . The elements

a;;(f) are the columns of A{f) . The PDC from channel j to channel ¢ is defined by

(3.2)

where H denotes the transpose and complex conjugate operation. PDC m;;(f) is

bounded between 0 and 1.
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3.3 EEG Sample Entropy

Time-domain features have been extensively used in the EEG literature for motor
[17, 18], B2, B3] and expressive movement task classification |19 34]. These features
typically involve a concatenation of data across channels, and time-delays to compute,
or are implemented in a sample-by-sample prediction basis. Other time domain
features such as measures of central tendency (e.g. mean, variance, kurtosis, etc.)
tend to correlate with frequency band power features .[35]. We decided to test
complexity measures as potential features of interest to exploit the non-stationarity

characteristics of EEG data.

Approximate Entropy (ApEn) is a measure of signal regularity which was first
proposed by Pincus, that explores the time ordering of data points by calculating
the log likelihood that runs of pattern which are close remain close for incremental
comparison [36]. Lower value of ApEn indicates that the signal is more regular or
predictable. However, studies have reported reliability issues using ApEn due to
the self-match involved in ApEn computation leading to a bias [37, B38]. Sample
entropy (SampEn) is a metric developed addressing the bias issue of ApEn [37]. The
parameters remain the same for both ApEn and SampEn: the “filter factor”, r, length
of sequences being compared, m, and the signal length, N. SampEn has shown to
be less dependent on the signal length and shows better stability for wider range of
parameters m, r,and N [39]. For a time series X of length N, X = x, 29, ...,zn. We

define the template vectors X; and Xj,
Xi = Tj, T(i1), -y T(igm—1) »
Xj =25, Tj41, 0 T(jpm—1)
1<j<N-m+1,j #i.
The sample entropy is defined as
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SampEn(m,r, N) = —log(U™ ) () /U™ (r), (3.3)

where

U™(r) = (N —m)™ 325" O (r),

1

and

Ci'(r) = Bi/(N = (m + 1)).

2

Here, B; is the number of vector pairs at which the distance d|.X;, X;| <.

Earlier studies showed that SampEn gives better statistical validity for m = 2
and the r in the range of 0.1-0.25 [40, 41].

3.4 Feature Selection

The most relevant features across subjects were selected using a mutual infor-
mation implementation of the maximum relevance minimum redundancy (mRMR)
[42] algorithm. In mRMR, a feature score is sequentially calculated by computing
the mutual information between each feature and the target/class vector; and sub-
tracting the redundancy term: average mutual information between each remaining

feature and the previous selected features.

1
MR.ore = Iz;:;T)— —— I(zz)]| . 4
WRMRuy, = mmax | IasT) = g 3 Iy (3.4

In the mRMR score equation above, z; is the j™ feature being tested, X is the
set of all features, S is the set of selected features, T' is the target/class vector, m is
the number of remaining features, and z; is the i"* remaining feature being tested.

The features were sequentially selected based on the performance on the training
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set. The first term is the mutual information between the discretized feature x; and
the class vector. The second term is the average mutual information between the

discretized feature x; and the previously selected features z; € Sy,—;.

3.5 Classical Machine Learning: kSVM

The classical machine learning classifier used for the EEG and motion data was
the kernel support vector machine (kSVM), using the polynomial kernel of degree 3.

The value of the and box-constraint was set to 1 in all cases.

The polynomial kernel of degree 3 for SVM was used in all cases, as it provided
the best classification accuracy in all cases described in this report: EEG feature
classification in the Exquisite Corpse for the visual arts (chapter @, and in the
creative writing task (Chapter. The classifiers compared were: Linear Discriminant
Analysis, Quadratic Discriminant Analysis, Linear SVM, kSVM polynomial degree
2, kSVM polynomial degree 3, kSVM with radial basis function (Gaussian) and a

range of spread values from o = 0.5 to 20.

Classical machine learning techniques involve a combination of hand-crafted fea-
tures, based on previous neuroscience, to approach the problem. These features are
then set as input for a classifier. We used band power features for each channel
and PDC between all channel pair combinations as features, in 4s windows with
50% overlap. The features obtained in each of these data windows constitutes con-
stitute a data sample. The data samples from all subjects were analyzed together.
We selected randomly, with repetition, Ny = 300 samples per class, to achieve class

balance.

The training, validation, and test sets were divided temporally. The data from

the first temporal 80% of the experiment was selected for the training and validation
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sets, while the last temporal 20% was selected for the test set. From those samples,
(Ng = 500) samples were selected to achieve class balance, divided into (N; = 400)

samples for the training and validation sets, and (Ny = 100) for the test set.

3.6 Automatic Feature Extraction: Convolutional

Neural Networks (CNNs)

CNNs are structured with a series of convolutional and pooling stages prior to one
or more fully-connected layers. Individual units of a convolution layer are organized
into feature maps, which link a specific unit to local patches of the feature map
from the previous layer through a collection of shared weights called a filter bank.
The filter banks necessary to perform these convolutions are automatically adjusted

through back-propagation.

The pooling layers combine features from the convolutional layer into a smaller
set of features. The use of local receptive fields, weight sharing, and pooling layers
helps to reduce the high dimensionality of EEG data [43]. Additional conceptual

information on CNNs can be found in [44], 45].

Deep Learning (DL) can be defined as a computational graph with multiple com-
putation layers that learns the representations of the data [46]. The depth of a
model promotes the reuse of important features and could also lead to learning more
abstract features at the higher layers where the underlying representations of the
data are extracted [47]. The effectiveness of such abstract feature learning can be
seen in breakthroughs in numerous domains such as speech recognition, visual object

recognition, and genomics [48], and in EEG implementations [49, [44] [50].

A key advantage of DL is in its ability to extract meaningful features[48] without

having the researchers hand-craft the features. In the ideal case, this would reduce or
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eliminate the need for feature engineering that relies on extensive domain knowledge.
This would enable learning of different representations, some of them yet unknown

in specific domain knowledge.

Deep Learning in EEG Applications

Most EEG + DL studies are merely exploring the possibility of borrowing neural
networks from other domains and applying them to EEG. Fundamentally, there are
two issues that hinder the usability of DL in EEG data [49]: 1) the size of the
EEG dataset is usually much smaller compared to the open sourced data in the DL
community 2) EEG is implicitly noisy, which is hard to address with DL models

alone.

Recent reviews by our group and others summarize recent studies on EEG and DL
[44, 49, 5T]. Within the EEG analysis community, Convolutional Neural Networks
(CNN), Deep Belief Machines, Recurrent Neural Networks and, Long-Short Term

Memory networks, have gained popularity in the past five years [44].
These DL algorithms have been applied to a variety of EEG classification tasks.

Specifically, in Craik et. al. 2019, we analyzed 90 studies, the majority of EEG
classification studies were grouped into six general categories: emotion recognition,
motor imagery, mental workload, seizure detection, event related potential, and sleep
stage scoring applications [44]. Studies were analyzed by type of task and recom-
mendations were given on the types of DL architectures that showed the greatest
promise towards successful classification. Outside of these six general categories,
there have also been attempts to use DL algorithms to improve our understanding

of Alzheimer’s disease, depression, bullying indices, and gender classification.

Although in Roy et al. 2019 [49], the authors report that there is a gain of

5.4% in classification accuracy when comparing DL vs classical machine learning
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approaches, they warn the reader that the studies would be hard to replicate due
to the unavailablility of the code and the data. Therefore, results without the code
and availability of the data should be taken with additional constraint, as some
there are examples in the literature where machine vision researchers attempt to
apply the same methods to EEG data without proper denoising strategies, leading

to questionable results [52].

In Craik et. al. 2019 [44] we provided recommendations on the specific archi-
tecture designs for CNNs and other types of DL approaches. CNNs with four con-
volutional layers outperformed other formulations when signal values were used as
inputs, whereas CNNs with two convolutional layers outperformed other variations

when images were used as inputs.

The proposed CNN architecture (Fig. for the purpose of this report is a
6-layer architecture with one temporal convolutional layer and one spatial convo-
lutional layer. We aim to resemble typical EEG feature extraction strategies [23]:
frequency bank information, followed by spatial combinations of electrodes (such as
in ICA, PCA, etc) [50]. The temporal layer aims to extract temporal and frequency-
related information from the EEG signals, for each channel separately, projecting to
a number of filters. Then, a spatial convolution combines the information from all
of the channels at each time point, and projects it down the CNN layers. A Max
Pooling and a Fully connected layer, with 20% dropout for stochastic robustness,

lead up to the Fully Connected Softmax Classification layer.
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4.1 Abstract

We propose a novel experimental paradigm to investigate the human creative
process in artistic expression using mobile brain-body imaging (MoBI) technology,
which allows the study of brain dynamics in freely behaving individuals performing
in natural settings that promote authentic artistic experiences. Our proposed mul-
timodal experimental protocol is based on the ‘Exquisite Corpse’—a collaborative,
chance-based game created by the Surrealists in the 1920s. In this protocol, three
artists collaborate to create the start, middle, and end of an improvisational piece
of artwork, which can be implemented across artistic domains, including the visual
arts, dance, music, creative writing, acting and even gastronomic art. Performers
are instrumented with wireless scalp electroencephalography(EEG) to record brain
activity and inertial measurement units (IMUs) to capture body movement, while
video cameras capture the evolving gestures of the participants and the art pieces.
Sample adaptive denoising algorithms, computer vision, visualization, sonification
and machine learning methods allow for the pre-processing, tagging, parsing, stor-
ing, aggregating, analyzing, and sharing of complex containerized multimodal data.
These MoBI data and associated behavioral, cultural, demographic, and situational
data collected under the Exquisite Corpse paradigm holds the promise of a better
understanding of functional (affective, cognitive, and motor) and dynamic brain pro-
cesses, the study of the neuroscience of individuality and group behavior, and the
design of robust affective and artistic brain-computer interfaces (BCI) and other

diagnostic and therapeutical devices.

!The figure captions were modified to comply with dissertation format guidelines from the
Department of Electrical and Computer Engineering, University of Houston.
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4.2 Introduction

The nature of the human creative process, both in the production and contempla-
tion of art has been extensively debated among philosophers, historians, anthropolo-
gists, artists, and more recently neuroscientists. The inclusion of the latter has been
not without controversy and skepticism from established schools of thought [7, 53],
but nevertheless, neuroscience studies have provided alternative and often compet-
ing approaches and tools for understanding the neural underpinnings of the human
creative process with empirical neuroscience data and methods. More recently, com-
putational neuroscience and advanced mobile brain-body imaging (MoBI) technology
to record the brain and the body “in action and in context” have allowed researchers
to study the dynamic brain of freely behaving individuals in complex natural and
creative settings |20, 2]. The underlying framework is that by engaging in meaningful
collaborations at the nexus of the arts, science and engineering, emergent bottom-up
(data-driven) and top-down (e.g., from first principles) analyses, complemented by
input from artists and philosophers, can lead to reconciliation of high-level personal
perspectives, and a balanced body of fundamental knowledge from which to build

models and hypotheses for further study.

The development of MoBI technology, typically comprised of mobile scalp elec-
troencephalography (EEG) and/or functional near infrared spectroscopy (fNIRS) and
motion sensors in its simple technical instantiation, has made it possible to study
directly human brain activity (or indirectly via measurement of blood oxygenation
profiles from the surface of the scalp with {NIRS) in unconstrained and freely behav-

ing individuals acting in real world settings [35], 22]. MoBI experiments require the
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integration of synchronized mobile bio-sensor technology for brain and body data

collection, and context monitoring devices such as video and event tagging.

Along with the capability of studying freely behaving participants in complex
settings over short or long periods of time, MoBI technology provides the means to
study brain responses in a wide range of subject populations encompassing healthy
participants, people with a history of neurological disease, children, older adults,
and it allows for the participation of spontaneous volunteers in public spaces [20,
30, 22, 54l B5]. IMUs on the headset itself and on the participants’ bodies enable
for acceleration, magnetometer, and gyroscope data to be collected to understand
both how users move through and navigate space, and to help identify potential mo-
tion induced artifacts on the EEG signals [56]. Additionally, electrodermal activity,
electromyography, electrooculography (EOG), heart rate monitoring, and virtually
any biosensor that can be synchronized to the brain-monitoring device enables the
measurement of embodied physiological contextual components of behavior. Finally,
video cameras, motion tracking sensors, machine vision, and human annotators pro-
vide the context-awareness mechanism that enables the systematic study of neural
and body dynamics in complex natural settings. As such, the sensors in concert
with computer vision algorithms provide valuable contextual information for label-
ing the brain-body data according to environmental cues, movement type, or tasks

to mention a few possibilities.

4.2.1 Chapter Organization

This chapter provides an overview of neuroscience research in the human creative
process and recent developments in MoBI data collection that allow for its study
in freely moving, real world settings. First, we highlight neuroimaging studies that

provide evidence for the human creative process as emerging from the interaction
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of affective, cognitive, and movement-related processes, and brain areas associated
to them. Second, we propose an integrative experimental protocol that allows the
study of the production of an artistic composition implemented across artistic do-
mains, where the artists create in a freely moving environment. Third, we provide
an example of a data analysis technique to extract important features in an artist’s
individual creative process. Then we discuss how such an experimental protocol ad-
dresses the question of authenticity in the study of creative production. Finally, we
consider how neuroscience knowledge gathered in authentic creative experiences can

enhance artistic BCls.

4.3 1In Search for a Universal Model of the Human

Creative Process

4.3.1 From the Mystical to the Neural

Initially regarded as the product of a “mystical” mental state, or of an unexplain-
able “divine intervention,” creativity during and before the early nineteenth century
was largely understood as a spiritual process—one that was untouchable by the grasp
of scientific reasoning or study, and only experienced by those who were able to use
another worldly introspection to create product from inspiration [57|. From viewing
creativity as an inaccessible, ethereal state, the early twentieth century paved way
to understanding creative thinking by means of a theoretical lens—a movement that

heavily relied on a psychodynamic approach of study.

This approach was not only headed by Freud, who popularized the psychoanalytic
theory and pointed to the importance of the emergence of unmodulated thoughts in

consciousness, but also highlighted the idea that creative thought arose from the
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tension between reality and unconscious motivations. While this approach could
be regarded as successful in pulling creativity out of its mystical background and
into a more scientific realm, this method of study relied largely on tightly-controlled
laboratory settings keeping this progress in creativity research somewhat isolated.
Consequently, some of the first truly objective, measurable, and widely-applicable
research on creativity was incited by the 1950 American Psychological Association
Presidential address [9] delivered by J.P. Guilford, who not only emphasized the
prevalence of creativity in “everyday subjects” and proposed that this phenomenon
could be studied through simple paper-and-pencil tasks, but also propagated the
distinction between convergent and divergent streams of thinking [57, 58]. Utilizing
methodologies such as the Unusual Uses or Alternate Uses tests (i.e., how many uses
are there for a brick?), Guilford jump started creativity research, proposing ways
in which individuals’ creative abilities could be measured and placed on a standard
scale. This approach, however, was only meant as a starting point for the field.
While some of these psychometric measures are still being used within creativity
research today, and allow for everyday individuals’ creative abilities to be measured,

researchers have continued to question its application to real-world settings [2, 59].

Research on human creativity today draws not only from an acknowledgement of
creativity as a deeply personal, introspective process but also as one experienced by
all. Further, progress in research concerning the human creative process is evidenced
in the increasingly creative methods researchers are relying on to study its origin
by going beyond simple paper-and-pencil tasks or measures, and instead focusing
on more context-relevant settings. For example, studies on creative performance
have been conducted in dance through MoBI technology; while functional magnetic
resonance imaging (fMRI) has been deployed to investigate creative writing in poetry
composition and revision [60], action planning while imitating chord progressions

comparing classical and jazz-trained pianists [61], musical improvisation using pitch
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sets or cue words in pianists [62], or semi-professional visual artists sketching drawing

ideas for a book cover based on sets of descriptions [63].

Taken together, these studies make an important suggestion: creativity is likely to
emerge from the interaction of multiple affective, cognitive and movement processes,
and therefore the study of creativity should not be reduced to one measure or task.
These studies, as reviewed in Sect. are consistent with a model proposed in Liu
et al. [60], showing inhibition of the dorsolateral prefrontal cortex (DLPFC) in the
production of the creative product, increased cooperation between the DLPFC and
ventromedial prefrontal cortex (VMPFC) during revision and evaluation of the work,
and increased coupling between these two regions during the planning component of

the activity.

4.3.2 Neuroscience of Creativity

We postulate that creativity lies in an individual’s ability to produce a compo-
sition, object, artifact, sensory experience, actor thought that is novel, timely, with

reward eliciting attributes (valued), and relevant within a socio-cultural context.

Although the exact neuroanatomical network that underlies creativity still re-
mains unknown, recent neuroimaging studies have consistently implicated the pre-
frontal cortex(PFC) as an essential, fundamental structure involved in creative cog-
nition, e.g., expressive movement execution and imagery as well as in many cognitive
abilities such as processing complex information, abstract thinking, conceptual ex-
pansion and cognitive flexibility [64]. Thus, research suggests fundamental cognitive
functions (integrating highly processed information, abstract thinking, cognitive flex-
ibility, etc.) of the prefrontal cortex as central in forming the foundation for original
thoughts from which a moment of creative insight can emerge. Further, these pre-

frontal functions can be understood as originating mainly from two regions within
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the prefrontal cortex: the VMPFC and DLPFC [60].

The VMPFC and DLPFC each represent one of two broader neural systems within
the brain—the emotional (i.e., instinctive, visceral) system, and the computational
(or cognitive) system, respectively. More specifically, the VMPFC, or the emotional
system, is thought to draw from life events and assesses the emotional, personal

content contained within them [65, [66], 67].

This emotional system attaches value to an experience by evaluating its rele-
vance to an individual’s life experience, memories, and training. This follows from
the finding that the VMPFC is strongly connected to the limbic system, which reg-
ulates important functions such as emotion, motivation, the internalization of val-
ues/rewards, and the evaluation of the consequences of one’s actions [68]. Moreover,
research has shown that the DLPFC, or the computational system, receives sensory
input from the TOP (temporal, occipital, and parietal lobes) as well as is involved in
working memory and, consequently, cognitive flexibility—thought to be important

components of the creative process.

Working memory not only produces temporary representations of the immediate,
real-time events occurring around an individual, but also creates a buffer, which
allows one to momentarily hold these representations, integrate incoming and past
knowledge and stimuli that is relevant to solve a particular problem, and manipulate
those stimuli to generate creative work. A review and meta-analysis performed by
[69] examined the effects of two non-invasive brain Stimulation techniques: repetitive
transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation
(tDCS) on the DLPFC as well as working memory performance, specifically through
an n-back task’]—a widely-used measure of working memory. Stimulation of the
DLPFC resulted in faster and more accurate responses on this n-back task, suggesting

that the DLPFC is heavily connected to working memory.

2The n-back task is a common measure of working memory capacity. In order to complete this
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In addition to the significance of the prefrontal cortex for creative thinking, stud-
ies Have also implicated the parietal lobe as heavily connected to creative activ-
ity—both spatially and emotionally. Overall, parietal regions have been recognized
as significant for body-environment interactions (specifically for “visual exploration,”
motor use of the hands, and tool use). Recent research also supports the importance
of the parietal region in higher-order processes such as multisensory and sensorimotor
assimilation, spatial orientation, motivation and intention, and the representation of
the external environment’s relationship to the body [70, [71]. Further, research has
also cited the contributions of the parietal lobe as extending to cognitive functions
such as episodic memory retrieval-—consciously accessible memory for specific events
that allow humans to retrieve past experiences and employ them for future goals. A
literature survey performed by Wagner et al. [72] revealed that fMRI as well as EEG
studies on episodic retrieval have highlighted significant activity in the temporal and
lateral posterior parietal cortex. These tools, including visual exploration, motor ca-
pabilities, tool use, spatial orientation, motivation, and memory retrieval, amongst

others are central to the creative process of generating art.

4.3.3 Uncovering a Neural Signature for Creativity

Within the highly interconnected functional brain networks, and based in the
consistent findings summarized in Sect. [£.3.1], we hypothesize that there is a cortical
neural signature that emerges in the brain during aesthetic experiences,both during
production and contemplation of a work of art. To study this potential electrophys-
iological neural signature, we propose an innovative experimental protocol to study

the human creative process in authentic experiences.

The investigation of this hypothesis has the potential to provide a unifying view

task, subjects are presented with a series of stimuli (such as numbers or letters), and are asked to
identify when a given stimulus corresponds to one seen n number of steps earlier.
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that informs traditional art theory and art practice. The neural signature associated
with creative output would be likely expressed in distinct, distributed, and tempo-
rally evolving cortical activation patterns that can be measured with MoBI tech-
nology and characterized with functional connectivity and neural decoding analyses
(see, for example, [20]). We also expect that such brain patterns tagged to creative
output may show neural individuality and variance across participants and art forms
modulated by situational context, skill level, demographics and other factors yet

unknown.

Uncovering a neural signature for creativity would likely lead to new metrics
or biomarkers associated with the creative process, which could guide potential in-
terventions for acquiring and tracking the development of new creative skills, and
evaluating art therapies [73]. Critically, such a model ought to integrate links to
existing art theory, art practice, and art therapy. From the detailed understanding
of the neural mechanisms of human creative expression, we can develop BCls for

artistic or therapeutic purposes that interact adequately with the user input (Fig.

1),

4.4 The Exquisite Corpse as an Experimental Pro-
tocol to Study Creativity in Action and in Con-

text

We propose a transdisciplinary and multimodal experimental approach to study
the human creative process using MoBI technology. This approach is based on four
principles set forth for an effective transdisciplinary collaboration. First, transdisci-
plinarity between fields requires the convergence and synthesis of different research

methods. This convergent research requires equal input from scientists and artists on
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Figure 4.1: MoBI technology enables the study of the human creative process in
freely behaving individuals performing in complex, natural, and authen-
tic settings.

experimental design to the interpretation and applicability of the data. In this case,
bridging a data-driven bottom-up approach with top-down analysis from the artist’s
perspective and first principles will be crucial to investigate the creative process.
Second, we considered an experimental protocol that would allow for the inquiry
into common and unique neural patterns of brain activity across artistic domains
and individuals. We therefore need an experimental protocol that can be imple-
mented across different creative categories (e.g. visual, dance, writing, etc.), people
of different skill level (e.g. novices, experts, children, adults), and demographic fac-
tors including age, gender, language, geographical location, etc. Third, to create an
authentic creative experience—and to explore the meaning of “authenticity” across
artistic and scientific domains—we envisioned an experimental protocol that would
allow for data collection from freely behaving individuals in a real world setting. A

fourth criterion was that of practicality and scalability. We sought an experimental

30



protocol that would allow to produce a work of creative expression within a reason-
able amount of time that would be accessible to experts and novices, been enjoyable
for the eventual participation of spontaneous in situ participant volunteers from the
general public (e.g. children patrons at the Children’s Museum of Houston), with
the potential for scalability, and a common framework from which to extend into

other artistic domains.

The effort to define a protocol that fit into the criteria described above resulted
in the re-contextualization of the Exquisite Corpse as a MoBI-enabled neuroscience
protocol from which to study the human creative process during creative impro-
visation. The protocol is defined in the spirit of the Exquisite Corpse, a game
invented by the Surrealists in the 1920s that consists of building a three-part im-
provisational piece from the contributions of different players [74]. In the growing
field of neuroaesthetics, it has become fashionable to make the claim that artists
were our first neuroscientists. Studying painters of the past, for example, offers in-
sight into how artists illuminated brain structure and the mechanisms of perception
through inventive techniques of luminosity, rendering of shadows, and an under-
standing of the visual illusions our brain plays on perception [75]. Less explored is
an analogous argument: the rich tradition of artist’s inventive performances,games,
“actions,” or “prompts” holds similar insights for the brain sciences today. By adapt-
ing the Exquisite Corpse, which incorporates improvisation, collaboration, and novel
problem solving as experiment design, we can merge the long tradition of the arts

exploring the inner workings of the mind with a replicable scientific protocol.

4.4.1 History of the Exquisite Corpse

First gaining popularity in the 1920s, Cadavre Exquis, or Exquisite Corpse, was

originally conceived as a word-based parlor game relying on collaboration, chance,
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and unexpected juxtaposition. The game typically involved three to four players who
would each secretly write a word or phrase on a shared piece of paper, then fold and
pass the sheet to the next player. When opened to reveal all sections, this process
often produced nonsensical phrases like “Le cadavre exquis boira le vin nouveau”
(“The exquisite corpse will drink the new wine”), wherein the game obtained its
name. The game was soon expanded to visual imagery through drawing and collage,
where the players would attempt to create a “body” consisting of head and shoulders,
torso and arms, legs and feet. In this version, players are allowed to see the edge of
the previous composition to begin their own. Other art forms such as dance, music,

and poetry have also adapted the game for their respective genres.

Around 1925, members of the artistic movement known as Surrealism began to
explore the game’s possibilities within the arts. Seeking ways to break freely of
what they considered the limitations of the rational mind, and rejecting the 19th c.
approach to purely representational and observational painting, the Surrealists were

deeply invested in exploring ways to disrupt the conscious mind’s need for order.

They were drawn to the elements of chance, randomness, and unpredictability
that the game produced and believed that this revealed a more authentic view into
the creative subconscious mind. As the founder of the Surrealist movement, André
Breton, stated, “With the Exquisite Corpse we had at our disposal—at last—an
infallible means of sending the mind’s critical mechanism away on vacation and fully

releasing its metaphorical potentialities [74].”
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4.5 Recording MoBI Data in the Exquisite Corpse

Protocol

The human creative process is a multi-dimensional and multi-stage process that
does not happen in isolation; rather, it is fueled by environmental stimuli |76}, [77].
The protocols outlined below attempt to capture the creative production process as
it happens in freely behaving participants, involving elements of social interaction

and environmental and other contextual factors occurring in a real-life scenario.

4.5.1 Instrumentation

In this protocol, brain activity is typically collected with 64 active-electrode wire-
less EEG sampled at 1000 Hz (e.g., BrainAmpDC with actiCAP, Brain Products

GmbH; see [22] for examples of MoBI headsets);eventually downsampled to 200 Hz.

Four electrodes are used for EOG recordings. IMUs are used to track head and
body motion data from the artists that capture the creative gestures of the perform-
ers, while providing useful information for identifying potential motion artifacts.
Typically, for the visual artists, musicians and writers, data are collected from the
head and forearms. In the case of the dancers, six IMUs are placed on the head, both
wrists, torso, and both ankles of the dancers. Video cameras capture the creation
of each work of art and the group dynamics. After the experiment, the artists are
asked to annotate the video recordings to mark significant behavioral and cognitive
events they recall. Annotators during the performance also provide event tagging,
which is complemented by regions of interest identified from other sensor data (e.g.,
arousal from electrodermal activity). An example of a typical experimental setup

with sample EEG, acceleration, and video data is shown in Fig. [£.2]
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Figure 4.2: Experimental setup for the Exquisite Corpse in the visual arts. a) An
artist wearing mobile EEG and IMUs. b) Video recording. ¢) EEG from
three electrodes. d) Tri-axial acceleration from right arm.

4.5.2 The Exquisite Corpse as an Experimental Protocol

The Exquisite Corpse protocol includes baseline and experimental conditions,
with the baseline conditions, with the Baseline conditions introduced before and
after the experimental session and consisting of closing eyes for at least 60s, and
looking at a blank sheet of paper for at least 60s. The experimental conditions are

detailed below.

Visual Arts

In the visual arts modality of the Exquisite Corpse, three artists typically work
on a “body” consisting of three sections: head, torso, and tail/legs. The artists are
provided with a foldable triboard (32 in x 40 in four-ply chipboard), a2-layered panel
comprised of three sections that can be folded or ‘blinded’. At the end of each section,

the staff covered the art piece with a strip of cardboard, leaving approximately 3
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cm uncovered at the bottom, and then transported the piece for the next artist to
view before beginning the next stage. The artists worked on the three art pieces
simultaneously, on three different triboards. The artists are separated from each

other by opaque curtains to prevent interactions during the experiment.

The artists were asked to provide or identify basic art materials such as pencils,
pastels, chalk, charcoal, water-based painting materials, glue, and scissors for use
during the performance. Artists are also requested to bring “surprise” materials for
one another as a way to bring an element of surprise as well as personalize—and
construct meaning through—the process. Examples of materials brought by the

artists include insects, stickers, ink, film, stencils, and printed color paper.

Fig. shows the experimental setup and timed protocol. The artists (labeled
S1, S2, S3) work on separate boards (A, B, C) on the head (Section 1) of the figure
for 15 min. The boards are rotated, and the artists continue to work on the body for

15 min (Section 2), and subsequently the tail/legs for the last 15 min (Section 3).

Versions of this protocol for children typically limit the duration for each session

to 5 min given time limitations and attention span of the children (Fig. |4.4)).

Creative Writing

In this instantiation of the Exquisite Corpse, three creative writers work simulta-
neously on three compositions (which can include poetry and/or prose).The writers
start by writing on a blank notebook, and for each consecutive session, they contin-
ued from where their collaborators finished their writing at the end of each session.
The writers are able to see the last two lines of the previous text. The sections
are 15min long with 1 min vocal warnings before the end of each. Three Exquisite

Corpse texts (A,B,C) are produced at the end of the 45 min experiment (Fig. [4.5]).
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Figure 4.3: (Left) Three artists (two pictured) worked simultaneously creating the
head, torso, and tail /legs of a figure in the spirit of the Exquisite Corpse.
(Right) Experimental protocol design.
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Figure 4.4: Three children participating in the Exquisite Corpse protocol for the
visual arts.
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Music

In the musical adaptation of the Exquisite Corpse, three musicians work on three
improvisational jazz pieces, each divided into three sections. In the first section, one
musician plays while the others listen. For the second section, a second musician
joins in for a duet, while the other listens. The last musician joins the others for
the last section. Each of the sections was 5 min long. A timer is placed visible
to the musicians so that the subsequent musician joined at the 5 min mark. The
process is repeated three times, rotating the order for the musicians. The musicians’

performance sequence is represented in Fig. [4.6]

Dance

The dance adaption of the Exquisite Corpse involves three dancers separated by
curtains so that they could not see each other during their performance. In the
first section, the dancers performed in silence, dancing with external cues or music.
The second section of the Exquisite Corpse features a 144 bpm Alegria (with cajon
and palmas) flamenco metronome [78]. The third section features an instrumental
musical piece: Raft’s Ode au printemps in G major Op.76 200. The songs were edited

to the length of the section (10 min) prior to the experiment.

Each dancer performed improvisational movement for 10 min in isolated stages.
The first section was followed by a 1 min collaborative performance where they
stepped into view of each other and shared movements among them. They then
returned to their isolated stages for 9 min, and repeated this procedure for the third
section of the experiment. Fig. summarizes the protocol followed. The sections

werel() min long with a 1 min vocal warning.
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Figure 4.5: (Left) Three artists worked simultaneously creating the beginning, mid-
dle, and end of a creative writing piece in the spirit of the Exquisite
Corpse. (Right) Experimental protocol design.
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Figure 4.6: (Left) Three musicians participate in the study, playing a five-piece drum-
set, and bass, and a saxophone. (Right) Experimental protocol for im-
provisational music performance.
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Figure 4.7: Three dancers (two pictured) participated in the study. (Right) Experi-
mental protocol for the dance version of the Exquisite Corpse.
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4.6 MoBI Data Analysis Through Machine Learn-
ing

We present, as an example of an analytic methodology, the data processing for
one participant in the Exquisite Corpse for visual artists. The machine learning
methodology proposed requires label actions from the artists, with labels relevant to
the artistic modality, and a classification approach with automatic feature extraction

and visualization.

Data driven neuroscience studies have found great success in applying supervised
and unsupervised machine learning techniques to find relationships between the data
collected and a behavioral response observed. Classical machine learning requires the

researcher to identify, obtain, and select features of the data to analyze.

In EEG, these features usually take the form of power in commonly used frequency
bands: e.g. delta 1-4 Hz, theta 4-8 Hz, alpha 8-12 Hz, beta 12-30 Hz, gamma
30-50 Hz; or time domain features involving temporal and spatial relationships in
the data. These features are used decode movement intent in mobile settings |17,
18, 19, [33] [79] 80]. Coherence metrics, which measure the functional connectivity
between electrodes, have also shown to be promising features for EEG analysis [1].
Quantitative neuroscience based on EEG has developed through a combination of
spectral, temporal, and spatial features, with which researchers are able to build a set
of descriptors to feed into machine learning algorithms to learn about the data and to
build models for intentionality prediction [23]. Classical machine learning techniques
in neuroscience involve a combination of features selected by the researcher, based
on previous neuroscience or a promising new metric. The features are tracked and
averaged over hundreds of trials to find an overall pattern of brain activity that can

be associated to a specific task.
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In order to study the neural basis of a complex cognitive task such as the human
creative process across demographics and artistic domains, we find that automatic
feature extraction algorithms offer a promising new approach to find new data de-
scriptors and predictors. Automatic feature selection algorithms have shown rapid
progress in recent years, in particular in the field of machine vision, which have also
been applied to EEG data [50]. Promising automatic feature extraction algorithms
include those based on deep neural network architectures such as convolutional neu-
ral networks (CNNs), long-short term memory networks, Boltzmann Machines, or a

tactful combination of these.

Feature visualization remains a key aspect of automated feature extraction meth-
ods. Hypotheses and feature visualization techniques based on previous neuroscience
(e.g. we expect alpha power changes in prefrontal cortex; is that what the computer
finds?) help the researcher understand if the algorithm is learning useful and relevant
information. Therefore, it is necessary to have a top-down, artist-informed frame-
work from which to base the feature visualization methods and overall data analysis
when using automatic feature extraction methods. Data mining techniques, however
sophisticated, will fall blind to the task and rendered ineffective, even counterpro-
ductive, to the field if they are not accompanied by appropriate feature visualization

methods.

The proposed machine learning method described below requires labeled datasets.
We annotated the data by having human annotators watch the video recording of the
artists as they worked on their composition. Because the experiment is unconstrained
by design, there are two critical aspects to consider in this approach: (1) what classes
to label the artists’ actions into, and (2) inter-annotator consistency. Relevant labels
were discussed and analyzed with the professional artists that participated as subjects

in our study through interviews.
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4.6.1 Labeling Creative Tasks

The Exquisite Corpse protocol in the visual arts consisted of elements from draw-
ing and collage. The video recordings were visually segmented by annotating the
behaviors and tasks done by the artists, relevant to drawing and collage. A second

person validated the annotations.

The MoBI data were segmented in terms of the artistic action each artist dis-
played: planning/observing, cutting, placing/pasting, correction, outlining, tracing,
coloring, spreading, drawing, and writing. In addition, the baseline eyes open and
baseline eyes closed were also segmented. In this example, four classes were selected
for illustration purposes: baseline eyes closed, baseline eyes open, planning, and

coloring.

4.6.2 Automatic Feature Extraction and Classification

In an unconstrained behavioral task, where artists work with elements of chance
and improvisation to create a composition, we consider that a machine learning ap-
proach with automatic feature extraction would enable us to capture neural dynamics
and processes that are hard to predict a priori (e.g. by having the researcher select

what features to analyze).

CNNs have shown impressive results in the field of machine vision due to their
capacity to learn local patterns in data through convolutions. With the proper
architecture, CNNs can find important features of the data automatically, potentially
opening the possibility for discovery of previously unknown relevant features. These
networks are built by adding convolutional layers that map local patterns in the

data. CNNs make good candidates for end-to-end decoding: from raw EEG data to
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a prediction about behavioral intent. However, they require a large number of hyper-
parameters, so they also require a large amount of training data and representative
variations in that data. They also take along time to train compared to simpler

models often used in neuroscience studies.

We used a CNN for automatic feature extraction and classification of the creative
tasks. Fig. shows the CNN architecture selected for the study. Our architecture
parameters were selected based on the discussion in Schirrmeister et al. [50], fine
tuning them to our data. Deep learning approaches require a large amount of data to
iterate over, in which by means of backpropagation, the weights of the computation
units in each layer are updated such that the metric of interest (mean-squared error
before the Softmax layer) is minimized. The EEG data was augmented by taking 1
s time windows with 99% overlap. The first temporal 80% of the data was used for
training and validation, while the latest temporal 20% of the data per class was used
as the test set. This partition enables the learned model to be tested in pseudo real-
time data: the test set. To build the classification model, each of the four classes were
set to contain 5000 samples using random sub-sampling without repetition for the
training and validation sets. From the 20,000 samples, 13,000 were selected for the
training set and 7000 for the validation set. The network ran 10 times to compute a
distribution of the classification accuracies, with randomized selection of the samples
to be used for the training and the validation sets. 4000 samples were selected for

the test set, with 1000 samples per class.

To illustrate the performance of the CNN on our 4-classes problem, the CNN was
tested on artist one (S1). The accuracy for the training and validation sets reached
near 80-90% in both cases, with classification accuracy dropping to near 66.5% in the
test set (Fig. . The classification accuracy in the CNN improved after utilizing
the temporal properties of EEG: there is a higher probability that the classification

for sample z is similar to the classification of the temporally adjacent sample. In this

42



Convolution 2 san WA M ] Stride: [1,1]

(temporal) 20 . el
5 filters e o L T AT A

200
]
S Stride: [1,2]
Convolution 62
(spatial) 62
5 filters
180
1 ReLU
5
Max Pooling 7 ! / Stride: [3,1]
180
ReLU
Dropout 20%
T Tt T TTm T T T T b
! == |
Classification L ,/' N 1 Fully Connected Layer
4 Units e 4 N ~ Softmax
(classes) : Baseline Baseline Planning Coloring: Classification
! ]
1

Eyes open Eyes open

Figure 4.8: CNN architecture proposed. The EEG inputs are windows of 62 channels
by 200 time samples (1 s, at 200 Hz).

application, our tied-weights consisted of averaging the classification output (before
Softmax) of the immediately previous 5 samples before running the network through

the Softmax layer and finally selecting a class label for the sample.

4.6.3 Feature Visualization

In neuroscience, we are interested in understanding the neural features that con-
tribute to the classification of tasks. In this unconstrained experimental setting with
multiple and varied actions performed by the artists, these features may be a combi-
nation of several different cognitive processes acting together. Therefore, visualizing
the features learned automatically is critical for understanding the performance of

the classifier, and thereby the relevant feature spaces associated with the task.
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Figure 4.9: Confusion matrix for EEG data classification of artist 1. Each row con-
tains 1000 test set samples per class.

Delta
+500%
a +400%
. +300%
Baseline g - +200%
i ) +0% No change
Eyes closed ] -100%
+20%
+15%
+10%
+5%
. +0% No change
Coloring 5%
-10%
-15%
-20%
+20%
A o M 5%
2 +10%
. . § +5%
Planning { ] o | {0%Nochange
S . B 5%
= -10%
v
o ~ -15%

Figure 4.10: EEG feature visualization, as learned by the CNN: spectral differences
in the best examples from each class. The colorbars show the percentage
spectral power change with respect to ‘Baseline with Eyes Open’.
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A method used to identify the most relevant features for the network was to find
the best examples (highest activation in the last layer before Softmax) for each class
and compare the spectral differences between them. Figure displays the results
of the spectral power in the 200 best examples from each class: those which yielded
the highest activation in the last layer before the Softmax for each class and therefore
those which the network found to be most representative of each class. The spectral
power in each class was compared to "Baseline Eyes Open". In this visualization
method, there is an increase in power in the occipital area expected for "Baseline
Eyes Closed" (Fig. [£.10)). There is a decrease in power in the theta and alpha power
in left central scalp areas for the "Coloring" and "Planning" tasks: the artist worked
with their right hand. An increase in delta, theta, and alpha bands in left-parietal
regions is found for the "Planning" task. Although these observations are for one
subject at the sensor level and they not necessarily reflect the cortical sources of
brain activity, the method shows promise for understanding the neural features and

channel locations that the network found to be most relevant for classification.

4.6.4 Top-Down Analysis of the Creative Process

A top-down analysis, using insights from the experts in the creative compositions
—the artists themselves, was used to interpret the feature visualization and feature
relevance results. The corresponding interviews of the artists were conducted the
day after the experiment. The video recording of the experiment was shown to each

artist and their recollection of their process was recorded.

The feature visualization techniques showed importance of scalp areas over the
frontal and left motor regions during the execution task in the delta and alpha bands.
Parietal and frontal scalp areas were relevant in the planning tasks, in the theta and

beta frequency bands (Fig. 4.10)). Artist one (S1) not only utilized many different
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colored pastels, but also incorporated small film strips, pieces of paper, felt, and
carefully rolled strips of tape and stickers into the artwork (Fig. [4.11]). FEach of
these tasks—coloring, aligning strips of film, cutting and placing paper and felt,
and rolling and positioning tape—are largely spatially dependent as well as involve
careful planning and attention to detail, and thus, involve the parietal and frontal

areas.

With further source analysis, we hypothesize that we would find involvement of
the VMPFC in the artists. Research identifies the VMPFC as heavily connected
with the limbic system, which regulates emotion, instinct, motivation, and the in-
ternalization of values, and these personal and meaningful emotions, reflections, and

beliefs of the artists are clearly manifested through their expressive and telling work.

Both artists two (Fig. and three (Fig. reported to have felt a “real
connection to each other and the space” around them, which they described, “allowed
them to give into someone else’s sensibilities.” Additionally, each of the two artists
reflected on their work and mentality during their moments of creation, citing that
they each thought more about themselves rather than the state of others. Artist
three created a powerful message— “How Can I Resist?”—that was central to her
artwork and influenced by thoughts she had earlier that day, reported to have felt
a sense of “authenticity, familiarity, and relief” while creating her work as well as
remembered that she had “less moments of reflection” during her creative process

itself—intimating that the process was more intuition-driven, an important feature

of the VMPFC.

Moreover, these artists incorporated additional materials in their artwork, such
as paper, dead butterflies, plastic eyes, and tape, as well as utilized coloring, and
placing paper, amongst others, pointing to the parietal activity that was seen in

the feature selection data. This raw, unfiltered integration of external and internal
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Annotation
1. Preparing and aligning small strips

Rolling strips of tape and stickers.

of film.
2. Coloring
3. Cutting and placing felt.
4.
5.

Cutting and placing paper, and
rolling strips of tape.

Figure 4.11: Artwork created by artist one (S1), with annotations. Inset Examples
of annotated tasks performed by the artists.

stimuli present in the works of each of the artists not only motivated the production
of novel arrangements of ideas, experiences, and sensory inputs, but also facilitated

the transition of these arrangements into a meaningful, creative work (Figs. |4.11]

{12 and [1.13).

4.6.5 MoBI Data Analysis Across Artistic Modalities

A similar data analysis pipeline, as described in this section, can be applied for
other artistic modalities. The data can be labeled from a discipline-specific annota-
tion framework. For example, in dance, where research typically involves studying
expressive movements, a labeling system based on Laban Movement Analysis pro-
vides the appropriate tags for the MoBI data; see, for example [19]. A CNN, with
parameter fine-tuning, could be implemented for automatic feature extraction for the

set of labels defined, and a similar feature visualization approach would be useful to
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Annotation

1. Drawing.

2. Cutting and placing paper.

3. Selecting and placing butterfly
wings.

Figure 4.12: Artwork created by artist two (S2), with annotations.

Annotation
1. Cutting and spelling words with tape.
2. Coloring.

(%)

Selecting and placing butterfly
wings.

Cutting and placing paper.
5. Placing plastic eyes.

Report

A. S3 reported to have been influenced
by thoughts from earlier that day.
During the creation process, the artist
reported a sense of “authenticity.
familiarity. and relief.” and “less
moments of reflection.”

Figure 4.13: Artwork created by artist three (S3), with annotations and an example
of a report provided by one of the artists.
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understand the features being learned by the computer.

Classical machine learning approaches with predefined and well-known EEG fea-
tures offer performance baseline and comparisons for the automatic feature extrac-
tion algorithms. See [23] for a review of machine learning algorithms often used for

EEG-based BCI applications.

4.7 Discussion: On the Question of Authenticity

The burgeoning field of neuroaesthetics, of which our proposed protocol falls
under, is an excellent example of the necessity of transdisciplinary problem-solving.
A mystery as complex as human creativity cannot only be understood through a
single approach and requires the synthesis of expertise from multiple disciplines.
While creativity and aesthetic experience undoubtedly have a physical, neurological
under pinning, this should not be misunderstood as an “explanation” of art, but
rather a characterization of the creative process. A rigorous neuroaesthetics needs to
account for the lived, emotional and experiential aspects of art, as well as its ability
to construct and represent values and meaning for the individual and society. This is
why neuroaesthetics represents a rare instance wherein the advancement of a scientific
field hinges on meaningful interactions with the arts. This interaction should not only
be with art of the past, but with living artists and contemporary institutions of art
such as museums, galleries and artist’s studios. The Exquisite Corpse experiment
was designed to address this issue of collaboration with contemporary artists while

producing valuable data for both the scientist and artist.

From the artists’ point of view, not only is it an unusual experience to be in
the role of test subject, but it offers a novel lens through which to reflect on their

creative process. In our proposed approach to study creativity, research required each
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artist to examine their own creative practice in order to better articulate processes
and parse specific moments, while learning about how creativity is perceived within
the parameters of neuroscience. The artists found that their self-reflections offered
them a more nuanced understanding of their own creative process and how it was
in tension with the scientific assumptions of it, either through working definitions of
creativity and aesthetics, experiment design, expectations about the end results, or
even the post-experiment evaluative process. This intersection of artistic reflection
and neuroscientific discovery is of great importance as we build a common language

with the hope of advancing each of our respective fields in unexpected ways.

Although many questions were provoked, a recurring theme appeared to anchor
them, which can add valuable insight and inform the development of future experi-
ments: What does authenticity mean in relation to creative processes, and how do
we measure it? Like “aesthetics” or “creativity,” the concept of “authenticity” from
both the creator and observer’s points of view, has a complex meaning that is usually
understood as highly personal and subjective. But, in the context of these studies,
there is an expectation between artist and scientist for a common definition and,
perhaps most problematic for the artist, a quantifiable categorization of authentic

creativity.

The question of authenticity is particularly relevant in light of major advance-
ments in MoBI technology: the ability to record real-time data from a diverse group
of freely behaving individuals makes it possible to study creativity outside of highly
controlled and artificial laboratory settings. The assumption is that a typical site
of artist production, such as a studio or museum, will facilitate a more authentic
experience and, hence, the resultant scientific reading will be more accurate than

data gathered in a traditional laboratory setting.

But if the innovation of this technology partly hinges on more accurate, i.e.
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“authentic,” recordings, then the artist’s understanding of authenticity as it relates
to creativity must be given an equal consideration in the experiment design and the
evaluative process. Because even though we have moved this experimental procedure
away from the laboratory setting, the situation presents a new set of highly artificial

variables that could disrupt the artist’s sense of an authentic experience.

Additionally, breaking down the constituent physical and measurable aspects of
the creative act (e.g., stroke, cut, pasting, coloring, drawing, planning, etc.) has been
an enlightening process for both artist and scientist. In the process, preconceived
definitions of creativity (at least on a process level) must be challenged from the
viewpoint of each discipline. Through the continued development of language and
systems with which to articulate and report the experiences recorded in collected
data, we hope to contribute to this technology’s potential therapeutic goals, as well
as investigate the rich artistic and philosophical questions posed by neurological

understandings of creativity and aesthetics.

4.8 Applications

Creativity is not only integral to the actions and decisions of many individuals
throughout their lives, but has also served as the foundation for bringing about sub-
stantial change and advancement within a wide variety of fields, including those of
education, politics, economics, science, medicine, technology, and art. The human
quality of creative abstraction has been championed by politicians, leaders, and ed-
ucators alike as the answer to many of a nation’s pressing issues [82]; as a method
of teaching as well as a quality to cultivate within the education system [83] as a
path to improving the products and services offered by corporations and institutions
[84]; and as a means to aid individuals on their journey of personal growth and heal-

ing [85]. In the next two sections, we describe applications and potential impact of
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studies on the neural basis of creativity.

4.8.1 Creative Art Therapy for Neuro-rehabilitation

Creative art therapy allows an individual to articulate personal sensory experi-
ences through the various visual and tactile properties of tools such as paints, pencils,
stickers, charcoal, and stamps—for example—and the muscle pressure an individual
must exert in order to manipulate these raw materials to form something meaning-
ful [86, 87]. Further, it has been commonly found to be associated with numerous
positive outcomes such as decreased stress [8§|, depression [89], fatigue [89], anxiety
[90], PTSD [91], improvements in behavioral functioning, mood [92], speech [93], self-
image, self-esteem [94], communication, responsiveness, and sociability [95], amongst
others. As a result, art therapy has improved the quality of life of many individ-
uals from various walks of life and backgrounds—including not only those inflicted
by Alzheimer’s and other forms of dementia [96], but also of those facing the daily

stresses of life.

These studies highlight the effectiveness and potential of art therapy and provoke
further questions that can only be answered through the neuroscientific study of
the human brain in artistic production in real world settings: How can medical
professionals, therapists and neuroscientists collaborate more effectively with artists
to personalize creative art therapies as a form of precision medicine? Empirical
neuroscientific data from collected in mobile settings during the process of creating
a work of art offers the possibility to create better, more effective, personalized
therapeutic interventions. By analyzing the neural dynamics associated to the human

creative process, art therapy methods can be personalized for optimal performance.
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Figure 4.14: An interactive artistic BCI that uses selective neural features to control
the sculpture’s position, color, and sound. A dancer, Shu Kinouchi,
interacts with the space in real time. Photo by Ronald L. Jones.

4.8.2 Artistic Brain-Computer Interfaces (BClIs)

Understanding the neural basis of creativity has the potential to develop artistic
BClIs that can promote creativity in art making and also provide alternative ways of
visualizing brain data. The chapter by Todd et al. [97] is an example of how EEG
activity can be used to represent and visualize multiple aspects of brain activity
through motion, lights and sound (Fig. . Closed loop artistic BCIs can also be
deployed as powerful neuromodulators of brain activity to augment the repertoire of

the artist by allowing brain control of the environment or stage.
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5.1 Abstract

The process of creative writing does not happen in isolation; rather it happens
through the experience of the body in the community we live in, which frames organi-
cally the written word within the community that contains it. Mobile EEG provides

the opportunity to study an authentic creative writing experience of writing as a

1To be submitted as a journal article in 2019-2020. The chapter organization is based on the
template from the Journal of Writing Research.
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community.

The two studies described here are the first neuroscience experiments to study
real-world creative writing. The workshops integrated mobile EEG to explore the
neural basis of the creative writing process in bilingual students: from skill develop-
ment to the embodiment of the process, making drafts, discussing them, and editing
a published book as a final product. Two workshops were instrumented with mo-
bile EEG: one with EEG collected during the preparation and production stages,
and one with EEG recorded pre-workshop, post-workshop, and within two peer text

discussion sessions.

5.2 Introduction

Creative writing involves embodied practices that physically connect us with our
surroundings, our community, and our bodies’ interaction with them. To study the
neural basis associated with the creative writing experience, we propose to measure
brain activity as students in a creative writing workshop walk through the city of
Houston, prepare drafts, workshop their texts, and produce texts regarding specific
locations and communities visited during the workshop. The process of creative
writing does not happen in isolation in a closed-room space, rather it happens in the
street, in the sidewalk, at the park, at the cemetery; at any space of social interaction
that frames organically the written word within the community that contains it
[98]. Mobile EEG provides the opportunity to study an authentic creative writing

experience of writing as a community.

EEG systems have traditionally shown to collect high-quality brain activity data
that has been used to study a wide spectrum of neuroscience questions, from basic

neuroscience to the interaction of brain and machine with BCIs with a high degree of
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accuracy and temporal resolution [I7, [I8, 33]. The development of reliable, portable
dry-electrode systems has reduced setup time and made possible experimentation
in public venues [35], 22] 20], [54] and in unconstrained environments [1, 21]. MoBI
technology is currently the only brain activity recording technology that allows for
repeatedly testing behavioral paradigms [99], with all the relevant cognitive and
functional tasks associated with them, as they occur in contextually rich and relevant

situations.

5.3 Neuroscience Background and Hypotheses

In previous EEG studies pertaining to creative writing, highly creative individuals
exhibited higher alpha indices during a creative inspiration (preparation) than cre-
ative elaboration (generation); which was not found in less creative subjects [100].
As subjects thought about writing an essay, more creative individuals (based on
“creativity scores” from Torrance tests) showed higher coherence across the scalp,
in the alpha band [I0I]. Alpha power in frontal, central, and parietal locations has
been consistently found to be modulated in relation to creative task demands, to
increase in relation to an individual’s creative level, and to increase after performing

a cognitive creative problem solving task [14].

Erhard [102] and Liu [60] have proposed working models for the human creative
process based mainly on neuroscience done in laboratory settings and fMRI studies.
They found DPFC deactivation during creative production, and activation during
text revision. These provide valuable insight into the nature of the human creative
process, but they leave the question of authenticity unresolved as the experimental
setting is carried out inside an MRI machine, far from natural contextual and free-
motion settings in which individuals usually create. Fink [I4] discusses the role of

alpha power in creative ideation measured with EEG.
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We hypothesize that there will be task-related modulation of neural activity in
lateral and frontal areas of the scalp, from the preparation phases to the production
phase; and that mobile EEG provides the means to record these changes in authentic

settings.

We expect that as the students’ creative writing skill develops, the features re-
lated to the creative writing process will be accentuated in the after-intervention
session. Central and parietal areas would become involved from the use of memory
(after interacting with the locations used as stimulus), spatial planning for their com-
positions, and increased involvement in theta band with periodic modulation (spatial

navigation and recollection) [103].

5.4 Writing the Brain: An Interdisciplinary Collab-
oration Between Neuro-Engineering and Writ-
ing

As a collaboration between the creative writing workshop led by Cristina Rivera
Garza in the department of Hispanic Studies and the department of Electrical and
computer Engineering, at the University of Houston, we organized a neuroscience-
integrated creative writing workshop that addresses the topics of writing as a commu-
nity practice, writing through our bodies’ experiences, and unconstrained in terms of
creative production. Through this transdisciplinary collaboration, we have a window
into human creative expression in the field of creative writing as it occurs naturally
and without behavioral or movement constraints. At the same time, students were
able to see and experiment with neurophysiological activity as they engaged in their

writing exercises; a window into the inner workings of their bodies from neural data.
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Two creative writing workshops in Spanish, talleres de escrituras [98], were con-
ducted with mobile EEG technology. The first workshop intended to explore dif-
ferences in EEG brain activity patterns between preparation and production stages
of the creative writing process. The students wore 4-channel dry, wireless, EEG
headsets as they a) walked through spaces in the city based on writing prompts and
b) when they were creating the writing drafts. The second workshop was aimed
at understanding effect of the workshop intervention (readings, lectures, visiting
specific locations, during text workshopping —tallereando- [98] their texts) on brain
activity patterns, and tracking this brain activity at the workshop sessions where
students commented and conversed about their peers’ texts. In this second work-
shop, there were four EEG recording sessions, all inside the classroom: at the start
of the semester (before the workshop) with writing prompts, two times during text
workshop sessions, and at the end of the semester (after the workshop) based on

writing prompts—physical locations in the Houston Second Ward.

We aim to develop a predictive model of brain dynamics associated to the process
of creative writing composition though mobile brain-body imaging. This model could
have transformative impact on promoting and assessing creative skill development,

personalized education and innovation.

5.5 Experiment Design

Readings and prompts asked students to acknowledge the physicality of the writ-
ing process and to relate it to the materiality of language. Prompts issued in this
upper-division undergraduate workshops asked students to develop and record a
series of specific movements (walking, running, climbing) as they completed the re-

quired assignments.
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Workshop 1: Aug-Dec 2016
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Figure 5.1: Timeline for workshops: talleres de escrituras. The site visits in Work-
shop 1 were optionally individual visits, while for Workshop 2, these were
group visits.

Workshop 1: Mobile EEG While Walking Spaces in the City (Preparation)

and Drafting Texts (Generation) Stages

Seven Spanish and English-language bilingual students collected dry mobile EEG
data in the creative writing workshop. The students were trained on how to operate
the mobile EEG headsets, check for good channel contact and data quality, record
their own data. They kept a journal of their wanderings, including recording time

and location.

Mobile EEG (Interaxon, Muse) data was recorded during the five data walking
sessions (preparation stage) and during their writing (production) of first draft of
texts for each prompt. EEG data was collected at 250 Hz, head acceleration at 50

Hz, and connection quality (electrode contact) at 10 Hz.

The data quality was a challenge as the dry EEG electrodes often lost contact with
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the scalp (there were no aids used to hold them in place other than the headset design
itself), and data was lost due to improper saving procedure or battery drainage.
Data from seven subjects, over 18 recording sessions was deemed of good quality to

continue to work with.

5.5.1 Workshop 2: EEG Recording Before and After Work-

shop Intervention

Eight bilingual students participated in a creative writing workshop over the
course of a semester. EEG data was collected in two sessions of creative writing and
two sessions of discussion of their creative texts during the workshop. This experi-
ment analyzes the effect of an intervention on training individuals and concomitant

neural changes on improvisational creative writing performance.

Brain activity was collected with 32 gel-based active-electrode EEG sampled at
1000 Hz. The electrodes were placed in accordance with the 10-20 international
system using FCz as reference and AFz as ground. A synchronized video camera was

used to record the experiment.

The students wrote creative texts while wearing the EEG equipment in two time-
constrained creative writing sessions: one before the workshop, in week 1; and one

after the workshop, in week 16.

During the time-constrained improvisational creative writing sessions, the stu-
dents were given three writing prompts (2min each), preceded with periods of base-
line with eyes open (1min), baseline eyes closed (1min), and a control condition where

they transcribed a text (2min).
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5.6 Discussion: On the Question of Authenticity

We built a neuroscience-integrated creative writing workshop in an effort to pro-
vide robust and insightful empirical knowledge in a truly transdisciplinarity experi-

ment.

In the first workshop, we envisioned an experimental protocol that would al-
low creative production and evaluation in a real-world setting, without movement
constraints, in which participants could feel free to move, interact, and respond to en-
vironmental queues. Portable, mobile EEG headbands were given to the students to
use on their walking prompts and while writing their creative drafts. Although dry,
mobile EEG technology is available, its use in walking real-world settings proved to
be difficult for the students. Only seven students finished the pilot study wearing the
EEG headbands; as they decided to reduce distractions and reduce set-up time for
their creative activities. This pilot study provided clear empirical results from which
to base a following hypothesis based on the potential for PDC between left-frontal

and right-parietal scalp areas as a characterizing feature in creative writing.

In the second workshop, based on the experience from the first one, we decided to
track the development of the students’ neural features through four data collection
sessions: 1) before the workshop, 2) after the workshop, and 3-4) two sessions during
the workshop in which students would discuss and comment the texts from their
peers’| Here, gel-based 32-channel EEG recording devices were used in a laboratory-
setting: students were sitting as they worked through the experimental tasks. This
setup allowed us to test for PDC and other neural features candidate for characteristic

of creative writing.

2The workshop sessions where students discussed their texts were not analyzed as part of this
dissertation.
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These two experiments in the context of talleres de escrituras are the first neuro-
science study in the context of real-world creative writing. These studies track the
brain-activity underlying the creative writing process in its stages, from skill devel-
opment to the embodiment of the process (visiting the locations), to making drafts,

discussing them, and editing a published book as a final product (Fig. .
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6.1 Abstract

Progress in in the neuroscience of the human creative process has seen increasingly
creative methods researchers are relying on to study its origin and dynamics; beyond
simple paper-and-pencil tasks or cognitive tests. Here, we propose a protocol to
study the human creative process in the visual arts where three artists at a time
collaborate in an improvisational composition based on the Exquisite Corpse, a game

created by the Surrealists in the 1920s with elements of drawing, collage, surprise,

1To be submitted as a journal article in 2019-2020. The chapter organization is based on the
template from the journal Scientific Reports.
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organic collaboration, and improvisation. We use mobile Electroencephalography
and Inertial Measurement Units to analyze the artists’ creative actions and augment
current models of creative cognition with Mobile-Brain Body Imaging technology in

natural, contextual settings.

Six artists’ creative actions were segmented into 9 classes pertaining to two rest
conditions (eyes closed and eyes open), planning, creative execution with elements
of drawing and collage, writing, and correction. The most relevant motion features
for the artists’ creative actions were the log magnitude ratio between the jerk of
right and left hands, the angular velocity in the y-axis of the right hand (parallel
to the drawing plane), and the sum of the acceleration magnitude from both hands.
EEG data was analyzed through classical machine learning and automatic feature
extraction algorithms with convolutional neural networks. For EEG classification,
the segmented classes were reduced to: Baseline Eyes Open, Baseline Eyes Closed,
Planning, Mark Making, and Writing. The successful classification (53.5% accuracy)
based solely from mobile EEG features in temporally isolated data samples across
artists indicates that neural dynamics pertaining to contextually-meaningful creative
actions share common information between them: even when the artists produce dif-
ferent compositions between each other or across time. The EEG features driving
classification performance were an even combination of band-power and pair-wise
information transfer features between right parietal, central, and lateral frontal re-
gions of the scalp. These results characterize the human creative process in the
visual arts, in action and in context, by revealing a network of right-parietal, and
left-frontal brain regions activating in the Mark Making and Writing creative actions,

with predictive power across different artists.
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6.2 Introduction

Research on the human creative process today acknowledges that creativity re-
search is a transdisciplinary endeavour enhanced by input from experts in their cre-
ative field meeting researchers in their measuring capabilities to study an aspect
of the creative process [1|. Progress in in the field has seen increasingly creative
methods researchers are relying on to study its origin by going beyond simple psy-
chometric tests, evaluation tasks, or a relationship between and instead focusing on
more context-relevant settings [L04]. For example, studies on creative performance
have been conducted in dance through MoBI technology [19]; while functional mag-
netic resonance imaging (fMRI) has been deployed to investigate creative writing
in poetry composition and revision [60], action planning while imitating chord pro-
gressions comparing classical and jazz-trained pianists [61], musical improvisation
using pitch sets or cue words in pianists [62, [105], or semi-professional visual artists

sketching drawing ideas for a book cover based on sets of descriptions [63].

These experiments provided valuable data into some of the major gaps in creativ-
ity research[106]: spontaneous creativity [61, [63], 60, 21], and motorically complex
forms of creative production|[19, [, 21] and perception [20]. This report focuses on
the visual arts, using Mobile Brain-Body Imaging (MoBI) with mobile Electroen-
cephalography (EEG), inertial measurement units (IMUs), and behavioral annota-
tion through video recordings of three artists working together in an improvisational

creative composition.

In a discussion [I] about the significance of transdiscilinarity in experiment design
to ensure valuable hypothesis generation and authenticity in the creative experience
for participants in creativity experiments, we proposed the an experimental protocol

in which artists follow the spirit of the Exquisite Corpse for creative improvisation
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and collaboration.

The protocol is defined in the spirit of the Exquisite Corpse, a game invented
by the Surrealists in the 1920s that consists of building a three-part improvisational
piece from the contributions of different players [74]. By adapting the Exquisite
Corpse, which incorporates improvisation, collaboration, and organic problem solving
as experiment design, we can merge the long tradition of the arts exploring the inner
workings of the mind, and the growing field of neuroaesthetics into a MoBI protocol
in a collaborative setting between professional artists (or non-artists: see [I]), without

movement constraints.

The Exquisite Corpse was originally conceived as a word-based parlor game re-
lying on collaboration, chance, and unexpected juxtaposition. The game involved
three to four players that wrote a phrase on a piece of paper, then they folded and
passed the sheet to the next player to continue writing. In the visual imagery version,
the players would aim to create a "body" consisting of head, torso and legs or tail.
Players are allowed to see the edge of the previous composition to begin their own.
Other art forms such as dance, music, and poetry have also adapted the game for

their respective genres [I].

As human creativity is likely to emerge from the interaction of multiple affec-
tive, cognitive and movement processes, the study of the human creative process
benefits from creative tasks that enable the participants to experience a range of
creative decisions, and move away from experiments that focus on a simple mea-
sure or task. The consistent findings in creativity studies have provided evidence
for the involvement of the prefrontal cortex in creative ideation, and in the case of
EEG, an increase in alpha (8-12 Hz) band-power as a function of creative tasks or
creativity level [14]. These findings, together with those found in poetry compo-

sition experiments in fMRI, have been summarized in [60] to propose a model for
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creative production and revision. The model proposes that there is inhibition of
the dorsolateral prefrontal cortex (DLPFC) in the production of the creative prod-
uct, increased cooperation between the DLPFC and ventromedial prefrontal cortex
(VMPFC) during revision and evaluation of the work, and increased coupling be-
tween these two regions during the planning component of the activity. Research
suggests fundamental cognitive functions (integrating highly processed information,
abstract thinking, cognitive flexibility, etc.) of the prefrontal cortex[64] as central
in forming the foundation for original thoughts from which creative cognition can

emerge.

Studies have also implicated the parietal lobe as heavily connected to creative
activity—both spatially and emotionally. Overall, parietal regions have been recog-
nized as significant for body-environment interactions (specifically for visual explo-
ration, motor use of the hands, and tool use). Recent research also supports the
importance of the parietal region in higher-order processes such as multisensory and
sensorimotor assimilation, spatial orientation, motivation and intention, and the rep-
resentation of the external environment’s relationship to the body [70]. Research has
also found the contributions of the parietal lobe as extending to cognitive functions
such as episodic memory retrieval: consciously accessible memory for specific events
that allow humans to retrieve past experiences and employ them for future goals. A
literature survey performed by Wagner et al. [72] revealed that fMRI as well as EEG
studies on episodic retrieval have highlighted significant activity in the temporal and
lateral posterior parietal cortex. These tools, including visual exploration, motor ca-
pabilities, tool use, spatial orientation, motivation, and memory retrieval, amongst

others, are central to the creative process of generating art.
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6.2.1 Hypothesis

We aim to expand on the proposed models by including information from mobile
EEG features associated to creative cognition in real-world settings, where partici-
pants are free to compose their work as an improvisational piece. Frontal, Parietal,
and motor areas of the brain were expected to be modulated with creative actions
performed by the artists, and we expected information transfer dynamics to be most

evident during creative production.

We also expected that such brain patterns tagged to creative output may show
neural individuality and variance across participants, modulated by situational con-

text, demographics, and other factors yet unknown.

6.3 Results

6.3.1 Creative Actions and Class Labels

In the Exquisite Corpse experiments, we annotated the data by having human
annotators watch the video recording of the artists as they worked on their artwork.
The classes were selecting according to the stages of the human creative processed
proposed in previous literature: baseline conditions, planning, execution, revision
(see Supplementary Materials Table . Valuable and reliable labels were dis-
cussed and analyzed with the professional artists [I] that participated as subjects in
our study through interviews, relation to art theory, and formal discussions between
the fields in scientific conferences [35, [104] and in discussion meetings. The Exquisite
Corpse in the visual arts involves elements of collage [107| and drawing [108], cap-
tured broadly by the following stages of the creative process and execution tasks:

Baseline Eyes Open, Baseline Eyes Closed, Plan, Drawing or Tracing, Coloring or
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Shading, Cut, Paste, Writing, Revision.

The sections of the experiment for each of the two Exquisite Corpse renditions
are described schematically in Fig. [6.1]A. For each artwork, each artist completed one
third of the figure, Section 1 to 3. The experiment was preceded by a 1min Baseline
with Eyes Open (rest) looking at the blank triboard, and a 1min Baseline with Eyes
Closed. The generated artworks from the experiment are shown in Fig. [6.IB. The
artists that generated each piece are identified from 1-6 as A1-A6, respectively. Each
artist was able to see 1-3 cm of the previous artist’s contribution to continue the

collaborative artwork.

The class vectors for each of the six artist, A1-A6, are shown in Fig. [6.2] Fig.
[6.2A shows the class vectors for the first rendition of the experiment with three
artists, and Fig. [6.2C shows the corresponding class vector for the second rendition
of the experiment. The solid black lines indicate that a new Section started, and the
dotted lines indicate that the corresponding Section ended. Fig. [6.2B and Fig. [6.2D
display the proportion of time-samples between the annotated classes. Fig. [6.2]
contains the class label key; and Fig. displays the total number of samples per
class among all artists. From the initial nine classes, the class Cut was removed from
analysis to leave only those associated with creative production and rest, and the
class Correction was removed because of its low number of samples; leaving seven

classes to analyze.

From this initial segmentation of the data, we selected five major classes to an-
alyzd?t Baseline Eyes Open, Baseline Eyes Closed, Plan, Mark Making: Execution-
related classes (Drawing or Tracing, Coloring or Shading, and Place), and Writing.

The Writing class was separated from the other Execution-related classes.

2(lasses for EEG data analysis: Baseline Eyes Open (BO), Baseline Eyes Closed (BC), Planning
(Plan), Mark Making (MM), Writing (Wr). The class Mark Making contains what was originally
segmented as: Drawing or Tracing, Coloring or Shading, Paste. See Supplementary Materials Table
@ The class ’Correction’” was removed due to low number of samples per participant.
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Section 1 Section 2 Section 3

Al l D D { Artwork A ] [ B ] { c } D D . E l Impedance check

A2 l D D [ Artwork B ] { C ] [ A } D [] . i D 1 min Baseline Eyes Open
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———

Figure 6.1: Schematic diagram of the Exquisite Corpse protocol for the visual arts
and three creative outputs from the experiment. A) Schematic diagram.
B) Experimental task artwork production from one group of three artists.
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Figure 6.2: Examples of the class vector for six artists that participated in the
Exquisite Corpse for the visual arts. Black lines indicate the start of
a new section; dotted black lines indicate the end of a section.
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6.3.2 Kinematics

The mutual information based feature selection algorithm, maximum relevance -
minimum redundancy (mRMR) [42], suggested that the log magnitude ratio of the
motion jerk, the bilateral magnitude of the acceleration, and the angular velocity in
the y-axis left-to-right movement parallel to the plane of the artwork were the most
informative features related for the nine creative actions visually segmented from the

video recordings described in Fig. and Fig. [6.2

Fig. [6.3 panels C and D provide a visualization for the kinetic components of the
creative behavior observed and annotated; along the three most relevant features:
The angular velocity in the y-axis is shown in the vertical axis, the log magnitude
ratio of the jerk is shown in the horizontal axis, and the bilateral magnitude is
displayed in the z-axis. The visualization in feature space provides a glimpse into the
overlap of the classes in motion space. In Fig. [6.3C, the classes Plan, Paste, Drawing,
and Writing overlap, while Coloring appears to be more separated in the jerk log
magnitude ratio. The baseline classes overlap with each other in motion space.
Fig. combines the Mark Making classes together, placing them in between the
Writing and Plan classes in kinematic feature space. The baseline conditions contain
small movement amplitudes in any of these features, while the Planning and Cut
classes occupy a mid-range section of the feature space. Finally, the Mark-Making

classes are found on the larger ends of the feature space.

6.3.3 EEG

The EEG feature space representation for all classes analyzed is shown in Fig. 6.3
panels A and B, for seven and five classes, respectively. The class for Baseline Eyes

Closed is the most separated from the other class, particularly in Parietal Gamma
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A. EEG features, 7 classes. B. EEG features, 5 classes.
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Figure 6.3: Feature space characterization of the seven creative classes selected for
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ing. in A and B were collapsed to Mark Making in B and D.
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power content. The creative classes overlap in the center, but with differences be-
tween them. The Writing class is the most separated class in Fig. and B, while
Plan, Paste, Drawing, and Coloring cluster together in the middle. In [6.3B, with
the Mark Making classes together, these classes appear to occupy a feature space

between Writing and Plan in the features FC4 Beta power, and FC1 Alpha power.

A spatial representation of the most discriminant EEG features per class is shown
in Fig. for band power analysis and Fig. for PDC analysis. The features
are plotted on scalp maps. The features plotted are those which showed significant
statistical differences from Baseline Eyes Open, at a Bonferroni-corrected significance

level of 5% for the band poweif’] and at 0.1% for the PDC featureq]

Band Power Analysis in EEG Features

The band power features shown in Fig. provide a visualization into the

activation of brain areas involved in the human creative process.

First, Baseline Eyes Closed (BC) was used as a control condition to find common
neural patterns known to be found when humans close our eyes; in particular, there
is high alpha synchronization (more power) in occipital areas. An overall increase in

alpha power throughout the brain was consistently found among the artists.

In the Plan condition, there is a clear desynchronization (less power) in central
locations in the beta band, and stronger in right locations. These areas are involved
in movement coordination. There is synchronization is parietal and occipital and
parietal regions in the gamma band, accompanied by desynchronization in the delta

and theta bands. Modulation in parietal regions is associated with spatial planning

4Bonferroni correction for 5% significance level: p < 0.05/(5 frequency bands x 60 channels) =
1.67 x 107

4Bonferroni correction for 1% significance level: p < 0.01/(5 frequency bands x 282 connections
analyzed) = 2.55 x 1076,
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in creative work [60)].

In the Mark Making condition, there is a large desynchronization in the delta
and theta bands in occipital regions. In the delta band, the there is a strong desyn-
chronization is in pre-frontal and right temporal locations. The pre-frontal cortex is
associated with executive function and is the most consistent finding as a modulating
feature (activations and deactivations) in the human creative process [14, [10]. The

theta band shows synchronization in central and mid-frontal locations.

The Writing condition follows similar patterns than the Mark-Making condition,

with overall larger amplitude change than in Mark-Making.

All creative classes show a dominant increase in alpha power in frontal and pre-
frontal locations, while Baseline Eyes Closed includes an increase in alpha power in

occipital areas.

PDC Analysis in EEG Features

The PDC features shown in Fig. provide deeper insights into the flow of in-
formation between electrode locations over the scalp. The most salient features come
from the Mark Making and Writing conditions, the the top 1% change, compared to
Baseline Eyes Open, in positive and negative occurred. There is a decrease in PDC
from left frontal to parietal and occipital locations, more pronounced in the theta,

beta, and gamma bands.

In the Mark Making condition, there is an increase in PDC from occipital and
parietal regions to mid-frontal locations in the delta and gamma bands, with reaching

pre-frontal locations in the alpha, beta, and gamma bands.

A similar pattern occurs in the Writing condition, with the major difference being

the reduction of occipital to frontal connections in the beta and gamma bands.
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Figure 6.4: Characterization EEG features for classes compared to Baseline Eyes
Open. Percentage of power change per frequency band analyzed.
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Figure 6.5: Characterization EEG features for classes compared to Baseline Eyes
Open. Percentage of PDC change per frequency band analyzed. The top
and bottom 1% change across classes is displayed.
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kSVM Classification Results

The selected classes were classified using kSVM of polynomial degree 3, after
selecting the 50 most relevant features in the EEG data, and the 8 most relevant
features in the Kinematics data. These features were selected using the mRMR
algorithm, which selects the most relevant feature based on the mutual information
shared between the features and the class vector, and subtracts the average mutual

information shared between the selected feature and the previously selected features.

The classification was performed for the seven (Fig. [6.6A-C) and five (Fig. [6.6]D-
F) class schemes; for EEG features alone, for Kinematic features, and for a combi-

nation of EEG and Kinematic features.

The most relevant EEG features for classification among the seven classes, in
order of relevance and minimal redundancy from mRMR were: Alpha power in F4,
PDC from FC5 to P8 in the Beta band, Gamma power in FC4, Delta power in Oz,
PDC from O2 to CP1 in the Beta band, and Theta power in TP8. A full list of the
50 features is shown in Supplementary Materials Table [10.2] In the most relevant,
and minimally redundant, 50 features, 19 of them were PDC features. This feature
ranking list suggests that PDC and band-power features contain complementary

information for classification of creative actions.

The classification accuracy with EEG features for five classes achieved a mean
of 53.5% (20% chance level); and 35.9% for seven classes (14% chance level). These
results provide the first evidence that it is possible to classify tasks related to creative
production in the visual arts through neural features alone: in unseen data taken
from temporally different task incidences. Mark Making is confused primarily with
Planning and Writing. In the Kinematic domain, the Writing class is well classified,
which indicates that this class is different in motion space than the rest. Its higher

confusion rate in the EEG domain suggests that there are more similarities in neural
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Figure 6.6: Confusion matrices for the mRMR-kSVM classification results. A) Ran-
dom subsampling in the test set. B) Temporal subsampling in the test
set.

features involved in these two creative execution tasks.

The classification accuracies improve with EEG and Kinematic features together.
This machine learning scheme achieves 49.6% for seven classes, and 68.8% for five
classes. The classification results improved with a combination of EEG and Kine-
matics features, showing that they provide complimentary information about the

creative classes analyzed.

EEG CNN Feature Visualization

In neuroscience, we are interested in understanding the neural features that con-

tribute to the classification of tasks. In this unconstrained experimental setting with
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multiple and varied actions performed by the artists, these features may be a combi-
nation of several different cognitive processes acting together. Therefore, visualizing
the features learned automatically is critical to understand the performance of the
classifier [109, 110], and verify that the results are in fact driven by neural informa-

tion.

We performed two methods for important feature visualization: 1) Causal effects
of the feature values on the outputs (input perturbation-output correlation): how
much does the output change if we perturb the input? 2) Find the best examples
(highest activation in the last layer before Softmax) for each class and compare the

spectral differences between them.

The input perturbation consisted of transforming an EEG channel into the fre-
quency domain, adding noise ( 0-5% of the total power) to a frequency band of
interest (i.e. delta, theta, alpha, beta, gamma), and transforming back to the time
domain. The output, before the Softmax layer, was saved for each perturbed data
sample, for each channel and frequency perturbation. 300 data samples per class
were randomly selected for analysis. The known input perturbation was correlated
with the output before the Softmax layer across 300 samples per class. 97% of the
samples were classified the same way before and after the perturbation, validating
that the noise added disturbed the EEG in a plausible way (not too much to make

it unrecognizable). The results of such analysis are shown in Fig. [6.7

The most salient correlations, Fig. [6.7B, occur in the gamma band for all classes.
The gamma band feature perturbation, with up to 3 times the standard deviation
of the frequency band power per channel is most susceptible to cause changes in the
nodes before the SoftMax layer in the gamma band. The gamma band is a frequency

band of interest for the CNN.

Other patterns are also evident from Fig. [6.7B. There is a negative correlation
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Figure 6.7: CNN classification results and feature visualization. A) Confusion matrix
in the test set. B) Input perturbation - output correlation. Best examples
per class vs BO: C) Band-power change. D) PDC change.

with increase of band power in central channels in the alpha band for the Planning

class, which is consistent with the relevant feature findings in Fig. [6.4]

The Writing condition is the most susceptible to changes based on input pertur-

bation, especially in central-frontal and parietal electrodes.

We would expect high activation in the occipital electrodes for the “Baseline Eyes

Closed” class, as the visual cortex is known to undergo alpha-synchronization when a

person closes their eyes. The correlation is not evident here because the perturbation

is too small.
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Fig. [6.7C displays the results of the spectral power in the 100 best examples
from each class, taken from the whole training set (not only 300 samples per class):
those which yielded the highest activation in the last layer before the Softmax for
each class and therefore those which the network found to be most representative of

each class. The spectral power in each class was compared to Baseline Eyes Open.

Here, we see similar patterns as in Fig. [6.4] validating that the network effec-
tively considers those features (frequency band and channel location) important for
classification. In this visualization method, we observe an increase in power in the
occipital area expected for Baseline Eyes closed: the increase in power is in the order
of 500%, not captured by the 0-10% added noise in the correlation analysis. In this
visualization of the best examples per class, we see deactivation across frequency
bands for the frontal and pre-fronal locations in the Planning condition. There is
strong deactivation of the theta band across the scalp, coupled with increased gamma
power for the Mark Making class; as well as alpha deactivation exclusively in central

regions: consistent with alpha deactivation in motor tasks.

The best examples of data windows for each class were analyzed in terms of
their PDC activations as well, in Fig. [6.7D. The top 1 percentile and the bottom 1
percentile of the connection strength distribution is plotted. There are connectivity
patterns across all classes, suggesting that this was not the only discriminant feature
found by the CNN. However, the Mark Making and Writing classes contain the most
connection differences between the parietal and central-frontal electrodes, making a

clear connection with the classical feature extraction techniques used in Fig. [6.5]
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6.4 Discussion

6.4.1 Motion analysis in the visual arts

The most relevant motion features, those which shared the most mutual infor-
mation with the class vector and least redundancy with previously-selected features,
were the jerk log magnitude ratio between the right and left hands, and the angular
velocity in the y-axis of the right hand. The bilateral acceleration of the right and
left hands was also a feature that contained relevant separable information between

the classes analyzed.

The feature maps in Fig. [6.3[C-D provide a motion feature space representation
of the creative work from each artist. The artists’ work was displayed quantitatively,
with distribution of the artists’ movements and the overlap between the different
actions that form the artists’ creative process. This representation of the human
creative process augments the information obtained not only about the artwork, but
about the process itself, which was previously only glimpsed at by observation of the
final product itself or, occasionally, by filming the artist at work. We propose the
representation of the artists’ work in motion feature space as a quantifiable blueprint

of the artists’ process.

The distribution of the tasks analyzed in this feature space varied by artist (see

Supplementary Materials [10.1] {10.2] [10.3)), which enables the characterization of the

creative tasks and the artists’ individuality in their creative process. The feature
maps also show a degree of consistency among the artists: the baseline tasks show
little movement, shown in the lower left corner; while the planning, collage-related
actions (cut, paste) appeared in the mid-level of motion; and drawing or writing

tasks show the largest amount of motion, and distribution spread.
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6.4.2 Classical Machine Learning vs Deep Learning for EEG

The vast literature in EEG and in motor and cognitive tasks has focused in analyz-
ing primarily three types of features from the data: power spectrum-related features,
time-domain features, and connectivity or information shared between electrodes.
In typical EEG experiments, the subjects’ task is constrained within a laboratory
setting, or in a particular motor or cognitive tasks, repeated a number of times to
obtain Event Related Potentials after averaging multiple windows of data. These ex-
periments have proved useful in identifying relevant EEG features for cognitive and
motor task decoding. We used some of the most widely used features, in the connec-
tivity and frequency-domain, to guide the classical machine learning analysis. This
approach proved successful in the classification of the behavioral tasks undergone by
the artists to produce the artistic output, yielding 53.6% accuracy for five classes

using only EEG features, and 68.9% accuracy using EEG and Kinematic features.

A data-driven approach to obtain the relevant information directly from the data,
without hand-crafting the data features, shows promise to uncover neural patterns

that may be relevant to the specific task at hand.

In our analysis, the accuracies obtained by the CNN approach did not improve
on the accuracies obtained in the mRMR with kSVM paradigm. However, it does
demonstrate the potential of the technique to find relevant classification features
directly from the data, with pre-processing that can be performed online. A limita-
tion of the CNN approach is that the optimal architecture may require a iterating
through different models and parameters. Further, as we move towards big-data in
neuroscience, with researchers procuring the data collection, storage, and systematic
dataset collection [1111 22] 112] 1T3), 54} 21], the possibility for large scale, high qual-
ity, and labeled EEG data in a variety of tasks makes the deep learning approach

appealing for automatic feature identification and classification.
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6.4.3 EEG Automatic Feature Extraction and Visualization

The proposed learned feature visualization techniques for the CNN framework
provides a way to identify the features that the CNN is learning from the data. The
increase in alpha power in the occipital areas when a subject closes their eyes was
clearly identified by the network as the most distinct feature between baseline eyes

closed vs baseline eyes open (Fig. [6.7C).

The integration of information from the input-perturbation output-correlation,
and the best examples by class activation score visualizations, along with the re-
searcher’s interpretation of the results is necessary to understand the features that
the network finds relevant for EEG data classification. Frontal and parietal areas are
consistently shown as the most different in terms of band-power Fig. and Fig.
between baseline eyes open and Mark Making (more frontal dependency), and

planning.

6.4.4 EEG Feature Relevance and Interpretation

The EEG features selected for classification through classical machine learning
produced 53.6% classification accuracy for a five class problem (chance level: 20%),
using temporally isolated samples from all six artists. Even when the artists were
producing different compositions between each other, and in time, the EEG features
associated with their creative process had the discriminative power to predict what

the artist was engaged in, based only on a data sample (4s, 60-channel) of EEG data.

The features driving classification were obtained both through classical feature
engineering methods with frequency band-power and PDC features, and through a
CNN-based automatic feature extraction algorithm. Through feature visualization,

we found a significant overlap between the neuroscience-engineered features, and the
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automatically extracted features.

The most relevant features for classification among the five classes spanned the
frequency bands evenly, and a Band-Power and PDC features were similarly relevant
with 31 and 19 features selected respectively. The most relevant feature was alpha
band-power in F4, a right-frontal electrode. This feature is clearly a discriminant
between the baseline eyes closed and the rest of the classes, but it is also around the
electrodes where relevant PDC connections start or end. The second most relevant
(and non-redundant) feature is PDC from the left-motor regions (FC5) to right-
parietal areas (P8), which were shown as the most discriminant features from the
feature visualization techniques: There is an increase in connectivity magnitude as-
sociated to the human creative process from motor and somatosensory areas towards
parietal and occipital areas of the brain; across frequency bands [6.5] Gamma power
in left and right frontal regions follow as the most relevant features, indicating again

the relevance of the frontal cortex in the human creative process.

The feature visualization methods provide information on what features drive
classification performance. The creative writing tasks were found to have the highest
PDC changes compared to baseline among all the classes analyzed, suggesting that
semantic processing activates functional connectivity patterns to a higher degree

than planning or other physical mark-making actions.

6.4.5 Extensions for Analyzing the Creative Process in the

Visual Arts in Real-World Settings

The analysis of the deep learning framework of EEG data is limited by the amount
of data available per subject. A common protocol across with freedom of movement
and creative possibilities has the potential to uncover common and unique neural pat-

terns associated to the human creative process. In a larger population of artists and
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not-professionally trained artists, the neural patterns associated to creative impro-
visation in the visual arts can be compared at population-level. For such analysis,
leveraging machine vision behavioral segmentation techniques would be useful for
the automatic classification of creative actions from the artists. Future iterations of
real-world neuroscience experiments on the visual arts can benefit from advances in
the field of machine vision, but they need to provide accessible video feed for those

algorithms to perform appropriately.

The limitation of the need for labeled data, and the scarcity of data in a spe-
cific protocol remain the largest limitations. Classical machine learning techniques
have shown to perform as successfully than the proposed deep learning approach.
Abundance of data has propelled automatic feature extraction techniques to better
performance in other fields, so we expect that as real-world neuroimaging technology
becomes available [21], the wealth of data will increase together with it and pro-
vide automatic feature extraction algorithms the data they need to perform to their

optimum level.

6.5 Methods

Brain activity was collected with 64 active-electrode wireless EEG. Four elec-
trodes were used for EOG recordings. IMUs were used to track head and body
motion data from the artists that capture the creative gestures of the performers,
while providing useful information for identifying potential motion artifacts. IMU
data were collected from the head and forearms. Video cameras placed directly above
each artist and artwork captured the development of each work of art. An example

of the experimental setup with sample EEG, acceleration, and video data is shown

in Fig.
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Figure 6.8: Experimental setup for the Exquisite Corpse in the visual arts. A) Over-
head video recording of an artist at work for a 10s sequence. B) Synchro-
nized EEG and Acceleration data. D) Artist with measuring equipment.

6.5.1 Participants

Six professional visual artists participated in the experiment, 40-57 years old.

There were two iterations of the experiment, in two groups of three.

The artists requested basic art materials such as pencils, pastels, chalk, charcoal,
water-based painting materials, glue, and scissors for use during the experiment.
These were provided by the researchers. The artists brought surprise materials to
share among their fellow artists participating in the triad. There materials were used
to inspire the sense of improvisation, collaboration, and game nature of the Exquisite
Corpse among them. Examples of the surprise materials include insects, stickers, ink,

film, stencils, and printed color paper.
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6.5.2 Data Acquisition

EEG

Brain activity was collected with 64 active-electrode wireless EEG sampled at
1000 Hz (BrainAmpDC with actiCAP, Brain Products GmbH). The electrodes were
placed in accordance with the 10-20 international system using FCz as reference and
AFz as ground. Four electrodes were used for Electrooculography (EOG) recordings:
two electrodes were used as horizontal EOGs placed laterally outside the eyes, and
two were used for vertical EOG. The remaining 60 electrodes were used to record

EEG data.

IMUs

IMUs: Three IMUs (OPAL, APDM Inc., Portland, OR) were used to track body
motion data from the artists, sampled at 128 Hz. Data was collected from the head

and forearms of each artist.

Video Recording

Video cameras, mounted on the walls and ceilings of the respective spaces, cap-
tured the creation of each work of art. One video camera was placed above each artist
and art-work. The day after the experiment, the artists were asked to annotate the

video recordings to mark significant behavioral and cognitive events.

Synchronization

The EEG, IMUs, and video data streams were synchronized with an external

trigger physically connected to the EEG and IMU wireless receivers. The trigger was
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also connected to LEDs that were visible to all video cameras. A trigger sequence
was used to indicate the start and end of the baseline conditions, and of each section

of the experiment.

6.5.3 Task

Baseline conditions were taken before and after the creation of the artworks.
The first baseline condition consisted of having the artists close their eyes and relax
for one minute ("Baseline eyes closed (BC)’). For the second baseline condition, the
artists had their eyes open, and they were asked to relax and look straight forward

at the blank board in front of them for one minute ('Baseline eyes open (BO)’).

The Exquisite Corpse protocol and creative outputs are shown in Fig. and
Fig. [6.1B, respectively. The protocol includes checking the impedance values of the

electrodes and registering their values.

Three artists worked on a “body” consisting of three sections: head, torso, and
tail/legs. The artists are provided with a pliable triboard (81 ¢cm x 101 cm four-
ply chipboard), a 2-layered panel comprised of three sections. The artists worked
simultaneously on three triboards, all of them working on the head of their respective
pieces for 15min: this was Section 1. After Section 1 was finished, the staff covered
the artworks with a strip of cardboard, leaving approximately three centimeters
uncovered at the bottom, and then transported the piece for the next artist to view
before beginning the next section. The artists proceeded to work on the torso section
of the artwork, continuing from the strip of information visible from the previous
artist’s composition: this was Section 2. Three examples of artworks created during
this experiment are shown in Fig. [6.IB. The labels A1-6, correspond to artist 1

through respectively.

The protocol can be implemented across artistic modalities in the spirit of the
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Exquisite Corpse [1].

6.5.4 Kinematics Data Analysis

The motion features were calculated on a 4 second sliding window with 50%

overlap.

A set of 43 features were selected for data analysis: the absolute value of the
acceleration (acc) (9 features) and gyroscope data (9 features) [I14] from the three
components of the three sensors, the acceleration magnitude (3 features), bilateral
magnitude BM = |accrest| + |accrign:| (1 feature); logarithm of the magnitude ratio
MR = log(|accrignt|/|accres|) (1 feature) [I15]; and Sample Entropy [37] of the

acceleration magnitude for the three sensors (3 features).

Normalized jerk has been used successfully in clinical settings [116] to charac-
terize movement quality in stroke survivors, however, the difficulty of calculating
position from the video in our experiment limits us to use only the derivative of the
acceleration. The same features as in the acceleration data were calculated for the

jerk = d(acceomponent)/dt (17 features).

All the features used for kinematic data analysis were standardized by subtracting

the mean and dividing by the standard deviation.

6.5.5 EEG Data Analysis

Quantitative neuroscience based on EEG has implemented data features in fre-
quency band-power, time domain characteristics, and functional connectivity mea-
sures. Features in the frequency domain take the form of power in commonly used

frequency bands: e.g. delta 1-4 Hz, theta 4-8 Hz, alpha 8-12 Hz, beta 12-30 Hz,
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gamma 30-50 Hz [23]. Time domain features involving temporal and spatial rela-
tionships between the data have been used successfully to decode movement intent
in mobile settings (|19 117, 17, 18|, [33]). Connectivity features have also been used
as data descriptors in EEG; such features measure the correlation or synchronization

between data from two different sensors in frequency bands |27 [118].

The EEG features were calculated on a 4 second sliding window with 50% overlap.
The EEG features explored were PDC for all pairs of channels, and band-power in

the delta, beta, alpha, beta, and gamma frequency bands in each EEG channel.

6.5.6 EEG Data Pre-Processing

The freely-moving artists in the experiment make the EEG data susceptible to
artifacts including motion-related artifacts. Electrode impedance was obtained be-
fore and after the experiment so that electrodes with impedance values above 60k2
could be removed. The EEG data was resampled from 1000 Hz to 250 Hz. The
EEG data was band-pass filtered at 0.3 to 50 Hz using a 4th order zero-phase But-
terworth filter. A notch filter was applied at 60 Hz to remove powerline noise. The
H*> (gamma = 1.15, go = 1 x 10719) filter [T19] was used to remove eye-movement
contamination using the horizontal and vertical EOGs as reference for eye-related
signal removal. The EOG electrodes were low-pass filtered at 10 Hz before running
the H> filter. Then we used Artifact Subspace Reconstruction [120] to remove bursts
of abnormal activity, and we used interpolated channels that were removed due to
excessive noise, using spherical interpolation. We ran Independent Component Anal-

ysis to remove additional artifacts.
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6.5.7 Classical Machine Learning

6.5.8 Feature Selection

The most relevant features across subjects were selected using a mutual infor-
mation implementation of the mRMR [42] algorithm. In mRMR, a feature score is
sequentially calculated by computing the mutual information between each feature
and the target/class vector; and subtracting the redundancy term: average mutual

information between each remaining feature and the previous selected features.

6.5.9 Classification

The classical machine learning classifier used for the EEG and motion data was
the kernel support vector machine (kSVM), using the polynomial kernel of degree 3.

The value of the and box-constraint was set to 1 in all cases.

Classical machine learning techniques involve a combination of hand-crafted fea-
tures, based on previous neuroscience, to approach the problem. These features are
then set as input for a classifier. We used band power features for each channel
and PDC between all channel pair combinations as features, in 4s windows with
25% overlap. The features obtained in each of these data windows constitutes con-
stitute a data sample. The data samples from all subjects were analyzed together.
We selected randomly, with repetition, Ny = 500 samples per class, to achieve class

balance.

The training, validation, and test sets were by temporal subsampling. The data
from the first temporal 80% of the experiment was selected for the training and
validation sets, while the last temporal 20% was selected for the test set. From those

samples, (Vs = 500) samples were selected to achieve class balance, divided into
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(Ns = 400) samples for the training and validation sets, and (Ng = 100) for the test

set.

6.5.10 EEG Automatic Feature Extraction through CNNs

Automatic feature extraction algorithms offer a promising approach to study the
neural basis of a complex cognitive task such as the human creative process across
demographics, styles, and artistic domains. Automatic feature selection algorithms

have shown rapid progress in recent years applied to EEG data [50], [44].

The proposed CNN architecture (Fig. for the purpose of this report is a
6-layer architecture with one temporal convolutional layer and one spatial convo-
lutional layer. We aim to resemble typical EEG feature extraction strategies [23]:
frequency bank information in a temporal convolution, followed by spatial combi-
nations of electrodes (such as in ICA, PCA, etc) [50] through a spatial convolution.
The temporal layer aims to extract temporal and frequency-related information from
the EEG signals, for each channel separately, projecting to a number of filters. Then,
a spatial convolution combines the information from all of the channels at each time
point, and projects it down the CNN layers. A Max Pooling and a Fully connected
layer, with 20% dropout for stochastic robustness, lead up to the Fully Connected

Softmax Classification layer.

The hyper-parameters were optimized for highest average classification results in
the test set: number of temporal filters H; = 2, length for time convolution Hy = 75,
spatial filters H3 = 10, nodes in fully connected layer H, = 40, and the learning rate
Hs; = 0.00075. See Fig. for a schematic representation of the CNN architecture

used.
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Figure 6.9: CNN Architecture. Hyper-parameters: temporal filters H; = 2, length
for time convolution Hy = 75, spatial filters H; = 10, nodes in fully
connected layer H,; = 40, and the learning rate H; = 0.00075.
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7.1 Abstract

The development of mobile brain-body imaging technology provides the opportu-
nity to study the human creative process outside of constrained laboratory settings.
In this study, we used portable dry EEG systems (four channels: TP09, AF07, AF08,
TP10, with reference at Fpz), coupled with video cameras, to record the brain activ-
ity of Spanish heritage students as they developed their creative writing skills over
four months enrolled in an undergraduate course on creative writing in Spanish. The
students recorded their own brain activity as they walked through and experienced
areas in the city (Preparation phase), and while they worked on their creative texts
(Generation phase). We measured Partial Directed Coherence (PDC) between the
Preparation and Generation phases of their work. There was higher PDC in the
Preparation Phase at a significance level of p < 0.05, from TP10 to AF7 among
all frequency bands analyzed: 1-50 Hz. The opposite directionality was found for
the Generation phase, in frequency bands: 13-50 Hz. Information transfer from
temporal-parietal to anterior-frontal areas of the scalp may reflect sensory interpre-
tation during the Preparation phase, while high frequency bands PDC directionality
originating at the anterior-frontal areas during the Generation Phase may reflect
the final decision making process to translate the sensory experience into a tangible

product: text.

7.2 Introduction

Writing involves embodied practices that physically connect us with our sur-
roundings [98]. We investigated creative writing as a bodily experience, in which the
author’s interaction with the world around them (physically, verbally, etc.) informs

the cultivation and elaboration of their work. In this way, as an author engages in

98



actively experiencing the world around them through their body, they may seek to

achieve an aesthetic effect to aim for in their creative production.

We integrated wearable MoBI technology into a creative writing course in Span-
ish, designed after the idea of approaching creative writing as a bodily experience. In
the class, a creative writing professional served as the class instructor and relayed her
creative methods on a creative writing workshop for 18 non-expert heritage Spanish
speaking students. Bringing the artist early into the planning of the study provided
an equal consideration in the experimental design and evaluation process to best

assess the creative process in a minimally intrusive way.

We studied the process of creative writing on non-expert Spanish heritage speak-
ers, as they engaged in the Preparation and Generation phases of their writing. The
students were asked to walk through different areas of the city and experience their
environment in a variety of settings, and use the experience to create an aesthetic
effect in their texts. The exact writing prompts are shown in the Supplementary
Materials. This study aimed to identify EEG features related to the different stages
of a creative writing task where subjects were able to move, explore their surround-
ings to inform their creative texts (Preparation Phase), and write at their own time
(Generation Phase). The EEG features explored were PDC, sample entropy, and

band-power in the delta, beta, alpha, beta, and gamma bands.

This is the first study investigating the neural features associated with creative
writing using quantitative EEG metrics to compare different phases of the process
(i.e., Preparation, Generation). See Table for a landscape on the neuroscience
literature in creative writing. Tables[I0.3]and summarize the literature outlined
in Table [T
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Table 7.1: Neuroscience literature where the task involved creative writing as an
experimental task.

fMRI qEEG
Functional Activation Coherence Band
Connectivity Power
Martindale & Hasenfus, 1978 Qualitative
Jausovec, 2000.
Jausovec & Jausovec, 2000.

Takeuchi et al., 2012.*
Weietal.,, 2014.*

Lotze et al., 2014.

Sun et al., 2018*
Howard-Jones et al. 2004.
Shah et al., 2013.

Erhard et al., 2014.

Liu et al. 2015.

Cruz-Garza 2019 (this report).

Resting-state
Vs creativity
level

Stages of
creative
process

7.2.1 Neuroscience of the Creative Writing Process

Coherence metrics between pairs of EEG electrodes or brain regions have been
used to identify differences in resting-state brain dynamics and correlated signifi-
cantly with an individual’s creativity level [121], [122] I01]. Alpha power in frontal,
central, and parietal locations has been consistently found to be modulated in rela-
tion to creative task demands, to increase in relation to an individual’s creative level,

and to increase after performing a cognitive creative problem solving task [14].

Using fMRI to measure functional connectivity (FC) of subjects at rest, the rest-
ing state FC (rFC) between medial prefrontal cortex (mPFC) and the posterior cin-
gulate cortex (PCC) [123] and medial temporal gyrus (mTG) [124] has been found
to correlate positively with the individual’s performance in creative problem solving
tests. Lotze et al. [125] found decreased rFC between inter-hemispheric areas BA
44, and left area BA 44 with the left temporal lobe for individuals who scored higher

in a verbal creativity index test.

Moving past analyzing resting state brain dynamics, recent fMRI studies have
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analyzed the human creative process through its distinct stages of preparation, gen-
eration, and revision. Shah et al. [126] studied the Preparation and Generation
phases, finding distinct cortical networks associated with each. Erhard et al. [102]
found that experts had higher activation in prefrontal and basal ganglia areas. Liu
et al. [60] studied the generation and revision phases. They found that the mPFC
was active during both phases and the responses in DLPFC and Intraparietal sulcus

(IPS) were deactivated during the Generation Phase.

Although, fMRI studies report involvement of the mPFC, and phase-dependent
and creative level-dependent activation of DLPFC, TIPS, PCC, and basal ganglia,
differences in brain activity for the distinct stages of the creative process remain
mostly unexplored in the EEG domain; particularly for creative writing tasks. Table
2 summarizes the approaches that neuroscience studies have taken to study the

creative process in creative writing.

There is a clear gap in the neuroscience of the human creative process in the use of
quantitative EEG (qEEG) used to analyze the stages of the creative process. Mobile
EEG allows for the collection of brain activity data in more natural settings, where
the users have free range of motion and translation. We propose to study the human
creative process in creative writing skills as the subjects are free (and encouraged)
to explore their environment to build on the ideation / Preparation stage, as well as

on the Generation Phase of the process.

7.3 Methods

Through readings and writing prompts, non-expert creative writing students were
asked to acknowledge the physicality of the writing process and to relate it to the ma-

teriality of language. Prompts issued in the upper-division undergraduate workshop
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(SPAN 3308 YOUR BRAIN ON WRITING: Writing, Body, and Neuroaesthetics)
where the EEG data was obtained encouraged students to develop and record a series
of specific writing preparation tasks (walking, running, climbing in different locations
of Houston) as they completed the first Phase of required assignments. Students also
wore head devices as they sat down and completed their creative texts. The writing

prompts are provided in the Supplementary Materials.

7.3.1 Task

Eighteen non-experts, heritage Spanish speakers, participated in a Spanish lan-
guage creative writing workshop at the University of Houston. Anonymous Informed
Consent was approved by the University of Houston Institutional Review Board. The
participants provided Anonymous Informed Consent at the beginning of the work-
shop. They were trained to set up their own EEG headsets and body-mounted video
cameras for the experiment. The participants were responsible for the collection of

EEG data, video, and to keep a diary with notes on each recording session.

The participants were asked to walk around the city in a variety of locations,
and to use their experience to generate their creative texts , constrained only by a
3-5 page length suggestion (double space, 11 point font) . The participants were
instructed to use the EEG and video cameras during their walking activities and
writing time. There could be more than one session of walking and writing times

per prompt.

This experimental setup produced data in two phases of the creative process: the
Preparation Phase and the Generation Phase. The Preparation Phase involved tasks
such as walking, active observation of their environment, taking notes, and ideation.
For the Generation Phase, the task involved reviewing their notes and typing their

texts into a complete creative piece, with iterative revisions and modifications.
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Figure 7.1: Creative Writing workshop 1. Pilot study. Timeline for the EEG record-
ing sessions in the creative writing workshop: talleres de escrituras.

7.3.2 Measurement Equipment

EEG and head acceleration data was captured using Muse headsets (Interaxon,
Toronto, Ontario, Canada). The headset has seven sensors, two out of these seven
sensors were positioned at the frontal region (AF07 and AF08), two at temporal-
parietal region (TP09 and TP10), and the remaining three sensors served as electrical
reference located at the center of the forehead (Fpz). The headset has an inbuilt
accelerometer that was used to measure the head acceleration. EEG data for each
channel were measured in microvolts with sampling rate of 220 Hz. The acceleration
data was recorded at 50 Hz. Additionally, the data recordings contain a vector
indicating contact quality for each electrode sampled at 10 Hz, rating contact quality

as “indicator = 1: good”, “indicator = 2: Ok”, “indicator > 3: bad”.

The participants set up their own headset with a custom application given to
them in a personal tablet, which recorded EEG and head acceleration data and
labeled the subject identification number and date/time for the recording session
automatically. The data recording setup is illustrated in Fig. Additionally,
the participants set up body-cameras (Conbrov, ShenZhen, China) to record their

exploration (Preparation) and writing (Generation) sessions. The camera recorded
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Figure 7.2: Equipment setup and EEG data pre-processing. A) Raw (black) and pre-
processed (orange) EEG data. Shaded areas indicate rejected intervals.
B) A student wearing the EEG headset during the Generation Phase.

720 HD video on a 75° wide-angle lens.

7.3.3 Data Collection

Eighteen students participated in the study. The students were asked to make
five writing exercises and collect their brain activity as they walked and observed
their environment (Preparation phase), and created their texts (Generation phase).
Only writing assignments that were submitted and accompanied by both video and
EEG data were considered for the analysis. From the eighteen initial subjects, data
from eleven subjects was discarded due to incomplete data (video or EEG missing)

or assignments not submitted on time.

The Preparation and Generation phases for each writing exercise were done in
several distinct recording sessions as each Phase could take several time-separated

recording sessions to compete. We kept each data recording as a separate session to

104



analyze. Recording sessions were considered for analysis when all 4 electrodes had a

“good” contact indicator for at least one continuous minute of data.

7.3.4 Pre-Processing

Data recordings with both video (context) and EEG were considered for this

analysis.

An online notch filter was applied on the EEG data to remove the 60 Hz power
line noise. We applied an offline 4th order, zero-Phase Butterworth band-pass filter
from 1 to 100 Hz. Artifact Subspace Reconstruction (ASR) [120] was used for the
removal of short-time high-amplitude artifacts in the continuous data. Calibration
data for each individual subject was computed from the entire length of the trial
using automated methods. A cut off threshold of ten standard deviations was used
for the identification of corrupted subspaces, and a window length of 500 milliseconds
with a step size of 250 milliseconds was used for the ASR. Among the segments,
channels having corrupt PC loading to be greater than 0.75 were removed. The
remaining segments were then inspected automatically to remove data from any
electrode disconnections from the scalp (tracked by the headband status data), any
abrupt change of voltage greater than 100 ©V, or EEG data collected while there

2

was an absolute acceleration magnitude larger than 1 ms™. A complete flowchart

for the aforementioned data pre-processing and de-noising is shown in Fig. [7.3]
7.3.5 Feature Extraction

The PDC was computed for all pairs of electrodes in the frequency bands: delta
[1-4 Hz|, theta [4-8 Hz|, alpha [8-12 Hz|, beta [12-30 Hz|, gamma [30-50 Hz|.

The data was re-segmented into 2s windows with 1s overlap. The power spectral
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Figure 7.3: EEG data pre-processing and feature extraction. Flowchart for EEG
data pre-processing and de-noising. The ASR and artifact removal were
done on 500ms windows of data with 250ms overlap.
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density (PSD) was computed for each window of 2s using Thomson’s multitaper PSD
estimate in Matlab, with 50 frequency bins [1-50 Hz| and half-bandwidth product
nw = 4. Relative band power, given by the sum of the power in each band-related
frequency bin, divided by the total power 1-50 Hz, was computed for the EEG data

in each time window.

The median value of the relative band power was computed for the Generation and
Preparation phases. The percentage change in band-power between the Generation
and Preparation phases, which we call “Relative median power change” (AmBP),

was computed using the following equation:

Relative median power change:

AmBP = [(median(BPy,) — median(B Pyp)|/median(B Py, ) , (7.1)

where AmBP is the change in median band power, BP, is the band power in the

Generation Phase, and BP,,, is the band power in the Preparation Phase.
The 6s windows with 1s overlap data was used for sample entropy analysis.

In this study, m = 2 and r = 0.20, where here ¢ is the standard deviation of the

signal window, and N = 440 (2s of data sampled at 220 Hz).

7.4 Results

The PDC between the Preparation and Generation of creative writing has op-
posite directionality between right temporal and left anterior frontal area. Fig.
illustrates the results for the connectivity between electrodes, using PDC, during the

two stages of the creative writing process analyzed.

Preparation Phase: There was higher PDC in the Preparation Phase originating
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from TP10 towards AF7. The PDC difference between the Preparation and the
Generation phases were statistically significant at a confidence level of p <0.05 for
the frequency bands delta, theta, alpha, beta, and gamma. Fig. shows the PDC

scores, bounded between 0 and 1, for all pairs of electrodes.

Generation Phase: There was higher Partial Directed Coherence in the Genera-
tion Phase originating from AF7 towards TP10. The PDC difference between the
Preparation and the Generation phases were statistically significant at a confidence

level of p<0.05 for the frequency bands beta and gamma.

The statistical difference in PDC and its opposite directionality when comparing
the Preparation and the Generation Phases indicates that there was a strong relation
between the left anterior frontal with the right temporal-parietal areas when the

students engaged in the tasks.

There were no statistical differences, at a significance level of 5%, between the
tasks “Preparation” and “Generation” for creative writing in this experiment (Fig.
7.5). There was, however, higher median beta and gamma power during the Gener-

ation phase, as well as alpha suppression (TP9, AF8) during the Preparation Phase.

7.5 Discussion

The higher coherence values from the right temporal towards the left anterior
frontal electrode during the Preparation phase, is potentially associated with the
processing of sensory input [127], [128] and episodic emotional memory retrieval [129]
130, I3T] in the temporal lobe as subjects explore their surroundings actively en-
gaging the frontal cortex in integrating the experience. The opposite directionality
between the same electrodes (Fig. reinforces this hypothesis in which processed

input in the frontal areas is related back to sensory processes.

108



8030
$0.20
5
go.10
0.00

AF07->TP10

@

TP10->AF07

0.00

Figure 7.4: PDC for the Preparation and Generation phases. Higher PDC in the
Preparation Phase, from TP10 to AF7, for 1-50 Hz. Opposite direction-

||:] Preparation [___| Generation |

Eﬁﬁ i ﬁﬁ ﬁ.*ﬁ

8 0.30}
&
5 0.20F
3
§o.10f

* * *

*

T [ [ [ [

*

Delta  Theta  Alpha

Beta

Gamma

ality in the Generation phase, for 13-50 Hz.

15 c 1.60 15 f\ c 1.60
N S
F101 N\ £ 000 £ 10 \ B o0
33 sf A @040 5% 5 \ @040
o . I —
- o P <9 \
o \‘\ B \'\-—N\n——\m
5f -5
_ }\ Y120 N 120
210t £0.80 I 10 \ £ 0.80
el ® 0.40 8 ) 0.40
ST st \ SECA \
w - (o N~
< @ \ = o
= 0f = 0
<] (o] \
& WW o D
5t \ -5

Preparation Generation |

Figure 7.5: Power spectrum (median) and Sample Entropy for the Preparation and

5 10 15 20 25 30 35 40 45
Frequency (Hz)

Generation phases. No significant differences were found.

109



Our results, although constrained to frontal and temporal recording locations, re-
late to previous findings in fMRI studies analyzing the different stages of the creative
process. There are distinct cortical networks associated with each Phase. Shah et
al. [126] identified ventrolateral prefrontal cortex activation during the Preparation
phase, and central-parietal areas involved in the Ceneration Phase. “Brainstorming”
engaged cognitive, linguistic, and creative functions represented in a parieto-frontal-
temporal network, while “Creative writing” activated motor, visual, a cognitive and
linguistic areas mainly over central and parietal networks [126]. Liu et al. [60]
found that the mPFC was active during the generation and revision phases. They

confirmed deactivation of the DLPFC and IPS during the Generation Phase.

Our results show higher coherence values from the right temporal towards the
left anterior frontal electrode during the Preparation Phase for all frequency bands
analyzed (1-50 Hz); and the opposite directionality for the Generation Phase in
higher frequencies (13-50 Hz). We did not find statistical differences between the

Preparation and the Generation phases for Sample Entropy of frequency band power.

Overall, these findings suggest that ideation, exploration, and observation during
the Preparation Phase of a creative writing task can be characterized by a state
of long-range cortico-cortical communication between multisensory integration brain
areas (temporal regions) and high-order execution and planning areas of the brain
(prefrontal regions), perhaps leading to selective storage of ideas, concepts or obser-
vations candidate for creating writing during the generation Phase. We hypothesize
this focal activity may be related to working memory, sequence production, and

processing of filtered information from the Preparation Phase.

110



7.6 Acknowledgements

This research was funded in part by NSF award #BCS1533691, NSF TUCRC
BRAIN Award CNS1650536, a Seed Grant from the Cullen College of Engineering
at the University of Houston, and the SeFAC grant from the Center for Advanced

Computing and Data Science (CACDS) at the University of Houston.

7.7 Author Contributions Statement

JGCG performed the data analysis wrote the manuscript. ASR prepared and
pre-processed the data, and pefromed preliminary analysis. AEK assisted students
on a weekly basis on data collection, and compiled the multimodal data in a working
dataset. JGCG, AEK, and CRG planned the experiment. CRG conducted the
workshop. JLC-V and CRG conceived the research and edited the manuscript. All

authors reviewed the manuscript.

111



Chapter 8

Embodied writing: Understanding neu-

ral dynamics during creative writing

* . . .
Authors: Jesus G. Cruz-Garza®”, Cristina Rivera Garza?, Jose L. Contreras-

Vidal!
*Email: jgcruzQuh.edu
Affiliations:

1. Laboratory for Non-Invasive Brain-Machine Interface Systems, NSF IUCRC
BRAIN, University of Houston, Houston, USA.

2. Department of Hispanic Studies, University of Houston, Houston, USA.

Bibliographic information: E]

8.1 Abstract

Creative writing involves embodied practices that physically connect us with our
surroundings and our community through our bodies’ interaction with them. In
a unique collaboration at the nexus of the humanities and neural engineering, we
investigated the neural dynamics of heritage bilingual students before and after a

14-weeks creative writing workshop led by Prof. Rivera Garza.

The students composed creative texts and a text transcription while wearing

1To be submitted as a journal article in 2019-2020. The chapter organization is based on the
template from the journal Scientific Reports.
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active-electrode scalp electroencephalography (EEG) caps. As result of the work-
shop, the students used less adjectives, and more questions and reflections in the
session after the workshop. In regard to brain activity, we found a significant in-
crease in cortico-cortical communication, as assessed by partial directed coherence,
between right occipital and left central-frontal electrodes indicating a dynamic cogni-
tive visuo-motor neural network engaged during creative writing and understanding.
This finding was observed in both the transcription and creative writing conditions.
Additionally, in the transcription condition, we also observed desynchronization in
the frontal and central-frontal scalp electrodes in the delta (0.3-4 Hz) band. Writing
is the taking of decisions, a means for reflection and the sharing of such reflection
through the written actions; and transcription shows the same changes in informa-
tion transfer after the 14-week workshop than the creative writing conditions: tran-
scription is an active intellectual, emotional, and social endeavour. Sharing texts,
practices, and experiences through a creative writing workshop created physiologi-
cal changes in how the brain processes and transforms information from visual and

motor experiences into written language.

8.2 Introduction

Creative writing involves embodied practices that physically connect us with
our surroundings and our community through our bodies’ interaction with them.
Previous electroencephalography (EEG) studies pertaining to creative writing, have
reported that highly creative individuals exhibit higher alpha power during creative
inspiration (preparation) than creative elaboration (generation); which was not found
in less creative subjects [98]. In another study, as participants thought about writing
an essay, more creative individuals (based on their “creativity scores” assessed by the

Torrence tests) showed higher coherence across the scalp, in the alpha (8-12 Hz)
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band [101]. Moreover, alpha power in frontal, central, and parietal locations has
been consistently found to be modulated in relation to creative task demands, to
increase in relation to an individual’s creative level, and to increase after performing

a cognitive creative problem solving task [14].

Erhard et al. [I02] and Liu et al. [60] have proposed working models for the hu-
man creative process based mainly on neuroimaging and behavioral experiments con-
ducted in laboratory settings. They found dorsolateral prefrontal cortex (DLPFC)
deactivation during creative production, and activation during text revision. Al-
though these studies provide valuable insights into the nature of the human creative
process, unfortunately, they leave the question of effects of environmental context
and the free and embodied nature of behavior, unresolved as the experimental set-
ting is carried out inside the confines of the scanner room, far from natural contextual
settings in which free-behaving individuals usually create. Fink and Benedek [14] dis-
cuss the role of alpha power in creative ideation measured with EEG, as it increases
during creative task performance or as a function of the individual’s creativity level.
Alpha power was found to be among the among the most consistent finding among

studies.

To study the neural dynamics associated with the creative writing experience, we
assayed the brain activity of eight bilingual upper division college students before and
after they participated in a semester long creative writing workshop at the University
of Houston (SPAN3311 WRITING HOUSTON: Writing the Second Ward). The
purpose of the workshop was to critically examine the relationship between body

and writing.

The workshop was created by Prof. Cristina Rivera Garza, based on her theoret-
ical work on creative writing as an embodied processs[98]. The workshop connected

Spanish heritage speakers and English speaking students to the practice of writing

114



as a bodily experience and community-making practice. This class provided the
students with neuro-technology with the aim of enhancing their visualization and
understanding of their body’s experiences as they explored the Second Ward, a his-
torically Hispanic neighborhood in the heart of Houston. Leveraging the values of
the University of Houston, a Hispanic serving institution, we empowered students
by enabling them to use cutting edge technology to inform their writing and provide

them with the tools to engage in the emerging field of Digital Humanities.
Our goals for the class were threefold.

1) First, students would be able to connect writing and community in unique
ways. As they walk through Second Ward, paying attention to flora and fauna,
buildings and houses, or conducting interviews with dwellers and/or artists, stu-
dents will gain intellectual and experiential knowledge about one of the most tradi-
tional neighborhoods in east downtown Houston. They would learn that writing is

a community-making practice [98].

2) Interdisciplinary collaboration with students from Graphic Design would result
in the making of a published book— giving back a tangible text to the community
where the experiences came from, and to connect the university with communities

from the area.

3) The MoBI team would work together with experts in the field of creative
writing to measure brain activity and characterize the creative writing process in
terms of neuroscience; both before the 14-week workshop and after the workshop.
This data may allow us to measure cortical correlates of improvement in creative
writing skills over the course of the semester, as well as awareness of the students’

bodies and surroundings in the implementation of their writing skills.

Cognitive processes are often based on the surrounding environment and our

own physical body [I32]. The contextual setting of the subject has implications in
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both perceptual and motor processing. We aimed to uncover the neural correlates
associated to those perceptual and motor processing information and how they relate
to the embodied writing experience: how do EEG data features are progress with
creative writing training as an embodied experience, and how do these relate to

current philosophy of creative writing practice?

8.2.1 Description of the Creative Writing Workshop

We integrated EEG technology into a creative writing workshop. During the
workshop the students physically experienced the writing prompts (locations in Hous-
ton), and their community. The students wrote creative texts from the prompts
visited. Those texts were discussed as a group during workshop hours. Two of those
discussion sessions were equipped with EEG recording E] Finally, at the end of the
workshop, the students went through the same creative writing prompts again, now
with bodily experience in those locations. This chapter analyzes the change in neural
features from Before and After the workshop using the writing prompts. Only the

writing sessions Before and After the experience of the workshop are discussed here.

Specifically, we studied the process of creative writing on non-expert writers, as
they engaged in the generation of improvisational creative writing tasks based on
prompts: pictures of locations in the Houston Second Ward. Students wrote the
Second Ward— a historically Mexican neighborhood in the heart of Houston and

only a couple of kilometers away from the University of Houston main campus.

During the workshop, the students and the instructors discussed a range of strate-
gies for urban writing, and cross-genre (‘trans-género’) writing. The students also

analyzed writing strategies through readings and interactive writing tools. Crucially,

2The in-class workshop sessions are not discussed in this report.
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the students took three walking tours throughout the Second Ward focusing on lan-
guage, botany, community, social history, and graffiti art. Each walking tour was
led by experts in the field. Commenting and revising these three tours and writing
prompts was the core of this course, discussed in two to three workshop sessions
afterwards. At the end of the course, the students were asked to create a 10-page
long piece of cross-genre writing to be published together in a community book in

partnership with graduate students from Graphic Design.

Students in this hands-on writing workshop took three walking tours throughout
the Second Ward — a historically Mexican neighborhood in the heart of Houston
— focusing on language and botany, social history, and graffiti art. Each walking
tour was led by experts in the field and paired with a writing prompt (e.g., specific
locations and communities). Commenting and revising these writing prompts was at
the core of this course. Based on revised work, students wrote a 7 to 10-page long

piece of cross-genre writing by the end of the semester.

Overall, the goal of this course-study was two-fold. From the pedagogical perspec-
tive [98], we wanted to show students that writing is a community-making practice,
that is, we aimed to teach students how to learn to connect writing and community
in unique ways, while gaining intellectual and experiential knowledge about one of
the most traditional neighborhoods in east downtown Houston. From the neuroengi-
neering perspective, we aimed to interrogate the neural dynamics of the students’
creative brain in action in a natural ecologically valid setting. To achieve this aim, 32
channel active electrode EEG (BrainAmpDC with actiCAP, Brain Products GmbH)
data was acquired at 1000 Hz, while the students wrote creative essays in two time-
constrained creative writing sessions: one before the workshop (week 1); and one

after the workshop (week 14).

During these creative writing sessions, the students were given three writing
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prompts (2min each), preceded with periods of rest with eyes open (1min) and eyes
closed (1min), and a control condition where they transcribed a text (2min). We
expected the brain dynamics to change as a result of the writing workshop. Specifi-
cally, to assess the effective brain networks during the creative writing tasks before
and after the workshop, we used the partial directed coherence (PDC) analysis [27],
based on Granger causality (GC) [133]. PDC allowed for the examination of the
flow of directional information of the instantaneous interactions of the brain among

several electrodes.

8.2.2 Task

In this work, eight bilingual students participated in a creative writing workshop
over the course of a semester. This experiment analyzed the effect of an inter-
vention on training individuals and concomitant neural changes on improvisational
creative writing performance. The students wrote creative texts while wearing the
EEG equipment in two time-constrained creative writing sessions: one before the

workshop, in week 1; and one after the workshop, in week 14.

During the time-constrained improvisational creative writing sessions, the stu-
dents were given three writing prompts (2min each), preceded with periods of base-
line with eyes open (1min), baseline eyes closed (1min), and a control condition where

they transcribed a text (2min).

The students’ end goal was to produce a published book in community. The
workshop, therefore, provided the students with skill development through theory,
readings, and examples, and by experiencing the embodiment of the creative writ-
ing process (visiting the locations), making drafts, discussing them, and editing a

published book as a final product.
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8.2.3 Transdisciplinary Hypothesis Generation

Formal learning in creative writing paired with experiential Informal STEM
Learning with MoBI technology enabled students to gain knowledge about how their
brain processes information during writing-related activities; from the gathering of
sensory and memory data to the writing, reflecting, and marking creatively their
lived experiences. Writing not as a random result of inspiration, but as a process
that can be cultivated and augmented through experiences. We hypothesize that
neural markers associated with the creative process will be uncovered, providing in-
sight into the neural mechanisms involved in writing, current writing philosophy-
writing as an embodied experience, and neural dynamics associated to creative writ-

ing performance and understanding.

Provoked by the EEG recording devices, this class created a conscious relation-
ship between body, mind, brain, and language, providing physiological data to help
students to understand creativity and writing. It is a class that immerses the stu-
dents in a learning experience through body and community: they learn together,
physically experience the Houston Second Ward together; they write and discuss

their texts together in a transdisciplinary context.

This transdisciplinary collaboration provide underrepresented communities of
students with an emerging tool for learning and experiencing their bodies. It is our
goal to empower Spanish heritage speakers at the University of Houston to pursue
experimentation, creativity and learning as heritage speakers, students, community

members, and writers.

We analyzed the number of adjectives used in the creative writing tasks before
and after the workshop. Without the physical experience and the community engage-

ment from visiting the prompts, we expect the students to use adjectives to describe
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settings and situations related to the creative writing prompts. After the workshop,
we expected more references to the body, introspection, and reflection based on their
lived experience. Similarly, we expected to find neural features associated to the
cognitive processes involved in their creative writing experiences: activation of pari-
etal (spatial planning), temporal (sensory processing), and frontal regions (executive
function and information assimilation) to be more active at the end of the workshop

during improvisational writing tasks.

We expected that as the students’ creative writing skill develops, the neural
features related to the creative writing process will be accentuated in the after-
intervention experiment session. Central and parietal areas would become involved
from the use of memory (after interacting with the locations used as stimulus), spa-
tial planning for their compositions, and increased involvement in theta band with
periodic modulation (spatial navigation and recollection) [I03]. The involvement of
these cortical areas would take the form of changes in information transfer between
parietal and frontal regions of the brain, as the students associate sensory experience,
and memory, with the prompts, after the workshop. They would also have more writ-
ing strategies to produce experiential evocative language and reflection when writing
after the workshop. In particular, as the alpha band has been consistently found
to be involved in creative performance [14], we expected to find alpha desynchro-
nization in motor (executive function) areas, modulating central and parietal alpha

desyncrhonization [I].

The experiment includes a transcription (copying a text) control condition from
which to compare creative writing texts with. In the creative writing production
tasks, we expect the students to use writing strategies related to the prompt shown.
However, we the transcription task is also not just a mechanical action: reading and
copying a text is an intellectual and emotional reproduction of a material that is itself

creative. Students would be able to identify poetic mechanisms that the transcribed
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text uses to evoke an experience, which would be accentuated after the creative
writing workshop. Therefore, we expect similar cortical features to be found relevant
both in the transcription and the creative writing conditions; however, we expect
more pronounced changes in frontal alpha band power and information transfer in
the creative writing conditions, as students actively seek to use those strategies to

create new material.

We aim to develop a predictive model of brain dynamics associated to the process
of creative writing composition though mobile brain-body imaging. This model could
have transformative impact on promoting and assessing creative skill development,

personalized education and innovation.

8.3 Results

The text analysis results based on the frequency of adjectives and questions ob-
served in the produced texts before and after the creative writing workshop, and

physically interacting with the spaces in the prompts (Fig. [8.1]).

A visual representation of the most discriminant EEG features per class is shown
in Fig. [8.2 for band power analysis and Fig. [B.3] for Partial Directed Coherence
(PDC) analysis. The features plotted are those which showed significant statistical
differences from Baseline Eyes Open, at a significance level of 5% for the band power
features, and at 0.1% for the PDC features. These figures show the results for the
band power and PDC features before and after the workshop. We analyzed six
tasks: A rest condition as Baseline with Open (BO), Baseline with eyes closed (BC),
Transcription of a text (Tr), and three create writing texts (CW1, CW2, and CW3)

respectively.
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8.3.1 Text Analysis Results

The creative writing workshop provided the students with the experience of phys-
ically visiting the spaces described in the prompts and understand them in relation to
their community, their history, and their bodies as a response to the space. Fig.
shows the distribution of six features compared between texts created before and after
the creative writing workshop in response to the three prompts. The features com-
pared were: Number of adjectives, number of questions or doubts or chiaroscuros,
number of nouns, number of place-related nouns, number of body-senses-related

nouns, and number of time-related nouns.

The number of adjectives used significantly decreased after the workshop, while
the number of questions and doubts expressed in the texts increased significantly
after the workshop. Before the workshop, there was an effort to describe the places
through representation of reality. After the workshop, there was an effort for the use
of the evocative capacity of language on topics such as the body, society, and the
space itself. Concrete questions and doubts expressed in the text reveal a process
of reflection upon writing, and an effort to portray those reflections in a variety of

literary strategies.

There was not a statistically significant change in the use of Nouns before and
after the workshop. However, there was a significant increase in the use of nouns

referring to bodily-senses and those related to time.

These changes, a reduced use of adjectives per word and an increase use of nouns
related to body and time, are indicative of the strategies used by the students after
physically experiencing the writing prompt locations and completing the creative
writing workshop. They rely less on descriptive words to construct a creative text;

rather, they question the space through writing and they implement physical relations
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Figure 8.1: Text comparison before and after the creative writing workshop. 21
creative texts per box plot: seven students provided each three creative
texts. p < 0.05: *; p < 0.01: **

to their bodies and a sense of time into their texts.

8.3.2 Band Power Analysis in EEG Features

The band power features shown in Fig. [8.2| provide a information about synchro-
nization and desynchronization of neural activity over brain areas involved in the

human creative process.

In the Transcription condition, there is a clear desynchronization (less power) in
the frontal and central-frontal regions for the delta band (1-4 Hz). This is is seen

both before and after the workshop. There is occipital synchronization in the gamma
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band (30-50 Hz), and desyncrhonization in central regions in the alpha band.

In the CW1-3 conditions, the band power patterns are consistent throughout;
suggesting that the neural dynamics are similar for the creative writing conditions,
as expected. In the delta and gamma bands, there is power increase in occipital
regions, both before and after the workshop. In the alpha band, there is clear desyn-
chronization in the central regions, which is much more pronounced in the session
after the workshop. The beta and gamma bands show more power parietal - occipital

regions in the session after the workshop.

8.3.3 PDC Analysis in EEG Features

The PDC features shown in Fig. provide deeper insights into the flow of
information between electrode locations over the scalp. There is a clear difference in
the PDC connection strength during the session after the creative writing workshop.
Among all frequency bands, there is higher PDC from right parietal regions to central

channels, as well as lower PDC from frontal to central channels.

This finding is consistent across all three creative writing conditions, and across

students: five out of six students show this pattern (See Supplementary Materials
Fig. (10.6)).

There is also an increase in PDC from right parietal to central channels in the

Transcription condition after the creative writing workshop.

8.3.4 kSVM Classification Results

Automatic classification of EEG data into the tasks performed allows for the
evaluation of feature relevance and discrimination, as well as their predictive power

in classifying new data into the BO, BC, Tr, and CW classes. The creative writing
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Figure 8.2: Band-power changes compared to BO. A) Before workshop. B) After
workshop. Decreased delta power in Transcription; and decreased alpha
power in central areas for all writing, stronger after workshop.
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Figure 8.3: PDC changes compared to BO. A) Before workshop. B) After workshop.
Increased PDC from right Parietal to left Central-Frontal areas after the
workshop in all writing tasks; decreased PDC in the opposite direction.
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tasks CW1, CW2, CW3, were collapsed into one single overall class: Creative Writ-
ing (CW)H These tasks were classified using kSVM of polynomial degree 3. With
temporal sub-sampling, the classification accuracy reached over 75% (chance level
= 25%), providing evidence for the relevance of the neural features selected for task
identification and characterization. This result, across students and creative writ-
ing texts (six per student), provide the first evidence that it is possible to classify
tasks related to creative production in creative writing from EEG neural features
alone: in unseen data taken from temporally different task incidences. The features
driving the classification of these tasks are consistent throughout a creative writing

production text based on pictures of locations as writing prompts.

The highest confusion in the temporal sub-sampling scheme is between Tran-
scription and Creative Writing, as both are writing tasks. However, there is a clear
distinction between them. From Fig. [8.3] the most apparent feature difference is on
PDC. The PDC from frontal to central regions does not appear to be present in the

Transcription task with the same strength as in the Creative Writing tasks.

This finding is consistent with the model of creative production proposed by Lui
et al. [60], obtained from poetry improvisation analyzing neural data through fMRI.
The propose that the dorsolateral pre-frontal cortex is deactivated during creative
production, as compared to poetry memorization. We find an analogous component
here, with PDC suppression from frontal to central electrodes being the feature that

differentiates Transcription from Creative Writing.

3See Supplementary Materials for classification results with CW1, CW2, and CW3 as
separate classes. The largest confusion happens, predictably between these CW classes; reaching
an overall mean accuracy of 59.3% for six classes: BO, BC, Tr, CW1, CW2, CW3.
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Figure 8.4: Confusion matrices for the kSVM classification results on temporal sub-
sampling for the test set.

8.4 Discussion

By comparing the creative improvisational texts from before and after the creative
writing workshop and having the students physically experience the locations in
the prompts, we observed that there was a significant increase in PDC between
right occipital and left central-frontal electrodes. This finding was observed both in
Transcription and the Creative Writing conditions. Additionally, in the Transcription
condition, we observed desynchronization in the frontal and central-frontal regions
of the scalp in the delta band. The patterns observed were consistent across the

students.

The changes in PDC comparing before and after the workshop were observed
consistently in the Transcription task as well as in the Creative Writing tasks. Tran-

scribing is not just a mechanical action [I34]; rather, it is an intellectual endeavour:
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“Even when we do something as seemingly ‘uncreative’ as retyping a few pages, we
express ourselves in a variety of ways."[135] Students can identify poetic strategies
used in the text they write by hand, the relation of the body and writing, and reflect

on the dynamic qualities in the language they read.

The text analysis provided information on the strategies used by the students
before and after the workshop. Less adjectives were used after the workshop, and
more questions and reflections were observed in the creative texts after they had gone
through the workshop. Again, the students seem to have taken language as a dynamic
medium to reflect and transmit those reflections to the reader, both by reducing the
number of descriptors used to modify words, but by evocating experiences through

their texts.

Writing is the taking of decisions, a means for reflection and the sharing of such
reflection; of taking language as a dynamic entity. Sharing texts, techniques, and
experiences through a creative writing workshop created physiological changes in
how the brain processes information in the students analyzed here. Notably, five out
of six students’ data showed increase information flow from from right parietal to
central-frontal areas; and decreased information flow in the opposite direction (Fig.
. Neurotechnology provided evidence for information flow changes in the stu-
dents based on their experiences, matching their increased flexibility for experience

evocation from the writing prompts.

We used power spectrum-related features and connectivity or information shared
between electrodes for a classical machine learning analysis of neural feature extrac-
tion and classification. The approach proved successful in identifying features that
relate specifically to creative writing production; namely: bi-directional PDC from

right parietal and left central-frontal scalp areas.
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8.5 Methods

Eight bilingual students participated in a creative writing workshop over the
course of a semester. EEG data was collected in two sessions of creative writing
and two sessions of discussion of their creative texts during the workshop. Fig.
shows the corresponding experimental timeline in the 14-week of the workshop. This
experiment analyzes the effect of an intervention on training students in creative
writing as an embodied, community practice, and relating changes seen after the

workshop vs before the workshop in the neural features captured through EEG.

In this report, only the creative writing sessions before and after the workshop

are analyzed: Week 1 and week 14 in the Fig. diagram.

Brain activity was collected with 32 active-electrode EEG sampled at 1000 Hz
(BrainAmpDC with actiCAP, Brain Products GmbH). Two electrodes were used for
Horizontal Electro-Oculography tracking. The electrodes were placed in accordance
with the 10-20 international system using FCz as reference and AFz as ground. A

synchronized video camera was used to record the experiment.

The students wrote creative texts while wearing the EEG equipment in two time-
constrained creative writing sessions. All writing was done by hand with pens and

notebooks.

8.5.1 Pilot Data and EEG Metrics Proposed

In Chapter [7], we discussed pilot data that served the purpose of guiding us
through best practices in the data collection process, and to formulate appropriate
hypotheses. This pilot study aimed to identify EEG features related to the different

stages of a creative writing task where subjects were able to move, explore their
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Figure 8.5: Creative Writing workshop 2. Timeline for the EEG recording sessions
in the creative writing workshop: talleres de escrituras.

surroundings to inform their creative texts (Preparation Phase), and write at their
own time (Generation Phase). The EEG features explored were partial directed
coherence (PDC), sample entropy, and band-power in the delta, beta, alpha, beta,

and gamma frequency bands.

The work reported in Chapter [7] was the first study investigating the neural
features associated with creative writing using quantitative EEG metrics to compare

different phases of the process.

The main findings in the pilot study were: 1) We found higher average Partial
Directed Coherence during the Preparation phase from the right temporal electrodes
towards left frontal electrodes; with opposite directionality in the Generation Phase.
2) No statistical differences in Sample Entropy or band power features across the

four electrodes analyzed: TP09, TP10, AF07, AF0S.

8.5.2 Creative Writing metrics proposed for text analysis

We analyzed the text created by the students before and after the creative writ-
ing workshop with two representative features: the number of adjectives used, and

the number of questions posed by the students in their texts; both features were
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then normalized by the number of words in the corresponding text. The students
used adjectives to describe nouns and spaces. The adjective brings particularity to
nouns [136], a strategy likely used by the students to create an experience from the
prompts. After physically experiencing the locations shown in the prompts, the stu-
dents would be able to reflect upon that experience and transmit it to a reader. One
of the students could not participate in the second creative writing session, after the

workshop.

The text features proposed, number of adjectives, and number of concrete ques-
tions/reflections were abundant in our text samples, allowing for statistical analy-
sis between the Before and After Workshop experimental comparison. There were
3.95+1.88 adjectives used per text, and 0.454+0.77 questions per text. Each student
produced three texts Before and three texts After the workshop. One student did

not attend the After-workshop recording session.

8.5.3 Experiment Design

During the time-constrained improvisational creative writing sessions, the stu-
dents were given three writing prompts (2min each), preceded with periods of base-
line with eyes open (1min), baseline eyes closed (1min), and a control condition where
they transcribed a text (2min). See Fig. for the list of tasks and a pictures of

the experimental setup with students wearing the EEG caps.

The creative writing prompts consisted of pictures of the Second Ward in Hous-
ton, a historically multicultural neighborhood adjacent to the University of Houston.
Through the course of the semester, the students experienced the pictures locations,
interacted with the community there, collected samples, and created creative texts
based on their experience. Supplementary Materials Fig. shows the pictures

used as prompts, and pictures of the students visiting the locations together. The
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Figure 8.6: Experimental setup for the creative writing tasks before and after the
workshop. A) Experimental tasks. B) Picture of the students, EEG
recording system, and notebooks for the tasks.

creative text drafts were discussed between them, guided by the instructor remarks.

At the end of the semester, the students repeated the creative writing experimen-
tal session, now having had experienced the locations and worked with them through
the course. There are two creative writing sessions analyzed: The list of tasks in Fig.
before the workshop in week 1, and the same list of tasks and prompts after

the workshop in week 14.

8.5.4 EEG Data Analysis

Data driven neuroscience studies have found great success in applying supervised
and unsupervised machine learning techniques to find relationships between the data
collected and a behavioral response observed. Classical machine learning requires

the researcher to identify and select features of the data to analyze. In EEG, these
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features usually take the form of power in specific frequency bands or commonly
used frequency bands: e.g., delta 1-4 Hz, theta 4-8 Hz, alpha 8-12 Hz, beta 12-
30 Hz, gamma 30-50 Hz. Time domain features involving temporal and spatial
relationships between the data have been used successfully to decode movement
intent in mobile settings (|19, 117, [17, 18, 33]). Quantitative neuroscience based on
EEG has developed importantly through a combination of spectral, statistical, and
spatial features, researchers are able to build a set of descriptors to feed into machine

learning algorithms [23].

8.5.5 EEG Data Pre-Processing

The unconstrained nature of the experiment makes the EEG data susceptible
to artifacts including motion-related artifacts. Electrode impedance was obtained
before and after the experiment. Electrodes with impedance values above 60k€2 were
removed. The EEG data was resampled from 1000 Hz to 250 Hz. The EEG data was
high-pass filtered at 1 Hz using a 4th order zero-phase Butterworth filter. A notch
filter will be applied at 60 Hz to remove powerline noise. The H* (gamma = 1.15,
qo = 1210719 filter [119] was used to remove eye-movement contamination. The
horizontal EOG electrodes were low-pass filtered at 10 Hz before running the H>
filter. We followed the PREP pipeline [IT1] for standardized robust referencing:
notch filter at 60 Hz, robust re-referencing using common average reference and
excluding high-impedance channels. We used Artifact Subspace Reconstruction [120]

to remove bursts of abnormal activity due to other types of artifacts.
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8.5.6 Classical Machine Learning

8.5.7 Feature Selection

The most relevant features across subjects were selected using a mutual infor-
mation implementation of the mRMR [42] algorithm. In mRMR, a feature score is
sequentially calculated by computing the mutual information between each feature
and the target/class vector; and subtracting the redundancy term: average mutual

information between each remaining feature and the previous selected features.

8.5.8 Classification

The classical machine learning classifier used for the EEG and motion data was
the kernel support vector machine (kSVM), using the polynomial kernel of degree 3.

The value of the and box-constraint was set to 1 in all cases.

Classical machine learning techniques involve a combination of hand-crafted fea-
tures, based on previous neuroscience, to approach the problem. These features are
then set as input for a classifier. We used band power features for each channel and
PDC between all channel pair combinations as features, in 4 second windows with
50% overlap. The features obtained in each of these data windows constitutes con-
stitute a data sample. The data samples from all subjects were analyzed together.
We selected randomly, with repetition, Ny = 300 samples per class, to achieve class

balance.

The training, validation, and test sets were taken in temporal subsampling. The
data from the first temporal 80% of the experiment was selected for the training
and validation sets, while the last temporal 20% was selected for the test set. From

those samples, (N, = 300) samples were selected to achieve class balance, divided
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into (Ns = 230) samples for the training and validation sets, and (N, = 70) for the

test set.

8.6 Class labels

The task labels were directly taken from the tasks proposed in the experiment
design, Fig. B.6/A. The class labels were: Baseline Eyes Open (BO), Baseline Eyes
Closed (BC), Transcription (Tr), Creative Writing Prompt 1 (CW1), Creative Writ-
ing Prompt 2 (CW2), Creative Writing Prompt 3 (CW3). The three creative writing

conditions were concatenated into one single class: Creative Writing (CW).
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Chapter 9

Conclusion

This dissertation provides two major conclusions based on two experiments and
one pilot study, analyzing the neural features associated to the human creative pro-

cess in real world settings using MoBI.

First, we found connectivity patterns connecting right parietal with left central-
frontal areas of the scalp during creative execution, which are enhanced with training
and physical experience of the creative process; these patterns are found in higher
proportion in creative writing tasks. These connectivity patterns, together with band
power EEG features, provide relevant information for classification of creative tasks
based solely on EEG data: over 53.5% in temporally different test data (from the
training/ validation sets) for five classes in the visual arts experiment, and over 79.3%

in the creative writing experiment with four classes.

Second, we can implement automatic feature extraction methods based on CNNs
with predictive capabilities, and these features clearly resemble those found by clas-
sical feature extraction in the field. Automatic feature extraction provides a venue
for finding previously undisclosed features that drive the human creative process,
benefiting from increasing and more diverse training data, in terms of creative pro-

duction.

Additionally, we demonstrate the possibility to deploy MoBI technology to study
the human creative process in freely-moving participants; including integrating real-
world courses with the technology to enhance both the students’ inter-disciplinary

experience, and for neuroscience-relevant data acquisition that shed light into the
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neural dynamics involved in real-world creative production. The experiments yielded
quality data while at the same time providing opportunities for scientific outreach
(Chapter @, and its implementation in creative writing production, and reflection,

and as an integrated part of a course (Chapter .

9.1 Connectivity Patterns Between Right Parietal
and Left Central-Frontal Locations are Found

in Creative Ideation and Production

In the visual arts experiment (Chapter @, high connectivity patterns emerged in
execution tasks: mark making, and writing. The patterns during the writing actions
were most prominent, even if 'writing’ was placing letters into words and sentences

on the canvas.

In our pilot data experiment (Chapter @ to analyze the Preparation and Gener-
ation stages of the writing process, the connectivity patterns that primarily emerged
across subjects connected right parietal with left frontal scalp areas. The preparation
phase contained stronger connection with frontal to parietal directionality; while in
the text generation phase, the strongest connections occurred from parietal to frontal

areas.

In the creative writing experiment (Chapter , comparing creative improvisa-
tional texts, from before and after a creative writing workshop, the same connectivity
patterns were observed to be the most discriminant feature between the two condi-
tions: before and after the experiment. As in the previous experiments, these patters
connected the right parietal with central-frontal regions of the scalp electrodes con-

sistently across participants. The patterns occurred after the students went through
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the creative writing workshop, appearing in text transcription and creative writing

production.

Our results relate to previous findings in fMRI studies analyzing the different
stages of the creative process. Shah et al. [126] found that the ventrolateral prefrontal
cortex was activated during the Preparation phase, while central-parietal areas were
involved in the Generation phase. “Brainstorming” engaged cognitive, linguistic,
and creative functions represented in a parieto-frontal-temporal network. “Creative
writing” activated motor, visual, a cognitive and linguistic areas over central and
parietal networks [126]. In [60], the authors found that the medial prefrontal cortex

was active during the generation and revision phases.

Overall, these findings suggest that ideation, exploration, and observation in cre-
ative execution tasks can be characterized by a state of long-range cortico-cortical
communication between multisensory integration brain areas (parietal and temporal

regions) and high-order execution and planning areas of the brain (frontal regions).

9.2 Automatic Feature Extraction Algorithms Find
Appropriate Features to Characterize the Hu-

man Creative Process

Our data-driven approach for automatic feature extraction based on CNNs shows

promise to uncover neural patterns relevant for creative task identification.

We tested the relevance of the features proposed and accurately classified cre-
ative actions based solely on EEG features, using classical machine learning feature

extraction and classification. The automatic feature selection method was able to
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classify EEG data into creative tasks as well. Crucially, in automatic feature extrac-
tion methods, it is important to visualize the features being learned by the network,

and corroborate their relevance based on known neuroscience [44].

The accuracies obtained by the CNN approach did not significantly improve on
the accuracies obtained in the classical machine learning approach. However, it
does show potential for applicability as the work presented here allows us to think
of the possibility of moving towards big-data real-world neuroscience [22, 112 113],
54]. The possibility for large scale, high quality, and labeled EEG data with the
implementation of context-aware MoBI in a variety of tasks makes the deep learning

approach appealing for automatic feature identification and classification.

9.3 Broader Impacts

This research brings together scientists, artists, students, and the Houston com-
munity in a robust and truly interdisciplinary collaboration. The collaboration ranges
from multimodal MoBI data acquisition, science, technology, engineering, art, and
mathematics (STEAM) outreach activities, neuroscience-informed artistic produc-
tion, community engagement initiatives, and the potential application of the new
knowledge generated through the research in ergonomic intervention through design
and educational resources [137, [138, 139]. This research has served as a platform
for international, interdisciplinary collaboration dedicated to characterizing the hu-
man creative process through neuroscience [110], but it has also developed a strong
foundation through which we can use the results of this work to train, promote
collaboration, and motivate future generations of scientists, artists, teachers, and

community leaders [140].

The research on the neural basis of creative writing, through skill development
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to draft production and publication, has been a community engagement initiative
from its inception. First, we explore the idea of writing as an embodied experience,
in which writing is generated in the presence of others, through the interaction with
others. This experiment consisted of two courses in creative writing at the University
of Houston, in a partnership with the department of Hispanic Studies and Electri-
cal and Computer Engineering. In the first course, students were equipped with
synchronized wearable cameras and mobile EEG as they walked through the city
of Houston and wrote about their experiences. In the second course, the students
wrote the Houston Second Ward. Bilingual students interacted with the community
in the Second Ward, a historically Mexican neighborhood adjacent to the Univer-
sity of Houston. Such courses are critically lacking in the university experience,
in which the truly robust transdisciplinarity directly engage with the community

through artistic reflection and creation

The students used the neuroscience data to inform their writing and their bodily
experiences as they reflected on their visits to specific locations in the Second Ward.
The outcome of the class was a book published under Canal Press, “Bienvenido, you

have been transported” [141].

The research, discussion, and the evolving language used to bridge communi-
cation between artists and scientists has produced a book, "Mobile Brain—Body
Imaging and the Neuroscience of Art, Innovation and Creativity", edited by Jose
L. Contreras-Vidal, Dario Robleto, Jesus G. Cruz-Garza, José M. Azorin, Chang S.
Nam [104]. Additionally, the research has produced two book chapters [97, [I] in the
2019 book “Brain Art” [142]. Both of these books are intended for broad audiences in
the arts, engineering, science, and in the arts. They provide state-of-the art tangible
BCI performance for artistic creation. Further, they contextualize current progress

in the field by providing a theoretical framework for future inquiry, and a roadmap
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for convergent research, for harnessing emerging machine learning techniques for fea-
ture visualization, and to examining individuality and variation [I43] in the creative
process. In [I10], we discuss the value of developing a conversation to properly ex-
amine the provocative outcomes produced by the transdisciplinary inquiry of the

neuroscience of the human creative process.
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Chapter 10

Supplementary Materials

This section contains supplementary materials for the dissertation.
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Previously Proposed Phases of Creativity Exquisite Corpse Classes Subclasses for Broad Strokes and Short

Strokes

Pre-planning 1. Baseline eves closed

(Kozbelt 2008) 2. Baseline eyes open

Exploring 1deas, Planning 3. Planning/Observing

(Finke, Ward, and Smith 1992) 4. Cutting

(Generation, Elaboration, Execution 5. Broad strokez a. Cutlining

(Liu et al. 2013; Simonton 1984; Kozbelt 2008). 6. Short strokes b. Tracing

7. Placing dovwn on art piece ¢. Coloring

d. Spreading
e. Drawing
f. Writing

Revizsion 8 Comection

(Livetal 2013)

Table 10.1: Phases in the human creative processes proposed in the neuroscience
literature.

1.61
192 BO
® 175BC Lar
7 Cor 1.2+
® 485 Obs/Pl
® 146 Cut 1+ BS Colorin
® 583 Plac = Obs/Pl 1 SS Spieading
- x 0.8f &
x ring
o ‘olori g 0.6r Plac ‘
® 41 BS Coloring 5 ,
o- o 4l BS Draing
@ 385 BSDrawing - SS Drawing
0.2F Cut
- . °.- ol N
T o R DL ® 1403 SS Coloring BC
® 158 SS Spreading -0.2 . . s | | | 1 |
@ 814 SS Drawing 1 0.5 0 -0.5 -1 -1.5 -2 -2.5 -3
o - log( |jerk_RW| / |jerk_LW| )

Figure 10.1: Kinematic characterization the classes analyzed in Artist 1. The num-
bers in the middle panel represent the number of examples from each
class.
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232 BO
® 165BC
o -
® 767 Obs/Pl
® 414 Cut
® 594 Plac

@ 225 BS Tracing
@ 43 BS Coloring
® 72 BS Spreading
@ 157 BS Drawing

® 47 SS Tracing
® 370 SS Coloring
® 66 SS Spreading
@ 551 SS Drawing
@ 725 SS Writing

Figure 10.2:

gyro x RW

1.6
1.4

1.2

SS Spreading

Plig

BS Coloring
SS Coloring

SS Writing

BS Tr

BS Spreading

L L L L )

0.5

o -05 -1 -15 -2
log( |jerk_RW] / |jerk_LW]| )

-2.5 -3

Kinematic characterization the classes analyzed in Artist 2. The num-

bers in the middle panel represent the number of examples from each

class.

1189 BO

171 BC

59 Obs/P1

171 Cut

633 Plac

64 BS Outlining
183 BS Tracing
359 BS Coloring
205 BS Spreading
198 BS Drawing
126 SS Outlining
17 SS Tracing
1843 SS Coloring
241 SS Spreading
43 SS Drawing
19 SS Writing
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log( |jerk_RW]| / |jerk_LW| )

Figure 10.3: Kinematic characterization the classes analyzed in Artist 3. The num-
bers in the middle panel represent the number of examples from each

class.
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Table 10.2: mRMR results table. The feature rank indicates that the features shared
the most mutual information with the class vector and the average least mutual
information with previously selected features.

Rank Type Frequency Band FElectrodes
1 Band-Power Alpha F4

2 PDC Beta FC5to P8
3 Band-Power (Gamma FC4

4 Band-Power Delta Oz

5 PDC Beta 02 to CP1
il Band-Power Beta CPz

7 Band-Power Theta TP3

g Band-Power Beta FC4

9 Band-Power Delta PO7

10 Band-Power Alpha Pz

11 Band-Power Gamina Pl

12 PDC Alpha 02 to FC1
13 Band-Power Theta AF4

14 Band-Power Gamina P3

15 Band-Power Beta Co

18 PDC Gamma 02 to FC3
17 Band-Power Theta FC2

18 Band-Power Theta P6

19 PDC Delta 02 to CP3
20 Band-Power Alpha FC4

21 PDC Beta FClto P8
22 Band-Power Theta POS8

23 Band-Power Gamina FC3

24 PDC Gamina 02 to CP3
25 Band-Power Delta FC1

26 PDC Beta FC5to Oz
27 Band-Power Theta Oz

28 PDC Alpha 02 to CP1
20 Band-Power Gamma TP&

30 PDC Delta FC3to Oz
31 Band-Power Beta P3

32 Band-Power Gamma Co

i3 Band-Power Delta 01

34 PDC Beta C3ito P8
35 PDC Beta 02 to FC3
34 Band-Power Gamina P2

37 Band-Power Theta FC3

38 PDC Alpha FC5t0 Q2
39 Band-Power Delta F4

40 PDC Delta 02 to CP1
41 PDC Alpha CP1to Q2
42 Band-Power (Gamma PO8

43 PDC (Gamma FC5to Oz
44 PDC Gamma 02 to CP1
45 Band-Power Alpha FC1

44 Band-Power Gamina Cz

47 Band-Power Theta F3

48 PDC Beta P8 to FC1
49 PDC Alpha 02 to T7
50 Band-Power Theta POz
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Table 10.3: Detail of neuroscience literature where the task evaluated involved cre-
ative writing as an experimental task. Part 1: Experiments that compare resting

state EEG with creative scores from a test.

Study Measurem | Task Experimental design Findings
ent
Martindsle |EEG Writing: Creative | Measure EEG as Highly creative individuals exhibited higher
and Hasenfus inspiration vs subjects think whatto | lpha indices during a creative inspiration
1978 creative production | write and while they (preparattm) ﬂnan creative elabnmt@J
write. (genﬁmtmﬂ) which was not found in less
. creative subjects.
Number of subjects = 12
Jausovic EEG Dialectic problem: | Measure EEG data as the | Higher alpha power across the scalp in
2000. Read a text. and subjects think about individuals who performed better at creative
think about writing | writing an essay. problem solving.
an essay about it. Number of subjects =
48. Creative individuals showed higher ccherence
across the scalp, in the alpha band.
Jausovic & |EEG Dialectic problem: | Measure EEG at rest. Weal: correlations between power, frequency,
Jausovic Read a text, and and approx. entropy with creativity score.
2000. think about writing | Correlate EEG features
an essay about it. with creativity scores. General low coherence
Number of subjects =
115 Right hemisphere high ccherence during resting
state for highly creative individuals.
Takeuchiet |fMRI Divergent Thinking | Measure 1FC. Positive and significant corelation m (FC
al 2012, test Number of subjects = between the mPFC and PCC and creativity score.
139.
No correlation in right or left DLPFC with amy
brain area and creativity score.
Wei etal. MRI Divergent Thinking | 1) Measure fFIC. Increased fFC between mPFC and the mTG in
2014, test Number of subjects = individuals with higher creativity score.
268.
The fFC can be further increased by cognitive
2) Subset of subjects stimulation (AUT).
perform the AUT.
Number of subjects =
34.
3) Measure rFC from
after AUT.
Number of subjects =
34.
Lotze et al. MVRI Verbal Creatrvity Measure 1FC. Decreased rFC for experts was found between
2014. Index (Test) interhemispheric areas 44.
Experts and non-experts
continue a literary text. | Increased fFC for experts was observed between
Number of subjects =43 | right hemizpheric caudate and IPS.
(23 experis).
MNegative correlation between verbal creative
index and rFC between left area 44 and left
temporal pole.
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Table 10.4: Detail of neuroscience literature where the task evaluated involved cre-
ative writing as an experimental task. Part 2: Experiments that compare stages of
the creative process. None with EEG, nor in a real-world setting until this report.

Study Measurem | Task Experimental design | Findings
ent
Howard- BRI Semantic Monitor fVRI Comparing creative  vs noncreative  story
Jones etal, divergence: Create a | activations as generation: Activations observed within bilateral
2004. story from a set of | participants think about | medial frontal gyri (BAs 9 and 10) and the left
words. the stories. anterior cingulate (BA 32).
Number of subjects = 8.
Shah et al. MMRI Verbal creativity “Brainstorming” and “Brainstorming” engaged cognitive, linguistic,
2013. test “creative writing”. and creative brain functions mainly represented
Number of subjects = in a parieto-frontal-temporal network.
Rating of creative | 28.
product “Creative writing” activated motor and visual
brain areas for handwriting and additionally,
cognitive and linguistic areas.
Correlation of “creative writing”™ —minus
“copying” with the creativity index revealed
activation in the left inferior frontal gyrus (BA
43) and the left temporal pole (BA 38).
Erhard etal | fMRI Verbal creativity “Brainstorming” and Experts showed increased activation in prefrontal
2014. test “creative writing”. (mPFC and DLPFC) and basal ganglia (caudate)
Experts and non-experts | areas.
Rating of creative | continue a literary text.
product Number of subjects = High verbal creativity increases activation in the
48, right cuneus.
L et al. MRI Poetry composition: | Poetry composition. mPFC active during both phases.
2015, Generation and “Generation” and
Revision. “Revision”™. Responses in DLPFC and IPS were aftenuated
1) Memorized poems. during generation and activated during revision.
2) Generation of new
poems. Experts  showed  significantly  stronger
3) Reviston of poems. deactivation of DLFFC/IPS during generation.
4) Random typing
3) Non-memorized facts. | Activation of IFG, left mTG, and STG in the
6) Memerized facts. generation phase.
Number of subjects =27
(14 experts / 13 non-
experts).
Cruz-Garza et | EEG Composition of Text “Preparation™ and |Higher average PDC during the Preparation
al. 2019. 4-channels: |creative texts based |“Generation” phases. Up |phase. High coherence was observed in
This report. | AF09, on walking/ to five writing exercises. |connections  originating in  the temporal
AF10, experiencing Number of subjects =7 | electrodes  towards frontal and temporal
TPOR, different city non-experts. electrodes.
TP10. locations.
Higher values of SampEn dunng Generation
Phase.
Higher band-power in the Alpha Beta and
Gamma bands during the Generation phase.
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Figure 10.4: PDC distributions in A) alpha band, B) gamma band. Average PDC
for each directed connection pair. EEG recording sessions marked as
circles. A histogram of the distributions is shown in the bottom panels.
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Graffiti Museum

Prompt 1:

Sociedad Mutualista de
Obreror Mexicanos

Prompt 2:

Prompt 3
Cemetery

Figure 10.5: Detail of creative writing prompts. A) Pictures shown during the cre-
ative writing EEG recording sessions. B) During the creative writing
workshop, the students experienced the locations in community.
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Temporal subsampling Ts and CWs separately

80 8 1 4 0 2 78.6%
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87.3%  753%  59.4%  44.3%  43.1%  50.0%  59.3%

BO BC Tr CWl1 Ccw2 CWwW3
Predicted Class

Figure 10.6: Confusion matrix in the test set for the creative writing tasks: the three
prompts are classified separately: CW1-3. The EEG feature distribu-
tions within those tasks are comparable: high confusion among them.
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Figure 10.7: PDC distributions before and after the 16-week creative writing work-
shop. There are consistent and significant changes in the distributions
in five out of six subjects. Kruskal-Wallis test at 5% significance level.
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