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Network Formation Games Among Relay Stations
in Next Generation Wireless Networks

Walid Saad, Zhu Han, Tamer Başar, Mérouane Debbah, and AreHjørungnes

Abstract—The introduction of relay station (RS) nodes is a key
feature in next generation wireless networks such as 3GPP’slong
term evolution advanced (LTE-Advanced), or the forthcoming
IEEE 802.16j WiMAX standard. This paper presents, using game
theory, a novel approach for the formation of the tree architecture
that connects the RSs and their serving base station in theuplink
of the next generation wireless multi-hop systems. Unlike existing
literature which mainly focused on performance analysis, we
propose a distributed algorithm for studying the structure and
dynamics of the network. We formulate a network formation
game among the RSs whereby each RS aims to maximize a cross-
layer utility function that takes into account the benefit from
cooperative transmission, in terms of reduced bit error rate, and
the costs in terms of the delay due to multi-hop transmission.
For forming the tree structure, a distributed myopic algori thm is
devised. Using the proposed algorithm, each RS can individually
select the path that connects it to the BS through other RSs while
optimizing its utility. We show the convergence of the algorithm
into a Nash tree network, and we study how the RSs can adapt the
network’s topology to environmental changes such as mobility or
the deployment of new mobile stations. Simulation results show
that the proposed algorithm presents significant gains in terms of
average utility per mobile station which is at least17.1% better
relatively to the case with no RSs and reaches up to40.3%
improvement compared to a nearest neighbor algorithm (for a
network with 10 RSs). The results also show that the average
number of hops does not exceed3 even for a network with up
to 25 RSs.

I. I NTRODUCTION
Cooperation has recently emerged as a novel network-

ing paradigm that can improve the performance of wireless
communication networks at different levels. For instance,in
order to mitigate the fading effects of the wireless channel,
several nodes or relays can cooperate with a given source
node in the transmission of its data to a far away destination,
thereby, providing spatial diversity gains for the source node
without the burden of having several antennas physically
present on the node. This class of cooperation is commonly
referred to as cooperative communications [1]. It has been
demonstrated that by deploying one or multiple relays [1]–[3]
a significant performance improvement can be witnessed in
terms of throughput, bit error rate, capacity, or other metrics.
In this regard, existing literature studied various aspects of
cooperative transmission such as resource allocation [4],or
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link-level performance assessment [1]–[3]. Consequently, due
to this performance gain that cooperative communications
can yield in a wireless network, recently, the incorporation
of relaying into next generation wireless networks has been
proposed. In this context, the deployment of relay station (RS)
nodes, dedicated for cooperative communications, is a key
challenge in next generation networks such as 3GPP’s long
term evolution advanced (LTE-Advanced) [5] or the forthcom-
ing IEEE 802.16j WiMAX standard [6].

For an efficient deployment of RSs in next generation net-
works, several key technical challenges need to be addressed
at both the uplink and downlink levels. For the downlink
of 802.16j networks, in [7], the authors study the optimal
placement of one RS which maximizes the total rate of
transmission. In [8], the authors study the capacity gains
and the resource utilization in a multi-hop LTE network in
the presence of RSs. Further, the performance of different
relaying strategies in an LTE-Advanced network is studied in
[9]. In [10], the use of dual relaying is studied in the context
of 802.16j networks with multiple RSs. Resource allocation
and network planning techniques for 802.16j networks in the
presence of RSs are proposed in [11]. Furthermore, the authors
in [12] study the possibility of coverage extension in an LTE-
Advanced system, through the use of relaying. In [13], the
communication possibilities between the RSs and the base
station is studied and a need-basis algorithm for associating
the RSs to their serving BS is proposed for LTE-Advanced
networks. The possibilities for handover in an LTE network in
the presence of RSs are analyzed in [14]. Other aspects of RS
deployment in next generation networks are also considered
in [15]–[19].

Although the performance assessment and operational as-
pects of RS deployment in next generation multi-hop networks
such as LTE-Advanced or 802.16j has been thoroughly stud-
ied, one challenging area which remains relatively unexplored
is the formation of the tree architecture connecting the BS
to the RSs in its coverage area. One contribution toward
tackling this problem in 802.16j networks has been made in
[17] through a centralized approach. However, the work in [17]
does not provide a clear algorithm for the tree formation nor
does it consider cooperative transmission or multi-hop delay.
In addition, a centralized approach can yield some significant
overhead and complexity, namely in networks with a rapidly
changing environment due to RS mobility or incoming traffic
load. In our previous work [18], [19], we proposed game the-
oretical approaches to tackle the formation of a tree structure
in an 802.16j network. However, the model in [18] does not
account for the costs in terms of the delay incurred by multi-
hop transmission while [19] is limited to delay tolerant VoIP
networks and does not account for the effective throughput
of the nodes. In order to take into account both the effective
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throughput and the delays in the network due to the traffic
flow (queueing and transmission delay) for generic services,
new models and algorithms, inherently different from [18],
[19], are required.

The main contribution of this paper is to study the dis-
tributed formation of the network architecture connectingthe
RSs to their serving base station in next generation wireless
systems such as LTE-Advanced or WiMAX 802.16j. Another
key contribution is to propose a cross-layer utility function that
captures the gains from cooperative transmission, in termsof
a reduced bit error rate and improved effective throughput,
as well as the costs incurred by multi-hop transmission in
terms of delay. For this purpose, we formulate a network
formation game among the RSs in next generation networks,
and we build a myopic algorithm in which each RS selects
the strategy that maximizes its utility. We show that, through
the proposed algorithm, the RSs are able to self-organize
into a Nash network tree structure rooted at the serving base
station. Moreover, we demonstrate how, by periodic runs of the
algorithm, the RSs can take autonomous decisions to adapt the
network structure to environmental changes such as incoming
traffic due to new mobile stations being deployed as well as
mobility. Through simulations, we show that the proposed
algorithm leads to a performance gain, in terms of average
utility per mobile station, of at least21.5% compared to the
case with no RSs and up to45.6% compared to a nearest
neighbor algorithm.

The rest of this paper is organized as follows: Section??
presents the system model and the game formulation. In
Section III, we introduce the cross-layer utility model and
present the proposed network formation algorithm. Simulation
results are presented and analyzed in Section IV. Finally,
conclusions are drawn in Section V.

II. SYSTEM MODEL AND GAME FORMULATION
Consider a network ofM RSs that can be either fixed,

mobile, or nomadic. The RSs transmit their data in the uplink
to a central base station (BS) through multi-hop links, and,
therefore, a tree architecture needs to form, in the uplink,
between the RSs and their serving BS. Once the uplink
network structure forms, mobile stations (MSs) can hook to
the network by selecting a serving RS or directly connecting
to the BS. In this context, we consider that the MSs deposit
their data packets to the serving RSs using direct transmission.
Subsequently, the RSs in the network that received the data
from the external MSs, can act as source nodes transmitting the
received MS packets to the BS through one or more hops in the
formed tree, using cooperative transmission. The considered
direct transmission between an MS and its serving RS enables
us to consider a tree formation algorithm that can be easily
incorporated in a new or existing wireless networks without
the need of coordination with external entities such as the MSs.

To perform cooperative transmission between the RSs and
the BS, we consider a decoded relaying multi-hop diversity
channel, such as the one in [3]. In this relaying scheme,
each intermediate node on the path between a transmitting RS
and the BS combines, encodes, and re-encodes the received
signal from all preceding terminals before relaying (decode-
and-forward). Formally, every MSk in the network constitutes

Fig. 1. A prototype of the uplink tree model.

a source of data traffic which follows a Poisson distribution
with an average arrival rateλk. With such Poisson streams at
the entry points of the network (the MSs), for every RS, the
incoming packets are stored and transmitted in a first-in first-
out (FIFO) fashion and we consider that we have the Kleinrock
independence approximation [20, Chap. 3] with each RS being
an M/D/1 queueing system1. With this approximation, the
total traffic that an RSi receives from the MSs that it is
serving is a Poisson process with an average total arrival rate
of Λi =

∑

l∈Li
λl whereLi is the set of MSs served by an

RS i of cardinality |Li| = Li. Moreover, RSi also receives
packets from RSs that are connected to it with a total average
rate∆i. For these∆i packets (received from other RSs), the
sole role of RSi is to relay them to the next hop. In addition,
any RS i that has no assigned MSs and no connected RSs
(Li = ∅, Λi = 0, and∆i = 0), transmits “HELLO” packets,
generated with a Poisson arrival rate ofη0 in order to maintain
its link to the BS active during periods of no actual traffic in
the network. An illustrative example of this model is shown
in Fig. 1.

Given this network, the main objective is to provide a
formulation that can adequately model the interactions be-
tween the RSs that seek to form the uplink multi-hop tree
architecture. For this purpose, we refer to the analytical
framework of network formation games [21]–[24]. Network
formation games constitute a subclass of problems which
involve a number of independent decisions makers (players)
that interact in order to form a suited graph that connects them.
The final network graphG that results from a given network
formation game is highly dependent on the goals, objectives,
and incentives of every player in the game. Consequently,
we model the proposed uplink tree formation problem as a
network formation game among the RSs where the result of
the interactions among the RSs is adirected graphG(V , E)
with V = {1, . . . ,M + 1} denoting the set of all vertices
(M RSs and the BS) that will be present in the graph andE
denoting the set of all edges (links) that connect differentpairs
of RSs. Each directed link between two RSsi andj, denoted
(i, j) ∈ E , corresponds to an uplink traffic flow from RSi to

1Any other queueing model, e.g., M/M/1, can also be accommodated.
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RS j. We define the following notion of a path:
Definition 1: Given any network graphG(V , E), a path

between two nodesi ∈ V andj ∈ V is defined as a sequence
of nodesi1, . . . , iK (in V) such thati1 = i, iK = j and each
directed link(ik, ik+1) ∈ G for eachk ∈ {1, . . . ,K − 1}.

In this paper, we consider solely multi-hop tree (or forest,if
some parts of the graph are disconnected) architectures, since
such architectures are ubiquitous in next generation networks
[6], [8], [9]. In this regard, throughout the paper we adopt the
following convention:

Convention 1: Each RSi is connected to the BS through
at mostonepath, and, thus, we denote byqi the path between
any RSi and the BS whenever this path exists.

Finally, we delineate the possible actions or strategies that
each RS can take in the proposed network formation game. In
this regard, for each RSi, the action space consists of the RSs
(or the BS) that RSi wants to use as its next hop. Therefore,
the strategy of an RSi is to select the link that it wants to
form from its available action space. We note that, an RSi
cannot connect to an RSj which is already connected toi,
in the sense that if(j, i) ∈ G, then (i, j) /∈ G. Hence, for a
given graphG that governs the current network architecture,
we let Ai = {j ∈ V \ {i}|(j, i) ∈ G} denote the set of RSs
from which RSi accepted a link(j, i), andSi = {(i, j)|j ∈
V \ ({i}

⋃

Ai)} denote the set of links corresponding to the
nodes (RSs or the BS) with which RSi wants to connect
(note thati cannot connect to RSs that are already connected
to it, i.e., RSs inAi). Accordingly, the strategy of an RSi is
to select the linksi ∈ Si that it wants to form, i.e., choose
the RS that it will connect to. Based on Convention 1, an RS
can be connected to at mostone other node in our game so
selecting to form a linksi implicitly implies that RSi will
replace its previously connected link (if any) with the new
link si. Further, to each selectionsi by an RSi corresponds
a pathqi to the BS (if si = ∅, then the RS chooses to be
disconnected from the network).

III. N ETWORK FORMATION GAME : UTILITY FUNCTION

AND ALGORITHM

A. Cross-layer Utility Function

Our next step is to define a utility function that can capture
the incentives of the RSs to connect to each others. For
this, we propose a cross-layer utility function that takes into
account the performance measures in terms of the packet
success rate (PSR) as well as the delay induced by multi-
hop transmission. Hence, considering any tree network graph
G, each RS in the network will be given a positive utility
for every packet that is transmitted/relayed successfullyto the
BS out of all the packets that this RS has received from
the external MSs. In this regard, every packet transmitted
by any RS is subject to a bit error rate (BER) due to the
communication over the wireless channel using one or more
hops. For any data transmission between an RSV1 ∈ V to
the BS, denoted byVn+1, going throughn − 1 intermediate
RSs {V2, . . . , Vn} ⊂ V , let Nr be the set of all receiving
terminals, i.e.,Nr = {V2 . . . Vn+1} and Nr(i) be the set of
terminals that transmit a signal received by a nodeVi. Hence,
for an RSVi on the path from the sourceV1 to the destination

Vn+1, we haveNr(i) = {V1, . . . , Vi−1}. Therefore, given this
notation, the BER achieved at the BSVn+1 between a source
RS V1 ∈ V that is sending its data to the BS along a path
qV1 = {V1, . . . , Vn+1} can be calculated through the tight
upper bound given in [3, Eq. (10)] for the decoded relaying
multi-hop diversity channel with Rayleigh fading and BPSK
modulation2 as follows

P e
qV1

≤
∑

Ni∈Nr

1

2









∑

Nk∈Nr(i)









∏

Nj∈Nr(i)
Nj 6=Nk

γk,i
γk,i − γj,i

×

(

1−

√

γk,i
γk,i + 1

)])

. (1)

Here, γi,j =
Pi·hi,j

σ2 is the average received SNR at nodej
from nodei wherePi is the transmit power of nodei, σ2

the noise variance andhi,j = 1
d
µ
i,j

is the path loss withdi,j
the distance betweeni and j and µ the path loss exponent.
Finally, for RSi which is connected to the BS through adirect
transmissionpathqdi with no intermediate hops, the BER can

be given byP e
qdi

= 1
2

(

1−
√

γi,BS

1+γi,BS

)

[2], [3]; where γi,BS

is the average received SNR at the BS from RSi. Using the
BER expression in (1) and by having no channel coding, the
PSRρi,qi perceived by an RSi over any pathqi is defined as
follows

ρi,qi(G) = (1− P e
qi
)B , (2)

where B is the number of bits per packet. The PSR is
a function of the network graphG as the pathqi varies
depending on how RSi is connected to the BS in the formed
network tree structure.

Communication over multi-hop wireless links yields a
significant delay due to multi-hop transmission as well as
buffering. Therefore, we letτi,qi denote the average delay over
the pathqi = {i1, . . . , ik} from an RSi1 = i to the BS.
Finding the exact average delay over a path of consecutive
queues is a challenging problem in queueing systems [20].
One possible approach for measuring the average delay along
a pathqi in a network with Poisson arrivals at the entry points
is to consider the Kleinrock approximation as mentioned in
the previous section. In this context, the average delay over
any pathqi can be given by [20, Chap. 3, Eqs. (3.42), (3.45),
and (3.93)]

τi,qi(G)=
∑

(ik ,ik+1)∈qi

(

Ψik,ik+1

2µik,ik+1
(µik,ik+1

−Ψik,ik+1
)
+

1

µik,ik+1

)

.

(3)
whereΨik,ik+1

= Λik + ∆ik is the total traffic (packets/s)
traversing link(ik, ik+1) ∈ qi between RSik and RSik+1

and originating from theLik MSs in the setLik of MSs
connected to RSik (Λik =

∑

i∈Lik

λi) and from all RSs that

are connected toik (∆ik =
∑

j∈Aik
Λj). The ratio 1

µik,ik+1

represents the average transmission time (service time) onlink
(ik, ik+1) ∈ qi with µik,ik+1

being the service rate on link

2The approach in this paper is not restricted to this channel and BPSK
signal constellation since the algorithm proposed in the following section can
be tailored to accommodate other types of relay channels as well as other
modulation techniques.
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(ik, ik+1). This service rate is given byµik,ik+1
=

Cik,ik+1

B

with Cik,ik+1
= W log (1 + νik,ik+1

) the capacity of the direct
transmission between RSik and RSik+1, whereνik,ik+1

=
Pik

hik,ik+1

σ2 is the received SNR from RSik at RSik+1, and
W is the bandwidth available for RSik which is assumed
the same for all RSs in the set of verticesV , without loss of
generality. Similar to the PSR, the delay depends on the paths
from the RSs to the BS, and, hence, it is a function of the
network graphG.

A suitable criterion for characterizing the utility in networks
where the users’ quality of service is sensitive to throughput
as well as to delay is the concept ofsystem power. In this
context, power is defined as the ratio of some power of
the throughput and the delay [25]. Hence, the concept of
power is an attractive notion that allows one to capture the
fundamental tradeoff between throughput and delay in the
proposed network formation game. In fact, the concept of
power has been used thoroughly in the literature to model
applications where there exists a tradeoff between throughput
and delay [26]–[29]. Consequently, given the delay and the
PSR, we define the utility of an RSi with Li connected MSs,
as the power achieved byi which is given by

ui(G) =



















(Λi · ρi,qi(G))
βi

τi,qi(G)(1−βi)
, if Li > 0,

(η0 · ρi,qi(G))βi

τi,qi (G)(1−βi)
, if Li = 0,

(4)

whereτi,qi (G) is the delay given by (3),Λi·ρi,qi(G) represents
the effective throughput of RSi andβi ∈ (0, 1) is a tradeoff
parameter. The utility in (4) can model a general class of
services, with each class of service having a differentβi which
can be chosen individually by the RS. Asβi increases, the
service becomes more delay tolerant and more throughput
demanding. For an RSi, the parameterβi can depend on
the requirements of its served MSs. For example, if each MS
connected to RSi requests a different value forβi, the RS
can select theβi to be equal to the value requested by the MS
that is most delay sensitive, i.e., the smallest value requested
from all connected MSs. As an alternative, the RS can select
a value ofβi that is averaged over all the values requested
from the MSs. Note that, unless stated otherwise, throughout
the rest of the paper the term “power” will refer to the ratio
of throughput to delay and not to the transmit power of the
RSs or MSs unless clearly stated as “transmit power”.

Once the RSs form the tree topology, one needs to assess
the performance of the MSs in terms of the power achieved
by these MSs (considered as MS utility). In order to compute
the utility of the MSs, the PSR as well as the delay over the
whole transmission from MS to BS must be taken into account.
Hence, given the proposed network model in Section??, for
each MSi ∈ Lj served by an RSj, the PSR is given by

ζi,j(G) = ρi,(i,j) · ρj,qj (G), (5)

whereρi,(i,j) is the PSR on the direct transmission between
MS i and RSj (which does not depend on the existing network
graphG between the RSs) andρj,qj (G) is the PSR from RS
j to the BS along pathqj given by (2) (the pathqj can be

either a multi-hop path or a direct transmission depending on
how RSj is connected in the graphG that governs the RSs’
network). Furthermore, for any MSi ∈ Lj connected to an
RS j, the delay for transmitting the data to the BS is given
by (3) by taking into account, in addition to the delay on the
RS’s pathqj , the data traffic on the link(i, j) between the
MS and the RS, i.e., the buffering and transmission delay at
the MS level. Having the PSR given by (5) and the delay, the
utility of a MS i connected to RSj is given by

vi(G) =
(λi · ζi,j(G))

βi

τi,qj (G)(1−βi)
. (6)

Note that, the MS and RS utilities in (4) and (6) are selected
to represent the node’s power which is a metric that links the
effective throughput to the delay. For the RSs, the power in
(6) is a function of the of the metrics needed for evaluating
the MSs’ power since it depends on the MSs traffic and their
route to destination (with the RS as origin). The MSs power
in (6) is, in fact, their QoS metric of interest which depends
on the direct MS-RS link in addition to the subsequent path
from the RS to the BS (which is completely captured by (4)).
The parameterβi in (6) is service-dependent and represents
how delay tolerant the service used by a certain MSi is.

Consequently, in this paper (unless stated otherwise) we
consider that whenever an MS enters the network, it will
connect to the RS which maximizes its utility in (6) given
the current network topologyG. This MS assignment is
considered fixed as long as the RSs’ network does not change,
otherwise, the MSs can re-assess their utilities and changetheir
assignment once to adapt to the changes in the RSs’ network.

Thus, throughout this paper, we mainly deal with the
network formation game among the RSs while considering that
the MS assignment is fixed once the MS enters the network.
The MSs are, as previously mentioned, considered as external
sources of traffic. The main advantages behind devising a
network formation scheme that relies mainly on the RSs are
as follows:

1) The RSs are typically nodes (fixed, mobile, or nomadic)
that are owned by the network operator and that will
always be present in the network (except in cases of
failures for example). In contrast, the MSs will typically
connect to the network for a limited amount of time and,
then, leave the network once their connection ends. For
this purpose, devising a network formation algorithm
among the RSs has the advantage that it does not rely
on external entities such as the MSs which can be
entering and exiting the network at random points in
time and whose presence in the network can be brief.
Further, an RS-only network formation algorithm, can
be incorporated in both existing and newly deployed
networks.

2) Although the studied network formation game is be-
tween the RSs, as will be seen in Section IV, a sig-
nificant performance improvement will be witnessed in
terms of MS utility as per (6). This is due to the fact
that, even though network formation is considered only
between the RSs, the utilities defined by the RSs in (4)
take into the key factors impacting the communication
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path of each MS (e.g., the traffic of the MS and its
overall path to destination, i.e., to the BS), except the
direct link from MS to RS which is accounted for in
the utility of the MS in (6). This design improves the
performance of the MSs while the MSs do not need
to worry about having any knowledge of the network
topology or the structure of the tree. The MSs need
only to communicate, via a control/feedback channel
with the RSs, to select their serving RS based on (6).
For example, the MS utility in (6) can be computed by
the RSs on behalf of any MS requesting a connection
and then, it is fed back over the control channel. This
scheme for assigning MSs to their serving access point,
i.e., RSs in this paper, is a standard and well-known
method which is already used and deployed in current
networks (e.g., cellular or broadband networks) [4]. In
consequence, utilizing an RS-only network formation
game provides a performance gain to the MSs and does
not require additional changes to the standard operation
of these MSs.

3) The MSs can consist of a heterogenous range of devices
with different capabilities ranging from small mobile
devices to PDAs, laptops, or smartphones. As a result,
involving the MSs in network formation would require
programming a broad range of devices to act strategi-
cally while making network formation decisions. This
process can be quite complex in practice. In contrast,
the RSs are, in general, standardized nodes (e.g. IEEE
802.16j or LTE-advanced) and, thus, allowing them to
play a network formation game is more reasonable than
in the case where the MSs are also involved in the game.
One must also remark that the RSs will generally have
better processing capabilities than the MSs.

4) The model proposed in this paper studies a network
formation game between a network of RSs with an
external incoming traffic which typically comes from
MSs. Nonetheless, this external traffic can also come
from content providers or servers that need to select an
RS to connect to (through a wired or optical network).
Hence, one advantage of the proposed model is that it is
general enough to accommodate networks with any type
of external traffic whether it comes from MSs, content
providers, or other sources.

In summary, by designing an RS-based network formation
algorithm we are able to extract interesting performance gains,
for the MSs, while requiring little interactions or decision
making from the MSs which are often devices with limited
capabilities that connect to the network for a relatively short
period. Nonetheless, for future work, the model consideredin
this paper can be extended to jointly considers the strategies
of the RSs and the MSs. In particular, when considering both
the MSs and RSs as players in a network formation game, we
can define an interesting and novel multi-leader multi-follower
Stackelberg game for network formation. In this game, the
MSs are considered as leaders, i.e., players who can announce
their strategies before the other players, known as followers,
i.e., the RSs, make their strategy choices. Although the current

paper can constitute a key building block for such a multi-
leader multi-follower game, this extended model is out of the
scope of this paper and will be the subject of future work.

B. Network Formation Algorithm
Given the devised utility functions in the previous subsec-

tion, the next step in the proposed RSs’ network formation
game is to find an algorithm that can model the interactions
among the RSs that seek to form the network tree structure.
First, we show that, for any network formation algorithm,
the resulting graph in the proposed game is a connected tree
structure as follows:

Property 1: The network graph resulting from any network
formation algorithm for the proposed RSs game is aconnected
directed tree structure rooted at the BS.

Proof: Consider an RSs network graphG whereby an RS
i is disconnected from the BS, i.e., no path of transmission
(direct or multi-hop) exists betweeni and the BS. In this
case, one can see that, the delay for all the packets at the
disconnected RSi is infinite, i.e., τi,qi (G) = ∞, and, thus,
the corresponding power is0 as per the utility function in (4).
As a result, there is no incentive for any RS in the network
to disconnect from the BS since such a disconnection will
drastically decrease its utility. Hence, any network graphG
formed using the proposed RSs network formation game is a
connected graph and due to Convention 1, this graph is a tree
rooted at the BS.

A direct result of this property is that, if any RS is unable to
connect to another suitable RSs for forming a link, this RS will
connect to the BS using direct transmission. In this regards,
we consider that the initial starting point for our network
formation game is a star topology whereby all the RSs are
connected directly to the BS, prior to interacting for further
network formation decisions.

Whenever an RSi plays a strategysi ∈ Si while all the
remaining RSs maintain a vector of strategiess−i, we let
Gsi,s−i

denote the resulting network graph. By inspecting the
RS utility in (4), one can clearly notice that, whenever an RS
j accepts a link, due to the increased traffic that it receives,its
utility may decrease as the delay increases. Although each RS
i ∈ N can play any strategy from its strategy spaceSi, there
might exist some linksi = (i, j) ∈ Si where the receiving RS,
i.e., RSj, does not accept the formation ofsi, if this leads
to a significant decrease in its utility. In this regard, denoting
by G+ si as the graphG modified when an RSi deletes its
current link inG and adds the linksi = (i, j), we define the
concept of afeasiblestrategy as follows:

Definition 2: A strategysi ∈ Si, i.e., a linksi = (i, j), is
a feasible strategyfor an RSi ∈ V if and only if uj(Gsi,s−i

+
si) ≥ uj(Gsi,s−i

)− ǫ whereǫ is a small positive number. For
any RSi ∈ V , the set of all feasible strategies is denoted by
Ŝi ⊆ Si.

A feasible strategy for an RSi is, thus, a linksi = (i, j)
which the receiving RSj is willing to form with RSi. Hence,
given a network graphG, a feasible strategy for any RSi ∈ V
is to form a link with an RS among all the RSs that are willing
to accepta connection from RSi (and notall RSs), i.e., a
feasible path, which maximizes its utility. On the other hand,
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any RS j ∈ V is willing to accept a connection from any
other RSi ∈ V as long as the formation of the link(i, j)
does not decrease the utility ofj by more thanǫ. The main
motivation for havingǫ > 0 (sufficiently small) is that, in
many cases, e.g., when the network has only HELLO packets
circulating (no MS traffic), RSj might be willing to accept the
formation of a link which can slightly decrease its utility at a
given moment, but, as more traffic is generated in the network,
this link can entail potential future benefits for RSj stemming
from an increased effective throughput (recall that the utility
in (4) captures the tradeoff between effective throughput and
delay).

For any RSi ∈ V , given the set of feasible strategieŝSi,
we define thebest responsefor RS i as follows [23].

Definition 3: A strategys∗i ∈ Ŝi is a best responsefor an
RS i ∈ V if ui(Gs∗

i
,s−i

) ≥ ui(Gsi,s−i
), ∀si ∈ Ŝi. Thus,

the best response for RSi is to select thefeasible link that
maximizes its utility given that the other RSs maintain their
vector of feasible strategiess−i.

Subsequently, given the various properties of the RS net-
work formation game, we devise a network formation algo-
rithm based on the feasible best responses of the RSs. For
this purpose, first, we consider that the RSs are myopic, such
that each RS aims at improving its utility given only the
current state of the network without taking into account the
future evolution of the network. Developing an optimal myopic
network formation algorithm is highly complex since there
exists no formal rules for network formation in the literature
[21]. For instance, depending on the model, utilities, and
incentives of the players, different network formation rules can
be applied. In fact, the topic of network formation is currently
hot in game theory and under a lot of research ( [21]–[23] and
references therein). The challenging aspect of this problem
stems from the fact that one deals with discrete strategy
sets (i.e., forming links) and with the formation of network
graphs. Further, when dealing with practical utility functions
such as (4), the problem becomes more challenging. In this
context, the game theoretical literature on network formation
games studies various myopic algorithms for different game
models with directed and undirected graphs [21]–[23]. For the
network formation game among the RSs, we build a myopic
algorithm for network formation inspired from those applied
in economics problem (e.g., in [21] and [23]), but modified to
accommodate the specifics of the model studied in this paper.
In this regard, we define an algorithm where each round is
mainly composed of two phases: a myopic network formation
phase and a multi-hop transmission phase.

During myopic network formation, the RSs engage in
pairwise interactions, sequentially, in order to make their
network formation decisions. In this phase, we consider that
the RSs make their decisions sequentially in a random order.
In practice, this order can be decided by which RS requests
first to form its link. Thus, in the myopic network formation
phase, each RSi can select a certain feasible strategy which
allows it to improve its payoff. Aniterationconsists of a single
sequence of plays during which allM RSs have made their
strategy choice to myopically react to the choices of the other
RSs. The myopic network formation phase can consist of one

or more iterations. In every iterationt, during its turn, each
RS i chooses to play its best responses∗i ∈ Ŝi in order to
maximize its utility at each round given the current network
graph resulting from the strategies of the other RSs. The
feasible best response of each RS can be seen as areplace
operation, whereby the RS will replace its current link to the
BS with another link that maximizes its utility (if such a link is
available). Hence, the proposed network formation algorithm
is based on the iterative feasible best responses of the RSs.

When it converges, such an algorithm is guaranteed to reach
a network where no RS can improve its utility by changing its
current link, i.e., a Nash network, defined as follows for the
studied game [23]:

Definition 4: A network graphG(V , E) in which no RSi
can improve its utility by a unilateral change in its feasible
strategysi ∈ Ŝi is a Nash networkin the feasible strategy
spaceŜi, ∀i ∈ V .

A Nash network is simply the concept of a Nash equilibrium
applied to a network formation game. In the proposed game,
a Nash network would, thus, be a network where no RS can
improve its utility, by unilaterally changing its current link,
given the current strategies of all other RSs.

Having an analytical proof for the convergence of the
network formation phase of the algorithm, when dealing with
practical utilities and discrete network formation strategies
is difficult [21], [30]. In fact, in wireless applications, even
in classical problems such as power control or peer-to-peer
incentives (e.g., see [4], [31]–[33]), it is common to propose
best-response algorithms even though no analytical proof is
found for them, since such algorithms can, in most cases,
converge to a Nash equilibrium (or Nash network in the case
of network formation).

The iterative best response algorithm we propose in this
paper can, thus, either converge to a Nash network or cycle be-
tween a number of networks, in the case of non-convergence.
In order to avoid such undesirable cycles, one can introduce
additional constraints on the strategies of the RSs such as
allowing the RSs to select their feasible best response, not
only based on the current network, but also on the history of
moves or strategies taken by the other RSs, e.g., in repeated
games, this is used to ensure reaching an equilibrium where
cooperation is enforced [30]. Another example is in coalition
formation algorithms where, to ensure convergence to a stable
point, one can allow the players to experiment, i.e., to select,
based on a given history, a coalition that is not the best
for them so as to deviate from a cycling behavior [34].
Alternatively, in the non-convergence case, the RSs may be
instructed by the network operator to find a mixed-strategy
Nash network which is guaranteed to exist [30].

Motivated by such approaches, in the network formation
phase of the proposed algorithm, we allow the RSs to ob-
serve the visited networks during the occurrence of network
formation. In consequence, whenever an RS, based on its
history observation, suspects that a cycling behavior is bound
to occur, it can deviate from its feasible best response strategy
by selecting, instead, the best response that yields a network
which wasnot previously visited(at the end of past iterations)
more than a certain number of times. Formally, we define a
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history functionht(Gi
t) which represents, for every network

Gi
t reached at an iterationt during the turn of an RSi, the

number of times this graph was visited at the end of iterations
1 to t− 1. Further, we define a threshold̺(positive integer)
for ht(Gi

t) above which an RSi is no longer interested in
visiting this network, since visiting this network may leadto
a cyclic behavior. Note that, the history function is assumed to
be a common knowledge which the RSs can acquire with little
complexity (each RS can be made aware of the graph reached
at the end of any iterationt by the BS or neighboring RSs).
Thus, at any iterationt, if an RS finds out that, by choosing its
feasible best responses∗i , it will yield a networkGi

t+s∗i such
thatht(Gi

t+s∗i ) > ̺, then, this RS will experiment alternative
actions by choosing another feasible strategysi ∈ Ŝi which
improves its utility and does not lead to a networkGi

t+si with
ht(Gi

t+si) > ̺. Note that, an RS will always try to use its best
response first, without reliance on history and it will only use
history once and if needed. A critical valuê̺ for the threshold
̺ is set by the operator so as to control the behavior of the
network formation process. This critical value is used by the
RSs, only if ˆ̺≤ ̺ In essence, if, during the turn of an RSi at
an iterationt there exists a network̂Gi

t that has been visited
more than ˆ̺ (but less than̺ times), i.e.,ht(Ĝi

t) > ˆ̺, then
the RSs are instructed to seek a mixed-strategy Nash network.
The mixed-strategy Nash network is a stable network graph
G in which each RS can use a number of links, with different
probabilities, for transmitting its data. This is related to the
concept of a mixed-strategy Nash equilibrium [30]. The main
advantage of seeking a mixed-strategy Nash network is the fact
that this networkalways existsindependent of the RSs/MSs
locations, the circulating traffic, or wireless channel [30]. In
this case, for finding the mixed-strategy Nash network, the RSs
can use well-known algorithms from the theory of learning in
games such asfictitious playor evolutionary approaches [35].

By using these schemes along with iterative best response,
multiple iterations will be run until convergence which is
guaranteed by the following theorem:

Theorem 1: Given any initial network graphG0, the my-
opic network formation phase of the proposed algorithm
converges to a final network graphGT afterT iterations.

Proof: Every iterationt of the myopic network formation
phase of the proposed algorithm can be seen as a sequence
of feasible best responses played by the RSs. In this regard,
denoting byGt the graph reached at theend of any iteration
t, the myopic network formation phase consists of a sequence
such as the following (as an example)

G0 → G1 → G2 → · · · → Gt → · · · (7)

First consider the case in which during the turn of an RSi at
any iterationt there doesnot exist any networkĜi

t that has
been visited more than̺̂, i.e.,ht(Ĝi

t) ≤ ˆ̺ for any Ĝi
t. In this

case, at any iterationt, denote byGi
t as the network reached

at the turn of an RSi. At this iteration, RSi attempts to either
select its feasible best responses∗i ∈ Ŝi if h(Gi

t + s∗i ) ≤ ̺,
or, otherwise, it selects a feasible strategysi ∈ Ŝ, si 6= s∗i ,
which improves its utility and yields a networkGi

t + si such
that h(Gi

t + si) ≤ ̺. This process continues until finding an
iteration where no RS can find any strategy to play (i.e., no

utility improvement is possible for any RSi using a feasible
strategy that does not yield a network which has been visited
more than̺ times). Reaching such an iteration is guaranteed
by the fact that the number of spanning trees for any graph is
finite. As a result, the sequence in (7) will always converge to
a final graphGT after T iterations, irrespective of the initial
graphG0.

Further, in the case where, during the turn of an RSi at an
iterationt there exists a network̂Gi

t that has been visited more
than ˆ̺, i.e., ht(Gi

t) > ˆ̺, the RSs will seek a mixed-strategy
Nash network. While a detailed treatment of the learning
process to find the mixed-strategy Nash network is outside the
scope of this paper (the interested reader is referred to [35]
for more details), the RSs can apply existing algorithms such
as fictitious play or evolutionary approaches in order to find
the mixed-strategy Nash network [35].

As a result, the myopic network formation phase of our
proposed algorithm always converges.

We note that, the case in which during the turn of an RSi
at any iterationt there doesnot exist any networkĜi

t that has
been visited more than̺̂, i.e.,ht(Ĝi

t) ≤ ˆ̺ for any Ĝi
t, adding

the history constraints to the strategies of the RSs impliesthat,
if the algorithm converges afterT iterations to a networkGT

andat the finaliterationT (not at any iteration, only at the final
one) there exist an RSi ∈ V which excluded a certain strategy
si which yields a better payoff for RSi but leads to a network
G′

T = GT + si, G′
T 6= GT such thathT (G′

T ) > ̺, then
the final networkGT is a history-induced Nash networkand
not a Nash network in feasible strategies as per Definition 4.
The difference is that, in a history-induced Nash network that
is formed afterT iterations, no RS can, unilaterally, change
its link given that its strategy setexcludesany strategy that
yields a networkG′

T such thathT (G′
T ) > ̺ while in a Nash

network in feasible strategies, as per Definition 4, no RS hasan
incentive to unilaterally change its link given its entire feasible
strategy set. We should stress that, the use of history by an RS
i at an iterationt < T doesnot mean that the final outcome
will necessarily be a history-induced Nash equilibrium. For
instance, an RSi can use history instead of using its feasible
best response at an iterationt < T and, then, at iterations
t+1, . . . , T , it will once again revert to using its best response
strategies, if no need for history arise. In this case, the network
can, eventually, still reach a Nash network in feasible strategies
as per Definition 4 (not history-induced) at iterationT . As a
result, we have the following property:

Lemma 1: The final tree structureGT resulting from the
convergence of the proposed algorithm afterT iterations is a
Nash network in the space of feasible strategiesŜi, ∀i ∈ V
as per Definition 4, if, at iterationT , there does not exist any
strategysi ∈ Ŝi, for any RSi such thathi(GT + si) > ̺
andui(GT + si) > ui(GT ). Otherwise, the final network is
a history-induced Nash network. Alternatively, if, inGT , the
RSs use different links with different probabilities, thenthe
network is a mixed-strategy Nash network.

Proof: This lemma is a direct consequence of Theorem 1.
Upon convergence of the algorithm to a networkGT after T
iterations, we distinguish two cases. If the final networkGT

is such thathT (GT + si) > ̺ and ui(GT + si) > ui(GT )
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wheresi ∈ Ŝ is a feasible strategy of any RSi ∈ V , then, this
network is a history-induced Nash network since the only way
that this RS can improve its utility is by revisiting a network
that was already left more than̺times in the past. Otherwise,
since the myopic network formation phase of the proposed
algorithm is based on the feasible best responses of the RSs
at each iterationt and since an RS that uses history at an
iteration t, can, eventually, revert back to using its feasible
best response strategy at iterationst+1, . . . , T , then the final
networkGT is a Nash network in feasible strategies as per
Definition 4. (the convergence of a best response algorithm
reaches a Nash equilibrium [30]). In this Nash network, no
RS can improve its utility by unilaterally deviating from its
currently selected feasible strategy (with no use of history).
Alternatively, in the case in which, during the turn of an RSi
at an iterationt there exists a network̂Gi

t that has been visited
more thanˆ̺, i.e.,ht(Gi

t) > ˆ̺, the final networkGT will be a
mixed-strategy Nash network in which the RSs use different
links with different probabilities.

Note that the value of̺̂ can be set by the operator in
a way to highlight a certain preference between the mixed-
strategy case and the history induced case. For example, if the
operator prefers the mixed-strategy case then it can setˆ̺≤ ̺,
otherwise, when the operator prefers the history induced Nash
network, it will set ˆ̺ > ̺. Whenever no Nash network in
feasible strategies is found, this preference captures a tradeoff
between stronger stability (mixed-strategy Nash network)or
faster convergence (history induced Nash network)..

After the convergence of the network formation phase of
the algorithm, the RSs are connected through a tree structure
GT and the second phase of the algorithm begins. This phase
represents the actual data transmission phase, whereby the
multi-hop network operation occurs as the RSs transmit the
data over the existing tree architectureGT . A summary of the
proposed algorithm is given in Table I.

Furthermore, as the RSs can engage in the myopic network
formation phase prior to any MS deployment, we consider the
following convention throughout the rest of this paper:

Convention 2: At the beginning of all time, once the
operator deploys the network, the RSs engage in the network
formation game by taking into account their utilities in terms
of HELLO packets, prior to any mobility or presence of MSs.
The main motivation behind Convention 2 is that the RSs can
form an initial tree structure which shall be used by any MSs
that will be deployed in the network. If any adaptation to this
structure is needed, periodic runs of the proposed algorithm
can occur as discussed further in this section.

The proposed algorithm can be implemented in a distributed
way within any next generation wireless multi-hop network,
with a little reliance on the BS. For instance, the sole role
of the BS in the proposed network formation algorithm is to
inform the RSs of the graphs reached during past iterations,if
needed, over a control channel. Due to the fact that the number
of RSs within the area of a single BS is small when compared
with the number of MSs, the signalling and overhead for this
information exchange between the BS and the RSs is minimal.
Beyond this, the algorithm relies on distributed decisionstaken
by the RSs. Within every iterationt, during its turn, each RS

TABLE IPROPOSED NETWORK FORMATION ALGORITHM.
Initial State

The starting network is a graph where the RSs are directly connected
to the BS (star network).
The proposed algorithm consists of two phases

Phase I - Myopic Network Formation:
repeat

In a random but sequential order, the RSs engage in a network
formation game.
a) In every iterationt of Phase I, each RSi plays its best
response.

a.1) Whenever, during the turn of an RSi at an iterationt

there exists a network̂Gi
t

that has been visited more than
ˆ̺, i.e.,ht(Gi

t
) > ˆ̺ the RSs will seek a mixed-strategy Nash

network using well-known techniques such as fictitious
play or evolutionary games [35].
a.2) Otherwise, each RSi maximizes its utility by playing

its feasible best responses∗
i
∈ Ŝi \ SGt (with Gt being the

set of all graphs visited at the end of iterations1 till t− 1).
b) For a.2), the best responses∗

i
of each RS is areplace

operation through which an RSi splits from its current parent
RS and replaces it with a new RS that maximizes its utility,
given that this new RSacceptsthe formation of the link.

until convergence to a final Nash treeGT after T iterations.
Phase II - Multi-hop Transmission:

During this phase, data transmission from the MSs occurs using
the formed network tree structureGT .

For changing environments (e.g. due to mobility or the deployment
of new MSs), multiple rounds of this algorithm are run periodically
every time period θ, allowing the RSs to adapt the network
topology.

can engage in pairwise negotiations with the surrounding RSs
in order to find its best response, among the set of feasible
strategies and given the graphs that were reached in previous
iterations.

Note that, although a fully centralized approach can also be
used for implementing the proposed algorithm, the need for a
distributed solution is desirable as it has several advantages.
First, although the number of RSs compared to that of the
MSs is generally small, the proposed approach can also apply
to the case where the RSs are replaced with relay nodes,
whose number can be significantly large hence motivating
a distributed approach. Second, a distributed approach can
reduce the communication overhead at the BS, notably when
the BS controls a large area in which the RSs are deployed
in order to alleviate the communication overhead at the BS
by communicating (instead of the BS) with some of the MSs.
Also, in this case, a centralized approach can require the BSto
communicate with all of its RSs and update the network when-
ever needed, hence, increasing the signalling in the network
and the computational load on the BS. Further, a distributed
network formation game is more robust to increased delays at
the BS (e.g., due to traffic received from non-MS sources such
as content providers), failures, as well as to malicious attacks.
This is due to the fact that, unlike a centralized approach,
the distributed network formation game does not rely on a
single controller such as the BS which, if compromised (due
to malicious attacks or failures), can lead to a failure at the
level of the entire network. Finally, although the current paper
mainly deals with networks having a standard infrastructure
(e.g., WiMAX or LTE-Advanced), the approach can equally
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apply in an ad hoc network where the relay stations are, in
fact, relay nodes and the central base station is a common
receiver for these nodes. In such a case, it is desirable that
the nodes take their own decisions on how and where to route
and transmit their traffic. Such distributed decision making is
also of interest in an infrastructure-based network, whenever
the RSs are mobile, or when the number and identity of
the RSs can vary over time. In such a case, it is difficult
(and undesirable) for a centralized entity to keep track of
the variations in the network. For these reasons, a distributed
approach for network formation is well-motivated.

The worst case complexity for implementing Step (a) in
Phase II of the algorithm in Table I, i.e., selecting the feasible
best response (finding a suited partner) for any RSi is
O(M) whereM is the total number of RSs. In practice, the
complexity is much smaller as the RSs do not negotiate with
the RSs that are connected to them, nor with the RSs that can
lead to a graph visited at previous iterations. We stress that
the complexity to find the best response in the proposed game
is comparable with some of the most popular game theoretic
approaches that are used in the literature when tackling prob-
lems such as power control or resource allocation (see [4] for
a thorough overview on such approaches) in which finding
the best response can yield a non-negligible and sometimes
exponential complexity. In order to evaluate its utility while
searching for the best response, each RS can easily acquire
the BER and an estimate of the delay that each neighbor can
provide. As a result, each RSi can take an individual decision
to select the links∗i that can maximize its utility. The signaling
required for gathering this information can be minimal as
each RS can measure its current channel towards the BS as
well as the flowing traffic and feed this information back to
any RS that requests it during the pairwise negotiations. In
dynamically changing environments, following the formation
of the initial tree structure as per Convention 2, the network
formation process is repeated periodically everyθ allowing
the RSs to take autonomous decisions to update the topology
adapting it to any environmental changes that occurred during
θ such as the deployment of MSs, mobility of the RSs and/or
MSs, among others. In fact, engaging in the network formation
game periodically rather than continuously reduces the sig-
nalling in the network, while allowing the topology to adapt
itself to environmental changes. As the periodθ is chosen
to be smaller, the network formation game is played more
often, allowing a better adaptation to networks with rapidly
changing environments at the expense of extra signalling and
overhead. Note that, when the RSs are mobile, and/or when
new MSs are entering and leaving the network, the MSs can
also, periodically, change their serving RS, to adapt to this
change in the network.

IV. SIMULATION RESULTS AND ANALYSIS

For simulations, we consider a square area of3 km ×
3 km with the BS at the center. We deploy the RSs and the
MSs within this area. The transmit power is set to50 mW
for all RSs and MSs, the noise level is−100 dBm, and the
bandwidth per RS is set toW = 100 kHz. For path loss, we
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Fig. 2. Snapshot of a tree topology formed using the proposednetwork
algorithm withM = 10 RSs before (solid line) and after (dashed line) the
random deployment of30 MSs.

set the propagation loss toµ = 3. We consider a traffic of
64 kbps, divided into packets of lengthB = 256 bits with
an arrival rate of250 packets/s. For the HELLO packets, we
setη0 = 1 packet/s with the same packet length ofB = 256
bits. Unless stated otherwise, we assume that all the RSs and
MSs utilize the same tradeoff parameters and its value is setto
βi = β = 0.7 (for all RS and MSi) to imply services that are
slightly delay tolerant. Further, the parameterǫ is selected to
be equal to1% of any RS’s current utility, i.e., an RS accepts
the formation of a link if its utility does not decrease by more
than1% of its current value. Finally, we set̺= 1 and ˆ̺> 1.

In Fig. 2, we randomly deployM = 10 RSs within the area
of the BS. The network starts with an initial star topology
with all the RSs connected directly to the BS. Prior to the
deployment of MSs (in the presence of HELLO packets only),
the RSs engage in the proposed network formation algorithm
and converge to the final Nash network structure shown by
the solid lines in Fig. 2. Clearly, the figure shows that through
their distributed decisions the RSs select their preferrednearby
partners, forming the multi-hop tree structure. Furthermore,
we deploy30 randomly located MSs in the area, and show
how the RSs self-organize and adapt the network’s topology
to the incoming traffic through the dashed lines in Fig. 2.
For instance, RS9 improves its utility from370.6 to 391.2 by
disconnecting from RS8 and connecting to RS6 instead. This
improvement stems from the fact that, although connecting to
RS 8 provides a better BER for RS9, in the presence of the
MSs, choosing a shorter path, i.e., less hops through RS6,
the delay perceived by the traffic of RS9 is reduced, hence,
improving the overall utility. Moreover, due to the deployment
of traffic and the deviation of RS9, RS8 decides to disconnect
from RS6 and connect directly to the BS, hence, avoiding the
extra delay that exists at RS6 when MSs are deployed. Further,
in order to send its HELLO packet, RS7 finds it beneficial to
replace its current link with the congested RS1 with a direct
link to the BS. In brief, Fig. 2 summarizes the operation of
the proposed adaptive network formation algorithm with and
without the presence of external traffic from MSs.

In Fig. 3, we assess the effect of mobility on the network



10

0  0.2 0.4 0.5 0.6 0.7 0.8 1  1.2 1.3
3

4

5

6

7

8

9

10

11

12

Distanced travelled by RS 9 (km)

U
til

ity
 o

f t
he

 R
S

 

 

RS 9 (mobile)
RS 2
RS 6

RS 2 disconnects
from RS 9 and
connects directly 
to the BS

RS 9 disconnects
from RS 6 and 
connects directly 
to the BS

RS 9 disconnects
from RS 8 and 
connects to RS 6

Fig. 3. Adaptation of the network’s tree structure to mobility of the RSs
shown through the changes in the utility of RS9 of Fig. 2 as it moves on the
x-axis in the negative direction prior to any MS presence.

structure. For this purpose, we consider the network of Fig.2
prior to the deployment of the MSsand we consider that RS9
is moving horizontally in the direction of the negative x-axis
while the other RSs remain static. The variation in the utilities
of the main concerned RSs during the mobility of RS9 are
shown in Fig. 3. Once RS9 starts its movement, its utility
increases since its distance to its serving RS, RS8, decreases.
Similarly, the utility of RS2, served by RS9 also increases.
As RS9 moves around0.2 km, it finds it beneficial to replace
its current link with RS8 and connect to RS6 instead. In
this context, RS6 would accept the incoming connection from
RS9 since this acceptance does not affect its utility negatively
as shown in Fig. 3 at0.2 km. As RS9 pursues its mobility, its
utility improves as it gets closer to RS6 while the utility of
RS 2 decreases since RS9 is distancing itself from it. After
moving for a distance of0.5 km, RS 9 becomes quite close
to the BS, and, thus, it maximizes its utility by disconnecting
from RS 6 and connecting directly to the BS. This action
taken by RS9 at 0.5 km also improves the utility of RS2.
Meanwhile, RS9 continues its movement and its utility as
well as that of RS2 start to drop as RS9 distances itself from
the BS. As soon as RS9 moves for a total of1.3 km, RS2
decides to disconnect from RS9 and connect directly to the
BS since the direct transmission can provide a better utility at
this point. In a nutshell, by inspecting the results of Fig. 3, we
clearly illustrate how the RSs can take distributed decisions
that allow them to self-organize and adapt the topology to
mobility.

Further, we have run a variety of statistical simulation
results for different network sizes, with each one averagedover
around50, 000 iterations with random positions for the MSs
and RSs. Based on these simulations, we first note that, for
networks having up toM = 10 RSs (for any number of MSs),
we have encounteredonly Nash networks in feasible strategies
as per Definition 4 andno history-induced Nash networks.
For networks withM > 10 RSs, only about2% of the runs
ended up with a history-induced Nash network. Hence, based
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Fig. 4. Performance assessment of the proposed network formation algorithm,
in terms of average utility per MS, for a network havingM = 10 RSs as the
number of MSs varies.

on these simulations, we can see that, in practical settings, the
number of history-induced Nash networks is very small, and,
thus, the RSs may reach a Nash network without utilizing their
history functions in the decision process.

Subsequently, Fig. 4 shows the average achieved utility per
MS for a network withM = 10 RSs as the number of MSs
in the network increases. The performance of the proposed
network formation algorithm is compared against the direct
transmission performance, i.e., the case where no RSs existin
the network, as well as a nearest neighbor algorithm whereby
each node selects the closest partner to connect to. Note that
these schemes are selected for comparison purposes since, to
the best of our knowledge, this paper is the first in the literature
that deals with distributed tree formation in next-generation
networks3. In this figure, we can see that, as the number of
MSs in the network increases, the performance of both the
proposed algorithm as well as that of the nearest neighbor
algorithm decrease. This result is due to the fact that, as more
MSs are present in the network, the delay from multi-hop
transmission due to the additional traffic increases, and, thus,
the average payoff per MS decreases. In contrast, in the case
of no RSs, the performance is unaffected by the increase in
the number of MSs since no delay exists in the network. We
also note that, due to the increased traffic, the performance
of the nearest neighbor algorithm drops below that of the
direct transmission at around20 MSs. Further, Fig. 4 shows
that, at all network sizes, the proposed network formation
algorithm presents a significant advantage over both the near-
est neighbor algorithm and the direct transmission case. This
performance advantage is of at least17.1% compared to the
direct transmission case (for50 MSs) and it reaches up to
40.3% improvement relative to the nearest neighbor algorithm
at 50 MSs.

The performance of the proposed network formation algo-
rithm is further assessed in Fig. 5, where we show the average
utility per MS as the number of RSsM in the network varies,

3The work in [17] studies the tree formation in IEEE 802.16j, however,
[17] focuses on the messages needed to control the RSs and no algorithm (or
QoS metric/utility) for forming the network is actually provided.
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Fig. 5. Performance assessment of the proposed network formation algorithm,
in terms of average utility per MS, for a network having40 MSs as the number
of RSsM varies.

for a network with40 MSs. Fig. 5 shows that, asM increases,
the performance of the proposed algorithm as well as that of
the nearest neighbor algorithm increase. This is due to the
fact that, as the number of RSs increase, the possibilities of
benefiting from cooperative transmission gains increase, and,
thus, the average utility per MS increase. In contrast, for the
direct transmission scheme, the performance is constant as
M varies, since this scheme does not depend on the number
of RSs. Fig. 5 demonstrates that, at all network sizes, the
proposed network formation algorithm presents a significant
performance gain reaching, respectively, up to52.8% and
38.5% relative to the nearest neighbor algorithm and the direct
transmission case.

In Fig. 6, we show the average and the average maximum
number of hops in the resulting network structure as the
number of RSsM in the network increases for a network
with 40 MSs (results are averaged over random positions of
MSs and RSs). The number of hops shown in this figure
represents the hops connecting RSs or the RSs to the BS,
without accounting for the MS-RS hop. Fig. 6 shows that,
as the number of RSsM increases, both the average and
the average maximum number of hops in the tree structure
increase. The average and the average maximum number of
hops vary, respectively, from1.85 and2.5 at M = 5 RSs, up
to around3 and5 atM = 25. Consequently, as per Fig. 6, due
to the delay cost for multi-hop transmission, both the average
and average maximum number of hops increase very slowly
with the network sizeM . For instance, one can notice that,
up to 20 additional RSs are needed in order to increase the
average number of hops of around1 hops and the average
maximum number of hops of only around2 hops.

Fig. 7 shows the average and the maximum number of
iterations needed till convergence of the algorithm to the initial
network structure prior to the deployment of any MSs, as the
size of the networkM increases. This figure shows that, as the
number of RSs increase, the total number of iterations required
for the convergence of the algorithm increases. This resultis
due to the fact that, asM increases, the cooperation options for
every RS increase, and, thus, more actions are required prior to
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Fig. 6. Average and average maximum number of hops in the finaltree
structure for a network with40 MSs vs. number of RSsM in the network.
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Fig. 7. Average and maximum number of iterations till convergence vs.
number of RSsM in the network.

convergence. Fig. 7 shows that the average and the maximum
number of iterations vary, respectively, from1.12 and 2 at
M = 5 RSs up to2.9 and8 atM = 25 RSs. Hence, this result
demonstrates that, in average, the speed of convergence of the
proposed algorithm is quite reasonable even for relativelylarge
networks. Similar results can be seen for the convergence of
the algorithm when MSs are deployed or when the RSs are
moving.

Fig. 8 shows the distribution of the total number of Nash
networks, over about50, 000 iterations (network settings), for
networks with40 MSs for the two cases ofM = 5 RSs and
M = 7 RSs. Each iteration represents different locations for
the MSs and RSs. This figure is generated by finding all possi-
ble network trees (spanning trees) and counting the number of
Nash networks in each case. Fig. 8 shows that for all settings,
at least one Nash network exists. Further, forM = 5 RSs,
we can see that the number of Nash networks is concentrated
in the interval [1, 10]. In fact, for M = 5 RSs about83%
of the cases admit between1 and 10 Nash networks with
the majority of the network settings having4 Nash networks
(about 25% of the total cases). However, as the number of
RSs increases of2, i.e., for M = 7 RSs, Fig. 8 shows that
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Fig. 8. Distribution of the number of Nash networks over about 50, 000
different network settings (RS and MS locations) for networks with M =
5 RSs andM = 7 RSs (with40 MSs).

more Nash networks exist and their distribution becomes more
balanced over the different intervals. AtM = 7 RSs, about
23% of the cases admit between11 and 20 Nash networks
and about19% admit between31 and 40 Nash networks.
For M = 7 RSs, we can see that about9% admit more
than 100 Nash networks with the maximum being one case
having 1293 Nash networks. Although, at first glance, this
number can look large, it must be noted thatM = 5 RSs and
M = 7 RSs can form, respectively, a total of125 and16, 807
possible trees (this number is given by Cayley’s formula which
states that a graph withn vertices admitsnn−2 spanning trees
[36]). Thus, relative to the total number of possible network
trees, the number of Nash networks is small. Note that, for
large networks, finding all possible Nash equilibria and their
distribution is computationally intractable since it requires
finding all possible networks which grow exponentially with
M . However, Fig. 8 gives a good insight on how this number
will vary as the network size grows.

In Fig. 9, we assess the efficiency of the Nash networks
in the proposed model by showing the average utility per
MS achieved by the proposed network formation algorithm,
a centralized approach that finds the optimal (maximizing the
average utility per RS) network tree by exhaustive search,
and the Nash network having the least efficiency, i.e., the
smallest average utility per MS (worst case Nash network)
for a network withM = 5 RSs as the number of MSs varies.
In this figure, we note that the proposed network formation
algorithm achieves, at all network sizes, a performance that
is comparable to the optimal solution. The performance of
the proposed network formation algorithm gets closer to
the optimal solution as the network becomes congested. For
instance, Fig. 9 shows that the average utility per MS resulting
from network formation is only between5% (at 10 MSs)
and 2.8% (at M = 50 MSs) less than the optimal solution.
Moreover, this figure provides an insight on the efficiency of
the Nash networks resulting from the proposed model through
the price of anarchy, which is defined as the ratio between the
optimal case and the worst case Nash equilibrium [37]. Fig. 9
shows that the price of anarchy is, on the average, about1.09.
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Fig. 9. Average utility per MS achieved by the proposed algorithm, a
centralized approach that finds the optimal network tree by exhaustive search,
and the Nash network having the least efficiency, i.e., the smallest average
utility per MS (worst case Nash network) for a network withM = 5 RSs as
the number of MSs varies.

This result shows that the Nash networks resulting from the
proposed model are, in general, reasonably efficient as the
worst case Nash network has a performance of not less than
9% below the optimal solution.

In Fig. 10, we show the average and the average maximum
number of hops for a network withM = 10 RSs and40 MSs
as the tradeoff parameterβ varies (results are averaged over
random positions of MSs and RSs). Fig. 10 shows that, as the
tradeoff parameter increases, both the average and the average
maximum number of hops in the tree structure increase. For
instance, the average and the average maximum number of
hops vary, respectively, from1.14 and 1.75 at β = 0.1, up
to around2.8 and around4 at β = 0.9. The increase in the
number of hops withβ is due to the fact that, as the network
becomes more delay tolerant (largerβ) the possibilities for
using multi-hop transmission among the RSs increases. In
contrast, as the network becomes more delay sensitive, i.e.,
for smallβ, the RSs tend to self-organize into a tree structure
with very small number of hops. For instance, atβ = 0.1,
the average number of hops is quite close to1, which implies
that, for highly delay sensitive services, direct transmission
from the RSs to the BS, i.e., the star topology, provides, on
the average, the best architecture for communication.

In Fig. 11, we show, over a period of5 minutes, the average
total number of actions taken by all RSs for various velocities
of the RSs in a wireless network with40 MSs and different
number of RSs. The proposed network formation algorithm
is repeated by the RSs, periodically, everyθ = 30 seconds,
in order to provide self-adaptation to mobility. As the speed
of the RSs increases, the average total number of actions per
minute increases for bothM = 10 RSs andM = 20 RSs.
This result corroborates the fact that, as more mobility occurs
in the network, the chances of changes in the network structure
increase, and, thus, the RSs take more actions. Also, Fig. 11
shows that the case ofM = 20 RSs yields an average total
number of actions significantly higher than the case ofM =
10 RSs. The reason of this difference is that, as the number
of RSsM increases, the possibility of finding new partners
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Fig. 10. Average and average maximum number of hops in the final tree
structure for a network with10 RSs and40 MSs as the tradeoff parameterβ
varies.
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Fig. 11. Average total number of actions (taken by all RSs) per minute for
different RS speeds in networks with different sizes with40 MSs.

when the RSs move increases significantly, hence yielding an
increase in the topology variation as reflected by the average
total number of actions. In this regard, forM = 20 RSs, the
average total number of actions per minute varies from around
5.7 at 9 km/h to around41 at 72 km/h while forM = 10 RSs,
this variation is from1.3 at9 km/h to around12 at72 km/h. In
summary, Fig. 11 demonstrates how, through periodic runs of
the proposed network formation algorithm, the RSs can adapt
the topology through appropriate decisions.

Fig. 12 shows how the tree structure in a network with
M = 10 RSs and40 MSs, evolves and self-adapts over
time when all the MSs are moving at a constant speed of
100 km/h for a period of5 minutes. The proposed network
formation algorithm is repeated by the RSs, periodically, every
θ = 30 seconds, in order to provide self-adaptation to mobility.
Fig. 12 shows that, after10 actions taken by the RSs, the
network starts with a tree structure with an average number
of 2.2 hops in the tree at timet = 0. As time evolves, the
mobiles are moving and, thus, the RSs engage in the proposed
network formation algorithm, to adapt the tree structure tothe
MSs’ mobility through adequate actions. For example, after
2.5 minutes have elapsed, the tree structure has an average
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Fig. 12. Evolution of the network tree structure over time asthe MSs are
moving with a speed of100 km/h over a period of5 minutes for a network
with 40 MSs andM = 10 RSs.

number of2.6 hops (after having1.83 hops at2 minutes),
due to the occurrence of a total of4 actions by the RSs. At
some points such as att = 4.5 minutes ort = 5 minutes,
mobility does not yield any changes in the tree structure as no
actions are taken by the RSs. Finally, once all the5 minutes
have passed, the network tree structure is finally made up of
an average of2.5 hops after a total of24 actions played by
the RSs during the whole5 minutes duration.

V. CONCLUSIONS

In this paper, we have introduced a novel approach for
forming the tree architecture that governs the uplink network
structure of next generation wireless systems such as LTE-
Advanced or WiMAX 802.16j. For this purpose, we for-
mulated a network formation game among the RSs and we
introduced a cross-layer utility function that takes into account
the gains from cooperative transmission in terms of improved
effective throughput as well as the delay costs incurred by
multi-hop transmission. To form the tree structure, we devised
a distributed myopic algorithm. Using the proposed network
formation algorithm, each RS can take an individual decision
to optimize its utility by selecting a suited next-hop partner,
given the approval of this partner. We showed the convergence
of the algorithm to a Nash network structure and we discussed
how, through periodic runs of the algorithm, the RSs can adapt
this structure to environmental changes such as mobility or
incoming traffic. Simulation results demonstrated that theal-
gorithm presents significant gains in terms of average achieved
mobile station utility which is at least21.5% better than the
case with no RSs and reaches up to45.6% improvement
compared to a nearest neighbor algorithm. The results also
show that the average number of hops in the tree does not
exceed3 even for a network with up to25 RSs.
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