A DIGITAL PROCEDURE FOR FINDLIG ALL DIRECTED SUBGRATHS

O A SIGNAL IPLOVW GIJDH

A Thesis
Presented to
the Faculty of the Department of Electrical Eangineering

University of Houston

In Partial Fulfillment
of the Reguirements for the Degree

HMaster of Science in Llectrical Engineering

by
Jack D. Greenwade

May 1969

484189



ACKNOWLEDGEMENT

The author would like to express his sincere
appreciation to Prof. C. F. Chen for his guidance and
encouragement during the development of this work. Also to
Prof. W. P. Schneider, for his helpful comments during the
formulation of this research, the author is very grateful.

A special word of appreciation is also due Mr. K. B.
Rennie of Houston Lighting and Power Company for his excellent
technical assistance. The completion of this thesis was
greatly enhanced by the aid he contributed.

The author would also like to express his full grati-
tude to his wife, Judy, whose encouragement, understanding,

and patience made this research possible.

iii



ri ST SN /VLAINI ST eyt Tt T AT INTT A s r ~ NTPM Y MY o
A DIGIVAL 2PLoOCHIURN 0 PLNADTLIG 0L DIRDCY. SUnGl2ES
W37 TN At AT -y
G A STCGNIL L0V Gl

An Abstruct of a Thesis
Presented to
the Paculty of the Departiment of Elcctrical Enginecring

University of Housten

In Partial Faliillment
of the Reguirements for the Degree

Master of Science in Electrical Engineering

bv

A

-

Jackx D. Greenwace

May 1969



The alpgchira of flov graphnz is well delinzd sad coveral leclhnioves
or ovtoining innut-output releiions.

Tion of the erplicotion Lo so

However, all of the tochnigues Lo obizining input-output relations
depeud upon the users ebilicy 1o dduntii

Tlow graph. ESeveral pspers have been presencved concerning error {rie

identification of these loops and pathz, hovever, the technigues
are vsuslly labhorious and lengithy.
Through the use of the conneclion matrix approach of Mr. C. V.

Ramemoorthy a digitel coupnuter progran is dovelopea that finds all loops

tod

o)

and pruhcs that exist within a flow grapp. This rerezrch was restri
to qnly continuous variable systems, howvever, techniques are stggested
for handiing the hybrid case, containing discretse as well as continusas
variavlecs., Ssveral examn1ea arc prescnved to :emonstr*tc the capability

of the yprogrsm. Suggestions are gloo made for harndling malti- ~iInpas-outpul

proviaas.



TABLE OF CONTENTS

CHAPTER PAGE
I. INTRODUCTION . . ¢ o o o o o o o o o s o o o o o 1
IT. GENERAL SIGNAL FLOW GRAPH THEORY . . . . . . . . 5

ITII. DEVELOPMENT AND APPLICATION OF THE
CONNECTION MATRIX . & « o o o o o o o o « « o« 28

IV. DEVELOPMENT OF THE DIGITAL PROCEDURES

AND COMPUTER PROGRAM . . « + « &« &« « « o« « o« 35
Vo EXAMPLES . . &« ¢ o o o s o o o o s o o o o o« o« o« 53
VI. CONCLUSIONS . & & & o o o s s o o o o o o o« o o 11

REFERENCES . v v v ¢ o o o o o o o « o o o o o o « « o« 14



CHAPTER I
INTRODUCTION

In literature today there are many methods of analysis
of control systems, of varying degrees of accuracy, complexi-
ty, generality, sophistication, and usefulness. For several
years people have been aware of topological forms for des-
cribing control systems or for that matter any set of dif-
ferential equations. However, application of these topological
form techniques appear to have taken a back seat to some of
the more modern techniques for describing the behavior of
control systems, perhaps understandably so. The algebra

1=5 or flow graphs,3 is well defined

of signal flow graphs,
and reduction techniques3 lead to the simplest graph in
which all the variables of interest appear. The major
usefulness of flow graph techniques arises from the topo-
logical properties which make it possible to obtain input-
output relations by inspection.

Small loosely connected systems lend themselves
readily to signal flow techniques. Unfortunately, most
physical problems are not small loosely connected systems.
It is obvious that a maximal strongly connected system of

only 5 variables does not lend itself to these inspection

techniques when one considers the number of possible loops



within the graph if every variable is connected to every
other variable. Therein lies the secret to successful

use of gain equations such as Mason'sl or Coates:2 re-
cognition of all existing sub-loops and all existing paths
from input to output.

As a matter of note, consider the case of a hybrid
system, i.e., containing continuous variables and discrete
or sampled variables. In fact, sampled flow graphs until
recently were primarily intermediate steps in the evaluation
of input-output relations and could not be used for simple
representation of the system. Even when the final sampled
flow graph was formulated it had little resemblance to the
original system, and manipulation of the graph could not be
given an easy physical interpretation. Recently, Mr. G. A.
Bekey6 proved that sampled flow graphs could be given a
physical interpretation and input-output relations could
also be obtained by inspection. It appears that no matter
which technique one uses, Mason's, Coates', or Bekey's, the
real difficulty lies in inspection. As the number of vari-
ables increases and the connection becomes stronger, it
becomes increasily more difficult to recognize loops and
paths by inspection. One is never quite sure he has not
overlooked a loop or a path. It is understandable how the

story got out that Mr. Mason, after several papers concerning



3

topological representations, presented a paper dealing with
the avoidance of signal flow graphs.

Not too long ago, Mr. C. V. Romamoorthy9 developed
certain digital algorithms for obtaining certain information
concerning the properties of flow graphs. His contribution
cannot be overemphasized. The use of the connection matrix
and associated algorithms for finding maximal strongly
connected (M.S.C.) subgraphs are outstanding in their sim-
plicity. Today with the widely accepted use of the digital
computer as an engineering tool, one of the few remaining
problems untouched by programmers is the solution of the
signal flow graph for input-output relations. Several
lengthy techniqueslo have been presented involving multiple
matrix operations for obtaining all existing subloops and
paths. These techniques use the branch transmission of the
flow graph as matrix elements and after lengthy hand mani-
pulations do an excellent job of obtaining the desired loops
and paths. However, it would appear to be much more advan-
tageous to know which variables were in a loop or path and
the proper flow direction without much hand manipulation.
The loop or path transmittances can always be readily ob-
tained knowing the directed variables in a loop or path.

Therefore, it is highly desirable for a digital com-
puter program to be developed to output to its user all

directed loops and subloops within a flow graph as well as



all directed paths from input to output. It is also desirable
that this program be general in form, such that the only
limiting factor as to the size of the system to be handled
would be the size of the memory of the computer on which

the program would be run. A program of this type would
enhance the use of signal flow technigques for obtaining
input-output relations by either Mr. Mason's or Mr. Coates'

formula.



CHAPTER II
GENERAL SIGNAL FLOW GRAPH THEORY

The purpose of this chapter will be to review with
the reader the different techniques used to obtain input-
output relations, and to define certain terms used with the
application of these techniques. The association of a
topological structure with a set of linear algebraic
equations was introduced by Samuel J. Masonl and was called
the Signal Flow Graph. A graph is defined as a collection
of n objects called vertices or nodes, denoted by X1r Xy,
X3reeeeeXy and of m objects called branches or arcs, denoted
by bl'b2'b3""'bm together with a set of incidence or
boundary relations between the nodes and the branches such

that some pair of nodes xp, X (where p and g are not

q
necessarily different) is associated with each branch bj'

Such nodes are called the boundaries of the branch. A branch
together with its bounding nodes is called an edge. An edge
is called a loop if the two boundaries are the same node.

Such a node is called a loop boundary. A convenient pictorial
representation of a graph consists of a set of circles, one
for each node, and a set of line segments, one for each branch,

drawn so that the ends of each line segment are the circles

which correspond to the boundary nodes of the branch which



the line segment represents. A graph is oriented or di-
rected by assigning a cyclic order to the bounding nodes
of each branch. Pictorially, this is represented by an
arrow on the line segment. Examples of such graphs are
shown in Figure I.

The node from which the arrow points is called the
positive boundary of that branch and that to which the arrow
points is called the negative boundary. Similarly, a branch
is incident to its negative boundary and incident from its
positive boundary. A node that is never the negative bound-
ary for any branch is called a reference node or source
node. A node that is never the positive boundary for any
branch is called a sink node.

It should be pointed out that there are two types
of topological representations generally used for continuous

variable problems. These two types are the Signal Flow Graph

1,2 3

developed by Mason and the Flow Graph developed by Coates.
Except for certain normalized graphs, the Signal Flow Graph
is generally considered more complex than the Flow Graph.

The complexity arises when using the topological formula for
the solution of the set. The difference between the Signal
Flow Graph and the Flow Graph is basically a difference in
branch weights or transmittances. In the case of normalized
graphs, this results in a difference in the incidence pro-

perties. The following paragraph is a general statement of

these differences.



FIGURE T

EXAMPLES OF DIRECTED WEIGHTED GRAPHS.



Each nonreference node of the Signal Flow Graph is
the boundary of a loop, the branch weight of which is one
more than the branch weight of the loop of the corresponding
node of the corresponding Flow Graph. If a nonreference
node of the Flow Graph is not a loop boundary, the corre-
sponding node of the corresponding Signal Flow Graph is
the boundary of a loop with a branch weight of one. If a
loop boundary of the Flow Graph has a branch weight of
minus one, the corresponding node of the corresponding
Signal Flow Graph is not a loop boundary.3

Mr. Coates has developed techniques for obtaining
the solution of a set of linear algebraic equations through

the use of Flow Graphs. Consider the set of equations:

, v [ 9
ki, 00 k3 kK, O | X
0k, , Ky, O x,
fx k3,1 k3,3 k35| [*¥3| =0 {1]
0 ka,a ¥a,5| [*a
{ ;s

The associated Flow Graph is shown in Figure II. If the
expression for xp as a function of the variables of the set

v is written

X = ) C X, [2]



FIGURE 1II

K4i4 Kz,2

X4 Kz,4 ;éé;>

FLOW GRAPH FOR SET OF LINEAR EQUATIONS, EQUATIONS [1]



10
then

r P,
N Lo .~pl (-1
uzl [vrJ r;p L1
S [3]

. I
J Y N[v:l (-1) "
n=1 n

where v is the set of variables, X, the particular reference
node, s denotes the number of members of v, Pu denotes the
number of directed circuits of the uth N{vr_:rj-p}, where

Pn denotes the number of directed circuits gf the nth

N{v:}. Equation [3] is Coates' equation for the transfer
function from node rj to node p. At this point it is neces-
sary to define N[Vr.:rj-p] and N[v:]. These are two classes
of subgraphs. A cognection is a subgraph of the Flow Graph
(G) such that each included node has both a positive and a
negative order of one. The positive order is the number of
branches for which the node is the positive boundary and,
similarly, the negative order is the number of branches for
which it is the negative boundary. As a note, a node with a
zero negative order is called a reference node. The con-
nection of (G) with the largest number of branches is that
which includes all nonreference nodes. Connections are de-
noted by N{( ):} where ( ) denotes the nodes of G which do
not belong to the connection; therefore, connection N{(v):}

includes all nonreference nodes. A one connection is a

subgraph of G such that all positive and negative orders of



11

the included nodes are one, except for one negative and one
positive order, each of which are zero. One connections are
denoted by N{( ):p_q} where ( ) denotes the nodes of G which
are not included and where p and g denote subscripts of the
nodes for which the negative and positive orders are zero,
respectively. A proper one connection is a one connection
such that p # q. With each subgraph is a coefficient which
is defined as the product of the branch weights of the sub-
graph. The coefficients of N{( ):} and N{( ):p_q} are
denoted as N[( ):] and N[({ ):p_q], respectively.3 Illus-
trations of connections and one connections are shown in
Figure III with the associated coefficients.

As an example of Coates' equation consider the Flow
Graph of Figure II. Assume one is interested in the transfer

function for an input at Xg and an output at Xor therefore
X3 = 22,5 X5 [4]

The connections and one connections are shown in Figure IV
with associated coefficients. Using equation [3] and the

information from Figure IV,



FIGURE III

K3 K,

<§;:>K4A
(a)

a) Example of connection N{v:}

Ki,s

(b)

b) Example of one connection N{v:2-1}

ILLUSTRATIONS OF CONNECTIONS AND ONE CONNECTIONS.

12



FIGURE

The one connection N{v5:5—2}l

The coefficient N[v5:5-2]l

k k

is k) 4k4,5%1,1%3,3

The next one connection
N{v5:5-2}2

and the coefficient N[v5:5—2]2

is k) 4ky4 5Ky ,3K3 1

The connection N{vS:}l

P1 = 4

The coefficient N[vS:]l

k

is ky 1Ky 2K3 3K4,4

The connection N{vs:}2

The coefficient N[ 5:]2

k k

is k) oKy, 4K1,3K3,1

ILLUSTRATION OF CONNECTIONS AND

18’4 13

ONE CONNECTIONS FOR FIGURE II
WITH THE ASSOCIATED COEFFICIENTS.



14

2 1
2,4 Kg,50ky 7 kg 317 + kg 3 kg 5 (-1)7]

2,5 T L ¢ x % -1)% + k. . k. . k. - k (-1)3
1,1 ¥2,2 k3,3 K4,4 1,3 ¥3,1 %2,2 ¥4,
_Kp,a kg 5 Ky g K3 5~ Ky 3 k5 4] 51
ky 2 kg, g ky 3 kg 3~ kg 5k3 4T

A Mr. C. A. Desoer4 did optimize Mr. Coates' equation.
The result takes the form that follows. In general, there
is more than one branch connecting the source node to the
rest of the graph; obviously, in such cases the individual
contributions of each branch must be summed. In order to

solve for the variable X defined by the set of equations

a k.x. =Db (k =1,2,3,...n) [6]

e

the general equation for solution becomes

L
o
g(-l) c(G;o-L)0

X, = T [7]

o
I, (=1) "C(Gy)

where C(G;O-L)0 represents the possible one-connection gains
of the Flow Graph from the source node 0 to the node L and

L0 is the number of directed loops in the oth one connection



15

from 0 to L. C(GO)p are the possible connection gains of

the Flow Graph G which is graph G with the source node 0

o
deleted) and Lp is the number of directed loops in the pth
connection of GO. Whether one is applying Mr. Coates'
equation or Mr. Desoer's equation, it appears obvious the
success depends on one's ability to find all the connections
and one connections by inspection. Simple 4 or 5 node prob-
lems, loosely connected, present no major difficulty. How-
ever, the stronger the connection and the larger the number
of variables become, the more nightmarish the application of
the gain equations become.

Consider the approach taken by Mr. Mason. The general

expression for the Signal Flow Graph transmission is

% P by
T = A [8]
_ [(P1+P2+....+Pn)(l—Ll)(1-L2)...(1—Lm)]* o1
[(l—Ll)(l-L2)....(l-Lm)]*

Here the quantity A represents the determinant of the Signal
Flow Graph rather than the determinant of the network from
which the Signal Flow Graph was constructed. The Signal
Flow Graph determinant can be evaluated by the loops of the
graph. A loop is a simple closed cycle of graph branches
with all of the branches pointing in the same direction

around the cycle. The word "loop" may also mean a number



16

equal to the product of the branch transmissions in the
geometrical loop. The graph determinant is conveniently
defined as the bracketed expression in the denominator

of the above equation [9]. Quantities Ll'LZ""'Lm are

the m different loop transmittances in the graph. The
asterisk indicates a special rule for multiplying the gquan-
tities within the brackets. In carrying out the multipli-
cation indicated by the parentheses, it is to be understood
that a term will be dropped if it contains the product of
two loops which touch (have a node in common) in the graph.
In short, A is equal to unity minus an algebraic sum of
further terms. Each of these terms is either a single

loop or a product of non-touching loops, and the sign of
the term is positive (or negative) for an even (or odd)
number of loops in the product. The graph transmission T
is by definition equal to the quotient of some designated
dependent node signal and the source node signal. Quantities
Pk in the numerator of equations [8] and [9] stand for
different paths from the source node to the designated
dependent node. The number P, to be substituted into the
above equations is not, of course, the geometrical path,
but rather the product of the branch transmissions along
that path. Quantity Ak is called the cofactor of path Pk'

It is constructed in exactly the same manner as the graph



17
determinant (A) with the additional restriction that any
terms containing loops which touch (have a node in common)
path Pk shall be dropped. As an example, equation [8] will
be applied to the graph of Figure V with node Xq being the
source node and node Xg being the designated dependent node.

Obviously, there is only one path from source x, to node x

1 5’

therefore,

P1 = By 5By 3B3 4By 5

The loops present in Figure V are shown below:

1= By 3832

2 = By 55 4

Since there are only two loops and they do not touch, the

graph determinant is:

A =1-L.-L, + LlL

172 2

=1 +

“Ay 3B3 5 T By gBg 4t By JB3 SRy 5Bg oy

Since there is only one path and both loops touch the path,

the associated cofactor (Al) is one -

S
- ;
_ By,2P2,3R3, 4R, 540 (10]
1= 2y 383,05 = By 585,14 T By 3R3,2R,5P5,4



FIGURE V¥

Az s Ass
-t 6
Ajz > As s

FLOW GRAPH TO BE USED FOR MASON'S EXAMPLE.

18



19

Again, it is obvious that the success of this approach is
dependent upon the user's ability to recognize all possible
loops and paths in the Signal Flow Graph by inspection.

In 1967, a paper was presented in the IEEE Transactions
on Automatic Controls. This paper, authored by Mr. M. Sedlar
and Mr. G. A. Bekey,6 extended the topological representation
of either continuous or discrete systems to mixed discrete-
continuous (hybrid) systems. Several authors have extended
the Signal Flow Graph approach to the study of sampled data

11,12,13 However, none of these extensions make it

systems.
possible to apply Mason's gain formula directly. The diffi-
culty arises from the presence of samplers in the sampled
data systems. Conventional techniques fail because it is
not possible to replace the sampler by a transfer function.
Introducing a new symbol to represent the sampler, it is
possible to generalize Signal Flow Graph techniques so that
they can be applied both to sampled data systems and to
continuous systems. Mr. Bekey formulated a Signal Flow
Graph representation which maintains a topological similarity
with the original systems and which makes the algebra of
Signal Flow Graphs applicable. Moreover, input-output re-
lations can be obtained by inspection in terms of Laplace
transforms, Z transforms, or modified 7 transforms.

As stated earlier, a Signal Flow Graph is a network

of nodes (circles) connected by directed branches (line



20

segments). The line segments and circles (branches and
nodes) represent operations to which the variables are sub-
jected. 1In the case of linear continuous systems, the nodes
are associated with summing operations and the branches

with multiplication. For this reason, the graph contains
the same information as the mathematical model or block
diagram. In the case of the sampled data system, where the
variables can be both continuous and discrete, the operation
of sampling is also present. A new symbol is needed for the
operation of sampling. Therefore, Mr. Bekey chose an empty
circle in the graph to represent a continuous variable and
a full circle to represent a discrete variable. He termed
them white nodes and black nodes, respectively. The black
node is defined as follows:

1. Black nodes (full circles) represent discrete
variables.

2. The value of the variable represented by any
black node is the sampled form of the sum of
all variables entering the black node.

A linear continuous system can be described by the set of

equations:

n

) a. (s)x,(s) = r.(s), j=1,2,3....n [11]
J i J

i=1 Ji

where xi(s) are the transforms of the system variables,



21

rj(s) are the transforms of input signals, and aj are

i
transfer functions. This system can be represented by
Mason's Signal Flow Graph techniques. Similarly, a sampled

data system can be described by the set of equations:

Il o~13

b.'(s)xi*(s) + rj(s) [12]

n
a. (s)x.(s) =
i£1 I3 1 1 i

i i

j=1,2,...n

where xi*(s) are transforms of sampled variables. This
system can be represented by a new Signal Flow Graph which
contains both black and white nodes. As an example, the

sampled data system described by the mathematical model

xl(s) =1

xz(s) = R(s)xl(S) - H(S)X4(S)
x3(s) = x,%(s)

x4(s) = G(s)x3(s)

is completely described by Figure VI.

Since paths and loops were defined earlier for a con-
tinuous wvariable system, it is now necessary to define the
types of paths and loops found in the hybrid system. Paths

and loops containing only white (continuous) nodes will be

referred to as being of type 1 and denoted by u(l) and v(l),

(2)

respectively. Type 2 paths and loops, denoted by u and

v(z), will be those paths and loops which contain at least



FIGURE VI

H
@ R :\Xy ! :‘ G (X4
X3

FLOW GRAPH FOR HYBRID (CONTINUOUS AND DISCRETE) SYSTEM.

22



23

one black (discrete) node. Also, a Type 1 path is elementary
if it does not meet the same node more than once. A Type 1
loop is elementary if, apart from the coincident initial and
terminal nodes, every other node it meets is distinct. A
Type 2 elementary path is one composed of distinct segments
such that no black node is met more than once. Mr. Bekey
points out that if a white node is met more than once it must
belong to different segments. Similarly, an elementary loop
of Type 2, apart from its coincident initial and terminal
nodes, must meet distinct other black nodes. Consider

Figure VI, there are no paths of Type 1 or loops of Type 1.
There is one path of Type 2 and one loop of Type 2, there-
fore:

(2) = reg

(GH) *

Once the two separate types of paths and loops are esta-
blished, certain topological connections between them can
be defined. A Type 1 loop is connected with a segment or
another Type 1 loop if and only if they contain a node in
common. A Type 2 loop is connected with any path or
another loop of Type 2 if and only if they contain a black
node in common. It should be noted that in this case (Type
2) the presence of a white node in common is 6&f no conse-

quence. Path and loop transmissions have already been



24

defined in this Chapter. However, their definitions must be
repeated with slight modification due to the presence of
discrete variables. A path transmission, P(u), is the product
of the individual transmissions of the branches which appear
in that path. Individual transmissions are taken in the
order in which the branches appear, and the presence of a
black node denotes that the sampled form of the preceding
product should be taken. A loop transmission, L(v), can

be defined in the same manner, however, if there are any
black nodes in the loop, then a black node should be taken as
the initial node.

To apply the notation of Mr. Bekey one should remem-
ber the equation for the determinant of a graph. However,
now there are two determinants. The first may be defined
for loops of Type 1 and is the same as the graph determinant

developed by Mr. Mason.

(1)

A (1-L (1))(1—L2(l))(l—L3(l)).....(l—Li(l))* [13]

1

where the asterisk denotes the special multiplication where-
by a term will be dropped if it contains the product of
loops that touch (have a node in common) in the graph. Simi-

larly, the second determinant is defined as:

2 (2) (l—Ll(z))(l—L2(2))(1—L3(2))....(1—Li(2))* [14]



25
This time, the asterisk denotes the special multiplication
where a term is dropped if it contains the product of any
Type 2 loops that touch (contain a black node in common)
in the graph.
The Input-Output relation (C) of the hybrid system
is given by:

n
(2)
a (D) igl Pidy

C = J X
D (2)

[15]

where Pi is the path transmittance of any path (Type 1 or

L (2)

Type 2) connecting input and output nodes, is the

(2)

is the sub-

(2)

second determinant of the graph, and Ay

(2)

determinant of the path My Ay

(2)

is obtained from A

by omitting all terms of A
(2)

that contain loop transmissions

of the loops vy connected with the path By The symbol,

( x ), represents the operation of multiplication of

Aj(l)/A(l) by each segment transmission appearing in

ziPiAi(z)/A(z). If any of the segment transmissions appear
in sampled form, the multiplication must be performed on

the corresponding continuous quantities, and the product

sampled. A(l) is the first determinant of the graph and

Aj(l) is the subdeterminant of the related segment e

Aj(l) is obtained from A(l) by omitting all terms containing
(1)

loop transmissions of the loops v connected with segment

oj. As an example, consider the graph of Figure VI where



26

p. (2) _ peg

and

(2)

Ly

(HG) *

there are no paths or loops of Type 1, therefore

Aj(l) = A(l) = 1 for all j

(2) (2)

and since L touches P then A,
1 1 i

(2)

= 1. Therefore,

using equation [15]

R*G (1)

1
C=1X1I-(me+

_ _(R)*G
1- (HG) *
where the asterisk represents the sampled form of the
quantities in parentheses.
There are two special cases that must be discussed.
First, all loops of the system contain at least one sampler.
In this case, the graph has only loops of Type 2 and

therefore,

A(l) = Aj(l) = 1 for all j

This was shown in the above example. The egquation for C

then reduces to:

(2)
L3P0

C = ———75v+— [16]
L (2)



27

The second case, all the loops of the system are continuous.

In this case, the graph contains only loops of Type 1.

Therefore
22 o Ai(z) - 1 for all i
Then C reduces to
a3
C = x ).P. [17]
Ail) iti

Moreover, if this graph contains no black nodes, then each
P is a segment and the symbol x reduces to simple multi-

plication and the equation for C reduces to Mason's equation:

(1)
_ L3Rty

C = ——
Ay

[18]

It appears that after all the work of Mr. Coates,
Mr. Mason, and Mr. Bekey, application of their work is large-
ly restricted to small problems that are designed to be
solved by one of their equations. A practical problem in-
volving 20 or more variables strongly connected could be
a nightmare to solve by inspection. However, if by some
means all loops and paths could be readily obtained, any
one of the above mentioned equations could be used quite

easily to obtain input-output relations.



CHAPTER III

DEVELOPMENT AND APPLICATION OF THE CONNECTION MATRIX

A connection matrix may be defined as a matrix re-
presenting a Signal Flow Graph. This seems rather a simple
definition and in fact is. However, for this application
a more complex definition is not required. The connection
or connectivity matrix contains either zeros or ones as
its elements. The matrix is generated from the graph and
is always a square matrix, each row and corresponding
column representing exits and entries to that node, re-
spectively. As an example, consider Figure VII. The con-
nectivity matrix (IC) for the graph of Figure VII appears

below:

IC

S U1 W N

[19]

o O O O O oM
o O B O O N
O O O ©O H OoOWw
O H O O O O
H O O H H OWU

= O O O OO,

0/

Observing row 2 which corresponds to exits of node 2, there
are 2 exits, one to node 3 and one to node 5. Similarly,
observing column 2 one sees there are 2 entries to node 2,
one from node 1 and one from node 4. Therefore, an element

of the connection matrix will be a zero if there is not a



FIGURE VII

29

FLOW GRAPH FOR ILLUSTRATION OF CONNECTION MATRIX DEFINITION.



single branch from the element's row index node to its
column index node. Similarly, the element will be a one
if there is a single branch from the element®s row index
node to its column index node.

The approach taken in this paper is that of C. V.
Ramamoorthy9 and relates the connectivity considraations
of directed graphs to the quantitative aspects of physical
systems represented by weighted graphs. The first step is
definition and construction of the reachability matrix
(IR). A row vector IRSof the IR (reachability) matrix will
be defined as the reachability vector of node s, a one in
its k-th column implies then that node k is reachable from
node s. Thus, the row vector IRS gives all nodes reachable
from node s. Therefore, the reachability matrix defines
which nodes are reachable from which nodes. It should be
pointed out that for the purpose of this paper the first
order node will be the input and the highest order node will
be the output. Therefore, checking the last element of the
first row vector of the reachability matrix immediately
tells the user if the output is reachable from the input.
The steps used by Mr. Ramamoorthy to obtain the reachability
matrix are shown below:

Step 1. Let IR, be a row vector of dimension n such

that it is initially equal to ICS, the row vector

of the connection matrix corresponding to the



31

starting node, s, i.e., IRs = ICS
Step 2. Examine the column elements of IRS. Let
(IRS)i be its i-th column element, which is
non zero and not previously examined. Update
IRS by performing a component wise logical "or"
operation to the i-th row of IC, i.e., IRs(new)=
ICi U IRS (old).
Step 3. Repeat Step 2 above until no additional
changes appear in IRs'
Step 4. Pick the next node as a new starting node
and repeat the above steps.
This algorithm is very efficient because it only involves
logical "or" operations between row vectors, rather than
repeated matrix manipulation. There are some interesting
additional properties of the IR matrix. If the main diagonal
elements of the IR matrix are all zero, then the graph is
loopless. Also, if any row of IR and its corresponding
column are all ones, then the graph is strongly connected.
There is one more matrix that is of primary concern in
this paper and it too was developed by Mr. Ramamoorthy. The
largest strongly connected subgraph that contains a given
node is defined as a maximal strongly connected (M.S.C.)
sﬁbgraph. It is unique for any given node in its set.
The procedure for determination of all maximal strongly

connected subgraphs follows:



32

Step 1. Construct the reachability (IR) matrix
for the given graph.

Step 2. Construct the transpose of the IR matrix
or the reachability matrix of the transpose
of the connection matrix(ICT).

Step 3. Construct the IM matrix such that IMS (row
vector) = IRSIIIRST. The symbol [l represents the
logical "and" operation.

The number of M.S.C. subgraphs is given by the number of
distinct non zero row vectors of the IM matrix. The nodes
of the M.S.C. subgraph correspond to the non zero column
elements of the IM row vector. However, this algorithm
does not direct the nodes in the subgraph nor does it
indicate the presence of any subgraphs within the M.S.C.
subgraph. On the other hand, it is a very efficient means
of determining the number of distinct loop sets within a
given graph.

As an example, consider the graph of Figure VII,

having the connection matrix shown in equation [19]. Con-

structing the reachability matrix IR:

IRl =IC;, =0 1 0 0 0 O

IRl(new) = ICZIIIRl(old)



IRl(new) = IC3[J IRl(last)
=0 0 0 0 1 0o0UO 1 1 0 1
=0 1 1 0 1 O

IRl(new) = IC5 U IRl(last)

=0 0 0 1 0 1UO0 1 1 o0 1

=0 1 1 1 1 1

continuing

IRl(final) 0 1 1 1 1 1

In a similar manner, the remaining row vectors of IR are

obtained such that

1 2 3 4 5 6
IR=1(0 1 1 1 1 1)
2f0 1 1 1 1 1
3]0 1 1 1 1 1
4f0 1 1 1 1 1
5j0 1 1 1 1 1
6{0 1 1 1 1 1]
Now construct the transpose of IR
2 3 4 5 6
IRF=1(0 0 0 0 0 0)
21 1 1 1 1 1
3][1 11 1 1 1
41 1 1 1 1 1
51 1 1 1 1 1
6(1L 1 1 1 1 1]

33



Now construct the IM matrix

™

M

T
IRl n IRl
0 1 1 1 1
0 0 0 0 O
T
IR, n IR,
0 1 1 1 1
0 1 1 1 1

34

1n0 0 0 0 0 O
0
11 1 1 1 1 1
1

Similarly, the remaining row vectors of IM are obtained such

that:

IM

H
o VW N

O ©O o © o o H
H o MR R O N

H B R P o W

H R o

H = oW
H = O o

1

This matrix tells one that there is one maximal strongly

connected subgraph involving nodes 2, 3, 4, 5, and 6.

However, this matrix gives no indication of the subgraphs

that exist within the M.S.C.

subgraph found above.

The

next chapter deals with the interpretation of this data

and formating it to be meaningful through digital techniques.



CHAPTER IV

DEVELOPMENT OF THE DIGITAL PROCEDURES

AND COMPUTER PROGRAM

The purpose of this chapter is to explain the develop-
ment of a digital computer program for finding all directed
loops and paths within a given signal flow graph. This pro-
gram will be restricted to two classes of graphs, those
containing all continuous variables and those containing
all discrete variables. This restriction is imposed by
the definitions for paths and loops for these two classes,
primarily in each case no node (variable) may be encountered
more than once in any path or in any loop (excluding the
initial and terminal node of the loop). Since the primary
purpose of finding all paths and loops within a given graph
is to determine input-output relations, one further re-
striction is imposed. That restriction is that the input
node must be ordered as the first node in the graph and
that the output node must be the highest ordered node in
the graph. For example, if there were 13 nodes in a system,
node 1 must be the input and node 13 must be the output.
However, it is felt that this is not a severe restriction.
It must be assumed that the user has no knowledge of how
many loops or paths exist within the system under investi-

gation. Therefore, an arbitrary limit must be used to alarm



36

the user when the program has gone beyond its dimensions.
The program developed for this paper was arbitrarily de-
signed for a maximum of 20 nodes with a maximum of 40 loops
and 40 paths. To use this program for larger problems only
requires re-dimensioning of the arrays involved. It should
be pointed out that the major restriction as to the size of
the problem, is dictated by the amount of memory available
within the machine to be used. There are a number of arrays
that must be stored and, therefore, the amount of memory
available becomes very important. The input data required
is very simple, consisting of the number of nodes in the
graph and the connection matrix for the graph as described
in Chapter III. The output of this program will be the
loops and paths that exist within the given graph. The
nodes associated with these loops and paths will appear in
their correct order of transmission. With this information
as well as having the flow graph before him, the user will
be able to formulate all of the loop transmissions and path
transmissions necessary for application of one of the gain
equations described in Chapter II.

The program begins by inspecting the main diagonal
of the connection matrix (IC). Since the index of the row
and column vectors of the IC matrix correspond to the order
of the nodes in the system, a non zero element on the dia-

gonal indicates a self loop on the associated node. Upon



37
identification of the nodes having self loops, they are stored
in temporary vectors called ISLOOP vectors and the number of
self loops existing is called ISLCNT. This information will
be used later in the program to add these self loops to the
directed loop vectors found. Upon identifying all self loops
the main diagonal of the IC matrix is set to zero. This elim-
inates duplication of effort in a later stage of the program.
The next step is to construct the reachability matrix (IR)
using the algorithm developed by Mr. Ramamoorthy as described
in Chapter III. This portion of the program requires an
n by n operation to insure all elements are taken into account.
The symbol n represents the number of nodes existing in the
graph being considered. From the IR matrix, the IM matrix
is constructed using the algorithm of Mr. Ramamoorthy as
described in Chapter III for finding M.S.C. subgraphs. This
operation is straightforward and requires little machine time
since all operations are in fixed point format. Once the IM
matrix is obtained the nodes associated with each maximal
strongly connected (M.S.C.) subgraph must be found. This is
accomplished very simply by identifying unique non zero row
vectors in the IM matrix. Once a non zero row vector 1is
found and stored as a IMLOOP vector, it is not necessary to
check the row vectors of any of the nodes appearing in that
non zero row vector. It is also not necessary to check the

final row vector in the IM matrix, for it is associated with



38

the output node and if it were in a loop or subgraph it would
be detected earlier. As an example, if the first non zero
row vector of the IM matrix was the row vector associated
with node 2 and the 2nd, 3rd, rth, and 5th column elements
were non zero, it would not be necessary to investigate the
3rd, 4th, or 5th row vector of the IM matrix. The contents
of these row vectors would be identical to the 2nd row

vector just investigated in that the 2nd, 3rd, 4th, and 5th
column elements of each of the other three row vectors would
be non zero. Therefore, the nodes in the example above

would be stored by the program in the form of a IMLOOP vector

such that:
IMLOOP (1,1) = 2
IMLOOP (1,2) = 3
IMLOOP (1,3) = 4

IMLOOP (1,4) =5
At this point the program only knows that these four nodes
are in a subgraph. They may actually be in a loop or they
may be in the form of several loops touching each other.
However, at this point only the fact that they are in a
subgraph is important. It should be noted that the first
subscript of the IMLOOP vector represents the number of the
subgraph, i.e., the first subgraph, second subgraph, etc.
The second subscript represents the number or index of the

node as it appears in the subgraph, i.e., the first, second,



39

or third node found, etc. Again, at this point the index

has nothing to do with the transmission order of the node in
any loop. This procedure is followed until every maximal
strongly connected (M.S.C.) subgraph is obtained from the
total system IM matrix. It is necessary to find out if
within each of these M.S.C. subgraphs there exist any smaller
subgraphs. Using the theory of superposition, these smaller
subgraphs may be obtained.

The first step in investigating for smaller subgraphs
is to consider each IMLOOP vector separately. Beginning
with the first vector, a new connection matrix is con-
structed containing only the nodes involved with the IMLOOP
vector. This is accomplished by extracting the proper ele-
ments from the original IC matrix for the system in question.
It is at this point that deletion of the main diagonal
elements of the original IC matrix saves time. This new
connection matrix is called the ITEST matrix. It is now
necessary to determine if there exists the possibility of
any subgraphs appearing inside the IMLOOP vector. This is
accomplished by finding the number of exits that appear in
each ITEST row vector. If the number of exits in each row
vector never exceeds one, then there can be no inside sub-
graphs. At that point, the next IMLOOP vector is selected
and a new ITEST matrix constructed for it and checked for

the presence of inside subgraphs. This continues until all



40
IMLOOP vectors have been checked. If, on the other hand, the
number of exits in a row vector exceed one, then an approach
must be used to identify the additional subgraphs and create
new additional IMLOOP vectors. This is accomplished through
the use of superposition as mentioned earlier. The program
eliminates one node from the ITEST matrix by temporarily
storing its corresponding row and column vectors then setting
those elements to zero in the ITEST matrix. Then a new IR
and IM matrix are constructed from the ITEST matrix. Any
new smaller subgraphs will appear in the new IM matrix. If
any are found, they are stored as new IMLOOP vectors similar
to the initial IMLOOP vectors. The program then restores
the row and column vectors of the eliminated node and then
eliminates the next node in a similar manner. This process
is repeated for every node in the IMLOOP vector under investi-
gation. All new IMLOOP vectors found are added to the number
of IMLOOP vectors and the whole process is repeated for each
IMLOOP vector until no new IMLOOP vectors are found. It must
be remembered that all the IMLOOP vector implies is that the
associated nodes are in a subgraph of some configuration.

After all possible IMLOOP vectors are found, an al-

gorithm was developed to order the nodes in the IMLOOP
vector according to their sequence of transmission, if, in
fact, a loop does exist containing those nodes. If the loop

does exist, then it will be ordered by transmission and called



41

a LOOP vector. This is accomplished by again constructing

an ITEST matrix that corresponds to only that portion of the
system connection matrix (IC) that contains the nodes of the
IMLOOP vector under investigation. It should be remembered
that the program knows how many IMLOOP vectors exist and

how many nodes are in each one. These quantities are stored
as IMLCNT and IMLNDE, respectively. An ITLOOP vector will
now be constructed that will direct the flow through the
nodes of the IMLOOP vector. For each IMLOOP vector only
ITLOOP vectors will be stored that contain the same number

of nodes as the IMLOOP vector. There may, indeed, be more
than one directed loop around a given set of nodes. How-
ever, every possible loop containing these given nodes must
be identified. It should be obvious that the index nodes

of the ITEST matrix do not correspond 1 for 1 to the correct
nodes of the system. For example, if the IMLOOP vector con-
tained nodes 2, 3, 4, and 5 of the system, the ITEST matrix
would refer to these nodes as nodes 1, 2, 3, and 4, respect-
ively. The LOOP vector is obtained through the use of the
directed ITLOOP vector and the not directed IMLOOP vector.
Before discussing how the ITLOOP vector is obtained and
directed, the above-mentioned construction of the LOOP vector
will be described. Assume that the ITLOOP vector is directed
containing nodes 1, 2, 3, 4, and 3 in that transmission order

for the IMLOOP vector containing nodes 2, 3, 4, and 5 of the



system. Since it is known that the new LOOP vector will
contain four nodes, a program "Do" statement may be used
to direct the LOOP vector. This is accomplished by the
following instructions, statement numbers shall be fic-

titious in comparison to the actual program.

DO 1 I =1, NONODE
IA = ITLOOP(II,TI)
1 LOOP (IC,I) = IMLOOP (K,IA)

where NONODE corresponds to the number of nodes in the

IMLOOP vector, II is the number of the ITLOOP vector being

42

used, IC is the number of the LOOP vector being constructed,

K is the number of the IMLOOP vector being investigated.

Therefore, if the ITLOOP vector was:

ITLOOP (1,1) =1
ITLOOP (1,2) = 2
ITLOOP (1,3) = 4
ITLOOP (1,4) = 3

then

i
=

for I IA=1 LoOoP (IC,1l) = IMLOOP (K,1l)

]

I =2 IA = 2 LOOP (IC,2) IMLOOP (K,2)

I=3 IA = 4 LOOP (IC,3) = IMLOOP (K,4)

I =4 IA = 3 LOOP (IC,4) IMLOOP (K,3)

if the IMLOOP vector was:



43

IMLOOP (K,1l) = 2
IMLOOP (K,2) = 3
IMLOOP (X,3) = 4
IMLOOP (K,4) = 5

then the corresponding directed LOOP vector would be:

LOOP (IC,1l) = 2
LOOP (IC,2) = 3
LOOP (IC,3) =5

Loop (I1C,4) = 4
This would confirm and order by transmission the fact that
a loop (2,3,5,4) did in fact exist within the system graph.
It is implied that there is a branch from node 4 to node 2,
and this fact is confirmed during the construction of the
ITLOOP vector.

The construction of the directed ITLOOP vector will
now be discussed. Recalling that an ITEST matrix was con-
structed for the IMLOOP vector under test, this matrix is
now investigated for non zero elements. The best way to
describe this algorithm is by an example. It is a very sim-
ple approach and is very accurate. Consider the subgraph
in Figure VIII. It must be remembered that although this
subgraph does contain three other loops involving sets of 2
nodes, they have already been identified as additional IMLOOP
vectors. This example is only concerned with constructing

the ITLOOP vectors containing all three nodes. Therefore,



FIGURE VIII

FLOW GRAPH FOR DEMONSTRATION OF LOOP FINDING ALGORITHM.

44



45

the ITEST matrix for the subgraph of Figure VIII is as follows:

1 2 3

ITEST = 1{0 1 1
2/]1 0 1

3{1 1 O

The first node is considered the initial node of any loop
appearing. It then follows by checking row 1 for non zero
elements that node 1 reaches node 2 on a single branch,
therefore,

ITLOOP(1,1) 1

ITLOOP(1,2) 2

However, node 1 also reaches node 3 on a single branch,
therefore, a new ITLOOP vector is constructed such that

ITLOOP(2,1) 1

ITLOOP(2,2) = 3
Upon completion of checking row 1, the program steps to the
last stored node in ITLOOP (1, ) which is node 2. It now
checks the corresponding row of the ITEST matrix for non zero
elements and finds

ITLOOP(1,3) =1
However, comparing this node to the previous nodes in ITLOOP(1,
it finds node 1 appears more than once. Therefore, it con-
tinues to check row 2 and finds

ITLOOP(1,3) = 3

Now that ITLOOP (1, ) contains 3 unique nodes (the same

)



46
number of nodes as in the IMLOOP vector) the program steps
to the last stored node in ITLOOP(2, ) which is node 3 and checks
its corresponding row vector in the ITEST matrix. There-~-
fore:

ITLOOP(2,3) =1
Again node 1 appears more than once in the loop so the
program continues and finds
ITLOOP(2,3) = 2

The program now has two ITLOOP vectors directed and stored,
if, in fact, the last node in each vector does reach the
first node in each vector on a single branch, then the vec-
tors are retained. Otherwise, they are discarded. There-
fore, within the subgraph described by Figure VIII there are
two loops involving 3 nodes and they are directed node 1,
node 2, and node 3 and node 1, node 3, and node 2.

From the ITLOOP vectors found in this manner, LOOP
vectors are constructed in the manner described earlier
from the IMLOOP vector in question. The next IMLOOP vector
is selected and the whole procedure is repeated until all
loops are obtained and directed. It should be pointed out
that this procedure does not overlook a single loop that
exists within the system flow graph no matter how complex.
It is at this point that the self loops (ISLOOP) are inserted
as LOOP vectors and therefore all loops are now directed

and stored to be printed later.



47

The next step is to find all directed paths from input
to output. This algorithm is very simple and yet very ac-
curate. The program calls in the original connection matrix
(IC) for the system and begins with the first row vector,
corresponding to exits from the input node. This row vector
is examined for non zero elements in much the same manner
as described in the preceding paragraphs for finding the
ITLOOP vectors. It is assumed that there is at least one
path from input to output. Therefore, the path count (IPCNT)
or number of paths is initialized to one. Also, the first
node in any path will be node 1, the input node. Upon iden-
tification of the first non zero element in the first row
vector of the IC matrix, the second node in the first path
(IPATH) vector is found and stored. Should there be any
other non zero elements in that row new path vectors are
created for each non zero element. The path count (IPCNT)
is incremented by one for each additional path vector.

After completion of the investigation of the first row vector
of the IC matrix, the last node stored in the first path
vector is checked to see if it is the output node. If it

is, then the first path is complete and the next path vector,
if it exists, is called. If, on the other hand, the last
node stored in the first path vector is not the output node,
then the corresponding row vector is called from the IC

matrix for investigation. Again, the program looks for non



48

zero elements, upon identification of the first non zero
element, the number of nodes (IPNODE) in the first path
vector is increased by one and the corresponding node
is stored in the IPATH vector. The remainder of the row
vector is checked for additional non zero elements and new
path vectors are created for each one identified, repeating,
of course, the nodes of the path vector that stepped the
program to the row vector of the IC matrix it is now
checking. This procedure is followed until every possible
path or directed segment has been found that originates from
the input node. It should be pointed out that as each new
node is found for a path it is compared with each previous
node in that path. If the node appears more than once, it
is rejected and the program looks for another node that is
reachable on a single branch from the preceding node in the
path. If there were no more nodes reachable and the last
node was not the output node then that path vector represents
only a directed segment and is not retained as a path vector.
Only those segments that reach the output node are retained
as valid paths. This algorithm requires very little machine
time and no existing paths in the system flow graph will
escape undetected.

Upon completion of the two sections of the program
(LOOP finding and IPATH finding) all the LOOP vectors are

compared to one another to insure that duplicate LOOP vectors



49
will not be printed. Once this has been accomplished, the
following information will be available to the user:

1. The directed LOOP matrix which has as its row
vectors the directed LOOP vectors, each element
of the row vector representing the node in the
correct transmission order as the loop appears
in the system graph.

2. The directed IPATH matrix which has as its row
vectors the directed IPATH vectors, each element
representing the node in the correct transmission
order as the path appears in the system graph.

As an example, consider the graph shown in Figure IX.

The connection matrix is shown below:

1 2 3 4 5
IC=1(0 1 0 0 O]
2/0 0 1 1 o
3]0 0 0 1 1
40 0 0 0 1
5(0 0 0 0 O
Starting with row 1
IPATH(1,1) =1
IPATH(1,2) = 2

S8ince there are no other non zero elements, the last stored
node in path 1 is node 2. Therefore, row 2 is now examined

and



FIGURE IX

Ass
A A A A

FLOW GRAPH FOR DEMONSTRATION OF PATH FINDING ALGORITHM.

50



51

IPATH(1,3) = 3
However, node 2 also reaches node 4 on a single branch.
Therefore,

IPATH(2,3) = 4
and repeating the path taken to arrive at node 2

IPATH(2,1) 1

2

IPATH(2,2)
There are no more non zero elements in row 2. The last
stored node in path 1 was node 3. Therefore, checking
row 3:

IPATH(1,4) = 4
Node 3 also reaches node 5 on a single branch. Therefore,

IPATH(3,4) =5

and repeating the path taken to arrive at node 3

IPATH(3,1) =1
IPATH(3,2) = 2
IPATH(3,3) = 3

Again, the last stored node in path 1 is node 4. Now row 4
is examined and

IPATH(1,5) = 5
Since IPATH(l, ) now reaches the output node IPATH(2, ) is
now called and the last stored node is node 4 again checking
row 4.

IPATH(2,4) = 5

Now IPATH(2, )reaches the output node and IPATH(3, ) is called



52

and the last stored node is node 5 and this is the output
node. There are no more paths available for Figure IX and

the results are shown below:

IPATH(1,1) = 1 IPATH(2,1) =1 IPATH(3,1) =1
IPATH(1,2) = 2 IPATH(2,2) = 2 IPATH(3,2) = 2
IPATH(1,3) = 3 IPATH(2,3) = 4 IPATH(3,3) = 3
IPATH(1,4) = 4 IPATH(2,4) = 5 IPATH(3,4) = 5

IPATH(1,5) = 5

The two sections of the program described in the
preceding paragraphs make up the algorithms that are used
in the finished program. Of course, all the minute details
and house keeping guantities that are necessary in the
program have not been discussed in this chapter and are not
required for an understanding of the algorithms. The actual
program listing with appropriate comments is found in the
Appendix. The following chapter will demonstrate the capa-

bility of the program.



CHAPTER V

This chapter will be concerned only with examples of
flow graphs and the use of the program for finding all exist-
ing paths and loops within each flow graph. The first two
examples will be those used in Chapter II and will be carried
through to determination of input-output relationships. How-
ever, the remaining examples will be concerned with use of
the program only for error-free determination of all loops
and paths. The purpose of these examples is to demonstrate

the capability of the program.

Example I. Consider the flow graph depicted in
Figure II. The nodes will be re-numbered for use by the
program. Since the transfer function desired is that between
Xe and x,, these two nodes will be numbered 1 and 5, respective-
ly. The numbering of the other three nodes is irrelevant as
long as none of them is ordered higher than 5. Therefore,
assume Xq is 2, Xq is 3, and Xy is 4. The connectivity matrix

then follows as

1 2 3 4 5
1/f/0 1 0 1 0]
20 1 1 o0 o0

IC=3/0 1 1 0 O
40 0 1 1 1
500 0 0 0 1




54

The computer output is shown on the following page. Using
this output and Mr.Coates' equation, the transfer function
then follows:

The one connections are Al,4A4'5A2,3A3,2(-1)'
and A1,4A4’5A2’2A3'3(—1)2. These are determined from the
directed LOOP matrix and directed PATH matrix. There is
only one path (A1’4A4'5) transmittance and 2 of the 5 LOOPs
touch that path. The LOOP transmittances are, using the

TLOOP matrix: and A

By ,3B3,27 By o7 By 37 By 4i 5,5°
. 4 3
The connections are A2’2A3’3A4,4A5’5( 1) ® and A2,3A3,2A4,4A5’5(—1) .

Therefore, the transfer function becomes:

2 1
By 4By ,5 [By 5By 3(-1)7 + Ay A5 5(-1)7]

14

1 3
By 4Ps5 5 [By o3 5(-1)7 + Ay JR5 5(-1)7]

By,4P4 5

By 485 5

To show that this is the same result as that found in Chapter
IT it is only necessary to recall that node 1 corresponds to
Xg node 5 to Xo1 node 2 to Xq, node 3 to Xy and node 4 to

Xg- Therefore, A1,4 corresponds to k4’5, A4'5 to k2'4, A4,4

to k4’4 and A5’5 to k2,2. Thus
_ k2_'4k4_,5
1,5 7 %



CONNECT

e W
— b

0
1
1
1
a

Lo Ban B gw ]
o I BT
N e e B

C

—

REC

—

e

tad

-y

I
n
C
C
1
1

-C

VITY,IC+MATRIX

LCCP MATRIX

DIRECTEL PATE MATRIX

1 %5

25



56

Example II. Consider the flow graph of Figure V. No

change in ordering will be necessary for the desired transfer
function is that between node %, and node Xg. The connectivity

matrix then follows as

1 2 3 4 5
1fo 1 o o 0]
210 0 1 0 O
Ic=3{0 1 0 1 0
alo o o o0 1
500 0 0 1 0

The computer output is shown on the following page. There

are two loops whose transmittances are A2’3A3,2 and A4'5A5’4,

respectively. The single path transmittance is A A A A .
p Y ge P 1,2%2,3%3,4%,5

Using Mason's equation the transfer function becomes

T - Pidy
T A
where Al =1
and =1 - L,-L, + L5,
. o = 21,2%2,3%3 42,5 (1)

1-8, 3R3 5By sBg 4Ry 383 By 5Bs 4

This equation agrees with that shown in Chapter II as an example

of the use of Mason's equation.



CCNNECTIVITY,IC,MATRIX

01ra19n
2010010
c1o01 0
neocnenl
c 1 ¢

DIRECTEC LCCP MATRIX
2 3
4 <

Y

IR
12

FATE MATRIX

W

CTE
y

i



58

Example III. This example will be used to demonstrate

the capability of the program. Consider the flow graph of
Figure X. This example is taken directly from Mr. D. C.
Fielder's paperlo and was chosen to show the error free
approach to determine all existing loops and paths. The

connectivity matrix for this graph follows.

1 2 3 4 5

1{1 1 o o 1)

210 o 1 o0 1
ic=3(0 0 1 1 1
41 o o o0 1

560 1 o0 1 0

¥

The computer output is shown on the following page. There

are 11 loops within this flow graph and the loop transmit-

tances are Ay Ry oBy 3Bz 4By 17 By 2By 383 5B5 4By ,1
By 3B3, 484 585 27 By 5Bg5 4By 10 By 2By 5By 4By 10 By 3B3 gBg oy
Al'2A2'3A3'4A4,1, A4’5A5,4, A2’5A5’2, Al,l' and A3’3. Similar-
ly, the path transmittances are A1'2A2'3A3’4A4,5, Al,5’

and A The paper referenced for this

A1,2R2,57 1,2%2,3%3,5"
example does not find the paths existing in the flow graph,
however, it is accurate in finding the loops that exist.

Its major drawback is that it is a hand method requiring
lengthy matrix manipulations. The program presented in this

paper accomplishes the same results with no hand or lengthy

matrix manipulations. The user is now presented with all the



FIGURE X

Azs

8 >

FLOW GRAPH FOR SYSTEM OF EXAMPLE TIII.

59



CCNNECTIVITY,IC,FATRIX 60

11001

i -~

o~

— -

Cc

o

DIRECTED LCCP MATRIX

m

n

wn o =+

- FUHnm

[ NN P N s U A N R Uy

Ut oed Pt - U ey M

NIRECTED PATE MATRIX

u



61
information he needs to determine the input-output relations
for this example.

The following examples will be brief and only involve
use of the computer program. Since finding the transfer ‘
function for any of the examples is now merely a plug-in
operation to one of the gain equations, this operation will

be left to the reader.



62

Example IV. This example illustrates a maximal strongly

connected system. The flow graph is shown in Figure XI. Every
node is connected to every node, including itself. The con-

nectivity matrix is shown below:

1 2 3 4
11 1 1 1
2|1 1 1 1

IC=31 1 11 1
alr 1 1 1

The computer output is shown on the following page. There
are in fact 24 loops and 5 paths. It is implied that the
last node in a LOOP vector output is connected to the first
node in that vector.

Therefore, a typical LOOP transmittance would be
Al'2A2,3A3'4A4’1. Similarly, a typical PATH transmittance
is Al’2A2,3A3'4. The information given in the computer
output would enable one to obtain the transfer function for

an input at node 1 and an output at node 4.



FIGURE XI

FLOW GRAPH FOR SYSTEM OF EXAMPLE 1IV.

63



64

CONNECTIVITY,IC,MATRIX

1111

1

DIRECTED LCCP MATRIX

o = T M 0 fu
mMALMg =M=+ M3 Mg Lme
(AT I LT o S VI o O o O~ ol o B o A VAR o a VI A R - ol LN ol e £ AN)

B e B B B e T W A o VI R B B A B A VAN WINPT B o U o i

DIRECTED PATH MATRIX

o+ o
m &+ =+
n Mmoo e

L B B B B}



65

Example V. Consider the flowgraph of Figure XII.

This is an 11 node system and is used as an example only for

demonstration purposes. The connectivity matrix is shown

below:
1 2 3 4 5 6 7
1%0 6 0 o0 0 0 1
20 o 1 1 o0 o0 O
3)l0 o 0 0 O 0 O
4lo0 o o o 0 0 O
5(0 0 0 0 0 1 O
IC=%6lo 1 1 o o o0 o
710 0o o o0 1 0 O
gjlo o o0 1 0 0 0
9j0 0o o0 0 0 1 0
10/0 0o 0 O 0 0 1
1140 o o 1 0 0 O

There exist 5 loops and 3 paths in this
are shown in the computer output on the
information again will allow the reader
function for the system having an input

output at node 11.

8 9 10 11
0 © 0 0]
0 0 0 0
0 1 0 0
0 0 0 1
1 0 0 0
0 0 0 0
1 0 0 O
0 0 1 0
0 0 0 6
0 0 0 0
0 0 0 0

flow graph and these
following page. This
to obtain the transfer

and node 1 and the



FIGURE XII

FLOW GRAPH FOR SYSTEM OF EXAMPLE V.

66



CCNNECTIVITY, IC,MATRIX

67

onnNne 1000
octlti10000m000°¢0

n

n

70 10N

nnn3a0
pncAocCcaoCo007T0l

Nt CN

0

1171950080

Ia]
4

11 nCcCcCn0N000
g0oo0n01 001

G

[

o

oo
-~ O
~ oo
[ B o Y o}
Lo e R
o - O
[ by s ]
-~ O
Qoo
[ S g e

ocC o

CTRECTED LOOP MATRIX

2.9 6

2

%11,

5 810 ?
3 96

7 2110

MATRIX

DIRECTED PATH
1 7 8 %11

111
1 2 56 2 411

3

1 75



68

Example VI. This is the final example. The flow

graph is shown in Figure XIII. The connectivity matrix for

this 16 node system is shown below:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 1
1%0 1 0 1 0 0 0 0 0 0 0 0 0 0
210 0 0 0 1 1 0 0 0 0 0 0 0 0
3{0 1 0 0 0 0 0 0 0 0 0 0 0 0
4(0 0 0 0 0 0 0 1 0 0 0 0 0 0
5(0 0 1 0 0 0 0 0 0 0 1 0 0 0
6]0 0 0 0 0 0 1 0 0 0 0 0 0 0

IC= 710 0 0 0 1 0 0 0 0 0 1 0 0 0
8|0 0 0 0 0 0 0 0 0 0 0 0 1 0

9]0 0 0 0 0 0 0 1 0 0 0 0 0 0
10]|0 0 0 0 0 0 0 0 0 0 0 1 0 0
11}0 0 0 0 0 0 0 0 0 1 0 0 0 0
12]0 0 0 0 0 0 0 0 0 0 0 0 0 0
1310 0 0 0 0 0 0 0 0 0 0 0 0 0
14}0 0 0 0 0 0 0 0 1 0 0 0 0 0
1540 0 0 0 0 0 0 0 0 0 0 0 0 1
16L0 0 0 0 0 0 0 0 0 0 1 0 0 0

In this system there are 4 LOOPs and 4 PATHS as shown on the
computer output on the following page.

Again, this information would allow the reader to obtain
the transfer function for this system with an input at node 1
and an output at node 16. This example along with the pre-
ceding examples in this chapter should demonstrate the accu-

racy and capability of the developed program.

(8]

O O O H O O O O O O O O O© O O ©

[
)}

o O O B M OO O O O 0O O 0o o o o




FIGURE XIII

FLOW GRAPH FOR SYSTEM OF EXAMPLE VI,

69



CONNECTIVITY,IC,MATRIX

70

[om ]}
oo
oo
oo
oc
oo
oo
jam R an
oo
oo
-
O~
~—
oo
- O

o

o

[n}

0G0

g C

01010

Coco0con0 1
goicco0029

L 0o0ccec0coan

]

coo0oo0oocQo0l

C

P a1o000M0

90 0

gccol

[e]

ceogcrcc o009

gooo0co001l 0029

C
a

g oo0oaQq

c 000Cc0CO0O00QD0

(L |
0040

ncnaao

00a9

gcoo1le

ca

c

[ I
e a]
(el ow )
[ Ry S8
oo
o
-t O
[ b
0o
oc.
;o
oo
oa
oc
(oYl ou)

[l an}

o e6ooo0ocoeoll

Qo
o
oo
Qo
- 2
[ I oo
o i we
Lo
oo
o
[ ok }
Qo

oo

cecaecoonooolrcoco0on

DIRECTED LQOOP MATRIX

E!

q

£

?

b

c

8 13 16 1%

10 12 16 11}

3

5

2

DIRECTED PATH MATRIX

1

11 10 1¢ 16

5

2
0

3 13 1b

? 11 10 )2 16

b

[at]

5 1] 10 l2 16

?

—



71

CHAPTER VI

CONCLUSIONS

Techniques for determining directed loops and paths
within a flow graph are developed. Through the use of these
techniques input-output relations may be found for much larger
systems than are usually investigated by flow graph methods.
Any of the techniques described in Chapter II may be applied
once the loop and path components of the graph are deter-
mined. It is not felt that the restrictions placed on the
use of the program are unduly prohibitive.

The problems encountered in attempting to apply this
approach to the hybrid case have not been discussed. How-
ever, several suggestions will be offered as an approach
that might be used to determine paths and loops of both
types, i.e., those that are strictly continuous and those
that contain at least one discrete variable. It should be
pointed out that the case involving all discrete variables
is no different than the case involving all continuous
variables due to the definition of a hybrid loop or path
described in Chapter II. The theory of superposition could
be applied in considering the hybrid case. The input data
could be in the form of 2 connection matrices, one containing
only the continuous variables and one containing all the

variables, continuous and discrete. Using these two matrices



72

all the continuous variable paths and loops could readily

be identified and all the paths and loops containing at

least one discrete variable could be obtained for those loops
and paths that do not encounter the same variable more than
once. Additional programming could compare loops and paths
found from the continuous connection matrix with those found
from the hybrid connection matrix. Those loops and paths
that appear in both sets could be eliminated from those

found from the hybrid connection matrix leaving only those
that contain at least one discrete variable. The real problem
that has to be solved is that of those paths and loops of
Type 2 (containing at least one discrete variable) that

pass through a continuous variable more than once. These
types of paths and loops are permitted in accordance with

Mr. Bekey's definition as stated in Chapter II. It is
believed that with a little more effort this approach could
be completed and a general program could be written that
could handle all classes of signal flow graphs. However,
that was beyond the scope of this research.

A digital computer program has been developed that
will identify every loop that exists within a given flow
graph as well as every path from input to output. This
program will handle large systems as long as the systems
are either all continuous or all discrete. Also, this

program lends itself to multi-input-output problems in



73

that all that is necessary is to shift the ordering of the
variables within the system such that the new input is

the first ordered node and/or the new output is the highest
ordered node. It is believed that this digital approach

to the identification of paths and loops within a flow

graph is simple and very useful.



10.

11.

74

REFERENCES

Mason, S. J., "Feedback Theory - Som Properties of
Signal Flow Graphs," Proc. IRE, Vol. 41, pp. 1144-
1156, September, 1953.

Mason, S. J., "Feedback Theory - Further Properties
of Signal Flow Graphs," Proc. IRE, Vol. 44, pp. 920-
926, July, 1956.

Coates, C. L., "Flow Graph Solutions of Linear Algebraic
Equations," IRE Trans. on Circuit Theory, Vol. CT-6,
pp. 170-187, June, 1959.

Desoer, C. A., "The Optimum Formula for the Gain of a
Flow Graph or a Simple Derivation of Coates' Formula,"
Proc. IRE, Vol. 48, pp. 883-889, May, 1960.

Mason, S. J., "About Such Things as Unistors, Flow Graphs,
Probability, Partial Factoring, and Matrices," IRE
Trans. on Circuit Theory, pp. 90-97, September, 1957.

Bekey, G. A., and M. Sedlar, "Signal Flow Graphs of
Sampled Data Systems: A New Formulation," IEEE
Trans. on Automatic Control, Vol. AC-12, No. 2,
pp. 154-161, April, 1967.

Salzer, J. M., "Signal Flow Reduction in Sampled Data
Systems," IRE Wescon Conv. Rec., Pt. 4, pp. 166-169,
1957.

Hoskins, R. F., "Signal Flow Graph Analysis and Feedback
Theory," The Institute of Electrical Engineers,
Monograph No. 388E, July, 1960.

Ramamoorthy, C. V., "Analysis of Graphs by Connectivity
Considerations," Journal of the Association for
Computing Machinery, Vol. 13, No. 2, pp. 211-222,
April, 1966.

Fielder, D. C., "An Approach to Error-Free Flow Graph
Equations," IEEE Trans. on Education, pp. 233-237,
December, 1967.

Lendaris, G. G. and E. I. Jury, "Input-Output Relation-
ships for Multiloop Sampled Systems," Trans. AIEE
(Application and Industry), pp. 375-385, January, 1960.



12,

75

Ash, R., W. H. Kim, and G. M. Kranc, "A General Flow
Graph Technique for Solution of Multiloop Sampled
Systems," J. Basic Engrg. Trans., ASME, pp. 360-370,
June, 1960.



APPENDIX



OO0

OO0 OO OO OO0 OO0

PURPQOSE
DETERMINE ALL SUBLOGPS AND PATHS THAT EXIST
WITHIN A SIGNAL FLOW GRAPH

INTEGER*2 IC(20,20),1IR(20,20),IM(20,20),1IB(20),KB(20),LNIOE(42D),

LIMULND=Z(40),ITESTI(20,20),IEXIT(20),ITROW(20),ITCCOL(20),
1IMLOOP{40,2G),L00P(40,200/800%0/,ITLOOP(%3,23),1ISLQ0P(22),
1IPATH{40,20)/8CC*3/,IPN3DE{40)
DESCRIPTION OF MATRICES
IC-CONNECTIIN MATRIX FOR MAIN SIGNAL FLOW GRAPH
IR-REACHABILITY MATRIX - THIS MATRIX AREA IS
USED MORE THAN SONCc — 1T DETERMINES THE
REACHABILITY FOR THE SIGNAL FLOW GRAPH OR
ANY SUBGRAPH THAT APPEARS WITHIN THE SIGNAL
FLOW GRAPH
IM=YMATRIX CONTAININS UNIQUE RUw VECTORS
CORRESPONDINSG TO SUBGRAPHS THAT EXIST WITHIN
THE SIGNAL FLOW GRAPH QR ANY CTHER SUBGRAPH
CF THE SYSTEM
IB-COUNTER JSED IN CONSTRUCTION UOF Ik MATRIX
KB—CJIUNTER USED IN CONSTRUCTION OF IM MATRIX
LNOUE-CINTAINS NUMBER OF NODES THAT APPEAR
IN A GIVEN LOOP
IMUNDE-CONTAINS NUMBER OF NOUDES THAT APPEAR
IN A P3SSIZ2Lc LODP CUNFIGURATION
ITEST-A MATRIX THAT CORRESPCNDS TO A CONNECTION
MATRIX FOR ANY POSSIBLE SUBGRAPHe THIS MATRIX IS
CREATcD AS NZEVUED FOR EACH POSSIBLE SUBGRAPH AND
AFTER IT IS USED IT IS DESTROYED
FTEXIT-CCNTAINS THE NUMBER OF EXITS FOR A GIVEN NODE. AFTEK
IT IS USED IT IS DESTROYED TO BE USeD AGAIN LATER.,
[TRIA-USZDU TU TcMPORARILY STORE A ROwW VECTOR FROM
THE ITEST MATRIX UNDER INVESTIGATION
ITCOL-USzZu TC TEMPQORARILY STORE A CULUMN VECTOR
FROM THE [TEST MATRIX JNDER INVESTIGATION
IMLOOP-THIS MATRIX CONTAINS ROW VECTORS OF NUODES
WHICH MAY BE IN A LOOP AND MAY CONTAIN INSIDE
LOOPS OF FrwZIR NOOES
LOGOP-THIS MATRIX CONTAINS ROW VECTORS OF ORDERED
NJIDES AS THcY APPEAR IN A LOOP WITHIN THE SYSTEM
ITLOOP-THIS MATRIX CONTAINS ROW VECTORS OF NODES
THFAT MAY 3¢ IN A LOOP
ISLOJOP-THIS CONTAINS THOSE NODES HAVING SELF LIJOPS
AND ARE ADDED TO THE LOOP MATRIX UPON COM2LETION GF
THE LOJP FINDING ALGORITHM
IPNODE-CONTAINS THE NUMBER OF NODES THAT APPEAR
IN A GIVEN PATH
IPATH-CONTAINS ROW VECTORS CORKCSPONDING T0O ORDERED
NOJES AS THEY APPEAR IN A FATH FKOM THE INPUT NODE
T0 THE OuTPJT NODE
IPCNT-CONTAINS THE NUMBER OF PATHS THAT EXIST
wWITHIN THeE SYSTcM
LCOUNT-CONTAINS THE NJMBER OF L7J0PS THAT EXIST
WITHIN THE SYSTcM
IMLONT-CUNTAINS THE NUMBER CF IMLDOP VECTORS F3UND
READ(S5,1)N
READ(S)E)((IC(K,I)1I=lyN)1K=1'N)
FGRMAT (I2)
FCRMAT(401I2)
WRITE(as1l5)



15

16
13

87

28

813

o

le

13

FORMAT(*1*,1X, "CCNNECTIVITY,IC,MATRIX")

DC 1b J=1,\N

WRITE(b,10)({IC(J4IK)Y,,IK=1yN)

FCRMAT(2012)

LIM=%4]

DETERMINE NCDES HAVING SELF LOOPS AND STORE THEM IN
I5L03P VECTOR

ISLCNT=D

DC B? I=1,N

IF(IC(I,I).EQ.13G0O TD 88

CCANTINUE

GO TO 819

I SLONT=ISLCONT+1

ISLOOP({ISLCNT) =1

IC{I,1})=0

GC 70 87

CALCULATE IR MATRIX FOR MAIN SYSTEM

DC 3 K=1,4N

DC 4 I=Li,N

[B(I)=0

IR(K,yI)=IC{K,I)

DC 3 M=1,N

DC 2 I=14N
IF{IR{K,I).NC.DO)GO TCO 5

GC TC 3 ,
IFCIB(I).NE.0)GO TO 3

I8(I)=1

I11=1

DO b J=14N
IX=IR{(KeJI)+IC(II,J)

IF(IX.NELO)SO TO 7
IR(K,yJ)=0

GC TO »

IR(KyJi=1}

CUNTINUE

CGNTINJE

DC 11 J=1,4

CALCULATE IM MATRIX FOR MAIN SYSTEM

DC 12 I=1,N

Kd{I)=0

IM{JeI)=IR(I,J)

D8 11 M=1,N

DC 11 I=1l,4N

IF(IMUJ,I).NE.L)GG TG 13

GC T3 11

ITE(KB{I).NE.O)GS TO 11

Ka(l)=1

I11=1

DC 11 K=1,n

IY=IM{Jd,KI+IR(II,K)

IF(IY.NE.2)IGD TG 1%

S IMd,K)=1

14
11

GC 70 i1l
IM(J,K)=D
CONTINJE
IMLCNT=C
K=1
NN=N-1
I=1



OO0

[N aNe]

OO0 ON

17

18

13

2l

12k

128

le?

2l

23

ae

24
28

29

31

M=0

DETERMINE UNIQUE ROW VECTORS OF IM MATRIX. THESE ARE
PCSSIBLE LGOP VECTORS BUT MAY CONTAIN SMALLER LOOPS

INSIDE
DC 18 J=1N

IFCIM({I,J).EQ.1)GO TO 119

CONT INJE

IF(M.GT.1)GO 7O 20
IF(IMLCNT.5T.0)30 T3 21

I=1+1

[IF(I.5T.NN)GU T3 2¢

GO0 TO 17
M=Ne]

INLOOP (K, M) =J

GG TO 18

IVMLCNT=IMLCONT +1
IF(IMLCNT.GTLLIMIGO TO 12b

GG TO 127
WRITE(bBysL1l23)

FGRMAT(*0*,1X,*IMLOCP HAS EXCEEDED LIM, REDIMENSION IMLCGP')

GC 7O 1te20

IMLNDE (IMLCNT) =M

K=K+1
I=]+¢1l
DC 23 IK=1l,1

AMLCNT

T UM=TMLNDE(IK)

DO 23 Iv=1,!

JM

NUM=IMLGOP(IK,1IV)

IF(I.cdsNUM)
CONT INUE

50 70 2l

[F(I.5T.NN)50 TO 22

GC TO 17

[FUIMLCNT .GT L0030 TO 24

GG TG0 25
K=1

NCNODE=IMLNDE(K)
BEGIN DETERMINATIGN OF SMALLER ADDITIUNAL POSSIBLE
LOGPS BY FCRMING ITEST MATRIX FOR A GIVEN IMLOOP

VECTOR

DO 28 I=1,NONGDE
DC 29 J=1,NONUDE

II=IMLOQP (K,
JJ=IMLIOP(K,
ITEST{I,J)=I

I
J)
ClII,JdJ)

CHECK NUMBcR OF EXITS FUR EACH NOOE OF ITEST MATRIX
DC 30 I=1,NONOQDE

IEXIT(I)=0

DC 31 J=1,NONODc

TEXIT{I)=IEXIT(I)+ITEST(I,J)

IF EXIT IS NUT GREATER THAN ONE THERE CAN BE NO
INSIOE LOOP, INVESTIGATE NEXT IMLOJP VECTOR

IF EXET IS GREATER THAN ONE TEMPORARILY STORE FIRST
RGW VECTOR OF ITEST MATRIX IN ITROW VECTOR AND THEN

ZERO FIRST

R0W VECTDR OF ITEST MATRIX. ALSO DO THE

SAME FOR THE FIRST COLUMN VECTOR USING ITCOL VECTOR.
NOW NEW IR AND IM MATRICES ARE OBTAINED, CREATING

NEW IMLOOP

VECTORS. YTHIS OPERATION IS TD BE REPCcATED

FOR EVERY NODE OF ITEST MATRIX WITH ONE NODE REMOVED

AT A TIME,

OF COURSE AFTER EACH INVESTIGATION THE



30

3e

37

38

0
39
3b

42

43

4
1

47?7

48

DELETED RUwW AND CGLUMN VECTORS ARE REPLACED BEFJRE

CELETING THE NEXT PAIR
[FOIEXIT(I).5T.1)GO TO 32
CONTINJE
K=K+1
IF(KeGTSIMLCNT)GO TO 25
GG TO 28
DG 33 I=1,NONODE
DC 3% IJ=1,NONJDE
ITROW(IJI=ITEST(I,1J)
ITCOL{TIJ)=ITEST(IJ,1)
oC 35 J=1,NUNODE
ITEST{I,J)=0
ITEST(U,1)=0
DC 3& IK=1,NUNODE
DO 3?7 II=1,NUNQODE
IB(II)=0
IRUIK,II)=ITEST(IK,II)
DC 36 IN=1,N3NGDE
DC 35 II=1,NONOGCE
IF{IR{IK,II)«NE.C)GO TO 38
GO TO 3s
IF(IBIII)aNELI)GU TO 38
IB(II)=1
TJ=11 .

DC 39 JJ=1,NINODE
IX=IR(IKyJII+ITESTIIJyJJ)
IFUIX.NE.O)GO TO 40
IR(IK,yJJ)=0]

GC TO 319

IRTIKyJJ) =1
CONTINUE
CONTI NUE
DC %1 IJ=1,NONODE
oL 42 II=1,NINCDE
KB(II)=0
IM(IJ,II)=IR(II,1J)

DC %1 IN=1,NONODE

DC 41 ITI=1,NONODE
IF(IMIIJsII).NE.O)GD TO 43
GC TO +1
IF{KB{II)eNE.O)G0 TO 41
KB{II)=1

[II=11

DC %1 IK=1,NONODE
IY=IM{IJy IK)+IR(III,IK)
IFCIY.NEL2)G0 TO 44
IV(IJ,IK)=1

GG 10O 41

IM{IJ,IK)=0

CONTINJE

IK=IMLCNT+1L

I118=0

II=1

M=0

DC %3 J=1,NONJ3D=
[FCIM{IT,J)ecQ.1)G0 TO 48
CONTINUE

IF(M.GT.1)50 TUO 50



OO0

OOOOO O

145
51

49

SO

53

S4

5¢2

57
S5t

&0
33

[RV]
n

bl

52

IF(IIB.EQ.DJ)5G] TO 14»
GC 70O 53

[I=11+1
IF(IT.GT.NINODE)GO TO 32
GO TD 4?

M=M+]

INLOOP{IK yM) =4

GC TO 43
IMLOCNT=TMLCNT+]
IF(IMLCNT.53T.LIMIGO TO 126
ITMLNDE (1K) =M

11B=11B+1

[K=1K¢1l

ILID=IK-I13

[I=11+1

DO S% TIK=ILID,IMLCNT
INUM=IMLNDE(TIK)

DC S% IV=1,INUM
IP=IMLUOP({IIK,yIV)
IF(IT.EQ.IP)}GD TO 53
CCNTINUE

GC TO 51

IF(II3.6T.0)G0 T0O 5§

GG TO 56

DC 57 J=ILID, IMLCNT
Iv=IMLNDE(J)

DC 5?7 IJ=1,1V
[A=IMLOOP(J,1J)
INLOOP(J,1JY=TIMLOCP{K,TA)
D0 b6J [J=1,NUNJDE
ITEST(I,1J)=ITROW(IJ)
ITESTUIJy I)=ITCGLII N
CCNTINJE

K=K+1

IF({K.GTLIMLONT)SO T 25
GC 10 238

[CP=0

LCCUNT=0

K=1

NGNODE=IMLNDE (K)

AT THIS PIOINT ALL POSSIBLE LOOPS HAVE BEEN STORED AS

IMLOOP VECTIRS AND IT IS NOW NECESSARY TO ESTABLISH
IF THEY ARE IN FACT LOUPS AND IF SO OkDER THEM

THE LTEST MATRIX IS AGAIN FORMED FOR EACH IMLOOP

VECTOR AS IT IS INVESTIGATED

DG B2 [=1,N0NODE
DC &2 J=1,NJINDDE

II=IML3OP(X,I)

JJ=IMLOOP (K,J)

ITESTIIyJ)=IC(II,JJ)

ITLOOP VECTORS ARE: CONSTUCTED AS 3JRDERED NODES AS THE
NCNZERG ELcMeENTS CF THE ITEST MATRIX ARE FNUND. NO NGDE
MAY APPEAR MUORE THAN ONCE IN ANY LOGP AND THE LASY NODE
IN THE LOOJOP MUST BE CONNECTED TC THE FIRST NODE IN THATY
LOOP., EACH L3OP CONTAINS THE SAMc NUMBER OF NODES AS
THE IMLOOP VECTOR FROM WHICH THE LDOP IS FOUND, NO MORE
AND NJ LESS

0G 121 I=1,LIM
DT 12l J=1,NONQBOCE



121 ITLOOP(I,Jd)=0
I=1
ITLC=1
M=0
IL=1
IK=¢
[TLOOP(L,1)=1
63 DC bY J=1,NONODE
IFCITEST(I,J).EQ.L1)GO TJ 15§
GO TO b4
BS M=M+]
IF(M,EQ.IL)G] TC &b
M=ITLC+1
ITLOOP (M, IK)=J
IMN=IK-1
DC &7 KK=1l,IMN
B? ITLOGP(MaKK)=ITLOOP{ILyKK)
DC &8 JK=1lyIMN
IF(ITLOOP(M,IK).EQ.ITLIOPI{M,JK))IGO TO b4
58 CCNTINUE
ITLC=M
IF{ITLC.GT.LIM)GO TO 123
GO 7O &%
123 WRITE(6,1253)
125 FCRMAT('0%',1X,*POSSIBLE LOOPS EXCeEeD LIM, REDIMENSION ITLCOP')
G0 TO 120
bb ML=0
ITLOOP (M, IK)=J
[C=IK~1
DO b9 JK=1,ID
IF(ITLOOP(M,IK)EQ.ITLODP{M,JK))GO TO 7?0
b3 CICNTINUE
IF{IK.cW@.NINJIDE)GDO TO 71
GC 7O a4
?0 M=M-1
ML=1
b%Y CGNTINUE
IF{ML.EJ.1)GO TO ?¢
M=1L
I1=ITLIIP (M, IK)
M=M—1
IK=IK+1
IF(IK.3T.NINODE)GO TO 71
GO TO &3 '
72 M=M+1
71 TL=M+1
M=IL
CIF(MJGTL.ITLCYSO TO 7?3
DC 7?74 JX=1,NINQODE
IF(ITLOOP{M,JK)+EQ.0)GO TO ?5
74 CCNTINUJE
GO TO 71
78 IK=JK-1
KK=IK-1
DC ?6 IBC=1,KK
IF{ITLOOP (M, IK)}.EQ. ITLOOP(M,IBC))GO TO ?1
7b CONTINUE
I=1TLIDOP(M,IK)
IF(IK.GT.NONIDE)IGO TGO 71



?3

78

ls1)

OO0

80

1219
131

130
??
?9
8l

82

8%
83
157
156

146
147

149

150

151

M=M-1

IK=IK+#l

GC T0 b3

DO ??7 I=1,ITLC

MC=ITLOOP (I +NONODE)

IF(ITEST(MC,1) .EQ.1)GO TQ 78

GC TO 7?7

1 AD=NONGDE-1

DO 160 JJ=1,1AD

IF{ITLOOP(I,NONODE).EQ.ITLOOP(I,J4))GO TO ?7?

CCNTINUE

ICP=1ICP+1 :

THE LOJOP VECTOR IS NOW FORMED USING THE ITLOOP VECTOR AND
ITS CORRESPUNDING IMLOOP VECTOR. THERE MAY BE MORE THAN
CNe ITLOOP VECTOR FOR ANY GIVEN IMLOOP VECTOR

DC 80 IJ=1,NONODE ‘

ITA=ITL3OP(I,1J)

LCGP{ICP,1J)=IMLOGP{K,IA)

LCOUNT=LCCUNT+1

IF(LCOUNT.5T.LIMIGO TO 121

GG TO 130

WRITE{(b,131)

FORMAT('0*41X,*LCOUNT HAS EXCEEDED LIM, REDIMENSION LO3P")

GG TO 120

LNODE{LCOUNT)=IMLNDE{K)

CCNTINUE

K=K+1

IF(K.GT.IMLCNT)GO TGO 81

GG TO ol

IF{ISLCNT.3T.0)GD TO 8¢

GG TO 33

DC 8% I=1,I5LCNT

LCCUNT=LCCJUNT+1

[E(LCOUNT.GT.LIM)GO TO 129

LOOP{LCOUNT,1)=ISLOOP(T)

LNODE{LCOUNT)=1

IFILCOUNT.5T.1)GD TO 13w

IF(LCOUNT.GTL.0)538 TO 155

WRITE(by157?)

FCRMAT(*0*,1Xy*THERE ARE NGO LGCPS'I

G3 70 158

IIN=1

KILT=TIN+1l

IED=LCOUNT

DC 143 J=KILT,IED

IF(LNIODE({IIN) .EQ.LNODE(J))IGO TO 149

GO TO 148

IEA=UNODE(IIN)

DO 150 II=1,1EA

IF(LCOPITIN II).NE.LCOP{J,ITI))GO TO 148

CONTINUE

DC 151 IJ=1,IEA

LCOP(Jy1J)=C

IF(J.EJ.LCOUNTIGO TO 152

I EB=LCOUNT-1

DC 153 KI=J,IEB

KK=KI+1

LANCOE(KII=LNODE(KK)

I EC=LNODE (KK)



OO0

153

152

1%8
154

8b
117

153

100

91

93

94

92

86

37

30

DC 153 [J4=1,IEC
LCOP(KI»IJ4)=LOOP[KK,yIJ)
LCOGUNT=LCOUNT-1

KILT=J

G3 TO 147

LCOUNT=LCOUNT-1

GG TO 154

CONTINUE

TIN=LIN+.

TEF=LCOUNT-1

IF(IINJGTL.IEF)GI TO 1S5

GC TO 1l4b

NRITE(B6+385)

FCRMAT(*0*,1X,*DIRECTED LOQOP MATRIX')

DC 8b K=1,LCOUNT

[CP=LNJIDE(K)

WRITE(o0y11?7)(LOOP{KsM)sM=1,ICP)

FCRMAT{(2013)

TRE IPATH VECTORS ARE O3TAINED FROM THE ORIGINAL IC MATRIX
BY INVESTIGATING THE ROA VECTORS OF THE IC MATRIX FOR
NCNZERD ELEMENTS. THt ELEMENTS {NODES) OF THE IPATH VELTORS
ARE ORDERcD AS THEY ARE FOUND. AGAIN ND NODE MAY AFPEAR
MCRE THAN ONCE IN ANY PATH

I=1

IPCNT=1

M=

IL=1

K=¢

[PATH(L1,1) =1

DC 90 J=1,N

IF(IC(I,J).EQ.1)G0 TO 9l

GO 70 130

M=M+1

IF(M.2Q.IL)GO TO Q2

M=TPCNT+1

IPATH({M,K)=J

NM=K-1

DC 93 KK=1,NM

IPATHI(M,KK)=IPATH{IL KK)

DC 9% IK=1l,NM

TF{IPATH{MyK) sEQ.IPATH(M,IK})GO TO 9D

CCONTINUE

IPCNT=M

IF(IPCNT.EQ.LIM)GO TO 13%

GG 10 30

ML=0

IPATH(M,K) =4

IC=K~1

DC 8b IK=1,10

IF(IPATH{M,KI.EQ.IPATH(M,IK)})GO TO 97

CCONTINUE

IF{IPATHIM,K).EJ.NIGO TO 98

GC TO ad

M=M-1

ML=1

CCNTINUE

IF{ML.c2.1)GJ TO 919

M=1IL

I=IPATH{M,K)



M=M—]
K=K+1
IF(K.GT.N)GGC TG 98
GO 70 1090
99 M=M+1]
98 IL=M+¢}
M=1L
IF(M.GT.IPCNT)GO TO 105
D0 101 IK=1,N
IF(IPATHI{M,IK).EQ.0)30 TO lo2
101 CCNTINUE
GC TO 98
102 K=IK-1
KK=K—-1
DC 103 IBA=1,KK
IFCIPATH{M,K) EQ.IPATH(M,IBA))G] TO ag
103 CCONTINUE
I=IPATH{M,K)
IF{IPATHIM,K) .EQ.NIGO TO a8
M=M-1
K=K+]
GG TO 100
19% WRITE{by1lGn)
106 FORMAT('O0',1X,*PATHCCUNT HAS REACHED LIM, REASSIGN®)
GC TO 1leo
105 KIL=1
10?7 DC 163 I1JM=KIL,IPCNT
DO 109 [K=1,4N
IF(IPATAHIIUM,IK)LEQ.N)GO TO L11
109 CCNTINUE
DG 113 IJ=1,yN
110 IPATHIIUM,14)=0
IFUIJUM.EQ.IPCNTIGY TO 112
IMA=IPCNT -1
DC 113 KI=IJM,IMA
KK=KI+1
DC 113 J4=1,N
113 IPATHIKIsJ)=IPATH{KK,J)
IPCNT=IPCNT-1
KIL=IJM
GO TO 107
111 IPNODE(IJUM)=IXK
108 CCNTINUE
GC TO 114
112 IFCNT=IPCNT-1
11% WRITE(6,115)
115 FORMAT(*'0*,1X,"OIRECTED PATH MATRIX')
DC 116 K=1,IPCNT
ICP=IPNIDE{K)
1l WRITE(bsll?){IPATH{(K,I),I=1,ICP)
120 STQP
ENC



