
A DIGITAL PROCEDURE FOR FINDING Al.L DIRECTED SUBGRAPHS

Oi? SIGNAL I'T.OVv CHJ’.T’II

A Thesis

Presented to

the Faculty of the Department of Electrjcal Engineering

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Plaster of Science in Electrical Engineering

■ by

Jack D. Greenwade

May 1969

484189

ACKNOWLEDGEMENT

The author would like to express his sincere

appreciation to Prof. C. F. Chen for his guidance and

encouragement during the development of this work. Also to

Prof. W. P. Schneider, for his helpful comments during the

formulation of this research, the author is very grateful.

A special word of appreciation is also due Mr. K. B.

Rennie of Houston Lighting and Power Company for his excellent

technical assistance. The completion of this thesis was

greatly enhanced by the aid he contributed.

The author would also like to express his full grati­

tude to his wife, Judy, whose encouragement, understanding,

and patience made this research possible.

A D1GIj-’Zvij 2'OA L?LZ'aD7..'G ilLL D.lAECj\.'D SLbGA',L??IS

G)y a s:cgx.\l

An Abstract, of a Thesis

Presentee! to

the Faculty of the Dopartiuent of Electrical Enginec-rincj

University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Electrical Engineering

by

Jack D. Greenwade
May I.969

The algebra of flo'.z graphs is v/elJ c.cfinscl a aS several teclmiques

are-available for obtaining input-outpub rela-Lions. A brief revi^v is

presented, with the addition of the e ppli cot ion to saeipled data sysi.e^s.

Hovever, all of the techniques fo.v obtaining input-output relfitions

depend upon the users ability to identii'y ell subgraphs within his sjstc-n

fl-ovr graph. Several papers .have been presented concerning.error free

identification of these loops and path", ho’.rever, the techniques involved

ai'e uijuslly laborious and lengthy.

Through the use of the connection matrix approach of Mr. C. V.

Ramrmoorthy a digital computer program is developed that finds all loops

and paths that exist within a flow graph. This research was restricted

to only continuous variable systems, however, techniques aie suggested

for handling the hybrid case, containing discrete as well as continuous

variables. Several examples arc presented to demonstrate the capability

of the program. Suggestions are also made foi’ handling multi-input-output

prob lea l".

TABLE OF CONTENTS

CHAPTER PAGE

I. INTRODUCTION 1

II. GENERAL SIGNAL FLOW GRAPH THEORY 5

III. DEVELOPMENT AND APPLICATION OF THE

CONNECTION MATRIX............................. 2 8

IV. DEVELOPMENT OF THE DIGITAL PROCEDURES

AND COMPUTER PROGRAM 35

V. EXAMPLES.. 53

VI. CONCLUSIONS..................................... 71

REFERENCES..74

CHAPTER I

INTRODUCTION

In literature today there are many methods of analysis

of control systems, of varying degrees of accuracy, complexi­

ty, generality, sophistication, and usefulness. For several

years people have been aware of topological forms for des­

cribing control systems or for that matter any set of dif­

ferential equations. However, application of these topological

form techniques appear to have taken a back seat to some of

the more modern techniques for describing the behavior of

control systems, perhaps understandably so. The algebra
1-5 3of signal flow graphs, or flow graphs, is well defined

3 and reduction techniques lead to the simplest graph m

which all the variables of interest appear. The major

usefulness of flow graph techniques arises from the topo­

logical properties which make it possible to obtain input­

output relations by inspection.

Small loosely connected systems lend themselves

readily to signal flow techniques. Unfortunately, most

physical problems are not small loosely connected systems.

It is obvious that a maximal strongly connected system of

only 5 variables does not lend itself to these inspection

techniques when one considers the number of possible loops

2

within the graph if every variable is connected to every

other variable. Therein lies the secret to successful
1 2use of gain equations such as Mason's or Coates: re­

cognition of all existing sub-loops and all existing paths

from input to output.

As a matter of note, consider the case of a hybrid

system, i.e., containing continuous variables and discrete

or sampled variables. In fact, sampled flow graphs until

recently were primarily intermediate steps in the evaluation

of input-output relations and could not be used for simple

representation of the system. Even when the final sampled

flow graph was formulated it had little resemblance to the

original system, and manipulation of the graph could not be

given an easy physical interpretation. Recently, Mr. G. A.
BekeyG proved that sampled flow graphs could be given a

physical interpretation and input-output relations could

also be obtained by inspection. It appears that no matter

which technique one uses. Mason's, Coates', or Bekey's, the

real difficulty lies in inspection. As the number of vari­

ables increases and the connection becomes stronger, it

becomes increasily more difficult to recognize loops and

paths by inspection. One is never quite sure he has not

overlooked a loop or a path. It is understandable how the

story got out that Mr. Mason, after several papers concerning

3

topological representations, presented a paper dealing with

the avoidance of signal flow graphs.
9Not too long ago, Mr. C. V. Romamoorthy developed

certain digital algorithms for obtaining certain information

concerning the properties of flow graphs. His contribution

cannot be overemphasized. The use of the connection matrix

and associated algorithms for finding maximal strongly

connected (M.S.C.) subgraphs are outstanding in their sim­

plicity. Today with the widely accepted use of the digital

computer as an engineering tool, one of the few remaining

problems untouched by programmers is the solution of the

signal flow graph for input-output relations. Several

lengthy techniqueshave been presented involving multiple

matrix operations for obtaining all existing subloops and

paths. These techniques use the branch transmission of the

flow graph as matrix elements and after lengthy hand mani­

pulations do an excellent job of obtaining the desired loops

and paths. However, it would appear to be much more advan­

tageous to know which variables were in a loop or path and

the proper flow direction without much hand manipulation.

The loop or path transmittances can always be readily ob­

tained knowing the directed variables in a loop or path.

Therefore, it is highly desirable for a digital com­

puter program to be developed to output to its user all

directed loops and subloops within a flow graph as well as

4

all directed paths from input to output. It is also desirable

that this program be general in form, such that the only-

limiting factor as to the size of the system to be handled

would be the size of the memory of the computer on which

the program would be run. A program of this type would

enhance the use of signal flow techniques for obtaining

input-output relations by either Mr. Mason's or Mr. Coates'

formula.

CHAPTER II

GENERAL SIGNAL FLOW GRAPH THEORY

The purpose of this chapter will be to review with

the reader the different techniques used to obtain input­

output relations, and to define certain terms used with the

application of these techniques. The association of a

topological structure with a set of linear algebraic
equations was introduced by Samuel J. Mason"*" and was called

the Signal Flow Graph. A graph is defined as a collection

of n objects called vertices or nodes, denoted by x-^,

Xg, xn and of m objects called branches or arcs, denoted

by b^,b2yb^,....bm together with a set of incidence or

boundary relations between the nodes and the branches such

that some pair of nodes xP w Xq (where p and q are not

necessarily different) is associated with each branch bj

Such nodes are called the boundaries of the branch. A branch

together with its bounding nodes is called an edge. An edge

is called a loop if the two boundaries are the same node.

Such a node is called a loop boundary. A convenient pictorial

representation of a graph consists of a set of circles, one

for each node, and a set of line segments, one for each branch

drawn so that the ends of each line segment are the circles

which correspond to the boundary nodes of the branch which

6

the line segment represents. A graph is oriented or di­

rected by assigning a cyclic order to the bounding nodes

of each branch. Pictorially, this is represented by an

arrow on the line segment. Examples of such graphs are

shown in Figure I.

The node from which the arrow points is called the

positive boundary of that branch and that to which the arrow

points is called the negative boundary. Similarly, a branch

is incident to its negative boundary and incident from its

positive boundary. A node that is never the negative bound­

ary for any branch is called a reference node or source

node. A node that is never the positive boundary for any

branch is called a sink node.

It should be pointed out that there are two types

of topological representations generally used for continuous

variable problems. These two types are the Signal Flow Graph
12 3developed by Mason * and the Flow Graph developed by Coates.

Except for certain normalized graphs, the Signal Flow Graph

is generally considered more complex than the Flow Graph.

The complexity arises when using the topological formula for

the solution of the set. The difference between the Signal

Flow Graph and the Flow Graph is basically a difference in

branch weights or transmittances. In the case of normalized

graphs, this results in a difference in the incidence pro­

perties. The following paragraph is a general statement of

these differences.

FIGURE I

7

8

Each nonreference node of the Signal Flow Graph is

the boundary of a loop, the branch weight of which is one

more than the branch weight of the loop of the corresponding

node of the corresponding Flow Graph. If a nonreference

node of the Flow Graph is not a loop boundary, the corre­

sponding node of the corresponding Signal Flow Graph is

the boundary of a loop with a branch weight of one. If a

loop boundary of the Flow Graph has a branch weight of

minus one, the corresponding node of the corresponding
3 Signal Flow graph is not a loop boundary.

Mr. Coates has developed techniques for obtaining

the solution of a set of linear algebraic equations through

the use of Flow Graphs. Consider the set of equations:

k =
X W

**

O
 GJ

O
H

O
O

M

O
M

O
 GJ

O
H

G
J

G
J

X*

W
O

 M H
**

 W
4^

 GO
O

 O
U1

 U1
1

kj
i

lv
«

M

M

M
fn

rN

rS

rS

U
l 4^

LU
 to H = 0 11]

The associated Flow Graph is shown in Figure II. If the

expression for as a function of the variables of the set

v is written
S

x = y x [2]p . p,r. r.P 3=1 3 3

FIGURE II

9

FLOW GRAPH FOR SET OF LINEAR EQUATIONS, EQUATIONS [1]

10

[3]

where v is the set of variables, x the particular reference rj
node, s denotes the number of members of v, P denotes the

number of directed circuits of the yth N{v :r.-p}, where
rj 3

P denotes the number of directed circuits of the nth n
N{v:}. Equation [3] is Coates' equation for the transfer

function from node r. to node p. At this point it is neces­

sary to define N[v :r.-p] and N[v:].
rj 3

These are two classes

of subgraphs. A connection is a subgraph of the Flow Graph

(G) such that each included node has both a positive and a

negative order of one. The positive order is the number of

branches for which the node is the positive boundary and.

similarly, the negative order is the number of branches for

which it is the negative boundary. As a note, a node with a

zero negative order is called a reference node. The con­

nection of (G) with the largest number of branches is that

which includes all nonreference nodes. Connections are de­

noted by N{():} where () denotes the nodes of G which do

not belong to the connection; therefore, connection N{(v):}

includes all nonreference nodes. A one connection is a

subgraph of G such that all positive and negative orders of

11

the included nodes are one, except for one negative and one

positive order, each of which are zero. One connections are

denoted by N{():p_g} where () denotes the nodes of G which

are not included and where p and q denote subscripts of the

nodes for which the negative and positive orders are zero,

respectively. A proper one connection is a one connection

such that p / q. With each subgraph is a coefficient which

is defined as the product of the branch weights of the sub­

graph. The coefficients of N{():} and N{():p_g} are
3denoted as N[():] and N[():p_q], respectively. Illus­

trations of connections and one connections are shown in

Figure III with the associated coefficients.

As an example of Coates' equation consider the Flow

Graph of Figure II. Assume one is interested in the transfer

function for an input at x^ and an output at , therefore

x2 = ?2,5 x5 [4]

The connections and one connections are shown in Figure IV

with associated coefficients. Using equation [3] and the

information from Figure IV,

FIGURE III

12

(a)
a) Example of connection N{v:}

b) Example of one connection N{v:2-1}

ILLUSTRATIONS OF CONNECTIONS AND ONE CONNECTIONS.

13FIGURE IV

The one connection N{vc:5-2},D 1

The coefficient N[Vg:5-2]^
1S k2,4k4,5kl,lk3,3

The next one connection
N{vg:5-2}2

P2 = 1

and the Coefficient N[\)^:5-2]2

1S k2,4k4,5kl,3k3,l

The connection

PT = 4

The coefficient

15 kl,lk2,2k3,3k4,4

The connection

P1 = 3

The coefficient N[g:]2

TS k2,2k4,4kl,3k3,l

ILLUSTRATION OF CONNECTIONS AND
ONE CONNECTIONS FOR FIGURE II

WITH THE ASSOCIATED COEFFICIENTS

1,3

14
2 1k2,4 k4,5[kl,l k3,3(~1) + kl,3 k3zl(-1)]
4 3kl,l k2,2 k3,3 k4,4(-1) + kl,3 k3,l k2,2 k4,4 (-1)

kl,3 k3,l^
kl,3 k3,l1

k2,4 k4,5 [kl,l k3,3
k2,2 k4,4 [kl,l k3,3 [5]

= k2,4 k4,5
k2,2 k4,4

4A Mr. C. A. Desoer did optimize Mr. Coates' equation.

The result takes the form that follows. In general, there

is more than one branch connecting the source node to the

rest of the graph; obviously, in such cases the individual

contributions of each branch must be summed. In order to

solve for the variable xT defined by the set of equations

n
y a k.x. = b, (k = 1,2,3,...n) [6]

j=l 3 3 j

the general equation for solution becomes
L

(-1) "clGiO-D^
XL = ------- L------- 171

t"1) Pc<Go>P

where C(G;0-L)a represents the possible one-connection gains

of the Flow Graph from the source node 0 to the node L and

1^ is the number of directed loops in the oth one connection

15

from 0 to L. C(G0>P are the possible connection gains of

the Flow Graph Gq (which is graph G with the source node 0

deleted) and Lp is the number of directed loops in the pth

connection of Gq. Whether one is applying Mr. Coates'

equation or Mr. Desoer's equation, it appears obvious the

success depends on one's ability to find all the connections

and one connections by inspection. Simple 4 or 5 node prob­

lems, loosely connected, present no major difficulty. How­

ever, the stronger the connection and the larger the number

of variables become, the more nightmarish the application of

the gain equations become.

Consider the approach taken by Mr. Mason. The general

expression for the Signal Flow Graph transmission is

y p.A.k k k
T = — [8]

[(P-.+P-+. . . .+P) (1-L) (1-L)... (1-L)]*
-L w in r o *][(1-4) (1-L2) (l-Lm)J* Lyj

Here the quantity A represents the determinant of the Signal

Flow Graph rather than the determinant of the network from

which the Signal Flow Graph was constructed. The Signal

Flow Graph determinant can be evaluated by the loops of the

graph. A loop is a simple closed cycle of graph branches

with all of the branches pointing in the same direction

around the cycle. The word "loop" may also mean a number

equal to the product of the branch transmissions in the

geometrical loop. The graph determinant is conveniently

16

defined as the bracketed expression in the denominator

of the above equation [9]. Quantities are

the m different loop transmittances in the graph. The

asterisk indicates a special rule for multiplying the quan­

tities within the brackets. In carrying out the multipli­

cation indicated by the parentheses, it is to be understood

that a term will be dropped if it contains the product of

two loops which touch (have a node in common) in the graph.

In short, A is equal to unity minus an algebraic sum of

further terms. Each of these terms is either a single

loop or a product of non-touching loops, and the sign of

the term is positive (or negative) for an even (or odd)

number of loops in the product. The graph transmission T

is by definition equal to the quotient of some designated

dependent node signal and the source node signal. Quantities

in the numerator of equations [8] and [9] stand for

different paths from the source node to the designated

dependent node. The number to be substituted into the

above equations is not, of course, the geometrical path,

but rather the product of the branch transmissions along

that path. Quantity A. is called the cofactor of path P. .

It is constructed in exactly the same manner as the graph

17

determinant (A) with the additional restriction that any

terms containing loops which touch (have a node in common)

path shall be dropped. As an example, equation [8] will

be applied to the graph of Figure V with node x^ being the

source node and node x^ being the designated dependent node.

Obviously, there is only one path from source x^ to node x^,

therefore.

P1 A1,2A2,3A3,4A4,5

The loops present in Figure V are shown below:

L1 = A2,3A3,2

L2 = A4,5A5,4

Since there are only two loops and they do not touch, the

graph determinant is:

A - 1-L1-L2 + 1^2

= 1-A2,3A3,2 ~ A4,5A5,4 + A2,3A3,2A4,5A5,4

Since there is only one path and both loops touch the path,

the associated cofactor (A^) is one
PA

rp —
A

A1,2A___________________
1 - A2,3A3,2 - A4,5A5,4

2,3A3,4A4,5*1)
+ A2,3A3,2A4,5A5,4 [10]

FIGURE Y

18

As,2 As,4

FLOW GRAPH TO BE USED FOR MASON'S EXAMPLE.

19

Again, it is obvious that the success of this approach is

dependent upon the user's ability to recognize all possible

loops and paths in the Signal Flow Graph by inspection.

In 1967, a paper was presented in the IEEE Transactions

on Automatic Controls. This paper, authored by Mr. M. Sedlar
6

and Mr. G. A. Bekey, extended the topological representation

of either continuous or discrete systems to mixed discrete-

continuous (hybrid) systems. Several authors have extended

the Signal Flow Graph approach to the study of sampled data
11 12 13systems. ' ' However, none of these extensions make it

possible to apply Mason's gain formula directly. The diffi­

culty arises from the presence of samplers in the sampled

data systems. Conventional techniques fail because it is

not possible to replace the sampler by a transfer function.

Introducing a new symbol to represent the sampler, it is

possible to generalize Signal Flow Graph techniques so that

they can be applied both to sampled data systems and to

continuous systems. Mr. Bekey formulated a Signal Flow

Graph representation which maintains a topological similarity

with the original systems and which makes the algebra of

Signal Flow Graphs applicable. Moreover, input-output re­

lations can be obtained by inspection in terms of Laplace

transforms, Z transforms, or modified Z transforms.

As stated earlier, a Signal Flow Graph is a network

of nodes (circles) connected by directed branches (line

20

segments). The line segments and circles (branches and

nodes) represent operations to which the variables are sub­

jected. In the case of linear continuous systems, the nodes

are associated with summing operations and the branches

with multiplication. For this reason, the graph contains

the same information as the mathematical model or block

diagram. In the case of the sampled data system, where the

variables can be both continuous and discrete, the operation

of sampling is also present. A new symbol is needed for the

operation of sampling. Therefore, Mr. Bekey chose an empty

circle in the graph to represent a continuous variable and

a full circle to represent a discrete variable. He termed

them white nodes and black nodes, respectively. The black

node is defined as follows:

1. Black nodes (full circles) represent discrete

variables.

2. The value of the variable represented by any

black node is the sampled form of the sum of

all variables entering the black node.

A linear continuous system can be described by the set of

equations:

n
2 a. (s)x.(s) = r.(s), j=l,2,3....n [11]

i=l Di 1 3

where x^(s) are the transforms of the system variables.

21

Ej(s) are the transforms of input signals, and a^, are

transfer functions. This system can be represented by

Mason's Signal Flow Graph techniques. Similarly, a sampled

data system can be described by the set of equations:

n n
a. (s)x. (s) = £ b. (s)x.*(s) + r. (s) [12]

i=l -li 1 i=l 2 3i 1 -1

(2)v , will be those paths and loops which contain at least

j = 1,2,...n

where x^*(s) are transforms of sampled variables. This

system can be represented by a new Signal Flow Graph which

contains both black and white nodes. As an example, the

sampled data system described by the mathematical model

x-jjs) = 1

x2(s) = R(s)x1(s) - H(s)x4(s)

x3(s) = x2* (s)

x4 (s) = G(s)x3 (s)

is completely described by Figure VI.

Since paths and loops were defined earlier for a con­

tinuous variable system, it is now necessary to define the

types of paths and loops found in the hybrid system. Paths

and loops containing only white (continuous) nodes will be

referred to as being of type 1 and denoted by and
(2) respectively. Type 2 paths and loops, denoted by p and

FIGURE VI

22

FLOW GRAPH FOR HYBRID (CONTINUOUS AND DISCRETE) SYSTEM.

23

one black (discrete) node. Also, a Type 1 path is elementary

if it does not meet the same node more than once. A Type 1

loop is elementary if, apart from the coincident initial and

terminal nodes, every other node it meets is distinct. A

Type 2 elementary path is one composed of distinct segments

such that no black node is met more than once. Mr. Bekey

points out that if a white node is met more than once it must

belong to different segments. Similarly, an elementary loop

of Type 2, apart from its coincident initial and terminal

nodes, must meet distinct other black nodes. Consider

Figure VI, there are no paths of Type 1 or loops of Type 1.

There is one path of Type 2 and one loop of Type 2, there­

fore:
<2) - P1 = R*G

= (GH)*

Once the two separate types of paths and loops are esta­

blished, certain topological connections between them can

be defined. A Type 1 loop is connected with a segment or

another Type 1 loop if and only if they contain a node in

common. A Type 2 loop is connected with any path or

another loop of Type 2 if and only if they contain a black

node in common. It should be noted that in this case (Type

2) the presence of a white node in common is of no conse­

quence. Path and loop transmissions have already been

24

defined in this Chapter. However, their definitions must be

repeated with slight modification due to the presence of

discrete variables. A path transmission, P(y), is the product

of the individual transmissions of the branches which appear

in that path. Individual transmissions are taken in the

order in which the branches appear, and the presence of a

black node denotes that the sampled form of the preceding

product should be taken. A loop transmission, L(v), can

be defined in the same manner, however, if there are any

black nodes in the loop, then a black node should be taken as

the initial node.

To apply the notation of Mr. Bekey one should remem­

ber the equation for the determinant of a graph. However,

now there are two determinants. The first may be defined

for loops of Type 1 and is the same as the graph determinant

developed by Mr. Mason.

= (1-L1 (1)) (1-L2 (1)) d-L3).... (l-^^b* [13]

where the asterisk denotes the special multiplication where­

by a term will be dropped if it contains the product of

loops that touch (have a node in common) in the graph. Simi­

larly, the second determinant is defined as:

A(2) = (l-L^2^ (1-L2(2)) (1-L3(2)) (1-lJ2))* [14]

25

This time, the asterisk denotes the special multiplication

where a term is dropped if it contains the product of any

Type 2 loops that touch (contain a black node in common)

in the graph.

The Input-Output relation (C) of the hybrid system

is given by:

A.'1’ .Vi»l(2)

(2) by omitting all terms of A that contain loop transmissions

r = J x 1 j-________ ri51C (1) x (2) LldJ
A A

where is the path transmittance of any path (Type 1 or
(2)Type 2) connecting input and output nodes, A is the

(2) second determinant of the graph, and A^ is the sub-
(2) (2)determinant of the path A^ is obtained from a

(2) of the loops vj connected with the path The symbol.

(x), represents the operation of multiplication of

by each segment transmission appearing in
£iPiAi(^/A. if any of the segment transmissions appear

in sampled form, the multiplication must be performed on

the corresponding continuous quantities, and the product
sampled. A^"*"^ is the first determinant of the graph and

Ajis the subdeterminant of the related segment aj.
Aj is obtained from A^^ by omitting all terms containing

loop transmissions of the loops v connected with segment

a.. As an example, consider the graph of Figure VI where

26
(2) = R*G

and
L1(2) = (HG)*

there are no paths or loops of Type 1, therefore

Aj (1) = A(1) = 1 for all j

(2) (2) (2)and since touches then = 1. Therefore,

using equation [15]

r 1 Y R*G(1)U 1 X l-(HG)*

(R) *G
1- (HG) *

where the asterisk represents the sampled form of the

quantities in parentheses.

There are two special cases that must be discussed.

First, all loops of the system contain at least one sampler.

In this case, the graph has only loops of Type 2 and

therefore,

A (!) = A (1) = j, f all j
J J

This was shown in the above example. The equation for 0

then reduces to:
Z -P-A

G = 1 [16]

27

The second case, all the loops of the system are continuous.

In this case, the graph contains only loops of Type 1.

Therefore

a(2) = A±(2) = 1 for all i

Then C reduces to
4. ,1)

c = -^TT x Zlpi 1171
Moreover, if this graph contains no black nodes, then each

is a segment and the symbol x reduces to simple multi­

plication and the equation for C reduces to Mason's equation:

V.P.A.
C = 1 ""(I)-- [18]A k '

It appears that after all the work of Mr. Coates,

Mr. Mason, and Mr. Bekey, application of their work is large­

ly restricted to small problems that are designed to be

solved by one of their equations. A practical problem in­

volving 20 or more variables strongly connected could be

a nightmare to solve by inspection. However, if by some

means all loops and paths could be readily obtained, any

one of the above mentioned equations could be used quite

easily to obtain input-output relations.

CHAPTER III

DEVELOPMENT AND APPLICATION OF THE CONNECTION MATRIX

A connection matrix may be defined as a matrix re­

presenting a Signal Flow Graph. This seems rather a simple

definition and in fact is. However, for this application

a more complex definition is not required. The connection

or connectivity matrix contains either zeros or ones as

its elements. The matrix is generated from the graph and

is always a square matrix, each row and corresponding

column representing exits and entries to that node, re­

spectively. As an example, consider Figure VII. The con­

nectivity matrix (IC) for the graph of Figure VII appears

below:

1
IC = ifo

2
3
4
5
6

0
0
0
0
0

2 3 4 5 6
1 0 0 0 O'
0 10 10
0 0 0 1 0
1 0 0 0 0
0 0 10 1
0 0 0 1 0j

[19]

Observing row 2 which corresponds to exits of node 2, there

are 2 exits, one to node 3 and one to node 5. Similarly,

observing column 2 one sees there are 2 entries to node 2,

one from node 1 and one from node 4. Therefore, an element

of the connection matrix will be a zero if there is not a

FIGURE VII

29

FLOW GRAPH FOR ILLUSTRATION OF CONNECTION MATRIX DEFINITION

30

single branch from the element's row index node to its

column index node. Similarly, the element will be a one

if there is a single branch from the elementAs row index

node to its column index node.

The approach taken in this paper is that of C. V.
9 Ramamoorthy and relates the connectivity considraations

of directed graphs to the quantitative aspects of physical

systems represented by weighted graphs. The first step is

definition and construction of the reachability matrix

(IR). A row vector IRgof the IR (reachability) matrix will

be defined as the reachability vector of node s, a one in

its k-th column implies then that node k is reachable from

node s. Thus, the row vector IRs gives all nodes reachable

from node s. Therefore, the reachability matrix defines

which nodes are reachable from which nodes. It should be

pointed out that for the purpose of this paper the first

order node will be the input and the highest order node will

be the output. Therefore, checking the last element of the

first row vector of the reachability matrix immediately

tells the user if the output is reachable from the input.

The steps used by Mr. Ramamoorthy to obtain the reachability

matrix are shown below:

Step 1. Let IRg be a row vector of dimension n such

that it is initially equal to ICs, the row vector

of the connection matrix corresponding to the

31
starting node, s, i.e., IRs = ICs

Step 2. Examine the column elements of IRg. Let

(IRg)^ be its i-th column element, which is

non zero and not previously examined. Update

IRs by performing a conponent wise logical "or"

operation to the i-th row of IC, i.e., IRg(new) =

U IR (old) .

Step 3. Repeat Step 2 above until no additional

changes appear in IRg«

Step 4. Pick the next node as a new starting node

and repeat the above steps.

This algorithm is very efficient because it only involves

logical "or" operations between row vectors, rather than

repeated matrix manipulation. There are some interesting

additional properties of the IR matrix. If the main diagonal

elements of the IR matrix are all zero, then the graph is

loopless. Also, if any row of IR and its corresponding

column are all ones, then the graph is strongly connected.

There is one more matrix that is of primary concern in

this paper and it too was developed by Mr. Ramamoorthy. The

largest strongly connected subgraph that contains a given

node is defined as a maximal strongly connected (M.S.C.)

subgraph. It is unique for any given node in its set.

The procedure for determination of all maximal strongly

connected subgraphs follows:

32
Step 1. Construct the reachability (IR) matrix

for the given graph.

Step 2. Construct the transpose of the IR matrix

or the reachability matrix of the transpose
• Tof the connection matrix (IC) .

Step 3. Construct the IM matrix such that IMg (row
Tvector) = IRs fl IRg . The symbol fl represents the

logical "and" operation.

The number of M.S.C. subgraphs is given by the number of

distinct non zero row vectors of the IM matrix. The nodes

of the M.S.C. subgraph correspond to the non zero column

elements of the IM row vector. However, this algorithm

does not direct the nodes in the subgraph nor does it

indicate the presence of any subgraphs within the M.S.C.

subgraph. On the other hand, it is a very efficient means

of determining the number of distinct loop sets within a

given graph.

As an example, consider the graph of Figure VII,

having the connection matrix shown in equation [19]. Con­

structing the reachability matrix IR:

IR1 = IC1 =010000

IR1(new) = IC2UlR1(old)

= 001010U010000

0 10 1 0

33

I^Cnew) = IC3 U I^dast)

= 000010U011010

= 011010

IR, (new) = ICc U IR-, (last)
-L D J.

= 00010111011010

= 011111

continuing

IR1(final) =011111

In a similar manner, the remaining row vectors of IR are

obtained such that

1 2
IR = 1(0 1

2 0 1
3 0 1
4 0 1
5 0 1
6 (0 1

3 4 5 6
1111'
1111
1111
1111
1111
1 1 1 1.

Now construct the transpose of IR
1 2 3 4 5 6

TIR = 1 '0 0 0 0 0 o'
2 1 1 1 1 1 1
3 1 1 1 1 1 1
4 1 1 1 1 1 1
5 1 1 1 1 1 1
6 1 1 1 1 1 1

34

Now construct the IM matrix

TIM1 = Q IRj,

=oiiiiinoooooo

= 0 0 0 0 0 0

TIM2 = IR2 n IR2

= 0111110111111

= 011111

Similarly, the remaining row vectors of IM are obtained such

that:

1 2 3 4 5 6
IM = 1 'o 0 0 0 0 o‘

2 0 1 1 1 1 1
3 0 1 1 1 1 1
4 0 1 1 1 1 1
5 0 1 1 1 1 1
6 0 1 1 1 1

This matrix tells one that there is one maximal strongly

connected subgraph involving nodes 2, 3, 4, 5, and 6.

However, this matrix gives no indication of the subgraphs

that exist within the M.S.C. subgraph found above. The

next chapter deals with the interpretation of this data

and formating it to be meaningful through digital techniques.

CHAPTER IV

DEVELOPMENT OF THE DIGITAL PROCEDURES

AND COMPUTER PROGRAM

The purpose of this chapter is to explain the develop­

ment of a digital computer program for finding all directed

loops and paths within a given signal flow graph. This pro­

gram will be restricted to two classes of graphs, those

containing all continuous variables and those containing

all discrete variables. This restriction is imposed by

the definitions for paths and loops for these two classes,

primarily in each case no node (variable) may be encountered

more than once in any path or in any loop (excluding the

initial and terminal node of the loop). Since the primary

purpose of finding all paths and loops within a given graph

is to determine input-output relations, one further re­

striction is imposed. That restriction is that the input

node must be ordered as the first node in the graph and

that the output node must be the highest ordered node in

the graph. For example, if there were 13 nodes in a system,

node 1 must be the input and node 13 must be the output.

However, it is felt that this is not a severe restriction.

It must be assumed that the user has no knowledge of how

many loops or paths exist within the system under investi­

gation. Therefore, an arbitrary limit must be used to alarm

36

the user when the program has gone beyond its dimensions.

The program developed for this paper was arbitrarily de­

signed for a maximum of 20 nodes with a maximum of 40 loops

and 40 paths. To use this program for larger problems only

requires re-dimensioning of the arrays involved. It should

be pointed out that the major restriction as to the size of

the problem, is dictated by the amount of memory available

within the machine to be used. There are a number of arrays

that must be stored and, therefore, the amount of memory

available becomes very important. The input data required

is very simple, consisting of the number of nodes in the

graph and the connection matrix for the graph as described

in Chapter III. The output of this program will be the

loops and paths that exist within the given graph. The

nodes associated with these loops and paths will appear in

their correct order of transmission. With this information

as well as having the flow graph before him, the user will

be able to formulate all of the loop transmissions and path

transmissions necessary for application of one of the gain

equations described in Chapter II.

The program begins by inspecting the main diagonal

of the connection matrix (IC). Since the index of the row

and column vectors of the IC matrix correspond to the order

of the nodes in the system, a non zero element on the dia­

gonal indicates a self loop on the associated node. Upon

37
identification of the nodes having self loops, they are stored

in temporary vectors called ISLOOP vectors and the number of

self loops existing is called ISLCNT. This information will

be used later in the program to add these self loops to the

directed loop vectors found. Upon identifying all self loops

the main diagonal of the IC matrix is set to zero. This elim­

inates duplication of effort in a later stage of the program.

The next step is to construct the reachability matrix (IR)

using the algorithm developed by Mr. Ramamoorthy as described

in Chapter III. This portion of the program requires an

n by n operation to insure all elements are taken into account.

The symbol n represents the number of nodes existing in the

graph being considered. From the IR matrix, the IM matrix

is constructed using the algorithm of Mr. Ramamoorthy as

described in Chapter III for finding M.S.C. subgraphs. This

operation is straightforward and requires little machine time

since all operations are in fixed point format. Once the IM

matrix is obtained the nodes associated with each maximal

strongly connected (M.S.C.) subgraph must be found. This is

accomplished very simply by identifying unique non zero row

vectors in the IM matrix. Once a non zero row vector is

found and stored as a IMLOOP vector, it is not necessary to

check the row vectors of any of the nodes appearing in that

non zero row vector. It is also not necessary to check the

final row vector in the IM matrix, for it is associated with

38

the output node and if it were in a loop or subgraph it would

be detected earlier. As an example, if the first non zero

row vector of the IM matrix was the row vector associated

with node 2 and the 2nd, 3rd, rth, and Sth column elements

were non zero, it would not be necessary to investigate the

3rd, 4th, or Sth row vector of the IM matrix. The contents

of these row vectors would be identical to the 2nd row

vector just investigated in that the 2nd, 3rd, 4th, and Sth

column elements of each of the other three row vectors would

be non zero. Therefore, the nodes in the example above

would be stored by the program in the form of a IMLOOP vector

such that:

IMLOOP (1,1) = 2

IMLOOP (1,2) = 3

IMLOOP (1,3) = 4

IMLOOP (1,4) = 5

At this point the program only knows that these four nodes

are in a subgraph. They may actually be in a loop or they

may be in the form of several loops touching each other.

However, at this point only the fact that they are in a

subgraph is important. It should be noted that the first

subscript of the IMLOOP vector represents the number of the

subgraph, i.e., the first subgraph, second subgraph, etc.

The second subscript represents the number or index of the

node as it appears in the subgraph, i.e., the first, second.

39

or third node found, etc. Again, at this point the index

has nothing to do with the transmission order of the node in

any loop. This procedure is followed until every maximal

strongly connected (M.S.C.) subgraph is obtained from the

total system IM matrix. It is necessary to find out if

within each of these M.S.C. subgraphs there exist any smaller

subgraphs. Using the theory of superposition, these smaller

subgraphs may be obtained.

The first step in investigating for smaller subgraphs

is to consider each IMLOOP vector separately. Beginning

with the first vector, a new connection matrix is con­

structed containing only the nodes involved with the IMLOOP

vector. This is accomplished by extracting the proper ele­

ments from the original IC matrix for the system in question.

It is at this point that deletion of the main diagonal

elements of the original IC matrix saves time. This new

connection matrix is called the ITEST matrix. It is now

necessary to determine if there exists the possibility of

any subgraphs appearing inside the IMLOOP vector. This is

accomplished by finding the number of exits that appear in

each ITEST row vector. If the number of exits in each row

vector never exceeds one, then there can be no inside sub­

graphs. At that point, the next IMLOOP vector is selected

and a new ITEST matrix constructed for it and checked for

the presence of inside subgraphs. This continues until all

40
IMLOOP vectors have been checked. If, on the other hand, the

number of exits in a row vector exceed one, then an approach

must be used to identify the additional subgraphs and create

new additional IMLOOP vectors. This is accomplished through

the use of superposition as mentioned earlier. The program

eliminates one node from the ITEST matrix by temporarily

storing its corresponding row and column vectors then setting

those elements to zero in the ITEST matrix. Then a new IR

and IM matrix are constructed from the ITEST matrix. Any

new smaller subgraphs will appear in the new IM matrix. If

any are found, they are stored as new IMLOOP vectors similar

to the initial IMLOOP vectors. The program then restores

the row and column vectors of the eliminated node and then

eliminates the next node in a similar manner. This process

is repeated for every node in the IMLOOP vector under investi­

gation. All new IMLOOP vectors found are added to the number

of IMLOOP vectors and the whole process is repeated for each

IMLOOP vector until no new IMLOOP vectors are found. It must

be remembered that all the IMLOOP vector implies is that the

associated nodes are in a subgraph of some configuration.

After all possible IMLOOP vectors are found, an al­

gorithm was developed to order the nodes in the IMLOOP

vector according to their sequence of transmission, if, in

fact, a loop does exist containing those nodes. If the loop

does exist, then it will be ordered by transmission and called

41

a LOOP vector. This is accomplished by again constructing

an ITEST matrix that corresponds to only that portion of the

system connection matrix (IC) that contains the nodes of the

IMLOOP vector under investigation. It should be remembered

that the program knows how many IMLOOP vectors exist and

how many nodes are in each one. These quantities are stored

as IMLCNT and IMLNDE, respectively. An ITLOOP vector will

now be constructed that will direct the flow through the

nodes of the IMLOOP vector. For each IMLOOP vector only

ITLOOP vectors will be stored that contain the same number

of nodes as the IMLOOP vector. There may, indeed, be more

than one directed loop around a given set of nodes. How­

ever, every possible loop containing these given nodes must

be identified. It should be obvious that the index nodes

of the ITEST matrix do not correspond 1 for 1 to the correct

nodes of the system. For example, if the IMLOOP vector con­

tained nodes 2, 3, 4, and 5 of the system, the ITEST matrix

would refer to these nodes as nodes 1, 2, 3, and 4, respect­

ively. The LOOP vector is obtained through the use of the

directed ITLOOP vector and the not directed IMLOOP vector.

Before discussing how the ITLOOP vector is obtained and

directed, the above-mentioned construction of the LOOP vector

will be described. Assume that the ITLOOP vector is directed

containing nodes 1, 2, 3, 4, and 3 in that transmission order

for the IMLOOP vector containing nodes 2, 3, 4, and 5 of the

42

system. Since it is known that the new LOOP vector will

contain four nodes, a program "Do" statement may be used

to direct the LOOP vector. This is accomplished by the

following instructions, statement numbers shall be fic­

titious in comparison to the actual program.

DO 1 1=1, NONODE

IA = ITLOOP(II,I)

1 LOOP (IC,I) = IMLOOP (K,IA)

where NONODE corresponds to the number of nodes in the

IMLOOP vector, II is the number of the ITLOOP vector being

used, IC is the number of the LOOP vector being constructed,

K is the number of the IMLOOP vector being investigated.

Therefore, if the ITLOOP vector was:

ITLOOP (1,1) = 1
ITLOOP (1,2) = 2

ITLOOP (1,3) = 4

ITLOOP (1,4) = 3

then

for 1=1 IA = 1 LOOP (IC,1) = IMLOOP (K,l)

1=2 IA = 2 LOOP (IC,2) = IMLOOP (K,2)

1=3 IA = 4 LOOP (IC,3) = IMLOOP (K,4)

1 = 4 IA = 3 LOOP (IC,4) = IMLOOP (K,3)

if the IMLOOP vector was:

43

IMLOOP (K,l) = 2

IMLOOP (K,2) = 3

IMLOOP (K,3) = 4

IMLOOP (K,4) = 5

then the corresponding directed LOOP vector would be:

LOOP (IC,1) = 2

LOOP (IC,2) = 3

LOOP (IC,3) = 5

LOOP (IC,4) = 4

This would confirm and order by transmission the fact that

a loop (2,3,5,4) did in fact exist within the system graph.

It is implied that there is a branch from node 4 to node 2,

and this fact is confirmed during the construction of the

ITLOOP vector.

The construction of the directed ITLOOP vector will

now be discussed. Recalling that an ITEST matrix was con­

structed for the IMLOOP vector under test, this matrix is

now investigated for non zero elements. The best way to

describe this algorithm is by an example. It is a very sim­

ple approach and is very accurate. Consider the subgraph

in Figure VIII. It must be remembered that although this

subgraph does contain three other loops involving sets of 2

nodes, they have already been identified as additional IMLOOP

vectors. This example is only concerned with constructing

the ITLOOP vectors containing all three nodes. Therefore,

FIGURE VIII

44

FLOW GRAPH FOR DEMONSTRATION OF LOOP FINDING ALGORITHM.

45

the ITEST matrix for the subgraph of Figure VIII is as follows:

12 3
ITEST = ifO 1 1'

2 10 1
3 I1 1 °>

The first node is considered the initial node of any loop

appearing. It then follows by checking row 1 for non zero

elements that node 1 reaches node 2 on a single branch,

therefore,

ITLOOP(1,1) = 1

ITLOOP(1,2) = 2

However, node 1 also reaches node 3 on a single branch,

therefore, a new ITLOOP vector is constructed such that

ITLOOP(2,1) = 1

ITLOOP(2,2) = 3

Upon completion of checking row 1, the program steps to the

last stored node in ITLOOP (1,) which is node 2. It now

checks the corresponding row of the ITEST matrix for non zero

elements and finds

ITLOOP(1,3) = 1

However, comparing this node to the previous nodes in ITLOOP(1,)

it finds node 1 appears more than once. Therefore, it con­

tinues to check row 2 and finds

ITLOOP(1,3) = 3

Now that ITLOOP (1,) contains 3 unique nodes (the same

46

number of nodes as in the IMLOOP vector) the program steps

to the last stored node in ITLOOP(2,) which is node 3 and checks

its corresponding row vector in the ITEST matrix. There­

fore :

ITLOOP(2,3) = 1

Again node 1 appears more than once in the loop so the

program continues and finds

ITLOOP(2,3) = 2

The program now has two ITLOOP vectors directed and stored,

if, in fact, the last node in each vector does reach the

first node in each vector on a single branch, then the vec­

tors are retained. Otherwise, they are discarded. There­

fore, within the subgraph described by Figure VIII there are

two loops involving 3 nodes and they are directed node 1,

node 2, and node 3 and node 1, node 3, and node 2.

From the ITLOOP vectors found in this manner, LOOP

vectors are constructed in the manner described earlier

from the IMLOOP vector in question. The next IMLOOP vector

is selected and the whole procedure is repeated until all

loops are obtained and directed. It should be pointed out

that this procedure does not overlook a single loop that

exists within the system flow graph no matter how complex.

It is at this point that the self loops (ISLOOP) are inserted

as LOOP vectors and therefore all loops are now directed

and stored to be printed later.

47

The next step is to find all directed paths from input

to output. This algorithm is very simple and yet very ac­

curate. The program calls in the original connection matrix

(IC) for the system and begins with the first row vector,

corresponding to exits from the input node. This row vector

is examined for non zero elements in much the same manner

as described in the preceding paragraphs for finding the

ITLOOP vectors. It is assumed that there is at least one

path from input to output. Therefore, the path count (IPCNT)

or number of paths is initialized to one. Also, the first

node in any path will be node 1, the input node. Upon iden­

tification of the first non zero element in the first row

vector of the IC matrix, the second node in the first path

(IPATH) vector is found and stored. Should there be any

other non zero elements in that row new path vectors are

created for each non zero element. The path count (IPCNT)

is incremented by one for each additional path vector.

After completion of the investigation of the first row vector

of the IC matrix, the last node stored in the first path

vector is checked to see if it is the output node. If it

is, then the first path is complete and the next path vector,

if it exists, is called. If, on the other hand, the last

node stored in the first path vector is not the output node,

then the corresponding row vector is called from the IC

matrix for investigation. Again, the program looks for non

48

zero elements, upon identification of the first non zero

element, the number of nodes (IPNODE) in the first path

vector is increased by one and the corresponding node

is stored in the IPATH vector. The remainder of the row

vector is checked for additional non zero elements and new

path vectors are created for each one identified, repeating,

of course, the nodes of the path vector that stepped the

program to the row vector of the IC matrix it is now

checking. This procedure is followed until every possible

path or directed segment has been found that originates from

the input node. It should be pointed out that as each new

node is found for a path it is compared with each previous

node in that path. If the node appears more than once, it

is rejected and the program looks for another node that is

reachable on a single branch from the preceding node in the

path. If there were no more nodes reachable and the last

node was not the output node then that path vector represents

only a directed segment and is not retained as a path vector.

Only those segments that reach the output node are retained

as valid paths. This algorithm requires very little machine

time and no existing paths in the system flow graph will

escape undetected.

Upon completion of the two sections of the program

(LOOP finding and IPATH finding) all the LOOP vectors are

compared to one another to insure that duplicate LOOP vectors

49
will not be printed. Once this has been accomplished, the

following information will be available to the user:

1. The directed LOOP matrix which has as its row

vectors the directed LOOP vectors, each element

of the row vector representing the node in the

correct transmission order as the loop appears

in the system graph.

2. The directed IPATH matrix which has as its row

vectors the directed IPATH vectors, each element

representing the node in the correct transmission

order as the path appears in the system graph.

As an example, consider the graph shown in Figure IX.

The connection matrix is shown below:

1 2 3 4 5
IC = ifo 1

2 0 0
3 0 0
4 0 0
5(0 0

0 0 O'
110
Oil
0 0 1
0 0 0

Starting with row 1

IPATH(1,1) = 1

IPATH(1,2) = 2

Since there are no other non zero elements, the last stored

node in path 1 is node 2. Therefore, row 2 is now examined

and

FIGURE IX

50

FLOW GRAPH FOR DEMONSTRATION OF PATH FINDING ALGORITHM

51

IPATH(1,3) = 3

However, node 2 also reaches node 4 on a single branch.

Therefore,

IPATH(2,3) = 4

and repeating the path taken to arrive at node 2

IPATH(2,1) = 1

IPATH(2,2) = 2

There are no more non zero elements in row 2. The last

stored node in path 1 was node 3. Therefore, checking

row 3:

IPATH(1,4) = 4

Node 3 also reaches node 5 on a single branch. Therefore,

IPATH(3,4) = 5

and repeating the path taken to arrive at node 3

IPATH(3,1) = 1

IPATH(3,2) = 2

IPATH(3,3) = 3

Again, the last stored node in path 1 is node 4. Now row 4

is examined and

IPATH(1,5) = 5

Since IPATH(1,) now reaches the output node IPATH(2,) is

now called and the last stored node is node 4 again checking

row 4.

IPATH(2,4) = 5

Now IPATH(2,)reaches the output node and IPATH(3,) is called

52

and the last stored node is node 5 and this is the output

node. There are no more paths available for Figure IX and

the results are shown below:

IPATH(1,1) = 1 IPATH(2,1) = 1 IPATH(3,1) = 1

IPATH(1,2) = 2 IPATH(2,2) = 2 IPATH(3,2) = 2

IPATH(1,3) = 3 IPATH(2,3) = 4 IPATH(3,3) = 3

IPATH(1,4) = 4 IPATH(2,4) = 5 IPATH(3,4) = 5

IPATH(1,5) = 5

The two sections of the program described in the

preceding paragraphs make up the algorithms that are used

in the finished program. Of course, all the minute details

and house keeping quantities that are necessary in the

program have not been discussed in this chapter and are not

required for an understanding of the algorithms. The actual

program listing with appropriate comments is found in the

Appendix. The following chapter will demonstrate the capa­

bility of the program.

CHAPTER V

This chapter will be concerned only with examples of

flow graphs and the use of the program for finding all exist­

ing paths and loops within each flow graph. The first two

examples will be those used in Chapter II and will be carried

through to determination of input-output relationships. How­

ever, the remaining examples will be concerned with use of

the program only for error-free determination of all loops

and paths. The purpose of these examples is to demonstrate

the capability of the program.

Example I. Consider the flow graph depicted in

Figure II. The nodes will be re-numbered for use by the

program. Since the transfer function desired is that between

Xg and X2, these two nodes will be numbered 1 and 5, respective­

ly. The numbering of the other three nodes is irrelevant as

long as none of them is ordered higher than 5. Therefore,

assume Xg is 2, x^ is 3, and x^ is 4. The connectivity matrix

then follows as

1
ifo
2 0

IC = 3 0
4 0
5(0

2 3 4 5
10 10'
110 0
110 0
0 111
0 0 0 1

5H

The computer output is shown on the following page. Using

this output and Mr.Coates' equation, the transfer function

then follows:

The one connections are ^A^ 5A2 3A3 '
2and A. .A. CAO „A-> (-1) . These are determined from the

_L 1 4 4 f 3 Z» 1 Z* 3^3

directed LOOP matrix and directed PATH matrix. There is

only one path (A^ ^A^ g) transmittance and 2 of the 5 LOOPS

touch that path. The LOOP transmittances are, using the

LOOP matrix: Ao 0A0 An Ao A. .; and Ac c.2,3 3,2 2,2 3,3 4,4 5,5
4 3The connections are An nAo OA. .A- c(-1) and An OAO OA. .Ac c(-1) .2,2 3,3 4,4 5,5 2,3 3,2 4,4 5,5

Therefore, the transfer function becomes:

*> 1_ A1,4A4,5 [A2,2A3,3(~1) + A2,3A3,2(-1)]
^15 4 3

A4,4A5,5 [A2,2A3,3(-1) + A2,3A3,2(~1)]

= A1,4A4,5
A4,4A5,5

To show that this is the same result as that found in Chapter

II it is only necessary to recall that node 1 corresponds to

Xg, node 5 to node 2 to x^, node 3 to x^, and node 4 to

x^. Therefore, A^ corresponds to 5, A^ 5 to A^

to k. . and A, to k. n. Thus
4 1 4 3 2» 1 Z

_ k2,4k4,5
C1'5 " k2,2k4,4

CCNNECTIV ITY,IC,NATRTX
0 1 0 1 c
C 1 1 0 c
C 1 1 I? c
r ? i i i
c r a i i

55

CIRECTEE LCCP MATRIX
2 3
2

4
S

DIRECTEC PATH MATRIX
1 4 5

56

Example II. Consider the flow graph of Figure V. No

change in ordering will be necessary for the desired transfer

function is that between node and node x^. The connectivity

matrix then follows as

1 2 3 4 5
1 '0 1 0 0 o’
2 0 0 1 0 0

IC = 3 0 1 0 1 0
4 0 0 0 0 1
5 0 0 0 1 o.

The computer output is shown on the following page. There

are two loops whose transmittances are Ao n and A. rAr .,
j f 4 D j 4

respectively. The single path transmittance is A. 9A9 -A^ .A

Using Mason's equation the transfer function becomes

T = A

where A^ = 1

and A = 1 - L^-L2 + L^L2

T = A1z2A2,3A3,4A4,5(1)__________________
1-A2,3A3,2~A4,5A5,4+A2,3A3,2A4,5A5,4

This equation agrees with that shown in Chapter II as an example

of the use of Mason's equation.

CrMNECTIVITY,IC,MATRIX
0 1 n 9 n
onion
c i c i o
o r o o 1
c c c i c

DTRECTEC LCCP MATRIX
2 3
4- E

DIRFCTEC PATE MATRIX
1 2 3 H E

57

58

Example III. This example will be used to demonstrate

the capability of the program. Consider the flow graph of

Figure X. This example is taken directly from Mr. D. C.
Fielder's paper^ and was chosen to show the error free

approach to determine all existing loops and paths. The

connectivity matrix for this graph follows.

1 2 3 4
10 0
0 10
Oil
0 0 0
10 1

5
1‘
1
1
1
0

The computer output is shown on the following page. There

are 11 loops within this flow graph and the loop transmit-

A2,3A3z4A4,5A5,2* til,5ti5,4^4,1'

A1z2A2z3A3,4A4z1/ A4,5A5,4'
ly, the path transmittances

A1,2A2,5' and A1,2A2,3A3,5
example does not find the paths existing in the flow graph

tances are f 5A5 f 2A2,3A3 Z4A4,1' A1Z2A2Z3A3 Z5A5,4^,1'

Ac nz A, CAC /iA,, n , Aj 2A2 Z5A5 Z4A4,1' A2,3A3,5A5,2 '
A2z5A5,2' A1z1' A3z3* similar-

are A1z2A2z3A3z4A4z5' A1z5'
The paper referenced for this

however, it is accurate in finding the loops that exist.

Its major drawback is that it is a hand method requiring

lengthy matrix manipulations. The program presented in this

paper accomplishes the same results with no hand or lengthy

matrix manipulations. The user is now presented with all the

FIGURE X
59

FLOW GRAPH FOR SYSTEM OF EXAMPLE III

CCNNECTIVITY,IC,MATRIX
110 0 1
0 0 10 1
0 0 111
1 0 0 0 1
0 10 10

DIRECTED LCCP MATRIX
1 5 ? 3 1
1 2 3 5 *1
2 3 4-5
15 4
12 5 4
2 3 5
12 3 4
4 5
2 5
J
3

DIRECTED PATE MATRIX
1 2 3 4 5
1 5
12 5
12 3 5

60

61

information he needs to determine the input-output relations

for this example.

The following examples will be brief and only involve

use of the computer program. Since finding the transfer

function for any of the examples is now merely a plug-in

operation to one of the gain equations, this operation will

be left to the reader.

62
Example IV. This example illustrates a maximal strongly

connected system. The flow graph is shown in Figure XI. Every

node is connected to every node, including itself. The con­

nectivity matrix is shown below:

12 3 4
1111'
1111
1 1 11 1
1111

The computer output is shown on the following page. There

are in fact 24 loops and 5 paths. It is implied that the

last node in a LOOP vector output is connected to the first

node in that vector.

Therefore, a typical LOOP transmittance would be

A1 2A2 3A3 4A4 1* Similarly, a typical PATH transmittance

is A^ 2A2 3A3 4 * T^e ormation given in the computer
output would enable one to obtain the transfer function for

an input at node 1 and an output at node 4.

1
2

10 = 3

4

FIGURE XI

63

Az,।

FLOW GRAPH FOR SYSTEM OF EXAMPLE IV.

CONNECTIVITY,IC,MATRIX
J J 1 I
1111
1111
1111

DIRECTED LCCP MATRIX
I ? 3 T

. 1 3 ? T
1 T 2 3
12 3 3
13 3 2
13 3 2
2 3 3
2 3 3
1 3 3
1 3 3
12 3
13 2
1 2 3
1 5 2
3 3
2 3
2 3
1 3
1 3
1 2
1
2
3
3

DIRECTED PATH MATRIX
12 3 3
13 2 3
1 3
12 3
1 3 3

64

65

Example V. Consider the flowgraph of Figure XII.

This is an 11 node system and is used as an example only for

demonstration purposes. The connectivity matrix is shown

below:

i:
2
3
4
5

IC = 6
7
8
9

10
11

123456789 10 11
'0 00000100 0 0’
001100000 0 0
000000001 0 0
000000000 0 1
000001010 0 0
011000000 0 0
000010010 0 0
000100000 1 0
oooooiooo oi
000000100 0 0
0 00100000 0 0^

There exist 5 loops and 3 paths in this flow graph and these

are shown in the computer output on the following page. This

information again will allow the reader to obtain the transfer

function for the system having an input and node 1 and the

output at node 11.

FIGURE XII

66

FLOW GRAPH FOR SYSTEM OF EXAMPLE V.

CONNECTIVITY, IC, MATRIX
rooonoiooio
OCllOOOQOOP
onnninoo i o o
ncncacoonoi
grcnniiinoo
oiioccnoaoo
OOOOIOOL ooo
orcicoaoTio
onoooiooooo
00000010000
00010000 0 00

CTRECTEO LOOP MATRIX
2 ? A b
111,
5 810 ?
3 a b
7 810

DIRECTED PATH MATRIX
17 8 H-ll
1 7 5 8 '411
i ~> ? b 2 mi

67

68

Example VI. This is the final example. The flow

graph is shown in Figure XIII. The connectivity matrix for

this 16 node system is shown below:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
i: -0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
5 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0
6 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

IC= 7 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
9 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
11 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
14 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

In

16

thj

0

-S

0

systen

0 0

there

0

are

0 0

4 LOOPS

0

and

0 0

4 PATHS

1

as

0

shown

0

on

0

the

0 0

computer output on the following page.

Again, this information would allow the reader to obtain

the transfer function for this system with an input at node 1

and an output at node 16. This example along with the pre­

ceding examples in this chapter should demonstrate the accu­

racy and capability of the developed program.

FIGURE XIII

69

FLOW GRAPH FOR SYSTEM OF EXAMPLE VI

CONN ECT IV ITY, IC,MATRIX
O1O1OOOOGOOOCOOO
0 0 0 0 1 J OOOOOOOOOO
01000000 0 0000000
0000000 1 00000000
OOlOOnOCOOlOOOOO
00000010000000 0 0
00001 C-C00C1CC000
0000000000001000
0000000 1. 00000000
0 0 0000000001 0 000
0000000001000000
OCOOGCOGOOOOCOO 1
0 0 00000000000011
0 0 00000010 0 00000
0 0 0000 0 00000010 0
00 0 0000 0 00100000

DIRECTED LOOP MATRIX
2 b 7 E 3
8 13 15 IT 9

10 12 lb 11
2 5 3

DIRECTED PATH MATRIX
1 2 5 11 10 12 lb
1 T 8131b
1 2 b 7 11 10 12 lb
1 2 b 7 5 11 10 12 lb

70

71

CHAPTER VI

CONCLUSIONS

Techniques for determining directed loops and paths

within a flow graph are developed. Through the use of these

techniques input-output relations may be found for much larger

systems than are usually investigated by flow graph methods.

Any of the techniques described in Chapter II may be applied

once the loop and path components of the graph are deter­

mined. It is not felt that the restrictions placed on the

use of the program are unduly prohibitive.

The problems encountered in attempting to apply this

approach to the hybrid case have not been discussed. How­

ever, several suggestions will be offered as an approach

that might be used to determine paths and loops of both

types, i.e., those that are strictly continuous and those

that contain at least one discrete variable. It should be

pointed out that the case involving all discrete variables

is no different than the case involving all continuous

variables due to the definition of a hybrid loop or path

described in Chapter II. The theory of superposition could

be applied in considering the hybrid case. The input data

could be in the form of 2 connection matrices, one containing

only the continuous variables and one containing all the

variables, continuous and discrete. Using these two matrices

all the continuous variable paths and loops could readily

be identified and all the paths and loops containing at

72

least one discrete variable could be obtained for those loops

and paths that do not encounter the same variable more than

once. Additional programming could compare loops and paths

found from the continuous connection matrix with those found

from the hybrid connection matrix. Those loops and paths

that appear in both sets could be eliminated from those

found from the hybrid connection matrix leaving only those

that contain at least one discrete variable. The real problem

that has to be solved is that of those paths and loops of

Type 2 (containing at least one discrete variable) that

pass through a continuous variable more than once. These

types of paths and loops are permitted in accordance with

Mr. Bekey's definition as stated in Chapter II. It is

believed that with a little more effort this approach could

be completed and a general program could be written that

could handle all classes of signal flow graphs. However,

that was beyond the scope of this research.

A digital computer program has been developed that

will identify every loop that exists within a given flow

graph as well as every path from input to output. This

program will handle large systems as long as the systems

are either all continuous or all discrete. Also, this

program lends itself to multi-input-output problems in

73

that all that is necessary is to shift the ordering of the

variables within the system such that the new input is

the first ordered node and/or the new output is the highest

ordered node. It is believed that this digital approach

to the identification of paths and loops within a flow

graph is simple and very useful.

74

REFERENCES

1. Mason, S. J., "Feedback Theory - Som Properties of
Signal Flow Graphs," Proc. IRE, Vol. 41, pp. 1144-
1156, September, 1953.

2. Mason, S. J., "Feedback Theory - Further Properties
of Signal Flow Graphs," Proc. IRE, Vol. 44, pp. 920-
926, July, 1956.

3. Coates, C. L., "Flow Graph Solutions of Linear Algebraic
Equations," IRE Trans, on Circuit Theory, Vol. CT-6,
pp. 170-187, June, 1959.

4. Desoer, C. A., "The Optimum Formula for the Gain of a
Flow Graph or a Simple Derivation of Coates* Formula,"
Proc. IRE, Vol. 48, pp. 883-889, May, 1960.

5. Mason, S. J., "About Such Things as Unistors, Flow Graphs,
Probability, Partial Factoring, and Matrices," IRE
Trans, on Circuit Theory, pp. 90-97, September, 1957.

6. Bekey, G. A., and M. Sedlar, "Signal Flow Graphs of
Sampled Data Systems: A New Formulation," IEEE
Trans, on Automatic Control, Vol. AC-12, No. 2,
pp. 154-161, April, 1967.

7. Salzer, J. M., "Signal Flow Reduction in Sampled Data
Systems," IRE Wescon Conv. Rec., Pt. 4, pp. 166-169,
1957.

8. Hoskins, R. F., "Signal Flow Graph Analysis and Feedback
Theory," The Institute of Electrical Engineers,
Monograph No. 388E, July, 1960.

9. Ramamoorthy, C. V., "Analysis of Graphs by Connectivity
Considerations," Journal of the Association for
Computing Machinery, Vol. 13, No. 2, pp. 211-222,
April, 1966.

10. Fielder, D. C., "An Approach to Error-Free Flow Graph
Equations," IEEE Trans, on Education, pp. 233-237,
December, 1967.

11. Lendaris, G. G. and E. I. Jury, "Input-Output Relation­
ships for Multiloop Sampled Systems," Trans. AIEE
(Application and Industry), pp. 375-385, January, 1960.

75

12. Ash, R., W. H. Kim, and G. M. Kranc, "A General Flow
Graph Technique for Solution of Multiloop Sampled
Systems," J. Basic Engrg. Trans., ASME, pp. 360-370,
June, 1960.

APPENDIX

c c c

c c

PURPOSE
DETERMINE ALL SUBLOGPS AND PATHS THAT EXIST

WITHIN A SIGNAL FLOW GRAPH
I NTEGER*2 IC(20,20),IR(20,20)fIM(20,20),IB(20),KB(20),LN3DE('+9),

11 MLNDE(10) ,I TEST(20 ,20) ,I EXIT(20),I TROW(2 0) ,ITCCL(20) ,
11 MLOOP (4-0,2 G) , LOOP (4a,20)/3 00*0/,ITLOOP(lI0,23) , I SLOOP (20) ,
11 PATH{ 4-0,2 0) / 3 Q C *0/ , IPNJDE (40)

DESCRIPTION OF MATRICES
IC-CONNECTIJN MATRIX FOR MAIN SIGNAL FLOW GRAPH
IR-REACHABILITY MATRIX - THIS MATRIX AREA IS

USED MORE THAN ONCE - IT DETERMINES THE
REACHABILITY FOR THE SIGNAL FLOW GRAPH OR
ANY SUBGRAPH THAT APPEARS WITHIN THE SIGNAL
FLOW GRAPH

IM-MATRIX CONTAINING UNIQUE ROw VECTORS
CORRESPONDING TO SUBGRAPHS THAT EXIST WITHIN
THE SIGNAL FLOW GRAPH OR ANY OTHER SUBGRAPH
CF THE SYSTEM

IB-COUNTER USED IN CONSTRUCTION OF IR MATRIX
KB-COUNTER USED IN CONSTRUCTION OF IM MATRIX
LN0UE-C3NTAINS NUMBER OF NODES THAT APPEAR

IN A GIVEN LOOP
IMLNDE-CJNTAINS NUMBER OF NODES THAT APPEAR

IN A POSSIBLE LOOP CONFIGURATION
ITEST-A .MATRIX THAT CORRESPONDS TO A CONNECTION

MATRIX FOR ANY POSSIBLE SUBGRAPH. THIS MATRIX IS
CREATcD AS NEEDED FOR EACH POSSIBLE SUBGRAPH AND
AFTER IT IS USED IT IS DESTROYED

IEXIT-CONTAINS THE NUMBER OF EXITS FOR A GIVEN NODE. AFTER
IT IS USED IT IS DESTROYED TO BE USED AGAIN LATER.

ITROW-USED TO TEMPORARILY STORE A ROW VECTOR FROM
THE I TEST MATRIX UNDER INVESTIGATION

ITCOL-USED TO TEMDORARILY STORE A COLUMN VECTOR
FROM THE ITEST MATRIX UNDER INVESTIGAT I ON

IMLDOP-THIS MATRIX CONTAINS ROW VECTORS OF NODES
WHICH MAY BE IN A LOOP AND MAY CONTAIN INSIDE
LOOPS OF FtWER NODES

LOOP-THIS MATRIX CONTAINS ROW VECTORS OF ORDERED
NODES AS THizY APPEAR IN A LOOP WITHIN THF SYSTEM

ITLOOP-THIS MATRIX CONTAINS ROW VECTORS OF NODES
THAT MAY BE IN A LOOP

ISLOOP-THIS CONTAINS THOSE NODES HAVING SELF LOOPS
AND ARE ADDED TO THE LOOP MATRIX UPON COMPLETION OF
THE LOOP FINDING ALGORITHM

IPNODE-CONTAINS THE NUMBER OF NODES THAT APPEAR
IN A GIVEN PATH

IPATH-CONTAI NS ROW VECTORS CORRESPONDING TO ORDERED
NODES AS THEY APPEAR IN A FATH FROM THE INPUT NODE
TO THE OUTPUT NODE

IPCNT-CONTAINS THE NUMBER OF PATHS THAT EXIST
WITHIN THE SYSTEM

LC0UNT-C9NTAINS THE NUMBER OF LOOPS THAT EXIST
WITHIN THE SYSTcM

IMLCNT-CUNTAINS THE NUMBER CF IMLOOP VECTORS FOUND
READ(□,1)N
RE AD(5,2)((IC(K,I),I = 1,N),K=1,N)

1 FORMAT(12)
2 FCRMAT(40I2)

WRITElb,15)

n
n

15 FORMAT(‘I* ,1X, 'CONN ECT I V ITY,IC,MATRIX')
DO lb J = l,\l

lb WRITE(b,10)(IC(J,IK),IK = 1,N)
10 FCRMAT(20I2)

L I M= 13
DETERMINE NODES HAVING SELF LOOPS AND STORE THEM IN

ISL03P VECTOR
ISLCNT=0
DC 8? 1 = 1 , N
I F(IC(I tI) .E j. DGO TO 8 8

8? CONTINUE
GO TO 8=1

88 ISLCNT=ISLCNT+1
ISLOOPtISLCNT)=1
IC <I ,I> = 0
GO TO 8?

C CALCULATE IR MATRIX FOR MAIN SYSTEM
8R DC 3 K=1,N

DO 1 1=1,N
IB(I)=0

1 IR(K,I)=IC(K,I)
DC 3 M=1,N
DC 3 I=1,N
IF(IRIK,I).NE.DIGO TO 5
GC TO 3

5 IF(IE(I).NE.OIGO TO 3
IB(I)=1
I 1 = 1
DO b J=1,N
IX = IR(K,J)4-IC(II,J)
I F (IX. NE.OIGO TO 7
IR(K,J)=U
GC TO □

7 IR(K,J)=1
b CONTINUE
3 CONTINUE

DC 11 J = 1,?>1
C CALCULATE IM MATRIX FOR MAIN SYSTEM

DC 18 1=1,N
K3(I)=0

12 IM(J,I)=IR(I,J)
DO 11 M=1,N
DC 11 I=1,N
IF(IM(J,I).NE.OIGO TO 13
GC TO 11

13 IE(K3(I).NE.OJGO TO 11
KB (I)=l
I 1 = 1
DC 11 K=1,N
IY=IM(J,K)+IR(II,K)
IF(IY.NE.2)GO TO 1H
IM(J,K)=1
GC TO 11

14- IM(J,K)=3
11 CONTINUE

IMLCNT=C
K=1
NN=N-1
1 = 1

nn
nn

nn
nn

nn

17 M = 0
C DETERMINE UNIQUE ROW VECTORS OF IM MATRIX. THESE ARE
C POSSIBLE LOOP VECTORS BUT MAY CONTAIN SMALLER LOOPS
C INSIDE

DC 18 J=1,N
IF.(I Ml I, J) .EQ.DGO TO 1R

18 CONTINUE
IFIM.GT.lJGO TO 20
IF(IMLCNT.GT.O)GO TO 21
1 = 1 + 1
IFII.GT.NNJGO TO 22
GO TO 1?

19 M^M+1
IMLOOP(K,M)=J
GO TO 18

20 IMLCNT=IMLCNT+1
IFdMLCNT.GT.LIMIGO TO 12b
GO TO 127

12b WRITE(b,128)
128 FORMAT!'0*,IX,'IMLOCP HAS EXCEEDED LIM, REDIMENSION IMLOOP'}

GC TO 120
127 IMLNDE IIMLCNT)=M

K=K + 1
21 1=1+1

DC 23 IK=1,IMLCNT
IJM=IMLNDE!IK)
DO 23 IV=1,IJM
NUM=IMLt3OP(IK, IV)
IFd.E J.NUMIGO TO 21

23 CONTINUE
IF(I.GT.NN)GO TO 22
GC TO 17

2 2 I F (IMLCNT .GT .0) GO TO 2 4-
GC TO 25

2*4 K = 1
28 NCNODE=IMLNDE(K)

C BEGIN DETERMINATION OF SMALLER ADDITIONAL POSSIBLE
C LOOPS BY FORMING ITEST MATRIX FOR A GIVEN IMLOQO
C VECTOR

DO 29 1=1,NONDDE
DC 29 J=1,NDNODt
II=IMLOOP(K,I)
JJ=IMLDOP!K,J)

29 I TESTI I,J J =IC(11 , JJ)
C CHECK NUMBER OF EXITS FUR EACH NODE OF ITEST MATRIX

DC 30 1=1,NONODE
IEXIT(I)=0
DC 31 J=l,NONODE

31 I EXIT!I) = IEXIT(I)+ITEST!I,J)
IF EXIT IS NOT GREATER THAN ONE THERE CAN BE NO

INSIDE LOOP, INVESTIGATE NEXT IMLOOP VECTOR
IF EXIT IS GREATER THAN ONE TEMPORARILY STORE FIRST

ROW VECTOR OF ITEST MATRIX IN ITROW VECTOR AND THEN
ZERO FIRST ROW VECTOR OF ITEST MATRIX. ALSO DO THE
SAME FOR THE FIRST COLUMN VECTOR USING ITCOL VECTOR.
NOW NEW IR AND IM MATRICES ARE OBTAINED, CREATING
NEW IMLOOP VECTORS. THIS OPERATION IS TO BE REPEATED
FOR EVERY NODE OF ITEST MATRIX WITH ONE NODE REMOVED
AT A TIME. OF COURSE AFTER EACH INVESTIGATION THE

C DELETED ROw' AND COLUMN VECTORS ARE REPLACED BEFORE
C DELETING THE NEXT PAIR

IFdEXITt I) .GT.LJGO TO 32
30 CCNTINJE

K=K+i
IF (K.GT.IMLCNT)GO TO 25
GC TO 28

32 DO 33 1=1,NONODE
DC 34- IJ = 1,NDNJDE
ITROWlIJ) = ITEST(I, IJ)

34 ITCOL(IJ) = 1TEST(I J,I)
DC 35 J = l,NONODE
I TESTI I,J)=0

35 ITEST(J,I)=0
DC 3b IK=1,NONODE
DO 3? 11 = 1,NONODE
IB(II)=0

3? IR(IK,11>=1 TEST(IK,I I >
DC 3t IN=1,NONuDE
DC 3b 11=1,NONODE
IFdRI IK, I I) .NE.OIGO TO 38
GC TO 3b

38 IFIIBIIIj.NE.jJGU TO 3b
I B(I I) =1
I J = II
DC 33 JJ=1,N3NODE
IX = IR(IK,JJ) + ITEST(IJ , JJ >
IFIIX.NE.OJGO TO 40
IR(IK,JJ)=j
GC TO 33

40 IRdK,JJ)=l
33 CONTINUE
3 b C CNT I \IUE

DC 41 IJ = 1,NONODE
DC 42 II=1,N3NGDE
KBIII)=0

42 IMdJ , II) =IR(I I , IJ)
DC 41 IN=1,NONODE
DC 41 11=1,NONODE
IFIIMI IJ,IIJ.NE.OJGO TO 43
GC TO 41

4 3 I Ft KB I II).NE.0)GO TO 41
KB(I I)=1
III=II
DC 41 IK=1,NONODE
I Y = IMd J, IK) +IR (111 , IK)
IF<IY.NE.2)GO TO 44
IHI J, IK) =1
GC TO 41

44 IMdJ,IK)=0
41 CONTINUE

• IK=IMLCNT+1
I IB=0
I 1 = 1

4 7 M=0
DC 48 J=l,NONUDE
I FdM(I I , J) .EQ. 1) GO TO 43

48 CCNTINUE
IF(M.GT.1)3U TO 50

n
n

n
n

n

IF(IIB.EQ.0)33 TO
GC TO S3

1*5 11=11+1
51 IF(I I.GT.N3NODE)GO TO 52

GO TO *?
*3 M=M+1

INLOOPlIK,M)=J
GC TO *8

50 IMLCNT=IMLCNT+1
IFtlMLCNT.GT.LlMlGO TO 12b
IMLNDE(IK)=M
I IB=IIB+1
IK=IK+1
ILID=IK-I 13

53 11=11+1
DO 5* IIK=ILID,IMLCNT
INUM=IMLNDE(I IK)
DC 5* IV=1,INUM
IP = IMLUOP(UK, IV)
IFJII.EQ.IPIGO TO 53

5* CCNTINUE
GC TO 51

52 IF(IIB.GT.O)GO TO 55
GO TO 5b

55 DC 5? J=ILID,IMLCNT
IV=IMLNDE(J)
DC 5 ? I J=l, IV
IA=IMLOOP(J,IJ)

5? IMLOOPIJ, I J)=IMLOOP(K1IA)
5b DO bO IJ=1,NONODE

I TESTI I,I J)=ITRO^(I J)
bO I TESTI IJ,I)=ITCGLII J)
33 CCNTINJE

K = K+1
IF(K.GT.IMLCNT)30 TO 25
GC TO 28

25 IC°=O
LCCUNT=O
K = 1

bl NGNODE = LML\|DE I K)
AT THIS POINT ALL POSSIBLE LOOPS HAVE BEEN STORED AS

I.ML03P VECTORS AND IT IS NOW NECESSARY TO ESTABLISH
IF THEY ARE IN FACT LOOPS AND IF SO ORDER THEM

THE ITEST MATRIX IS AGAIN FORMED FOR EACH IMLOOP
VECTOR AS IT IS INVESTIGATED

DC b2 1=1,NONODE
DC b2 J=l,NJNODE
II = IML30P{K,I)
JJ=IMLOOP(K,J)

52 I TEST I I,J)=ICI I I,JJ)
C ITLOOP VECTORS AKE CONSTUCTED AS ORDERED NODES AS THE
C NONZERO ELEMENTS OF THE ITEST MATRIX ARE FOUND. NO NODE
C NAY APPEAR MORE THAN ONCE IN ANY LOOP AND THE LAST NODE
C IN THE LOOP MUST BE CONNECTED TO THE FIRST NODE IN THAT
C LOOP. EACH LOOP CONTAINS THE SAME NUMBER OF NODES AS
C THE IMLOOP VECTOR FROM WHICH THE LOOP IS FOUND, NO MORE
C AND NJ LESS

DO 121 I=1,LIM
DC 121 J=l,NJNODE

121 ITLOOP(I,J)=0
I = 1
ITLC=1
M = 0
IL = 1
IK = 2
I TLOOPd, i) = 1

b3 DG bt J=1,NDNODE
IF(ITEST(I,J) .EQ.DGO TO bS
GO TO bt

bS J^ = M+1
IF(M.E j.IDGO TC bb
M= ITLC + 1
ITLOOPIM,IK)-J
IMN=IK-1
DC fc? KK=1,IMN

b? ITLOOP(M,KK)=ITlOOP(IL,KK)
DC b8 JK=1,IMN
IF(ITLOOP(M,IK).EQ.ITL3OPIM,JK))GO TO fat

B8 CCNTLMUE
ITLC=M
IF{ITLC.GT.LIM)GO TO 123
GO TO b4-

123 WRITE(b,125)
125 FCRMAT(*0’,IX,’POSSIBLE LOOPS EXCEED LIM, REDIMENSION ITLOOP’)

GO TO 120
Bb ML = 0

ITLOOPIM,IK)=J
IC=IK-L
DO bR JK=1,ID
IF(ITLOOP(M,IK).EQ.ITLOOP(M,JK))GO TO ?0

BR CONTINUE
IF(IK.EQ.NONODE)GO TO 71
GC TO a4-

7 0 M=M-1
ML=1

B4- CONTINUE
I F(ML.EQ.DGO TO 72
M = IL
I=ITLOOP(M,IK)
M = M-1
IK=IK+1
IF(IK.GT.NJNUDEIGO TO 71
GO TO B3

72 M=M+1
71 IL=M+1

M = IL
. IF(M.GT.ITLC)GO TO 73

DC 74- JK = 1,NONODE
IF<ITLOOPCM,JK).EQ.0)GO TO 75

74 CONTINUE
GO TO 71

7 5 IK=JK-1
KK=IK-1
DC 7b IBC=1,KK
IF(ITLOOP(M,IK).EQ.ITLOOPIM,IBC))GO TO 71

7B CONTINUE
I=ITLOOP(M,IK)
IF(IK.GT.NDNODE)GO TO 71

M = M-1
IK=IK*1
GC TO b3

73 DO 77 1=1,ITLC
iMC=ITLOOP(I ,NONODE)
IF(ITEST(MC,1).EQ.lIGO TO 78
GC TO 77

78 I4D=N0N0DE-l
DO IbO JJ=1,IAD
IF<ITLOOPtI,NONODE).EQ.ITLOOPtI,JJ)I GO TO 77

IbO CONTINUE
ICP=ICP+1

C THE LOOP VECTOR IS NOW FORMED USING THE ITLOOP VECTOR AND
C ITS CORRESPONDING IMLOOP VECTOR. THERE MAY BE MORE THAN
C CNE ITLOOP VECTOR FOR ANY GIVEN IMLOOP VECTOR

DC 80 IJ=1,NONODE
IA=ITLOOP(I,IJ)

80 LCCP(ICP,IJ)=IMLOOP(K,IA)
LCOUiNT=LCCUNT+l
IF(LCOJNT.GT.LIM)GO TO 12R
GO TO 130

121 WRITE(b,131)
131 FORMAT!'O’,IX,•LCOUNT HAS EXCEEDED LIM, REDIMENSION LOOP')

GO TO 120
130 LNODE(LCOUNT)=IMLNDE(K)

77 CONTINUE
7R K=K+1

IF(K.GT.IMLCNT)GO TO 81
GO TO ol

81 IFdSLCNT.GT.OJGO TO 82
GO TO 83

82 DC SY I=1,ISLCNT
LCCUNT=LCCJNT+1
IF (LCOUNT. GT. LIMIGO TO 121
LOOP(LCOUNT,!)=ISLOOP(I)

St LNODElLCOUNT)=1
83 IF(LCOUNT.GT.1)GO TO 15b

IF(LCOUNT.GT.O)GO TO 155
WRITE(b,157)

157 FCRMATCO1 ,IX,'THERE ARE NO LOOPS')
GO TO 158

15b IIN=1
Itb KILT=IIN+1
It? IED=LCOUNT

DC lt3 J = KILT, IED
IF(LNODE(I IN).EQ.LNODEtJ)IGO TO Itl
GO TO lt8

It! IEA=LNODE(I IN)
DO 150 11=1,IEA
IF(LCOP(IIN,II).NE.LCOP(J,in)GO TO lt8

150 CCNTINUE
DC 151 IJ=1,IEA

151 LCOP(J,IJ)=0
I F (J.EQ.LCOUNT) GO TO 152
IEB=LCOUNT-1
DC 153 KI=J,IEB
KK=KI+1
LNCDE(KI)=LNODE(KK)
IEC=LNODE(KK)

DC 153 IJ=1,IEC
153 LCOP(KI,IJ)=LOOP(KK,IJ)

LCCUNT=LCOUNT-1
KILT=J
GO TO It?

152 LCOUNT=LCOUNT-1
GG TO 15t

lt8 CCNTINUE
15t IIN=IIN+1

IEF=LCOUNT-1
IF(I IN.GT.IEF)GO TO 155
GC TO Itb

155 v^RITE(bt35)
85 FORMAT(1QIX,'DIRECTED LOOP MATRIX')

DC 8b K=1,LCO'JNT
ICP=LNJDE(K)

8b WRITElo,!!?)(LOOP(K,M),M=1,ICP)
117 FCRMAT(20I3J

C THE IPATH VECTORS ARE O3TAINED FROM THE ORIGINAL IC MATRIX
C BY INVESTIGATING THE RO al VECTORS OF THE IC MATRIX FOR
C NCNZERC) ELEMENTS. THE ELEMENTS INODES) OF THE IPATH VECTORS
C ARE ORDERED AS THEY ARE FOUND. AGAIN NO NODE MAY APPEAR
C NCRE THAN ONCE IN ANY PATH

158 1=1
IPCNT=1
M = 0
I L = 1
K=E
I PATH!1,1)=1

10G DC RO J=1,N
I FIICI I, J) .EJ.DGO TO 31
GO TO 30

R1 M=M+1
IFIM.EQ.IDGO TO 32
M=IPCNT+1
I PATH!M,K)=J
NM=K-1
DC 93 KK=1,NM

93 IPATH(M,KK)=IPATH(IL,KK)
DC 9t IK=1,NM
IFI I PATH IM,K) .Ej.IPATHIM,IK))GO TO 90

94- CONTINUE
IPCNT=M
I F(IPCNT.EQ.LIM)GO TO 103
GG TO 30

92 ML=0
I PATH!M,K)=J
IC=K-1
DO 9b IK=1,ID
IF I IPATHIM,K).EQ.IPATH!M,IK))GO TO 97

9b CONTINUE
IF!IPATH(M,K).EQ.N)GO TO 98
GC TO 90

97 M=M-1
ML=1

90 CONTINUE
IFIML.EQ.DGU TO 99
M = IL
I=IPATH(M,K)

M = M— 1
K = K+1
IF(K.GT.N)GO TO 98
GO TO 100

99 M=M+1
98 IL=M+1

M = IL
I FCM.GT. IPGNDGO TO 105
DO 101 IK=1,N
IFtIPATHIM,IK).EQ.0)30 TO 108

101 CONTINUE
GO TO 98

108 K=IK-1
KK=K-1
DC 103 IBA=1,KK
IF(IPATHIM,K).EQ.IPATH(M,IBA))GO TO 98

103 CONTINUE
I=IPATH(M,K)
IF(I PATH(M,K) .EQ.N)GO TO 98
M=M-1
K = K + 1
GO TO 100

10% WRITE(bflGh)
10b FORMAT!'0*,IX,'PATHCCUNT HAS REACHED LIM, REASSIGN*)

GC TO 180.
105 KIL=1
10? DC 108 IJM=KIL,IPCNT

DO 109 IK=1,N
IF(I PATH!IJM,IK).EQ.N)GO TO 111

109 CONTINUE
Du 113 IJ=1,N

110 I PATH!IJM,I J)=0
IF(IJM.EQ.IPCNT)GO TO 118
IMA=IPCNT-1
DC 113 KI=IJM,IMA
KK=KI+1
DC 113 J=1,N

113 I PATH(KI,J)=IpATH(KK,J)
IPCNT=IPCNT-1
KIL=IJM
GO TO 10?

111 IPNODEd JM) = IK
108 CONTINUE

GC TO 11%
112 I PCNT = IPCNT-1
11% WRITE(b,U5)
115 FORMATI'O*,IX,’DIRECTED PATH MATRIX')

DC Ufa K=1,IPCNT
ICP=IPNODE(K)

Ufa WRITE (fa,U7) { IPATH(K,I) , 1=1, ICP)
180 STOP

. END

