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ABSTRACT 

 
 

The Bakken Formation is considered the most important hydrocarbon-bearing rock 

unit in the Williston Basin of North Dakota and is currently one of the most prolific 

unconventional resource plays in North America with a 2015, basin-wide production of 

approximately 1.1 million barrels of oil per day. Most production from the Bakken 

Formation is from wells drilled horizontally and completed using hydraulic fracturing in 

the relatively thin Bakken formation that varies in thickness from 0 to 160 feet (0 to 49 

meters).  Studies by previous workers in the Williston basin have identified six, field-

scale “sweet spots” characterized by higher production relative to other areas of the 

Williston Basin.  Previous workers have also recognized that significant variation in 

hydrocarbon production exists even at scales of 1000’s of feet to a few miles between 

individual wells within these known sweet spots. The objective of this thesis is to 

understand the causes of these localized, field-scale, production variations and how to 

best optimize future wells and completions. Unlike previous studies that focused on 

regional-scale sweet spots, the work presented here focuses on the field level, which is 

scale for drilling and completion decisions. 

 I present an integrated interpretation of the geology, geophysics, and drilling and 

completion designs of wells targeting the Bakken Formation in the Red Sky area, 

Mountrail County, North Dakota, in order to explain localized variations in well 

productivity using my compilation of historical production statistics. Using a high-quality, 

time-migrated, 3D seismic survey combined with well logs, core data, well files, seismic 

attributes, and production statistics, I have identified the productive reservoir unit and its 
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natural fracture patterns over an area of approximately 730 square miles.  Using ArcGIS 

spatial analysis and TIBCO Spotfire analytical software, I present a simple method to 

quantify variations in historical production statistics and how these variations reflect 

geologic controls including facies and fracture patterns. Geologically, the most significant 

control on the “sweet spot” are thick sand bodies of the Middle Bakken Formation 

deposited in a tidal dominated barrier bar system. Structurally, the most significant 

control on sweet spots are areas of the least number of natural fractures as mapped 

using seismic attributes.  
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Chapter 1: Introduction 

1.1 Project rational 

This project began with the observation that closely spaced, horizontal wells in 

the Bakken Formation displayed significant variations in production even when drilled 

with similar orientations and completion designs (Wiley et al., 2004). This observation 

led to the main objective of this thesis: to understand what geologic processes or 

characteristics control well quality between adjacent wells on the scale of a typical 

oilfield development.  

The answer to this question is not straightforward as shown by previously 

published research on the Williston basin and other unconventional shale plays in North 

America. Reservoir analysis techniques developed for conventional reservoirs are often 

insufficient to address the scale of geologic variation within unconventional resource 

plays like the Bakken Formation (Cipolla et al., 2011). Localized sedimentary facies 

variations -especially in thin (less than 150 feet thick) formations like the Bakken 

Formation - are commonly below the resolution of both 3D seismic data and well logs 

(Simenson, 2011). Lenses of calcite cement, which were observed from cores in this 

study to act as strong vertical barriers on hydrocarbon saturation at the inch to foot scale 

also exist well below the resolution of both 3D seismic data and well logs (Chapter 2, 

Figure 20).  

Good vertical well-log coverage often is not available in unconventional plays like 

the Bakken because most wells are drilled horizontally. Well logs run in horizontal 

wellbores give important information of the reservoir characteristics adjacent to the 

wellbore, but because the drilling and logging orientation is parallel to bedding variation, 
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horizontal well logs lack the vertical reference frame for accurate mapping of spatial 

facies changes. Finally, drilling and completion operations induce mechanical effects on 

the reservoir, which can act to mask the effects of geologic controls including natural 

fractures (Cipolla et al., 2011).  

This thesis uses an extensive data compilation to propose a new technique for 

evaluating productivity at high spatial resolutions and over large areas in a short time 

and at reasonable cost. For most operating companies exploring unconventional 

resources, the use of 3D seismic data is critical in developing drilling plans and 

identifying drilling hazards. The 3D seismic data are used to assess the fracturing and 

structure above and below the reservoir and to improve drilling designs.  

Unconventional plays are usually restricted to a thin vertical section at depth 

(less than 160 feet in the case of the Bakken Formation). Because such thin beds may 

be below the seismic-tuning thickness, seismic resolution is unable to detect thin 

lithologic changes. Computing seismic attributes based on the 3D seismic data set is an 

approach for characterizing potential drilling targets that has proven very successful in 

evaluating deep-water units where thicknesses can be over a thousand feet (Chopra and 

Marfurt, 2007). Seismic attributes implementation have been less successful in thin 

unconventional formations, like the Bakken, which is approximately 160 feet at its 

thickest point with some of the highest quality reservoir facies between 5 and 20 feet 

thick.  

Because the Upper and Lower Bakken shale have high organic content and are 

characterized by significantly slower seismic velocities than the surrounding carbonate 

lithologies the Bakken reflector is easily recognized and mappable over most of the 

Williston Basin (Anna et al., 2010)(Chapter 2, Figure 24). The generation of structural 
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attributes can be used to reveal subtle variation in the reservoir structure that may have 

an impact upon stress states and the presence of natural fractures that may exist below 

the resolution of the 3D seismic data (Jones and Roden, 2012). Attribute values can 

then be compared with normalized production volumes over the lifetime of Bakken wells 

to establish relationships between the particular attribute characteristic and well quality 

(Cipolla et al., 2011).        

Large-scale hydraulic fracture operations, carried out on reservoirs like the 

Bakken Formation that have high reservoir pressures - close to ambient critical stress -

can significantly, alter in situ stresses during drilling and completion (Zhou et al., 2008). 

These human-induced engineering effects on the reservoir must also be taken into 

account to recognize the underlying and complex geologic variations that control 

production variations at local scales.   

 

1.2 Conventional versus unconventional resources 

A brief discussion is required to address nomenclature and fundamental 

differences and issues between the two primary types of hydrocarbon accumulations 

being exploited around the world today. Conventional resources, with a much longer 

period of development extending back to the 19th century, are characterized by three 

essential elements: a source, a reservoir, and a seal. Conventional petroleum systems 

also require a process of hydrocarbon generation, migration, trapping, and preservation 

over geologic time to produce exploitable hydrocarbons. Any conventional petroleum 

system lacking a crucial component element or having mistimed process will be 

uneconomic or could lack hydrocarbon accumulations all together.  
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Conventional petroleum accumulations are characterized by buoyancy effects of 

hydrocarbons that require pathways for fluid migration away from a source rock and into 

a sealed trap. Within a trap there are usually multiple fluid phases and contacts between 

gas, oil, and water segregated vertically according to their buoyancy. These 

accumulations usually occur over relatively large areas and require gravity drainage and 

a water-drive mechanism to move hydrocarbons from the reservoir to the surface. 

Because these mechanisms are quite efficient, very few wells are required to drain large 

volumes of hydrocarbons from conventional traps and large recovery factors are to be 

expected (Sonnenberg, 2001). 

Conversely, unconventional, or continuous, petroleum accumulations do not 

require these same petroleum systems elements. Often unconventional resources are 

associated with shale formations that would be considered the source rock for a 

conventional system. Thus, unconventional petroleum systems are often characterized 

by a single formation acting as a source, reservoir, and seal.  

Unconventional accumulations are usually associated with tight rock, or 

formations with very low porosity and permeabilites, and high reservoir pressures, which 

act as the driving mechanism for hydrocarbon production. As hydrocarbons are 

produced, the driving high reservoir pressures that drive production is inherently 

diminished over time, and future production potential is lowered. Unlike conventional 

reservoirs, which generally produce hydrocarbons at more constant rates throughout 

their production lifetime, production from unconventional systems decline at a rapid, 

exponential pace over time (Sonnenberg, 2001). Tight geological formations are defined 

as reservoirs that have less than 0.1 millidarcy (mD) of matrix permeability and less than 
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ten percent matrix porosity, which generally require large hydraulic fracture completions 

to be economically produced (Law and Spencer, 1993). 

Because of these characteristics, unconventional resource plays require both a 

large number of wells drilled horizontally over long distances and complex completion 

designs that use multiple perforation stages and high-pressure hydraulic fracture 

stimulations to access the hydrocarbon stored within the tight rocks (Cipolla et al., 2011). 

Because of the high reservoir pressures and extremely low porosities and permeabilites, 

fractures induced by hydraulic fracturing must be propped open by ceramics or sand-like 

particles called proppants to reduce the closure of the fracture network after fracture 

operations cease. The presence of naturally occurring fractures will have major effects 

on the production within these tight reservoirs. Most of these natural fractures exist at 

scales well below the resolvable limit of seismic data. The use of a seismic attribute on 

3D data, such as edge detection, gives an indication of stress state and possible natural 

fracture swarms that are irresolvable by seismic offset analysis. 

Owing their success to new technological innovations and large areal extents, 

formations like the Bakken that were known to be hydrocarbon-rich, but uneconomic to 

develop, now produce huge output volumes and highly favorable return on investment 

capital, especially in sweet spot areas of basins like the Williston (Theloy, 2014). While 

these unconventional plays have been considered highly successful, the fact remains 

that recovery factors -even for the most productive North American unconventional 

plays, are still dismally low, and often in the single digits, with an average of around 5-

8% of oil in place (EIA, 2011). When this small recovery is compared with primary 

recover factors of conventional reservoirs in the range of 30-40%, the large disparity in 

production efficiency of conventional vs. unconventional resources is clearly illustrated. 
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 “Tight oil plays,” as these new unconventional resources are called, present a 

number of additional challenges that are not completely shared with tight gas plays 

(Aguilera, 2014). First, oil is a liquid that is incompressible and its molecular structure is 

much larger and more complex than that of natural gas, or methane. Oil is also a generic 

term and in most case the in-situ fluids are found in a variety of phases at in different 

areas of a particular basin. Second, this phase complexity impacts reservoir-drive 

mechanisms and presents additional issues related to processing and deliverability at 

the surface 

The recent boom of unconventional resource success in North America has not 

come without continuing challenges. One of the biggest issues currently facing 

exploration and production companies is the application of conventional geological and 

engineering techniques that have been developed and refined for over a century to 

unconventional resources that have emerged only within the past decade (Wiley et al., 

2004). Though conventional techniques can be used on large, basin- to field-size scales, 

better methods and techniques must be developed to assess variations in reservoir 

quality and stress heterogeneity over more useful scales, like the field- to the well-

scales. Improvements in these areas will help us increase the efficiency of extraction 

and improve the recovery factor with which these unconventional resources are 

developed and support their viability for the futures. 

 

1.3 Project background 

This thesis project is the outgrowth of several personal experiences during my 

academic work and during my applied experiences with the oil and gas industry. I 

personally witnessed the boom of Barnett Shale production near my hometown of 
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Dallas, Texas, and became interested in unconventional resource plays and becoming 

involved in exploring for new shale resources here in North America.  

For the two summers following high school, and after my first year as an 

undergraduate geology major at the University of Texas at Austin, I worked for a small 

company in Dallas, Brazos Oil & Gas, exploring the Hayneville-Bossier Shale play in 

east Texas and Western Louisiana. The Haynesville remains a very prolific gas play 

although production has slackened during the large drop in natural gas prices in 2008 

related to overproduction using newly developed, unconventional drilling and production 

methods.  

During the summer after my second year at the University of Texas, I worked for 

a small, unconventional exploration company, Eldorado Resources, exploring the 

shallow, immature, but highly organic-rich Bakken shale in eastern North Dakota and 

southern Manitoba. Being involved in this truly unconventional shale-oil extraction, I was 

introduced to innovative hydrocarbon extraction method involving dual horizontal well 

and advanced electrode heating elements that were designed to coerced oil and gas out 

of immature, but highly organic rich source rocks.  

For the last two summers of my undergraduate studies at the University of 

Texas, I worked for Three Rivers Operating Company, which was an independent 

operator, working in the west Texas and eastern New Mexico Permian Basin. With the 

Three Rivers Operating Company I had the opportunity to work on a number of 

conventional and unconventional play types in the Permian Basin. Around the time of my 

graduation from the University of Texas in May of 2012, Three Rivers was very 

interested in the Lower Wolfcamp Shale (also referred to as the Cline Shale) which was 
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an emerging unconventional oil play with large areal extents and very high upside, which 

is still underexplored.   

In a final summer internship with ConocoPhillips as a graduate student at the 

University of Houston, I had the opportunity to work on exploration of the Eagle Ford 

shale play in southeast Texas, which was another of North America’s most prolific 

unconventional resource plays. The Eagle Ford Formation has many characteristics 

similar to the Bakken Formation and my work during this internship has significantly 

influenced the development of this thesis project.  

Because well data and production statistics remain proprietary and restricted for 

researchers in the state of Texas, I decided to focus my study on the Bakken Shale 

located in the Williston Basin, North Dakota. All data pertaining to the exploration and 

production of hydrocarbons in the state of North Dakota is open access and available for 

a small annual fee. A large volume of data can be accessed by a simple web query, 

which makes it very attractive for graduate students and others in academia seeking 

access to high-quality data. I also benefitted from gaining access to the Red Sky 3D 

seismic and well dataset kindly provided by the Hess Corporation to Dr. Robert Stewart 

and the AGL Project at the University of Houston. 

 

Chapter 2: INTEGRATION OF STRATIGRAPHY, FACIES, SEISMIC ATTRIBUTES, 
AND PRODUCTION STATISTICS TO PREDICT BAKKEN WELL PERFORMANCE, 

RED SKY, WILLISTON BASIN, NORTH DAKOTA 
 

2.1 Introduction 

2.1.1 Significance and history of production from the Williston Basin 

The Late Devonian-Early Mississippian age Bakken Formation is the most 

important lithological unit in relation to oil and gas production in the Phanerozoic 
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Williston Bain according to Sarg (2012). As of June 2015, the Bakken Formation 

produces approximately 1.2 million barrels of oil a day and is one of the largest 

unconventional hydrocarbon resources in the United States and the world (EIA, 2015). 

 The Bakken is a relatively thin (160 foot maximum thickness), heterogeneous 

formation divided into three main members: The Upper Bakken, the Middle Bakken, and 

the Lower Bakken. The Upper and Lower Bakken members are black shales; the Middle 

Bakken member is a dolomitized siltstone with mixed sandstones in some areas. The 

upper and lower shale members have unusually high organic content (up to 20% total 

organic carbon (TOC) by weight) that produces significant formation over-pressure 

where these upper and lower shale members are thermally mature, in the center of the 

basin (Nordeng et al,. 2010). The Upper and Lower Bakken Shale are the primary 

source rock for the majority of hydrocarbon production throughout the Williston Basin 

and are classified as world-class source rocks based on their productivity (Schmoker 

and Hester, 1983).  

Hydrocarbon production in the Bakken Formation began in 1953 with 

conventional wells that targeted highly fractured and localized oil and gas pools. 

Success was limited because of the discontinuous nature of the distribution of high-

quality reservoir facies in the Middle Bakken member (Price and LeFever, 1991). During 

this early exploration period in the 1950’s, 60’s, and 70’s, porosity and permeability 

within in the Bakken Formation itself was considered to be too low for economic 

exploitation at the time, except for a few isolated, producing fields characterized by 

extensive natural fractures and exceptional reservoir quality in the Middle Bakken 

member (Gerhard et al., 1982). Most production in the 1950’s through the 1980 in the 

Williston Basin was from porous, carbonate formations above and below the Bakken 
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Formation that include the Mississippian Madison Group and the Silurian Red River 

Formation (Gerhard et al. 1982). This conventional production trend, characterized by 

vertically-drilled wellbores targeting high-porosity reservoirs, continued through the 

1980s but remained largely insignificant; in terms of production volumes compared to 

other productive US basins at the time such as the Permian Basin of west Texas.  

In the late 1980’s horizontal drilling technology gained widespread acceptance in 

the oil and gas industry and led to increased production from thin units including the 

Bakken Formation (Wiley et al., 2004). However, the reservoir quality and total 

production, which were approximately 4,500 barrels of oil per day (BOPD) within the 

Bakken Formation, remained relatively poor in comparison to other resource plays 

around the United States such as the Permian Basin, which was producing over one 

million BOPD at the time (UTPB website, 2015) In the early 1990’s, hydraulic fracture 

completions developed in the Cretaceous Barnett Shale of north-central Texas were 

applied to the thin and tight Middle Bakken reservoir and successfully enhanced porosity 

and permeability that allowed remarkable increases in production of both liquids and 

natural gas. Various major and mid-sized companies experimented with combinations of 

horizontal drilling and hydraulic fracturing over the next decade. By the mid to late 

2000’s, world oil prices skyrocketed and the ‘Bakken Revolution’ of tight oil production 

sparked a bonanza in light- and tight-oil production from the Bakken Formation in the 

Williston Basin and other unconventional reservoirs in North America like the Barnett 

and Eagle Ford shale of Texas and the Marcellus shale of Pennsylvania (EIA, 2010). 

 Estimates of the total recoverable reserves from the Bakken Formation have 

varied over time by a number of authors, but it is widely accepted that the Bakken 

petroleum system in the Williston Basin is one of the most significant continuous 
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hydrocarbon accumulations in North America (Sorenson et al., 2010). Various studies 

estimate the total reserves, recoverable and non-recoverable with today's technology, at 

up to 24 billion barrels (Sarg, 2012). Another estimate places the figure at 18 billion 

barrels (LeFever and Helms, 2006). In April 2013, the US Geological Survey released a 

figure for the expected ultimate recovery of 7.4 billion barrels of oil (Androff and Wade, 

2013). Additionally, the existence of highly developed midstream infrastructure and the 

basin’s proximity to major consumer markets in Canada and the United States makes 

the Bakken one of the most readily exploitable hydrocarbon resources in the world. 

Operators are able to quickly move hydrocarbons from the ground to the well site to 

market which added fuel to the Bakken Revolution since late 2014. The Bakken 

Formation has arguably become a victim of its own success as recent production 

capacity of the Bakken and other tight oil resources in North America have helped to 

oversaturated a world oil market in an environment of flat consumer demand, which is 

exerting downward pressure on the high oil prices that spurred development of in drilling 

and production methods and technology.  

 

 2.1.2 Project goals and methodology    

Previous studies have proposed optimal, “sweet spot” areas of Bakken 

production based upon critical petroleum systems elements recognized at sub-basin 

scale of tens of miles (Theloy, 2014). These sweet spots have been the primary focus of 

drilling and production from the major operating companies in the Williston Basin. 

Significant variation in production also occurs from well to well, even within these 

regional sweet spot areas (Cipolla, et al., 2011). This project will provide an integrated 

interpretation of the geology, geophysics, and hydrocarbon-production statistics in the 
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Bakken Formation to explain variations in well quality in at both the regional scale and 

well-to-well scale in the eastern region of the Williston Basin in North Dakota. 

 

2.1.3 Project data 

 The primary subsurface data used in this analysis is the Red Sky 3D seismic and 

well data provided by Hess Petroleum Company to the University of Houston (UH) Allied 

Geophysical Laboratory (AGL) in 2014 and an open-access online database from the 

North Dakota Industrial Commission (NDIC), Department of Mineral Resources (DMR), 

Oil and Gas Division (<https://www.dmr.nd.gov/oilgas> accessed in 2014 and 2015).  

The Hess Red Sky 3D dataset contains both post-stack seismic data and seismic 

horizon interpretations picked by staff geologists (personal communication with Hess 

geologist John Hohman, March, 2014). The Hess Red Sky dataset also includes seismic 

vertical seismic profile (VSP), microseismic, diagnostic fracture injection test (DFIT), 

core, and well attribute data. The open-access, NDIC online database included scout 

tickets, well files, well log, and core data for the majority of wells drilled across the North 

Dakota part of the Williston Basin.    

 

2.1.4 Data integration and workflow               

All study data was evaluated using specialized geological and geophysical 

platforms including IES Petra and Petrel then integrated geospatially in GIS using 

ArcMap 10.1. ArcMap was chosen for its flexibility in handling many different data types 

including geology, geophysics, and geospatially referenced surface and subsurface 

attributes, like historical hydrocarbon-production statistics for specific Bakken oil wells. 

Additionally, the NDIC has an open-access GIS Map server, compatible with ArcMap, 
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that contains a large, downloadable dataset of North Dakota oil & gas spatial layers, 

from which I imported data for my study in the Red Sky area. The NDIC shape files 

illustrate state planes boundaries, unit boundaries, oil fields, well surface locations, 

directional and horizontal well paths et cetera. I also downloaded, digitized, and imported 

several open-access geologic studies by the North Dakota Geological Survey with 

general Bakken and Formation information including regional stratigraphy, structure, 

thermal maturity, et cetera through the North Dakota Geological Survey’s webpage 

(https://www.dmr.nd.gov/ndgs/bakken/bakkenthree.asp). 

Post-stack seismic data provided to UH AGL by the Hess Corporation was 

evaluated and interpreted in the Petrel software.  Seismic attributes generated in Petrel 

were imported as the spatial values (x, y) and as the attribute value (z). Each attribute 

horizon contained over two million unique x, y, and z coordinates which were converted 

using ArcMap, to raster layers in order to optimize their rendering and comparison 

speed.   

Historical fluid production statistics, as well as drilling and completion data, were 

obtained from the NDIC online database and normalized using Microsoft Excel. The 

normalized statistics became additional “production statistic attributes” associated 

individual Bakken Formation oil wells in the study. These production attributes could 

then be used for further analysis and comparison between the geologic and seismic 

attributes that were computed in Petra and Petrel. 

All of the attribute data were imported into ArcMap for spatial analysis. The 

geology and geophysics attributes were gridded using empirical Bayesian kriging 

method and converted to raster layers. Well-paths of Red Sky study wells were linked 

with their associated production statistics to create individual, ArcGIS feature classes for 
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each study well. Using results from microseismic monitoring studies of hydraulic fracture 

completion geometries in the Middle Bakken buffer zones were created that measured 

500 feet transverse, in all directions, to the wellbores of the study wells (Dohmen, et al., 

2014). The wellbore buffer zones account for the average effective area of stimulated 

rock induced by hydraulic fracture completions, and allows me to compare geologic and 

geophysical spatial attributes to production statistics for individual wells. Using the 

spatial analysis toolset in ArcMap, geological and geophysical attributes statistics within 

each well’s wellbore buffer were computed as linked with the associated well.  

All of the geological, geophysical statistics computed within the study well’s 

wellbore buffers were imported into TIBCO Spotfire analytics software to be compared 

with the normalized production statics for each well. Linear-regression analysis was run 

to analyze relationships between the geology and ultimate well production. These results 

will be discussed in depth in Section 2.5.2. 

 

2.2 Regional-scale geology  

2.2.1 Paleogeography of the Williston Basin 

  The Bakken Formation is a Late Devonian to Early Mississippian Formation 

deposited in the intracratonic, Williston Basin which was a partially, enclosed, easterly 

embayment of the Western Canada sedimentary basin (Figure 1). At the time of 

deposition, the Williston Basin was situated nearly 600 miles from a convergent plate 

boundary to the west and formed a shallow epicontinental sea near the Paleozoic 

equator (LeFever, 1991). 
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Clastic sedimentary rocks of the Williston Basin were sourced from the southeast and 

northeast from uplift and erosion of the North American Transcontinental arch. The 

Lower and Upper Bakken shales were deposited in transgressive systems tracts with 

max flooding surfaces near their tops. The Middle Bakken member is marked by a 

complete transgressive-regressive system (Meissner, 1991). These depositional 

systems generally follow the Paleozoic, eustatic sea level curve as shown by Cobb and 

Sonnenberg (2013). Bakken lithofacies are also controlled by circulation patterns within 

the intracratonic Williston basin that promoted cyclical periods of anoxic and oxidized 

sedimentation (Angulo et al., 2008). 

     

2.2.2 Basement types and structure underlying the Williston Basin  

Aeromagnetic surveys by the U.S. Geological Survey (2000) over the Williston 

Basin show strong, north-south magnetic lineations that correlate with major structures 

within the overlying Williston Basin of Paleozoic age that include the Nesson and Cedar 

Creek Anticlines (Figure 2A). The Phanerozoic sedimentary rocks of the Williston basin 

were deposited above a suture zone separating two Archean age cratons: the Wyoming 

Craton to the west and the Superior Craton to the east (Green, et al. 1985). It is 

generally accepted that Phanerozoic sediment was draped upon basement structure and 

that these and other planes of weakness evolved and were reactivated at numerous time 

periods in the history of the Williston basin, including the Laramide orogeny during the 

late Cretaceous to Eocene time (Gerhard et al., 1987). This basement reactivation has 

produced most of the major structural deformation and natural fractures developed in the 

Bakken interval (Gerhard et al., 1987; Herrera, 2013). These episodes of basement 

reactivation propagated upward to control natural fractures within the Bakken Formation 
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interval (Brown and Brown, 1987). My thesis study area (red polygon shown in Figures 

2A, 2B) is situated near the center of the Williston Basin, in the northwestern corner of 

North Dakota. The Red Sky 3D seismic survey, which will be discussed later in the 

thesis, is shown for reference (blue rectangle, Figures 2A, 2B). The largest structural 

feature in the Williston Basin and adjacent to my study area is the Nesson Anticline 

(Figure 2). 

 

2.2.3 Regional structural elements 

All of the major anticlines in the Williston basin including the Nesson, Billings, 

Little Knife, and the Cedar Creek are associated with greater conventional hydrocarbon 

production related to enhanced porosity and permeability development (Sonnenberg and 

Pramudito, 2009). Overprinting the major north-south-trending fold axis of the Williston 

Basin are surface lineaments associated with the Brockton-Froid and the Great Falls 

Fault Zones, which were formed as a result of the far-field effect of first the Paleozoic 

Ancestral Rocky Mountains and later during the Cretaceous-Eocene as a result of the 

Laramide Orogeny (Gerhard et al., 1987: Herrera, 2013). Associated trends can be 

mapped via surface lineaments and subsurface seismic data (Figure 3). These surface 

lineaments have been correlated with swarms of subsurface fractures controlled by the 

modern northeast-southwest direction of maximum stress. Fractures in this orientation 

have also been observed in cores and from borehole breakout studies by Zoback (1980) 

and Sonnenberg et al. (2011). More recently this northwest to southeast fracture trend 

has also been observed from induced fractures and microseismic monitoring of hydraulic 

fracture stimulations in the Bakken formation (Abbot et al., 2009). 
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2.2.4 Physical profile and general stratigraphy of the Bakken Formation 

While major north-south folds are present in the Williston basin, dips defining 

these folds are generally less than one degree (Meissner, 1991).  The cross section in 

Figure 4 summarizes the main elements of the Devonian-Mississippian Bakken 

Petroleum System: the Devonian Three Forks Formation, the Devonian to Mississippian 

Bakken Formation, and the Mississippian Lodgepole formation (Figure 5).  

The Lodgepole Formation is primarily composed of marine limestone and 

historically has contained the most prolific, Bakken-sourced, conventional reservoirs with 

more developed conventional porosity and permeability pathways (Stroud and 

Sonnenberg, 2011). In contrast, the Three Forks Formation is an emerging tight-oil play 

similar to unconventional Bakken development, sourced from the Upper and Lower 

Bakken shale (Sonnenberg, et al., 2010). While each of these members have, and 

continue to, produce significant volumes of hydrocarbons, the Bakken Formation is by 

far the most significant hydrocarbon sourcing and bearing member in the Williston Basin 

(Sarg, 2012).   The Upper and Lower Bakken shale are classified as world-class source 

rocks that contain an average TOC content of 11% and source the majority of the 

hydrocarbon accumulation in the Williston Basin (Jarvie, 2001: Jin and Sonnenberg, 

2013).  
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Because the Bakken shales contain such high amounts of TOC, which makes 

them mechanically ductile, drilling through these ductile shales presents a challenge to 

maintain borehole stability (Wiley et al., 2004). In contrast, the Middle Bakken member, 

though relatively thin (<100 feet in most areas), is considered the primary reservoir 

interval and is the drilling target for the majority of wells drilled in the Bakken Formation 

(Angulo and Buatois, 2012). The Middle Bakken provides an increased level brittleness 

favorable for drilling when compared with the Upper and Lower Bakken shales (Grau 

and Sterling, 2011). In addition to increased brittleness, the Middle Bakken member 

provides, in some cases, an increase in porosity and permeability similar to a 

conventional reservoir, but this is largely localized and controlled by the presence of 

certain Middle Bakken lithologies (Sonnenberg, et al., 2010).  

 

2.2.5 Petroleum system elements of the Bakken in North Dakota 

 Structure. In the study area dips are subtle, averaging less than 2° over the 

majority of the study area to the east of the East Nesson Deep and increase slightly, to 

approximately 5° on the flank of the Nesson anticline (Figure 6). The Williston Basin as a 

whole is generally symmetrical and typical of intracratonic basin (Meissner, 1991). My 

study area deepens to the southwest and contains the deepest part of the basin on the 

eastern flank of the Nesson Anticline. The low dips and lack of major structure allows the 

Middle Bakken reservoir to be well sealed and overpressured as hydrocarbons are 

generated (Sorensen et al., 2010).  

 Stratigraphic thickness. The thickness of the Bakken Formation inside the 

study area is controlled by the structure of the Nesson Anticline (Figure 7). 
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It is asserted that, at the time of deposition, the Nesson Anticline had formed and acted 

as a barrier to clastic sediment transport in the shallow marine environment (Gerhard, et 

al. 1987). The thickest occurrence of the Bakken Formation (160 feet) is found within the 

study area and the Red Sky 3D seismic survey, which, in turn, corresponds to the 

thickest occurrence of the Middle Bakken clastic rocks (Figure 7).     

Maturity. Thermal maturity of the upper and lower Bakken shale corresponds 

with the greater burial depth of the Bakken Formation in the study area and is a major 

factor for the productivity of this area (Figure 8). Anomalously high thermal maturity is 

found outside of the study area to the south and is locally associated a zone of 

anomalously higher heat flow (Nordeng, 2010).  

Overpressure. Thermal maturity of the upper and lower Bakken shale also 

correlates with overpressure within the Bakken and is a major driver of production in the 

Bakken tight oil system (Sorensen et al. 2010). This overpressure has contributed to the 

generation of hydrocarbons by the conversion of solid, compressible kerogen to 

incompressible liquid hydrocarbons (Duhailan and Sonnenberg, 2014).  

Production limits. It is well established that hydrocarbon generation begins at a 

Time Temperature Index (TTI) value of 15 (Jarvie, 2001). However, historical Bakken 

production on the eastern side of the Nesson Anticline has established an informal “line 

of death” where hydrocarbon generation has not been sufficient to create the 

overpressure necessary to extract meaningful volumes of hydrocarbons from a TTI value 

of 25. This production boundary is apparent on Figure 8 as the sharp eastern limit of 

producing Bakken wells within the study area. This thermal maturity boundary aligns with 

the eastern extent of the Red Sky 3D seismic survey (Figure 8). 
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Sweet spots in the basin. Previous studies in the Williston Basin have proposed 

sweet spots of the Williston Basin based on their geologic elements and historical well 

performance (Sorensen et al., 2010). Important elements in these studies include shale 

thickness, thermal maturity, and overpressure, which is generally concentrated in the 

central area of the basin (Gerhard et al. 1982). More-recent studies have identified more 

locally specific sweet spots and characterized the specific attributes that make them 

unique (Figure 9). The study area for this project encompasses several of these 

proposed sweet spots, but I will focus primarily on the Sanish-Parshall fields that have 

been North Dakota’s most prolific oil fields since 2005 (Simenson, 2011). 

High reservoir pressure, up-dip migration, and diagenetic trapping all 

characterize the Sanish-Parshall sweet spot (Theloy, 2014). These characteristics 

require the presence of a mature source rock, a permeability conduit for hydrocarbon 

migration, and a high-quality reservoir facies. Even within these proposed sweet spots, 

significant production variation exists between closely spaced wells within these sweet 

spots (Sorensen et al., 2010). This study will address the question of what controls this 

production variation within individual sweet spots and how we can use this knowledge to 

guide future drilling.  

The study will begin with establishing a geologic framework within the study area 

by mapping changes in the reservoir lithology of the Middle Bakken in the eastern region 

of the Williston Basin (Figure 9). Upon establishing the geologic framework, I will provide 

a more detailed evaluation of the geologic heterogeneity within the blue rectangle 

covered by the Red Sky 3D survey using core data. This detailed geologic interpretation 

will then be compared with the productivity of wells in the area by analyzing historical  
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production statistics to identify important geologic elements that correlate with production 

variation between closely spaced wells. 

 

 2.2.6 Bakken Formation facies distribution  

 Operators drilling wells in the Bakken Formation in the Williston Basin, east of the 

Nesson Anticline, generally target a low-gamma-ray sandstone unit in the upper part of 

the middle Bakken (Sorensen et al. 2010) (Figure 10A, B). This unit is relatively thin 

(usually less than 15 feet thick) but fairly easy to recognize in the vertical section and 

using MWD (measurement while drilling) tools. Core analysis of the Bakken Formation in 

my study area consistently identifies the middle Bakken Sand as the highest quality 

target due to its high hydrocarbon saturations, good porosity, and good permeability 

observed by measurements from the Middle Bakken (Simenson, 2011) (Figure 10C). 

However, the sandstone thickness is quite discontinuous over the study area. 

  Using 182 wells that have vertical well log suites, including gamma ray, with 

complete Bakken Formation sections, I correlated the three Bakken members, as well as 

the Lower Middle, the Upper Middle, and Middle Sand within the Middle Bakken (Figure 

10B). Isopach maps were contoured over the study area for the Lower Bakken Shale 

(Figure 11A), the Lower Middle Bakken Silt (Figure 11B), The Middle Bakken Sand 

(11C), the Upper Middle Bakken Silt (Figure 11D), and the Upper Bakken Shale (Figure 

11E). For reference, an isopach of the summation of the Upper and Lower Bakken Shale 

thickness with the Middle Bakken Sand thickness (Figure 11F) was made to indicate 

areas where one would expect high volumes of hydrocarbon in place.  
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I assume that the Upper Middle and Lower Middle Bakken silt facies have matrix 

porosities too low to provide significant storage of hydrocarbons in place. The Middle 

Bakken Sand (Figure 11C) has been identified as the highest-quality reservoir facies 

present in the Middle Bakken member within the study area and where sufficiently 

charged, would have the inherent porosity and permeably to flow hydrocarbon to a 

wellbore. Where no sand is present, I assume wells must connect to natural, or induced 

permeability pathways into the Upper or Lower Bakken Shales. These connections are 

assumed but supported by observations from core descriptions (Figure, 19). 

The Middle Bakken Sand has thicknesses that range from 0-25 feet and is 

deposited fairly uniformly across the Nesson Anticline structure (Figure 12). The Middle 

Bakken Sand is more continuous in an elongated northwest-southeast orientation with 

discontinuous deposits on the eastern side of the study area (Figure 12). From its overall 

geometry and orientation the depositional environment of the Middle Bakken sand is 

interpreted to be a barrier bar complex with tidal influences (Angulo and Buatois, 2012).  

Four cross-sections A – A’, B – B’, C – C’, and D – D’, oriented north to south, west to 

east, south to north, and west to east respectively were constructed to show how facies 

vary within the Middle Bakken interval (Figure 12). 
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 Cross-section A – A’ runs north to south along the western edge of the study 

area and includes five vertical well log suites flattened on the base of the Upper Bakken 

Shale for a better understanding of the stratigraphic variation within the unit (Figure 13). 

Each well contains a gamma-ray log in the left track and a bulk density log in the right 

track (Figures 14 – 16). Cross-section A – A’ details the most-continuous section of 

Middle Bakken, with the Middle Bakken Sand unit (shown with yellow overlay across the 

logs) exhibiting a distinctive blocky, low gamma-ray profile on each well profile. This 

section runs through what I have interpreted as the barrier core of the Middle Bakken 

Sand barrier bar complex. This cross-section also contains two important wells that will 

be discussed in more detail in the Middle Bakken Facies and core analysis sections: the 

AV Wrigley 163-94, with its associated cored interval, and the Nesson State 42X-36 with 

its detailed Middle Bakken stratigraphy (Figure 13A, B). Black circles mark important 

reference points in each respective well’s depth track, which will be discussed in detail 

later. 

 Cross-section B – B’ traverses from west to east in the southern part of the study 

area, crossing the barrier core, a tidal flood delta inside of the Red Sky 3D area, and 

finally into a back-barrier lagoonal setting (Figure 14A, B). The tidal-flood delta has a 

thick Middle Bakken Sand sequence and a thin Lower Middle Bakken unit, but is 

discontinuous laterally. The sandstone thickness in the Middle Bakken member varies 

over a distance of 5 to 10 miles. 
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Cross-section C – C’ runs from south to north, in the eastern part of the study area, and 

crosses the back-barrier environmental setting (Figure 15A, B). The interpreted tidal 

flood delta sands occur locally and are separated in wells by predominantly silty Middle 

Bakken intervals (Figure 15A). The back-barrier setting is characterized by wells with 

relatively thin total Middle Bakken intervals compared with wells in the barrier core, 

which is probably due to their position on the flank of the Williston Basin, rather than 

near the deeper middle portion where the barrier core lies (Figure 15A). 

 Cross-section D – D’ travels west to east, in the northern part of the study area, 

through the barrier bar core and across a relatively thin Middle Bakken Sand section 

interpreted as a wash-over fan deposit (Figure 16A, B). The Middle Bakken Sand unit 

landward of the barrier bar (east) is relatively thin compared to the core and to the tidal 

flood delta deposits to the south. This may be due to depositional method (wash-over 

deposit).  
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 2.2.7 Bakken lithofacies analysis of core from the Nesson State 42X-36 well 

   The Nesson State 42X-36 well is a horizontal well with a deep, vertical pilot hole 

drilled into the core of the sandy Middle Bakken barrier bar inside of the Red Sky 3D 

survey area (inset map Figure 17). The Nesson State 42X-36 (henceforth “Nesson State 

well”) was spudded in February, 2008, by Headington Oil Company, now operated by 

XTO Energy. According to the NDIC well file for this well, the vertical pilot hole 

penetrated to the top of the Three Forks Formation underlying the Bakken Formation for 

a total depth of 10,430 feet. The Bakken Formation is approximately 143 feet thick in the 

Nesson State well, which is near the maximum thickness of 160 feet shown on 

LeFever’s (2008) Williston Basin Bakken isopach map (in Figure 7). The Middle Bakken 

thickness in the Nesson State is 74 feet total, with a Middle Bakken Sand thickness of 12 

feet, an Upper Middle Bakken silt thickness of 8 feet, and a Lower Middle Bakken Silt 

thickness of 54 feet (Figure 17A). The Upper Middle Bakken is a relatively thin, silty unit 

with mottled bedding and relatively intense bioturbation (Figure 17B). The Middle 

Bakken Sand is marked by a blocky low gamma-ray-log signature and low-angle dip to 

cross bedding (Figure 17A). The Lower Middle Bakken is the thickest well log unit 

marked by mostly massive bed with variable bioturbation throughout the unit (Figure 

17C). I did not have access to core samples for the Nesson State well, thus no detailed 

core analysis was undertaken on this well.  However the Middle Bakken facies present in 

the Nesson State well closely resemble the well log profile and those facies observed in 

core analysis of the AV Wrigley 163-94 well. 
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 2.2.8 Bakken lithofacies analysis of cores from the AV Wrigley 163-94 well 

I was given access to the slabbed core of the AV Wrigley 163-94 (henceforth “AV 

Wrigley well”), which was drilled along the barrier bar core in the northern part of the 

study area (inset map, Figure 18). The AV Wrigley well was drilled in August 2008, by 

the Hess Corporation with a vertical pilot hole approximately 7,800 feet TD. The AV 

Wrigley well has a similar Middle Bakken gamma ray profile, though is only 100 feet 

thick from the Top Bakken to the Three Forks Formation (Figure 18A).  

The upper shale is 10 feet thick, the upper middle silt is 16 feet thick, the middle 

sand is 9 feet thick, the lower middle silt is 39 feet thick, and the lower shale is 26 feet 

thick. Photos of the Bakken lithofacies are provided to document the unit’s sedimentary 

structures. The Upper and Lower Bakken Shale are nearly identical black, fissile shale 

facies (Figure 18b and 18f). The Upper Middle Bakken Siltstone is similar to the Nesson 

State well with mottled bedding with visible bioturbation (Figure 18C). The Middle 

Bakken Sandstone unit is thinner (12 feet) than the Nesson State well (16 feet), but 

shows similar low angled bedding and coarser grains than the siltstone above and below 

(Figure 18D). The Lower Middle Bakken is characterized by a massive siltstone with 

variable bioturbation over the interval (Figure 18E). The Bakken facies present in the AV 

Wrigley well are very similar to those in the Nesson State well, and as such, are a good 

equivalent for detailed core analysis.  
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I described 119 feet of core for the AV Wrigley well from the top of the Three 

Forks Formation, through the entire Bakken Formation, into the lower Lodgepole 

Formation. Since I was primarily interested in the Middle Bakken reservoir interval, and 

the Upper and Lower Bakken shale are effectively homogenous to the naked eye, the 

core description figures will document a section approximately 90 feet thick that includes 

the Middle Bakken interval in the AV Wrigley well (Figure 19). The core analysis began 

from the bottom of the section to the top, following the order of deposition from oldest to 

youngest strata. 

The Lower Bakken Shale is 26 feet thick and is dark black in color, with 

centimeter-scale, fissile bedding, ubiquitous pyrite, and sparse silty layers near its top 

contact (Figure 19). The upper contact with the Lower Middle Bakken is sharp and is 

marked by approximately 3.5 inch lens of skeletal rip-up clasts (Figure 19).  

The Lower Middle Bakken is a silt-dominated dolostone and the thickest unit in 

the Bakken Formation measuring 39 feet in the AV Wrigley well (Figure 19). This unit 

has moderate bioturbation at its base and intense bioturbation near its top (Figure 19). 

Where the Lower Middle Bakken lacks bioturbation it is generally massively bedded with 

sparse pyrite nodules. Skeletal hash contains primarily brachiopod and bivalve shells, 

with some crinoid columnals (Figure 19). In bioturbated areas ichnology is complex, but 

primarily Cruziana ichofacies (Angulo and Buatois, 2012). Bioturbation ceases and grain 

sizes coarsen sharply at the Lower Middle Bakken’s top contact with the Middle Bakken 

Sand. 
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The Middle Bakken Sandstone measures approximately 9.5 feet and is a light 

grey to white, clean (little to no mud), well-sorted sand with centimeter-scale parallel to 

cross bedded beds and alternating calcite-dolomite banding (Figure 20a). Intergranular 

porosity is visibly higher in the sand unit relative to all other Bakken units, but varies 

depending on cementation. The Middle Bakken Sandstone has bright blue fluorescence 

under ultra violet (UV) light indicative of hydrocarbon saturation, which is 

compartmentalized by lenses of calcite cement (Figure 20b). Although the unit is 

relatively thin, the Middle Bakken Sandstone is the highest quality reservoir facies in the 

Bakken Formation based upon hydrocarbon storage and potential permeability 

pathways. The sand’s upper contact with the Upper Middle Bakken unit is sharp and 

marked by an increase in bioturbation and a decrease in grain size, as well as a 

darkening of color. 

The Upper Middle Bakken in the AV Wrigley is 16 feet thick, dark grey in color, 

and silt dominated. The Upper Middle Bakken is similar to the Lower Little Bakken facies 

but is bioturbated through the entire interval. Grain size is very fine and bedding is highly 

mottled. The unit has some UV fluorescence near its basal contact with the Middle 

Bakken Sandstone, but is weaker in intensity and orange-yellow in color which is 

considered less saturated and ultimately lower quality (Chuparova, Hohman, and Lean 

2014). The top contact with the Upper Bakken is sharp into the dark black shale. 

The Upper Bakken Shale is visually identical to the Lower Bakken Shale. In the 

AV Wrigley, the Upper Bakken is 10 feet in thickness, dark black in color and highly 

organic. Ubiquitous pyrite and fissile bedding characterize the upper shale as well 

(Figure 19).  
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2.2.9 Interpretation of the Middle Bakken depositional environment 

The environment of deposition of the Middle Bakken sand is interpreted to be a 

barrier bar system with a strong tidal influence similar to the same, coeval unit previously 

described in southeastern Saskatchewan (Wood et al., 2013). Reinson’s (1992) 

depositional model for an idealized shallow marine barrier bar complex (Figure 21A), 

closely resembles the two-dimensional sand thickness map mapped via well logs in map 

view from my study area (Figure 21B). Sand thickness and orientation is controlled in 

large part by eustatic sea level changes promoting a higher energy environment than 

observed in the upper and lower middle siltstones.  

The most striking feature of the Middle Bakken Sand geometry is the elongated 

barrier core, which is oriented northwest to southeast, and the tidal flood deltas 

deposited on the landward (eastward) side of the barrier core (Figure 21B). The tidal 

flood deltas, though small in area, appear to contain very high reservoir quality with the 

thickest sands separate from the barrier core. A large wash-over deposit is interpreted in 

the northern portion of the study area, which covers a relatively large area (Figure 21B). 
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However, the wash-over deposit is relatively thin and appears to contain lower-quality 

reservoir sands than that found in barrier core and flood tidal delta. Coastal North 

Carolina has been identified as a modern-day analog to the deposition of the Middle 

Bakken Sand (Figure 21C) though size and scale are not exact. No exact modern 

analog to the Bakken Formation deposition in an intracratonic basin in an epicontintal 

seaway (Kasper, 1995).  

 

2.3 Field to well-scale seismic structure 

2.3.1 Red Sky 3D seismic survey 

 The Bakken Formation is a tight-oil reservoir that requires large hydraulic fracture 

completions to produce at economic volumes (Angster and Sarg, 2013). Therefore, while 

a thick section of Middle Bakken Sandstone greatly improves the well quality of a 

Bakken unconventional well, the sand alone is insufficient to produce a high quality well. 

Permeability pathways from the wellbore to the hydrocarbons generated in the Upper 

and Lower Shale must be naturally present, or induced through hydraulic fracture 

treatments. To analyze the field-level structure in the study area, the Red Sky 3D 

Seismic survey was evaluated for seismic discontinuity that would indicate structural 

deformation associated with natural fractures. 

My study area survey lies on the eastern flank of the Nesson Anticline and 

includes a portion of the deep Williston basin, shallowing eastward towards the basin 

margin. Structural dip is relatively shallow, measuring less that one degree in most 

cases in the Bakken interval (Figure 22A). Eighty-four horizontal Bakken wells drilled 

from 2005 to 2014 were chosen for production analysis in statistical analysis section, 

however there location is displayed here for reference. The Red Sky 3D survey is 
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situated in the central portion of the stratigraphic study area discussed in the previous 

section (Figure 22B). The Red Sky survey covers the central portion of the Middle 

Bakken barrier bar mapped via well logs on its west side, and includes a major tidal flood 

delta to the east (Figure 23). The Middle Bakken Sand thins toward the center of the 

survey, but overall the Middle Bakken is relatively thick in the study area and appears to 

be of high reservoir quality. 

 The low dips of the Bakken formation are apparent on the 2D seismic lines 

(Figure 24). This lack of significant structure is consistent with the intracratonic setting of 

the Williston Basin (Meissner, 1991). Prominent seismic horizons were tied to study well 

logs (Kingsley, 2015) and were picked over the study area following the regional 2D 

seismic work of Anna et al. (2010). The Bakken Formation, though relatively thin, is 

characterized by strong seismic impedance from the contrast of upper and lower shale 

with surrounding rock and is continuous and easy to pick across the Red Sky survey 

(Figure 24). No obvious seismic discontinuities are present within the survey area that 

would indicate major faults. However, subtle dip changes are evident in the Bakken 

Formation and above and below that would suggest sub-seismic faulting.  

A sample synthetic seismogram from Kingsley (2015) and a zoomed in view of 

the Bakken and Three Forks reflector reveals that the Bakken formation consists of a 

trough-trough-peak in the seismic data (Figure 25A, B). Though the formation appears 

largely flat at the survey scale, subtle structural variation is apparent at smaller scales 

(Figure 25B). This subtle structural variation at very small scales likely impacts the local 

stress regimes and may impact drilling and completion effectiveness on a well to well 

basis (Cipolla, 2011). Quantifying this structural variation will be the aim of the next 

section of the project. 
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2.3.2 Seismic attributes for analysis of subtle structural features 

Natural fractures present in the Red Sky study area will significantly impact 

modern, ambient stress regimes with northeast-southwest compression (Sonnenberg et 

al., 2010) that may preferentially promote the development of fractures along these 

preexisting planes of weakness during hydraulic fracturing (Gale, 2014). Because the 

fracturing in the Red Sky 3D seismic volume contains little to no offset on larger faults 

detectable on the seismic data, or abrupt changes in dips of bedding related to fault 

offsets (Figure 24), structural attributes were generated on the base of the Bakken 

Formation to highlight changes in continuity between seismic traces (Figures 26A, B, C).  

Being the base of the Bakken reservoir, this horizon should be the best representation of 

the structure of the Bakken as a whole (Figure 26A). These discontinuities likely 

correspond with structural deformation that is very subtle and interpreted as a system of 

fractures that parallels the modern direction of maximum compressive stress (Figure 27).  

The use of seismic attributes in thin rock formations is a developing field that 

shows great potential (Marfurt and Alves, 2015). The problem with many tight oil plays, 

like the Bakken, is that the thickness of the target formation lies near or below the 

physical limit of seismic resolution, or the tuning thickness. Advanced thin-bed attributes 

have been developed which use external data sources, such as sonic well logs, to add 

high frequency bandwidths to the band-limited seismic data. However, these attributes 

have in inherent non-uniqueness that adds high uncertainty to their interpretation (Taner, 

2003). Therefore, I have chosen to utilize well-developed attributes to characterize 

variation in the strong lower seismic reflector of the Bakken Formation. Any subtle 

changes in the continuity of the Bakken formation may be indicative of sub-seismic 
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natural fractures or areas of increased stress regimes that may preferentially fracture 

during hydraulic stimulation (Jones and Roden, 2012).   

First, the edge detection attribute was used to identify fractures on the top of the 

Three Forks Formation that underlies the Bakken Formation (Figure 26B). The edge 

detection attribute calculated in Petrel is closely related to the semblance algorithm that 

is also sensitive to changes in both amplitude and waveform along the seismic reflector 

(Chopra and Marfurt, 2007).   Edge detection values were extracted along the top of the 

Three Forks horizon and plotted in map view with the higher values associated with 

higher seismic continuity, while lower values are associated with edges associated with 

fractures. Next, a dip-angle attribute was generated on the Three Forks (base of the 

Bakken) Formation (Figure 26C). The dip-angle attribute is essentially a first derivative of 

the seismic structure, which highlights second-order structural changes independent of 

first-order structural dip (Chopra and Marfurt, 2007).  The dip-angle attribute appears to 

highlight major structural discontinuities, similar to edge detection. Both the edge 

detection and dip-angle attributes extracted on the Three Forks horizon were compared 

with attributes extracted on the Lodgepole Formation horizon, approximately 200 ms 

above, to insure that no shallow-horizon artifacts were present in the Bakken interval of 

interest. Although the orientations of major structural anomalies appear to correlate, 

attributes generated on the Three Forks horizon were deemed unique.  
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Because it is easiest to visualize structural discontinuities that appear to be 

geological using edge detection, this attribute is used to illustrate fracturing of the 

Bakken Formation. Using the edge detection attribute and the regional maximum stress 

direction from Zoback (1980), I interpreted areas with a high probability of natural 

fracturing associated with the most extreme edge detection values (Figure 28). The 

interpreted fracture trends are consistent with the direction of natural propagation seen 

in other studies in the area (Sonnenberg and Pramudito, 2009).  These natural fractures 

may provide areas of increased permeability development in the low permeability rock 

and are also likely to influence the local stress and/or pressure state of the Bakken 

reservoir. Because the Bakken Formation has a solution-gas reservoir drive mechanism, 

any fractures may be impacting pressure development, especially if the Upper or Lower 

Bakken Shale has been breached (Theloy, 2014).  

 

2.3.3 Quantifying structural variation in individual wells 
 
Identifying and interpreting areas of possible natural fracture development is a 

basic observation for characterizing structural variation at the field scale. In order for this 

fracture analysis to be applied to specific wells, I quantified the attribute values 

associated with 84 individual, horizontal wells to compare well quality.  

I imported seismic attributes generated in Petrel into ArcMap 10.1 for spatial 

analysis. Using ArcMap I was able to generate statistics for each of the 84 chosen 

wellbores in comparison to the attribute values for the part of the 3D volume that these 

individual wells penetrate (Fig. 28A). Because of large, hydraulic fracture completions 

associated with Bakken Formation horizontal wells, the attribute value intersecting the 

wellbore may not be an accurate representation of the structural conditions under wich 
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the induced fracture lengthens after initiation. Previous microseismic surveys in the 

Bakken Formation of the Williston basin encountered fracture growth varying from a few 

hundred feet laterally, to more than 1000 feet horizontal from the wellbore (Abbott et al., 

2009).  

Using an approximate average from the observed extreme values, I choose to 

implement a buffer overlay of 500 feet perpendicular around each wellbore to calculate 

statistical values of seismic attributes likely to be encountered by induced fractures in 

each well (Figure 28B). Using ArcMap, I generated statistics within each wellbore buffer 

and stored them in an Excel table. Statistical values for attribute values within the buffers 

include minimum, maximum, range, mean, sum, and standard deviation. The same 

process was used for the dip angle attribute. These statistics will be compared with well 

quality and quantified using normalized, historical production statistics discussed in the 

next section.     
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2.4 Normalizing historical production to evaluate well quality 

2.4.1 Bakken production statistics 

To evaluate the relationship between well quality and the seismic-attribute 

statistics calculated within the wellbore buffers, a quantitative measurement of well 

quality must be determined. The most obvious quantity associated with the quality of an 

oil well is cumulative production reported over a certain period of time. However, 

cumulative production contains numerous inherent variables that must be normalized to 

make valid comparisons. The majority of the normalization analysis was undertaken in 

Microsoft Excel.    

The Red Sky 3D seismic survey includes more than 300 wells of varying lengths, 

orientations, target formations, and completion designs that define approximately five 

separate oilfields (NDIC). Many field regulations dictate well spacing and orientation, but 

no consistent regulations apply across the entire Williston Basin. I selected 84 wells from 

within the seismic survey for use in production normalization analysis in this thesis. All 

chosen wells had at least two years on production records, which accounts for - on the 

average - approximately 80% of a typical Bakken well’s production decline which is 

typical for most unconventional wells regardless of basin (Cipolla et al., 2011).  

To normalize well quality for wells drilled in different areas at different times, I 

queried production statistics for selected wells from the North Dakota Department of 

Mineral Resource’s online database, which reports statistics both by month and by the 

number of days per month that each well actually produced (some wells are shut in for 

various operational reasons). For this study, a 24-month period of cumulative production 

of oil, gas, and water were extracted, summed for each well, and divided by total number 

of days on production within that 24-month time period.  
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One thousand cubic feet (MCF) gas was converted to barrels oil equivalent 

(BOE) by the industry standard of 1 BOE = 6 MCF gas before summation. Final 

cumulative production was reported in BOE. Cumulative water production was included 

in the calculated production volume as water is a minor contributor to produced fluids. 

Water may represent additional produced fluids, but for most wells in the analysis, water 

volumes produced were approximately equivalent in volume to fluids pumped during 

hydraulic fracturing operations. Twenty-four month cumulative production was calculated 

using this method for all 84 wells in the project in terms of BOE.  

This time-normalization analysis was conducted for a variety of time periods 

including, one-year and five-year cumulative production.  Short-term normalization (one-

year) sometimes did not include significant production variation. On the other hand, a 

long-term (five-year) normalization window yielded few data points for comparison 

because many wells within the Red Sky Survey area had not been online for that period 

of time at the time of this work. Additionally, normalized production numbers from wells 

older than 5 years were plotted against their own 24-month normalized cumulative and a 

strong linear relationship exists. Therefore, it is reasonable to assume that records for a 

24-month cumulative production is a good sampling of well performance for a typical 

Bakken well over its production lifetime.   

In addition to time-normalization, the advance of technology and the steep 

learning curve of drilling and completion optimization cause changes in production 

values over the cycle of development within a particular basin (Cipolla, 2011). The 

Bakken, like other unconventional resource plays in North America has seen steadily 

increasing lateral lengths and proppant volumes used during hydraulic fracture 

completions. These “operational variables” must be normalized as along with time on 
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production, because a newer well - drilled into a lower quality reservoir - may produce 

more because of its larger completion design with a more complexly-induced fracture 

network (Cipolla, 2011).  

To simplify this normalization as much as possible I divided the time-normalized 

production statistics calculated above by the size of the respective well’s completion, 

which was reported in the well files as pounds of proppant. Proppant volume is the 

simplest approximation of the well’s stimulated rock volume - or, in other words - the 

induced, effective permeability of the unconventional system. With lower proppant 

volumes a complex fracture system may be induced by hydraulic fracturing, but will not 

contribute to sustained hydrocarbon production due to fracture closure that occurs at 

high pressure in unconventional reservoirs like the Bakken Formation (Gale, 2014). 

I define “normalized production” as the time-normalization procedure described 

above divided by the amount of proppant, or completion size. Although this method may 

oversimplify a complexly variable system, I will demonstrate in the next section that 

statistical relationships can be observed between production and seismic attribute 

statistics calculated for the buffer areas surrounding these wells. 

 
2.5 Well-scale analysis of relationship between multi-source attributes 

 2.5.1 Analyzing attribute relationships 

 In Figure 28A, production statistics from 84 wells within the Red Sky 3D survey -

including cumulative and initial oil, gas, and water volumes - were reviewed and 

normalized following the procedure described in Section 2.4. Normalized production for 

each well was then added to ArcMap for visualization and comparison with fractures in 

the Bakken Formation imaged using the edge detection attribute derived from the 3D 

seismic volume. While some trends begin to emerge from visual analysis alone, it is 
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difficult to draw any conclusion from the attribute image alone. Adding to the difficulty is 

the necessity to consider all attribute values along the wellbore and more realistically 

within a set buffer around the wellbore that is likely to control induced fractures and 

stimulated rock volume orientation. Therefore, statistical analysis is necessary to show 

conclusive relationships between normalized production and fractures in the reservoir. 

  

 2.5.2 Statistical analysis of attribute relationships       

All generated and calculated attributes were compiled on a spreadsheet in 

Microsoft Excel for each well and then imported into TIBCO Spotfire analytical software 

for statistical analysis of attribute relationships using linear regression. A positive linear 

relationship with high statistical significance was discovered between the summation of 

edge detection values within the 500 foot wellbore buffer and normalized production 

values for the 84 wells inside the Red Sky 3D survey area (Fig. 29). The higher, edge-

detection values correspond with areas of continuous seismic reflectors and cooler 

colors in the attribute map in Figure 28 showing that wells drilled in fractured areas 

correlate with lower normalized production volumes over the well’s lifetime. 

Another strong linear relationship with high statistical significance, although 

negatively trending, was determined between mean dip angle inside the 500-foot 

wellbore buffer and normalized production for the wells inside the Red Sky 3D Survey 

area (Fig. 30). This relationship, like the one previously discussed associated with edge 

detection, indicates that higher quality wells are associated with drilling in areas not 

affected by natural fracturing. 
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2.6 Discussion and conclusions  

 2.6.1 Discussion of results 

 Through a combination of regional stratigraphic and local structural analysis I 

have interpreted an integrated system that explains variations in production observed 

between closely spaced wells (1,000-5,000 feet separations) in the Red Sky area. Thick 

sections of the Middle Bakken Sandstone facies (10-25 feet) in areas with the least 

number of natural fractures - mapped with attributes from 3D seismic volumes - 

correspond with the most productive Bakken Formation wells when analyzed using 

normalized hydrocarbon production volumes over their first two years of production (Fig. 

31). Conversely, wells that are drilled in areas characterized by thin Middle Bakken 

reservoir facies with large numbers of fractures - mapped from attributes of 3D seismic 

volumes - tend to show poorer production over their lifetime.  

An early Mississippian age, sandy barrier bar complex in the Middle Bakken 

Formation controls the presence of high-quality, sandy reservoir facies over the study 

area. Thick sections (10-25 feet) of the Middle Bakken Sand reservoir deposited in 

barrier bar settings correspond with more productive wells when normalized for time on 

production and changes in completion method. Statistical analysis of the relationships 

between normalized production and structural attributes of the Bakken Formation reveal 

an unexpected result contrary to the widespread assumption in the Bakken basin that 

natural fractures enhance the effective permeability of an inherently tight hydrocarbon 

system and thus should contribute to higher production wells in most cases.  
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The factor that eludes direct observation in core analysis and conventionally 

exploited resource plays is the pressure dependence observed in many unconventional 

reservoir plays (Cipolla, 2011). The Bakken Formation is an over-pressured reservoir 

and is at or near its critical stress in its normal, un-fractured state (Meissner, 1991). This 

means that any natural fracture that breaks the upper or lower sealing shales of the 

Bakken Formation may allow local overpressure to dissipate. This fracture-related, 

dissipation of overpressure will negatively impact the primary driving mechanism for 

hydrocarbon production in the unconventional resource and lead to lower production. 

Because accurate estimates of reservoir pressure are often impossible or impractical to 

obtain, the presence or absence of overpressure is difficult to detect prior to bringing a 

Bakken well on production. 

In addition to pressure degradation by natural fractures in the Bakken Formation, 

another phenomenon may control lower quality well production linked to local fracturing 

may be the local stress state (Fig. 27). Areas of the Williston Basin with a preferred 

natural fracture orientation in a northeast-southwest orientation related to the ambient 

high stress state may control relatively simple, linear completions instead of the ideal 

amorphous fracture ‘clouds’ which are typical of more intensively, stimulated rock 

volumes.  This phenomenon is regularly observed in microseismic surveys of more 

highly fractured reservoirs like the Eagle Ford Formation in Texas (EIA, 2011), but 

should also be considered as an important factor on local well productivity when drilling 

and completing wells in the Bakken Formation. 
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2.6.2 Conclusions and recommendations         

 Through integration of observations from subsurface geology, facies 

interpretation, 3-D seismic data and their attributes, and production analysis from wells, I 

present an explanation for the production variation observed between closely-spaced 

wells at separation distances of 1,000 to 5,000 feet, in the Bakken Formation in the 

North Dakota part of the Williston Basin. Unlike previous studies which focused on 

regional scale sweet spots, this work presented focuses on the field level which is the 

scale for drilling and completion decisions. My main explanations and recommendations 

for improving local production include: 

 

1.) As recognized by previous workers in the area (Theloy, 2014: Grau et al., 2013, 

Simenson, 2011:) The highest-quality reservoir facies in the Bakken Formation, 

within The Red Sky area, is the Middle Bakken Sandstone, which can be 

mapped using well logs from the NDIC. Following Simenson (2011) I have 

interpreted the Middle Bakken Sandstone as an Early-Mississippian, northwest-

trending barrier bar depositional system with a strong tidal influence. Areas of 

greatest production in the Red Sky area tend to cluster above the core barrier 

ridge and the tidal flood deltas.  

 

2.) Northeast-trending fracturing in the Bakken Formation can be mapped using 3D 

seismic attributes at the field-level scale of 1 to 5 miles and correspond to 

regional maximum stress direction and observed induced fracture orientations. 

These natural fractures are shown to have significant negative impact on 

production results from wells that have wellbores that intersect them. 
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3.) Areas characterized by fracturing the Bakken Formation tend to correspond with 

poorer well quality. This is likely due to a breach in the sealing capacity of the 

Upper and/or Lower Bakken shale which allows the naturally high reservoir 

pressure, which is the main driving mechanism for the tight oil reservoir, to bleed 

off from the Middle Bakken Reservoir prematurely. In addition to diminished 

reservoir pressure, highly fractured areas are characterized by a preferred plane 

of weakness oriented parallel to the natural fracture trend. This preferred- 

weakness plane will promote linear fracture growth during hydraulic fracture 

completions, which will decrease the complexity of the simulated rock volume, 

and hurt the overall cumulative production for the lifetime of the well. 

 

4.) Using the method I described in Section 2.5, complex relationships, such as 

those between seismic discontinuity and normalized production statistics can be 

evaluated on a well-to-well basis by using a wellbore buffer zone and spatial 

analysis software like ArcMap to link multi-source attributes calculated in 

specialized geologic or geophysical software to their associated oil well. These 

relationships may be observable by the visual correlation between simple 

production bubble charts and geologic attributes maps. It is likely necessary, as 

was the case in this project, to use more advanced analytical software like 

TIBCO Spotfire to unravel more complex relationships between multisource 

attributes which may be blurred by evolving technology and operational 

variables.  
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5.) To optimize the quality of unconventional wells targeting the Bakken Formation in 

the eastern region of the Williston Basin in North Dakota, an operator should 

target thick sections of Middle Bakken Sandstone with planned well paths 

through areas least affected by natural fracturing. The best sandstones in the 

study area are the least fractured. 
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2.8 Appendix Tables 
 
Table 1: Well information for production normalization 
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Table 2: Completion Attributes 
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Table 3: Geologic and geophysical attributes 
 

 


