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Abstract

Aging power industries together with an increase in the demand from industrial and

residential customers are the main incentive for policy makers to define a road map to the

next generation power system called the smart grid. Changing the traditional structure of

power systems and integrating communication devices are beneficial for better monitoring

and decision making by the system operators, but at the same time it increases the risk

of cyber attacks. Power system blackout in 2003 created serious problems for customers

in the eastern US and Canada. Although different investigations report reasons other than

cyber attack for the blackout, many researchers believe a similar tragedy could happen with

targeted cyber attacks. Later in 2007, researchers at the Idaho National Lab tried to attack

a synchronous generator. The attack was successful and the generator was self-destroyed

in a couple of minutes. This attack alarmed cyber-security decision makers, motivating

them to define a critical infrastructure that is vulnerable to cyber-attack. An example of

this vulnerability is the current bad data detection routine in state estimation, which is not

able to detect a certain type of cyber attack called stealth attack. Stealth attacks are able

to manipulate the state estimation results in order to take economical advantages or make

technical problems for power grid.

In this dissertation, we analyze the cyber attack against state estimation, from both

the attacker and defender points of views. We first review the structure of the electricity

market, and then we present the way that the attacker alters the congestion in the ex–

post market (in the desired direction) and makes financial profits. We investigate the case

that attackers without prior knowledge of the power grid topology, try to make inferences

through phasor observations. The inferred structural information is used to launch stealth

attacks. This attack is formulated to change the price of electricity in the real-time market.

Second, we look at the false data injection from the defender point of view. Because

of a huge number of measurements in the network, attacking and defending all measure-
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ments are impossible for the attacker and defender, respectively. This situation is modeled

as a zero-sum game between the attacker and the defender, and we describe how the inter-

est of one party (attacker or defender) can influence the other’s interest. The results of this

game defines the proportion of times that the attacker and defender will attack and defend

different measurements, respectively.

Finally, we illustrate how the normal operations of power networks can be statisti-

cally distinguished from the case under stealthy attacks. We first propose two machine

learning based techniques for stealthy attack detection. The first method utilizes the super-

vised learning over labeled data and trains a support vector machine. The second method

requires no labeled outputs for training data and detects deviation in the measurements.

In both methods, principle component analysis is used to reduce the dimensionality of the

data to be processed, which leads to lower computational complexities.

viii



Table of Contents

Acknowledgements v

Abstract vii

Table of Contents viii

List of Figures xiii

List of Tables xv

List of Algorithms xv

1 Introduction and Background 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 State Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Weighted least squares state estimation . . . . . . . . . . . . . . . 7

1.3.2 Linear state estimation . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.3 Bad data detection . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Dissertation Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Effect Of Stealthy Bad Data Injection On Network Congestion In Market

Based Power System 17

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

ix



2.2 Attack Against Voltage Angles in State Estimation . . . . . . . . . . . . . 18

2.3 Optimal Power Flow (OPF) and DC Optimal Power Flow (DCOPF) . . . . 19

2.3.1 Day-Ahead Market . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.2 Real–Time Market . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Stealthy Attack Against Electricity Market using Independent Component Anal-

ysis 26

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Bad data detection in linear state estimation . . . . . . . . . . . . . 28

3.2.2 Stealth attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.3 ICA algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Cyber Attack Against Electricity Prices . . . . . . . . . . . . . . . . . . . 31

3.3.1 Decreasing congestion . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.2 Increasing congestion . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4.1 Validation of linearity in ICA . . . . . . . . . . . . . . . . . . . . 35

3.4.2 Performance of attacks . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.3 Attack against line congestion . . . . . . . . . . . . . . . . . . . . 38

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Bad Data Injection Attack and Defense in Electricity Market using Game The-

x



ory Study 46

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.1 Bad data detection in linear state estimation . . . . . . . . . . . . . 47

4.3 Cyber Attack Against Electricity Prices . . . . . . . . . . . . . . . . . . . 48

4.4 Gaming Between Attacker and Defender . . . . . . . . . . . . . . . . . . . 52

4.4.1 Two-person zero-sum game between attacker and defender . . . . . 52

4.4.2 Noncooperative finite games: two–person zero–sum . . . . . . . . 53

4.4.3 Computation of a two-Person zero-sum game . . . . . . . . . . . . 55

4.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Detecting Stealthy False Data Injection using Machine Learning in Smart Grid 62

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2.1 Bad data detection in linear state estimation . . . . . . . . . . . . . 63

5.3 Machine Learning Based Bad Data Detection . . . . . . . . . . . . . . . . 64

5.3.1 Principle component analysis . . . . . . . . . . . . . . . . . . . . 65

5.3.2 Support vector machines . . . . . . . . . . . . . . . . . . . . . . . 66

5.3.3 Anomaly detection . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.4.1 Support vector machine . . . . . . . . . . . . . . . . . . . . . . . 72

5.4.2 Anomaly detection . . . . . . . . . . . . . . . . . . . . . . . . . . 74

xi



5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6 Conclusion and Future Work 77

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Bibliography 81

xii



List of Figures

1.1 Flow of energy and data between different parts of smart grids. . . . . . . 2

1.2 On–line Static Security Assessment: Functional Diagram [1]. . . . . . . . . 8

2.1 IEEE 30–Bus test system. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Voltage angles in different buses. . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Transmitted active power in transmission lines. . . . . . . . . . . . . . . . 25

2.4 Locational marginal price in buses. . . . . . . . . . . . . . . . . . . . . . . 25

3.1 IEEE 14–Bus test system. . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 4-Bus test power system. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 MSE of ICA inference (z0 −Ky0) vs. SNR. . . . . . . . . . . . . . . . . . 38

3.4 MSE of ICA inference (z0−Ky0) vs. the number of Observations (14-bus

case). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 Eigenvalues of the state vector of different bus topologies. . . . . . . . . . 40

3.6 Probability for miss detection of attacks. . . . . . . . . . . . . . . . . . . . 41

3.7 Measurement configuration in the PJM 5-bus test system. . . . . . . . . . . 42

3.8 LMP’s after and before successful attack (Ky4). . . . . . . . . . . . . . . . 42

3.9 Injected false data to the measurements in order to change the estimated

transmitted power za. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.10 Change in estimated angle in each bus (by compromising individual com-

ponents). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.11 Change in the estimated transmitted power. . . . . . . . . . . . . . . . . . 44

xiii



3.12 Effects of varying individual components on congestion. . . . . . . . . . . 44

4.1 Measurement configuration in PJM 5-bus test system. . . . . . . . . . . . . 57

4.2 Extensive form of single–act game. . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Locational marginal prices for PJM 5-Bus test system for both with attack

and without attack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 Proportion of times that attacker and defender, attack and defend to mea-

surements respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5 Change in the estimated transmitted power of lines because of attack to Z1

and Z4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.1 Attacked and safe operating modes in R2 space . . . . . . . . . . . . . . . 71

5.2 IEEE 118–Bus test system . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3 Optimal choice for C and sigma . . . . . . . . . . . . . . . . . . . . . . . 73

5.4 Learning curve of SVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.5 Histogram representation of ztr1 . . . . . . . . . . . . . . . . . . . . . . . 74

5.6 Anomaly detection with P (z) < 2e− 4 . . . . . . . . . . . . . . . . . . . 75

5.7 Anomaly detection with P (z) < 2.98e− 5 . . . . . . . . . . . . . . . . . . 75

5.8 Anomaly detection with best choice of ξ . . . . . . . . . . . . . . . . . . . 76

xiv



List of Tables

1.1 Dissertation Abbreviation . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Dissertation Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Electricity Market Notations . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Line Reactance and thermal limit for 5–bus test system. . . . . . . . . . . . 38

3.3 Generation shift factors of lines in 5–bus test system. . . . . . . . . . . . . 45

3.4 Attack vector δy and number of successful attacks (for Q = 1000 attack). . 45

4.1 Zero–sum game between the Attacker and the Defender . . . . . . . . . . . 58

5.1 Machine learning notations . . . . . . . . . . . . . . . . . . . . . . . . . . 63

xv



List of Algorithms

1 Increasing congestion with stealth false data injection . . . . . . . . . . . . . 33

2 Stealth false data detection using SVM . . . . . . . . . . . . . . . . . . . . 68

3 Stealth false data detection using anomaly detection . . . . . . . . . . . . . 70

xvi



Chapter 1

Introduction and Background

1.1 Overview

Recently, power systems are becoming more and more sophisticated in the struc-

ture and configuration because of the increasing electricity demand and the limited energy

resources. In regulated power grids, a transmission system was commonly used to carry

power from few central generating units to a large number of customers. Uncompetitive

generation of electricity was the main drawback of the regulated environment in which

having access to cheap generation was very limited to consumers all over the network. The

right of having access to the transmission network for any entity that does not own trans-

mission, is issued in the Energy Power Act by the Federal Energy Regulatory Commission

(FERC) [2]. The main purpose of having open access to the transmission network, was to

create a competitive market in which consumers were able to purchase their energy from

cheap generating units. It also made the smaller generation units (distributed generation

(DG)) more popular among the electricity suppliers [3, 4]1.

Today’s power industry has integrated different new technologies and has been ex-

panded in different levels (generation, transmission, and distribution). Meeting all technical

and economical requirements in this complex system is becoming more and more sophis-

ticated and almost all researchers in the power area believe that there is no unique solution

to this challenge. Facing most of these challenges needs essential changes in operation and

expansion of the power grid. The trend of these changes, is stimulated by the introduction

of new-generation of the electricity grid which is also known as the smart grid. Smart grid

uses bidirectional flows of the electricity and information to deliver power in more efficient

ways responding to wide ranging conditions and events [5–10] (Fig. 1.1).

1These units need less starting time and are mainly used in peak consumption hours.
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Figure 1.1 Flow of energy and data between different parts of smart grids.

Integration of renewable energies is another goal in the smart grid road map which

improves the environmental requirements in power generation [11–15]. The amount of

power generation in the renewable resources depends on the environmental situations, so

their exploitation increases the intermittency of generation in the power network. Meeting

demand in this intermittent situation is a challenging problem and mainly is studied in

two directions, one group of researchers try to improve the prediction of intermittency in

renewable resources by developing precise models [16–19]. Other group of researchers

try to find the optimal way of integrating renewable recourses. The common goal of these

studies is to maximize the integration of renewable resources without violating security

constraints [20–22].

Indeed transition from conventional power grid to smart grid is happening in differ-

ent parts of the power network. In generation level using clean and renewable energies is

one of the main priorities [11–15]. Transmission system suffers from the centralized and

2



local observation of the network and main effort is focused on designing of a large dis-

tributed computing platform to overcome this deficiency [5–10]. Smart metering is another

concept which tries to give an economical feedback to small and medium sized costumers

of electricity in the distribution level [23–25]. These costumers traditionally have not been

given the appropriate incentives to manage their consumption.

Online monitoring of smart grid is important for control centers in different decision

making processes. State estimation (SE) is a key function in building real-time models of

electricity networks in Energy Management Centers (EMCs) [26]. State estimators provide

precise and efficient observations of operational constraints to identify the current operating

state of the system in quantities such as transmission line loadings or bus voltage magni-

tudes. Accuracy of state estimation can be affected by bad data during the measuring pro-

cess. Measurements may contain errors due to the various reasons such as random errors,

incorrect topology information and injection of bad data by attackers. By integrating more

advanced cyber technologies into the energy management system (EMS), cyber-attacks can

cause major technical problems such as blackouts in power systems2. The attacks also can

be designed to the attacker’s financial benefit at the expense of the general consumer’s net

cost of electricity [28, 29].

1.2 Literature Review

Due to the importance of the smart grid studies, some surveys have classified the

different aspects of smart grids [30–32]. In [30] the authors explore three major systems,

namely the smart infrastructure system, the smart management system, and the smart pro-

tection system and also propose possible future directions in each system. In [31], a survey

is designed to define a smart distribution system as well as to study the implications of

the smart grid initiative on distribution engineering. In [32] relevant approaches are inves-
2Aurora attack involves a cyber attack against breakers in a generating unit. This experiment shows the

abilities of cyber attackers in taking control over breakers and consequently, it reveals the technical problems
of this attack for the power grid [27].
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tigated to give concrete recommendations for smart grid standards, which try to identify

standardization in the context of smart grids. National Institute of Standards and Technol-

ogy (NIST) in [33], explains anticipated benefits and requirements of smart grid.

Some researches have been done over cyber security for smart grid [28, 29, 34–46].

In [40], the authors discuss key security technologies for a smart grid system, including

public key infrastructures and trusted computing. Reliable and secure state estimation in

smart grid from communication capacity requirement point of view is analyzed in [41].

In [42], a new criterion of reliable strategies for defending power systems is derived and

two allocation algorithms have been developed to seek reliable strategies for two types

of defense tasks. [38] surveys malicious attacks in three different categories based on the

smart grid security objectives,

• Attacks targeting availability: Attackers try to delay, block or corrupt the communi-

cation in the smart grid (also called as denial-of-service attacks) [34–37]. [34] uses

experiments to quantitatively evaluate the impact of denial-of-service (DoS) attacks

on a power substation network. Most of SCADA systems use DNP3 protocol to com-

municate the measurement values to the control center. [35] investigates the attack by

implementing the attack in DNP3 Controlled SCADA Systems. Intrusion detection

system (IDS) is an effective mechanism in detection of the malicious attack, [36] pro-

poses an IDS to oppose the threats to an IEC61850-automated substation. Authors

in [37] define a path identification mechanism to defend against distributed denial of

service attacks.

• Attacks targeting integrity: Attacker attempts to illegally disrupt the data exchange

[28, 29, 39, 43–49]. In [39], an undetectable attack by bad data detectors (BDD)

is first introduced, where the attacker knows the state estimation Jacobian matrix

(H) and defines an undetectable attack using this matrix. [28, 29, 43] investigate the

economical effect of attack against state estimation in the power networks. [44] uses

4



independent component analysis (ICA), and inserts an undetectable attack even when

Jacobian matrix (H) is unknown for the attackers. [45, 49] looks at the bad data

injection problem from both attacker and defender point of views at the same time

and describes how the interest of one party (attacker or defender) can influence the

other’s interest. Since there are many measurement devices in power systems, it is not

reasonable to assume that all devices can be made encrypted overnight so [46] defines

a security measure tailored to quantify how hard attacks are to perform, and describe

an efficient algorithm to compute it. [47, 48] use the intrinsic low rank structure of

temporal states of power grid as well as sparse nature of malicious attacks, to detect

false data injection in state estimation.

• Attacks targeting confidentiality: Attacker tries to get unauthorized information from

network resources [50–52]. While cryptography is broadly used to secure the com-

munication links, [50] provides a simple security protocol against a wiretapping at-

tack based on the network topology. The channel capacity requirement that ensures

negligible information leakage to the eavesdropper is studied in [51] from the infor-

mation theoretic perspective. Sharing data to ensure network reliability is benefi-

cial to all remote terminal units(RTO’s) but at the same time withholding data could

be profitable for some of them. [52] investigates this competitive situation between

RTOs in distributed state estimation.

Game theory is a mathematical framework for studying complex interactions among

the independent rational entities. Psychology, economics, politics, and communication sys-

tems are the examples that game theory have been used successfully [53,54]. The prolifer-

ation of advanced technologies and services in smart grid systems implies that disciplines

such as game theory will naturally have an outstanding role in the design and analysis

of smart grids [55]. The heterogeneous nature of the smart grid3 and the need for low-

3Smart grid typically composed of a variety of networks such as micro-grids, smart meters, appliances,
and others. Each of these networks have different capabilities and may follow different objectives.
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complexity distributed algorithms for distributed operation of the smart grid nodes, are the

examples that elucidate the application of the game theory in the smart grid studies.

Some applications of game theory in smart grids have been studied in [56–59]. In

[56], the authors present a method for evaluating a fully automated electric grid in real

time and finding potential problem areas or weak points within the electric grid by using

the game theory. In [57], the authors propose a consumption scheduling mechanism for

home and neighborhood area load demand management in smart grid using integer linear

programming (ILP) and game theory. [58] is a survey about some of game theory-based

applications to solve different problems in smart grid. In [59] the authors model and analyze

the interactions between the retailer and electricity customers as a four-stage Stackelberg

game.

Demand-side management (DSM), is another topic in smart grid which is recently

considered by researchers. As a key component of smart grid emerging paradigm, the

demand response helps reducing the electricity demand and shaving the peak demand, as

well as, adjusts the controllable load to compensate power fluctuations. Utility companies

and consumers are the main involved entities in demand–side management which may have

different interest in some cases. Game theoretic approaches can model the interactions

between these two entities and increase their welfare. For example costumers will increase

their welfare with shifting their loads to the off–peak hours and this shift a) will delay the

need for expansion of power generation, b) will increase the safety margin of the operation

in peak hours (increasing welfare for utilities).

In [60] an intelligent management system is designed based on the objective of

orderly consumption and demand-side management, under the circumstances of China’s

smart grid construction. An Intelligent Metering/Trading/Billing System (ITMBS) with

its implementation on DSM is analyzed by [61]. [62] is a research on an autonomous and

distributed demand-side energy management system among different users. Also there are

6



some papers that have focused on the modeling of specific appliances. For instance, [63]

and [64] consider the electricity load control with thermal mass in buildings; [65] considers

the coordination of charging PHEV with other electric appliances.

Microgrids are small-scale and low voltage supply networks which recently has been

noticed in smart grids. These units are designed to supply electrical and heat loads for

small consumers, such as academic or public communities, and manufacturing companies

[66]. Microgrids can be separated from the main grid in contingencies and should provide

electricity for their consumers with acceptable quality. Microgrids face several challenges

in the real-time power management and control systems. Some of these challenges can be

addressed by the optimization problems with different objectives such as, power demands,

fuel consumption, environmental emissions, costs, dispatchable loads, etc. [67].

1.3 State Estimation

State estimation was first introduced by Fred Schweppe to identify the current oper-

ating state of the power network. State estimation plays an important role in online security

assessment, so that current energy management systems (EMS) have an on-line state esti-

mator among other application functions [1]. Figure 1.2 shows the functionality and role

of the state estimation in online security assessments.

1.3.1 Weighted least squares state estimation

Static state estimation is the procedure of obtaining the voltage phasors at all buses

of power network from a set of redundant measurements. These measurements are related

to the state variables through nonlinear functions and can be written in the matrix format

as follows,

7
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Figure 1.2 On–line Static Security Assessment: Functional Diagram [1].

z =


z1
z2
...
zm

 =


p1(θ1, θ2, · · · , θn)
p2(θ1, θ2, · · · , θn)

...
pm(θ1, θ2, · · · , θn)

+


e1
e2
...
em

 = p(θ) + e, (1.1)

where zT = [z1, z2, · · · , zm] is the measurement vector and eT = [e1, e2, · · · , em] is the

measurement error vector. Mathematically (1.2) is an over determined system because

it has more equations (measurements) than unknowns (state variables). Weighted least

square method is the common way of solving over–determined systems in which the goal

is to solve the following optimization,

J(θ) = [z− p(θ)]TR−1[z− p(θ)], (1.2)

where R = diag(σ2
1, σ

2
2, · · · , σ2

m) and σ2
i is the standard deviation of measurement i.
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1.3.2 Linear state estimation

In power systems, transmission lines are used to transfer generated power to con-

sumers. Theoretically, the transmitted complex power between bus i and bus j depends

on the voltage difference between these two buses, and it is also a function of impedance

between these buses. In general, transmission lines have high reactance over resistance

(i.e. X/R ratio), and one can approximate the impedance of a transmission line with its

reactance. The transmitted active power from bus i to bus j can be written as [68]:

Pij =
ViVj
Xij

sin(θi − θj), (1.3)

where Vi is the voltage magnitude, θi is the voltage phase angle in bus i, and Xij is the

reactance of transmission line between bus i and bus j. In DC power flow studies, it is as-

sumed that the voltage phase difference between two buses is small and that the amplitudes

of voltages in buses are near to unity. Transmitted power is approximated with a linear

equation [69]

Pij =
θi − θj
Xij

, (1.4)

where θi is the voltage phase angle in bus i, and Xij is the reactance of transmission line

between bus i and bus j. In the state-estimation problem, the control center tries to estimate

n phase angles θi, by observing m real-time measurements. In power flow studies, the

voltage phase angle (θi) of the reference bus is fixed and known, and thus only n−1 angles

need to be estimated. We define the state vector as θ = [θ1, . . . , θn]T . The control center

observes a vector z for m active power measurements. These measurements can be either

transmitted active power Pij from bus i to j, or injected active power to bus i (Pi =
∑
Pij).

The observation can be described as follows,

z = P(θ) + e, (1.5)

where z = [z1, · · · , zm]T is the vector of measured active power in transmission lines, P(θ)

is the nonlinear relation between measurement z, state θ is the vector of n bus phase angles
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θi, and e = [e1, · · · , em]T is the Gaussian measurement noise vector with covariant matrix

Σe.

Define the Jacobian matrix H ∈ Rm as

H =
∂P(θ)

∂θ
|θ=0 . (1.6)

If the phase difference (θi − θj) in (1.4) is small, then the linear approximation model of

(1.5) can be described as

z = Hθ + e. (1.7)

The bad data can be injected to z so as to influence the state estimation of θ. Next, we

describe the current bad data injection methods used in state estimators of different elec-

tricity markets. Given the power flow measurements z, the estimated state vector θ̂ can be

computed as,

θ̂ = (HTΣ−1e H)−1HTΣ−1e z = Mz, (1.8)

where

M = (HTΣ−1e H)−1HTΣ−1e . (1.9)

Thus, the residue vector r can be computed as the difference between measured quantity

and the calculated value from the estimated state,

r = z−Hθ̂. (1.10)

Therefore, the expected value and the covariance of the residual are,

E(r) = 0 and cov(r) = (I−M)Σe, (1.11)

1.3.3 Bad data detection

False data detection can be performed using two methods, Chi–squares χ2 test and

maximum residue test methods.
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1.3.3.1 Chi–squares χ2 test

IfN independent random variablesX1, X2, · · · , XN follow normal distributionXi ∼

N(0, 1), then new random variable Y =
N∑
i=1

X2
i follows χ2 distribution with N degree of

freedom (Y ∼ χ2
N ). The degrees of freedom N , represents the number of independent

variables in the sum of squares. Now summation of square errors of measurements gives,

f(x) =
m∑
i=1

R−1ii e
2
i =

m∑
i=1

(
ei√
Rii

)2 =
m∑
i=1

(eNi )2, (1.12)

wherem is the total number of measurements, Rii is the diagonal entry of the measurement

error covariance matrix, and ei is the ith measurement error. If ei’s are Normally distributed

random variables (with zero mean and Rii variance), eNi ’s will follow a standard Normal

distribution, (i.e. eNi ∼ N(0, 1)) and f(x) will have a χ2 distribution with at most (m− n)

degrees of freedom. As described before in state estimation we have more equation than

unknowns i.e there are at least n measurements that have to satisfy the power balance

equations so at most (m − n) of the measurement errors will be linearly independent.

This means, the largest degree of freedom can be (m − n) (i.e. the difference between

the total number of measurements and the system states). Now in order to have error free

measurements we should have,

J(x̂) ≤ χ2
(m−n),p, (1.13)

where J(θ̂) is the objective function of WLS estimation problem and should be obtained

from solving (1.2). χ2
(m−n),p is the value corresponding to a detection confidence with

probability p and (m− n) degrees of freedom which can be obtained from the Chi-squares

distribution table.
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1.3.3.2 Maximum normalized residue method

Chi–squares test approximates the residues between measured and estimated values

and it might be inaccurate in some cases [1] so most of the state estimators use maximum

(normalized) residue method. In this method, the hypothesis of not being attacked is ac-

cepted if

max
i
|ri| ≤ γ, (1.14)

where γ is the threshold and ri is the component of r.

Recently, a certain type of attack was introduced by [39], which is not detectable by

max residue vector r. In this attack, an attacker with knowledge of topology H, can add

zatt = Ha to z0 (the measurement vector without attack). As a result,

z = z0 + zatt = z0 + Ha. (1.15)

Substituting (1.15) in (1.8) gives,

θ̂ = θ̂0 + a, (1.16)

where θ̂0 = Mz0 and

ẑ = Hθ̂ = Hθ̂0 + Ha. (1.17)

Substituting (1.15) and (1.17) in (1.10), we have

r = z− ẑ = z0 −Hθ̂0. (1.18)

Equation (1.18) shows that residue r will not be affected by the injected attack vector

to measurements, since the resulting r has the same mean and variance as before attack. As

a result, the hypothesis test fails in detecting the attacker. In fact, the control center believes

that the true state is θ0 + a. Consequently, this is called stealth false data injection.
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1.4 Dissertation Contribution

Although using cyber technologies improves the quality of monitoring and decision

making in smart grid, they make the network vulnerable to malicious attacks. This disserta-

tion shows the possible cyber attacks in SCADA system and consequently possible defense

mechanisms that can prevent these attacks. One important difference between false data

due to abnormalities of measurements and cyber attack is that usually cyber attack has

been planned to bypass the bad data detector while the measurements’ abnormalities fol-

low certain statistics that are not difficult to capture in many cases. Following are the main

contributions of this dissertation,

Illustration of economical effect of the cyber attack. We first review the structure of elec-

tricity market and more specifically we describe day–ahead and real–time markets.

Then we present the way that attacker changes the congestion of transmission lines

without being detectable. Doing this, attacker alters the congestion in ex–post market

(in the desired direction) and makes financial profit.

Inferring structural information and launching stealth attack. We investigate the case

that the attackers without prior knowledge of the power grid topology, try to make

inferences through phasor observations. We show that when the change of operating

conditions is relatively mild and can be approximated linearly, linear independent

component analysis can be applied to estimate the Jacobian matrix multiplied by the

eigenvectors of the covariance matrix of the state variables. The inferred structural

information then is used to launch stealth attacks. This attack is formulated to change

the price of electricity in the real-time market.

Demonstration of possible competition between attacker and defender. Attacking and

defending all measurements are impossible for the attacker and defender, respec-

tively. This situation is modeled as a zero-sum game between the attacker and de-
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fender and we describes how the interest of one party (attacker or defender) can

influence the other’s interest. The results of this game defines the proportion of times

that the attacker and defender like to attack and defend different measurements, re-

spectively.

Detection of stealth false data injection with machine learning techniques. We show how

normal operations of power networks can be statistically distinguished from the

case under stealthy attacks. We propose two machine learning based techniques for

stealthy attack detection. The first method utilizes the supervised learning over la-

beled data and trains a support vector machine. The second method requires no train-

ing data and detects deviation in measurements. In both methods, principle compo-

nent analysis is used to reduce the dimensionality of the data to be processed, which

leads to lower computation complexities.

1.5 Dissertation Organization

The remainder of this dissertation is organized as follows: In Chapter 2, we analyze

the economical effect of the bad data injection. Bad data injection in Chapter 2 needs

knowledge about the structure of power network (matrix H in 1.7), in chapter 3 we show

how attacker can infer this structure from the observed measurements and insert stealth

false data. In the later part of the same chapter, we show how the attack can be formulated

to change the electricity prices too. In Chapter 4, we analyze the situations that attacking

and defending all measurements is not possible. This study gives a clear picture of actions

for both attacker and defender in the situation that they have limitations in attacking and

defending different measurements. In Chapter 5, we map the measurements’ data to a low

dimensional space and we show how the normal operating points are separable from the

attacked points. Finally in Chapter 6 we explain the future researches and conclude this

dissertation. For the sake of clarity, Table 1.1 and Table 1.2, show the abbreviations and
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notations that is used in this dissertation respectively.

Table 1.1 Dissertation Abbreviation

BDD Bad Data Detection
CC Control Center
DG Distributed Generation

DSM Demand Side Management
ECC Energy Control Center
ED Economic Dispatch

EMC Energy Management Center
FTR Financial Transmission Right
ICA Independent Component Analysis
IP Integer Programming

ILP Integer Linear Programming
ISO Independent System Operator
LMP Locational Marginal Price
LSE Load Serving Entity
OPF Optimal Power Flow
PCA Principal Component Analysis
PJM Pennsylvania, New Jersey, Maryland
PMU Phasor Measurement Units
RTU Remote Terminal Unit

SCADA Supervisory Control and Data Acquisition
SE State Estimation

SVD Singular Value Decomposition
SVM Support Vector Machine
WLS Weighted Least Squares
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Table 1.2 Dissertation Notations

Pij Transmitted power from bus i to bus j
θ n× 1 vector of voltage angles
Xij Line reactance between bus i and bus j
H m× n Jacobian matrix
r m× 1 residue vector for BDD
γ Residue threshold in BDD
Σe m× n covariance matrix of measurements’ errors
z′ m× 1 attacked measurement vector
A First-order coefficient matrix of the Taylor expansion
K Mixing matrix (K = HA)
y0 C × 1 Independent component vector
ya C × 1 Attack vector
yopt

a C × 1 Optimal attack vector
C Number of independent component in y
Cgi Generation cost at bus i in $/MWh
N Number of buses
Gi Generation dispatch at bus i in (MWh)
Di Demand at bus i in (MWh)
GSFk−i Generation shift factor from bus i to line k
Zt Measurement sets over m different time steps
Ztr m× k reduced measurement matrix
ϕ SVM optimization parameter
f (i) Similarity function for ith sample
F1 Metric for evaluating performance of clustering algorithms
ξ Threshold for Anomaly Detection algorithm
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Chapter 2

Effect Of Stealthy Bad Data Injection On Network Congestion In Mar-

ket Based Power System

2.1 Introduction

In a smart grid, the strong coupling between cyber and physical operations makes

power systems vulnerable to cyber attacks. Changing the traditional structure of power

systems and integrating communication devices are beneficial for better monitoring and

decisionmaking by System Operators but increases the chance of being maliciously at-

tacked. The communication links can be hacked so that the attacker can alter the power

flow and power injection measurements, which are used to estimate the states of power

system. Power system blackout in 2003 created serious problems for the costumers in the

eastern US and Canada. Although different investigations report reasons other than cyber

attack for the blackout, but many researchers believe similar tragedy could happen with tar-

geted cyber attack [70]. Later in 2007, researchers at the Idaho National Lab tried to attack

a synchronous generator. The attack was successful and the generator was self-destroyed in

a couple of minutes [27]. This attack alarmed cyber-security decision makers, motivating

them to define critical infrastructure that is vulnerable to cyber-attack.

In this chapter we show that attacker can compromise measurements and insert false

data into state estimation. This attack will be undetectable and stealthy enough to defeat

traditional bad data detection methods and able to change the transmitted power in trans-

mission lines. This change can increase or decrease the congestion level in the attacked

lines, which in a market-based environment will change the price of congestion and Loca-

tional Marginal Prices. Our contribution is that the optimization problems are formulated

to link the stealthy attack, power congestion and market prices. The simulation results on
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IEEE 30-Bus test system shows the changing of the line congestion by a stealthy attack,

which provides the financial benefits to attacker. The rest of the chapter is organized as

follows. A rational attack is formulated from the attacker point of view in Section 2.2. The

structure of the electricity market and the incentive for formulated attack is presented in

Section 2.3. A formulated attack is tested on an IEEE-30 bus test system and the results

are presented in Section 2.4.

2.2 Attack Against Voltage Angles in State Estimation

As described in Section 1.3.3, if the control center cannot detect the attacked mea-

surements, the results of state estimation will be incorrect and have negative effects on the

control center decisions. In this section, we will show that the attacker can compromise the

measurement vector and change the state of the system. Change in transmitted power can

modify congestion levels, which are closely related to the price at which electricity trades in

most markets. We formulate the problem to increase or decrease transmitted active power

in the desired transmission lines by injecting bad data as follows:

min
a

∑
{ij}∈M

Pij −
∑
{ij}∈N

Pij =

 ∑
{ij}∈M

Hij −
∑
{ij}∈N

Hij

 θ̂ (2.1)

s.t.
{

Zmin ≤ Ha ≤ Zmax,
Cmin ≤ CT

attHa ≤ Cmax.

The objective of the above optimization is to decrease and increase transmitted power,

respectively, in groupM andN of transmission lines represented by {ij}. Hij are rows of

H corresponding to each line {ij}, in which the attacker would like to decrease or increase

transmitted power1. θ̂ is a function of attacking parameter a in (1.16). The two constraints

impose limitations on injected measurement and total cost of attack, respectively, where
1From (1.4), transmitted power in some of lines could be negative which means the direction of power

flow is opposite of primary assumed direction. Congestion in these lines means the active power flow wants
to be less than minimum value which is specified in the OPF program. For removing congestion in these
lines, attacker needs to maximize the power flow in the primary assumed direction in (2.1).
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Catt is a vector representing the cost of attacking each line. Optimization problem in (2.1)

tries to change the estimated transmitted power in the system (without triggering the bad

data detection alarm). In order to describe potential benefits for the attacker, the following

section will briefly introduce the structure of electricity market.

2.3 Optimal Power Flow (OPF) and DC Optimal Power Flow (DCOPF)

Security and optimality of power network operations are among the most impor-

tant tasks in control centers, which can be achieved by efficient monitoring and decision

making. After deregulation of electric industries, different services that can improve secu-

rity and optimality of network can be traded in different markets. Energy market is one of

these markets in which generation companies (GENCO’s) and load serving entities (LSE’s)

compete to generate and consume energy. The control center, knowing the submitted prices

and network constraints, tries to maximize social welfare for all participants. A well known

program for solving this optimization is the Optimal Power Flow program. Linear form of

the optimal power flow is called DCOPF and is used to define the price of electricity (Loca-

tional Marginal Price or LMP) in both day–ahead and real–time markets. In the following,

the formulation of DCOPF together with the general structure of day–ahead and real–time

markets is described.

In general, the LMP can be split into three components including the marginal energy

price LMPEnergy
i , marginal congestion price LMPCong

i , and marginal loss price LMPLoss
i

[71]. A common model of the LMP simulation can be written as

min
Gi

N∑
i=1

Cgi ×Gi, (2.2)
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s.t.
N∑
i=1

Gi −
N∑
i=1

Di = 0, (2.3)

N∑
i=1

GSFk−i × (Gi −Di) ≤ Fmax
k , k ∈ {all lines}, (2.4)

Gmin
i ≤ Gi ≤ Gmax

i , i ∈ {all generators}, (2.5)

where N is the number of buses, Cgi is the generation cost at bus i in ($/MWh), Gi is the

generation dispatch at bus i in (MWh), Di is the demand at bus i in (MWh), GSFk−i is the

generation shift factor from bus i to line k, Fmax
k is the transmission limit of line, Gmax

i

is the upper generation limit for generator i, and Gmin
i is the lower generation limit for

generator i. Above optimization is called DC Optimal Power Flow program and is used in

the formulation of LMP at bus i:

LMPi = LMP energy + LMP cong
i + LMP loss

i , (2.6)

LMP energy = λ, (2.7)

LMP cong
i =

L∑
i=1

GSFk−i × µk, (2.8)

LMP loss
i = λ× (DFi − 1), (2.9)

where L is the number of lines, λ is the Lagrangian multiplier of the equality constraint

(2.3), µk is the Lagrangian multiplier of the kth transmission constraint (2.4), and DFi is

delivery factor at bus i. If the optimization model in (2.2) ignores losses, we will have

DFi = 1 and LMP loss
i = 0 in (2.6). In this work in order to emphasize the main point to

be presented, the loss price is ignored. Control center uses the DCOPF program to define

LMP’s in the day-ahead and real-time markets defined as follows,
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2.3.1 Day-Ahead Market

Based on the submitted bids (from generators and loads) and predicted network con-

dition2, the control center runs the DCOPF program. The output of this market specifies the

dispatch schedule for all generators and defines the LMP in each bus of the power network.

Trading electricity in most of electricity markets such as PJM Interconnection3, New York,

and New England markets is based on the LMP method.

2.3.2 Real–Time Market

In this market, the control center conducts the following: 1- Gathering data from the

measurements that are installed in the physical layer (power network); 2- Estimating the

states of the network (online monitoring of the network); 3- Running an incremental dis-

patch model based on the state estimation results. The obtained LMP’s will be considered

as the real-time price of electricity4. The common model for real–time (Ex–Post) market is

as follows [72, 73]:
min
∆Gi

N∑
i=1

CR
gi ×∆Gi, (2.10)

N∑
i=1

∆Gi −
N∑
i=1

∆Di = 0, (2.11)

N∑
i=1

GSFk−i × (∆Gi −∆Di) ≤ 0, k ∈ {CL}, (2.12)

∆Gmin
i ≤ ∆Gi ≤ ∆Gmax

i , i ∈ {QG}, (2.13)

∆Dmin
i ≤ ∆Di ≤ ∆Dmax

i , i ∈ {DL}, (2.14)

2Such as the load level for the next day, which can be predicted by the historical load data from the past
years.

3PJM Interconnection is a largest competitive wholesale electricity market and serves some eastern parts
of US.

4Dispatch schedule will be similar to the day–ahead market and major changes in the load will be covered
by the Ancillary Services.
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where CR
gi is the generation cost at bus i in ($/MWh)5, ∆Gi is the change in the output of

generator i, and ∆Di is the change in the demand of dispatchable load at bus i in (MWh),

∆Gmax
i and ∆Gmin

i are the upper and lower band for variations in the generation of each

qualified generator (QG)6. Similarly, ∆Dmax
i and ∆Dmax

i are the upper and lower bands

for changes in the consumption of each dispatchable load (DL). The above optimization

problem shows that any change in the transmitted power in congested lines (CL), should

be non–positive value.

Similar to the day–ahead market, LMP in bus i (without considering the effect of

losses) will be,
LMPRT

i = λ+
L∑
i=1

GSFk−i × µk, (2.15)

where L is the number of lines, λ is the Lagrangian multiplier of the equality constraint,

and µk is the Lagrangian multiplier of the kth transmission constraint in (2.12).

In addition to benefiting financially, an attacker could also cause power system black-

out. Practically, a transmission line has different types of protecting relays. For example,

in the case of overloading (e.g., the results of this chapter’s simulated attack) special relays

will disconnect the line (to prevent over-heating and physical damage). This line outage (es-

pecially during peak hours) would reduce the transmission capacity, increasing the chance

of instability in the power system.

2.4 Simulation Results

In this section, we show the effects of the presented attack on the IEEE 30-Bus test

system shown in Fig. 2.1. In order to define LMPs in the Ex-Ante market, the control center

solves DC optimal power flow in (2.2). This optimization is solved by Matpower, a package

of MATLAB M-files for solving power flow and optimal power flow problems [74]. The

5This price can be the same as the day–ahead market or can be changed by the generator at a specific time
(i.e, 4P.M. – 6P.M. in the PJM market).

6All PJM generation units that are following PJM dispatch instructions, are eligible to participate in the
real–time market (to set the real–time LMP values), these generation units are called qualified generators.
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attack targets line 29 in the power system.

Figure 2.1 IEEE 30–Bus test system.

In Fig. 2.2, we show the voltage angles for different buses with and without attack.

We can see that the phase estimation is modified without being detected. Consequently,

simulation results show that line 29 (from bus 21 to bus 22) is congested in Fig. 2.3. For

comparison, we also show in this figure the case without attack and the thermal limits.

As described in Section 2.3, this congestion changes the marginal generator and as a con-

sequence, the network will have different LMPs in its buses as shown in Fig. 2.4. The

financial benefit is given by the following example.

Releasing congestion can change LMPs, so an attacker solves (2.1) and inserts an

undetectable attack7. Due to the stochastic nature of loads, the control center believes that

there is no congestion in the network (for example transmitted power through line 29, is

less than its thermal limit). Based on these results, the control center will use the free (but

fake) capacity in line 29 and run the Ex-Post program for the real-time market. This time,

because of released congestion, LMPs will be the same in the network (Fig. 2.4). If, for

example, attacker buys PMW = 10 at bus 22 in the Ex-Ante market and sells it in the

7Practically attacker could insert false data to measurements by, changing the bias of measurements or
hacking and sending the desired values to control center.
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Figure 2.2 Voltage angles in different buses.

Ex-Post market in the same bus, the profit of this transaction will be:

Profit
($/h)
att = PMW

(
LMP

$/MWh
Ex−post − LMP

$/MWh
Ex−Ante

)
= 10MW (3.8$/MWh − 2.2$/MWh) = 16$/h.

(2.16)

In summary, the attacker can obtain the financial gain through changing power line con-

gestion by stealthy bad data injection without being detected.

2.5 Conclusion

In this chapter, we demonstrate the effect of stealthy false data injection on power

system congestion. We described the structure of electricity market and the economical

incentive that attacker has in this market. The problem solution links stealthy attack, power

congestion, and the resulting market price. We show that by changing congestion, the at-

tacker can change LMPs and obtain financial benefit in an Ex-Post market. Besides finan-

cial misconduct, the attacker can also overload specific lines, which consequently increases

the risk of line outages. We test our proposed attack in an IEEE 30-bus test system using

MATPOWER and show the profitability of such an attack.
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Figure 2.3 Transmitted active power in transmission lines.

Figure 2.4 Locational marginal price in buses.
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Chapter 3

Stealthy Attack Against Electricity Market using Independent Compo-

nent Analysis

3.1 Introduction

In conventional and smart grid, state estimation is a key function in building real-time

model of electricity networks in Energy Management Systems (EMS) [1,26,68,75–77]. A

real-time model is a quasi-static mathematical representation of the current conditions in

an interconnected power network [26]. Measured data is telemetered to Control Center

(CC) every few seconds. CC uses these data to define the mathematical representation

for current conditions of the power network. Obtained real-time model will be used to

make corrective decisions to bring the power network back to the optimal operating point

(from both technical and economical point of views) [78]. Measuring all possible states in

the network is not economical or even feasible. Thus, state estimation is a useful tool for

estimating those states from a limited set of measurements. Two kinds of information are

usually used for state estimation in power systems [68]: i) Analog data of the system such

as Megavar flows on all major lines, active power and reactive power loading of generators

and transformers, and voltage magnitudes at most of the buses of the system; ii) The on/off

status of switching devices such as circuit breakers, reclosers, and transformer taps that

determines the network topology. Control centers transfer these data to state estimator

using communication networks that are sensitive to malicious attacks [79, 80].

In this chapter, we study a category of undetectable attack, named stealth false data

injection attack. Unlike [28, 29, 39, 43, 49], the proposed stealth attack assumes no knowl-

edge of the network topology and makes inferences from the correlations of the line mea-

surements. At the core of the proposed attack, independent component analysis (ICA) is
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utilized to infer the linear structure of the power flow measurements. Knowing this struc-

ture allows us to formulate an undetectable data injection to change the electricity prices.

Simulation studies using the data generated by MATPOWER [74] demonstrate effective-

ness of the proposed attack. Our findings reveal the potential vulnerability of smart grid,

and make a case for more advanced methods to detect and protect power systems from data

injection and manipulation by intruders.

The remainder of this chapter is organized as follows. The system model, false data

injection and an undetectable attack are studied in Section 3.2. Formulation of stealth

attack in the electricity market and its profit for the attacker is discussed in Section 3.3. The

proposed scheme, ICA-based false data injection, is presented and analyzed numerically in

Section 3.4. Finally, the conclusion is given in Section 3.5. Some important notations are

listed in Table 3.1.

Table 3.1 Electricity Market Notations

Pij Transmitted power from bus i to bus j
θ n× 1 vector of voltage angles
Xij Line reactance between bus i and bus j
H m× n Jacobian matrix
r m× 1 residue vector for BDD
γ Residue threshold in BDD
Σe m× n covariance matrix of measurements’ errors
z′ m× 1 attacked measurement vector
A First-order coefficient matrix of the Taylor expansion
K Mixing matrix (K = HA)
y0 C × 1 Independent component vector
ya C × 1 Attack vector
yopt

a C × 1 Optimal attack vector
C Number of independent component in y
Cgi Generation cost at bus i in $/MWh
N Number of buses
Gi Generation dispatch at bus i in (MWh)
Di Demand at bus i in (MWh)
GSFk−i Generation shift factor from bus i to line k
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3.2 System Model

As described in Section 1.3.2, the state-estimation problem is to estimate n phase

angles θi’s, by observing m real-time measurements. In Section 1.3.2 we showed that if

phase difference is small, the relation between measurements and states can be approxi-

mated with z = P(θ) + e, where z = [z1, · · · , zm]T is the vector of the measured active

power in transmission lines. These measurements can be either transmitted active power

from bus i to bus j (Pij), or injected active power to bus i (Pi =
∑

j Pij). θ = [θ1, . . . , θn]T

is the state vector and e = [e1, . . . , en]T is the measurements error vector. Note that H is

unknown to the attackers but known to the ISO.

3.2.1 Bad data detection in linear state estimation

Given the power flow measurements z, the least square estimated state θ̂ can be

computed as:

θ̂ = (HTΣ−1e H)−1HTΣ−1e z = Mz, (3.1)

where M = H(HTΣ−1e H)−1HTΣ−1e . The difference between the measured quality and

the calculated value from the estimated state is called the residue vector r, and can be

computed as the: r = z − Hθ̂. Therefore, the expected value and the covariance of the

residual are:

E(r) = 0 and cov(r) = (I−M)Σe. (3.2)

False data detection due to faulty sensors or topological errors can be performed

using a threshold test [81]. The hypothesis of not being attacked is accepted if

max
i
|ri| ≤ γ, (3.3)

where γ is the threshold and ri is the ith component of r.
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3.2.2 Stealth attack

From the discussion of the false data detection, we observe that if the attacker has

knowledge on topology H, it can add δz = Hδθ to

z0 = Hθ + e, (3.4)

as a result,

z′ = H(θ + δθ) + e, (3.5)

then the hypothesis test in (3.3) fails in detecting the attacker, since the control center

believes that the true state is θ + δθ. This is called stealth false data injection. The

Unobservable attack generally is the attack that passes the bad data detector. Stealth attack

is a special case of unobservable attack. In the stealth attack, due to the configuration of

attack, the expected value and the covariance of the residual remains unchanged.

Now the question is if the topology is not available to the attacker, can the attacker

still successfully inject stealth false data? Our answer is, somewhat surprisingly, yes. The

main idea is when system parameters (e.g., active or passive loads) vary in a small dynamic

range, the structure (topology) information is in fact embedded in the correlations among

power flow measurements. Let z(t) and θ(t) be the measurements and state vectors at time

t, respectively, where θ(t) is unknown. At a particular t, it is impossible to infer H from

z(t) alone. However, over time, if we have knowledge on some stochastic properties of the

random process θ(t), then we may be able to infer H.

In power systems, the state variables are generally a (non-linear) function of the loads

y and the topology H, namely, θ = f(y,H). While the topology is static over the time1,

loads can be modeled as random variables. If the variations are sufficiently small, we can

approximate f with θ = Ay, where A is the first-order coefficient matrix of the Taylor

1During normal operation, all breakers are closed and transmission lines are connected to the network so
the structure of power system will be static over the time.
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expansion at y, i.e.,

z = HAy + e = Ky + e, (3.6)

where y has the dimension of C × 1. With HA and y, we can carry out the false data

injection attack by modifying the measurement data as z′ = z + HAδy, where in section

3.3 attacker will choose δy in order to change the price of electricity. At the control center,

from (3.1), we have θ̂ = (HTΣ−1e H)−1HTΣ−1e z′. Let δθ = Aδy. Since r = z′ − Hθ̂ =

z + H(θ̂ + δθ), E(r) = 0, cov(r) = (I−M)Σe. This shows that, the mean and variance

of r remains unchanged for the attacked case, and thus the attack cannot be detected.

3.2.3 ICA algorithm

We use the ICA technique2 in order to infer HA and y. The linear ICA [83] is a

signal decomposition technique in which the goal is to find a linear representation of the

mixed observable signal so that components are as statistically independent as possible. It

is a special case of blind source separation when there is no noise,

z = Ky, (3.7)

with z = [zm,m = 1, 2, . . . ,M ] is the observable vector containing observation from m

signal monitors, K = [kmc,m = 1, 2, . . . ,M, c = 1, 2, . . . , C] is the unknown mixing

matrix, and y = [yc, c = 1, 2, . . . , C] is the source vector of C independent latent variables.

Given the model and realizations of z, ICA infers both the mixing matrix K and the source

vector y by adaptively calculating the weight vector w and setting up a cost function that

maximizes the non–Gaussianity of the calculated s = (wTz).

As signal dynamics are small, we can linearize the mapping between the measure-

ments and the state vector as z = Hθ. Due to the kirchhoff law, the state vector is typically

highly correlated and varying the load on one bus, may change the value of states on the

2For other techniques such as Principal Component Analysis (PCA) [82], the uncorrelated random vari-
ables can still be dependent. With ICA we can add independent perturbations as shown later.

30



other buses. Thus, conceptually, we need to further project state vector θ to a space where

the resulting vector y is independent. In this case, let θ = Ay, where y are independent

random vectors, and A is the eigenvectors of θ. We have z = HAy = Ky.

Now solutions for ICA can be applied to infer HA and y. In the context of this

research, we adopt FASTICA [83], one of the most widely used ICA algorithms. It is

based on the optimization of a nonlinear contrast function measuring the non-Gaussianity

of the sources. The algorithm is reported to converge quickly and does not depend on the

user-defined parameters. In the following sections, we briefly describe secure and econom-

ical operation of power networks and then we will discuss a particular vulnerability in the

monitoring of states for the power network.

3.3 Cyber Attack Against Electricity Prices

The real-time market uses state estimator results that reflect the run-time state of the

network. In order to transfer data to the state estimator, the control center uses different

communication channels. If an attacker can change the measurement values, the results of

state estimation and consequently real-time market prices will be affected. Changing mea-

surements’ data without detection by Bad Data Detection (BDD) for financial gain, is the

main goal of attackers in this chapter. In the previous subsection, we describe that conges-

tion in lines will change the price of electricity in the network. In order to manipulate the

congestion level in a specific line, the attacker needs to define the group of measurements

that can increase or decrease the congestion, and then, knowing the mixing matrix K, the

attacker will insert an undetectable false data δz = Kδy into the measurements as shown

in (3.5) and (3.6).

Equation (1.4) shows that any change in voltage angle can change the transmitted

power through the line. For example any increase/decrease in 4θ = (θi − θj) will in-

crease/decrease the transmitted power in line Lij . In online monitoring of power systems,
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the transmitted power from bus i to bus j is estimated with P̂ij =
θ̂i−θ̂j
Xij

, this equation

together with (3.1) and (3.6) gives the following:

P̂ij =
θ̂i − θ̂j
Xij

=
(Mi −Mj)

T

Xij

z, (3.8)

=
(Mi −Mj)

T

Xij

Ky = nTy =
C∑
c=1

ncyc,

where (Mi−Mj)
T

Xij
K = nT, Mi is the ith row of matrix M and C is the number of indepen-

dent components. Two important observations can be made from (3.8),

1) Increasing yc, increases and decreases P̂ij if and only if nc > 0 and nc < 0, respectively,

2) Varying the value of a component with a larger nc results in bigger changes in the

estimated power.

These observations are crucial to stage effective targeted attacks3. Because attackers

have no access to H (consequently n), they need to infer the signs of nc’s. Suppose the

transmitted power through line Lij (from bus i to bus j) is near the thermal limit (but is

not congested yet), and the attacker wants to increase the estimated transmitted power (to

create congestion in this line). In order to infer the sign of nc, the attacker compromises

each component of y separately, and determines the sign of each nc based on the observed

results on the real-time market. To do so, the attacker increases the cth component of y

and wait for the results of the real-time market. If the congestion is created, LMPi will

be greater than LMPj , which implies nc > 0. Otherwise, if congestion is not created,

the attacker decreases the cth component of y and if in this case congestion is increased,

one can infer nc < 0. This test should be repeated for all components of y to determine

the sign of each nc (for c = 1, · · · , C) where C is the number of component of y. As

described before, launching successful attack depends not only on the sign of nc’s, but also
3Targeted attack means that attacker wants to change the congestion in the desired direction (increasing

or decreasing the congestion).
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their magnitudes too. Similar to the previous part, the attacker can infer the magnitudes

of nc by observing the changes induced to the real-time market. With the knowledge of

the signs of nc’s, the attacker compromises the measurements for a number of times (say,

Q) and observes the results. The component that has the highest success rate is the best

candidate for attacks. Conceptually, for the cth component of y the attacker solves the

following optimization problem:

max
yc

. Sign(nc)× δyc, (3.9)

s.t.
{

zmin ≤ Kδy ≤ zmax,
yd = 0, ∀ d 6= c.

The first constrain indicates that the maximum amount of stealth attack should be limited

between zmin and zmax. Otherwise large and unusual changes may be detectable by expert

engineers in the control center.

Algorithm 1: Increasing congestion with stealth false data injection
input : z0 = data matrix;

1 [K and y0] = FastICA (z0);
2 for c = 1 : C do

determine δy from (3.9) then,
for q = 1 : Q do

z′ = z0 + Kδy and wait for market results
if LMPEPij < LMPEAij then
Counter = Counter + 1 (counting successful att.)

end if
exit;

exit;

3 Select δyopt from the max. number of successful att. (Counter)
4 z′ = z0 + Kδyopt;

output: compromised measurements z′

The algorithm of attack is summarized in Algorithm 1. In step 1, the attacker runs

the ICA program on the historical data and infers matrix K and y0. Step 1 verifies if z0

follows a linear model: if the linearity assumption holds then max(z0 −Ky0) should be

small. In step 2, the attacker learns which sets of y0 increase and decrease the congestion
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by repeatedly compromising the corresponding component and observing the market re-

sponses. In step 3, the attacker selects δyopt that has the maximum number of successful

attacks (according to the counters in step 2). And finally in step 4, the attacker inserts δyopt

to y0.

Algorithm 1 enables the attacker to create congestion in line Lij; Following a similar

process can also release the congestion level. Both creating and releasing congestion will

change the electricity prices. In the following we describe how the attacker can make profits

by doing so.

3.3.1 Decreasing congestion

In the day–ahead market, the attacker buys at a lower price LMPDA
i and sells at

higher price LMPDA
j (LMPDA

i < LMPDA
j ). The difference between two prices should

be paid to the transmission company as the congestion prices. In the real–time market,

because of decreased congestion, the congestion price paid by the attacker is less than the

projected congestion price in the day–ahead market. Therefore, the profit of this trade in

$/MWh is:

PDec
Cng = CongestionDAPrice − CongestionRTPrice (3.10)

= (LMPDA
j − LMPDA

i )− (LMPRT
j − LMPRT

i ).

3.3.2 Increasing congestion

Increasing the transmitted power from bus i to bus j, can create congestion in line

Lij . This congestion increases/decreases the price of electricity in the receiving/sending

end of the transmission line. The attacker purchases in the day-ahead market a Financial

Transmission Right (FTR) from sending bus i to receiving bus j. FTR is a financial contract

to hedge congestion charges. The FTR holder has access to a specific transmission line in

a defined time and location to transmit a specific value of power. In the real–time market,
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by creating congestion, an attacker can make profit by selling FTR (with higher price) to

any Load Serving Entities (LSE’s).

3.4 Numerical Results

In this section, we first evaluate the performance of the ICA methodology through

extensive simulations using different network topologies. Then, we evaluate the financial

implication of the stealth attack when the attacker only has the knowledge of measurement

values over time. Attacker uses the ICA method to first infer the K matrix and then changes

the transmission congestion. We use MATPOWER [74], a MATLAB simulation tool for

solving power flow and optimal power flow problems. The presented results are experiment

results conducted on the 4-Bus test system [68] (Fig. 3.2), IEEE 14-Bus (Fig. 3.1) and

30-bus [84] power grid models with different numbers of measurements. We have used the

loads are uniform random variables in load buses, which gives rise to (correlated) variations

in the state vector. We also evaluate the impacts of measurement noises on the detection

probability.

3.4.1 Validation of linearity in ICA

In this subsection, we evaluate the validity of linearity assumptions in ICA and its

performance with different levels of noises and different numbers of measurements.

Figure 3.3 shows the mean square error (MSE) ∆z0 = z0 − Kŷ0, where K and

ŷ0 are the estimation by ICA under different topologies. In the experiments, we vary the

level of measurement noises (e in (3.6)) indicated by the Signal Noise Ratio (SNR) of the

true signal and the measurement noise. As shown in Figure 3.3, with increasing SNR, the

mean square error (MSE) decreases linearly in the log-log scale. Furthermore, for different

types of buses, the MSEs coincide even though the 14-bus has a more complex structure.

When SNR is high (∼ 40dB), the MSE is as low as 10−4. This implies that the power flow
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Figure 3.1 IEEE 14–Bus test system.

can indeed be characterized by a linear model, and the ICA can successfully identify the

underlying structure for different topologies as long as the noise is not too significant.

Next, we evaluate the speed of convergence of ICA. Figure 3.4 gives the MSEs with

different number of observations under different SNRs (5dB and 30dB) in the 14-bus topol-

ogy. Similar results have been observed for other topologies and are thus omitted. As

shown in Figure 3.4, as the number of measurements per bus increases from 10 to 30, the

MSEs decrease drastically. However, when the number of measurements per bus increases

beyond 30, there is little change in MSEs for both SNR levels. Therefore, we can conclude

that the ICA algorithm can achieve high accuracy with a small number of observations.

This implies that the attacks can be launched in almost real time.

In the third experiment, we study the independence of state vector θ0. We compute

the eigenvalues of the covariance and sort them in descending order. As shown in Fig-

ure 3.5, the state vector is clearly highly correlated. In fact, for the 14-bus and 30-bus,

there are only 8 and 12 main components (with eigenvalues greater than 10−4). Since ICA
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14 Bus Case

Figure 3.2 4-Bus test power system.

gives independent components, the resulting y0 are naturally independent.

3.4.2 Performance of attacks

In the previous section, we demonstrate that the ICA algorithm can successfully iden-

tify the linear structure of the power flow measurements. Next, the strength of the ICA-

based attack is evaluated. As a baseline, we consider a naive attack that randomly injects

false data (following a Gaussian distribution with zero mean and the same variance, 10dB

higher than the noise level) without knowledge on H. We further compare the proposed

attack to the case without any false data injection.

The null hypothesis (no attack) is accepted when (3.3) holds. The probability that

the null hypothesis is determined to be true is an increasing function of the threshold. To

compute the probability, we assume the residual error r follows the Gaussian distribution

with the mean and variance in (3.2), respectively.

From Figure 3.6, we can see the proposed stealth attack has an almost identical prob-

ability as the no-attack case in the 14-bus topology. Thus it is indistinguishable for the
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Figure 3.3 MSE of ICA inference (z0 −Ky0) vs. SNR.

Table 3.2 Line Reactance and thermal limit for 5–bus test system.

Line L12 L14 L15 L23 L34 L45

X (%) 2.81 3.04 0.64 1.08 2.97 2.97
Fmax
k (MW ) 999 999 999 999 180 999

proposed attack using any probability based detection algorithm. On the other hand, the

random attack has very different characteristics. Simulations on the other topologies show

the similar results.

3.4.3 Attack against line congestion

In order to study the effect of the proposed attack on congestion and consequently the

electricity prices, we use PJM 5-Bus Test System4 with slight modifications. Transmission

lines’ parameters are given in Table 3.2 and Table 3.3. Generators’ and loads’ parameters

(including Gmax
i , Ci, and Di) together with the location of measurements are shown in

4PJM 5-Bus Test System, is a small power network, which is often used for economical studies of power
networks.
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Figure 3.4 MSE of ICA inference (z0−Ky0) vs. the number of Observations (14-bus case).

Figure 3.7. We use random loads with the specified mean and variance to simulate realistic

conditions in the network. After solving (2.2) for the base case (without attack), results of

the day-ahead market shows that there is no congestion on the lines and thus LMP will be

the same in all buses (Figure 3.8) but the transmitted power in line L34 (from bus 3 to bus

4) is near its thermal limit. The attacker buys a specific amount of FTR (in line L34), and

decides to compromise measurements and create congestion in the real-time market. As

previously described, this congestion will prevent dispatching of cheap generation and will

increase the congestion price (LMP3−LMP4) in line L34 (Figure 3.8 shows the the LMP’s

before and after a successful attack). The attacker follows the procedure in Algorithm 1. In

the 1st and 2nd steps the attacker uses ICA and obtains mixing matrix K. The simulation

result shows that PJM 5–bus test system has 4 independent components so the dimension

of K is 11× 4. Notice that 11 is the number of measurements in the PJM 5-bus test system

as shown in Figure 3.7.

To evaluate the effect of compromising each component of y, the attacker injects
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Figure 3.5 Eigenvalues of the state vector of different bus topologies.

false data to each element for a specific number of times (Q = 1000) and outputs the

compromised z′ = z0 + Kδy. The percentage of successful attacks, defines the best

component to attack (step 3). Figure 3.9 shows the attack vectors Kδy, which are unde-

tectable by the control center and will change the estimated voltage angle in the network

(Figure 3.10). Any change in the estimated angle will change the estimated transmitted

power in the transmission line (Figure 3.11). As previously described, the magnitude of

such changes is not known to the attacker, instead it observes the changes in real time

market prices, which is used to determine the optimal attack vector. Figure 3.12 shows

that y4 have the most effect in creating congestion at line L34. These results are consis-

tent with the results in Figure 3.11, which assumes the knowledge of network topology

and indicates n4 > n3 > n1 > n2. The attacker hereby inserts Ky4 to the measure-

ments (z′ = z0 + Ky4). This attack, after creating congestion in the real-time market,

changes the LMP’s in either end of the congested line. As a result, the attacker can sell

FTR34 = LMP3 − LMP4 = 30− 8.64 = 21.36($/MWh) to any transmission costumer
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Figure 3.6 Probability for miss detection of attacks.

who needs to transfer power in this line5.

Table 3.4 shows δy and the number of successes out of 1000 trials in creating conges-

tion for each attack vector. Three different thresholds are used in the inequality constraints

in (3.9) (it is assumed that ε = zmax = −zmin). As Table 3.4 shows, the higher values of

threshold gives rise to better chances of creating congestion but also increases the risk of

detection by expert engineers in the control center. Similar to Figure 3.12, this table shows

that δy4 has the most effect on changing congestion.

3.5 Conclusion

In this chapter, we proposed an inference algorithm in smart grid based on the lin-

ear independent component analysis. We showed that an attacker can estimate the system

topology just by observing the power flow measurements using the ICA algorithm. Once

5It is assumed that the attacker already has bought FTR34 = LMP3−LMP4 = 30−30 = 0($/MWh)
in the day-ahead market.
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Figure 3.7 Measurement configuration in the PJM 5-bus test system.
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mitted power za.
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Figure 3.11 Change in the estimated transmitted power.
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Figure 3.12 Effects of varying individual components on congestion.
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Table 3.3 Generation shift factors of lines in 5–bus test system.

PPPPPPPPPLine
Bus

B1 B2 B3 B4 B5

L1−2 0.1939 -0.476 -0.349 0 0.1595
L1−4 0.4376 0.258 0.1895 0 0.36
L1−5 0.3685 0.2176 0.1595 0 -0.5195
L2−3 0.1939 0.5241 -0.349 0 0.1595
L3−4 0.1939 0.5241 0.6510 0 0.1595
L5−4 0.3685 0.2176 0.1595 0 0.4805

Table 3.4 Attack vector δy and number of successful attacks (for Q = 1000 attack).

δy1 = δy2 = δy3 = δy4 =

δy


0.03

0
0
0




0
0.01

0
0




0
0

0.02
0




0
0
0

0.01


ε1 = 20MW 151 50 195 216
ε2 = 30MW 294 81 335 368
ε3 = 40MW 434 116 479 572

the information is in hand, malicious stealth attacks can be launched. The false data is in-

serted in such a way that it changes the congestion price of electricity. Using the simulated

data from MATPOWER, we compare the proposed algorithm with a random attack scheme

and showed that our attack methodology is undetectable and can indeed bring financial

gains to the attacker.
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Chapter 4

Bad Data Injection Attack and Defense in Electricity Market using

Game Theory Study

4.1 Introduction

Power system is a very large and complex system that uses huge number of mea-

surements to monitor the current state of the power grid. From cyber–security point of

view, attacking and defending all of these measurements are impossible for attacker and

defender respectively. This situation can be analyzed by the game theory. Game theory is a

mathematical framework for studying complex interactions among the independent ratio-

nal entities. Psychology, economics, politics, and communication systems are the examples

that game theory have been used successfully [53,54]. The proliferation of advanced tech-

nologies and services in smart grid systems implies that disciplines such as game theory

will naturally have an outstanding role in the design and analysis of smart grids [55]. The

heterogeneous nature of the smart grid1 and the need for low-complexity distributed algo-

rithms for distributed operation of the smart grid nodes, are the examples that elucidate the

application of the game theory in the smart grid studies.

Some applications of game theory in smart grids have been studied in [56–59]. In

[56], the authors present a method for evaluating a fully automated electric grid in real

time and finding potential problem areas or weak points within the electric grid by using

the game theory. In [57], the authors propose a consumption scheduling mechanism for

home and neighborhood area load demand management in smart grid using integer linear

programming (ILP) and game theory. [58] is a survey about some of game theory-based

applications to solve different problems in smart grid. In [59] the authors model and analyze

1Smart grid typically composed of a variety of networks such as micro-grids, smart meters, appliances,
and others. Each of these networks have different capabilities and may follow different objectives.
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the interactions between the retailer and electricity customers as a four-stage Stackelberg

game. In this chapter we use game theory to study the interactions between attacker and

defender when they have limitations in attacking and defending all measurements. The

game defines the proportion of times that the attacker and defender like to attack and defend

different measurements, respectively.

The remainder of this chapter is organized as follows: The system model is given in

Section 4.2, and the formulation of an undetectable attack in the electricity market is given

in Section 4.3. Section 4.4 models the interactions between the attacker and defender as a

zero–sum game. Numerical results are shown in Section 4.5, and the conclusion closes the

chapter in Section 4.6.

4.2 System Model

As described in Section 1.3.2, the state-estimation problem is to estimate n phase

angles θi’s, by observing m real-time measurements. In Section 1.3.2 we showed that if

phase difference is small, the relation between measurements and states can be approxi-

mated with z = P(θ) + e, where z = [z1, · · · , zm]T is the vector of the measured active

power in transmission lines. These measurements can be either transmitted active power

from bus i to bus j (Pij), or injected active power to bus i (Pi =
∑

j Pij). θ = [θ1, . . . , θn]T

is the state vector and e = [e1, . . . , en]T is the measurements error vector. Note that H is

unknown to the attackers but known to the ISO.

4.2.1 Bad data detection in linear state estimation

Given the power flow measurements z, the least square estimated state θ̂ can be

computed as:

θ̂ = (HTΣ−1e H)−1HTΣ−1e z = Mz, (4.1)
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where M = H(HTΣ−1e H)−1HTΣ−1e . The difference between the measured quality and

the calculated value from the estimated state is called the residue vector r, and can be

computed as the: r = z − Hθ̂. Therefore, the expected value and the covariance of the

residual are:

E(r) = 0 and cov(r) = (I−M)Σe. (4.2)

False data detection due to faulty sensors or topological errors can be performed

using a threshold test [81]. The hypothesis of not being attacked is accepted if

max
i
|ri| ≤ γ, (4.3)

where γ is the threshold and ri is the ith component of r.

4.3 Cyber Attack Against Electricity Prices

Real-time market uses the state estimator results that shows the on-line state of the

network. In order to transfer data to the state estimator, control center uses different com-

munication channels such as power line communication channel. Using these channels,

increases the risk of cyber attack. In other word, if an attacker can change the measurement

values2, the results of state estimation and consequently results of real-time market will

be affected. Changing measurements’ data without detection by BDD (which can bring

financial benefits) is the main goal of the attacker in this chapter. In the previous section,

we described that the congestion in lines will change the price of electricity in the network.

Manipulating prices is a good incentive for the attacker to compromise the measurements.

In order to manipulate the congestion level in a specific line, the attacker needs to define

the group of measurements that can increase or decrease the congestion, then the attacker

can insert false data into the measurements. Equation (1.4), shows that any change in

2Attacker can carry out stealth attacks by corrupting the power flow measurements through attacking the
Remote Terminal Units (RTUs), tampering with the heterogeneous communication network or breaking into
the Supervisory Control and Data Acquisition (SCADA) system through the control center office Local Area
Network (LAN) [39, 85].

48



voltage angle can change the transmitted power through the line. For example, any in-

crease/decrease in 4θ̂ = (θ̂i − θ̂j) will increase/decrease the transmitted power. In online

monitoring of power systems, the transmitted power from bus i to bus j can be estimated

with P̂ij =
θ̂i−θ̂j
Xij

, and this equation together with equation (1.8) gives the following:

P̂ij =
θ̂i − θ̂j
Xij

=
(Mi −Mj)

T

Xij

z (4.4)

= QTz = QT
+z+ + QT

−z−,

where QT =
(Mi−Mj)

T

Xij
. The positive and negative arrays of this vector are shown with QT

+

and QT
−, respectively. These coefficient vectors divide the measurements into two groups

z+ and z−, in which adding za > 0 to any array of z+ and z− will increase and decrease

the estimated transmitted power flow, respectively. In this chapter, the measurements in z+

and z− are considered as groupM and N , respectively3. After defining these groups, the

attacker tries to insert an undetectable bad data into the measurements. Assume z = z0

is the measurement values without corruption (safe mode). From (1.10) residue for safe

mode will be:

r0 = z−Hθ̂ = z0 −H(Mz0). (4.5)

In the case of attack, z = z0 + za and the residue will be,

r = z−Hθ̂ = z0 + za −H(Mz0 + Mza) (4.6)

= z0 −HMz0 + za −HMza = r0 + ra,

where ra = (I−HM)za. From triangular inequality,

‖ r ‖≤‖ r0 ‖ + ‖ ra ‖, (4.7)

3It is assumed that attacker knows H (and consequently M). Knowing the location of attack, from (4.4),
attacker can distinguish the measurements in groupM and N .
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this equation shows that if ‖ ra ‖=‖ (I−HM)za ‖ is small, with large probability control

center can not distinguish between ‖ r ‖ and ‖ r0 ‖. So inserted attack will path the

bad data detection if, ‖(I − HM)za‖ ≤ ξ. In this constraint ξ is a design parameter

for the attacker. Smaller values of ξ will be more likely to be undetected by the control

center [29]. However, the ability to manipulate the state estimation, will be limited. we

assume ξ is predetermined by the attacker. In order to change congestion, attacker will

define the inserted false data using the following optimization,

max
za

.
∑
i∈{M}

za(i)−
∑
j∈{N}

za(j), (4.8)

s.t.
{
‖(I−HM)za‖ ≤ ξ,
za(k) = 0 ∀ k ∈ {SM},

where za(i) is the ith element of attack vector za. GroupM andN consist of measurements

that increasing and decreasing their value will increase the congestion. Objective of the

above optimization is to increase and decrease measurements value in group M and N ,

respectively. First constraint is for avoiding detection of the attack by bad data detector

in state estimator. Group SM shows the safe measurements that can not be compromised

(such as those protected by Phasor Measurement Units). With inserting the resulted attack

vector za to the actual values of measurements (z = z0 + za), the attacker will change the

estimated transmitted power in the attacked line. From (4.4), this change will be

∆P̂ij =
(Mi −Mj)

T

Xij

za. (4.9)

While the attacker tries to increase this change, the defender tries to decrease it by de-

fending the measurements that have high risk of being attacked. Changing the estimated

power flow in a specific line will increase the chance of changing prices in both sides of

the attacked line4. Either increasing or decreasing congestion can bring financial benefits

for attacker.
4The attacker doesn’t have access to all data such as the submitted prices, generation limits, etc. So with

changing the estimated transmitted power desired direction, the attacker increases the chance of creating or
releasing congestion in the attacked line.
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4.3.0.1 Decreasing the congestion

In day–ahead market the attacker buys at lower price LMPDA
i and sells at higher

price LMPDA
j (LMPDA

i < LMPDA
j ). The difference of two prices should be paid to

the transmission company as the congestion prices. In the real–time market, because of

decreasing congestion, the congestion price paid by the attacker is less than the supposed

congestion price in the day–ahead market so the profit of this trade in $/MWh will be:

PDec
Cng = CongestionDAPrice − CongestionRTPrice (4.10)

= (LMPDA
j − LMPDA

i )− (LMPRT
j − LMPRT

i ).

4.3.0.2 Increasing the congestion

Increasing transmitted power from bus i to bus j, can create congestion in line Lij .

This congestion increases/decreases the price of electricity in the receiving/sending end of

the transmission line. So the attacker needs to buy a Financial Transmission Right (FTR)

from sending bus i to ending bus j. FTR is a financial contract to hedge congestion charges.

The FTR holder has access to a specific transmission line in a defined time and location to

transmit a specific value of power. In real–time market with creating congestion, FTR can

be sold (with higher price) to any Load Serving Entities (LSE’s).

In the next section, we will analyze the behavior of both attacker and defender in

the real–time market. Limitation in attack (to) and defend (from) different measurements

makes a difficult situation for both parties. Mathematical modeling of this behavior in the

next section, is an efficient answer to the question of Where should I attack? and Where

should I defend? for the attacker and the defender, respectively.
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4.4 Gaming Between Attacker and Defender

In order to protect line L, the defender needs to protect groupM and group N . Be-

cause the inserted attack will pass the BDD in state estimation (first constraint in (4.8)),

the control center should use some other detection methods. For example, the defender can

put some secure measurements into random locations in the network. The main problem

in this procedure is that defending all measurements is not possible. On the other hand, it

is impossible for the attacker to attack all measurements. Instead it tries to attack measure-

ments that have the most effect on the state estimator without being detected by the control

center. This behavior can be modeled with a zero–sum strategic game between the attacker

and the defender5.

4.4.1 Two-person zero-sum game between attacker and defender

Define A = (N , (Si)iεR, (Ui)iεN ) as a game, in which the defender and the attacker

compete to increase and decrease the change of the estimated transmitted power (∆P̂ij),

respectively. In this game, R is the set of players (the defender and the attacker), and the

game can be defined as:

• Players set: R = {1, 2} (the defender and the attacker).

• Attacker’s strategy: to choose measurements to attack.

• Strategy set Si: The set of available strategies for player i, S1 = {αCNa}, S2 =

{αCNd
}, where Na and Nd are the maximum number of measurements that the at-

5In the case that there are different non-cooperative attackers, they will have the worst performance. But
if the attackers are cooperative, it is the worst case for the defender. In this chapter, we consider the worst
case by assuming all attackers are together as one party. So we formulate the problem as the two-user zero
sum game. If the attackers are non-cooperative, some games such as the Stackelberg game can be employed.
These games are interesting topics which needs future investigations.

52



tacker can attack and the defender can defend and αCNa is the combination of Na

measurement out of α measurement.

• Utility: U1 = ∆P̂ij and U2 = −∆P̂ij for the attacker and the defender, respectively.

4.4.2 Noncooperative finite games: two–person zero–sum

A strategic game is a model of interactive decision-making, in which each decision-

maker chooses its plan of action once and for all, and these choices are made simultane-

ously. For a given (m × n) matrix game A = {aij : i = 1, . . . ,m; j = 1, . . . , n}, let

{row i∗, column j∗} be a pair of strategies adopted by the players. Then, if the pair of

inequalities

ai∗j ≤ ai∗j∗ ≤ aij∗ , (4.11)

is satisfied ∀i, j. The two–person zero–sum game is said to have a saddle point in pure

strategies. The strategies {row i∗, column j∗} are said to constitute a saddle–point equi-

librium. Or simply, they are said to be the saddle–point strategies. The corresponding

outcome ai∗j∗ of the game is called the saddle–point value. If a two–person zero–sun game

possesses a single saddle point, the value of the game is uniquely given by the value of

saddle point. However, the mixed strategies are used to obtain an equilibrium solution in

the matrix games that do not possess a saddle point in pure strategies. A mixed strategy for

a player is a probability distribution on the space of its pure strategies. Given an (m×n)

matrix game A = {aij : i = 1, . . . ,m; j = 1, . . . , n}, the frequencies with which different

rows and columns of the matrix are chosen by the defender and the attacker will converge

to their respective probability distributions that characterize the strategies. In this way, the

average value of the outcome of the game is equal to

J(y,w) =
m∑
i=1

n∑
j=1

yiaijwj = y′Aw, (4.12)
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where y and w are the probability distribution vectors defined by

y = (y1, · · · , ym)′, w = (w1, · · · , wn)′. (4.13)

The defender wants to minimize J(y,w) by an optimum choice of a probability distribution

vector y ∈ Y , while the attacker wants to maximize the same quantity by choosing an

appropriate w ∈ W . The sets Y and W are

Y = {y ∈ Rm : y ≥ 0,
m∑
i=1

yi = 1}, (4.14)

W = {w ∈ Rn : w ≥ 0,
n∑
j=1

wj = 1}. (4.15)

Given an (m×n) matrix game A, a vector y∗ is known as a mixed security strategy for the

defender if the following inequality holds ∀y ∈ Y :

V m(A) , max
w∈W

y∗′Aw ≤ max
w∈W

y′Aw, y ∈ Y. (4.16)

And the quantity V m(A) is known as the average security level of the defender. We can

also define the average security level of the attacker as V m(A) if the following inequality

holds for all w ∈ W :

V m(A) , min
y∈Y

y′Aw∗ ≥ min
y∈Y

y′Aw, w ∈ W. (4.17)

The two inequalities can also be given as:

V m(A) = min
Y

max
W

y′Aw, (4.18)

V m(A) = max
W

min
Y

y′Aw. (4.19)

However, it always holds true that V m(A) = V m(A) for a two-person zero-sum game in

the mixed strategies. In this way, for an (m×n) matrix game A, A has a saddle point in

the mixed strategies, and Vm(A) is uniquely given by

Vm(A) = V m(A) = V m(A). (4.20)
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We can see that if the players are able to use mixed strategies, the matrix games always

have a saddle-point solution Vm(A) as the only solution in the zero-sum two-person game.

4.4.3 Computation of a two-Person zero-sum game

One way to get the saddle point in the mixed strategies is to convert the original

matrix game into a linear programming (LP) problem. Given A = {aij : i = 1, . . . ,m; j =

1, . . . , n} with all entries positive (i.e., aij > 0), the average value of the game in mixed

strategies is given by

Vm(A) = min
Y

max
W

y′Aw = max
W

min
Y

y′Aw. (4.21)

Obviously, Vm(A) must be a positive quantity on A. Furthermore, the expression can also

be written as

min
y∈Y

v1(y), (4.22)

where v1(y) is defined as

v1(y) = max
W

y′Aw ≥ y′Aw, ∀w ∈ W. (4.23)

In addition, it can also be written as

A′y ≤ 1nv1(y), 1n , (1, . . . , 1)′ ∈ Rn. (4.24)

Now the mixed security strategy for the defender is to

min v1(y) (4.25)

s.t.


A′ỹ ≤ 1n,
ỹ′1m = [v1(y)]−1,
y = ỹv1(y)
ỹ ≥ 0,

where ỹ is defined as y/v1(y). This is further equivalent to the maximization problem

max
ỹ

ỹ′1m, (4.26)
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s.t.
{

A′ỹ ≤ 1n,
ỹ ≥ 0,

which is a standard LP problem.

Similarly, we can get the standard LP problem for the attacker

min
w̃

w̃′1n, (4.27)

s.t.
{

Aw̃ ≥ 1m,
w̃ ≥ 0,

where w̃ is defined as w/v2(w) and

v2 , min
Y

y′Aw ≤ y′Aw, ∀y ∈ Y. (4.28)

4.5 Numerical Results

In this section, we analyze the effect of attack on the PJM 5-bus test system in [86]

with a slightly modifications. Transmission lines’ parameters are given in Table 3.2 and

3.3. Generators’ and loads’ parameters (including Gmax
i , Ci, and Di) together with the

location of measurements are shown in Figure 4.1. Solving (2.2) for the day–ahead market

shows that L54 (line from B5 to B4) is congested. Here attacker chooses L54 to attack.

Knowing H , from (4.4) the attacker obtains Q = [0.2 0.05 0 0.19 0.25 0.04 − 0.04 −

0.08 − 0.13 0.18 0.05]. Positive and negative arrays of this vector correspond to z+ and

z− vectors, respectively, i.e., zT+ = [z1, z2, z4, z5, z6, z10] and zT− = [z7, z8, z9]. The greater

values of Q(i) correspond to measurements that have more effect on P̂ij . Suppose there are

4 insecure measurements {z1, z4, z5, z10} and the attacker can compromise 2 of them, also

the defender can defend 2 measurements simultaneously. So the attacker should choose 2

measurements among these measurements that have more effect on P̂ij and a sufficiently

low probability of detection by the defender. In this example, the attacker can choose

from strategy set S1 = {z1z4, z1z5, z1z3, z4z5, z4z3, z5z3}, and the defender can choose
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Figure 4.1 Measurement configuration in PJM 5-bus test system.

from strategy set S2 = {z1z5, z1z3, z4z5, z4z3, z5z3}. It is assumed that if the attacker for

example chooses {zizj} (to attack measurement i and j, i 6= j) and the defender chooses

{zizk} (to defend measurement i and k, i 6= k), compromising {zj} will be successful, and

the change in P̂ij is only because of compromising {zj}. If ξ = [5MW , · · · , 5MW ]′(12×1),

solving (4.8) and (4.9) gives ∆P̂54 = U1 = −U2. As Figure 4.2 shows, these payoffs are

the results of different attack and defend strategies (which both players take). The attacker

and defender in this game are not aware of the sequence of play. Also one player has

no idea about the other player’s action. These situations are described by a normal form

zero–sum game in Table 4.1.

Table 4.1 shows that min(max
row

) = 3.21, which is not equal to max( min
column

) = 0. So

there is no ai∗j∗ that satisfies (4.11). Therefore, the game doesn’t have a single saddle point

and the problem shifts to finding the proportion of times that the attacker and the defender,

play their own strategies. Solving such a game (which does not have a single saddle point)
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Figure 4.2 Extensive form of single–act game.

Table 4.1 Zero–sum game between the Attacker and the Defender

w1 w2 w3 w4 w5 w6
PPPPPPPPPDef.

Att.
z1z4 z1z5 z1z10 z4z5 z4z10 z5z10

y1 z1z4 0 3.14 2.81 3.14 2.81 4.84
y2 z1z5 1.17 0 2.81 1.17 5 2.81
y3 z1z10 1.17 3.14 0 5 1.17 3.14
y4 z4z5 1.28 1.28 4.43 0 2.81 2.81
y5 z4z10 1.28 5.35 1.28 3.14 0 3.14
y6 z5z10 3.21 1.28 1.28 1.17 1.17 0

is a linear programming. From (4.26) defender defines ỹ, we have

max ỹ′1m, (4.29)

s.t.



1.17ỹ2 + 1.17ỹ3 + 1.28ỹ4 + 1.28ỹ5 + 3.2ỹ6 ≤ 1,
3.14ỹ1 + 3.14ỹ3 + 1.28ỹ4 + 5.35ỹ5 + 1.28ỹ6 ≤ 1,
2.81ỹ1 + 2.81ỹ2 + 4.43ỹ4 + 1.28ỹ5 + 1.28ỹ6 ≤ 1,
3.14ỹ1 + 1.17ỹ2 + 5ỹ3 + 3.14ỹ5 + 1.17ỹ6 ≤ 1,
2.81ỹ1 + 5ỹ2 + 1.17ỹ3 + 2.81ỹ4 + 1.17ỹ6 ≤ 1,
4.84ỹ1 + 2.81ỹ2 + 3.14ỹ3 + 2.81ỹ4 + 3.14ỹ5 ≤ 1,
ỹ1, ỹ2, ỹ3, ỹ4, ỹ5, ỹ6 ≥ 0,

which gives ỹ = [0 0.049 0.134 0.136 0.018 0.183]. Therefore, y = ỹv1(y) = ỹ(ỹ′1m)−1 =

[0 0.094 0.26 0.262 0.0347 0.35]. Similarly, solving (4.27) for the attacker gives w̃ =
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[0.29 0 0.02 0.019 0.019 0.174], and therefore, w = w̃v1(w) = w̃(w̃′1m)−1

= [0.556 0 0.038 0.036 0.037 0.333].

Figure 4.4 shows the proportion of times that the defender and the attacker should

defend and attack different measurements, respectively. As discussed in Section 4.3, chang-

ing the estimated transmitted power in line L54 can change the prices in either bus 5 or bus

4. In real–time market the control center estimates transmitted power and then knowing

dispatch schedule (which is defined in day–ahead market) load level in different buses is

estimated. This estimated load together with the current state of the network is applied to

a DCOPF, and this program defines the real–time prices. If the operating condition (such

as the load level) has not changed and there is no error in the measurements, the real–time

prices should be the same as the day–ahead prices. Here without loss of generality, we

assume that the actual load level doesn’t change and any change in the estimated load level

is because of bad data injection to the state estimator.

The following example shows how attacker is able to change the prices in real–

time market. Suppose attacker compromise z1z4 and the defender defends z5z10 so, attack

against z1z4 is successful. In this case solving (4.8) gives za = [8.21 0 0 8.09 0 0 0 0 0 0 0 0](MW ).

So from (1.8), estimated states for all buses will be θ̂ = [50 56 65 01 71.6]× 10−3(rad). Using

(4.4), estimated transmitted power can be obtained6 P̂54 = 236.59(MW ). This power is

less than thermal limit of transmission line that shows, congestion in this line is released.

In this case solving (2.10) and (2.15) gives the real time prices (here it is assumed that

∆Gmax
i = −∆Gmin

i = 0.1MW and ∆Dmax
i = −∆Dmin

i = 0MW ).

Figure 4.3 shows the prices for attacked and without–attack cases. Change of esti-

mated transmitted power in transmission line is shown in Figure 4.5. Now, assume that in

day–ahead market, the attacker buys 100MW power in bus 5 and sells it in bus 4. From

6This value is considered as the real–time transmitted power in L54.
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(4.10), the profit of this contract will be:

Profit = [(35− 20)− (30− 30)]× 100 = 1500($/h). (4.30)
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Figure 4.3 Locational marginal prices for PJM 5-Bus test system for both with attack and
without attack.

4.6 Conclusion

In this chapter, first we analyzed the effect of compromising each measurement on

the state estimator results. Compromising these measurements can change the congestion

and consequently the price of electricity, and thus, the attacker has an intensive to change

(a) Probability of attack (b) Probability of defend

Figure 4.4 Proportion of times that attacker and defender, attack and defend to measure-
ments respectively.
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Figure 4.5 Change in the estimated transmitted power of lines because of attack to Z1 and
Z4.

the congestion in the desired direction. Since a typical power system has a huge number

of measurements, attacking or defending all of those becomes impossible for attacker and

defender, respectively. To this end, this behavior is modeled and analyzed in the framework

of game theory. The simulation results on PJM 5–Bus test system indicate that, in the

specified load level, how attacker can change the prices in the desired direction (decreasing

in this example).
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Chapter 5

Detecting Stealthy False Data Injection using Machine Learning in Smart

Grid

5.1 Introduction

For many engineering and science problems, there is no direct mathematical solution.

Learning techniques have been used extensively to overcome this problem. Researchers in

different fields try to develop algorithms that learn the behavior of the given problem using

historical data [87], [88], [89]. Machine learning usually is used to establish relationships

between multiple features of the data sets and can be used in different applications such as

prediction, clustering and detection of anomaly behavior in the data set. Learning meth-

ods are divided into two groups, supervised on unsupervised. In supervised learning each

observation (time samples of data set) has an output label that is used to learn the relation

between features [90, 91]. In unsupervised learning, only time instances (observations) of

different features are available. Having only observations, unsupervised techniques try to

discover new properties and classes in the data set [92, 93].

In this chapter, we use both supervised and unsupervised1 learning methods to dis-

tinguish the attacked and the safe operating modes in state estimation. To do so, in Section

5.2 we first discuss state estimation and bad data detection problem. In Section 5.3 we

illustrate two different machine learning algorithms and the way that they can be utilized

to detect the bad data will be described. Numerical result in Section 5.4 shows the effec-

tiveness of our learning techniques. Conclusion in Section 5.5 closes this chapter. For the

sake of clarity, some important notations are listed in Table 5.1.

1In order to compare the performance with supervised learning technique, we are indeed using semi-
supervised method in this chapter. Output labels are used to learn the best performance in the unsupervised
learning method, but in the case that the output labels are not available, (losing some performance) unsuper-
vised technique can be used instead.
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Table 5.1 Machine learning notations

Pij Transmitted power from bus i to bus j
θ n× 1 vector of voltage angles
Xij Line reactance between bus i and bus j
H m× n Jacobian matrix
m Number of measurements
n Number of states (number of buses here)
r m× 1 residue vector for BDD
γ Residue threshold in BDD
Σe m× n covariance matrix of measurements’ errors
z′ m× 1 attacked measurement vector
Zt Measurement sets over m different time steps
Ztr m× k reduced measurement matrix
ϕ SVM optimization parameter
f (i) Similarity function for ith sample
F1 Metric for evaluating the performance of clustering algorithms
ξ Threshold for Anomaly Detection algorithm

5.2 System Model

As described in Section 1.3.2, the state-estimation problem is to estimate n phase

angles θi’s, by observing m real-time measurements. In Section 1.3.2 we showed that if

phase difference is small, the relation between measurements and states can be approxi-

mated with z = P(θ) + e, where z = [z1, · · · , zm]T is the vector of the measured active

power in transmission lines. These measurements can be either transmitted active power

from bus i to bus j (Pij), or injected active power to bus i (Pi =
∑

j Pij). θ = [θ1, . . . , θn]T

is the state vector and e = [e1, . . . , en]T is the measurements error vector. Note that H is

unknown to the attackers but known to the ISO.

5.2.1 Bad data detection in linear state estimation

Given the power flow measurements z, the least square estimated state θ̂ can be

computed as:

θ̂ = (HTΣ−1e H)−1HTΣ−1e z = Mz, (5.1)
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where M = H(HTΣ−1e H)−1HTΣ−1e . The difference between the measured quality and

the calculated value from the estimated state is called the residue vector r, and can be

computed as the: r = z − Hθ̂. Therefore, the expected value and the covariance of the

residual are:

E(r) = 0 and cov(r) = (I−M)Σe. (5.2)

False data detection due to faulty sensors or topological errors can be performed

using a threshold test [81]. The hypothesis of not being attacked is accepted if

max
i
|ri| ≤ γ, (5.3)

where γ is the threshold and ri is the ith component of r.

5.3 Machine Learning Based Bad Data Detection

In the previous section, we have showed that stealth bad data can pass the traditional

BDD. In this section, we devise two machine learning based techniques to detect stealthy

attacks. The key observation that motivates our solution approach is that normal data and

tampered data (due to attacks) tend to be separated in certain projected space. When the

class labels (normal vs tampered) are given in the historical data, we can train a classifier

to identify attacks. On the other hand, when labels are not given, we will apply anomaly

detection to identify the outliers as potential attacks. In both schemes, one main challenge

is the curse of dimensionally, namely, as the size of the power grid grows, the dimension

of the measurement data grows rendering high computation complexity. We use principle

component analysis (PCA) to first reduce the dimension of measurements and then apply

the proposed classification/detection techniques. PCA maps the data from the original

domain to a new domain. Attacked data in the new domain are more handleable than the

original domain because the data are not correlated anymore.
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5.3.1 Principle component analysis

Most of the practical systems such as power networks have complex structure, thus

understanding their dynamics is very challenging in some cases. One interesting way of

analyzing these dynamics is to first use redundant measurements in the network, and then

use PCA to extract the interest dynamics of the system. PCA is a well known method,

so we just briefly bring the concept and formulation here. Mathematically, PCA maps the

data from n dimensional space to r dimensional space (5.6) where r 6 n. The data in

the new domain have two important properties: 1) different dimensions of the data have

no correlation anymore 2) the dimensions are ordered based on the importance of their

information. The following equations are used to map the m × n measurement matrix Zt

to an m× r dimension matrix Ztr [94],

a =
1

m
× ZT

t × Zt, (5.4)

[U,S,V] = svd(a), (5.5)

Ztr = U(:, 1 : r)T × Zt, (5.6)

where Zt = [z(1), . . . , z(m)]T is the matrix containing measurement sets over m different

time steps. S is a diagonal matrix with nonnegative diagonal elements in a decreasing

order. Matrices U and V are unitary matrices that satisfy a = USVT . svd is a function

for computing singular value decomposition. Sii is the eigenvalue of ith feature where the

bigger Sii is, the more information ith feature has2. Indeed in many correlated systems

(such as power grids), only first few components of S are significant. It is common to

select the smallest value of r such that the following condition holds,

∑r
i=1 Sii∑m
i=1 Sii

× 100 ≥ ε, (5.7)

2Statistically, direction with the highest variation is the most important direction because it can repre-
sent the best approximation of the data in lower dimensions (direction with highest variation, has the most
important information among other directions inside the data).
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namely ε% of variance is retained. After mapping the features to the low dimensional space

in (5.6), the control center can use efficient machine learning techniques to determine the

boundary between normal and tampered data (in the sequel).

5.3.2 Support vector machines

To classify the measurements as under either “safe” or “under-attack”, we propose to

utilize the Support Vector Machine (SVM) [95]. SVM is a solution to find a hyperplane that

serves as a decision boundary to separate two sets of observations. A non–linear decision

boundary can be defined by solving the following optimization problem,

min
ϕ

C
m∑
i=1

[y(i)cost1(ϕ
T f (i)) + (1− y(i))cost0(ϕT f (i))]

+ 1/2
n∑
j=1

ϕ2
j , (5.8)

where C is a weighting parameter that controls the complexity of the fitted decision bound-

ary3. y(i) is a binary variable and indicates the label of the ith operating points in the

historical data with yi = 0 for non-attack and y(i)=1 for safe mode. cost1 and cost0 are cost

functions defined respectively,

(5.9)

cost1=
{

0 ϕT f (i) ≥ 1,
1−ϕT f (i) ϕT f (i) < 1,

(5.10)

cost0=
{

0 ϕT f (i) ≤ −1,
ϕT f (i) + 1 ϕT f (i) > −1.

3A large value of C decreases the effect of the regularizing term in (5.8) (1/2
∑n

i=1 ϕ
2
j ) and the optimiza-

tion problem fits a complex boundary to the learning data sets. This complex boundary fails to generalize the
clustering of new data sets which are not in the training data set (high variance problem). A small value of C
increases the effect of regularizing term and fits a simple decision boundary that can not efficiently separate
the positive and negative hypothesis (High bias).
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ϕT = [ϕ0, ϕ1, · · · , ϕm] is the optimization parameter and defines the decision boundary.

f (i) = [1, f
(i)
1 , · · · , f (i)

m ] is a vector containing similarity functions for the ith sample point.

In this chapter, we use the Gaussian kernel for the similarity function,

f (i)
m = exp(−‖z

(i)
tr − l(m)‖2

2σ2
), (5.11)

where l(m) is the mth landmark. The landmarks can be placed randomly in the historical

data set space. σ is another parameter that can be used for changing the complexity of

the decision boundary. Optimal choice for σ and C can improve the efficiency of SVM in

detecting the attacked mode for cross validation set4. In order to define the optimal choice

for σ and C, we vary both and choose the best σ and C, which correspond to the largest

accuracy. In this chapter, we use F1 score as the measure of accuracy, i.e.,

F1 = 2
Pr ×Re

Pr +Re

, (5.12)

where Pr and Re are called precision and recall, respectively, and they are calculated using

the following equations,

Pr =
True Positive

Predicted Positive
, Re =

True Positive

Actual Positive
, (5.13)

where true positive corresponds to the points that the algorithm detects as positive samples

and they are indeed positive ones. Predictive positives are the points that algorithm detects

as positive points but it may have errors. Actual positive are all positive points in the data

sets. F1 score is no greater than 1, and the bigger the value of F1, the more accurate

the classifier in general. Algorithm 2 describes the procedure to detect stealth false data

injection using the SVM method.

4In this chapter we have used 70% of the historical data as learning data set and we have tested the
accuracy of the fitted decision boundary on the 30% of the remaining data sets called cross validation data
sets.
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Algorithm 2: Stealth false data detection using SVM
1 Collect historical data from state estimator

Zt = [z(1), . . . , z(m)]T ;
2 Use PCA:
a = 1

m × ZT
t × Zt;

[U,S,V] = svd(a);
Ztr = U(:, 1 : k)T × Zt;

3 Choose the best C and σ
for w = 1, . . . ,W do

C = C +4C;
for b = 1, . . . , B do

σ = σ +4σ;
Define ϕ from (5.8) for the learning data set
Define F1 from (5.12) for the validation data set
if F1 > F best1 then

F best1 ← F1;
ϕbest ← ϕ;
exit

end
end

4 For the new operating point Znew

y(new) =

{
1 ϕTbestf

(i) ≥ 0, (Znew is corrupted)
0 ϕTbestf

(i) < 0. (Znew is normal)

.

68



5.3.3 Anomaly detection

In data mining, the data sets considerably different from the remainder of data are

called outliers or anomalies. Different types of anomaly detection methods have been pro-

posed such as the distance-based, model based, and statistical methods [96]. In this chapter,

we use the statistical based methods. We use metric P (z) and a threshold ξ, where P (z)

represents the statistical characteristics of the historical data. If P (z) ≤ ξ, then z statisti-

cally has low similarity to the remaining data. In this method, the hypothesis of anomaly

is confirmed if P (z) ≤ ξ and it is rejected if P (z) > ξ. Threshold ξ will be learnt by the

historical data5 (Step 3. in Algorithm 3). We use the multivariate Gaussian distribution

probability density function as the metric P (z),

P(Z;µ,Σ) =
1

(2π)
n
2 |Σ|0.5

exp

[
−1

2
(Z− µ)TΣ−1(Z− µ)

]
, (5.14)

µ =
1

m

m∑
i=1

Z(i), Σ =
1

m

m∑
i=1

(Z(i) − µ)(Z(i) − µ)T ,

where n is the number of features, m is the number of samples and Pi(zi) is the probability

density function (PDF) of feature i. Each feature zi follows a certain distribution that

should be fitted based on the historical data. It is worth mentioning that the assumption

of independency for Z’s holds for Gaussian distributed features because of using PCA6.

Algorithm 3 shows the basic procedure of the anomaly detection method.

5.4 Numerical Results

In this section, we evaluate the effect of machine learning based techniques for de-

tecting stealth attack in the state estimator. We use the IEEE 118–bus test system (Fig. 5.2).

In order to simulate more realistic operation of the power system, we will use the stochas-

tic loads in the network. Without loss of generality, these loads are considered to follow a
5Because of using labeled historical data to learn ξBest, this method in some literature is called semi–

supervised learning method.
6PCA transforms a set of (possibly) correlated data into the linearly uncorrelated data.
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Algorithm 3: Stealth false data detection using anomaly detection
1 Collect historical data from state estimator

Zt = [z(1), . . . , z(m)]T ;
2 Use PCA:
a = 1

m × ZT
t × Zt;

[U,S,V] = svd(a);
Ztr = U(:, 1 : k)T × Zt;

3 Fit density function P(Z;µ,Σ) to the historical data Zt using (5.14);
4 Choose the best ξ;
ξbest = 0, F best1 = 0,
for ξ = minP(Zval) : St : maxP(Zval) do

Ypred =

{
Ypred(i) = 1, ∀i, P (Zval)(i) ≤ ξ,
Ypred(i) = 0, ∀i, P (Zval)(i) > ξ,

fp = sum(Ypred == 1 & Y == 0),
tp = sum(Ypred == 1 & Y == 1),
fn = sum(Ypred == 0 & Y == 1),
tn = sum(Ypred == 0 & Y == 0),

F1 = 2
Pr ×Re
Pr +Re

, where
{
Pr = tp/(tp + fp),
Re = tp/(tp + fn),

if F1 > F best1 then
F best1 ← F1 ξ

best ← ξ exit
end

5 For the new operating point Znew

If P (Znew;µ,Σ) =

{
≤ ξbest 99K Znew is corrupted,
> ξbest 99K Znew is normal.
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Figure 5.1 Attacked and safe operating modes in R2 space

Figure 5.2 IEEE 118–Bus test system
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uniform distribution in the range of [0.9×L0−1.1×L0], where L0 is the base load7. Here,

we use matpower8 to simulate the operation of the power network. In these simulations,

active power measurements are collected from each transmission line. Thus, in the 118-bus

case study there are 304 measurement features (one feature per transmission line). These

measurements will be considered as inputs to the proposed algorithms. Due to the random

nature of the load, the measurement vector varies over the time. Using the Monte-Carlo

simulation we have recorded measurement vector in 1000 different instances9. As previ-

ously discussed, the measurements data are highly correlated and thus PCA is applied for

dimension reduction. In the simulated data set, with only 2 principal components (k = 2),

99% of variance will be retained. Figure 5.1 shows a 2–dimensional plot of the principal

components. This figure demonstrates that stealth attack is separable in the control center.

5.4.1 Support vector machine

To define the attacked and safe mode’s boundary, we use a non-linear classifier with

a Gaussian–kernel. Different values of C and σ have different effects on the clustering

efficiency, so we train SVM with different C and σ and compute F1 for the cross validation

set. Following Algorithm 2, we define the best choice for C and σ. Figure 5.3 shows F1

score for different values of C and σ. Efficiency of the learning algorithm can be improved

by increasing the number of learning data. In order to analyze the effect of increasing the

number of learning data on detection performances, it is often useful to plot a learning

curve. Figure 5.4 shows F1 values in both training and cross validation sets. This figure

shows that, using enough training data, SVM is able to detect the stealth attack efficiently.

7The mean value of load in a specific period of time is often considered as L0.
8matpower is a package of MATLAB M-files for solving power flow and optimal power flow problems

[74].
9In the PJM (Pennsylvania, New Jersey, and Maryland ) market, the control center collects the measured

data in 1-minute time intervals and runs siemens state estimation program [72].
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5.4.2 Anomaly detection

After applying PCA, the measurement data are mapped to points in 2D. Figure 5.5

shows the histogram of the first feature. We fit a Gaussian probability density function to

the features10. Following the procedure given in Algorithm 3, the anomaly points can be

detected by applying a threshold ε. The sensitivity of detecting a point as anomaly, depends

on the magnitude of threshold ξ. Figures 5.6, 5.7, and 5.8 show the detection sensitivity to

different thresholds.

5.5 Conclusion

In this chapter, we first collect the normal and stealthily attacked operating points in

the state estimator. We use collected data from active power flow measurements in the net-

10Results of anomaly detection on practical problems show that fitting the Gaussian density function for
other data sets (which does not follow the Gaussian distribution) does not change the clustering efficiency
drastically.
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Figure 5.8 Anomaly detection with best choice of ξ

work as the learning (historical) data. Projecting the historical data into a low dimensional

space shows that normal measurement data are well separated from data under attack. This

fact shows that the machine learning algorithms can be applied to detect the stealth false

data injection in the state estimator. We use both supervised and unsupervised11 learning

methods to distinguish the attacked and the safe operating modes. Numerical results shows

the effectiveness of the proposed algorithms in detecting the stealth false data injection.

11In order to compare the performance with supervised learning technique, we are indeed using semi-
supervised method in this chapter. Output labels are used to learn the best performance in the unsupervised
learning method, but in the case that the output labels are not available, (losing some performance) unsuper-
vised technique can be used instead.

76



Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we analyzed the cyber attack against state estimation, from both at-

tacker and defender points of views. We first reviewed the structure of electricity market,

and then we presented the way that attacker alters the congestion in the ex–post market (in

the desired direction) and makes financial profits. We investigated the case that the attack-

ers without prior knowledge of the power grid topology, made inferences through phasor

observations. The inferred structural information then used to launch stealth attacks. At-

tack formulated to change the price of electricity in the real-time market and the simulation

results showed the effectiveness of attack in creating congestion and consequently changing

the prices.

Then, we looked at the false data injection from defender point of view. Because

of a huge number of measurements in the network, attacking and defending all measure-

ments are impossible for the attacker and defender, respectively. This situation modeled

as a zero-sum game between the attacker and defender, and we described how the interest

of one party (attacker or defender) can influence the other’s interest. The results of this

game defined the proportion of times that the attacker and defender will attack and defend

different measurements, respectively.

Finally, we illustrated how the normal operations of power networks can be statis-

tically distinguished from the case under stealthy attacks. We first proposed two machine

learning based techniques for stealthy attack detection. The first method utilized the super-

vised learning over labeled data and trained a support vector machine. The second method

requires no labeled outputs for training data and detects deviation in the measurements. In
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both methods, principle component analysis reduced the dimensionality of the data to be

processed, which leads to lower computational complexities.

6.2 Future Work

Security issues remain challenging in the generation, Transmission, and Distribution

of the power networks. This is mainly because of the large scale that power systems have

and also their interionic differences with other networks such as Internet1. Current power

systems use internet security mechanisms for data communication. Considering principal

differences between internet and power networks, developing proper security mechanisms

for power systems would be promising. Physical security of power grid should be analyzed

beside the cyber security issues. Research in [97] is an example of case in which authors

present an impact analysis framework and focus on the model synthesis stage in which both

cyber and physical grid entity relationships are modeled as directed graphs.

In order to make the smart grid more secure, different aspects should be considered

such as integrity and privacy of the transmitted data. For example in state estimation it

is extremely important to assure the accuracy and consistency of the data (integrity of the

data) [39, 43, 49, 98]. Privacy of the data is important for both utility companies and cus-

tomers. For example having access to customers data can expose their habits and behavior

so public acceptance of the smart meters needs solid security investigations in this regard.

Research in this area is ongoing and several researchers try to improve the security of data

communication from smart meters to the control centers [99–102].

Using the load as a corrective action in the peak time is an important tool for uti-

lizing the power network efficiently. Affordable global communication infrastructure and

embedded systems make it now relatively easy to give incentives to the loads and change

1An important difference is the stability problems in which any demand and supply mismatch can cause
instability in the power network in portion of seconds. This problem becomes challenging when we consider
the fact that electrical energy is not storable in the large scales.
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their behaviors (demand side management). Demand side management relatively well re-

searched in the potential and operations of the physical parts [103, 104]. Currently the

inter–operability, algorithm stability, information security, and (information) network man-

agement in the ICT side shows the highest levels of activities [105, 106]. In other perspec-

tive, control center can use the collected data from smart meters in order to monitor the

distribution system. The major ongoing challenge here is the large amount of data that

should be processed. Indeed data analysis should extract information from the smart me-

ters’ large data set and transform it into an understandable structure that control center can

use for different purposes such as quick fault detection in distribution systems.

Exploiting communication infrastructure in smart grid makes it more flexible con-

fronting with different faults and load changes in the network. On the other hand integrat-

ing renewable resources will decrease this flexibility. This is because of intermittency of

the renewable resources which is ongoing research mainly in two directions, one group of

researchers are trying to improve the prediction of intermittency in renewable resources by

developing precise models [16–19]. Other group of researchers try to find the optimal way

of integrating renewable recourses. The common goal of these studies is to maximize the

integration of renewable resources without violating security constraints2 [20–22].

Microgrids are small-scale and low voltage supply networks that are designed to sup-

ply electrical and heat loads for small consumers, such as academic or public communities,

and manufacturing companies [66]. These units can be separated from the main grid in

contingencies and they can provide electricity for their consumers with acceptable qual-

ity. Although microgrid shows great promises in integrating renewable resources and peak

shaving of smart grids, it faces several challenges in real-time power management and con-

trol systems. Some of these challenges can be addressed by the optimization problems with

different objectives such as, power demands, fuel consumption, environmental emissions,

costs, dispatchable loads, etc. [67]. Developing a model to consider these objectives is an

2In other words, flexibility of power network should meet the intermittency of renewable recourses.
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ongoing research which can be further investigated.
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