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Abstract

Social awareness and social ties are becoming increasingly popular with emerging mobile and handheld

devices. Social trust degree describing the strength of the social ties has drawn lots of research interests in

many fields in wireless communications, such as resource sharing, cooperative communication and so on. In

this paper, we propose a hybrid cooperative beamforming and jamming scheme to secure communication based

on the social trust degree under a stochastic geometry framework. The friendly nodes are categorized into relays

and jammers according to their locations and social trust degrees with the source node. We aim to analyze

the involved connection outage probability (COP) and secrecy outage probability (SOP) of the performance

in the networks. To achieve this target, we propose a double Gamma ratio (DGR) approach through Gamma

approximation. Based on this, the COP and SOP are tractably obtained in closed-form. We further consider

the SOP in the presence of Poisson Point Process (PPP) distributed eavesdroppers and derive an upper bound.

The simulation results verify our theoretical findings, and validate that the social trust degree has dramatic

influences on the security performance in the networks.
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I. INTRODUCTION

Nowadays, social ties have brought extensive influences among humankind. More and more people

are actively involved in online social interactions [2], [3], and hence social ties among people are

extensively broadened and significantly enhanced [4]. The so-called social ties are usually defined as

the social relationships between individuals [5], such as kinship, colleague relationships, friendship,

acquaintance, and so on [6]. The social trust degree of the social tie is the most basic and fundamental

notion which characterizes the strength of two individuals relating to each other [7]. According to [8],

ties have specific trust degree values describing the strength (i.e., from enmity to kinship) between the

users. The notions of social ties and social trust degrees have drawn wide attentions of researchers

in various fields, including mobile social networks, wireless network communications, and so on. For

instance, social ties have also been studied for cooperative communications [9]–[11]. The authors in

[9] investigated the joint social-position relationship based cooperation (JSPC) scheme and developed

a partner selection algorithm. An optimal social-aware relay selection strategy was proposed in [10]

to maximize the capacity of the network. An optimal transmission beamformer design was considered

in [11] based on the trust degrees to achieve a target rate in a multi-input single-output cooperative

communication network. These existing work concentrates on efficiency and capacity analysis in these

networks. However, the security and privacy of information is a significant issue in social awareness

networks. Due to the openness of wireless communications, the leakage of information is a serious

problem.

On the other hand, physical Layer Security (PLS) approaches have drawn considerable attention

during the past decade to protect the confidentiality of wireless communications. Wyner’s seminal

research in [12] introduced the concept of the wiretap channel and secrecy capacity, and established

a basic theory for PLS. According to the Wyner’s theory, a positive secrecy capacity exists if the

channel quality of the legitimate receiver is better than that of the eavesdropper. To achieve this

target, various PLS communication technologies have been proposed, among which the multiple-

user cooperation technology has been studied intensively. As indicated by the survey paper [13], the

cooperative beamforming (CB) and the cooperative jamming (CJ) are two effective methods to improve

PLS. Out of a bunch of friendly nodes in the network, some nodes are selected as relay nodes and
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other as jammers. Then, relay nodes exploit CB [14]–[16] to assist enhancing the channel quantity of

the legitimate users, while jammers utilize the CJ [17], [18] to degrade that of the eavesdroppers. The

friendly nodes in the cooperative networks have been categorized into relays and jammers in these

existing works. However, most of them assumed that the relays or jammers are selected and assigned

the roles they act (relay or jammer), but did not discuss how the assignment of the roles was made.

Motivated by the above researches, we observe that the social trust degree may play an important

role in cooperative secure communications. The social ties of users reflect their willingness to share

resources in order to help secure communications. The users with high social trust degrees usually

have strong ties and are willing to share resources to help each other for secret communications. It

is reasonable that the strong-tie nodes are more likely to offer communication links than the weak-tie

ones for cooperation. Particularly, in secure cooperative communications, two nodes with high social

trust degrees may have a high probability to establish connections, and to decode or retransmit the

confidential messages without leaking them to potential eavesdroppers. Based on the above background,

the social trust degrees among users can be utilized to assist cooperative communications for PLS.

Motivated by these observations, in this paper, we propose a cooperative relay and jamming scheme

to secure communication based on the social trust degree. The security performance is investigated by

connection outage probability (COP) and secrecy outage probability (SOP) under a stochastic geometry

framework.

A. Related Works

Researches on social ties have been carried out in many aspects to enhance the efficiency of wireless

communications [3], [19]–[23]. Utilizing of social ties has been discussed in [3], [19]–[21] to enhance

the performance of device-to-device (D2D) communications. Abundant frameworks and approaches

based on social ties such as the coalitional game-theoretic framework [3], the Indian Buffet Process

approach [19], several resource allocation policies [20], [21], and so on, were proposed to optimize

the traffic offloading and improve the system capacity. The efficiency and capacity of wireless ad hoc

networks have been improved by exploiting the social ties among users [22], [23].

In cooperative PLS, to achieve a larger secrecy rate, various CB and CJ schemes have been proposed

in [24]–[29]. The joint cooperative jamming and beamforming schemes were proposed in [24]–[26],
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and were further developed to a destination assisted scheme in [27]. Furthermore, the joint CB and

CJ schemes were investigated in hybird networks [28], [29].

So far, there are few works to study social ties among users in cooperative communications for PLS

enhancement [30]–[33]. Zheng et al. [30] studied the secrecy rate and the secrecy throughput under a

multi-hop relay scheme using the average source-destination distance based on social ties. To further

enhance security, both [31] and [32] proposed cooperative jamming schemes based on social ties. Tang

et al. [31] discussed the SOP of a source-destination pair based cooperative jamming game. A jammer

selection scheme based on mobility-impacted social interactions was proposed in [32] to maximize

the worst-case ergodic secrecy rate. When the relays may be potential eavesdroppers according to

their social trust degrees, a cooperative communication strategy was presented in [33] to maximize the

secrecy rate. We note that in these works, the cooperative nodes are either relay nodes or jammers,

and a joint scheme is missing, which means that the secrecy performance can be improved further

by improving the cooperative strategy. Moreover, the social trust degree is merely applied when the

relays or jammers have already been chosen, i.e., the social trust degree has not been exploited to

determine which role of each cooperative node should be categorized.

B. Our Work and Contributions

In this paper, we propose a hybrid cooperative relay and jamming scheme exploiting social ties to

secure wireless communications in a random cooperative network. The friendly nodes are categorized

into relays and jammers according to their locations and social trust degrees with the source node.

We analyze the COP and SOP to evaluate the security performance under a stochastic geometry

framework. To the best of our knowledge, this is the first paper that applies the social trust degree into

cooperative node categorization and hybrid cooperative secrecy communications. Our contributions are

summarized as follows:

i) We propose a social trust degree based hybrid cooperative beamforming and jamming scheme

to secure a wireless transmission under a stochastic geometry framework, wherein the cooperative

nodes are spatially distributed in a two dimensional plane following a Poisson Point Process (PPP).

According to the social trust degrees of the source, the cooperative nodes are categorized into relays

and jammers. In general, the hybrid cooperative scheme is distributed with a low cooperative overhead.
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ii) A comprehensive COP and SOP analysis is performed to evaluate the performance of the proposed

scheme. To facilitate convenient results with a sufficient accuracy, we propose a Gamma approximation

method and a double Gamma ratio (DGR) approach to provide closed-form expressions of the COP and

the SOP. In terms of the derivation of parameters utilizing Gamma approximation method, a flabellate

annulus approximation method is also proposed to simplify the complicated integral calculations over

an irregular pattern.

iii) As an extension, we further investigate the SOP in the presence of independent and homogeneous

PPP distributed eavesdroppers, and obtain its upper bound. In the derivation of the SOP with multiple

eavesdroppers, three independent PPPs are contained which makes the calculations untractable. In order

to obtain an upper bound, the discrete expectation utilizing the law of total probability is employed

to approximate the continuous expectation.

C. Organization and Notations

The reminder of this paper is organized as follows. In Section II, we provide our system model with

relay and jammer selection schemes based on the social trust degrees of the source node. In Section

III, we propose a DGR approach based on the Gamma approximation method, which provide general

formulations for simplifying calculations in our analysis. In Section IV, we investigate the COP in

our scheme. In Section V, the SOP with single eavesdropper and PPP distributed eavesdroppers are

analyzed, respectively. In Section VI, we provide the numerical results to verify our theoretical analysis

and illustrate the performance of the proposed scheme. Finally, Section VII concludes the paper.

We use the following notations in this paper: (·)∗, ‖ · ‖ and | · | denote conjugate, Euclidean

norm, and absolute value, respectively. P(·) denotes probability. EA[·] and DA[·] denote mathematical

expectation and variance with respect to A, respectively. CN (µ, σ2) denotes circularly symmetric

complex Gaussian distribution with mean µ and variance σ2. exp(1) denotes exponential distribution

with mean 1. A(x, r) ⊂ R
2 denotes a bi-dimensional disk centered x with radius r, and D(L1, L2) ⊂ R

2

denotes an annulus with internal radius L1 and external radius L2.

II. SYSTEM MODEL AND PROBLEM DESCRIPTION

As illustrated in Fig. 1, we consider a wireless network over a finite circle area A(o, L2) ⊂ R
2. This

network consists of one source s, one destination y, one eavesdropper z, and lots of legitimate nodes.
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y
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Fig. 1: System model.

Each node in the network works in a half-duplex mode and is equipped with a single antenna. Without

loss of generality, we assume that source s locates at the origin (0, 0). The source tends to transmit

confidential signals to the destination node y without being wiretapped by the eavesdropper. To achieve

this target, the source hopes that the legitimate nodes can help complete the secure transmission by

node cooperation.

The location of the legitimate node is modeled as a PPP Φ with density λ. Each legitimate node

has a social tie with the social trust degree of the source, such as family members, colleagues, friends,

and so on. The degree between two individuals is usually modeled by using a value in the range [0, 1],

which is similar to [8], [9], [11], [33].1 We assume that the social trust degree of each legitimate node

is independent identically distributed (i.i.d.), modeled as a uniform random variable (RV) C distributed

in [0, 1]. For a legitimate node, the closer C near to 1, the more the source trust in this node.

1 A classical way of modelling the social ties between two individuals is weighted graphs which can be referred to [8], where each

node represents one person. The strength of the interactions between individuals is represented by the weights associated with each

edge. In further researches, the strength is modelled as a value in the range [0, 1].
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A. Social Aware Nodes Selection

In this paper, we propose a secure cooperative transmission scheme, where these legitimate nodes

help increase the secrecy rate via cooperative beamforming and jamming. We categorize the legitimate

nodes as relay nodes, jammers and dummy nodes according to their social trust degrees of the source

as well as their locations.

• Relay nodes: Intuitively, the relay nodes should have the closest social ties or the most trustwor-

thiness of the source since they may have the permission to relay the confidential signals or even

decode them. Therefore, the most trusted nodes are selected as relay nodes if their social trust

degrees are in [C1, 1], where 0 < C1 < 1 is a sufficiently large threshold. On the other hand, relay

nodes should be close to the source geographically so that the confidential signal broadcasted in

the first cooperative phase will not be leaked to the potential eavesdropper. Therefore, we also

require the relay nodes be located in A(o, L1), i.e., only those legitimate nodes with a distance

less than L1 to the source are possible to be relay nodes.

• Jammers: Jammers are friendly nodes to the source but are not the most trusted ones. They will

not help relay the confidential signal, but transmit artificial interferences to disturb the potential

eavesdropper when the confidential signal transmission is ongoing. Therefore, we set the legitimate

nodes whose social trust degrees are in [C2, C1] as jammers, where 0 < C2 < C1.

• Dummy nodes: Those nodes whose social trust degrees are in [0, C2] are dummy nodes. Their

social connections are not tight with the source. They will not take part in the confidential

transmission of the source and do nothing.

As a result, those legitimate nodes who will help the secrecy transmissions are divided into relays

and jammers according to their social trust degrees and locations, where the locations of the relays

in A(o, L1) and the jammers in D(L1, L2) are two independent and homogeneous PPPs, ΦR and ΦJ

with intensities λR = (1 − C1)λ and λJ = (C1 − C2)λ, respectively. Throughout this paper, we will

use xR ∈ ΦR to denote the relay and xJ ∈ ΦJ to denote the jammer. Such a system model can be

easily found in the scenes like offices, dormitories, labs and so on, where people inside the room may

be trusted so that they are reliable and willing to assistant secure transmission, while people outside

may help transmit jamming signals to disturb eavesdroppers.
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B. Secure Cooperative Transmission Scheme

We assume that all the relays work in the decode-and-forward (DF) mode. During the first phase of

secure cooperative communication, the source s broadcasts confidential signal to the relays in A(o, L1).

In this phase, we assume that the relays can always decode the received confidential information

correctly and the confidential information can be transmitted securely, which is due to the following

reasons. Since the relays are required to be located by the source with a short distance less than L1,

the source transmits with a sufficiently low power, such that the signal can be correctly decoded by

the relays. The signal can not be decoded correctly by the eavesdropper outside A(o, L1) due to the

large-scale pass loss. Such assumption comes from some scenarios where the source user stays along

with several legitimate friendly users in a region, such as colleagues, workmates, roommates in the

workplace or labs. When the source user aim to transmit secure information to a destination far away,

he or she may select the legitimate friendly users as relays in the region according to their social trust

degrees. The security assumption of the source-relay link has also been adopted in [14], [16], [26].

During the second phase of cooperation, the relays in A(o, L1) forward the correctly decoded

confidential information bits to the destination cooperatively. Since the destination is far away from

the relays, the risk of being wiretapped in the second phase increases greatly. Therefore, the jammers

in D(L1, L2) transmit jamming signals concurrently to confuse the eavesdropper. In order to protect

the signal received at destination node y from being disturbed, the jammers near the destination should

keep silence. Therefore, we set a protected zone A(y, LG), i.e., a circle of radius LG centered at y,

wherein the jammers will keep silence during the second phase [34].2

C. Channel and Signal Model

The signal suffers from both small-scale fading and large-scale path loss. We assume that the small-

scale fading is quasi-static following the Rayleigh distribution, and the channel coefficient between

two nodes located in x1 and x2 is denoted as Hx1,x2 ∼ CN (0, 1). The large-scale fading is standard

path loss model d−α, where d denotes the distance and α > 2 is the fading power exponent [35].

2 Destination node y first broadcasts a pilot signal with a pre-designed power. If a jammer received the pilot signal, it is in the

protected zone and it will not transmit jamming signals. As a result, the received signal at the destination will be protected.
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Since the relays are required to be located with a short distance by the source, the relay nodes

that correctly decode the signal s0 will forward it to the destination cooperatively in the second

phase. In this paper, we will consider a distributed cooperative beamforming scheme, where each

relay transmits s0 by pre-compensating the phase of the channel HxR,y and utilizing all its available

power. The transmitted signal of each relay node is sxR
=

√
PsH∗

xR,y

‖HxR,y‖ s0, where the symbol power is

normalized as E{|s0|2} = 1 and the transmit power of the relay is PR. We note that such a cooperative

beamforming scheme is totally distributed in the sense that each relay do the cooperation with its own

channel state information (CSI) instead of the global CSI, so that the overhead is greatly reduced.

Then, the received signal power at destination node y is given by

T (y) =

∣

∣

∣

∣

∣

∑

xR∈ΦR

√
PRHxR,yH

∗
xR,y

‖HxR,y‖
‖xR − y‖−α/2

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

∑

xR∈ΦR

√

PR‖HxR,y‖‖xR − y‖−α/2

∣

∣

∣

∣

∣

2

. (1)

Similarly, the signal power received by the eavesdropper is given by

T (z) =

∣

∣

∣

∣

∣

∑

xR∈ΦR

√
PRHxR,zH

∗
xR,y

‖HxR,y‖
‖xR − z‖−α/2

∣

∣

∣

∣

∣

2

. (2)

When the cooperative beamforming is ongoing, each jammer also transmits an independent Gaussian

interference signal to confuse the eavesdropper. The transmit power of the jammer is Pj . Since

the jamming signals from different jammers are independent, the aggregate interference power at

destination y and eavesdropper z are given by

I(y) =
∑

xJ∈D

PjhxJ ,y‖xJ − y‖−α, (3)

and

I(z) =
∑

xJ∈D

PjhxJ ,z‖xJ − z‖−α, (4)

respectively, where D denotes the area ΦJ\A(y, LG), and hx1,x2 ∼ exp(1) is the power fading between

locations x1 and x2. Suppose the network is interference-limited so that the ambient noise is negligible.

The signal-to-interference ratio (SIR) for destination y is given by

SIRy =

∣

∣

∑

xR∈ΦR

√
PR‖HxR,y‖‖xR − y‖−α/2

∣

∣

2

∑

xJ∈ΦJ\A(y,LG) PjhxJ ,y‖xJ − y‖−α
, (5)
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and the SIR for eavesdropper z is given by

SIRz =

∣

∣

∣

∑

xR∈ΦR

√
PRHxR,zH∗

xR,y

‖HxR,y‖ ‖xR − z‖−α/2
∣

∣

∣

2

∑

xJ∈ΦJ\A(y,LG) PjhxJ ,z‖xJ − z‖−α
. (6)

In order to simplify our expressions, we define dx,y , ‖x − y‖ to denote the distance between the

nodes located at x and y.

III. GAMMA APPROXIMATION AND DGR APPROACH

In this paper, we aim to analyze the COP and the SOP in our system according to (5) and (6) in

Section II. The detailed derivations of the COP and the SOP are provided in Section IV and Section V,

respectively. We will show that the expressions of COP and SOP [36], [37] have a unified formulation

as

P = P (SIR < β) = P

(

T

I
< β

)

, (7)

where T is the signal power, I is the interference power, and β is some threshold according to the target

performance of the system. Such a formulation is widely used in the calculation of the outage in PLS. In

our scheme, T and I have complicated distributions without closed-form expressions of the probability

distribution functions (PDF), which makes our analysis quite untractable. To facilitate the analysis,

in this section, we propose the following two calculation methods, i.e., the Gamma approximation

method [38] and a DGR approach. We first introduce the Gamma approximation method.

A. Gamma Approximation

Gamma approximation is a model approach to approximate the distribution of a RV based on the

Gamma distribution, which aims to facilitate simplified and low complexity calculations. We can

present simplified expressions for the outage probabilities by using the Gamma approximation. For a

RV Ā, we use a Gamma RV A with the PDF

GA(xA; νA, θA) =
xνA−1
A e

−xA
θA

θνAA Γ(νA)
(8)

to approximate it, where Γ(νA) =
∫∞
0

mνA−1e−mdm, and νA and θA are derived from the cumulants

of Ā, especially the mean and variance. The i-th cumulants N
(i)

Ā
of a RV Ā is defined as

N
(i)

Ā
=

diEĀ [ewā]

dwi

∣

∣

∣

w=0
. (9)
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The mean of Ā denoted as µĀ = N
(1)

Ā
, and the variance of Ā is σ2

Ā
= N

(2)

Ā
−
(

N
(1)

Ā

)2

. Then the

corresponding function of the Gamma distribution in (8) has the parameters

νA =
µ2
Ā

σ2
Ā

and θA =
σ2
Ā

µĀ

. (10)

Consequently, we can obtain the Gamma approximations GT (xT ; νT , θT ) and GI(xI ; νI , θI) of T and

I in our system model according to (8)-(10), respectively. The details will be provided in the following

sections.

Gamma approximation can be applied to approximately model the sum of several variables with

special distributions, such as the Rayleigh distribution and so on. The PDF of the sum of these variables

is usually complicated to obtain, while the distribution of each variable can be modeled as a special

case of the Gamma distribution [38]. According to the additivity of the Gamma distribution, the sum

of several Gamma variables is still Gamma distributed. Consequently, the sum of such variables can be

approximately modeled by a Gamma distribution. In our proposed system model, the PDFs of (1)–(4)

are untractable to obtain. Fortunately, each item in the sum expression is a special case of the Gamma

distribution. We use Gamma approximation to approximately modeled them, i.e., both the numerator

and the denominator in the SIR can be modeled as Gamma variables. Namely, our objective outage

probability in (7) has the form of a DGR. Next, we will introduce the proposed DGR approach.

B. The DGR Approach

The DGR approach is to provide a convenient calculation of the cumulative distribution function

of the ratio of two Gamma random variables. Given T ∼ GT (xT ; νT , θT ) and I ∼ GI(xI ; νI , θI), we

have the following corollary.

Corollary 1: The cumulative distribution function (CDF) of a ratio Gamma variables is given by

P

(

T

I
< β

)

= 1− qνTΓ(νT + νI)

νI(q + 1)νT+νIΓ(νT )Γ(νI)
2F1

(

1, νT + νI ; νI + 1;
1

q + 1

)

, (11)

where q = βθI
θT

, β is a threshold, and 2F1 (a, b; c; d) denotes hypergeometric function [39, Eq. 6.455.1].
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Proof 1:

P

(

T

I
< β

)

= P (T < βI)

(a)
= EI

[
∫ βI

0

GT (xT ; νT , θT )dxT

]

(b)
=

∫ ∞

0



1−
Γ
(

νT ,
βI
θT

)

Γ(νT )



GI(xI ; νI , θI)dxI

=

∫ ∞

0

GI(xI ; νI , θI)dxI −
∫ ∞

0

Γ
(

νT ,
βI
θT

)

Γ(νT )
GI(xI ; νI , θI)dxI

(c)
= 1− qνTΓ(νT + νI)

νI(q + 1)νT+νIΓ(νT )Γ(νI)
2F1

(

1, νT + νI ; νI + 1;
1

q + 1

)

,

where (a) follows since T ∼ GT (xT ; νT , θT ), (b) follows from substituting the definition of the incom-

plete gamma function [39, Eq. 6.45] and the Gamma function of I . After some integral calculation,

(c) follows from applying [39, Eq. 6.455.1].

As a result, we obtain the closed-form probability expression through the DGR approach for the ratio

of the signal power and the interference power with the approximated Gamma distribution. Corollary

1 simplifies the calculation of the probability derived from the ratio of two Gamma variables. The

applications and veracity of the Gamma approximation and DGR approach will be discussed in the

following sections.

IV. CONNECTION OUTAGE PROBABILITY

In this section, we will analyze the COP in our scheme based on the Gamma approximation and

DGR approach, and provide its closed-form expression.

Connection outage occurs when destination y is unable to decode the signals transmitted by the

relays, i.e., SIRy < β [36]. The COP is given by

Pto = P (SIRy < β) = P

(

T (y)

I(y)
< β

)

= P







∣

∣

∣

∑

xR∈ΦR

√
PR‖HxR,y‖d−α/2

xR,y

∣

∣

∣

2

∑

xJ∈D hxJ ,yd
−α
xJ ,y

< β






. (12)

According to (1) and (3) in Section II, for relay nodes at different locations, although ‖HxR,y‖ follows

the Rayleigh distribution, the values of the large scale fading d
−α/2
xR,y are different. Consequently,
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hxR,yd
α/2
xR,y with various locations xR are independent but not identically distributed. Moreover, the

means and the variances of them are random variables related to the random locations of the relays,

which makes our analysis untractable. The case is similar for I(y). As a result, it is untractable to

obtain the accurate COP. Nevertheless, notice that both T (y) and I(y) are the sums of several Rayleigh

or exponential random variables, which is approximated Gamma distributed. We can apply the Gamma

approximation and DGR approach to facilitate our calculations. We first model T (y) and I(y) using

Gamma approximation.

The parameters of the PDFs of T (y) (i.e. νTy, θTy) and I(y) (i.e. νIy, θIy) derived from (9) and

(10) are given by the following proposition.

Proposition 1: The PDFs of T (y) and I(y) have the parameters

νTy =
λRQ

2
y(1)

5λRQ2
y(1) +Qy(2)

, θTy =
3PR

[

5λRQ
2
y(1) +Qy(2)

]

Qy(1)
, (13)

νIy =
λJ

(

∫

D
1

dαxJ ,y
dxJ

)2

2
∫

D
1

d2αxJ ,y
dxJ

, θIy =
2Pj

∫

D
1

d2αxJ ,y
dxJ

∫

D
1

dαxJ ,y
dxJ

, (14)

where Qy(n) =
∫

A(o,L1)
d−nα
xR,ydxR.

Proof 2: The proof of deriving νTy, θTy and νIy, θIy are given in Appendix A and B, respectively.

Notice that due to the existence of the protected zone, the shadow integral area D in (14) illustrated

in Fig. 2 is untractable. We now propose a flabellate annulus approximation method to complete our

calculations in (14). As demonstrated in Fig. 2, the area D in the shadow could be well approximated

by the sum of the following three parts: A1 is the area with oblique line, A2 is in backslash and A3

in vertical line is the annulus D(L1, L2) disposing the flabellate area with angles θ. Consequently, D
can be approximated by the area A1+A2+A3, i.e., we can use

∫

A1+A2+A3
f(x)dx to take the place of

∫

D f(x)dx in order to complete our integral calculations. Since A1, A2 and A3 are flabellate annulus,

it is quite convenient to calculate the integral in the area A1 + A2 + A3. We name such a method as

flabellate annulus approximation method.

According to (8) and Proposition 1, the PDFs of T (y) and I(y) are given as

fT (y)(xT ; vTy, θTy) =
x
vTy−1
T e−xT /θTy

θ
vTy

Ty Γ(vTy)
(15)
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Fig. 2: Integral area D and the tractable approximation calculation

and

fI(y)(xI ; vIy, θIy) =
x
vIy−1
I e−xI/θIy

θ
vIy
Iy Γ(vIy)

, (16)

respectively.

Fig. 3 illustrates the accuracy of the Gamma approximation method. The PDFs of T (y) and I(y) are

compared with the Gamma distribution in Fig. 3(a) and Fig. 3(b), respectively. The theoretical results

are derived from (15) and (16). The statistical histograms are the simulation results obtained from

100,000 trials. The curves and histograms indicate that the Gamma approximation and the flabellate

annulus approximation approach are quite accurate.

Now both the signal power T (y) and the interference power I(y) in (12) follow Gamma distributions

(15) and (16), which makes our analysis mathematically tractable. Consequently, the closed-form

analytical results of COP is given as the following proposition by applying Corollary 1.

Proposition 2: The COP in (12) is given by

Pto = 1− q
νTy
y Γ(νTy + νIy)

νIy(qy + 1)νTy+νIyΓ(νTy)Γ(νIy)
2F1

(

1, νTy + νIy; νIy + 1;
1

qy + 1

)

, (17)
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Fig. 3: Approximations based on the Gamma distribution for T (y) and I(y): (a) Simulation and theory results of the distribution of

T (y); (b) Simulation and theory results of the distribution of I(y). The parameters are α = 4, L1 = 6 m, L2 = 100 m, d = 60 m,

LG = 5 m, C1 = 0.8, C2 = 0.79, λ = 0.2/m2, PR = 10 dBm, and Pj = 1 dBm.
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Fig. 4: Connection outage probability Pto vs. β for our system, with α = 4, L1 = 6 m, L2 = 100 m, d = 60 m, LG = 5 m, C1 = 0.8,

C2 = 0.79, λ = 0.2/m2, PR = 10 dBm, and Pj = 1 dBm.

where qy =
βθIy
θTy

, and 2F1 (a, b; c; d) denotes hypergeometric function [39, Eq. 6.455.1].

Proof 3: The proof is similar to that in Section III.
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The theoretical results in (17) and the simulation results are validated in Fig. 4. The simulation

results are calculated as the ratio of the number of connection outage to a total of 100,000 Monte

Carlo trials. In Fig. 4, although these two curves are not quite the same, the maximum discrepancy

between them at β = −19 dB is smaller than 0.1. We can find that the theoretical results are very close

to that of the numerical results, and the Gamma approximation is very accurate, so our theoretical

results can be applied to analyze the COP.

V. SECRECY OUTAGE PROBABILITY

In this section, we study the SOP in our scheme. We first derive the closed-form expression of the

SOP with a single eavesdropper. Then we discuss the SOP with multiple eavesdroppers following the

PPP distribution and obtain its upper bound.

A. Single Eavesdropper

The SOP with a single eavesdropper is defined as the probability that the SIR achieved at the

eavesdropper is larger than some threshold βe [36]. Therefore, the SOP is given by

Pso = P (SIRz > βe) = P
(

T (z)

I(z)
> βe

)

= 1− P







∣

∣

∣

∑

xR∈ΦR

√
PRHxR,zH∗

xR,y

‖HxR,y‖ d
−α/2
xR,z

∣

∣

∣

2

∑

xJ∈D PjhxJ ,zd
−α
xJ ,z

≤ βe






, (18)

where T (z) =
∣

∣

∣

∑

xR∈ΦR

√
PRHxR,zH∗

xR,y

‖HxR,y‖ d
−α/2
xR,z

∣

∣

∣

2

. For arbitrary xR ∈ ΦR,
HxR,zH∗

xR,y

‖HxR,y‖ d
−α/2
xR,z ∼ CN (0, d−α

xR,z)

is an independent circularly symmetric complex Gaussian distribution with variance d−α
xR,z. Hence, T (z)

is conditionally exponential distributed with conditional mean PR

∑

xR∈ΦR
d−α
xR,z, which is a RV as well

related to the locations of xR in ΦR. Consequently, it is untractable to calculate (18). Fortunately, notice

that T (z) has an approximated Gamma distribution, and therefore we can use the DGR approach to

facilitate mathematically tractable calculations of (18).

Firstly, we model the signal power T (z) and the interference power I(z) at the eavesdropper z as

Gamma variables. Due to the exponential distribution of T (z), we can easily obtain the mean and the

variance of T (z) to derive the parameters of the Gamma model. As for the parameters of I(z), we



17

will apply (9) similarly to that of I(y). The parameters of the PDFs of T (z) (i.e. νTz, θIz) and I(z)

(i.e. νIz, θIz) are given as

νTz =
λRQz(1)

λRQ2
z(1) + 2Qz(2)

, θTz =
PR [λRQ

2
z(1) + 2Qz(2)]

Qz(1)
(19)

and

νIz =
λJ

( ∫

D
1

dαxJ ,z
dxJ

)2

2
∫

D
1

d2αxJ ,z
dxJ

, θIz =
2Pj

∫

D
1

d2αxJ ,z
dxJ

∫

D
1

dαxJ,z
dxJ

, (20)

respectively, where Qz(n) =
∫

A(o,L1)
d−nα
xR,zdxR. Then we obtain the approximated PDFs of T (z) and

I(z) as

fT (z)(xT ; νTz, θTz) =
xνTz−1
T e−xT /θTz

θνTz
Tz Γ(νTz)

and fI(z)(xI ; νIz, θIz) =
xνIz−1
I e−xI/θIz

θνIzIz Γ(νIz)
, (21)

respectively. Therefore, according to Corollary 1, the closed-form analytical result of SOP is given by

the following proposition.

Proposition 3: The SOP in (18) is given by

Pso =
qνTz
e Γ(νTz + νIz)

νIz(qe + 1)νTz+νIzΓ(νTz)Γ(νIz)
2F1

(

1, νTz + νIz; νIz + 1;
1

qe + 1

)

, (22)

where qe =
βeθIz
θTz

, and 2F1 (a, b; c; d) denotes hypergeometric function [39, Eq. 6.455.1].

Proof 4: The proof is similar to that in Section III.

Fig. 5 depicts the theoretical results in (22) and the simulation results of the SOP, where |z| denotes

the distance between the source and the eavesdropper. 100,000 Monte Carlo trials are used. From

Fig. 5, we can observe that although the two curves are not quite the same, the maximum discrepancy

between them at |z| = 45 m is smaller than 0.1. We can find that the theoretical curves coincide with

the simulation ones well, and the Gamma approximation is close to our system model, which validates

our theoretical results in Proposition 3.

B. Multiple Eavesdroppers

When there are multiple eavesdroppers located at the annulus D(L1, L2) in the network, we assume

that they are modeled as a homogeneous PPP ΦE with density λe. The SOP with multiple eavesdroppers
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Fig. 5: The SOP vs. different distances |z| of the eavesdropper. The system parameters are βe = 0 dB, α = 4, L1 = 6 m, L2 = 100

m, d = 60 m, LG = 5 m, C1 = 0.8, C2 = 0.79, λ = 0.2/m2, PR = 10 dBm, and Pj = 1 dBm.

is defined as the probability that the SIR achieved by anyone of the eavesdroppers is larger than some

threshold βe. Therefore, the SOP is given by

Pso = P (∪z∈ΦE
SIRz > βe)

= 1− P (∩z∈ΦE
SIRz ≤ βe)

= 1− EΦR,ΦJ ,ΦE

[

P

(

∩z∈ΦE

T (z)

I(z)
≤ βe

∣

∣

∣

∣

∣

ΦR,ΦJ ,ΦE

)]

. (23)

From (23) we can see that, it is hard to obtain an exact closed-form expression of the SOP with three

independent and homogeneous PPPs (ΦR,ΦJ ,ΦE) mathematically. To achieve tractable and accurate

results, we make a compromise to obtain the upper bound of the SOP.

We first focus on the calculation over ΦE as

Pso = 1− EΦR,ΦJ ,ΦE

[

∏

z∈ΦE

P

(

SIRz ≤ βe

∣

∣

∣
ΦR,ΦJ ,ΦE

)

]

(a)
= 1− EΦR,ΦJ

[

exp

(

−λe

∫

D(L1,L2)

P

(

SIRz > βe

∣

∣

∣
ΦR,ΦJ

)

dz

)]

(b)

≤ 1− exp

[

−λe

∫

D(L1,L2)

EΦR,ΦJ

[

P

(

T (z)

I(z)
> βe

∣

∣

∣
ΦR,ΦJ

)

dz

]]

, (24)
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Fig. 6: Convergence results of (27) for different K when βe = 0 dB. The system parameters are α = 4, L1 = 6 m, L2 = 100 m,

d = 60 m, LG = 5 m, C1 = 0.8, C2 = 0.79, λ = 0.2/m2, λE = 0.0005/m2 , PR = 10 dBm, and Pj = 1 dBm.

where (a) follows from the probability generating functional (PGFL) of the PPP, and (b) is derived by

applying the Jensen’s Inequality. We define (24) as Pso, i.e., the upper bound of Pso. Since T (z) =
∣

∣

∑

xR∈ΦR

√
PRHxR,zH∗

xR,y

‖HxR,y‖ d
−α/2
xR,z

∣

∣

2
is an exponential random variable with parameter

∑

xR∈ΦR
PRd

−α
xR,z,

we can obtain

Pso = 1− exp

[

−λe

∫

D(L1,L2)

EΦR,ΦJ

[

e
− βeI(z)

∑
xR∈ΦR

PRd−α
xR,z

]

dz

]

. (25)

Substituting I(z) =
∑

xJ∈ΦJ
PjhxJ ,zd

−α
xJ ,z

yields

Pso = 1− exp



−λe

∫

D(L1,L2)

EΦR,ΦJ



e
−

βe
∑

xJ∈ΦJ
PjhxJ ,zd

−α
xJ ,z

∑
xR∈ΦR

PRd−α
xR,z



 dz





= 1− exp



−λe

∫

D(L1,L2)

EΦR,ΦJ





∏

xJ∈ΦJ

e
−

βePjhxJ ,zd
−α
xJ ,z

∑
xR∈ΦR

PRd−α
xR,z



 dz





(a)
= 1− exp



−λe

∫

D(L1,L2)

EΦR



exp



−λJ

∫

D
EhxJ ,z



1− e
−

βePjhxJ ,zd
−α
xJ ,z

∑
xR∈ΦR

PRd−α
xR,z



 dxJ







 dz





(b)
= 1− exp

[

−λe

∫

D(L1,L2)

EΦR

[

exp

(

−λJ

∫

D

βePjd
−α
xJ ,z

∑

xR∈ΦR
PRd−α

xR,z + βePjd−α
xJ ,z

dxJ

)]

dz

]

, (26)
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Fig. 7: The SOP vs. βe with PPP distributed eavesdroppers. The system parameters are α = 4, L1 = 6 m, L2 = 100 m, d = 60 m,

LG = 5 m, C1 = 0.8, C2 = 0.79, λ = 0.2/m2, λE = 0.0005/m2 , PR = 10 dBm, and Pj = 1 dBm.

where (a) follows from applying the PGFL of the PPP, since that the locations xJ of the jammers are

PPP distributed, and (b) follows from hxJ ,z ∼ exp(1).

In (26), there is still a PPP ΦR for the relays, which means a triple integral is required to be

performed. This leads to an unacceptable calculation burden. However, since the number of the relays

is Poisson distributed, we can take the discrete expectation to approximate the continuous expectation.

In this case, the law of total probability is employed for EΦR
[·], then the Pso is given by

1− exp

[

−λe

∫

D(L1,L2)

K
∑

k=1

e−λRλk
R

k!
exp

(

−λJ

∫

D

βePjd
−α
xJ ,z

∑

xR∈ΦR
PRd−α

xR,z + βePjd−α
xJ ,z

dxJ

)

dz

]

, (27)

where K is a specific number of the relays and
e−λRλk

R

k!
is the probability of k relays. Consequently,

the analysis is simplified through such an approximation.

Fig. 6 illustrates the typical convergence behavior of (27) as a function of K. The dash curve

representing the Monte Carlo simulation results of (26) with 100,000 trials. The solid curve is the

numerical results of (27). From the figure we can see that (27) is convergent to (26) which is the

upper bound of the SOP and stabilizes after K = 10. The convergence rate decreases with increasing

K. The K which stabilizes (27) is related to the value of
e−λRλk

R

k!
.
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Fig. 8: The COP vs. β for various social trust degrees C1 and Cq of the source.

The theoretical results in (27) and the simulation results are validated in Fig. 7. K is set as 11

due to the analysis of convergence in Fig. 6. From (24), (26) is the upper bound of the SOP due to

utilizing of the Jensen’s Inequality. It is obvious that (27) convergent to (26) is the upper bound. We

observe from the figure that, the theoretical Pso is verified by the Monte Carlo simulation and SOP in

(27) is the upper bound. The gap between these two curves is due to the following two reasons: 1) the

utilizing of the Jensens Inequality in (24); 2) the utilizing of the discrete expectation to approximate

the continuous expectation in (27).

VI. NUMERICAL RESULTS AND DISCUSSIONS

In this section, numerical results are presented to illustrate the performance of the proposed scheme.

Considering the accuracy of the Gamma approximation and the DGR approach, which have been

validated in Figs. 3–5, we only present the theoretical results based on Propositions 2 and 3 for

simplicity. As the legitimate nodes in the network are categorized into relays or jammers according to

their social trust degrees of the source, we firstly focus on the impacts of C1 and Cq on the performance

of the networks, where Cq , (C1 − C2). The benchmark scheme is that the relays transmit without

the assistance of jammers, which is adopted as no jammer assistance (NJA) scheme. Then the secrecy

performance is illustrated versus various values of L1 and LG. Finally, the upper bound versus various
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Fig. 9: The SOP of a single eavesdropper vs. βe for various C1 and Cq of the source and distances |z| of the eavesdropper.: (a) SOP

with different C1 and |z|; (b) SOP with different Cq and |z|.

parameters is provided for the SOP of multiple eavesdroppers. The system parameters are set as the

followings unless otherwise noted: α = 4, L1 = 6 m, L2 = 100 m, d = 60 m, LG = 5 m, λ = 0.2/m2,

C1 = 0.8, Cq = 0.01, PR = 10 dBm, and Pj = 1 dBm.

Fig. 8 illustrates the COP vs. β for various social trust degrees C1 and Cq of the source. We observe

that for the same C1, a smaller Cq leads to a lower COP. The reason is that C1 and Cq determine λR

and λJ . A smaller λJ is equivalent to a lower interference power, which results in a lower COP. We

also see that for the same Cq, the COP increases with the increasing C1. This is because a smaller λR

produces fewer relays leading to a lower SIR.

Fig. 9(a) plots the SOP versus βe for various social trust degrees C1 of the source and distances |z|
of the eavesdropper. Comparing the curves with the same |z|, we see that as C1 increases, the SOP

decreases. This is because a larger C1 is equivalent to a smaller λR, which results in less relays and

produce a lower SIRE . Therefore, there is a higher probability for performing perfect secrecy, which

leads to a lower SOP. We also see that the SOP decreases with increasing |z| by the comparison among

the curves with the same C1. This is due to the fact that the secrecy outage occurs more frequently

when the distance between the source and the eavesdropper decreases. From this figure, the proposed
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Fig. 10: The SOP of a single eavesdropper and the COP vs. L1 and LG for different βe and β, respectively: (a) SOP vs. L1; (b) SOP

vs. LG; (c) COP vs. L1; (d) COP vs. LG.

scheme has better performance than that of the NJA scheme at |z| = 20 m and |z| = 60 m, respectively.

Since C1 represents the trust degree of the source, we know that the most private message should be

transmitted to the person with a sufficiently high trust degree in order to realize perfect secrecy.

Fig. 9(b) compares the SOP versus βe for various Cq and |z|. By observing the curves with the

same |z|, we see that as Cq increases, the SOP decreases. This is because a larger Cq is equivalent

to a larger λJ , which results in more jammers producing lower SIRE. We also observe that the SOP

dramatically decreases with increasing |z|. As Cq determines the density of the jammers, smaller C2

will lead to more jammers offering intentional interference to improve the security performance. Also,

the proposed scheme performs much better than that of the NJA scheme in both cases with |z| = 20 m

and |z| = 60 m. From this we know that a diminishing social trust degree will disrupt the eavesdropper

more efficiently.

Fig. 10 illustrates the SOP of a single eavesdropper and the COP versus L1 and LG for different βe

and β, respectively. Fig. 10(a) depicts that the SOP increases with increasing L1. This is because the

secrecy outage occurs more frequently when L1 increases producing more relays. From Fig. 10(b),

we can observe that when LG increases, the SOP increases. This is due to the fact that a larger LG
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Fig. 11: The SOP with multiple eavesdroppers vs. βe for different λe and Cq.

leads to less interference causing by the jammers near to the eavesdropper, which leads to a higher

SIRE. We also see that the SOP has dramatic increasing at a smaller threshold βe. Similarly, the COP

decreases with increasing L1 and LG in Fig. 10(c) and Fig. 10(d), respectively. Such comparison on

the SOP and the COP helps the trade-off between L1 and LG.

Finally, Fig. 11 depicts the SOP with multiple eavesdroppers versus βe for different λe and Cq.

The dash curves are the Monte Carlo simulation results, while the solid curves are the numerical

results of (27). For various λe and Cq, the numerical results are the upper bounds which validates the

analysis results in (27). By comparing the curves with the same Cq, we see that the SOP increases

with increasing density of the eavesdroppers. In the comparison of the curves with the same λe, the

SOP decreases when increasing the density of the jammers, i.e., better secrecy performance can be

achieved by increasing jammers.

VII. CONCLUSIONS

In this paper, we proposed a cooperative relay and jamming scheme based on the social trust degrees

to secure communications. The security performance is investigated in terms of the COP and the SOP

under a stochastic geometry framework. A DGR approach was proposed to facilitate the analysis

of these metrics and closed-form expressions were obtained. The simulation results highlighted that
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the social trust degrees have dramatic influences on the security performance in the networks. For

example, the private message should be transmitted to the person with sufficiently high trust degree in

order to realize secure communications, meanwhile a diminishing social trust degree will disrupt the

eavesdropper more efficiently. In addition, the protected zone can protect communications efficiently

when the eavesdropper is away from the source. As an extension, we further investigated the SOP

in the presence of PPP distributed eavesdroppers and obtained its upper bound. Such a scenario has

practical interest since can be implemented in offices, laboratories, and dormitories, where the social

trust degree is employed to reflect the willingness of cooperation of the users.

APPENDIX A

PROOF OF νTy AND θTy IN PROPOSITION 1

According to (9) and the definition of T (y) in (1), the i-th cumulants of T (y) is given by
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where Q = 1
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area A(o, L1). (a) follows since ‖hxR,y‖ is independent of ΦR. (b) follows since ‖hxR,y‖ is Rayleigh

distributed, and by applying the PGFL of the PPP we can obtain (c). Now (28) is equal to
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Consequently, N
(1)
T is given by
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where (a) is the second-order differential results, and let w = 0, we can obtain (b). Let i = 2, and

N
(2)
T is given by

N
(2)
T =

d4 exp
[

λR

∫

AL

(

GeQw2 − 1
)

dxR

]

dw4

∣

∣

∣

w=0

(a)
= 54λ2

R

(
∫

AL

PR

dαxR,y

dxR

)2

+ 9λR

∫

AL

P 2
R

d2αxR,y

dxR, (32)

where (a) is the fourth-order differential results and w = 0. Consequently, by substituting (31) and
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APPENDIX B

PROOF OF νIy AND θIy IN PROPOSITION 1

According to (9) and the definition of I(y) in (3), the i-th cumulants of I(y) is given by
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where (a) is the derivation results, and let w = 0, we have (b). Let i = 2, N
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where (a) is the second-order differential results. Let w = 0, and we can obtain (b). As a result, by
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As a result, we obtain νIy and θIy by substituting (38) and (40) due to (10) as
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[32] L. Wang, H. Wu, and G. L. Stüber, “Cooperative jamming-aided secrecy enhancement in P2P communications with social interaction

constraints,” IEEE Trans. Veh. Technol., vol. 66, no. 2, pp. 1144–1158, Feb. 2017.



30

[33] J. Y. Ryu, J. Lee, and T. Q. Quek, “Confidential cooperative communication with trust degree of potential eavesdroppers,” IEEE

Trans. Wireless Commun., vol. 15, no. 6, pp. 3823–3836, 2016.

[34] S. H. Chae, W. Choi, J. H. Lee, and T. Q. S. Quek, “Enhanced secrecy in stochastic wireless networks: Artificial noise with

secrecy protected zone,” IEEE Trans. Inf. Theory, vol. 9, no. 10, pp. 1617–1628, Oct. 2014.

[35] J. G. Andrews, R. K. Ganti, M. Haenggi, N. Jindal, and S. Weber, “A primer on spatial modeling and analysis in wireless networks,”

IEEE Trans. Wireless Commun., vol. 48, no. 11, pp. 156–163, Nov. 2010.

[36] X. Zhou, R. K. Ganti, J. G. Andrews, and A. Hjorungnes, “On the throughput cost of physical layer security in decentralized

wireless networks,” IEEE Trans. Wireless Commun., vol. 10, no. 8, pp. 2764–2775, Aug. 2011.

[37] T.-X. Zheng, H.-M. Wang, J. Yuan, D. Towsley, and M. H. Lee, “Multi-antenna transmission with artificial noise against randomly

distributed eavesdroppers,” IEEE Trans. Commun., vol. 63, no. 11, pp. 4347–4362, Nov. 2015.

[38] R. W. Heath, M. Kountouris, and T. Bai, “Modeling heterogeneous network interference using Poisson point processes,” IEEE

Trans. Signal Process., vol. 61, no. 16, pp. 4114–4126, Aug. 2013.

[39] I. S. Gradshteyn, I. M. Ryzhik, A. Jeffrey, D. Zwillinger, and S. Technica, Table of Integrals, Series, and Products, 7th ed. New

York: Academic Press, 2007.


	I Introduction
	I-A Related Works
	I-B Our Work and Contributions
	I-C Organization and Notations

	II System Model and Problem Description
	II-A Social Aware Nodes Selection
	II-B Secure Cooperative Transmission Scheme
	II-C Channel and Signal Model

	III Gamma Approximation and DGR Approach
	III-A Gamma Approximation
	III-B The DGR Approach

	IV Connection Outage Probability
	V Secrecy Outage Probability
	V-A Single Eavesdropper
	V-B Multiple Eavesdroppers

	VI Numerical Results and Discussions
	VII Conclusions
	Appendix A: Proof of Ty and Ty in Proposition 1
	Appendix B: Proof of Iy and Iy in Proposition 1
	References

