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ABSTRACT

Complete simulation of random response induced in
service by complex, ergodic, Gaussian excitation requires the
exact reproduction of the response spectral densities at all
points of the system and the cross-spectral densities between
each pair of points. This in turn requires exact reproduction
of the service loading. If a less-than-complete exact simu-
lation of the response spectra at and between n system loca-
tions is acceptable, this can be accomplished using n discrete
random forces. For certain types of systems previous theori-
zation has shown that one discrete random force can be used
to produce simulation which is accurate in the neighborhood
of the resonance frequencies and approximate in the vicinity
between resonance peaks. These systems must have light damping
and widely spaced resonances so that modal coupling does not
exist. The discrete random simulation forcé must have the
appropriately shaped spectrum and must be properly located so
that all modes will be excited. PFor systems of this type the
theory shows that reproduction of the response spectral den-
sity at any one point assures reproduction of the spectral
and cross-spectral densities at and between all other points.

In order to assess the practicability of using one
electromechanical shaker to simulate random structural vibra-

tion which had been induced by complex excitation environments, .

vii



&iii
an experimental study was conducted on two, lightly damped,
far-coupled structures having widely separated resonances in
their lower frequency range, i.e., a cantilever beam and a
simply-supported rectangular plate. The complex, random
excitation environment was provided for the beam by two mechani-
cal shakers and for the plate by acoustic noise. One properly
located shaker, providing an appropriately shaped input force
spectrum, was used to reproduce practicably the narrow-band
response spectra and cross-spectra for two measurement loca-
tions on each structure. Comparisons made between experi-
mentally and theoretically determined frequency response
functions show exceptional agreement. The effects of attaching
shakers directly to the structures are discussed. From the
results it is concluded that reproduction of the response
spectral density at any one point on structures of this type
assures reproduction with the same degree of accuracy of the
spectra at all other points and the cross-spectra between

points.



TABLE OF CONTENTS

ACKNOWLEDGMENTS . . . +« o o « « « &

ABSTRACT . . . v v v v v v e o o o« o o o o o« o o
LIST OF SYMBOLS . v ¢ ¢ v ¢ & ¢ o o o o o o o o &
LIST OF TABLES . o « v ¢ o o ¢ o « o « o o o &

LIST OF FIGURES . . . . « . . .

Chapter
"1. INTRODUCTION . . & & «v « o « & o &
2. THEORY & v v v o o o o o o o v o o o &
Free Vibration of Structures .
Structural Damping . . . . ¢« « ¢ o « + &

Response of a Structure to a Sinusocidal
Point Force . . +« ¢ v ¢« o o o o &

Response of a Structure to Random
Excitation .

Simulation of the Structural Vibration
Induced by Complex Random Excitation
Environments . . . . . . . .

3. EXPERIMENTATL INVESTIGATIONS . . .

Structures Tested

Measurement Instrumentation and Shaker
Support Structure

Research Tests . . . . « ¢« o« ¢« o« .« &

Random Vibration Tests Using Complex
Excitation Enviromments . . . . . . .

Vibration Simulation Tests

ix

Page
iv
vi
xi

Xiv

XV

13

15

20

25

32
32

35
Lo

56
67



Chapter
b,

RESULTS AND DISCUSSION .
Cantilever Beam

Simply-Supported Plate . . .

5. CONCLUSIONS AND RECOMMENDATIONS
Conclusions . . .« « « o « o o o« &
Recommendations

Appendices

l. DEFINITIONS

2. EQUIPMENT LIST .

3. RANDOM DATA ANALYSIS

L, SIMPLY-SUPPORTED PLATE TESTS 7b AND 8b

5. CANTILEVER BEAM TESTS 3a, 4a, 3b AND 4b

BIBLIOGRAPHY . . . . . . . .

Page
69
69
92

112
112
113

115
122
124
141
152

171



LIST OF SYMBOLS

. .2
cross sectional area of beam, in.

magnitude of normal coordinate for rth
mode, in.

data reduction bandwidth
flexural rigidity of plate, 1lb-in.

deflection shape of rth normal mode at
structural location (x,y,z)

deflection shape of rth normal mode at
location of force Ip and accelerometer Aj,
respectively

modulus of elasticity, psi

generalized force of rth normal mode, 1b.
magnitude of sinusoidal point force, 1b.
complex frequency response function giving
acceleration at location (1) due to a unit

force input at location (A), g/lb.

moment of inertia ofabeam cross section about
centroidal axis, in.
bending moment, in-1b.; or total mass of
structure, lb-sec?/in,

generalized mass of rth mode, lb-secg/in.

quality factor measuring amplification at
resonance

cross-spectral den51ty between accelerations
at points 1 and 2, g2/Hz; forces at points A
and B, 1b%/Hz; and acceleration at point 1

and force at point 2, g-1lb/Hz; respectively.

spectral densities of acceleratlon and force

at p01nts 1 and A, respectively, g /Hz and
1b2/Hz

xi



Wr(X:Y)

Yr(x)

a(x,¥,2,t)

dp (t)

xii

length of time slice of random record to
be analyzed, sec.

deflection shape of rth normal plate mode
at location (x,y)

deflection shape of rth normal beam mode at
location x -

plate length in x direction, in.

plate length in y direction, in.; or mass
stiffness ratio for beam, sec2/in.

mass per unit area of piate, lb—secg/in.3
displacement at structural location (x,y,z), in.
displacement at point (1) on structure, in.
acceleration at point (1) on structure, g

magnitude of acceleration at point (1) on
structure, g

2.72

frequency, Hz

resonance frequency, Hz

acceleration of gravity, 386.4 in/sec.2
thickness of plate, in.

VT

length of beam, in.

mass, lb—secg/in.; or number of half-waves
in plate x direction

number of half-waves in plate y direction

time, sec.

lateral displacement at plate location (x,y), in.
distance measured from clamped end of beam,

?n.; or distance along x direction for plate,

in.

distance along y direction for plate, in.

lateral displacement at beam location (x), in.



Xiii
beam boundary condition constant for rth mode
rth mode shape argument constant, in. 1
specific weight, 1b/in.3

logarithmic decrement

normalized standard error for spectral
density values

normal coordinate for rth mode
viscous damping coefficient for rth mode
structural damping coefficient for rth mode

phase of cross-spectral density between
acceleration at point 1 and-force at point A

Poisson's ratio for beam material

phase of complex frequency response function
between acceleration at point 1 and force at
point A

circular frequency, rad/sec.

Subscripts

refers to locations of point forces Fp, Fp,
F
C

refers to rth normal mode or resonance

refers to pressure loadings at points
a and 8

refers to locations of measured accelerations
Al and A2

Superscripts

refers to service:-response
refers to simulation test response

denotes complex conjugate



Table
3.1

3.2

3.3

3.4

3.5
3.6

3.7

3.8

4.1

4.3

4.4

LIST OF TABLES

Frequencies of Significant Response in
l-inch Shaker Support Structure with Both
Shakers Attached to Beam . . . . . . . . .

Frequencies of Significant Response in
l-inch Shaker Support Structure with One
Shaker Attached to Plate . . . . . . . .

Frequencies of Significant Response in
Plate Edge-Support Flanges

Resonance Frequencies of Cantilever Beam .
Damping of Cantilever Beam . . . . . . . .

Resonance Frequencies of Simply-Supported
Rectangular Plate . . . . « ¢« o + o o & &

Spectrum-Shaping~-Filter Bandwidth Envelope
of Theoretical Resonance Frequencies for
Simply-Supported Plate . . . .

Damping of Slmply Supported Rectangular
Plate . . e e e e .

Resonance Frequencies, Damping, and Mode
Shapes of Cantilever Beam Used in Analysis
of Random Vibration Data . . . . . . . . .

Comparison of Cantilever Beam Data Reduc-
tion Bandwidths with Recommended Values
of [30] .

Resonance Frequencies, Damping, and Mode
Shapes of Simply-Supported Plate Used in
Analysis of Random Vibration Data

Comparison of Simply-Supported Plate Data

Reduction Bandwidths with Recommended
Values of [30] v v v v v v o ¢ o o o o

xiv

Page
41

4o

b3
Ly

L9

51

52

5T
70
91
95

108



Figure

O U1 oW D

-~J

.10

.11

.12

.13

LIST OF FIGURES

Experimental Apparatus . . . .
Cantilever Beam .

Simply-Supported Rectangular Plate
Simply-Supported Rectangular Plate

Force Measuring Instrumentation .

Comparison of Theoretical and Experimental
Mode Shapes for First Five Resonances of

Cantilever Beam .
Cantilever Beam Vibration Decay . . .

Node Lines for Mode Shapes of Simply-
Supported Plate . . . . .+ . .+ + . .

rms Spectrum of Cantilever Beam Tip
Acceleration A;--Second, Third, and
Fourth Resonances . .

rms Spectrum of Cantilever Beam Tip
Acceleration Aq--Second Resonance

rms Spectrum of Cantilever Beam Tip'
Acceleration Aj~--Third Resonance

rms Spectrum of Cantilever Beam Tip
Acceleration Aj--Fourth Resonance

Schematic of Equipment Used in Random
Vibration Tests . . . .

Comparison of Complex Excitation Test 3d
and Simulation Test 44 for Cantilever
Beam . . . . . . . 0.

Comparison of Complex Excitation Test 3e

and Simulation Test Ye for Cantilever
Beam . . . . . . . . . . . ¢ e

XV

Page
33
34
36
37
38

L7
48

55

61

62

63

6L

66

72

76



Figure

4.3

L.k

4.5

h.6

b7

4.8

4.9

4.10

4,11
4,12

4,13

b1k

Complex Excitation Environment of
Test 3d . . « + ¢ « v o v o o .

Complex Excitation Environment of
Test 3¢ . . « « « . . .

Simulation Force Spectral Density of Tests
ba and e . . . . . . .. 0. .

Comparison of Square of Magnitude of Theo-
retical and Experimental Frequency
Response Functions Between Tip Accelera-
tion and Simulation Force on Cantilever
Beam

Comparison of Square of Magnitude of Theo-
retical and Experimental Frequency
Response Functions Between Mid-Length
Acceleration and Simulation Force on
Cantilever Beam . . . . . . .+ .+ .

Phase of Experimental Frequency Response
Function Between Tip Acceleration and
Simulation Force on Cantilever Beam .

Phase of Experimental Frequency Response
Function Between Mid-Length Acceleration
and Simulation Force on Cantilever
Beam . . . . . . . .

Comparison of Complex Excitation Test Ta
and Simulation Test 8a for Simply-
Supported Rectangular Plate . . . . . .

Pressure Spectral Density for Complex
Excitation Test 7a . « « ¢« ¢« ¢« « o « .

Force Spectral Density for Simulation
Test 82 v v v v ¢ v 4 e e e e e e e e e

Comparison of Square of Magnitude of Theo-
retical and Experimental Frequency
Response Functions Between Center-

Plate Acceleration and Simulation Force
on Simply-Supported Rectangular
Plate . . . . « « . « + o & . . .

Comparison of Square of Magnitude of Theo-
retical and Experimental Frequency
Response Functions Between Quarter-
Plate Acceleration and Simulation
Force on Simply-Supported Rectangular
Plate . . . . . « « « ¢ o . . .

Xvi

Page

80

82

85

88

89

93

ol

98

102

103

106

107



Figure

4,15

4,16

A3.1
ALL1

AL, 2

AL.3

Ab L

AL.5
AL.6

A5.1

A5.3

A5.Y4

A5.5

Xxvii
Page

Phase of Experimental Frequency Response
Function Between Center-Plate Accelera-
tion and Simulation Force on Simply-
Supported Plate (Test 8a) . . . . . . . . . 110

Phase of Experimental Frequency Response
Function Between Quarter-Plate Accelera-
tion and Simulation Force on Simply-
Supported Plate (Test 8a) . . . . . . . . . 111

Examples of Digitally Reduced Data . . . . . 127

Spectral Density of Center-Plate Accelera-
tion Ay on Simply-Supported Plate . . . . . 142

Spectral Density of Quarter-Plate Accelera-
tion Ao on Simply-Supported Plate . . . . . 144

Acceleration Cross-Spectral Density
Magnitude of Accelerometers A7 and
Ao on Simply-Supported Plate . . . . . . . 146

Comparison of Acceleration Cross-Spectral
Density Phase of Accelerometers A; and
Ao for Complex Excitation Test 7b and
Simulation Test 8b on Simply-Supported
Plate . v v & v o & o o o o o« o + o o « . . 148

Complex Excitation of Test 7b . . . . . . . . 149

Simulation Force Spectral Density for
Test 8b . . . . . . . . . - . . . . . . . . 151

Comparison of Complex Excitation Test 3a

and Simulation Test lLa for Cantilever

Beam (3/8-inch Shaker Support) . . . . . . 153
Complex Excitation of Test 32 . . . . . . . . 157

Simulation Force Spectral Density for
Test 4a . . ¢ v v v v« v v e e e e e . .. 161

Comparison of Complex Excitation Test 3b

and Simulation Test 4b for Cantilever

Beam (3/8-inch Shaker Support) . . . . . . 162
Complex Excitation of Test 3b . . . « . . . . 166

Simulation Force Spectral Density for
Test Ll'b . [ . . . . . . . . . . . . . . . . 170



Chapter 1
INTRODUCTION

Laboratory environmental simulation tests may be
divided into two categories, as suggested by Lyon [1]:l
direct envirommental simulations and substitute environmental
simulations. In the direct simulations an aerodynamic environ-
ment is usually simulated by a wind tunnel environment, an
acoustic enviromment by a sound field, and a vibration environ-
ment by mechanical shakers. In the substitute simulations a
sound field or mechanical shakers replace service aerodynamic
excitation, and shakers replace service acoustic excitation.
These tests all have as theilr goal the best possible repro-
duction of the service vibration levels on a system that can
be obtained within the time and cost limits of the program.

An excellent direct environmental simulation test
would be possible if the service loading on the system could
be duplicated exactly; hoWever, for many structures and
equipments subjected to severe random loadings in service,
reproduction of service loads is not possible because of size
limitations of test facilities and/or the inherent difficulties
involved in the exact reproduction of the complex loadings. An

example of one such service load is the aerodynamic fluctuating

lNum'bers in brackets refer to entries in the
Bibliography.



2
pressure environment of spacecraft at transonic and low super-
sonic conditions. This environmeht is produced by interactions
between boundary layer turbulence, separated flows, oscillating
shock waves, and protuberance wakes.

Attempts at direct simulation of the above aerodynamic
loads in wind tunnels must necessarily employ aeroelastic
scale models because of the relatively small size of tunnels.
One such attempt has been made for the Apollo boilerplate
service module [2]. Results of this study indicate that aero-
elastic models may provide a promising alternative to full-
scale testing of spacecraft, especially as the sizes of
spacecraft increase in the future.

It has recently become possible to test large portions
of space vehicles with a sound field which closely simulates
the lift-off acoustic environment caused by rocket engine
noise [3], [4], [5]. This advance was made possible by the
development of large acoustic test facilities, such as the
NASA Spacecraft Acoustic Laboratory (SAL), which enable the
generation of either a reverberant field or a progressive
wave field. For tests employing the progressive wave tech-
nique, control can be exercised upon the pressure magnitude
over the length of the vehicle section and the circumferential
pressure correlation; however, the pressure correlation and
the variation of pressure spectra as a function of longitudi-
nal position cannot be controlled.

To date, none of the tests conducted at the SAL

facility can be considered direct envirommental simulations;
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however, the results of two substitute environmental simula-
tion tests have been reported [4], [5]. One test attempted
to reproduce an envelope of flight vibration data at each of
three locations on the Apollo spacecraft-lunar module-adapter
[5]. The envelopes consisted of data obtained at flight con-
ditions having exceedingly different excitation environments.
The test data compare favorably with the service envelopes
when data arereduced on a one-third-octave band basis. This
wide frequency bandwidth, however, tends to obscure the narrow
band response characteristics of lightly-damped structures,
which is a very important consideration, particularly if
equipments which respond in a narrow frequency band are
mounted within the structure.

The other test reported [4] was a substitute environ-
mental simulation of the aerodynamic loading on the Apollo
service module at a low supersonic condition. Vibration data
obtained at a large number of locations 6n the surface of the
shell structure were space-averaged, with comparison being
made between the flight and test averages on a one-third-
octave band basis. Attempts at comparison of narrow-band
acceleration spectral densities from flight and test have
been unsuccessful to date.

A major impetus for the development of large acoustic
facilities such as the one just discussed is the desire for a
more realistic simulation of the service excitation environ-
ment; however, the pressure correlations of a sound field will

never closely duplicate those of an aerodynamic environment.
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In addition, the use of acoustic facilities have probably not
effected a better reproduction of the service vibration levels
than could have been obtained using mechanical shakers [6].
The major advantage of acoustic éxcitation for large and
complex structures is that the sound field offers greater
spatial homogeneity than do mechanical shakers.

Mechanical vibrators are more efficient sources of
excitation than a sound field [1], [6], in that a structure
absorbs much more of the power produced by a shaker. In
addition, vibration test facilities are usually more readily
available than acoustic test facilities.

However, the use of shakers has its disadvantages
also. On large, close-coupled, complex structures, when using
one shaker, there is response attenuation along the structural
transmission paths at the higher frequencies. There is also
a localized inhomogeneity in the vicinity of the shaker
attachment point due to its direct field. If a large number
of shakers is used to make the over-all vibration field more
homogeneous or to simulate service motions or forces at mul-
tiple equipment mounting points, control problems are
encountered because each shaker is strongly influenced by
the others [7], [8]. Problems of this type are often simpli-
fied by some form of averaging technique [9], [10], [11],

[12] whereby the system is tested to some average input force
level or average response level which does not yield a truly
realistic simulation of the service vibration response. In

addition, attachment of the shakers to the structure changes
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the mechanical impedances at the attachment points. In many
instances fixtures are used to accept the mechanical energy
from the shaker and redistribute 1t over the system under
test, which is mounted within the fixture. Fixtures also
change the dynamics of the system unless the fixture closely
approximates the structure to which the system is attached in
service. Eldred [3] considers the amount of service structure
necessary to be tested with the system of interest in a pro-
posed "criteria for structural sufficiency."  Elaborate
electronic equalizer systems have been developed for negating
the changes in system dynamics introduced by the fixtures or
shakers themselves [7], [8], [13], [14], [15], [16], but the
system dynamics are still not the same as that of the original
system,

The replacement of reverberant acoustic excitation by
mechanical shakers has been discussed [6], [17], [18], [19],
for structures which are complex, close-éoupled, and have many
modes within each frequency band so that the vibration field
may be assumed reverberant. For a structure of this type, its
characteristic dimension must be greater than five to ten
times the bending wavelength of the modes of interest [3].

The mean responses of the modes within each frequency band
are considered approximately equal, and data are analyzed on
a wide-band basis. The theory associated with this method
does not consider the response of the structure in single
selected modes; it looks at average response over many modes

and over many points on the structure. The inexactness of



reproduction inherent in this method is great at low fre-
quencies where there are not many modes in a frequency band,
i.e., modes are widely separated, since it has been found
that the spatial variation of response is inversely propor-
tional to the number of modes contributing to the response in
the frequency band [19].

As can be seen, considerably more effort has been
expended in the development of substitute environmental simu-
lation techniques than in the development of direct environ-
mental simulation techniques. This is because it is usually-
easier in practice to attempt the reproduction of the actual
responses experienced in service, than it is to attempt
reproduction of the actual service loads. However, the
reproduction of previously recorded motions is not a simple
matter., Most of the work discussed so far has attempted to
simplify the problem by reproducing a spatial average of the
structural motions rather than the motion at each instrumented
point on the structure. Comparisons are usually made on a
wide-band basis; therefore, the narrow-band response charac-
teristics of lightly damped structures have been obscured.

Complete simulation of previously recorded motions
requires exact matching of the response spectral densities of
all points on a structure in all planes, as well as matching
of the cross-spectral densities between each pair of points.
In general, if mechanical shakers are used, the minimum
number required is equal to the number of points at which

exact response simulation is required [20]. However, for
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structures with small damping and widely separated resonances,
Robson [20] and Robson and Roberts [21] have shown that a
single, properly placed shaker with the appropriately shaped
input force spectrum will, in principle, give good simulation
of both the spectra and cross-spectra of the response. Robson
does not consider the practical effects of shaker attachment,
such as the modification of structure dynamics, in his analyses.

For lightly damped structures where resonances are not
wldely separated and it becomes necessary to consider the con-
tributions of n modes at any frequency, a close approximate
simulation can, in principle, be achieved by ensuring that the
response spectral densities at any n points and their cross-
spectral densities are matched at all frequencies [21]. This
requires applying n forces and controlling their spectral
and cross-spectral densities, which would be difficult to
achieve. However, 1f n is a sufficiently small number, and
it is necessary to consider n modes only in a few frequency
bands throughout the frequency range of interest, then the
problem is simplified considerably. Since this is often the
case with practical structures, it appears that the methods of
simulation testing proposed by Robson and Roberts may have
merit for large and complex structures. This method would
then have direct application to random vibration testing of
spacecraft structures and equipment, in that random response
could be closely simulated on the structure without a close

reproduction of the flight aerodynamic or acoustic environment.



8

In order to assess the précticability of using one
shaker to simulate the random vibration of structures which
have been excited in service by complex excitation environ-
ments, an experimental study was conducted on two far-
coupled structures having small damping and widely separated
resonances, i.e., a cantilever beam and a simply-supported
rectangular plate. The complex service excitation environment
for the cantilever beam was provided by two mechanical shakers,
while that for the plate was provided by acoustic noise. One
properly placed shaker, with an appropriately shaped input
force spectrum, was used to produce narrow-band simulations
of the response spectra and cross spectra at two measurement
locations on each structure. Discrepancies existing in the
experimental simulations are explained. Comparisons are also
made between experimentally and theoretically determined

complex freguency response functions for each structure.



Chapter 2
THEORY

2.1 Free;Vibration of Structures

2.1.1 TIateral Vibration of a Cantilever Beam

The following assumptions are made in the analysis:

1. The beam material is homogeneous, isotropic, and
elastic;

2. The beam is straight and of uniform cross-section;

3. The beam is long compared to its cross-sectional
dimensions, so that transverse shear deformation and rotatory
inertia may be neglected; and

L4, The deflections and deflection gradients are
small so that linear theory is applicable.

For a beam of this type, called the Bernoulli-Euler
beam, the well-known flexure equation [23], [24], [25], [26],
[27]

M = EI 32 (2.1)

may be used to obtain the equation of motion for a beam of

constant EI undergoing lateral vibration

84% 032y
ox até‘ ( )
where

b2 = YA/(gEI) (2.3)



Assuming a solution of the form

10

y(x,t) = ES Yy (x)Apelort (2.4)
T

equation (2.2) becomes

qur
dxZI

The solution of this equation yields, for the rth mode of

vibration

- b2wY,= 0 (2.5)

Yy = A coshfpx + B sinh Brx + C cosBrx + D sinfrx (2.6)

where

B = (bay)? (2.7)

From equation (2.7) the undamped natural frequencies are

given by
2
L
lp=(Br) ghl (2.8)
2nL2 YA
For a cantilever beam the boundary conditions

are

vp(0) = 220 o (2.9)

r dX .
and

2y (L 37, (L

dx2 dx3

Using these equations, (2.6) becomes

Y, = cosh Byx - cos Byx - ap(sinh Byx - sin Byx) (2.11)
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where

0. - Sinh ByL - sin Byl cosh ByL + cos ByL (2.12)
¥~ cosh B, L + cos ByL sinh BpL + sin BpL )

which yields the frequency equation
coshB,.L cos ByL = -1 (2.13)

Equations (2.12) and (2.13) are satisfied for the following

values of a, and B, [28]:

ap 0.734 1.018 0.999 1.000 1.000
B  1.875 L.694  7.855  10.996 14,137

Values of the mode shapes, Yr(x), are tabulated in

[28] where they have been normalized so that
L 2
_{; Yr(x)dx = L (2.14)
Therefore, the generalized mass of the rth mode is
I
My = fY%(x)dm = f YA v2(x)dx
v 0o 8

or
My = Zgé L=NM (2.15)

where M is the total mass of the uniform beamn.

2.1.2 Iateral Vibration of a Simply-Supported Plate

The following assumptions are made in the analysis:

1. The plate material is homogeneous, isotropic,

and elastic;
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2. The plate is flat, rectangular, and of uniform
thickness;

3. The plate thickness is small compared to its other
dimensions so that stresses and strains in the direction per-
pendicular to the plate middle surface are negligible;

Lk, Transverse shear and rotatory inertia are neglected;

5. Plate deflections and deflection gradients are
small so that linear theory 1s applicable; and

6. Extension and shear of the plate middle surface
are neglected, i.e., pure bending is assumed.

For a plate of this type with constant EI, the differ-

ential equation of lateral vibration is [25], [26]:

Ve + cit = 0 (2.16)
where
D = Eh3/[12(1-v°)] . (2.17)
and
c = Yh/g (2.18)

Assuming a solution of the form

iwyt
w(x,y,t) = Zwr(x,y)Arelwr (2.19)
r
equation (2.16) becomes
DYy - cwlliy = O (2.20)

For a simply-supported plate the boundary con-

ditions are
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Wp(%,0) = Wp(x,b) = O (2.21)

Wy (0,y) = Wy(a,y)
and

3PWr (0,y) _ 3®Wr(a,y) _ 3®Wr(x,0) _ 3%Wr(x,b) _

%2 %2 - T 9y2 5352 ° (2.22)

The following assumed modal deflection shapes satisfy egs.

(2.21) and (2.22) for any integral values of m and n

Wy = Wyn = sin ZZ% sin ngy (2.23)

Solving eq. (2.20) for the undamped natural frequencies,

fr = wr/217

2 .2
= el (m-, 0 .
fr = 3 ‘/th <a2 + b2> (2.24)

The generalized mass of the rth mode is

a .b
we = [RGey)an = [ [ ()R (e,y)axay

or »

My = Zlargl =¥ (2.25)

where M is the total mass of the plate.

2.2 Structural Damping

Two convenient methods used to measure the damping
present in a system are called the logarithmic decrement and
the bandwidth method [29]. Both of these descriptions of
damping are derived from the linear, single-degree-of-freedom

system of a viscous damper in parallel with a spring; however,
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these concepts are commonly applied to linear, multiple-
degree-of-freedom systems by assuming that the damping can be
accounted for separately in each normal mode and that there is
no coupling between the modes due to damping.

The logarithmic decrement is defined as [23]

5= % 1n ;% (2.26)

where x, is the amplitude of oscillation after n cycles have
elapsed from the measurement of x5, and is a measure of the

vibration decay rate of a system. It can be shown that

i
2

5= 2nl/(1 - {°) (2.27)

which gives

6z2nl (2.28)

for small damping. The structural damping coefficient, or

loss factor, is defined as [23], [25]
n= 20f/f, (2.29)
at resonance
e o= 24 = 2 (2.30)

For values of @ between 10 and 100 [29], it is
possible to obtain reasonable results by using the bandwidth

method. It can be shown that

fp - f
Ny = & = __Q_fr__l (2.31)

O
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where fo and f1 are the frequenciés measured above and
below fy, respectively, for which-the amplitude of vibration
has decreased to l/CJQ times the resonance amplitude for the

same input force.

2.3 Response of a Structure to a Sinusoidal Point Force

It is assumed in the following that:

1. The structural material is homogeneous, iso-
tropic, and elastic;

2. Structural displacements and displacement gradients
are small, so that linear theory is applicable;

3. Structural displacements are one dimensional;

4, Structural damping is small and there is no
coupling between normal modes due to damping, so that damping
can be accounted for separately in each mode;

5. The modal damping force is proportional to dis-
placement and in phase with the velocity; and

6. The force applied at a single point on the struc-
ture is sinusoidal and in the same direction as the displace-
ment of the structure.

Then the displacement at any point on the structure
may be expressed in terms of the normal modes of the structure

a.s

A(X,¥,2,t) = D Dp(X,¥,2) ep(t) (2.32)
r

where Dp(xX,y,2) represents the displacement shape of the rth
normal mode of the structure, and ¢.(t) is the normal coordi-

nate for the rth mode.
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Inserting the kinetic energy, potential energy,
dissipation function, and generalized force into Lagrange's
equations [20], it is possible to obtain the uncoupled
equation of motion for the rth normal mode
b+ 021+ ne) o = (2.33)

where the generalized force and mass, Ey and My, are, re-

spectively.

Ep = Dp(%p,¥p-2p)Fa 0" (2.34)

and
2
My = ADT(X:Y:Z)M (2~35)

The steady-state solution of (2.33) is of the form

€= %Oeiwt, so that ?r= —wef, and

DI‘ FA eiwt
€ = A o (2.36)

Mr(w% -0+ inrwrg)

Substituting (2.36) into (2.32) for the displacement at

point (1) on the structure

1 w2 .
. Dp. Dy wr‘g[l—(z;) -iny]
dy(t) = Fy elwt 1 A i (2.37)
’ Z (8715 mE]

The acceleration at point (1) in g units is then

FAoeith-DrlDrA (f/fr)g {[l—.(f/fr)g]'inr} (238)

ey
1(t) gy {[1-(£/£,)%1%4+02}

r



or

o lowt _ . iwt
dl(t) = dloe = HiA(lf)FAoe

17

(2.39)

so that the complex frequency response function which de-

scribes the acceleration at location (1) due to a unit force

input at location (A) is given by

Hyp(if) = Z"flA - iVy)
where
-D.. D
N __firta
1A T T gy
(£/8p)2[1-(£/84)7]
- (81,515 s
and
2
Vo o= (£/fp) 7y
P =
{[1-(£/1,)21%+n2}
Equation (2.40) may also be written as
. ~Dry Py (£/£5)2e~20r
HlA(lf)=Z 5T TS L
r eMp {[1-(£/£,)51%4n5 | 2
where

Ny
tan ¢r(f) = [1—(f/fr)2]

The product Hf;HZB is given as

* - .
Hypllop = Z’\rlA(Ur‘Hvr) z)‘rgB(Ur‘lvr)
r r

(2.40)

(2.41)

(2.42)

(2.45)

(2.46)
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or

H11H2B = Zr)\rlAUr Zr)‘rgBUr + g'\rlAVr ZI;)‘I'QBVr
-3 (ZArlAUr D Aroplr = D ArgaVr Zz\rgBUr) (2.47)
T T T r

which is, in general, complex unless ArlA = ArgB'

In general, eq. (2.46) cannot be simplified further;
however, if the damping, 7,, is small and the resonance fre-
quencies are widely separated, so that no modal coupling
exists, eqgs. (2.46) and (2.47) may be approximated at fre-
gquencies near resonance by neglecting cross;product terms

UrUS<<Ur2, VTVS<<Vr2, UyVg<<UyVy. Therefore,

HipHpp = D Ar, Aryn (Ur® + Vr°) (2.48)
r

Between resonance frequencies, eq. (2.48) will not provide a
good approximation to Hf2H2B> but this inadequacy can be per-
mitted, since response in these regions does not significantly
contribute to the mean square response quanfities for the
beam.

Further approximation is possible when only one term
predominates at frequencies near resonance, Then

(HfKH2B)r = ArlAArQB(Urg + Vrg) (2-49)

for nr<<1, fr- <<f}§<fr+l’ and fezfr. We could further

1
approximate by using eq. (2.49) in the frequency range

.f_r_-l_gf_flz<f<£r_+_2f_lﬁ_l_.
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The square of the modulus of the frequency response
function, which will be compared later with experimental

values, is from (2.47)

lHlA(if)|2 = Hjpfj, = 25* P8 (2 V) (2250)
r
. DyDL5 (£/5)"
NP 1 A >
IHlA(lf) = z : g2 [[1-(£/£,)2] + 3]
r

DrlDSlDrADSA
Z Z 2MrMs

(£2/5p5)2 {[1-(f/fr)2][l—(f/fs)2] + npng)
{[1-(£/£0)%12 + n2 [ {[1-(£/£5)%12 + "5}

(2.51)

For the cantilever beam the D, are given by eq. (2.11)
as Yr(X), while for the simple-supported plate, D, = Wn(x,y)
of eq. (2.23). '

Following the reasoning used in obtaining eq. (2.48)

for structures with light damping and widely separated reso-

nances
|y a(10)]2 = EZATlA +V,2) (2.52)
or ‘
D,.2D, 2 I
. _ 1TA (f/fr)
,HlA(lf) = Z g2M§ {[1_(f/fr)2]2+ 77%} (2-53)
r

Again, if one term predominates at frequencies near

resonance, we may make the approximation
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2 2 2 2
r = ArlA(Ur + Vi) (2.54)

lHlA(if)
or
2 12
D¥, D7y (f/fr)LL

g2 {[1-(£/2,)212 + 1) (2.55)

| HlA(if)li =

with the constraints that 7,.«1l, f, & f.<«fpyy, and £=1,.
In the regions away from resonance a much better

approximation to HlA(if)l2 for 7,.«1 is

2,_:2::D%1D%A (£/£2)"
L 222 [1-(£/1,)7]1°
r

s emer
gMpMg  [1-(£/£p)°)[1-(£/85)"]

r S#r

lHiA(if)

2.4 Response of a Structure to a Random Excitation

In addition to the assumptions made in Section 2.3
for thé structure, it is assumed here that each random record
of excitation or response is self—statioﬁary. Verification
of this condition for a single sample record effectively
Jjustifies an assumption of stationarity and ergodicity for
the random process from which the sample record is obtained
[30]. Temporal averages over short time intervals of a
single record may then replace ensemble averages. If the
excitation of a linear system is stationary (or ergodic),
then the response will also be stationary (or ergbdic) [31].
For definitions of the above terms, please see Appendix 1.

In general the acceleration cross-spectral density

between points (1) and (2) on a structure excited by
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a distributed random pressure loading is given as

Se(0) = [ [ Ha(0mgin)sg (Natatg  (2.57)

When making use of the frequency response function as

defined by eqgs. (2.40)-(2.43)

Dy, Dg
o
S12(f) =Z Zgzi e
r s riss

(£2/fyfg)? {[1-(£/Ep)2)+inyp } {[1-(£/£5)2]-1ng}
{[1-(£/2,)2124m2) {[1-(£/£4)21%+n2}

. D, D, S,,(f)dA_dA 2.58
L S P, Prgfap (2188004 (2.58)

The acceleration spectral density at point (1) on the structure

becomes

s1(0) = ] ma(n)mg(in)s,g()ataang  (2.59)

where SqB(f) is the pressure cross-spectral density between
points a and B on the structure.

The acceleration cross-spectral density for a struc-~
ture excited by multiple random point forces is given by

S1o(£) = DD H% (1f)Hop(if)Sap(f) (2.60)
A B

1782
200 = 2.2 Zum
o g Mrilg

(£2/£p£5)2 {[1-(£/Ep)2+ing} {[1-(£/£5)%]-ing}
{[1-(£/5,)%1%4m2} {[1-(2/£,)%1%+n )

or
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EVDTA s5San(f) (2.61)
and the acceleration spectral density at point (1) is given
by

* .
S11(£) = DD Hyn(if)H pSap(f) (2.62)
A B
For two random point forces (Fp and Fg) acting on a
structure
Si5(f) = HypHopSap + HypnHops
12 1AH2ARAA 1AN2BYAB

* *

+ HypHppSpa + HipHopSpp (2.63)
and

_ 2
S11(£) = [Hia|2Saa + HhH1ESAB
5 2 2.6l
+ HypH1aSBA + IHlBl SBB (2.64)

For one random point force acting on a structure the
acceleration cross-spectral density between points (1) and

(2) becomes

S1o(f) = HpHopSpp (2.65)

or

Dy.Dg, Dy, D

Z r S r S
g Myg

(£2/£r75)? {[1-(s/fr)21Hingt {[1-(£/£5)%]-ing]
Jl1-(2/t )2]2+n2} f11-(£/8) 1243 |

SAA  (2.66)

and the acceleration spectral density at point (1) is

S11(f) = 'HlA(if)IQSAA(f) | (2.67)
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where HiA(lf)l is given by eq. (2.50).

For one random point force acting on a structure the

cross-spectral density between excitation and response is

given by
Spp (£) = Hyp(if)Sy,(F) (2.68)
or
spy e TOAL o g, emi1ng, (2.69)
Therefore 4
Ioaz] = IHiAlSAA | (2.70)
and
P1a = 6a1 (2.71)
But
S1a = Sp1- (2.72)
Therefore
Sia = HaSan (2.73)
From (2.73)
51a] = |H1a|San (2.74)
and
P1a = "01a (2.75)

From eqgs. (2.67)-(2.75), a complete description of Hy,(if)
may be obtained if the force spectral density and the acceler-
ation-force cross-spectral density are known,

For two random point forces which may be correlated,
Fp and Fp, acting on a structure, Bendat [30] gives the cross
spectral densities between the two excitation points and a

response point as
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Sp1(f) = HypSpp + HypSap (2.76)
Sg1(f) = HjpSpa + HipSpp (2.77)

The complex frequency response functions are then

SAl[l _ zABzBl]
. BBSA1
Spall - Yagl]
SBlEL— E@fﬁﬂ}
Hyp(if) = SAASBl (2.79)
Sgpl1l - YiB!
where
2
2 _ ISAB(fﬂ
YaB(T) = 5 TTV85(E) (2.80)

is the coherence function. If Fp and Fg are uncorrelated,
YapZ(f) = Spp(f) = Sgp(f) = O, and we have Hy,(if) and

Hop (if) given by eq. (2.68). 1If y&%(f) = 1, complete linear
dependence between Fp and Fg is implied. Therefore, we could
cénsider a linear system acting between them, and Fp actually
could be considered as taking two different paths to arrive

at point (1). For this case a single frequency response

function, H(if), will relate Fy to Aq [30]

Sa1 = H(if)Saa (2.81)
where

H(if) = Hyp(if) + HygHap (2.82)
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2.5 Simulation of the Structural Vibration Induced
by Complex Random Excitation Environments

In addition to the assumption of self-stationarity
for all random records (ergodicity for all random processes)
which was made in Section 2.4, it is further assumed that
each individual time history record of excitation or response
is Gaussian. It can be shown that, if a linear system exper-
iences Gaussian excitation, the response is Gaussian also
[20], [30], [31]. For an ergodic Gaussian process, a know-
ledge of the spectral density of a sample record enables a
unique determination of the probability density of the random
process. Similarly, if weak ergodicity exists between two
Gaussian processes (weak ergodicity implies strong ergodicity
for Gaussian processes), then a knowledge of the cross-
spectral densities between sample records of the two processes
enables a unique determination of the joint probability dis-
tribution between the two processes. Similarly, strong ergo-
dicity enables a determination of all higher order probability
functions. With this in mind, simulation of random ergodic
Gaussian response processeé requires only that the spectral
densities and cross-gspectral densities of all simulated
accelerations match those obtained under service exciltation.

Robson and Roberts [21] have shown that if the response
spectra and cross spectra, obtained in service at every point
on a linear, elastic structure under Gaussian excitation, are
to be matched exactly in a simulation test, the structure
must be tested under its exact service environment. There-

fore, the simulation loading must match exactly the spectral
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and cross-spectral densities of the service loading at every
point on the structure. Complete simulation is defined here
as the exact matching of response spectral and cross-spectral
densities at every point on the structure. If it is possible
to accept a less-than-complete simulation, such that the
response spectral and cross-spectral densities are exactly
matched at a finite number of points only, simulation becomes
more practicable, although still not simple. Robson [21]
has shown that if the response spectral densities at n struc-
tural locations and the response cross-spectral density mag-
nitudes and phases between each pair of points are to be

2 quantities), n

matched exactly (the exact matching of n
force inputs are necessary, and n° adjustable quantities must
be at our control (the force spectral densities and cross-
spectral density magnitudes and phases).

If it is possible to settle for a less than exact
response simulation at every point and bétween every pair of
points on a structure, a close approximate simulation may be
obtained for some structures, at least in principle, with
relative ease [20].

Consider a structure which is excited in service by
two self-stationary random forces, Fp and Fg, which may have
any degree of correlation, so that egs. (2.63) and (2.64)
describe the acceleration cross-spectral density between any
two points and the acceleration spectral density at any point
on the structure for motion in one direction. The service

response spectral and cross-spectral densities for any two

points are then
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* % ) * ¥
= HyaHjpSpn + HyaH1pSap + HigH1aSpa + H1BH1pSpp (2.83)

1l

* * ¥ *
HopHopSpn + HopHopSpp + HoploaSppy + HopHopSpy (2.84)

il

¥ * * %
HypHopSpp + HyalopSap + HipHopSpp + HygHopSpy (2.85)

desire to simulate these response quantities using one

force, Fp, the simulated quantities

¥
-t ¥

Sop = HopHoeSce (2.87)
't _ ¥

S12 = HycohoeSee (2.88)

must be made equal to the quantities obtained in service., If

we adjust the spectrum of SCC so that

then

Sge =

511 = 513 (2.89)

* * * *
HypHypSpp + HypHipSag + HigHyiaSpa + HigHigSgp (2.90)
- )
HigHig

and we have obtained exact simulation at point (1); however,

at point (2) and between points (1) and (2), we now have

the requirements that
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ot - ¥ HTpHy ASaa+Ha H1 pSap+HTRHI ASBA+HTRH] BSBE
op = HopHog F o (2.91)
1C+1C |
and
¥ * * ¥
t L% HypHy aSpptHy g Hy gSaptHIgH ASRATHI BH1 BSER
S5 = HyaH : (2.92)
12 1¢tlec o
1ctic J

Therefore, the ratios between test and service spectra are

———

) ¥ ¥ ¥ ¥ ¥
Soo  HygHyo HopHopSpptHoaHopSpptHopHopSpatioptiopSyp

S t
>
St - 1 (2.93)
11
t * * * * R
Spp  HocHpoo HiaHiaSaatHyaHypSap+HigHiaSpa+H1gH1 BSEB (2.94)

and

't * * * . ¥ ¥*
515 _ HyicHpog HipHiaSpatiyath gSapthypiyaSpatih gy gSpp (2.95)
*x x * * - K *
815 HycHig HypHoaSpa+tHypHopSpp+HypHopSpa+H pHopSpR

In general, there is no reason why the expressions of egs. (2.94)
and (2.95) should equal unity and thereby provide exact simu-

lation, i.e., this requires that terms of the form

¥ ¥ * %
HycHoe HipHyp  HogHog HipHia _

= X — e o =1 (2.96)
* * +« *
HycHye HypHop  HygHig HoplHop

which, if the expressions of egs. (2.46) and (2.50) are used,
is clearly not so. However, for structures with light damping
and widely separated resonances, where only the rth term of
the frequency response function dominates in the vicinity of

the rth resonance, we can use egs. (2.49) and (2.54), so
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that the first term of eq. (2.96) becomes

HigHpq HaHia  DriDreDroDrg  DriDry
T n . i n. - pPp2  DpbpD,D,. -~ (2.97)
1ctic Hiaton riPre - Y1 YA T2 YA

and similarly for the remainder of the terms in eq. (2.96).
Therefore, for structures with nr<<l and fr_1<<fr<<fr+l, we
have obtained accurate simulation of the response spectral
and cross-spectral densities at every point on the structure
at frequencies near to the resonance frequencies (fszfr)‘by
using only one simulation force and simulating the response
spectral density at any one point. Our simulation for
fr<<f<<fr+l is only approximate; however, this can usually be
tolerated since response in these regions does not contribute
appreciably to the mean square response of the structure.

For a cantilever beam the above degree of simulation
will be obtained if the simulation force spectral density,
Sce(f), is adjusted as given in eq. (2.90)..

Similarly, if the spectral density of one simulation

force is adjusted according to

.[A. [t\. Hig (1£)H1g(if)Seg (£)dAqdAg
Ich(ifﬂ :

Seo = (2.98)

as obtained using equations (2.49), (2.54), and (2.57), it

is possible, in principle, to simulate with the above degree
of accuracy the response spectral and cross-spectral densities
at every point on a simply-supported plate by simulating the

response spectral density at only one point. The service



30
response in this case was originally induced by a fluctuating
pressure field.

In the above development, it was assumed that the
dynamics of the structure were not affected by physically
commecting the shaker to the structure. In practice this is
not the case; however, reasonable, approximate simulations
are still possible using this method, as will be shown. It
was also assumed that the simulation force spectrum could be
accurately shaped, that the shaker input point and the response
measurement points do not lie on nodes of the vibration modes,
and that all modes of interest have response components in
the direction of the applied force.

The conditions of low damping and widely spaced
resonances, which make it possible to consider the response
contribution of only one mode at each frequency, usually will
be realized only in the lower end of the frequency range for
practical structures. In the higher end of the frequency
range, however, some overlapping of resonance peaks is to be
expected, even for structures with low damping. Therefore,
the validity of the above simulation procedure is greatly
extended if it is based on the assumption that n modes must
be considered at each frequency. Robson and Roberts [21]
have shown that simulation can be achieved for this case
by ensuring that the response spectral densities at any n
points and the cross spectral density magnitudes and phases
between each pair of points (n? quantities) are matched at

all frequencies. This requires the application of n forces
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and complete control of their n? spectral and cross-spectral
densities, which may become an insurmountable problem as n
becomes large. However, if n is a small number, and it is
necessary to consider n modes only in a few frequency bands
throughout the frequency range of interest, it appears that
one shaker could accomplish simulation over the frequency
range outside of the few narrow bands having multi-modal
response. In these narrow bands, then, n-1 auxiliary shakers
could be used to provide the necessary simulation, thereby
reducing the complexity of the problem considerably. This
method of vibration simulation testing using a small number
of mechanical shakers would then have wide application to

practical structures.



Chapter 3

EXPERIMENTAL INVESTIGATIONS

3.1 Structures Tested

The structures tested, a cantilever beam and a
simply-supported rectangluar plate, are shown in Figure 3.1
with the electronic equipment and instrumentation used in
the various tests. The structures were mounted on a concrete
seismic mass which provided isolation from building vibration

above 10 Hz.

3.1.1 Cantilever Beam

The cantilever beam, along with the excitation equip-
ment and measurement instrumentation is shown in Figure 3.2.
It was machined from a li-inch diameter, 6061 aluminum alloy
rod which had been imbedded by shrink fitting in an aluminum
block weighing 34 pounds. The block was then bolted to the
seismic mass. The beam was 10 inches long, 1 inch wide, and
i_inch thick. Microminiature accelerometers were located at
distances of 5.5 and 9.5 inches from the clamped end of the
beam. The shakers were attached to the beam through force
transducers at distances of three and seven inches from the
6

clamped end. Beam material properties are: E = 9.9 x 10~ psi

and Y= 0.098 1b/in3.

32



(a)

Cantilever Beam

(b)

Simply-Supported Flat Plate

Fig. 3.1 Experimental Apparatus

k&
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(a)

(b)

Fig. 3.2 Cantilever Beam



3.1.2 Simply-Supported Plate

The simply-supported rectangular plate, together with
its excitation equipment and measurement instrumentation, is
shown in Figure 3.3. The simply;supported boundary conditions
were obtained by mounting the plate between knife-edges which
had been machined on the support frame (Figure 3.4). The
thickness of the plate was reduced from 1/8~inch to 1/16-inch
at the edges in order to reduce the effects of moments applied
to the plate edges by the knife-edge supports. The plate
support structure was bolted to the seismic mass in the ver-
tical position. A sketch showing plate dimensions and exact
locations of the accelerometers and the shaker attachment
point is presented in Figure 3.4. The material properties of

6

the 2024 aluminum alloy used are: E = 10.5 x 10~ psi,

¥ = 0.10 1b/in3, and v = 0.313.

3.2 _M¢§§ure@¢nt Instrumentation and Shaker
Support Structure

Force transducers, which acted as the connecting links
between the small electromagnetic shakers and the structures,
were constructed from +-inch aluminum rod as shown in
Figure 3.5. Fach transducer was instrumented with two small
(0.031-inch x 0.031-inch) strain gages. The gages were
located on opposite sides of the transducer and connected in
opposite arms of the bridge circuit (Figure 3.5), so that the
effects of transducer bending were cancelled and the trans-

ducer axial strain signal was doubled. Each end of the trans-

ducer was fitted with a short, No. 6 ANC, all-thread screw.



(a)

Nk el

(b)

Fig. 3.3 Simply-Supported Rectangular Plate
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0.030 in.
0.065 in.
0,030 in.

A(a) Plate Dimensions
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11.25 in.

Material:

1
I N
10.125 in. :i:>A

2024 Aluminum Alloy

10.25 in.

i

{

(b) Plate Edge - A

J
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(c) Plate Edge Supports

Fig. 3.4 Simply-Supported Rectangular Plate
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£=0.012 in. Strain Gage 1
(0.031 in. x 0.031 in.)

J \/
AAANAAN AAAAAAAA
0.25 in| V" 11.p.=0.106 in. No.6,ANC
AMAAAAANAS ANMAAAAM
AN
[
| 0.375 in. | 0.5 in, 1. 0:375 in. Jl

(a) Force Transducer

Gages 2 and 3 are dummy

gages mounted on an aluminum
block near the transducer.
They complete the bridge and
provide temperature compensa-
tion.

(b) Bridge Circuit

Fig. 3.5 Force Measuring Instrumentation
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The transducer was attached to the structure by a light-
weight threaded adapter, which had been cemented to the
structure. The opposite end was attached to the shaker
through its threaded connection. Total weight of the trans-
ducer, including the screws and adapter, was 3.3 grams. The
first resonance frequency of the transducer in longitudinal
vibration was calculated to be approximately 4000 Hz, while
that of the transducer shaker moving mass system was calcu-
lated as approximately 2900 Hz. Each force transducer was
calibrated statically at 0.30 V/1bf for a bridge excitation
of 1.5 Vdec, after amplifying lO)‘L times for recording purposes.

Micro-miniature accelerometers, which were attached
with cement, were used to measure the vibration response at
two locations on each structure. - Each accelerometer weighed
2.8 grams. ©FEach accelerometer signal, after amplifying 10
times, was calibrated at 57.5 V/g. In addition, two accelero-
meters were installed on the back of the shaker support
structures in order to measure the frequencies of large
response for these structures, since they were tied to the
test structure through the force links. Two accelerometers
were also installed on a flange of the plate edge support to
measure its frequencies of significant response.

A microphone was used to obtain an estimate of the
random acoustic pressure which provided the complex excita-
tion environment for the simply supported rectangular plate,

as shown in Figure 3.3b, page 36.
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The shaker support structure was constructed from
1-inch steel plate as shown in Figure 3.2b, page 34. The
frequencies of significant response of this structure, when
it is coupled to the beam by two shakers, are presented in
Table 3.1. Table 3.2 gives these frequencies for the support
structure when it is coupled to the plate with one shaker.
The frequencies of significant response in the edge support
flanges of the simply-supported rectangular plate are pre-
sented in Table 3.3 for the clean plate and the plate with

one shaker attached to it.

3.3 Research Tests

Tests were conducted to determine the basic structural
information about mode shapes, resonance frequencies, and
damping of the beam and the plate'for use in the theoretical

analyses and the simulation tests.

3.3.1 Cantilever Beam

In Test la the first five resonance'frequencies of
the cantilever beam were determined by exciting the beam with
the electromagnetic shakers. The accelerometers and shakers
were located so that they did not lie on nodes of the modes
of vibration. Table 3.4 gives the values of frequency for
both shakers attached to the beam with either Fy or Fy
excited and for F, only attached to the beam. In addition
to variations in frequency depending upon which shaker was
excited, small variations in measured resonance frequencies

were obtained between the two accelerometer measurements;



Table 3.1 Frequencies of Significant Response in
l-inch Shaker Support Structure with Both Shakers Attached
to Beam.

Frequency, Hz

Fp Excited Fp Excited

354

707 707
1340 1340
1650 1650
3688 3686
h223 ho21
4392 h3r2
4531

4682 4668




Table 3.2 Frequencies of Significant Response in
l-inch Shaker Support Structure with One Shaker Attached
to Plate

Frequency, Hz

Acoustically Excited Shaker Excited

331 331
986 985
1245 1220
1259

2453 2us5h
2535 2538
2542

2593 2594

3081 © 3062
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Table 3.3 Frequencies of Significant Response in
Plate Edge-Support Flanges

Frequency, Hz

Clean Plate One Shaker Attached
Acoustically Excited  Acoustically Excited Shaker Excited

221 . 53
221 219 219
593
657 659 658
910 9L8
986 979 976
1026 1019 1018
1135 1134
1160 1170
1211 1203 1199
1365
1499
1621 1621
1717 1710
1744
1776 1778
1840
1910
1956
2109 2134
2177 2178
2193
2250
2345
2105
oL12 2413
2458 2470
2477 ol75
2503 2519
2594 2591 2587
2656 2607

2768 2771




Table 3.4 Resonance Frequencies of Cantilever Beam

Resonance Frequency, f,, Hz

Theory Experiment
Clean
Mode Beam
Number Two Shakers Attached One Shaker Electromagnet
r Clean Beam FA Excited FB Excited Attached Excitation
1 161 149 149 149 163
2 1008 906 907 928 o7h
3 2815 2362 2365 2540 2684
4 5510 5188 5203 5174 5142
5 9140 810k 8133 8126 8258

i
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however, these were considered negligible. The second and
third mode resonance frequencies are seen to be raised by
approximately 2% and 8%, respectively, while the 4th mode
frequency drops less than 1%, when the shaker Fg is detached
from the beam., The large shift in the third resonance
frequency indicates that the effect of the second attached
shaker and support structure on this beam mode is particularly
important. When compared with the values obtained from
Bernoulli~FEuler beam theory, the resonant frequencies are
low by 5-14% for the various modes with eithef two or one
shaker attached. 1In Test 1b the clean beam (no shakers or
accelerometers attached) was excited with a small electro-
magnet. The magnetic circuilt was completed by using a small
plece of steel attached to the beam at a distance of 7 inches
from the clamped end. A crystal pickup was placed on the beam
to observe response, and this provided the only inertia
loading on the beam. Resonance frequencies from this test
are also shown in Table 3.4. When comparisons are made with
theory, it is seen that the experimental values are generally
lower than theory by as much as 3-10%, with disagreement
increasing with frequency.

In Test 2a, the mode shapes of the first five beam
resonances, with both shakers attached and only Fj excited,
were mapped using the attached accelerometers on all modes
and, in addition, a crystal pickup on modes 4 and 5. The
crystal pickup could not be used on the large displacement,

lower frequency modes (1-3), since the force required to
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maintain it in constant contact with the beam distorted the
mode shape greatly near the free end of the beam. As is
shown in Figure 3.6, the experimental mode shapes are identi-
cal to the theoretical shapes, which were determined from the
Bernoulli-Euler theory with no mass or stiffness attachments
to the uniform beam, i.e., a clean beam. It is therefore
concluded that the theoretical mode shapes may be used in
calculations of the complex frequency response function for
comparison with the experimentally determined values.

In Test 2b, the damping of the cantilever beam in
its first five modes was determined by impulsing the beam
with a soft, blunt object and recording the filtered response
decay data of the accelerometers and one of the force trans-
ducers, as shown in Figure 3.7.

The logarithmic decrement, § , was determined from
eq. (2.26) and the structural damping or loss factor, n,
for the rth mode from eq. (2.30). Values of 7, are given in
Table 3.5 for the beam with both shakers attached, with only
one shaker, Fps attached, and for the clean uniform beam with
only one aécelerometer, Ay, attached. As is seen, the damping
increases by less than a factor of two when the second shaker
is connected to the beam; however, the attachment of one
shaker to the clean beam increases damping values by 1.5 to
20 times.

It may therefore be concluded that the attachment of
shakers to a structure can modify its dynamic characteristics

considerably. In the case of the beam, the resonance
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Table 3.5 Damping of Cantilever Beam™

Structural Damping Coefficient, -

Mode Both Shakers Disconnected
Number Both Shakers Attached One Shaker Attached A1 Disconnected
1 .00763 .00815 .00755 .00796 .0079 .00647 .000372
.00768 .00787 .00697 .00701 .00787 .00621
2 .00586 . 0057 .00342 ,00348 . 00229
.00528 ., 00605
3 .0398 .0528 .0386 .03098 .01l472 .0079
.0303 .0285
L .0656 . 0459 ~.,0301 .02992 .01338 Neloirdel
5 .0229 .0217 .0215 .02218 .00676

lDamping was determined by impulsing beam with a soft, blunt object and
recording the decay in amplitude for logarithmic decrement determination.

6t
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frequencies and damping were changed considerably by the
attachment of shakers to a clean beam, while the effect on
the modal deflection shapes was negligible., However, it
appears that the attachment of additional shakers after the

first has a much smaller effect on frequencies and damping.

3.3.2 Simply-Supported Plate

In Test 5a, the resonance frequencies of the simply-
supported plate were determined by exciting the clean plate
(no shaker attached) with harmonic acoustic excitation,
exciting the plate with simulation shaker attached by acoustic
exéitation, and exciting the plate with the simulation shaker
EA‘ Table 3.6 gives the values of resonance frequency for
the first five odd-odd modes and for the first two even-odd
modes. The resonances of the first four odd-even modes, the
first three even-even modes, and the remaining two even-odd
modes which lay in the 0-3000 Hz frequency range were not
identified, since the two accelerometers were located on
node lines for these particular modes. The accelerometers
were positioned on the plate in this manner so that, with the
one exception of the one-third-octave band from 1123-1414 Hz,
only one resonance would be detected in each of the one-third-
octave filter bandwidths in the 350-2800 Hz range of interest.
This was done because it would have been impossible to obtain
a good simulation in the random tests with more than one mode
appearing within a one-third octave frequency band of the

spectrum shaping filters. Table 3.7 gives the first 16



Table 3.6 Resonance Frequencies of Simply-Supported Rectangular Plate

Mode Half-Wave
Number Numbers Resonance Frequency, f,, Hz
Theory Experiment
Acoust.Excit. Acoust.Excit. Shaker
r m n Clean Plate Clean Plate Shaker Conn. Excitation
1 1 1 220 221 219 219
3 2 1 580 594 582 580
5 1 3 1013 | 1024 1019 1019
' 982 orT7 976
6 3 1 1180 1209 1202 1202
1133 1130
1168 1166
7 2 3 1373 1402 1364 1365
10 3 3 1975 1988 1955 1956
14 1 5 2600 2674 2593 2638

TG
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b2

Table 3.7 Spectrum-Shaping-Filter Bandwidth Envelope
of Theoretical Resonance Frequencies for Simply-Supported

0dd-0dd Even-0dd O0dd-Even Even-Even
Filter Modes Modes Modes Modes
Center Band- m n fr m n fr m n fr m n fr
Frequency width (Hz ) (Hz) (Hz ) (Hz)
None 1* 1 220
400 ﬁzg
500 gg% 1 2 517
630 ?g% F*1 580
800 s 2 2 876
891
1000 1123 ¥ 3 1013
1250 ﬁiﬁ 3 1 1180 23 1373.
141k 3 2 1477
1600 1782 1 4 1708
2000 %Zgg 33 1975 4 1 2020 2 4 2070
ooh5
2500 5828 I 5 2600 4 3 2813 3 4 2665 4 2 2318
2828 1 3098
3150 3264 g 5 %520 %5 2958 5 2 3398 4 4 350b
Looo ﬁﬁgg 5° 3 3890 gh*i i{i‘f{g 1 6 3690 2 6 L4050
Bigo I 7 4975 %3 5220 5 4 U575 6 2 L4720
5000 5657 %" 5 5480 Z*7 5340 3 6 4650 L4 6 5490
* Modes for which response was possible at A; and Ao locations.

*¥ Modes for which response was possible at Ap

location only.
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theoretical resonance frequencies and the filter frequency
bands in which they lie. |

From Table 3.6 the resonance frequencies measured
when the clean plate was excited acoustically are seen to be
only slightly higher (generally less than 2%) than the theo-
retically determined values. It 1s seen that the attachment
of a shaker to the plate has a slight lowering effect on the
resonance frequencies. In the vicinity of the fourteenth
resonance frequency (2400-2800 Hz), it was possible to excite
the mode with m = 1 half-wave in the x direction and n = 5
half-waves in the y direction at approximately six different
frequencies. An examination of Tables 3.2 and 3.3, pages
42 and 43, shows that the l-inch shaker support structure,
when connected to the plate, and the plate edge support
flange responded significantly in the 2400-2800 Hz range.
Since the calculated resonance frequency of the force trans-
ducer/shaker-moving-mass combination was approximately
2900 Hz, it appears that there are a number of subsystem
responses which may affect the plate dynamics in the vicinity
of this resonance.

In addition, the plate responds at approximately
980 Hz inmode m = 1, n = 3. It is seen from Tables 3.2 and
3.3 that both the shaker support and plate support respond at
this frequency also. It is believed that this response, prior
to reaching the resonance frequency of 1020 Hz for this mode,
may be caused by a resonance in the plate supports, since

plate response is noted at this frequency even for the clean
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plate. The plate, with shaker attached, also responds at
frequencies of approximately 1130 and 1170 Hz in mode
m= 3, n =1, whose resonance frequency is approximately
1200 Hz. This is believed caused by the significant involve-
ment of the plate-edge support structure at these frequencies,
as shown in Table 3.3, page 43.

In Test 6a, the mode shapes of the six resonances
of Table 3.6, page 51, were mapped for the clean plate using
harmonic acoustic excitation, and for the plate with shaker
attached using the shaker for excitation. For the test using
acoustic excitation, the modes were mapped completely using
a piezoelectric crystal probe. In the shaker excited tests,
only the mode nodal locations were mapped. Examples compar-
ing the mode nodal locations of the two test cases with
theory are given in Figure 3.8. There is slight distortion
of modal displacement shapes from the assumed simply-supported
functions in some of the modes. This is.caused by the addi-
tion of the shaker and/or the two accelerometers to the clean
plate. However, the distortion is not excessive, and it is
concluded that the theoretical mode shapes may be used in
calculations of complex frequency response fuﬁctions.

In Test 6b, the structural damping of the plate was
determined by either the logarithmié decrement or the band-
width method. In the tests which made use of the logarithmic.
decrement, the plate was either impulsed with a soft, blunt
object and the response decay recorded, or it was excited

harmonically to a steady-state condition with acoustic or
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shaker excitation, which was theﬁ rapidly turned off, allow-
ing a measurement of the response'decay. Damping values for
the clean plate were determined for comparison with those
obtained for one shaker attached to the plate. 1In the tests
making use of the bandwidth method, one shaker was attached
to the plate, and the plate was either excited with a sinu--
soidal acoustic pressure or with a sinusoidal shaker force.
The resonance frequency and the half-power point frequencies
were then measured for each resonance peak. In Table 3.8
it is seen that that damping value for any one mode may vary
from test to test by as much as a factor of 4. In general,
with one shaker attached to the plate, the test which impulsed
the beam with a blunt object was taken to provide the best
estimate of modal damping values, 7.

It is seen from Table 3.8 that the damping values
for the clean plate are roughly one-half of those for the
plate with one shaker attached.

Therefore, the effects of attaching the shaker to
the clean plate were not as great as for the beam, i.e., the
values of resonance frequency and damping were not affected
nearly so much; however, the shaker and accelerometers did
tend to distort the plate mode shapes somewhat.

3.4 Random Vibration Tests Using Complex
Excitation knvironments

3.4,1 Cantilever Beam

The complex excitation environment for the cantilever

beam was provided by two shakers, Fp and Fp, attached as



Table 3.8 Damping of Simply-Supported Rectangular Plate

Structural Damping Coefficient, 7,

Bandwidth Method

. Shaker
Resonance Connected
Mode Frequency Number of Acoustically Shaker
Number (Hz ) Half-Waves Excited Excited
r fr m n Aq Ao A7 Ao
1 219 1 1 . 00776 .00776 .0087 .00824
3 580 2 1 .01115 .0308
5 1019 1 3 .00389 . 00485 .00584 . 00584
Q82 .00713 .00814 .00815 .00815
6 1202 3 1 .00913  .01827 .01163 L0174
1167 .01375 .01109
1133 .0212 .01322
7 1365 2 3 .00512 .011
10 1956 3 3 .00716 .00767 .00767 .00717
14 2638 1 5 .033 L0411 .0766 .0437

LS



Table 3.8 (Continued)

Structural Damping Coefficient, 7

r

Logarithmic Decrement Method

Shaker Shaker Clean
Resonance No.of Connected Connected Plate
Mode Frequency Half- Impulse Acoustically Shaker Impulse
Number (Hz ) Waves Excited Excited Excited Excited
Y fI‘ m n Al A2 Al A2 Al A2 Al A2
1 219 1 1 .o0o484 ,o0481 .00669 .00627 .00596 .00494 ,00378 .00418
3 580 2 1 .01987 .00481 .0071
5 1019 1 3 .0078 .00115 .00297 .00221 .00516 .00589 .00275 .00385
982 .00653 ,00701 .00325 .00173 .00685 .00567 .00325 .00312
6 1202 3 1 .00857 .0085 .0048 .00294
1167
1133
4 1365 2 3
10 1956 3 3 .00121 .00107
14 2638 1 5

85
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shown in Figure 3.2, page 42, at ﬁistances of 7 inches and

3 inches, respectively, from the élamped end of the 10-inch
long beam. Beam accelerations were measured by two accelero-
meters, A; and Ap, located at distances of 9.5 inches and

5.5 inches, respectively, from the clamped end.

In Tests 3d and 3e, the shakers were mounted on the
l-inch steel support structure with both shakers being excited
in Test 3d. In Test 3e, only shaker Fp was excited; however,
since shaker link FB was attached to the beam and to the
shaker suspension system, it did provide a large narrow-band
random force input at this location.

Random data from the two accelerometers and the two
force transducers were recorded on magnetic tape for a period
of one minute during each test. After the random tests, the
tapes were supplied with noise floors for each data channel,
so that noise components could be identified later in the
reduced data. Significant noise components did show up at
multiples of 60 Hz in the frequency range of the force data
below 500 Hz. In addition, each data channel was provided
with a known force or acceleration calibration signal.

After tape recording, over-all rms values of the
random signals were measured on a random noise voltmeter.
Photographs of the rms spectral content of each signal were
then taken from a memory oscilloscope equipped with a spectrum
analyzer unit, so that the spectral content of thé beam
vibration could be simulated in later tests. Oscilloscope

spectrum analysis of each signal was first conducted over
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the total frequency range of interest, 400-7000 Hz. This

range contained the second, thifd, and fourth beam modes.
Narrow-band rms spectrum analysis was then conducted over
the small frequency range of each resonance noted in the
wide-band analysis. Examples of oscilloscope spectrum analy-
sis are shown in Figures 3.9-3.12.

The magnetic tapes were then digitized by the NASA-
MSC Computation and Analysis Division and data reductions were
performed digitally, as explained in Appendix A4. Data were
reduced in the form of digitized signal, autocorrelation,
normalized probability density, spectral density, and rms
spectrum for each measurement; and co-spectral density,
quadrature-spectral density, cross-spectral density modulus
and phase, coherence function, and transfer function between
each pair of measurements, Examples of reduced data are
given in Figs. A3.la-A3.1m, pages 127 through 139. The data
displayed all the characteristics attributed to wide and
narrow-band, approximately Gaussian data. The most impor-
tant data reductions were the acceleration auto- and cross-
spectral densities for accelerometers A; and Ay, which were
compared with the same data from the vibration simulation
tests to ascertain the degree of successful simulation.
Data reduction was conducted using a 24-Hz narrow-band
filter and a 1l.6-second time slice of the digitized data.

This yields a normalized standard error [30], according to

=

€= 1/(BT)
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of 16% for the spectral density estimates; however, since
all data were very nearly Gaussian (see Figs. A3.1lb and A3.lc,
pages 128 and 129), the actual error present in the reduced
data should be much smaller than this. At any rate, even
if maximum error did exist, it should still be possible to
ascertain if a satisfactory simulation did or could, in
fact, be obtained.

A schematic diagram of the equipment used in the
complex excitation tests is given in Figure 3.13, while
Figure 3.la, page 33, is a photograph of all equipment used.
A 1list of all equipment used in the tests 1is provided in

Appendix 2.

3.4.2 Simply-Supported Plate

The complex excitation environment for the plate was
acoustic noise with an over-all sound pressure level of
131 db, provided by a speaker located with respect to the
plate as shown in Figures 3.1b and 3.3a, pages 33 and 36.
Plate accelerations were measured by two accelerometers,
A7 and Ap, located at the center-plate position (x = 5.0 in.,
y = 5.5 in.) and the quarter-plate position (x = 7.5 in.,
y = 5.5 in.) as shown in Figures 3.3a and 3.4, pages 36 and
37.

Two tests were conducted. 1In Test Ta, the plate
had no shaker attached, while in Test 7b, one shaker, mounted
on the l-inch support structure, was attached at the quarter-
plate position (x = 2.5 in., y = 5.5 in.). Although not

excited electrically, shaker Fp did provide a large narrow
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band random force input at this loéation by virtue of the
connection of the force transducer.FA between the plate and
the shaker suspension system.

Random data from the two accelerometers, the micro-
phone, and the force transducer were recorded on magnetic
tape for a period of one minute during each test. The
procedure followed in tape recording, over-all rms and rms
spectrum determination, and data reduction is the same as
for the cantilever beam, except that the frequency range of
interest in the plate tests was 400-3000 Hz, and the data
reduction was conducted using a 12 Hz narrow-band filter and
a 3.2-second time slice. Figure 3.1b, page 33, is a photo-
graph of all equipment used.

Because of accelerometer locations, responses of
only the m(odd), n(odd) modes were measured by Ay, and
responses of the same odd-odd modes plus two even-odd modes
we?e measured by Ap. No even-even or odd-even modal res-

ponses were seen by either accelerometer.

3.5 Vibration Simulation Tests

3.5.1 Cantilever Beam

The narrow-band auto- and cross-spectral densities
of the beam accelerations at locations A and A, for Tests
3¢ and 3d were simulated using one shaker, Fp, located at a
distance of 7 inches from the clamped end of the beam. In
order to achieve good simulation, the force spectrum was

shaped using a spectral density equalizer consisting of
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thirteen, one-third-octave band, variable gain filters with
the center frequencies and bandwidths given in Table 3.7,
page 52.

Tests Uc and U4d were conducted by adjusting the-
equalizer filters until the best possible simulation of beam
acceleration had been obtained on the oscilloscope analyzer
at every resonance within the frequency range of interest.
In Figures 3.9-3.12, pages 61 through 64, a comparison is
shown between the rms acceleration spectra of a complex
excitation test and a simulation test. Data from accelero-
meters A, and A, and force gage Fp were then recorded on
magnetic tape and reduced digitally in the manner described
for the complex excitation tests, so that comparisons could

be made in a more exact manner.

3.5.2 Simply-Supported Plate

The narrow-band auto- and cross-spectral densities
of plate accelerations at locations Al and A, for Tests Ta
and 7b were simulated using one shaker, Fp, located at
Xx = 2.5 in., y = 5.5 in. in Tests 8a and 8b, respectively.
The procedure for data reduction is the same as for the

cantilever beam.



Chapter 4
RESULTS AND DISCUSSION

L,1 Cantilever Beam

4,1.1 Research Tests

Table 4.1 summarizes the experimental findings of
Chapter 3 for the second through the fourth modes of the
cantilever beam. These are the resonance frequencies,
structural damping coefficients, and mode shapes which were
used to further an understanding of the experimental random
response data and also in the computation of the square of
the theoretical frequency response modulus (eq. 2.50)
between beam accelerations and the simulation force.

The experimentally determined mode shapes are shown
in Fig. 3.6, page U7, to be identical with the displacement
shapes given by the Bernoulli-Fuler beam theory, even with
two shakers and two accelerometers attached; therefore, the
theoretical values were used in the above-mentioned compu-
tations. However, since the addition of shakers to the
clean beam has a significant effect on the resonance fre-
quencies and structural damping, it 1s necessary to use the
experimentally obtained values of Table 4.1 to gain insight
into discrepancies between the complex excitation response

and the simulated response.
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Table 4.1 Resonance Frequencies, Damping, and Mode
Shapes of Cantilever Beam Used in Analysis of Random Vibration
Data.

Experimental
Mode Experimental Structural Damping Theoretical
Number Resonance Frequency Coefficient Mode Shape
r fy, Hz Ny : Constants
2 Shakers 1 Shaker 2 Shakers 1 Shaker a Bl

Attached Attached Attached Attached

2 . 906 928 . 00572 '.00345 1.018 4,694
3 2362 2540 .0lL630 .03210 0.999 7.855
L 5188 5174 .05580 .03000 1.000 10.996

cosh Brx - cos Brx - ap(sinh Brx - sin Brx)

Mode Shape: Yy

L 10 inches
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4.1.2 Comparison of Simulated Response with That
Induced by the Complex Excitation Environment

Since each experimental random pressure, force, and
acceleration time history was gssentially self-stationary
in the tests conducted, it is assumed that each record was
obtained from an ergodic (and therefore stationary) random
process., Therefore, temporal averages over short time
intervals of a single record may replace ensemble averages.
In addition, each beam input force and output acceleration
record was essentially Gaussian (see Figures A3,1b and
A3.1lc, pages 128 and 129). This, of coursé, verifies the
assumptions of linearity in response for the beam under-
going small deflections, since it is known that the response
of a linear system subjected to a stationary, ergodic, or
Gaussian input is stationary, efgodic, or Gaussian, res-
pectively. Because of the reasons given in Section 2.5,
simulation of strongly ergodic, Gaussian, structural response
processes requires only that the spectral densities and
cross~-spectral densities of all simulated motions match
those obtained under service excitation. |

Comparisons of the spectral and cross-spectral
densities of beam tip and mid-length accelerations, A; and
As, during complex excitation tests with the same quantities
obtained during the simulation tests are presented in
Figures 4.1 and 4.2. The complex excitation environment
of the beam, as given by Figures 4.3 and 4.4, was provided

by two mechanical shakers, while one mechanical shaker,
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possessing the appropriately shaped input force spectrum as
shown in Figure 4.5, provided the simulation excitation.

In Figure 4.1, pages 72 through 75, simulation was
attempted for the second and third beam resonances. As is
seen, the 900 Hz resonance peak value, bandwidth , and
phase angle are simulated exactly, with the simulation fre-
quency shifted slightly upward, as expected from the data
of Table 4.1, page 70. For the third beam resonance at
approximately 2500.HZ, the peak value, resonance bandwidth,
and phase angle are simulated reasonably well; however, the
resonance frequency has been shifted upward considerably,
again as expected. This undesirably large frequency shift
is by far the most predominant change in beam dynamics caused
by detaching one of the two complex excitation test shakers
from the bean.

In Figure 4.2, pages 77 through 79, Test le was an
attempt to simulate the second, third,.and fourth resonance
responses of Test 3e. As is seen, the 900-Hz resonance
width and phase angle were simulated exceptionally well;
however, the peak value is somewhat high and the expected
slight frequency shift is again noted. For the 2500-Hz
resonance, the peak value and resonance width are simulated
exéeptionally well, while the phase angle simulation is
within reason. The undesirable shift in resonance frequency
is again noted. For the fourth beam resonance at approxi-
mately 5000 Hz, the resonance bandwidth, peak value, and

phase angle are simulated exceptionally well; however, in
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addition to the expected slight.lowering of frequency when
the Fp shaker was detached from the beam for the simulation
ﬁest, it was impossible, using the large bandwidth, spectrum
shaping filters, to simulate the undesirable response peak
or the radical change in phase angle of Test 3e at approxi-
mately 4500 Hz without jeopardizing the simulation of beam
fourth mode response. Using Table 3.1, page 40, it is seen
that this undesirable effect is caused by beam/shaker-
support-structure interaction, since the support structure
undergoes significant response in this frequency range with
both shakers attached. The large force input to the struc-
ture in the 4000-5000 Hz range can be seen in the force data
of Tests 3d and 3e, Figures 4.3 and 4.4, pages 80 through
83, respectively.

We have thus far discussed the experimental attempts
at reproducing the acceleration spectral and cross-spectral
densities exactly in the regions near resonance for lightly
damped systems. It is obvious that the attachment of the
shakers to the clean beam has had an effect on the dynamics
of the beam, so that it was impossible to obtain anything
other than an approximate simulation in the frequency
regions near a resonance; however, it is seen that adequate
simulation of response in the near-resonance regions at one
beam location ensures the same degree of simulation at any
other beam location and between any pair of locations.

For the regions in between resonances, Test 4e pro-

- vided exceptional simulation of the respective S,,(f),
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Spo(f), and Sjpo(f) quantities of Test 3e, while Test A4d
provided adequate simulation for Test 3d; however, as is
seen from Figures 4.1d and 4.2d, pages 75 and 79, the phase
angles were not always simulated as well as would be desired,
particularly in the frequency regions approaching, from both
sides, the third resonance in the 2500 Hz range. There is
no reason to expect, as was shown in Section 2.5, that
simulation of the response spectral density in the between-
resonance regions at one location on the structure insures
simulation at every other location.

4,1.3 Comparison of Computed and Measured Frequency
Response Functions

The simulation force spectral densities, SAA(f), for
Tests 4d and 4e are shown in Figure 4.5, page 85. Using
these values in eq. (2.67) with the values of simulated
acceieration spectral density, S37(f) and Spo(f) of
Figures 4.1 and 4.2, pages 72 through ?9, it is possible
to calculate the experimental squared modulus of the fre-
quency response functions, Hyp(if) 2 and Hop (1F) 2, for
the beam. These values are compared in Figures 4.6 and
4,7 with the functions obtained using eq. (2.51) and the
research test data of resonance frequencies, damping factors,
and mode shapes from Table 4.1, page 70. In addition, data
from two other simulation tests, Test 4a and Ub, which are
discussed in Appendix 5, have been included in these figures.
It is seen that the computed values agree well with

values from the random simulation test data concerning
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resonance frequency and bandwidth for the second and third
modes; however, although resonaﬁce 4 has excellent bandwidth
simulation, the frequency obtained in the sinusoidal research
tests with the shaker attached to the l-inch support is evi-
dently slightly high.

A comparison of peak values for the third mode at
approximately 2500 Hz in Figures 4.6 and 4.7 shows excellent
agreement; however, the computed peak value of this squared
quantity for the 900-Hz mode is some sixteen times larger
than the experimental value. This large disagreement is
caused by the analyzer filter having much too wide a band-
width for this extremely lightly-damped mode, as shown in
Table 4.2; therefore, the experimental mean square level
within the bandwidth divided by the filter bandwidth gave a
much smaller spectral density level than actually occurred.
The peak values of the experimental squared response func-
tions compare excellently with the computed values for the
fourth resonance, with one exception in which the experi-
mental values are three times the theoretical values. The
cause of this discrepancy is believed to be the beam/shaker-
support interaction. In this particular case Wifh two
resonance frequencies, which both appear in the frequency
response functions of Figures 4.6 and 4.7, so close
together, a situation similar to the linear, two-degree-
of -freedom (two mass-two spring) system may exist. If this
is the case, the actual resonance of one spring-mass system

(the beam) may become an antiresonance when coupled to the
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Table 4.2 Comparison of Cantilever Beam Data
Reduction Bandwidths with Recommended Values of [30]

Half-Power
Resonance Structural Point Band- Recommended® Data Reduc-
Frequency Damping width, Afhp Bandwidth tion Band-
f., Hz N Hz B, Hz width, Hz
928 .00345 3.2 .8 24
2540 .03210 81.6 20.4 24
5174 . 03000 155.9 39.0 2u

*B< Afh.p_/q- = frnr/u-
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other spring-mass system (the force-link/shaker/shaker-
support-structure system), and be surrounded by the two
resonance frequencies of the two-degree-of-freedom system.

In the regions between ‘resonance peaks, the theory
provides a good estimate of the frequency response functions,
as seen from the figures.

Although the squared modulus of the frequency re-
sponse functions are the only structural quantities necessary
to predict the response spectral density of a structure to
one discrete random input, eq. (2.67), the phase of the
response functions are necessary for response cross-spectral
density, eq. (2.65), and sinusoidal response predictions,
eq. (2.39). It is for this reason that the experimentally
determined phase angles of frequency response functions
Hip(if) and Hpp(if), ¢ya(f), and éoa(f), have been included
in Figures 4.8 and 4.9, respectively. These quantities
display the expected trends, i.e., the phase angles between
force and acceleration are 90° at resonance and antiresonance
frequencies and either 0° or 180° at frequencies between

resonance.

4,2 Simply-Supported Plate

L,2,1 Research Tests

Table 4.3 summarizes the experimental findings of
Chapter 3 for the second through the fifth m(odd), n(odd)
modes and the first and second m(even), n(odd) modes of the

simply-supported plate. These are the resonance frequencies,
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Table 4.3 Resonance Frequencies, Damping, and Mode
Shapes of Simply-Supported Plate Used in Analy51s of Random
Vibration Data )

Experimental Experimental
Mode Number of Resonance Frequency Structural Damping
Number Half-Waves £, Hz Coefficient, 7y
Clean One Shaker Clean One Shaker
r m n - Plate Attached Plate Attached
3 2 1 594 580 .00710 .01989
5 1 3 1024 1019 .00330 .00780
982 976
6 3 1 1209 1202 .00387 .00854
1130
1166
7 2 3 1402 1365 .00800%
10 3 3 1088 1956 .007h2
14 1 5 2674 2638 : .00750%
*
Assumed value.
mrx . nny

Mode shape: W, = Wy, = sin —g— sin —p*=

a = 10 inches, b = 11 inches.
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structural damping factors, and‘mode shapes which were used
in the same manner as for the béam.

The experimentally determined mode shapes are shown
in Figure 3.8 to agree reasonably well with those assumed
in eq. (2.23) for the simply-supported plate; therefore,
the theoretical values were used in computations. The
addition of a shaker to the plate tended to lower the clean
plate resonance frequencies slightly and bring them closer
to the theoretical values of Table 3.6, page 51; however,
the plate edge-support-structure and the -force-link/shaker/
shaker-support-structure interactions with the plate affected
the plate dynamics in such a manner that it was possible to
excite the modes 5, 6, and 14 at several frequencies near
the predominant resonance frequency. The addition of the
simulation shaker to the clean plate is seen to have
increased the structural damping by a factor of approximately
two. It was therefore deemed necessary to use the experi-
mentally determined resonance frequencies and structural
damping in order to understand any discrepancies between the
complex excitation response and the simulated response.

L,2.2 Comparison of Simulated Response with That
Induced by the Complex Excitation Environment

The same assumptions made in Section 4.1.2 for the
random excitation and response time histories of the beam
are made here for the plate.

Comparisons of the spectral and cross-spectral den-

"sities of center-plate and quarter-plate accelerations, A;
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and Ao, during Complex Excitation Test 7a with the same
quantities obtained during the Simulation Test 8a are pre-
sented in Figure 4.10. The complex excitation environment
of the plate was provided by acoustic noise of approximately
131 db over-all. A pressure spectral density of the noise,
measured approximately two inches from the plate, is shown
in Figure 4.11. One mechanical shaker, possessing the
appropriately shaped input force spectrum, as shown in
Figure 4.12, provided the simulation excitation.

First, consider the m(odd), n(odd) modes in
Figure 4.10. An examination of the center- and quarter-
plate acceleration spectral densities and cross-spectral
density magnitudes and phases shows that the response in the
viecinity of the mode r = 14 at approximately 2600 Hz is simu-
lated excellently with regard to resonance frequency, band-
width, and peak value, and reasonably for phase angle. The
mode r = 10 at approximately 2000 Hz ié simulated excellently
also with respect to every quantity except peak values,
where the simulated peaks are low by a factor of three. The
mode r = 6 at 1200 Hz is simulated well with respect to every
quantity except peak values, with the simulation again low
by a factor of three. 1In addition, there is large response
in.this mode at 1130 and 1160 Hz. The mode r = 5 at 1020 Hz
is well simulated with regard to every quantity; however,
there is also undesirable response in this mode at approxi-

mately 980 Hz.
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Next, considering the m(even), n(odd) modes which
do not appear at the center-plate A; location, it is seen
that the mode r = 3 at approximately 580 Hz is simulated
well with respect to phase angle and resonance bandwidth;
however, the simulation peak value is low by approximately
two, and the simulation resonance frequency is shifted to a
slightly lower value, as expected from Table 4.3, page 95.
For the mode r = 7 at approximately 1400 Hz, the phase angle
is simulated at, but not in the near vicinity of, resonance ;
and the frequency has.lowered slightly as expected, the
simulated resonance bandwidth is much too wide, and the
simulated peak value is high by a factor of three.

It was impossible to negate the undesirable effects
of mode r = 7 electronically by using the one-third-octave
shaping filter, since mode r = 6 at 1200 Hz also lies within
this filter bandwidth. Therefore, any lowering of peak value
for r = 7 also jeopardizes the simulation of r = 6. It is
seen that much narrower filter bandwidths are needed to pro-
perly simulate the response spectrum when resonances are
not widel& separated.

The unwanted response in mode r = 6 at frequencies
of 1130 and 1160 Hz, which lie below its true resonance
frequency of 1200 Hz, is Dbelieved to be caused by reso-
nances in the plate edge-support-structure, since large
response is shown at these frequencies in Table 3.3,
page 43. The l-inch shaker support does not respond sig-

nificantly at these frequencies (see Table 3.2, page 42).
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The unwanted response in mode r = 5 at 980 Hz, below its reso-
nance frequency of 1020 Hz, is believed to be caused by inter-
actions between the plate, plate-support, and shaker-support,
since both the l-inch shaker support (Table 3.2, page U42) and
the plate edge supports (Table 3.3, page 43) respond signifi-
cantly at this frequency. Between resonances, the response is
generally simulated very well except at the frequencies already
discussed.

L,2.3 (Comparison of Computed and Measured Frequency
Response Functions.

The simulation force spectral density, SAA(f), of

Figure 4.12, page 103, was used with the values of simulated
acceleration spectral density, S;,(f) and S,,(f) of Figure k.10,
pages 98 through 101, in eq. (2.67) to calculate the experimen-
tal squared modulus of the frequency response functions,

Hyp(1if) 2 and Hop (1) 2, for the plate. These results are
compared in Figures 4.13 and 4.14 with the response functions
obtained using eq. (2.51) and the research test resonance fre-
quencies, demping factors, and mode shapes from Table 4.3,
page 95. It is seen that the computed values agree well with
the values from the simulation test with regard to resonance
frequency and bandwidth; however, the computed peak values are
generally more conservative than the experimentally obtained
values. As with the beam, Table 4.4 shows that the data
analyzer filter had a bandwidth which was two to six times as
wide as recommended for these lightly damped modes; therefore,

the experimental mean square level within the bandwidth divided
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Table 4.4 Comparison of Simply-Supported Plate,
Data Reduction Bandwidths with Recommended Values of [30]

Half-Power % Data

Resonance Structural Point Band- Recommended Reduction

Frequency Damping width, Afhp Bandwidth Bandwidth
fr, Hz Ny ' Hz B, Hz Hz
580 .01989 11.5 2.9 12
1019 .00780 7.9 2.0 12
1202 .00854 10.4 2.6 12
1365 .00800 10.9 2.7 - 12
1956 .00T42 14.5 3.8 12
2638 ©.00750 19.8 5.0 12

*B< Afh.p./LL = £.n./b
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by the filter bandwidth gave a smailer spectral density level
than actually occurred. |

In the regions between resonance peaks the theory pro-
vides reasonable estimates of frequency response functions, as
seen from the figures. The undesirable frequencies discussed
earlier--980, 1130, and 1160 Hz--are also present in the
experimental frequency response function data of Figures 4.13
and 4.14, pages 106 and 107.

The experimentally determined phase angles ¢1A(f) and
$op(f) of the complex frequency response functions Hyp(if) and
and Hpp(if) are presented in Figures 4.15 and 4.16.

Another complex excitation test was run in which the
complex excitation was again acoustic noise; however, in this
test (Test T7b) the simulation shaker was attached to the beam,
and, although not excited, it did provide a large, narrow—baﬁd
force input to the plate. Data from Test 7b and its corres-

ponding Simulation Test 8b are included in Appendix 4.
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Chapter 5

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

From the results obtained for the cantilever beam and

the simply-supported plate, the following conclusions are

made:

The random response of a linear, elastic struc-
ture to a complex, ergodic, Gaussian excitation
environment may be adequately simulated using
one mechanical shaker, provided the structure
has light damping and widely separated reso-
nances.

Simulation of structural response is complete, in

the sense that the response spectral densities
at every point and the cross-spectral densities
between each pair of points are simulated with
the same degree of accuracy, if the response
spectral density at any one structural location
is simulated adequately.

A complete simulation of structural response as

suggested by Robson [20], [21], which is accurate

in the vicinities of the resonance peaks and
approximate in the frequency regions between
resonance peaks, could be obtained if it were
not for changes in structure dynamics caused by

physically attaching the shaker to the structure.

When a light-weight mechanical shaker is attached
to the structure, it appears that there is only

slight distortion of the theoretical mode shapes;

however, the damping may increase considerably,
especially for extremely lightly damped struc-

tures, and the resonance freqguencies may change
substantially, particularly if the shaker.con-

necting link, the shaker armature-flexure system,
or the shaker support structure has resonances
within the frequency range of interest.
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5. Modifications to the shaker system of paragraph 4
may be necessary to.reduce the undesirable
effects on structure dynamics, or it may be
possible to negate these effects by using either
narrow-band, variable gain, filters or peak-
notch filters.

6. The shaker used for simulation tests must be pro-
perly positioned so that (a) it does not lie on
a node of a vibration mode, and (b) it supplies
a component of force in each direction necessary
to excite the modes of interest.

7. The spectrum shaping filters, used to shape the
simulation force spectrum supplied by the
shaker, should be of sufficiently narrow band-
width so that no more than one resonance peak
lies within the bandwidth of each filter. If
large changes in damping are experienced when
the shaker is attached to the clean structure,
filter bandwidths will have to be narrower than
the resonance bandwidth that is to be simulated.

8. - The desired simulation force spectral density can
be accurately calculated from a knowledge of the
squared modulus of the complex frequency res-
ponse function and the response spectral
density to be simulated, using

S11(f)
[Hyp (1F) 2

Saa(f) =

9. The complex frequency response function may be
determined experimentally or, for the simple
structures used here, by using a modified theo-
retical frequency response function which accounts
for any changes in structure dynamics caused by
the addition of the shaker to the structure.

5.2 Recommendations

Based upon the results of this study and the conclu-
sions presented above, it is recommended that:

l. This method of vibration simulation testing should
be attempted, using one shaker with a set of
narrow-band spectrum shaping filters, on other
simple beam, plate, and shell structures which
have light damping and widely separated reso-
nances in their lower frequency ranges.
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2. The method proposed by Robson and Roberts [21]
for simulating the response of the lightly
damped, simple structures of paragraph 1 in
their intermediate frequency ranges, where
response in two (or n) modes must be considered
at any frequency, should be attempted. This
would require the complete control of two (or n)
force spectral densities and their cross-
spectral densities, and it should be ascertained
whether simulation of the response spectral
densities and cross-spectral densities between
any two (or n) points does in fact assure com-
plete simulation in the approximate sense of
this paper. The problems associated with control
of force spectra and cross-spectra become
formidable as n increases; however, if n is
small, and it is necessary to consider n modes
in only a few frequency bands throughout the
frequency range of interest (as on some prac-
tical structures), the control problems will be
simplified.

3. In paragraph 2 above, the number of resonances,

: n, should be determined for which it is no
longer practical to use this modal method of
simulation testing. Above this value of n, for
which the structure may be considered multi-
modal and reverberant, rational simulation
techniques should be developed [1l] such as
those which simulate the spatial average over
the structure of the average vibrational energy
over many modes in a frequency band.

L, The studies of paragraphs 1, 2, and 3 above be
performed on structures which have larger
damping. Robson theorizes that this would
require n shakers to simulate exactly the res-
ponse at and between n points; however, the
simulation would not be complete in that the
simulation is not assured at every other point
on the structure.

5. The studies of paragraphs 1, 2, 3, and 4 above
be performed on more canplex structures such as
stiffened plates and shells and coupled struc-
tures.



Appendix 1

DEFINITIONS

Random Process--an ensemble {x(t)} of all records x(l)(t),
x(g)(t), e . e s x(j)(t), ~ogtgeo , which were obtained

at the same location on a system under identical test

conditions.

e x()

Stationary Random Process--a random process whose ensemble

probability distributions, and all ensemble averages based

upon them, are invariant under a shift of the time scale.

Ergodic Random Process--a stationary random process whose

ensemble averages are equal to the corresponding temporal
averages taken over any sample record X(k)(t) of the

process.

Strongly Stationary Random Processes--two arbitrary random

processes {x(t)} and {y(t)}, whose individual and joint
ensemble probability distributions of any order are inde-

pendent of time translations.
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Weakly Stationary Random Processes--two arbitrary random

processes, {x(t)} and{y(t)}, whose individual and joint,
first and second order ensemble probability distribution

are independent of time translations.

Strongly Ergodic Random Processes--two arbitrary, strongly

stationary random processes, {x(t)} and {y(t)}, whose
individual and joint ensemble probability distributions

of any order are equal to the corresponding individual
and joint averages taken over any arbitrary pair of sample

records, x(k)(t) and y(k)(t).

Weakly Ergodic Random Processes--two arbitrary, weakly sta-

tionary random processes, {x(t»' and {y(t)}, whose indi-
vidual and joint, first and second order probability
distributions are equal to the corresponding individual
and joint temporal averages taken over any arﬁitrary pair

of sample reéords, x(k)(t) and y(k)(t).

Self-Stationary Random Record--a single random record x(k)(t)

whose statistical properties computed over short time
intervals do not vary significantly from one interval of
the record.to the next.

"In the following equations it is assumed that the ran-
dom processes under consideration are strongly ergodic so
that ensemble averages may be replaced by temporal averages

"over any arbitrary pair of sample records. In addition, it

is further assumed that each sample record is self-stationary

so -that the temporal averages of individual records may be
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taken over any short time inte}val of the record. When
joint properties between two random records are being com-
puted, the time intervals of each record must begin and end
at identical times. The equations presented are the theo-
retical definitions of the various quantities which were

computed digitally as illustrated in Appendix 3.

Probability Distribution--For a self-stationary random record

the probability distribution is given by

P(x) =Z££X_SX_1 (A1.1)

T

where T is the length of the time slice andzzbt(x<x) is
the total amount of time for which the instantaneous wvalue

of the signal, X, is less than some fixed value, x, i.e.,
P(x) = Pp[X < x] (Al.2)

Probability Density--the slope of the probability distribution

curve

p(x) - dP(x (A1.3)

Gaussian Probability Density--The probability density of
instantaneous values, X, is Gaussian when
1 2 2
x) = ——— exp.{-[x—<x>] /20 } Al.4
p( ) 0)(\/2_77- X ( )

where the variance, oi, is given by
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ax:=<[x(t)-<x(tﬁ]2>

. T/2
= %}ﬂ % .fr/e [xqp(t) - <xT(t)>]2dt

= <x2(t)> - <x(t)>° (A1.5)
1
o, = (ai)ﬁ is called the standard deviation. If the mean
value
. T/2
x(t)> = min & f xp(t)dt (A1.6)
=T/2

is zero, the variance becomes the mean square value and

the standard deviation becomes the root mean square value.

Autocorrelation--The autocorrelation is given by

<x(t)x(t+r)>

Ry (7)

_ 1im 1 T/2

= TewT Lo xp(t)xp(t+r)dt  (AlL.7)

where xp(t) = x(t) in the range -T/2<t<T/2 and x7(t) = O
at all other times. The autocorrelation is also expressible
in terms of the Fourier transform, Ag(if), of the truncated

signal, xq(t), as

[§X(r)exp.{—i2nfr}dr = / r}_,ff,RxT(r)exp.{-iznfr}dr

-

. IR
= %,i‘i%'AT(lf)l (A1.8)

where
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2 .
Ap(if) = %-/-‘TZ xT(t)exp.{-iznft}dt (A1.9)
and
- T/2
xp(t) = %'J(;/g AT(if)exp.{iZWft}df (A1.10)

are Fourier transforms. This result is useful in deter-
mining the autocorrelation function using the Fast

Fourier Transform technique, as mentioned in Appendix 3.

Spectral Density--The mean square value is given by

<x®(t)> = AIm «x2

Teeoo T(’c)>.

/%_i_‘l[% ,AT(if) ®1ar  (Al.11)

(o]

and the spectral density is defined as

Se(1) = LT [a2(20)] *) (81.12)

Therefore, Syx(f) can also be determined using the Fourier
transform Ap(if).
The spectral density and autocorrelation are inverse

transforms, as given by the Wiener-Khintchine relations

_lC:sz(r)exp.{-ianr}dr : (A1.13)

Sx(T)

Re(7)

]:%sx(f)exp. {ienfr} ar (Al.14)

Cross-Spectral Density--The cross-spectral density between

two random signals is given by
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— lim 2 p*/s s
Sey(f) = 1M 2 AR(1£)By(ar) (A1.15)

where Ap(if) and Bp(if) are the Fourier transforms of the

truncated signals Xp(t) and yp(t), respectively. Also,
Sxy(f) = ny(f) - iQxy(f) (A1.16)
where the co-power spectral density is
Cxy (£) = 3[Sxy(£) + Syx(£)] (A1.17)

and the quad-power spectral density is

Quy (T) = % [Sxy (£) = Syx(f)] (A1.18)
since
Sxy(f) = S§x(f) (A1.19)

In addition, the cross-spectral density may be

written
Sy (£) = ,sxy(f)lexp.;-iexy(f) (A1.20)
where
Syy(f) = [c§§(f) + Qé%(f)]% (A1.21)
is the magnitude, and
Oxy(f) = tan™ %ﬁ%%;% (Al.22)

is the phase.
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Coherence Function--The coherence function is defined as

2 Sy (£)]°
Yy () = SL(?’)Sy(,f)

(A1.23)

where 0 < )’ng

parameter linear system, Y= 1 because of the relationships

(f)< 1. For a single input to a constant

given by eqs. 2.67 and 2.73. If 0<y<1l, either extraneous
noise is present in the measurements, the system is not
linear, and/or y(t) is an output due to other inputs as

well as x(t) (see Figure A3.1(1), page 138).

Frequency Response Function--The complex frequency response

function for a linear system subjected to one input is

given by

Hoy (if) = %YI%)' (R1.24)

with its magnitude given by

E

oy (i) (A1.25)

= (5w

or

o |
lny(if)l =~ 2 (A1.26)

Figure A3.1lm, page 139, is representative of calculations
using eqg. Al.26; however, the results are not valid since
there was more than one input to the beam in Test 3e.

Therefore, eqs. 2.78 or 2.82 would have to be used to get

meaningful results.



Appendix 2
EQUIPMENT LIST

Storage Oscilloscope, Tektronix, Type 564
Spectrum Analyzer Unit, Tektronix, Type 3L5
Time Base Unit, Tektronix, Type 2B67
Storage Oscilloscope, Tektronix, Type 564B
Four Trace Amplifier Unit, Tektronix, Type 3AT4
Time Base Unit, Tektronix, Type 3B4
Oscilloscope Camera, Hewlett Packard, Model 196A
Film, Polaroid ILand, Type 47
FM/Direct Recorder/Reproducer, Ampex, SP-300
6 Instrumentation Grade Magnetic Tapes, Ampex, Type 738-151111
Vacuum Tube Voltmeter, Hewlett Packard, Model 400 DR
DC Null Voltmeter, Hewlett Packard, Model 4190A
Volt-Ohm-Milliammeter, Simpson, Model 260
Random Noise Voltmeter, Bruel & Kjaer, Type 2417
Electronic Counter, Hewiett Packard, Model 523 DR
Regulated DC Power Supply, Kepco, Model CK 36-1.5
2 Variable Band-Pass Filters, Krohn-Hite, Model 310 CR
Variable Band-Pass Filter, Spencer-Kennedy Labs., Model 302
2 Decade Amplifiers, H. H. Scott, Type 140B
Audio Oscillator, M B Electronics, Model N525

Electronic Amplifier and Power Supply, MB Electronics,
Model P 13

2 Power Oscillator/Amplifiers, Ling, Model POA-1
122 :
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Vibration Generators, Goodman, Type V 47/3

Noise Generator/Mixer-Clipper-FEqualizers, Sine Engr.,
Model 1865/CE

Spectral Density Equalizers, Ling, Model ESD-26B

Random Noise Generators, General Radio, Type 1381
Electromagnet

Sound ILevel Meter, General Radio, Type 1551-C

Condenser Microphone System, General Radio, Type 1551-P1H
Sound Level Calibrator, General Radio, Type 1552-B
Loudspeaker, Muter Co., Jenson

Earmuffs, Wilson, Sound Barrier

DC Power Supply, Endevco, Model 2622

Subminiature AC Accelerometer Amplifiers, Endevco, Model 2607
Micro-Miniature Shear Accelerometers, Endevco, Model 2226C
Accelerometers, Endevco, Model 2242

Crystal Phonograph Cartridge, Rystal MR, No. PS-3

Bridge Signal Conditioners, BLH, Model 2530

Direct Coupled Data Amplifiers, DANA, Model 2615-V3
Amplifier Power Supply, DANA, Model 2602

Strain Gage Force Transducers

Strain Gages, Bean, Model BAE-13-031 DD-1208

Strain Gages, Bean, Model BAE-13-031 DD-120L

Strain Gages, Bean, Model BAE-13-250 BB-120

Strain Gages, BLH, Model FAE-03H-12SL 13L

Strain Gage Primary Application Kit, Bean

Various Strain Gage Application Tools, BLH

Contact Cement, Eastman 910

N-N Dimethylformamide, Eastman



Appendix 3
RANDOM DATA ANALYSIS

As described in Chapter 3, the random acceleration,
force, and pressure data from tests on the cantilever beam
and the simply-supported plate were recorded on magnetic tape.
The data were then reproduced on an oscillograph record which
was used for selecting a representative time slice of data for
analysis purposes. The procedures for determining length of
time slice, cut-off frequency, analyzer filter bandwidth, and
standard error are found in [30], and are illustrated in the
following.

If the time interval At between digital sampies of
the continuous analog data is h seconds, then the sampling
rate is 1/h samples per seconds. Assuming at least two samples
per cycle, the useful data will be from O to 1/2h Hz, since
frequencies in the data which are higher than 1/2h Hz will be
folded into the lower frequéncy range from O to 1/2h and

confused with data in this lower range. The cutoff frequency

~

fo = 5= (A3.1)

is known as the Nyquist frequency. For any frequency f in
the range 04 f<£ fos the higher frequencies aliased with f
are 2nf, Tr (n=1, 2, . . .). If significant data exist in

the analog record above the highest frequency of interest, it
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is a good rule to select f, to be approximately two times the
highest frequency of interest. It i1s also a good idea to
filter the data prior to sampling so that information above
the desired cutoff frequency is not present., Both of these
methods were used to overcome the aliasing problem. Since the
maximum frequency of interest was 6006 Hz for the beam and
3000 Hz for the plate, data were filtered above cutoff fre-
quencies of 10,000 and 5,000 Hz, respectively, for the two
structures. |

The number of samples per second, 1/h, for the beam and
plate data was then 20,000 and 10,000, respectively, from
eq. (A3.1). The limit imposed by the Univac 1108 computer for
the total number of digitized samples in the time slice was
32,768. Therefore, the limit was set at 32,000 samples and

the length of time slice, T, was computed from
T = 32,000 h (A3.2)

to be 1.6 seconds for the beam and 3.2 seconds for the plate.
In addition to the above, consideration must be given
to the effect of the analyzer filter bandwidth on the resolu-
tion of narrow-band spectral density resonance peaks. A
reasonable criterion [30] is that the filter bandwidth, B, be

chosen such that

B< #Afpp (A3.3)
where

Afhp = nrfr (A3'4)
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Also, the effects of filter bandwidth and time slice
length on the normalized standard error, ¢ , for the spectral

density estimate must be considered. ¢ may be approximated by

ez-——]—“--r (A3.5)

(BT)®

if bias error may be neglected, i.e., if the data resonance
peaks are properly resolved through use of eq. (A3.3). Since
B was chosen as 24 Hz for the beam and 12 Hz for the plate,

€ = 0,16 for both structures; however, for highly coherent
signals, a much smaller error than this will.actually occur,
i.e., eq. (A3.5) presents an upper bound for e.

The digitized random data were reduced according to
the methods presented in reference [32], using the Fast Fourier
Transform Technique for correlation and spectral density deter-
mination. The quantities determined in the data analysis were
digitized signal, normalized probability density, autocor-
relation, spectral density, and rms spectrum for each signal;
and co-spectral density, quadrature-spectral density, cross-
spectral density magnitude and phase, coherence function, and
transfer function between each pair of signals. Examples of
these quantities are given in Figure A3.1.

In Figures A3.1lb and A3.lc are shown probability den-
sity functions for output acceleration and input force,
respectively. These functlons are approximately Gaussian
and illustrate the fact that a Gaussian input to a linear

system yields a Gaussian output.



127

i

0.35

e o m————
a4
e aand
]
. by
. ma e e crr—
P S,
pepyem 8
e
e
~
e

P

35

-2 AD OACma

~-25

~-35

TIME (SEC)

(a) Digitized Random Acceleration Signal

Fig. A3.1 Examples of Digitally Reduced Data



.. -
()
}
- .
. -
. . . 128
. .
SENNR At2) TEST 3E RUN - * TWE a4t
TIME SLICE .000 TO 1.600 SHC, : RYE VXY
CHI-SOU Wik-  19€ .655= 2.5 PERCENT- 48,4807 5 PERCENY-- a1 €452 2= DHEREFS OF PUEEIXN . .
Nz 3T62  R\N\GH:= -27.14249 TO 25.253%91 Mt AN: T .01 MIUT KM~z T.5T3466 Shbwz - 0paltTy MAT 2, ¢ (€13-7.
CUEFFICIFNT OF VARJATHON:  §96.4872-1 . . ' o -
! ] z 1 q ¢ »
i
[
i
4
[
R
c
E
N
T
A
G o.1
E
/"“//\\
y ‘R
i
0.01 o oty et L__ - - ]
~30 -20 -10 . 0 16 . 20 30
’ INTERVAL ’
PAGE 5.

(b) Normalized Probability Density of Acceleration

Fig. A3.1 (Continued)



MOP=-SZMOT®YD

. .
SENSCR FOA) TEST 3E RUN | ) ) : . ) TA\PE 5301,
TIME SLICE ) .0906 TO 1.¢C0  SEC. .o R 1270219
CHI-SQUKE- 113 a507 _d.‘; PERCFNY - 33.39607 5 PEROMNY-- 41 152 . 2= BEGRYES OF FREEIXOM
Nz 31762 KANGE: -1.53379 TO 1.399327 MEAN: 007297 Ress 2413308 SAP%S - 694036 NRT. = 2.-39400 .
COEFFIGIENT OF VWRIATION:  56.672122 - - . :
4 ¢ t [ ) 2
S N
/ -
7 \\
3
- -1 o ‘:l e - _. T L= 1 e - - . L=
3 - -1.25 -6.13 -0.23 0.25 0.75 1.25
. INTERVAL ’
_PAGE 5.

(c) Normalized Probability Density of Force

Fig. A3.1 (Continued)




C 130
l" 'sr.\su.u ' ’ . Alz.i TESNT 3F ;?l\_l
TiwW sLicE . ’ 000 TQ 1.6063 SECG,
fO%-PASS FILTFR 16620, CPx TWE Sani
. FILTER 8w ¢4.2317 € T 1e Ge 3
SLICF Rus VALY T.3%5
SERYICAH, sCUF Viubks 1C YO IHE £ Tl PR,
1.5
N =3
0.15 “
" 0.5
: 0.25 |u .
o ©0.25 [
S BN
R BRI B : A
I mﬁﬁnﬁﬂhhﬁhﬁﬁﬁhNﬁhﬂﬂnﬁﬁ&jnghﬂphﬂﬁnﬂpé
A R AT EE R R VAN AR KN TR AR R M
L
0 -.9.25 ;1;
X Il
-0.5 jil}
" -0.15
* L
-ltzsn 0.0054 . 6.01 0.015 6.02 0.045 0.03 0.'035 0.04
- TIME (SEC)
° PAGE 6.

(d) Acceleration Autocorrelation

Fig. A3.1 (Continued)

4 e e e e~ - e -

o ————t e o



»
-
. .-
SENSOR FeAY TESE gF KON § -
TiME SLICE b .00 TO V.600  NHC,
WK -PASS FHLYHH [ ERH 2 P~
FILTER & 23.2317  Cbx

SLICE RMs AN (E s
SMERTACA, SCUWF 710 10 60 0t G VW pOeEH

Ay RXIAY]
Ve "z b

1.2¢5
. 1
0.75
0.5
. -
v
T
o 0.25%
C
(4]
R ‘ ' )
k. . Mf\“.! . . . .
e i%'E'W "“lfﬁbf LA e L e Rt Lt o e e e Ad R T
L ;
i
T
|
0 -0.25
TN
-0.5
-0.75 .
-1
-1.25 -
o 0.005 .0.03 0.015 0.0¢ - 0.6245 o 0} G.usS 6.0
' C TIME (SEC)
PACE ¢.
(e) Force Autocorrelation
Fig. A3.1 (Continued)



OMmze»x

(-7 I ]

()

SENSOR A(2) TEST SE RN
TIME SLICE - .000 TO 1.€00  SFC,
LOW-PASS FILTER 10060,  CPx o 11PE 3an17
FILTFR Bw 2¢.2017 CPs - 12:62 €9
SLICE RMS \\MILE 1.5%5
SERTICAL. SCALE TIMES 16 10 THE 0 TH POWFR,
1 T
T
.1
4
i
]
i ]
] *g
.01 i T
= i)
1
I
I~
©.001 4o 1L - dbbeldrns syeeres . xr-t’l?lﬂ- RPN
: 10 100 o 1000
FREOUENCY (HERTZ)
PAGE 7.

(f) Acceleration Spectral Density

Fig. A3.1 (Continued)



(g) Acceleration rms Spectrum

Fig. A3.1 (Continued)

r N :
. .
| SENSOR T AL2) TEST SE RN ) .
TiuE SLICE 60D TO 1.€00 SEC, )
LOW-PASS FILTER 10000, Crs . T Tanyy
FILTFR W Lo2alZnT Cces - - 12°62Tey
SLICE RMS \ALLK 1.57% : -
VERTICAL SCALE TIMES 10 O THE ‘0 TH POWFR,
b }
It
. b
1.6 l
1.4
- i
R
M 1.2
s
A
N
P ]
L
1
T .
u
D .
E 0. ’
0.6 j f %
] !f
0.4 ,nx ﬁ g\
* T
AN
Ny
0.2 2 O
t
) ‘-
4 J ] ]
o . A _
° 1060 2000 3000 4000 5000 6000 7000 - 2000 3¢y HOUGO
: FREQUENCY . (HERTZ2)
PAGE 9.



ZeD-AOomY N0

0.

.15

v -
SENSOR FOA) TEST SE RN M) TEST 4F RN )
TIME SLICE X .009 10 1.630  ~EC, : )
. LOR-PASS FLLIFR 16060, Cr> - . TWE - 3613
« FILTFR Bw 2a 21t Cps - i2:62 ey
SLICF RMS VMULE Lats .
VERTICAL SCVMF TIMEN 10 10 1HE § TH POWER .
,!l
’!F
b
I'
f
g - h
i
4
K ]
. 4{
!
u A ity
» A
X E.
i v
\.A'L - . )
= o lv’f‘\;
1000 2600 3000 - 4000 3000 €u0o 1600 =040 9000 10LU0
FREQUENCY (HERTZ) ’
_ PAGE 25.

(h) Co-Spectral Density Between
Acceleration and Force

Fig. A3.1 (Continued)



- o - 135
SENMSOR T OF(A) TEST SE RULN ) A2 TEST SE RUN
TINE SLICE .000 YO 1.€00  SFC. .
UM-P s FILTER 10000, CP> .. TapE 51017
FILYFR Bw 23.207 CPs . - i 1252 3
SUICH RMS A\ MAF Lala : - ‘

MERTICAH. SCALE TIMES 10 TO THE ¢ TH POWFR,

1.25%

b~

MV WO »c0
o
N
wt
w—t
ot

-VO.ZS I ‘

-0.5%

~0.75

-1.25%
0 . 1000 2000 3600 4000 5000 €000 7000 =000 3CG0 16600
FREQUENCY (HERTZ) ’

PAGE 26.

(i) Quadrature-Spectral Density Between
Acceleration and Force :

Fig., A3.1 (Continued)



M2 2w

Lfem-t0omun

I

SENSOH

TIME SLICE
WUn-pOus Frivte
FILYER B
SLICE RMN VALLE

FOV) TEST 3E BULN

ACZ2) TEST SE BUN

.000 10 t.6u0  MC,

10000, CPs
24.¢17 Cb»
.414

@)

136

TAPH X U1R1
f2 0e-t9

Acceleration and Force

Fig. A3.1 (Continued)

200
!
|
_ ) /1 i)
130 ,_,‘
i 4
|
oo 1 \
| |l
| |
50 -
-
J | WL
| ﬂ W ) | l
L l M :.‘mm-}yf‘ Nt} 1l
L'," \} \ ’\A " j | l?{ T v‘:‘;.’f U:,i a
bl 1] | LT f il
“'V'V{\ T ]’"‘, ".“}
4 (I
i i
-50 7 l
| | ]
i
-100 ['II'IJ ql' ]'r'
- i |i ’i‘b 7]
Y
150
-2000 1600 2000 3000 4000 5000 6000 7000 =000 30CC 10000
FREQUENCY (HERTZ)?
-PAGE 27.°
(J) Phase of Cross-Spectral Density Between



OmMRXZ»IX

WL ORNEO

N

10

A ST W BLN )

SENSOR FOA) TEST <F RUN )

TIME SLICE 0G0 TO 1.600 SEC,
LOR-PASS FILTFR 10000. CP»

FILTER 8w 24.2V)7 CP>

SLICE RM> VAILE AR

MERTICRL SCAME TIuEs 10 TO YHE 3 TH PIMER,

\-\N_
ot

T

1= —— A g gege

10 146

1060

FREQUENCY (HERTZ)

s
TUoo

(k) Magnitude of Cross-Spectral Density Between
. Acceleration and Force

e

Fig. A3.1 (Continued)

137

TAPE - Rty
te°02 €3

PAGE 2¢.



[

MOXTMIMION

SENSOR FOV TFST IFE RN
TIME SLICE . .000 TO

s WOR-PASS FILTER teo00. Cp>

FILTtR 8% 232111 CpP>
SLICE RMS VALLE .414
MVERTICAL SCALE TIMES 10 TO THE 0 TH POWFR,

N2 TEST E RN

1.6C0 SEC,

138

Ty B

4Gy 7

12°02 2

™y

‘M ¥ \:'.,.%f )

g

i

- ——
Y

e ernee”
IR >y

Lap——
et bk s

T,

1
o

2T

“ermtrcr

] 1000 2000 3000

4000

S6co
FREQUENCY (HERTZ)

7000 :

(1) Coherence Between Acceleration and Force

Fig. A3.1 (Continued)

<000

ICu0

PAGE 130.

100C0



ML EED-

30

=0

€0

506

40

30

20

10

139

SENSOR FOAY TEST 1E RUN AL2) TEST GE RN 4
TIME SLICE .000 TO 1.600 SEC.
LOR-PANS FILTER 10CL0.  CPs TWE Samq
FILTFR Bw 24.2517  Cps le t2-69
SLICE RMx VM UE a4
%
y
nl
i
4 l 1]
9 i
i
H
]
HiIN |
{. 'I l \
| ANaK
> l .
| /\ ” :
l \ ]
‘ | AN, 1
: 1 J 11
i AR A i i s
o - H
xxw""wf/ 5 ; V\r." l
\k . . E . AN I]r
- T e Jilip
ﬂ, ’k"w\/ W _/ oA
M | | ]
1660 2600 3000 4660 5450 €030 7600 €050 3600 10006
: FREOUENCY (HMERTZ) :
PACE 31.

(m) Transfer Function Between Acceleration
and Force

Fig. A3.1 (Continued)



140

Autocorrelation functions for the above acceleration
and force are shown in Figures A3.1d and A3.le, pages 130 and
131, respectively. The force autocorrelation exhibits the
characteristics of wide-band random data with high frequency
spectral content, in that the correlation dies out fast. The
acceleration autocorrelation exhibits the characteristics of
narrow-band random data, in that the signal is correlated for
a much longer period of time. Note also that the acceleration
higher frequency contént (approximately 5000 Hz) dies out
faster than the low-frequency content (approximately 900 Hz).
This is because the 900 Hz resonance has a much narrower band-
width than the higher resonance frequency, i.e., this resonance
is more lightly damped, as was shown in Figﬁre L.,2, page 76.
Note also that the essential differences between narrow-band
acceleration and wide-band force were illustrated in the
spectral density plots of Figures 4.2b and U4.l4a, pages 77 and
82. |

Equations and definitions for the quantities are to

be found in Appendix 1.



Appendix U4
SIMPLY-SUPPORTED PLATE TESTS 7b AND 8b

Presented in this appendix are the data from Complex
Excitation Test 7b and Simulation Test 8b for the simply-
supported rectangular plate. These tests were conducted in
the manner of Tests T7a and 8a of Chapter 3, except that in
Test 7b the shaker was attached to the plate. Although not
excited electrically, the shaker did provide a large narrow-
band force input, as shown in Fig. A4.5, by virtue of its

connection to the plate and the shaker support structure.
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Appendix 5
CANTILEVER BEAM TESTS 3a, 4a, 3b AND 4b

Presented 1n this appendix are the data from Complex
Excitation Tests 3a and 3b and their respective Simulation
Tests Ua and Ub for the cantilever beam. These tests were
conducted in the manner of Tests 3d, 4d, 3e, and Le of
Chapter 3, except that the shakers were mounted on a 3/8-
inch steel shaker support structure, as shown in Fig. 3.2a,
page 34. This shaker support was found to respond signifi-
cantly to excitation in the 2400-2700 Hz range when both
shakers were attached to the beam. This tended to affect
beam response in the vicinity of the third resonance, as
shown in the following figures. The spectrum shaping filters
had bandwidths which were too wide to simulate the response
of this resonance. Therefore, the support structure of l-inch
steel was constructed for use in the tests reported in

Chapters 3 and L.
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