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Abstract
Fast Fourier Transform (FFT) is one of the most important numerical algorithms

widely used in numerous scientific and engineering computations. With the emer-

gence of big data problems, however, in which the size of the processed data can easily

exceed terabytes, it is challenging to acquire, process and store a sufficient amount

of data to compute the FFT in the first place. The recently developed sparse FFT

(sFFT) algorithm provides a solution to this problem. The sFFT can compute a

compressed Fourier transform by using only a small subset of the input data, thus

achieves significant performance improvement.

Modern homogeneous and heterogeneous multicore and manycore architectures

are now part of the mainstream computing scene and can offer impressive perfor-

mance for many applications. The computations that arise in sFFT lend it naturally

to efficient parallel implementations. In this dissertation, we present efficient parallel

implementations of the sFFT algorithm on three state-of-the-art parallel architec-

tures, namely multicore CPUs, GPUs and a heterogeneous multicore embedded sys-

tem. While the increase in the number of cores and memory bandwidth on modern

architectures provide an opportunity to improve the performance through sophis-

ticated parallel algorithm design, the sFFT is inherently complex, and numerous

challenges need to address to deliver the optimal performance. In this dissertation,

various parallelization and performance optimization techniques are proposed and

implemented. Our parallel sFFT is more than 5x and 20x faster than the sequen-

tial sFFT on multicore CPUs and GPUs, respectively. Compared to full-size FFT

libraries, the parallel sFFT achieves more than 9x speedup on multicore CPUs and

12x speedup on GPUs for a broad range of signal spectra.
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Chapter 1

Introduction

1.1 Motivation

Discrete Fourier Transform (DFT) is one of the most fundamental methods used

in a wide variety of disciplines including audio, communication, wave simulations

and cryptography. The most popular approach for computing the DFT is the Fast

Fourier Transform (FFT) algorithm. Invented in the 1960s, FFT is the fastest known

method which computes the DFT of an arbitrary signal of size n from/to time (space)

domain to/from the frequency (wavenumber) domain, in O(nlogn) time. FFT has

been universal importance in scientific and engineering applications for a long time

and was considered to be one of the top 10 most influential and important algorithms

in the 20th century [21].

With the emergence of big data problems, however, in which the size of the
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processed data can easily exceed gigabyte or even terabytes, it is challenging to

acquire, process and store a sufficient amount of data to compute the FFT in the

first place. For instance, in medical imaging, it is highly desirable to reduce the time

that a patient spends in an MRI machine.

On the other hand, any algorithms for computing the DFT must take time at

least proportional to its output size, which is O(n), irrespective of the structure and

sparsity of the data in the transformed domain. However, in many applications,

the output of the FFT is sparse, i.e., most of the Fourier coefficients of a signal in

the frequency domain are negligibly small or equal to zero with only a few dominant

frequencies. Many applications of interest, e.g., audio, image, and video data, seismic

signals, biomedical signals, financial information, social graph data, cognitive radio

applications and many more massive data sets are sparse. In this case, the FFT

is sub-optimal because O(nlogn) operations on n input data points lead to only

k number of significant outputs, where k � n, and n − k zero/negligible small

coefficients for a k-sparse output signal. It motivates the need for an algorithm that

computes the FFT in sub-linear time, i.e., in an amount of time that is considerably

smaller than the size of the processed data, and that uses only a subset of the input

data.

The Sparse Fourier Transform (short for sFFT )1 provides a precise solution to

address this problem [42, 43]. As opposed to the FFT whose execution time is pro-

portional to the size of the signal, n, the sFFT can use only a considerably small

subset of the input data to compute the compressed FFT for the only small number

1For rest of the dissertation, we use the shorter form, sFFT, to refer the sparse FFT
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of k large coefficients. Since sFFT runs in time proportional to the signal sparsity

k, where k � n, it achieves significant performance improvements. Specifically, the

sFFT employs special signal processing filters, notably the Gaussian and Dolph-

Chebyshev filters [61], to sample the input signals and bin them into a small set of

buckets; each bucket contains potentially only one large Fourier coefficient, of which

the location and magnitude can then be determined.

Besides the algorithmic improvements, parallel architectures such as multicore

CPU and GPUs have played a significant role in the practical implementations of

many scientific and engineering applications. The computations that arise when big

data problems are emerging lead it a nature path to improve the performance of

sFFT through efficient parallel implementations.

Furthermore, the original Cooley/Tukey-FFT and similar algorithms have been

well studied and implemented by the community and vendors. Such parallel FFT im-

plementations include FFTW [29], Intel Math Kernel Library (MKL) [3] and Nvidia’s

cuFFT [7]. Those implementations exploit modern parallel computer architectures

and are carefully designed to deliver the highest possible performance. Due to the

novelty of sFFT, to the best of our knowledge, no such high-performance parallel

implementation ever existed.

The goal of the dissertation work aims to make a solid contribution to developing

high-performance parallel versions of sFFT for a variety of modern parallel architec-

tures. The parallel implementations should be able to overcome the challenges and

beat the performance of state-of-the-art full-size FFT implementations.
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1.2 Challenges

Although the increase in the number of cores and memory bandwidth on modern

parallel architectures present an opportunity to improve the performance through

sophisticated parallel algorithm design, there are numerous challenges that need to

addressed to deliver the optimal performance. In this section, we will discuss the key

challenges in parallelization and performance optimization for sFFT.

1.2.1 Parallelism

Due to the novelty of sFFT, there is no much effort on parallelizing the algorithm.

To the best of the knowledge, we are the first such effort that develops well-optimized

parallel sFFT implementations.

Not surprisingly, though, the majority of functions in sFFT is not straightfor-

ward to parallelize. The challenges come with loop-carried dependence inherently

exists in many pieces of sFFT, which is one of the major obstacles preventing an

efficient parallel implementation. Furthermore, the huge need for thread synchro-

nization in sFFT is another primary concern regarding the parallel efficiency. Since

multiple threads might be accessing the shared resources simultaneously, they have

to be carefully protected through thread synchronization mechanism (e.g., mutex

locks, critical sections). Locks need to be avoided whenever possible and critical

sections should be minimized otherwise they can be a potentially large performance

bottleneck.
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1.2.2 Porting sFFT to Diverse Architectures

In this dissertation work, we aim to develop parallel sFFT implementations for three

different parallel architectures: multicore CPUs, GPUs, and a heterogeneous multi-

core embedded system.

Modern multicore CPUs (e.g., Intel Sandy Bridge typically with 8 to 16 cores)

are optimally designed for workloads needing for low-latency. That is, modern CPUs

strongly favor lower latency of operations with clock cycles in the nanoseconds, and

we need to build techniques which can exploit these low latencies very well. GPUs,

on the other hand, are throughput-oriented architecture. They work best on the

problem sets which can be ideally solved by using massive fine-grained parallelism,

using thousands or even tens of thousands of threads. Graphics processing is one

such area with massive computational requirements, but where each of the tasks is

relatively small, and often a set of operations are performed on data in the form of

a pipeline. The throughput of this pipeline is more important than the latency of

the individual operations. Heterogeneous embedded systems work differently from

multicore CPUs and GPUs in the sense that they typically come with two or more

different types of processors (e.g., ARMs + DSPs) in a single chip. Workloads are

therefore partitioned into multiple smaller tasks which are scheduled running on

different processors.

Although today’s architectural trends clearly favor increasing parallelism, and

scalability is the central objective in designing efficient parallel algorithms, an optimal
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implementation requires the in-depth knowledge of the underlying processor’s archi-

tecture, choosing a suitable parallel programming model and exploiting architecture-

specific optimization techniques. That means different architectures may lean toward

diverse parallelization and performance optimization techniques. For instance, ef-

ficient GPU programming typically requires careful scheduling of data movement

between host CPUs and GPUs, and manipulating a kernel function to exploit the

fine-grained massive parallelism by mapping threads to thousands of GPU cores.

These are usually not the case for shared-memory multicore CPU architectures.

Therefore, the challenge comes from the fact that the parallelization and per-

formance optimization technique which is best suitable for one architecture may be

entirely unacceptable while moving to another. In Chapter 5 and 6, we will show

some techniques which are suitable for multicore CPUs with 8 to 16 cores then be-

come entirely problematic when we port the sFFT to GPUs with thousands number

of cores.

1.2.3 Dynamic Irregular Memory Access Pattern

It is well-known that caches play a critical role in modern computer systems. Achiev-

ing high performance on such systems requires tailoring the memory reference pat-

terns of applications to exploit the machine’s memory hierarchy. The primary soft-

ware approaches for improving the effective cache utilization in a program is in-

creasing temporal and spatial locality through program transformation. In modern

computer architectures, processor always moves blocks of contiguous data elements
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into the cache, so whenever a program references a single array element, the entire

enclosing block will be moved to the cache. Accordingly, temporal locality refers to

reuse the same data element in the cache within a relatively short time duration be-

fore the cache block is evicted, eliminating the need for repeated access to the main

memory. Spatial locality, on the other hand, occurs when memory locations mapped

to the same cache block is reused before the block is evicted. The combination of

temporal and spatial locality can minimize the traffic of transferring cache blocks

across the machine’s memory hierarchies.

For the regular memory access pattern which typically has stride-one array refer-

ences, i.e., A[i], the memory accesses are therefore consecutive. This regular memory

access pattern allows the program to exploit the spatial locality, i.e., to reuse each

cache blocks multiple times before it gets evicted from the cache. More importantly,

static code analysis techniques allow the compiler to improve better temporal and

spatial locality at compile time. For instance, the compiler transformation tech-

niques such as loop blocking [17, 28, 30,56, 86] and software prefetching [67, 79] have

significantly improved the memory hierarchy utilization for regular applications.

The sFFT, unfortunately, falls into the other category: irregular applications.

Such kind of irregular applications heavily utilizes sparse data structures, which are

accessed through indirect array reference pattern in the form of A[B[i]]. The is-

sue of irregular applications is that indirect array accesses often result in irregular

memory reference pattern that exhibits poor temporal and spatial locality and con-

sequently can lead to poor performance. In fact, only 5-10% of the processor’s peak

performance is typically achieved from irregular applications [9]. Poor data locality
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is becoming even more of a performance challenge for multicore architectures where

shared memory results in cores competing for memory bandwidth.

Even worse, the memory access pattern in irregular applications is usually dy-

namic: it remains unknown until runtime and often varies across the computation

dynamically. It makes conventional compiler transformation techniques such as cache

blocking [17,56,86] and loop reordering schemes [30,63] hard to apply.

Alternatively, runtime transformation techniques2 have been developed to exploit

the data locality for irregular applications. The main idea behind the runtime trans-

formation is to change computation order and data layout at runtime so that code is

transformed to access the reordered data with potentially better temporal and spa-

tial locality. These techniques can be categorized into two groups: data reordering

and computation reordering. The former relocates the elements of data such that

elements accessed closely in time are placed closing in memory space; the latter,

on the other hand, changes the order in which data elements are referenced so that

iterations accessing the same or adjacent elements are referenced consecutively in

time.

The challenges inherent in employing runtime transformation techniques come

with the complexities in finding out an optimal data layout, while at the same time,

the need to amortize the overhead of data and computation reordering at runtime.

Therefore, it must assume that the benefits of improved data locality will outweigh

the cost of data and computation transformation. The work in this dissertation aims

2Runtime transformation means to transform the data layout and computation order at runtime
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to explore an efficient and practical runtime transformation strategy that can effec-

tively improve the data locality for sFFT with minimum transformation overhead.

Chapter 8 will discuss the details of the technique.

In summary, it is a non-trivial task for developing high-performance parallel sFFT

algorithms on diverse architectures. These challenges include minimizing the need for

global synchronization that may impede the parallelism, a thorough understanding

of the underlying processor architecture in order to choose the best suitable opti-

mization techniques, and exploring a runtime transformation technique to exploit

the data locality for irregular memory access patterns. The parallelization and opti-

mization techniques used in this dissertation work address the challenges mentioned

above for various architectures.

1.3 Objective and Contributions

The goal of the dissertation work aims to make a solid contribution to developing

high-performance parallel sFFT implementations for a variety of modern parallel

computer architectures. The parallel implementations should be able to overcome

the challenges mentioned above and beat the performance of state-of-the-art full-size

parallel FFT implementations.

Sequential sFFT implementation and performance improvement. Our

first contribution in this dissertation work is we develop an optimized sequential

implementation of the sFFT as the starting point for our later on parallel sFFT
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implementations. Our sequential implementation is based on a prototype implemen-

tation obtained from the MIT’s sFFT project website [41]. However, we largely

reimplement the sFFT by carefully choosing the compact data structures for the

ease of parallelization and performance optimization. We show that our optimized

implementation achieves more than 1.5 times performance improvement than the

original MIT’s sFFT implementation.

Parallel sFFT implementations on diverse architectures. Our major con-

tribution in this dissertation work is we develop parallel versions of the sFFT for

three state-of-the-art multicore and massively parallel architectures. To the best of

our knowledge, our work is among the first few efforts on developing parallel sFFT

for multicore and accelerator-based architectures, and ours achieves the best perfor-

mance among all the few published work [48].

Performance optimizations. As discussed above, the sFFT is inherently diffi-

cult to parallelize. In this dissertation work, we propose multiple optimization tech-

niques that can effectively address the parallelization and performance challenges in

parallelizing the sFFT. These optimization techniques can be primarily categorized

into two groups based on the level of implementation: high-level and low-level ap-

proaches. High-level optimization techniques are architecture-independent and can

easily migrate from one architecture to another. Low-level optimizations, on the

other hand, mostly rely on the architecture-specific features, thus are hard to be

portable to various architectures. In our dissertation work, we propose both high-

level and low-level performance optimization techniques to deliver the best possible

performance.
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Results. We evaluate the performance of parallel sFFT with the sequential

implementation. We show that the parallel sFFT significantly improves the perfor-

mance of sFFT by the factor of 5x and 20x on multicore CPUs and GPUs, respec-

tively. The promising result is due to our sophisticated parallel algorithm design

and multi-levels of performance optimization techniques we exploit. Moreover, we

also compare the performance of the parallel sFFT with the major full-size parallel

FFT implementations. The experimental results show that our parallel sFFT im-

plementations achieve more than 9x speedup on multicore CPUs and 12x speedup

on GPUs for a broad range of single spectra. It offers a promising opportunity to

replace the FFT routines by the sFFT in a vast majority of scientific and engineering

applications and expect a significant performance improvement.

Pioneering in using OpenMP accelerator model. Last but not least, we

port the parallel sFFT to a heterogeneous multicore embedded system by using

OpenMP 4.0 accelerator model. OpenMP is a high-level programming model for

shared-memory parallel programming. OpenMP 4.0 extends its execution model

to support heterogeneous accelerator-based architectures. Due to the novelty of

OpenMP 4.0 accelerator model and for the lack of mature compiler support, we are

among the first effort to port sophisticated real-world applications to heterogeneous

multicore embedded systems by using OpenMP 4.0. In this dissertation work, we

will also report the first-hand experience in using OpenMP 4.0 and the lessons we

learned toward high-level programming model for heterogeneous embedded systems.
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1.4 Dissertation Organization

The rest of the dissertation is organized as follows. In Chapter 2, we first briefly

survey the existing full-size FFT implementations. Then we review the current

development of sFFT for the past of recent years. Finally, since sFFT is one of

the irregular applications which pose unique challenges in exploiting data locality,

we survey the most influential techniques on data and computation transformation

techniques that can improve the data locality of irregular applications at runtime.

In Chapter 3, we introduce the sFFT from the numerical perspective. We break

down the sFFT into major functional stages and present the algorithm step by step.

We hope it can help the reader to understand better the parallel sFFT algorithm we

are going to present later. Furthermore, we give an overview of some applications of

the sFFT algorithm that emerged over the past few years.

Chapter 4 presents our sequential implementation of the sFFT. Our sequential

sFFT implementation is based on the MIT’s original C++ implementation but we

largely reimplement using C. We will discuss the design choices and implementation

details as well. Then, we evaluate the performance of our sFFT implementation

with the MIT’s original implementation. We show that our improved implementa-

tion makes over 2x speedup over the MIT’s original implementation. Further, we

also evaluate the sFFT against FFTW, one of the most widely used ordinary FFT

libraries. We show that our sFFT implementation is considerably faster than FFTW

for a broad range of signal size n and sparsity k. Finally, we study the time distribu-

tion of the major functional stages of sFFT and figure out the most time-consuming
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step of the algorithm. We show that irregular memory access pattern is the primary

performance bottleneck for sFFT.

Chapter 5 to Chapter 7 shows our major effort on the parallel sFFT for three

divergent parallel architectures: multicore CPUs, GPUs, and a heterogeneous multi-

core system. We present the key challenges in parallelizing the sFFT at scale and the

approaches to address the challenges. We also present our approaches on improving

the data locality for the diverse architectures, respectively. We evaluate the perfor-

mance of the parallel sFFT implementations with the major parallel full-size FFT

libraries. The experimental results are promising regarding execution time, cache

miss rate, average memory access latency, and parallel speedup.

In Chapter 8, we introduce a heuristic to improve further the data locality for

sFFT. Since sFFT is one of the dynamic irregular applications, a runtime data and

computation transformation technique is essential to further improve its performance.

In Chapter 8, we propose an online transformation algorithm that reorders the data

layout at runtime. We first analyze the inherent complexity in finding out an optimal

data layout in general and reveal that designing a new data layout transformation

algorithm could be reduced to a classic time-space tradeoff. Based on the insight,

we present a new data transformation algorithm which complements the prior work

with respective strengths. We apply the technique on sFFT and show the average

30% performance improvement.

Finally, Chapter 9 concludes the dissertation with directions of future work.
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Chapter 2

Related Work

2.1 FFT Implementations

The original Cooley/Tukey-FFT and similar algorithms have been implemented by

vendors and open-source communities such that they are well optimized for specific

platforms. Those libraries include cuFFT [7] for NVIDIA’s GPUs, AMD Core Math

Libraries (ACML) [6] for AMD’s APUs, and Intel Math Kernel Library (MKL) [3]

for Intel processors. FFTW [29] is another widely used open-source FFT library

portable to multiple x86-based architectures.

Due to the memory-bound nature of the FFT algorithm, its performance heav-

ily depends on the design of memory subsystem and how well it can be exploited.

There is some research working on FFT optimizations for various computer archi-

tectures [19,33,69].
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2.2 Recent Development in Sparse FFT

The first sublinear sparse Fourier algorithm was proposed in [55]. Over the past

few years, the topic has been extensively studied, from the algorithmic [42, 43, 52,

53], implementation [76, 80] and application [38] perspectives. These developments

include the first deterministic algorithms that make no errors [11, 52, 53], as well

as algorithms that, given a signal with k-sparse spectrum, compute the non-zero

coefficients in time O(klogN) [42] or even O(klogk) [31, 58,71,75].

A recent breakthrough research from MIT [43] presented an improved algorithm

and reduced the time complexity of sFFT to O(logn
√
nklogn). MIT’s sFFT is faster

than standard FFT for the sparsity k up to (n/logn). The new algorithm employs

a specific filter which achieves the runtime asymptotically faster than its prior stud-

ies. Therefore more applications with “denser” signal spectrum could also achieve

performance gains from the sFFT algorithm.

There exists few sFFT implementations [41, 48, 76]. However, they are either

only a sequential prototype implementation or an implementation that is barely

optimized. To our best of knowledge, we are the first effort of developing parallel

sFFT implementations on state-of-the-art parallel architectures, and we achieve the

best performance so far.
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2.3 Runtime Data and Computation Transforma-

tion

In this section, we survey the existing runtime transformation approaches for irregu-

lar applications. In general, prior transformation techniques can be categorized into

two groups: computation reordering and data reordering.

Computation reordering reorders the iterations of the central loop enclosing the

irregular references so that iterations accessing the same or adjacent data elements

are consecutive in time. Figure 2.1 shows a simplified example of computation re-

ordering. As is shown in the Figure, the original iteration sequence (1,2,3,4) has

been transformed into the new order of (3,1,2,4). Thus, the array reference pattern

becomes regular. Techniques for determining the suitable iteration order include

lexicographical sort [24], bucket sort [66], z-sort [35], and so on. The main objective

for computation reordering is to improve the temporal locality.

Data reordering relocates the data layout in the array such that the elements

accessed closely in time are placed closing in memory space. As is shown in Fig-

ure 2.1, the original data layout (1,2,3,4) has been reordered as (2,3,1,4). After data

reordering, iteration i accesses the data element i. Therefore, the irregular accesses

have been eliminated. Data reordering improves the spatial locality. Because de-

termining the optimal data layout at memory is a NP-hard problem in its general

form [72], researchers have proposed various heuristics-based algorithms, including

consecutive packing (CPACK) [25], Reverse Cuthill-McKee (RCM) [60], recursive

coordinate bisection (RCB) [15], multi-level graph partitioning (METIS) [54], and
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Figure 2.1: A simplified example of data and computation reordering

hierarchical clustering algorithm (GPART) [35]. Previous studies also found that in

some cases, the combination of the data and computation reordering yield better re-

sults than each alone [25,35]. The rest of the chapter will review the prior approaches

on runtime data and computation reordering. We will discuss the advantages and

limitations of each approach.

2.3.1 Runtime Data Reordering Techniques

Consecutive Packing (CPACK)

The consecutive packing (CPACK) algorithm is a canonical runtime data reordering

approach proposed by Ding and Kennedy [25]. The main idea behind the CPACK

is that placement of data elements in memory in the order they are accessed should

improve spatial locality. Therefore, CPACK employs a first-touch policy such that

data will be moved into consecutive locations in the order the computation first

accesses them. Implementing this first touch policy requires a single pass over the

data access sequence.
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One of the advantages of the CPACK algorithm is it has very low time complexity

since it traverses the index array and the object array once and only once. Therefore,

the time complexity of CPACK algorithm is linear to the size of index array, which

is O(n). It needs to note that, however, the first-touch policy is a greedy strategy

so it does not consider the affinity of the data [27], i.e., how frequently two elements

are accessed together. For instance, given a data access pattern x y w x z u x z,

where the cache line size is 2, CPACK will simply pack x and y into the same memory

block since they are firstly touched together. However, it is clearly to see that packing

x and z should yield better locality since they would improve the locality for the two

accesses to z, compared to the original placement which can only improve the data

locality for the access to y.

Hierarchical Clustering Algorithm (GPART)

Hierarchical clustering algorithm (GPART) is another widely used data layout trans-

formation algorithm proposed by Han et. al [35]. The main idea of the GPART bases

on the observation that scientific codes use two or more distinct irregular references

within a loop iteration. In this case, GPART optimizes the data layout by abstract-

ing the underlying mapping relationship between computation and the data layout as

a graph; computations can be viewed as edges connecting array elements represented

with nodes. This abstraction results in a graph view out of data access patterns.

As a result, data locality optimizations can then be mapped to a graph partitioning

problem. Partitioning the graph and putting nodes in a partition close in memory

naturally improves spatial and temporal locality [12]. Finding an optimal graph
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partition is an NP-hard problem, and several heuristics are therefore proposed [12].

GPART first sorts the nodes in descending order based on the degrees, i.e., the

number of incident edges. It then visits the nodes one-by-one and arbitrarily chooses

one node among the neighboring nodes and group them together. However, similar

to the limitation of the CPACK, GPART arbitrarily chooses one of the neighboring

nodes to group together, it can easily miss a better layout for some data elements.

Furthermore, GPART has higher time complexity than CPACK due to the operations

of sorting and graph partitioning. Nevertheless, GPART benefits for the scenario that

multiple irregular references in a loop iteration.

Reverse Cuthill-McKee (RCM)

Alike the GPART, Reverse Cuthill-McKee (RCM) is a graph-based approach to

reordering the data layout for irregular computations. Rather than the GPART,

which sorts the nodes based on the degrees, RCM simply uses reverse breath-first

search (BFS) to reorder data. Thus, RCM has lower transformation overhead.

Space Filling Curve (SFC)

Similar to GPART and RCM, Space-Filling Curve (SFC) [64] also employs geometric

coordinate information to reorder data layout in memory. Instead of using a graph,

SFC relies on space-filling curves which are continuous, non-smooth curves that pass

through each point in a finite k-dimensional space. Examples include Morton and
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Hilbert curves. Since the interactions tend to be local, reordering data using space-

filling curves reduces the distance in the memory between two geometrically nearby

points in the memory, thus, yields better locality.

Recursive Coordinate Bisection (RCB)

One major limitation of the SFC algorithm is it works well only when data is uni-

formly distributed in memory. When data is unevenly distributed, an alternative

approach is recursive coordinate bisection (RCB) [15]. The key idea of the RCB

is it recursively splits each dimension into two (equally) partitions by finding the

median of data coordinates in that dimension. The process is recursively repeated

with alternative dimension. After the partition, data within a partition are stored

consecutively thus the locality is improved.

Multilevel Graph Partitioning (METIS)

A major limitation of the SFC and RCB is that geometric coordinates information is

needed for each node. This information may not be available for some applications.

In comparison, graph partitioning algorithms such as METIS [54] can be applied

naturally based on the data reference pattern embedded in loops.

Discussion

In summary, METIS and RCB have significantly greater time complexity than CPACK

and GPART, and they are quite expensive when used for cache optimizations. Some
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early studies indicate that CPACK and GPART outperform METIS and RCB in

most cases [35, 87]. Furthermore, it is important to note that RCB and METIS

are canonical algorithms in graph partitioning and load balancing. They play an

significant role in distributed-memory programming where an optimal data parti-

tioning and load balancing could minimize the inter-node communications. In such

field, greater processing time is acceptable yet not the case for cache optimizations.

Consequently, METIS (RCB) and the objectives of this dissertation each addresses

different aspects of data locality: the former crosses nodes and aims to minimize

communication in distributed-memory space, while the later crosses cores in a node

and seeks to reduce cache misses in shared-memory space.

2.3.2 Runtime Computation Reordering Techniques

Bucket Sort

If each iteration performs only one irregular access (e.g., Figure 2.1), sorting the loop

iteration by the indexes of access data may result in a better temporal locality. For

instance, for the index array of a b c a, sorting the array in the ascending order, i.e.,

a a b c can reorder the computation such that accesses the two a consecutively and

the temporal locality is therefore improved. Bucket sort with cache-sized buckets is

commonly used [66] to reduce the cost on sorting. That is because bucket sorting can

achieve nearly linear time complexity given the input data (index array) is uniformly

distributed. Also, bucket sort is usually more cache-friendly compared with other

sorting algorithms if the buckets can fit into the cache.
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Lexicographical Sort (LEXSORT)

For loop iterations with multiple irregular accesses, applying the bucket sort is non-

trivial. Instead, lexicographical sorting (LEXSORT) can be used to sort compu-

tations with multiple irregular access patterns [24]. The idea of LEXSORT is to

sort the index array in the lexicographical order (a.k.a dictionary order). Figure 2.2

shows an example of computation reordering using lexicographical sort. The circle

represents the loop iteration order while the square represents the array of data el-

ements that the loop iteration accesses. The alphabet letters from a to e denotes

the location of each data element (We use alphabet letters instead of numbers is to

distinguish from the index array). As is shown in the figure, each loop iteration has

two irregular accesses. For instance, iteration 1 accesses to data elements in locations

b and c. After the LEXSORT, the loop iteration is reordered as the lexicographical

order; thus, the temporal locality can be substantially improved. For example, if we

assume that each cache block can hold only two elements, and there is only one block

in the cache at a time (unit-line cache). In the example of Figure 2.2, there are five

cache misses in the original data reference pattern while the number of cache misses

is reduced to 3 after the lexicographical sort.

2.3.3 Hybrid Approach

As discussed above, data and computation reordering can effectively improve the

data locality when they are used separately. Recent studies also show that the

combination of the computation and data reordering will yield better results in most
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Figure 2.2: Computation reorder through lexicographical sort

cases [25, 35]. Ding and Kennedy [25] demonstrated that applying computation

reordering after data reordering further reduces the cache miss rate from 7.48% to

0.25%, a factor of 30, on a 2K cache with 16-molecule cache lines.

2.4 Summary

In summary, this section briefly overviews the existing work in FFT implementations.

Also, we survey the recent development in sFFT. Furthermore, since sFFT is one of

the irregular applications, we review the major approaches on improving the data

locality through data and computation transformation techniques at runtime.

Since it is an NP-complete problem to find an optimal data layout with minimum

cache misses in general, it is virtually infeasible to keep searching for a general,

practical algorithm that can yield the best memory layout, either with or without

hardware extensions, through data reordering, computation transformation, or their

combinations – the three methods that have been pursued by most existing work.

This section we reviewed key algorithms used for runtime data and computation

23



reordering. Most of these prior approaches are based on a vague but well practiced

rule: arranging data elements which are accessed together in a short period into

nearby locations in memory increases the likelihood that cache blocks will be reused

multiple times before they get evicted from the cache. Although the prior studies

show promising results for improving the locality of irregular applications, much

fewer efforts has been spent on understanding the fundamental characteristics of

data access patterns exhibited by programs and interactions with a specific data

and computation reordering approach. As a result, they either do not provide any

performance guarantee or are effective to only some limited scenarios.

In this dissertation work, we fundamentally study the inherent complexity of the

problem. We then reveal that the essence of designing a runtime transformation

algorithm can be reduced to a canonical complexity of time-space tradeoff. Based on

that insight, we propose a novel data reordering algorithm in Chapter 8 which can

circumvent the limitations of the previous methods and improve the data locality for

irregular applications such as sFFT.
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Chapter 3

Sparse Fourier Transform – An

Overview

3.1 Overview

In this chapter, we briefly introduce the Sparse FFT (sFFT) from the view of a

numerical algorithm. We break down the sFFT into several functional stages and

present the algorithm in a step-by-step approach. We believe that this will help the

reader to understand better the parallel algorithm in later chapters. We do not cover

the theoretical analysis and proofs of the algorithm in this dissertation. The reader

is referred to the original paper in [43]. However, we will present the implementation

details and an empirical analysis of the performance of the algorithm in Chapter 4.
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3.2 Sparse FFT

Discrete Fourier Transform (DFT) is a fundamental numerical algorithm used in a

wide variety of disciplines including audio, communication, wave simulations and

cryptography to name a few. It has been of universal importance in scientific and

engineering applications for a long time. Fast Fourier Transform (FFT) [21] is the

fastest known approach that computes the DFT of an arbitrary n-length signal

from/to time (space) to/from the frequency (wavenumber) domain, with a com-

putational complexity of O(nlogn).

With the emergence of big data problems, in which the size of the processed data

can easily exceed gigabyte or even terabytes, it is challenging to acquire, process

and store a sufficient amount of data to compute the FFT in the first place. On

the other hand, any algorithm for computing the FFT must take at least O(nlogn)

time to its input data size, irrespective of the structure and sparsity of the data in

the transformed domain. In many applications, however, the output of the FFT is

sparse, i.e., most of the Fourier coefficients in the transformed domain are negligibly

small or close to zero while only a few of them are significant. In this case, the full-

size FFT is sub-optimal because O(nlogn) operations on n input data points lead to

only a few number of k non-zero/significant outputs, where k � n, while the rest of

n− k coefficients are zero/negligible small.

Many applications of interest, e.g., audio, video, medical images [14, 77], GPS

signals [36, 39], seismic data, biomedical signals [78], financial data, social graphs,

cognitive radio and many more massive data sets can fall into the sparse Fourier
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spectrum. For example, a typical 8x8 block in a video frame has on average 7

non-negligible coefficients (i.e., 89% of the coefficients are negligible) [18]. Images

and audio data are equally sparse. This sparsity provides the rationale underlying

compression schemes such as MPEG and JPEG [43]. This motivates the need for

an algorithm that can compute the Fourier transform in sub-linear time, i.e., in an

amount of time that is considerably smaller than the size of the data, and that use

only a subset of the input data.

The recently developed Sparse Fourier Transform algorithm (sFFT) [43] provides

a precise solution to address this problem. Unlike the conventional FFT, which com-

putes the entire input data with size n, the sFFT, on the other hand, can use only a

considerably small subset of the input data to compute a compressed FFT for only

the number of k largest output coefficients, thus achieves substantial performance

improvements. Specifically, the sFFT employs special signal processing filters, no-

tably the Gaussian and Dolph-Chebyshev filters, to sample the input signals and

bin them into a small set of buckets. Since the signal is sparse in the frequency

domain, each bucket is likely to contain only one large Fourier coefficient, of which

the location and magnitude can then be precisely determined. The sFFT achieves a

runtime of O(logn
√
nklogn), which is faster than FFT for k up to O(n/logn).

3.3 Computational Stages in Sparse FFT

In this section, we outline the basic components and techniques used in the sFFT

algorithm. We partition the algorithm into several major steps by reducing it to
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several sub-problems.

3.3.1 Notation

For an input signal x ∈ Cn with size n, its Fourier spectrum is denoted by x̂. The

signal sparsity k, is defined as the number of non-zero Fourier coefficients in x̂. G is

the flat window function, while Ĝ denotes its spectrum in the frequency domain.

3.3.2 Stage 1: Random Spectrum Permutation

The sFFT starts with binning large Fourier coefficients into a small number of buckets

by convoluting the permuted input signal with a well-designed filter (will be discussed

in Subsection 3.3.3). The first challenge comes with how to deal with spectra in

which two large coefficients are too close to each other, and thus cannot be easily

isolated via binning. To guarantee that each bucket receives only one large Fourier

coefficient, which can then be accurately located (to find its position) and estimated

(to find its value), the sFFT algorithm randomly permutes the input signal so that

the adjacent Fourier coefficients in the frequency domain are evenly separated. In

addition, the distance between the original location and permuted location should be

largely enough so that adjacent coefficients are not be binned into the same bucket.

The sFFT employs a hashing-based spectrum permutation method to address

issue. Specifically, it defines a “hash” function that maps indices of the original

signal spectrum to the permuted locations so that the original locations can then be

recovered at the end of the algorithm.
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Figure 3.1: Random signal spectrum permutation and filtering with flat window
functions. This example has the parameter k = 4, i.e., we select the top 4 largest
samples

Definition 1 Define the spectra permutation Pσ,τ such that, given an n-dimensional

input signal x, an random integer σ that is invertible mod n, and an offset integer

τ ∈ [n], (Pσ,τx)i = xσi+τ . Then (P̂σ,τx)σi = x̂iω
−τi.

According to the definition 1, permuted signal in the time domain with a shifting

factor of τ will lead to phase changes in the frequency domain. It helps in separating

the spectra and bin coefficients to the correct buckets. Figure 3.1 (top) shows the

permuted signal in which significant frequencies are well separated.

3.3.3 Stage 2: Flat Window Function

For the sFFT algorithm to be sublinear in time, only partials of the input signals

can be used to compute the FFT. It is achieved by grouping subsets of the Fourier
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Figure 3.2: An example of flat window function in time (top) and frequency (bottom)
domain. This example has the window size n = 256

coefficients into a small number of buckets. Since each bucket contains only a single

frequency (i.e., frequencies are isolated via the spectrum permutation as was dis-

cussed in Subsection 3.3.2), then each bucket can recover the frequency separately.

It leads to the sample complexity and the execution time is proportional to the

number of buckets, which is lower bounded by the signal sparsity k.

Merely sampling a handful of data points out of the input signal, however, is

impossible because it will lead to spectral leakage, That is, the discontinuities in-

troduced by splicing the signal will appear as sharp components spread out in the

frequency domain. To minimize this effect, sFFT employs a flat window function

working as a filter to “smooth” the process. Specifically, the sampled signal will

convolve with the filter and bin into one of a small number of buckets, as is shown in

Figure 3.1 at the bottom. The sFFT employs a Gaussian and Dolpstartsh-Chebyshev
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Figure 3.3: Subsampled FFT (top) and Cutoff function (bottom). This example has
the parameter k = 4, i.e., we select the top 4 largest samples

filter G, depicted in Figure 3.2. The reason is based on the observation that the

Gaussian and Dolpstartsh-Chebyshev filter concentrates both in time and frequency

domain, i.e., G is close to zero except at a small number of pass regions, and its

Fourier transform Ĝ is negligible except for a fraction of coefficients with an expo-

nential tail outside of it. It guarantees the minimal leakage from frequencies to other

buckets.

3.3.4 Stage 3: Subsampled FFT

In the signal permutation and filtering stages, the permuted signal gets the rate of

B sampled and binned into the number of B buckets. It permits to transform just

a fraction of the entire signal. As a result, instead of computing the N -dimensional

FFT, it can compute the subsampled B-dimensional FFT, where B is the number of
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buckets, in O(BlogB) time. As is shown in Figure 3.3 (top), the algorithm computes

the B-dimensional subsampled FFT as an outline of the full-size convoluted signal.

3.3.5 Stage 4: Cutoff

After Stage 3, we get the number of B buckets at frequency domain. Each bucket

contains at most one potential large coefficient. In the k-sparse signal spectrum where

k � B, it is still highly likely that many of the buckets are close to zero. Furthermore,

the algorithm guarantees that each large coefficient has a low probability of being

missed if we select the top O(k) samples. Therefore, in this step the size of the data

to be processed is further reduced by selecting only the top k coefficients of maximum

magnitude. It can be done effectively through a quick selection algorithm which can

select the top k largest elements from a set of B buckets.

3.3.6 Stage 5: Reverse Hash Function for Location Recovery

After removing non-significant coefficients in Stage 4, the selected coefficients have

to be reconstructed, by finding the original locations in the frequency domain and

estimating the magnitudes.

Stages 1 to 4 define a hash function hσ : [n] → [B] that maps size of n input

signals to the number of B buckets. In order to find the original locations in the

frequency domain, this hash function has to be reversed by removing the phase

changes due to the permutation stage. This is done by computing the reverse hash

function hr.
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Algorithm 1 Outer loop of sFFT

1: Input: signal x ∈ Cn with size n, signal sparsity k
2: Output: A k-sparse vector x̂

1. Run a number of L location loops, returning L sets of coordinates I1, · · · , IL.

2. Count the number si of occurrences of each found coordinate i, which is
si = |{r|i ∈ Ir}|.

3. Only keep the coefficients which occurred in at least twice in the location
loops. I ′ = {i ∈ I1 ∪ · · · ∪ IL|si > L/2}.

4. Run a number of L estimation loops on I ′, returning L sets of frequency
coefficients x̂rI′ .

5. Estimate each frequency coefficient xi as x̂i = median{xri |r ∈ {1, · · · , L}}.

Stages 1 to 5 run for a number of L = O(logn) location loops with different

permutation parameters σ and τ , and return the L sets of locations of candidate

coefficients I1, · · · , IL. For each output of the location inner loop Ii, it counts the

number si of occurrences of each found coefficient i, that is si = |{r|i ∈ Ir}|, and

only keep the coefficients which occurred in at least twice in the location loops.

I ′ = {i ∈ I1 ∪ · · · ∪ IL|si > L/2}.

3.3.7 Stage 6: Magnitude Estimation

In this stage, given the sets of locations I ′ and frequencies x̂rI′ from location loops,

it estimates each frequency coefficient x̂i as x̂i = median{xri |r ∈ {1, · · · , L}}. The

median is taken in real and imaginary components separately.
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Figure 3.4: A simplified flow diagram of sFFT outer loop
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3.3.8 Outer Loop

The sFFT is an iterative-based algorithm running on the number of L = O(logn)

outer loops. Each iteration of the outer loop executes the all the stages (we called

it as the inner loop) as was discussed above. By running multiple iterations of the

inner loop, the sFFT algorithm is guaranteed to have a probability to find out the

locations and recover the magnitude of the large Fourier coefficients. Algorithm 1

shows an iteration of the outer loop. A simplified flow diagram is shown in Figure 3.4.

3.4 Sparse FFT 2.0

sFFT 2.0 is very similar to the original sFFT (referred as sFFT 1.0). The only

difference is that sFFT 2.0 applies a heuristic in the location recovery stage (described

in Subsection 3.3.6) and is able to find out the large Fourier coefficients quickly. The

idea of the heuristic is to apply a special filter, namely Mansour filter [62], to restrict

the locations of the large coefficients. Let M be the size of the Mansour filter, it

does the following during a pre-processing stage:

1. Choose τ ∈ [n]uniformlyatrondom.

2. For i ∈ [M ], set yi = xi(n/M)+τ .

3. Compute ŷ as the FFT of y.

4. Output the coefficients of maximum magnitude in ŷ.
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Remember that the flat window function is mainly used to sample the input signal

and minimize the effect of spectral leakage. The major advantage of Mansour filter

is it has no spectral leakage at all. Since the error rate is reduced, it needs fewer

iterations to get the desired result thus the execution time is reduced. 1

3.5 Sparse FFT Applications

In this section, we give an overview of some of the data-intensive applications of

the sparse FFT algorithms and techniques that emerged over the last few years.

These applications involve, for example, GPS receivers, cognitive radios, and, more

generally, any analog signal that we wish to digitize. It is these applications that we

focus on as they highlight the role of sparse FFT algorithms in the signal processing

of big data.

Spectrum sensing. The goal of a spectrum sensing algorithm is to scan the

available spectrum and identify the “occupied” frequency slots. In many applica-

tions, this task needs to be done quickly since the spectrum changes dynamically.

Unfortunately, scanning a GHz-wide spectrum is a highly power-consuming opera-

tion. To reduce the power and acquisition time, The approach present in [37] uses

the sparse FFT to compute the frequency representation of a sparse signal without

sampling it at full bandwidth. One observation made from the paper is that the

signal spectrum is sparsely occupied at frequency domain. As a result, the sFFT

is able to compute the Fourier transform of a sparse signal faster than the FFT,

1Due to the performance improvement in sFFT 2.0, unless stated otherwise, we will refer sFFT
as sFFT 2.0 for the rest of chapters in this dissertation.
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reducing the time and energy cost on baseband processing.

GPS synchronization GPS is one of the most widely used wireless systems.

A GPS receiver has to lock on the satellite signals to calculate its position. The

process of locking on the satellites is quite costly and requires hundreds of millions

of hardware multiplications, leading to high power consumption. The fastest known

algorithm for this problem is based on the Fourier transform and has a complexity

of O(nlogn), where n is the number of signal samples.

The paper [40] uses sparse FFT techniques to speed-up the process. The im-

provement is based on the following observation: since the output of the inverse

FFT contains a single peak corresponding to the correct shift, the inverse step can

be implemented using the sparse FFT. In fact, since k = 1, the algorithm is par-

ticularly simple and relies on a simple aliasing filter. Furthermore, since the sparse

inverse FFT algorithm uses only some of the samples of the product, it suffices to

compute only those samples. This reduces the cost of the forward step as well.

The experiments on real signals show that the new algorithm reduces the amount of

computations by a factor of more than 2.2.

3.6 Summary

In this chapter, we show an overview of the major functional stages in the sFFT

algorithm from the numerical algorithm point of view. We hope this will help reader

to better understand our parallel sFFT algorithm discussed later. Moreover, we

survey multiple data-intensive applications with heavy need of Fourier Transform.
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The applications show performance improvement by using the sFFT.

In next chapter, we will present our optimized sequential implementation of the

sFFT algorithm, which will be served as a starting point for the further parallel im-

plementations. The performance evaluations will also be discussed in next chapter.
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Chapter 4

Sequential Implementation and

Performance Evaluation

4.1 Overview

In this chapter, we present our sequential implementation of the sFFT, which serves

as a starting point for the parallel implementations. We largely reimplement the

algorithm based on the prototype implementation from the MIT project website [41]1.

Some design choices and implementation details will be discussed in Section 4.2.

Second, we evaluate the performance of the UH sFFT implementation in Sec-

tion 4.3. We demonstrate that our optimized sFFT implementation is more than

2x faster than the MIT’s original implementation. Further, we also evaluate the

1For the following of this section, we use the term“MIT sFFT”, refers to the MIT’s original
prototype implementation, and use “UH sFFT” denotes our optimized implementation.
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performance of our sFFT implementation against FFTW, one of the most widely

used standard FFT libraries [29]. We show that sFFT is faster than FFTW for

a considerable range of signal size n and sparsity k, without the loss of numerical

accuracy.

In Section 4.4, we profile the major functional stages in sFFT and point out

the most time-consuming stages of the algorithm. Then, we perform performance

analysis through theoretical and experimental approaches. The experimental result

shows that the irregular memory access pattern is the root cause of the performance

bottleneck in sFFT. The details of the results will be discussed in Section 4.5.

4.2 Sequential Implementation

In this section, we present our sequential implementation of the sFFT algorithm.

Our sequential implementation is based on a prototype implementation we obtained

from the MIT’s project website [41]. The MIT’s implementation is developed by using

C++ and utilized the Standard Template Library (STL) for simplicity. However, we

largely reimplement the sFFT for the following reasons.

First of all, the MIT’s implementation is mainly for proof-of-concept purpose. It

is sequential only and does not take any consideration of the parallelism inherently in

sFFT. Some data structures used in the original implementation are not thread-safe,

and certain code structures carry on loop-carried dependence. It makes parallelizing

the algorithm directly from the MIT’s implementation non-trivial.
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Table 4.1: Major data structure and interfaces changed from the MIT’s implemen-
tation

C++ C Description

std::map〈int, complex〉 struct{int, complex} Stores the key-value pair of the lo-
cation and value of the non-zero
Fourier Coefficients

std::pair〈int, int〉 struct{int, int} Stores the original and permuted
location of the signal spectrum

std::vector〈T,Alloc〉 Arrays Container represents arrays that
can change in size. Calculated the
needed size before allocating the
array

std::sort(· · ·) qsort(· · ·) Quick sort

std::upper bound(first,
last, val)

Manually imple-
mented based on
binary search

Returns an iterator pointing to the
first element in the range [first,last)
which compares greater than val

std:nth element(first,
nth, last)

Used a wrapper func-
tion

Rearranges the elements in the
range [first,last), in such a way that
the element at the nth position is
the element that would be in that
position in a sorted sequence.

std::map::count〈k〉 Manually imple-
mented based on
binary search

Searches the container for elements
with a key equivalent to k and re-
turns the number of matches

complex struct{real, real} Decouple the complex type to a
struct of real and imaginary part

Second, the MIT’s implementation does not take any advantage of modern com-

puter architectures. So it does not deliver the highest possible performance. On the

other hand, many other high-performance standard FFT libraries such as FFTW [29]

and cuFFT [7] are highly optimized to exploit the modern computer architectures.

Thus, it is of crucial importance to develop a high-performance sFFT implementa-

tion.

For all the reasons above, we largely reimplement the sFFT algorithm using C
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instead of C++ based on two major observations. First of all, compared to the

standard FFT, the sFFT suffers from the low compute-to-memory ratio, as well as

indirect and irregular memory access patterns. Achieving higher performance on

modern computer architecture requires choosing a compact data structure which

can best exploit the memory hierarchy. However, the original MIT’s implementation

largely utilizes C++ standard collection-based data structures such as containers.

While those data structures provide more flexibility and simplicity, it comes at the

cost of space overhead. Moreover, it creates additional levels of indirection, which

suffers from inefficient cache utilization. For instance, in the MIT’s implementation,

it uses the std::map to store the pair of location and value of the estimated coordi-

nates in the frequency domain. The std::map is usually implemented as red-black

trees which have average access time O(logN) (N is the number of key-value pairs

in the tree). In our implementation, however, we choose to use flat and compact

data structures such as where all data is in primitive type and stored sequentially in

memory. It leads to better cache utilization and data locality.

Second, a simpler code structure in C is more compiler-friendly. That is, it makes

the compiler easier to exploit its code optimization techniques, which is particularly

important for achieving high performance on modern massively parallel architectures

such as GPGPUs and Intel Xeon Phi. Table 4.1 shows the major data structure and

functional interface changes from the MIT’s implementation. Other code optimiza-

tion techniques will be discussed in Chapter 5.
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4.3 Performance Evaluation

In this section, we evaluate the performance of three compared algorithms: 1)MIT

sFFT implementation, 2)UH sFFT implementation and 3) standard FFTW (full-size

standard FFT library). We will demonstrate that the UH sFFT implementation is

more than 1.7x faster than the MIT’s original implementation. Furthermore, we will

show that sFFT is faster than FFTW for a considerable range of signal size n and

sparsity k.

4.3.1 Experimental Setup

Table 4.2 shows the experimental setup for the performance evaluation. We run

the experiments on an Intel Sandy Bridge architecture, which contains six cores per

socket running at the frequency 2.5 GHz with two sockets in total. The memory

sub-system has three levels of cache: the L1 and L2 cache has the size of 32 KB and

256 KB each, and is private to each core, respectively. The L3 cache, with the size

of 15 MB, is shared by all the six cores per socket. The DDR memory on the test

machine has the total size of 65 GB, largely enough to fit the large data sets into

memory.

The compiler version used to build the sFFT is gcc-4.8.2 with optimization level

-O3 enabled. The FFTW version is 3.3.4 [29], configured with multi-threading sup-

ported. Furthermore, we use the Valgrind 3.8.1 [68] to collect the cache performance

data. The details will be discussed in Section 4.5. We run the experiments at least

for five times and calculate the average value.
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Table 4.2: CPU test-bench

Processor Intel(R) Xeon(R) CPU E5-2640 (Sandy Bridge)

Core per Socket 6

Core Frequency 2.50 GHz

L1 Cache 6 x 32 KB D/I, 8-way, 64 B line size

L2 Cache 6 x 256 KB, 8-way, 64 B line size

L3 Cache 15 MB, 20-way, 64 B line size

TLB Size 4 KB per page

Memory Size 65 GB in total

4.3.2 Experimental Results – Double Precision

In this subsection, we evaluate the performance of our optimized sFFT implementa-

tion (i.e., UH sFFT) with the MIT’s original version. For completeness, we also com-

pare against the FFTW, one of the most commonly used standard FFT library with

a runtime complexity of O(nlogn). In this subsection, all the data sets are double-

precision floating point numbers. We will evaluate the results of single-precision

numbers in next subsection.

The test signals are generated in the same approach as for in the MIT’s original

implementation [41]. Specifically, k frequencies are selected uniformly at random

from the size of n input signal and normalized a magnitude of 1. The rest frequencies

are set to zero with additive white Gaussian noise. In all experiments, the parameters

of sFFT are chosen so that the average L1 error is no more than the order of 1e-7

per non-zero frequency. Therefore, the error rate of sFFT is acceptably small. We

follow the documentation of the MIT’s original implementation for choosing the error

mentioned above [41].
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Execution Time vs. Signal Size N

In this experiment, we fix the signal sparsity k = 1000 and report the execution

time of the three compared algorithms for signal sizes n ranging from 219 to 228.

Figure 4.1(a) plots the average execution time of UH sFFT, MIT sFFT and FFTW.

As expected, Figure 4.1(a) shows that the UH sFFT is constantly faster than

MIT sFFT implementation. Table 4.3(a) shows speedup of UH sFFT over the MIT’s

implementation. It can be seen from the table that the average performance improve-

ment over 2x.

Compared to FFTW, Figure 4.1(a) shows that the execution time of sFFT and

FFTW are approximately linear in the log scale. However, the slope of the line of

sFFT is less than the slope of FFTW, which is a result of the sublinear runtime of

sFFT. As a result, the performance gap between sFFT and FFTW diverges greatly

with the increase of signal size n. This gives more credit to sFFT for large input

data sets.

Figure 4.1(a) also shows that the UH sFFT becomes faster than FFTW when

the signal size is equal or greater than 221 (i.e., 2,097,152) at recovering the exact

1000 non-zero large coefficients. Compared to UH sFFT, the cross point for MIT

sFFT is at round 223 (8,388,608), requiring 4x greater sized signal to beat over the

performance of FFTW.

Table 4.3(a) (and Figure 4.2(a)) also shows the speedup of sFFT over FFTW at

k = 1000 and n ranges from 219 to 228. It can be seen from the table that UH sFFT

is faster than FFTW from 0.13x to 17.5x with the increase of the signal size n, while
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Table 4.3: Result of UH sFFT vs. MIT sFFT vs. FFTW (k = 1000)

(a) Fix k = 1000, vary n from 219 to 228

Signal
size 2n

UH
sFFT
(sec)

MIT
sFFT
(sec)

FFTW
(sec)

Speedup
UH vs.
MIT
sFFT

Speedup
UH
sFFT
vs.
FFTW

Speedup
MIT
sFFT
vs.
FFTW

19 0.12 0.22 0.02 1.84 0.13 0.07

20 0.16 0.29 0.05 1.82 0.34 0.18

21 0.18 0.39 0.17 2.10 0.90 0.43

22 0.25 0.51 0.39 2.07 1.59 0.77

23 0.33 0.70 0.87 2.13 2.62 1.23

24 0.43 0.97 1.80 2.29 4.23 1.85

25 0.61 1.37 3.84 2.26 6.33 2.80

26 0.80 1.87 7.79 2.35 9.76 4.16

27 1.30 2.65 15.71 2.03 12.07 5.94

28 1.83 3.73 32.05 2.03 17.50 8.60

(b) Fix n = 227, vary signal sparsity k from 1000 to 31000

Signal
spar-
sity
k

UH
sFFT
(sec)

MIT
sFFT
(sec)

FFTW
(sec)

Speedup
UH vs.
MIT
sFFT

Speedup
UH
sFFT
vs.
FFTW

Speedup
MIT
sFFT
vs.
FFTW

1000 1.33 2.72 15.67 2.05 11.81 5.76

3000 2.01 4.61 15.68 2.30 7.81 3.40

5000 2.88 6.27 15.72 2.17 5.45 2.51

7000 3.81 8.13 15.82 2.14 4.16 1.95

9000 4.98 10.54 15.78 2.12 3.17 1.50

11000 6.44 13.75 15.72 2.14 2.44 1.14

13000 8.41 17.85 15.73 2.12 1.87 0.88

15000 7.51 15.55 15.67 2.07 2.09 1.01

17000 8.71 17.72 15.70 2.03 1.80 0.89

19000 9.96 20.47 15.75 2.05 1.58 0.77

21000 11.00 22.87 15.66 2.08 1.42 0.68

23000 12.32 25.60 15.73 2.08 1.28 0.61

25000 13.74 28.67 15.64 2.09 1.14 0.55

27000 15.30 31.55 15.87 2.06 1.04 0.50

29000 16.50 34.77 15.72 2.11 0.95 0.45

31000 18.30 38.34 15.78 2.10 0.86 0.41
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MIT sFFT is faster than FFTW from 0.07x to 8.6x. As a result, we can conclude

that UH sFFT implementation makes 2x performance improvement over the original

MIT’s sFFT implementation.

Execution Time vs. Signal Sparsity k

In this experiment, we fix the signal size to n = 227 (i.e., 134,217,728) and evaluate

the execution time of sFFT vs. the number of non-zero frequencies k. We range

the k from 1000, 3000, to as dense as 31, 000. Figure 4.1(b) illustrates the average

execution time of the compared algorithms.

From the Figure 4.1(b), we can see that MIT sFFT is faster than FFTW for

k up to 15,000. The UH sFFT, on the other hand, is faster than FFTW for k is

around 30,000, doubling the band of the signal spectrum for sFFT being faster than

FFTW. It means more applications with “denser” signal spectrum which was slower

than FFTW by using the MIT’s sFFT implementation now can beat over the FFTW

by using our optimized sFFT implementation. Besides, the result is consistent with

the theoretical analysis that the crossing value for sFFT to be faster than full-size

FFT is around
√
n. Finally, FFTW has a runtime of O(nlogn), irrelevant of the

signal sparsity k, as can be seen in Figure 4.1(b) as well. Thus, as the sparsity

of the signal decreases (i.e., k increases), FFTW eventually becomes faster than

sFFT. Nevertheless, the results still show that UH sFFT implementation extends of

applications for which sparse approximation of FFT is practical.

The speedup result is shown in Table 4.3(b). As is shown in the table, the
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speedup of UH sFFT implementation is constantly over 2x than the MIT’s sFFT

implementation for various signal sparsity k.

4.3.3 Experimental Results – Single Precision

In this subsection, we evaluate the performance of sFFT for input data sets are

single-precision floating point numbers.

Execution Time vs. Signal Size N

Similar to the experiments for double-precision numbers, in this experiment, we fix

the signal sparsity k = 1000 and report the execution time of the three compared

algorithms for signal sizes n ranging from 219 to 228.

Figure 4.3(a) plots the average execution time of UH sFFT, MIT sFFT and

FFTW on input data of single-precision float numbers. We can observe from the

figure that the UH sFFT is still constantly faster than MIT sFFT implementation.

Table 4.4(a) shows speedup of UH sFFT over the MIT’s implementation. It shows

the average speedup of UH sFFT is over 2x than the MIT’s sFFT implementation.

The result is also consistent with the double-precision numbers, which shows the 2x

performance improvement of UH sFFT as well. Note that from Figure 4.3(a), the

UH sFFT reduces the execution time so that the signal size n is decreased from

224 to 222 in order to be faster than the FFTW. The results on single-precision are

consistent with the double-precision numbers.
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Table 4.4: Result of UH sFFT vs. MIT sFFT vs. FFTW (k = 1000), single precision

(a) Fix k = 1000, vary n from 219 to 228

Signal
size 2n

UH
sFFT
(sec)

MIT
sFFT
(sec)

FFTW
(sec)

Speedup
UH vs.
MIT
sFFT

Speedup
UH
sFFT
vs.
FFTW

Speedup
MIT
sFFT
vs.
FFTW

19 0.11 0.14 0.01 1.36 0.11 0.08

20 0.12 0.16 0.03 1.27 0.22 0.17

21 0.14 0.26 0.08 1.91 0.59 0.31

22 0.20 0.47 0.25 2.28 1.22 0.53

23 0.28 0.68 0.53 2.43 1.90 0.78

24 0.38 1.00 1.09 2.62 2.88 1.10

25 0.52 1.37 2.29 2.63 4.39 1.67

26 0.69 1.94 5.34 2.80 7.72 2.76

27 1.14 2.74 11.50 2.40 10.07 4.20

28 1.62 3.82 30.05 2.36 18.54 7.87

(b) Fix n = 227, vary signal sparsity k from 1000 to 31000

Signal
spar-
sity
k

UH
sFFT
(sec)

MIT
sFFT
(sec)

FFTW
(sec)

Speedup
UH vs.
MIT
sFFT

Speedup
UH
sFFT
vs.
FFTW

Speedup
MIT
sFFT
vs.
FFTW

1000 1.16 2.77 11.48 2.38 9.88 4.15

3000 1.77 4.78 11.54 2.71 6.53 2.41

5000 2.59 6.56 11.44 2.54 4.43 1.74

7000 3.50 8.46 11.56 2.42 3.30 1.37

9000 4.54 10.95 11.59 2.41 2.55 1.06

11000 5.87 13.91 11.53 2.37 1.97 0.83

13000 7.66 17.75 11.45 2.32 1.49 0.65

15000 6.69 15.58 11.49 2.33 1.72 0.74

17000 7.75 17.83 11.52 2.30 1.49 0.65

19000 8.93 20.37 11.56 2.28 1.30 0.57

21000 9.84 22.83 11.56 2.32 1.17 0.51

23000 11.10 25.46 11.46 2.29 1.03 0.45

25000 12.40 29.15 11.45 2.35 0.92 0.39

27000 13.81 31.26 11.53 2.26 0.83 0.37

29000 14.91 34.32 11.48 2.30 0.77 0.33

31000 16.41 37.58 11.45 2.29 0.70 0.30
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Execution Time vs. Signal Sparsity k

Comparable to experiments for double-precision inputs, we fix the signal size to

n = 227 (i.e., 134,217,728) and evaluate the execution time of sFFT vs. the number

of non-zero frequencies k in this experiment. We range the k from 1000, 3000, to as

dense as 31, 000. Figure 4.3(b) illustrates the average execution time of the compared

algorithms.

From the Figure 4.3(b), we can see that MIT sFFT is faster than FFTW for k

up to 9,000. The UH sFFT, on the other hand, is faster than FFTW for k is up

to 23,000. It stretches the signal spectrum by 2.5x. The speedup result is shown in

Table 4.4(b). As is shown in the table, the speedup of UH sFFT implementation

is over 2x than the MIT’s sFFT implementation for various signal sparsity k. Note

that this result on single-precision inputs is still consistent with the double-precision

results.

4.3.4 Numerical Accuracy

In this subsection, we check the sFFT’s promising performance is not at the expense

of reducing the numerical accuracy2. To achieve this, we compute the L1 error rate

which is, essentially to compute the Root-Mean-Square-Error (RMSE) of the output

results. Specifically, we compute the difference between each output data point of

2The UH sFFT implementation guarantees the same order of numerical accuracy as the MIT’s
original sFFT implementation. Here we evaluate the numerical accuracy of UH sFFT implementa-
tion against full-size standard FFT implementation (i.e., FFTW)
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sFFT, denoted x̂i, with that of FFTW, namely ŷi, and calculate the RMSE as follows:

RMSE =
1

k

∑
0<i<n

|x̂i − ŷi| (4.1)

Figure 4.4 shows the RMSE comparison with various signal size n and signal

sparsity k. Figure 4.4(a) plots the RMSE with signal size n from 219 to 228 while fix

the sparsity k = 1000. It can be seen from the figure that, overall, the error rate is

negligibly small. The average RMSE is under 1.22e−07 per large frequency, with the

median value 3.47e−08. Figure 4.4(b) shows the RMSE for signal size n = 227 while

varying the signal sparsity k from 1000 to 31,000. It can be seen from the figure

that the average RMSE value is 7.09e − 07, and the median value is 4.80E − 07.

The error rate is acceptably small, so we can conclude that the reduced execution

time of sFFT is not at the cost of its numerical accuracy. It is also interesting to see

from the Figure 4.4(b) that the RMSE increases slightly with the signal sparsity k.

That is because it is harder to recover the large frequencies when the signal becomes

“denser”. Nevertheless, the overall RMSE is still in the order of 1e − 7, which is

slight.

4.4 Time Distribution of Major Stages in Sparse

FFT

In this section, we profile the sequential sFFT implementation and study the time

distribution of the major stages of the sFFT as we discussed in Chapter 3.

Figure 4.5(a) plots the time distribution by varying signal size n from 218 (i.e.,
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262,144 points) to 227 (i.e., 134,217,728 points) with signal sparsity k fixed to 1000.

As can be seen from the figure, the time taken on the stages of permutation and

filtering (Stage 1 and 2, denoted as perm+filter in figure3 increases quickly with

the signal size n, soon dominate the entire execution time. It is interesting to note

that the time taken by the estimation loop (Stage 6) decreases when the signal size n

increases. This is because the size of the estimation loop is determined by the relative

signal sparsity, i.e., the percentage of non-zero frequencies k out of input signal size

n. In Figure 4.5(a), since we fix the signal sparsity k and increase the signal size n,

the relative sparsity decreases instead. That is why the estimation time goes down

with the increase of the signal size n.

Figure 4.5(b) plots the time distribution of sFFT when the signal sparsity k

increases with fixed signal size n. In the experiment, we vary the k from 2000 to

10,000 while fix the n = 227. As expected, the perm+filter constantly dominates the

overall execution time. Also, the time of the estimation stage increases with signal

sparsity k for the reason of increasing the relative sparsity as well.

In summary, since the perm+filter stage is the most time-consuming part of the

sFFT algorithm, we will mainly outline optimizing this function when we present

our parallel algorithms. Nevertheless, we still parallelize the entire sFFT algorithm

instead of just the perm+filter stage. The major purpose is to avoid the data transfer

overhead due to bulk volume PCIe data transfers between host CPUs and accelera-

tors.

3We will use the term perm+filter refer to Stage 1 and 2 for the rest of the dissertation.)
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4.5 Study of Irregular Memory Access Pattern in

Sparse FFT

In this section, we study the perm+filter stage, the most time-consuming function

in sFFT as we discussed in the last section. We will perform a theoretical analysis

of the cache miss rate, as well as conduct the experiments to measure the actual

cache miss rate. We show that irregular memory access pattern is the principal

performance bottleneck for sFFT we need to primary address in order to achieve good

performance. Irregular memory access pattern exhibits poor spatial and temporal

locality, which consequently, results in poor performance and parallel scalability.

4.5.1 Cache Miss Rate Analysis

In this subsection, we analyze the theoretical bound of the cache misses caused by

the irregular memory accesses.

Figure 4.6 presents a simplified code snippet (irrelevant code logistics has been

removed) of the perm+filter stage of the sFFT. We can see from the code that

three arrays are used in the inner loop: buckets[], signal[] and filter[]. They

denote (in the context of sFFT) size of B buckets, the input signal and the filter,

respectively.

From the locality point of view, the array buckets[] has spatial locality, as the

data reference pattern is unit-strided. Furthermore, it may have temporal locality

if its size can fit into the cache That is because accessing to the buckets follows a
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1 /∗ Perm + F i l t e r s tage in sFFT ∗/
2 int idx = i n i t v a l
3 do t = 1 , time
4 do i = 1 , num
5 idx = ( idx + a i ) % num
6 buckets [ i % B] += s i g n a l [ idx ] ∗ f i l t e r [ i ]
7 end do
8 end do

Figure 4.6: The simplified perm+filter stage in sFFT

round-robin pattern (via modular operation). The array signal[], virtually has no

either spatial and temporal locality since its access pattern is irregular. It is worth

noting that the signal[] array has cyclic reuse pattern, but the reuse distance is

too far away that a cache block may have already been flushed out of the cache even

though it is reused in near future. As a result, although the same cache block might

be reused later, it still needs to load the block from the memory. So it indicates that

the accesses to the signal[] array may not have spatial locality. The filter[]

array, on the other hand, has perfect spatial locality. Consequently, we hypothesize

that the irregular memory access pattern in sFFT mainly comes from accessing the

array signal[], the input signal.

Based on this insight, we analyze the cache misses by estimating the cache miss

rate for the perm+filter stage. For simplicity, we assume that each access to the

filter and bucket array always hits in the cache since the memory access pattern

is consecutive. In real systems, regular access patterns may still cause few cache

misses due to the capacity miss. We will measure this effect later in this section.

In addition, we make an assumption that each access to the array signal will end

up with a cache miss. Our theoretical cache misses analysis is based on these two
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1 /∗ Complex a r i thmet i c in sFFT ∗/
2 do t = 1 , time
3 do i = 1 , num
4 idx = ( i ∗ a i ) % num
5 bucket [ i % B ] . re += f i l t e r [ i ] . r e ∗ s i g n a l [ idx ] . r e −
6 f i l t e r [ i ] . im ∗ s i g n a l [ idx ] . im
7
8 bucket [ i % B ] . im += f i l t e r [ i ] . r e ∗ s i g n a l [ idx ] . im +
9 f i l t e r [ i ] . im ∗ s i g n a l [ idx ] . r e

10 end do
11 end do

Figure 4.7: Complex arithmetic decomposition of sFFT

assumptions. We will justify the hypothesis by experiments presented in next section.

Further, note that arrays in the code shown in Figure 4.6 use complex data types

which can be decomposed into a pair of real and imaginary parts. Consequently,

the complex number arithmetics in the code of perm+filter can be expressed in

Figure 4.7. It can be seen from the figure that each iteration of the inner loop has

a total number of 10 load operations. Since we assume that only irregular loads can

cause cache misses, accessing to the signal[idx].re is the only cache miss out of the

10 memory accesses. Accessing to signal[idx].im, on the other hand, can always

hit in the cache. That is because the data layout for a complex number is in the

format of real[0], imaginary[0], real[1], imaginary[1], ..., in our sFFT

implementation. Given the data is well aligned, once we load a cache block containing

the real part of a complex number, it is highly likely that the imaginary part will

reside in the same cache block. Therefore, we can calculate that the theoretical cache

miss rate for the perm+filter is 10% because of 1 out of 10 memory loads in inner

each loop iteration will end with a miss.
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4.5.2 Experimental Evaluation

In this subsection, we measure the L1 and LL (Last Level) cache miss rate by varying

the size n of the signal. Since an LL cache miss usually has greater performance

penalty than an L1 miss, we highlight more on the LL cache miss rate.

L1 Cache Miss Rate

In this section, we evaluate the L1 cache miss rate of the perm+filter stage in sFFT

for various data sizes n from 219 to 227. The signal sparsity k is fixed to 1000.

Figure 4.8(a) shows the results. We can observe from the figure that the L1 cache

miss rate is constantly 15.63%. It is because even the smallest input data size (i.e.,

219, 512 KB) cannot fit into the L1 cache (32 KB). The measured L1 cache miss rate

is consistent with the theoretical result (10%), indicating that each irregular access

to the signal[idx] array leads to a cache miss at the L1 data cache.

Interesting, though, the 15.63% L1 cache miss rate is still is higher than the

theoretical value, which is 10%. It is because the theoretical analysis assumes zero

cache miss for the regular memory accesses for filter and bucket arrays. In real

computations, however, even the regular memory accesses may still cause the cache

misses, in particular between loading different cache lines.

To justify the hypothesis, we conduct another experiment which is nearly the same

as the previous experiment on measuring the L1/LL cache miss rate, but changing ar-

ray reference pattern from irregular to regular, i.e., from signal[idx] to signal[i].

The purpose is to measure the cache miss rate for regular memory access pattern,
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and to estimate the percentage of regular miss rate in the overall cache misses rate

shown in Figure 4.8(a).

Figure 4.8(b) shows the L1/LL cache miss rate for regular memory access pattern.

From the figure, we can see that L1 cache miss rate is constantly at 4.69%. The

number reveals one interesting fact that the regular access pattern takes account for

around 5% of cache miss rate out of the total of 15%. Subtracting 5% from the 15%

cache miss rate, we could obtain the 10% cache miss rate for irregular access pattern,

which is the same as of the theoretical analysis.

LL Cache Miss Rate

Figure 4.8 also shows the last-level (LL) cache miss rate. From the Figure 4.8(a),

we can see that the LL cache miss rate grows with the signal size n. It begins with

0.07% with data size of 512 KB (n = 219) and constantly ends with 13.96% with data

size of 128 MB (n = 227). Since the LL cache size is 15 MB, the cache miss rates are

as expected that firstly fits into the cache then gradually exceeds the capacity of the

cache.

Furthermore, from Figure 4.8(b) we can also observe that the LL cache miss rate

for regular memory access pattern begin0 with nearly zero and end up with constantly

3.13%. Minus 3.13% from the 13.96%, we can get that the LL cache miss rate

for irregular access pattern is around 10%, which is consistent with the theoretical

analysis. The result also indicates that the LL cache miss rate for irregularly accessing

to signal[idx] is nearly 100% for large signal size.

63



4.6 Summary

In this chapter, we present our optimized implementation of the sFFT algorithm. We

discussed multiple design choices in order to deliver the best possible performance.

Compared to the original MIT sFFT implementation, our implementation achieves

more than 2x performance improvement. The performance improvement allows more

applications to fit into the spectrum of sFFT. In addition, we also evaluate the per-

formance with FFTW, one of the most widely used full-size FFT libraries. The

experimental results show that the sFFT is as much as 17x faster than the FFTW,

and the performance gap still increases quickly with even larger input signals. Fur-

ther, we also show that the promising performance of sFFT is not at the cost of

reduced numerical accuracy.

After that, we study the time distribution of the major functional stages in sFFT.

We show that the perm+filter stage is the most time-consuming stage in sFFT. Fi-

nally, we analyze the perm+filter stage by using both theoretical and experimental

approaches. The result indicates that the irregular memory access pattern, which

caused nearly 100% of L1 and LL cache misses, is the root cause of the poor per-

formance for the perm+filter stage. These two observations provide us a strong

motivation that exploiting data locality of the sFFT is critical to improving the

performance as well as the parallel scalability.

In next few chapters, we will present the parallel sFFT implementations for a va-

riety of state-of-the-art parallel architectures. We will discuss our major approaches

in improving the data locality. We will also show that the enhancement of the
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data locality will significantly improve the performance and the parallel scalability

of sFFT.
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Chapter 5

PsFFT: Parallel Sparse FFT on

Multicore CPUs

5.1 Overview

In this chapter, we present our Parallel sFFT implementation, namely PsFFT, on

multicore CPUs1. Since sFFT is a fairly new numerical algorithm, and FFT is of

key importance to a considerable amount of scientific and engineering applications,

it is a nature path to enhance the performance of sFFT through parallel computing

techniques on state-of-the-art parallel architectures2.

Since PsFFT is implemented by using OpenMP, a de facto programming model

for shared-memory parallel programming, we first briefly introduce the OpenMP in

1For the rest of the dissertation, we will use the term PsFFT to refer our parallel sFFT imple-
mentation on multicore CPUs.

2The majority of contents in this chapter are based on our prior publication in [80].
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Section 5.2.

Second, we will discuss the challenges in parallelizing sFFT in Section 5.3. Sec-

tion 5.4 presents the PsFFT algorithm in a step-by-step approach. Some techniques

to address the challenges in the parallelization and to improve the data locality will

be discussed in Section 5.5.

Section 5.6 will evaluate the performance of the PsFFT algorithm with: 1) the

sequential implementation of sFFT as was discussed in Chapter 4, and 2) the parallel

FFTW. We will show that the PsFFT achieves a considerable amount of speedup

compared to the sFFT and FFTW. We will also demonstrate that the data local-

ity is improved by employing the locality optimization techniques. Finally, we will

conclude and discuss some open questions we need to address in future.

5.2 Parallel Programming with OpenMP

5.2.1 Overview

OpenMP is a de facto programming model for shared-memory parallel program-

ming [8]. It provides a simple interface including a set of compiler directives, library

routines and environment variables, which can be used to create a parallel region,

define work sharing, manage the data environment, and specify synchronizations.

Currently, OpenMP mainly supports programming languages in C, C++, and For-

tran.
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Parallel Regions

Master 

Thread

A Nested

Parallel Region

Figure 5.1: Fork-join model of OpenMP

OpenMP adopts a simple fork-join model (presented in Figure 5.1). An OpenMP

program begins with an execution using a single thread, called the master thread.

The master thread spawns teams of threads in response to OpenMP directives, which

perform work in parallel. OpenMP also allows the threads to spawn another level of

teams of threads inside a parallel region, which is call nested parallelism. Parallelism

is thus added incrementally; the serial program evolves into a parallel one. OpenMP

directives are inserted at key locations in the source code. These directives take the

form of comments in Fortran and #pragmas in C and C++. Most OpenMP directives

apply to structured blocks, which are blocks of code with one entry point at the top

and one exit point at the bottom. The compiler interprets the directives and creates

the necessary code to parallelize the indicated code blocks.

5.2.2 Major Contents

Major OpenMP directives enable the program to create a team of threads to exe-

cute a specified region of code in parallel (omp parallel), the sharing out of work

68



in a loop or in a set of code segments (work-sharing constructs such as loop con-

struct omp do in Fortran (or omp for in C/C++), sections construct omp sections),

data environment management (private and shared), and thread synchronization

(barrier, critical and atomic). User-level runtime routines allow users to detect

the parallel context(omp_in_parallel()), check and adjust the number of execut-

ing threads(omp_get_num_threads() and omp_set_num_threads()) and use locks

(omp_set_lock()). Environment variables may also be used to adjust runtime be-

havior of OpenMP applications particularly by setting defaults for the current exe-

cution. For example, it is possible to set the default number of threads to execute a

parallel region(OMP_NUM_THREADS) and the default scheduling policy (OMP_SCHEDULE)

etc.

For the loop construct (omp do in Fortran or omp for in C/C++), a schedule

clause with several variants is provided to specify how iterations of the loop are as-

signed (scheduled) among threads in order to achieve load balancing. schedule(static)

evenly divides the iteration space into several chunks and each thread is assigned at

most one chunk. schedule(static,chunk_size) indicates that the iterations are

divided into chunks of the specified size and the chunks are assigned to threads in

a round-robin fashion. The way of assigning chunks to threads is fixed for static

scheduling once the iteration number and thread number are known. For dynamic

scheduling, the assignment dynamically happens at runtime. Each thread grabs one

chunk of the loop iterations at a time to execute and requests another one when

it finishes the current chunk until no more chunks remain. guided scheduling is

similar to the dynamic scheduling except that the chunk size is proportional to the
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number of the remaining iterations divided by the number of threads until reaching

to the specified chunk size. Finally, the choice of the scheduling policies mentioned

above can be deferred until runtime using an environment variable OMP_SCHEDULE if

schedule(runtime) is used.

5.2.3 An Example using OpenMP

Figure 5.2 shows a code example in which a loop calculating the value of PI is par-

allelized using OpenMP. In this case, a work-sharing construct omp for is combined

with the parallel construct omp parallel to indicate that the loop body is going to

be executed in parallel and the work of the entire iteration space is shared by mul-

tiple threads. A data environment clause private is needed to keep a private copy

of the temporary variable x used for each thread, preventing possible race condition

otherwise because the default data attribute for all variables is shared in OpenMP.

The partial sums of the loop iterations assigned to multiple threads are summarized

into a final one using the reduction clause using addition operation. In summary,

it is critical for users to judge if a loop is parallelizable before adding OpenMP direc-

tives. They also need to make sure the data environment attributes for each variable

is implicitly or explicitly specified as desired.

5.2.4 Advantages of OpenMP

As can be seen from the Figure 5.2, one advantage of using OpenMP is it is a

high-level parallel programming model which can largely simplify the programming
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1 int computePI ( void ) {
2 int i ;
3 double x , pi , sum = 0 . 0 ;
4 double s tep ;
5
6 long num steps = 10000000;
7 s tep = 1 .0 / (double ) num steps ;
8
9 #pragma omp p a r a l l e l for r educt ion (+:sum) p r i v a t e ( x )

10 for ( i = 1 ; i <= num steps ; i++) {
11 x = ( i − 0 . 5 ) ∗ s tep ;
12 sum = sum + 4.0 / ( 1 . 0 + x ∗ x ) ;
13 }
14
15 p i = step ∗ sum ;
16 p r i n t f ( ” s tep :%e sum:% f PI=%.20 f \n” , step , sum , p i ) ;
17 return 0 ;
18 }

Figure 5.2: PI calculation using OpenMP

efforts on parallel architectures. Compared with other multi-threading programming

paradigms such as POSIX Thread [59], an OpenMP programmer does not need

to specify all the details of managing and coordinating threads. Therefore, the

programmer can focus more on the strategies on the application level and lets the

compiler handle the low-level details. It greatly shortens the software development

cycles.

Second, since OpenMP is a high-level programming model, the OpenMP pro-

grammer inserts some parallel directives and does not change the control flow of the

corresponding sequential program, which dramatically reduces the efforts of adapting

a previously sequential program to parallel form. It largely reserves the structure of

its corresponding sequential program thus facilitates the understanding and main-

tenance of the program. The nice feature of high-level in OpenMP also provides
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sufficient code portability across different parallel architectures whenever possible.

That is, an OpenMP program usually does not depend on architecture-specific fea-

tures thus, it does not need to be largely re-factored when ported to another type of

architecture.

Last but not least, OpenMP has been well implemented in a large number of

mainstream compilers from various vendors and open source communities including

GNU, LLVM, Intel etc. [5]. The implementations are maturely enough to be used in

real production code with considerable performance guarantee [81].

In summary, the success of OpenMP relies on several advantages: easy of use, in-

cremental parallelism, uniform code for both sequential and parallel versions, porta-

bility and performance guarantee. These are the main reasons we decide to use

OpenMP as a parallel programming model to implement the sFFT algorithm. In

next section, we will start with discussing the challenges in parallelizing the sFFT

algorithm. Then we present our parallel sFFT algorithm and discuss the approaches

we address the challenge.

5.3 Challenges

Challenge 1: Loop-carried dependence

The first challenge to parallelize the sFFT is a loop-carried dependence in the

perm+filter stage. Figure 5.3 illustrates a simplified code snippet for the perm+filter

stage in sFFT. As can be seen from the figure, the loop-carried dependence occurs
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1 /∗ Perm + F i l t e r s tage in sFFT ∗/
2 int idx = i n i t v a l
3 do t = 1 , time
4 do i = 1 , num
5 idx = ( idx + a i ) % num
6 buckets [ i % B] += s i g n a l [ idx ] ∗ f i l t e r [ i ]
7 end do
8 end do

Figure 5.3: The simplified perm+filter stage in sFFT

when updating the idx variable in the inner loop(line 5). The idx determines which

signal point to sample for each iteration. In section 5.4, we will present a simple

index mapping technique which can effectively remove the loop-carried dependence

for this stage.

Challenge 2: Race condition

As is shown in the figure, the sFFT starts with sampling the input signals by con-

voluting with the filter, and binning into one of the buckets. Simply partitioning

the inner loop such that each thread gets one chunk of the loop iteration is impos-

sible because it is highly likely that signals on different threads are binned into the

same bucket, leading to the race condition issue in parallel computing domain. For

instance, in Figure 5.3, signal points in iteration i = 0, B, 2B, ... will go to the

same bucket[0] due to the modular operations by the size of B. If the iterations

are on different threads which will update the same bucket simultaneously, the race

condition problem will incur.

A trial approach to address this issue is to use a set of mutex locks when updating

the buckets. Specifically, when a thread updates a bucket, it first tries to acquire
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the lock for the bucket. If successes, the thread will lock the bucket to prevent

other threads updating the same bucket simultaneously. After the thread finishes

the update, it will release the lock then other threads might repeat the same process

to acquire the lock. The major limitation of this approach is that locks will serialize

the writing process, so there is virtually no parallelization at all. In addition, this

approach is costly in space since each bucket needs a separate mutex lock. It is very

inefficient in space when the data size becomes too large.

Another possible approach is called local reduction. That is, each thread main-

tains a local copy of buckets. Each thread first updates its local buckets. At a final

stage, all threads merge its local buckets into a global one. This approach can largely

address the parallelization bottleneck issue except for the last stage. The major lim-

itation of this approach is the space overhead due to the local copy of the buckets

for each thread. Also, the serialization in the final stage may cause the performance

bottleneck as well.

To address the challenge of the parallel reduction problem, we present a bucket

tiling approach in Section 5.4. Our approach can effectively address the parallel

reduction problem for sFFT without the need of serialization nor the cost of extra

space.

Challenge 3: Dynamic irregular memory access pattern

Dynamic irregular memory access pattern involved in the perm+filter stage of sFFT

when it randomly samples the signals and bins into the buckets. As is shown in
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Figure 5.3, the sFFT samples the data entries in the signal array, multiplies with

the filter and accumulates the results into the buckets. As can be observed from

the figure, accesses to the signal[index] are irregular. Furthermore, the value of

strides factor (i.e., ai) remains unknown until runtime and it will get updated at

each iteration of the time-step loop.

As was studied in Section 4.5, the irregular memory access pattern causes not

only poor cache utilization but also poses great challenges in efficiently parallelizing

the sFFT. The challenges come from two folds. First of all, the irregular mem-

ory accesses make the even data partitioning across different threads non-trivial.

A sophisticated partition algorithm such as graph partitioning is required to mini-

mize the demanding communication and traffic in memory and balance the workload

across threads. The second challenge incurred by high memory traffic in irregular

applications is even more fundamental: multicore architectures with shared memory

results in cores competing for the memory bandwidth, which substantially limits the

application’s scalability. In Section 5.5, we will present data locality optimization

techniques which can enhance the spatial and temporal locality, thus improve the

performance and parallel scalability.

5.4 PsFFT: Parallel Sparse FFT

In this section, we present our parallel sFFT implementation, namely PsFFT, on

multicore CPUs. According to the profiling results discussed in Section 4.4, the

perm+filter stage (Stage 1&2) is the most time-consuming function in sFFT, we will
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spend most of the space on discussing the approaches to parallelizing and optimizing

for this stage. Nevertheless, we still present the parallel approaches for the rest of

the stages, which will be relatively straightforward.

5.4.1 Stage 1 & 2: Random Spectrum Permutation and Fil-

tering

The sFFT starts with convolving the permuted input signal with a well-designed filter

and binning them into a small number of buckets. Figure 5.3 shows the simplified

code snippet of the perm+filter stage. Noted that the iterations in the loop are

filter size rather than signal size n because the tails of the filter are almost zero,

so it is unnecessary to compute zero-valued points.

Index Mapping

Among the several challenges to parallelize this stage, the first challenge comes with

a loop-carried dependence while updating the variable idx that prevents the loop

from being parallelized. The idx determines and stores the stride distance while

permuting the input signal which depends on its previous value.

To address this challenge, we use an index mapping approach that can simply

remove the loop-carried dependence issue. The idea is based on an observation

from Figure 5.3. From the figure, we can see that the values of the idx among

iterations follow the pattern such that: init val, (ai + init val) % n, (2 *

ai + init val) % n for loop iteration i = 0, 1, 2. Therefore, the idea of the
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1 int index = i n i t v a l ;
2 for ( int i =0; i < f i l t e r s i z e ; i++) {
3 . . .
4 // Original index calculation
5 index = ( index + a i ) % n ;
6
7
8 // After index mapping
9 index = ( i ∗ a i + i n i t v a l ) % n ;

10 . . .
11 }

Figure 5.4: Index mapping used in Stage 1&2: random spectrum permutation and
filtering

index mapping is to directly map the value of index to the loop iterator i without

relying on its prior value, as is shown in Figure 5.4. As a result, the complexity

of obtaining the value of index[i] only relies on the loop iterator i and can be

therefore parallelized.

Bucket Tiling

The second challenge is the race condition problem, as was discussed in Section 5.3.

We address this issue by proposing a bucket tiling approach. The idea is similar

to a well-known parallel programming paradigm namely Bulk synchronous parallel

(BSP) [1]. That is, we tile a loop iteration into sets of collision-free iterations. In

sFFT, a two layered iteration space is created where the inner layer is collision-free

and suitable for a data-parallel mechanism.

Specifically, we partition the buckets into some groups, and each thread will only

perform the perm+filter stage of the signals belonging to its group. Thus, there will

be no collision in a bucket. The signal mapping to be permuted and filtered with the

77



corresponding buckets must be determined beforehand. As is shown in Figure 5.3,

the process of hashing signals into buckets follows a round-robin fashion. Thus, the

reduction collision only occurs between outer loop iterations. For instance, when

loop iteration i iterates through 0 to B - 1, each permuted signal will be binned

into adjacent buckets accordingly. The collision occurs only when i equals to 0, B,

2B, . . . when the signal are accumulated in the same bucket.

Figure 5.5(a) shows the basic bucket tiling approach. Data with a color affiliated

in the loop will be mapped to buckets with the same color. Updating the buckets

(x sampt[B]) entails two steps. In the first step, each thread reads data chunks

from the first B elements of the filter and updates the corresponding buckets. In the

second step, threads have to wait until all of them have finished updating the buckets

before moving onto the next round. In this approach, there will be no hash collision

within each round of updating the buckets. It performs better than the traditional

local reduction approach because each thread only needs to handle one chunk of the

data instead of the whole set. There is also no need to synchronize the global array

at the end.

A barrier-free bucket tiling. In the basic bucket tiling approach in Fig-

ure 5.5(a), a global barrier is required between each round of the outer loop. It is

because data chunks of the filter mapped into the same buckets can be hashed to

different threads for each round depending on the data layout in memory. For in-

stance, in Figure 5.5(a) the data in green will be affiliated with thread 0 in the first

round while with thread 1 in the second round and thread 2 in the third round. A

data race hazard between each round exists and global synchronization is needed to
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(a) A basic bucket tiling approach

(b) Barrier-free bucket tiling

Figure 5.5: bucket tiling

ensure that all threads finish updating the buckets before moving to the next round.

However, the global synchronization impedes the complete loop to be fully paral-

lelized. It also causes significant overhead when the number of threads increases. To

address this problem, we introduce an enhanced barrier-free bucket tiling approach,

as shown in Figure 5.5(b). Unlike the basic approach where the data is only af-

filiated within an inner loop iteration; the enhanced design will ensure the data be

affiliated between each round as well. That is, the data chunks hashing into the same

bucket will always affiliate to the same thread. For instance, in Figure 5.5(b), the
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1 void i n n e r l o o p p e r m f i l t e r ( r e a l t ∗ d or igx , int n ,
2 r e a l t ∗ d f i l t e r ,
3 int f i l t e r s i z e
4 r e a l t ∗d x sampt ,
5 int B,
6 int a i ) {
7 int i , j ;
8 int n 2 = n ∗ 2 ;
9

10 // Number of rounds to accumulate
11 // the permuted samples into buckets
12 int round = f i l t e r s i z e / B;
13
14 // Buckets are initialized to 0
15 #pragma omp p a r a l l e l for
16 for ( i = 0 ; i < B; i ++) {
17 int i 2 = i ∗ 2 ;
18 d x sampt [ i 2 ] = 0 . ;
19 d x sampt [ i 2 + 1 ] = 0 . ;
20 }
21
22 // Main body of the loop
23 #pragma omp p a r a l l e l
24 for ( i = 0 ; i < round ; i++) {
25 int o f f 1 = i ∗ B ∗ 2 ;
26 #pragma omp for nowait
27 for ( j = 0 ; j < B; j++) {
28 unsigned o f f 2 = o f f 1 + 2 ∗ j ;
29 unsigned index = o f f 2 ∗ (unsigned ) a i % n 2 ;
30
31 // Calculate the real and imaginary part of
32 // complex arithmetics respectively
33 d x sampt [ 2 ∗ j ] += REAL( index , o f f 2 , 0 ) ;
34 d x sampt [ 2 ∗ j + 1 ] += IMAG( index , o f f 2 , 0 ) ;
35 }
36 }
37 }

Figure 5.6: Stage 1&2: Parallel Permutation and Filtering using OpenMP
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data chunks in green in the filter will be hashed into the same buckets of x sampt

maintaining the same color. These data chunks are only affiliated with thread 0 in

each round. As a result, the thread that finishes one round will directly move to the

next round, asynchronously without having to wait for other threads to be finished.

The global barrier between each round is therefore eliminated.

Figure 5.6 shows the code snippet of the parallel perm+filter stage after apply-

ing the index mapping and bucket tiling techniques. Compared to the sequential

perm+filter code shown in Figure 5.3, the original loop has been partitioned into

two nested loops which can be executed in parallel.

The main advantage of using the bucket tiling approach is each thread only up-

dates its own chunks of buckets (i.e., d x sampt[] in the code) so there is no need

to utilize mutex locks to prevent the concurrent update nor allocate private mem-

ory space to perform the local reduction. Therefore, the bucket tiling exploits the

maximum potential parallelism without extra space cost.

5.4.2 Stage 3: B-dimensional FFT

After binning the spectra into a smaller number of B buckets, a B-dimensional FFT

is performed. In PsFFT, we simply employ the parallel FFTW [29] to perform this

function. Furthermore, since all inner loops will be repeated for iterations outer loops

times, of each calculates the same dimension of FFTW, we set up the FFTW plan [2]

only once. The FFTW plan creates some essential parameters, e.g., twiddle factors

used for calculating the FFT, which only depends on the input signal size. Since for

81



1 void 1 d f f t ( int oute r l oops ,
2 complex t ∗∗x sampt ,
3 int B) {
4 int i ;
5
6 // Setup FFTW plan
7 f f t w p l a n p = f f t w p l a n d f t 1 d (B, // Dimension
8 x sampt [ 0 ] , // Input
9 x sampt [ 0 ] , // Output, in-place

10 FFTWFORWARD, // FFT or iFFT
11 FFTW ESTIMATE) ; // Planner Flag
12
13 #pragma omp p a r a l l e l for
14 for ( i = 0 ; i < o u t e r l o o p s ; i++) {
15 // FFTW for calculating B-dimensional FFT
16 f f t w e x e c u t e d f t (p , x sampt [ i ] , x sampt [ i ] ) ;
17 }
18
19 // Destroy the FFTW plan
20 f f t w d e s t r o y p l a n (p ) ;
21 }

Figure 5.7: Stage 3: B-dimensional FFT using OpenMP

sFFT, the input size for Stage 3 is always the number of buckets (i.e., B), we batch

the FFTW by creating the FFTW plan only at the first time it calls the FFTW and

then reuse it for the rest of iterations. This approach can avoid repeatedly create and

destroy the same FFTW plan each time when PsFFT performs the B-dimensional

FFT and thus save a lot of time.

Figure 5.7 shows the code snippet of Stage 3, i.e., B-dimensional FFT. As was

discussed, the FFTW plan is created only once and reused by all the rest of the

iterations in the outer loop. In addition, we use the FFTW ESTIMATE planner flags to

create the FFTW plan quickly.
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5.4.3 Stage 4: Cutoff

After Stage 3, the B-dimensional FFT, there are B buckets containing potentially

large Fourier coefficients at frequency domain. Since the spectra are sparse in fre-

quency, still very few of them (i.e., k, where k � B) are significant. The objective

of this stage is to select the top k largest coefficients out of B in the magnitude and

store their locations.

Therefore, this problem can be reduced to find out the top k largest objects in

a B-dimensional array. There are many classic algorithms to perform this function.

The most straight-forward approach is to sort the B-dimensional and select the top k

largest elements. However, this method is bounded by the sorting algorithm, which

is typical O(klogk) in time. A better algorithm is to utilize a min binary heap.

Specifically, we build a min heap with the size of k by inserting the first k elements

of the array into the heap. Then, for each element from k + 1 to B, we compare

it with the root of the heap. If the element is greater than the root, then replace

the element as the new root and heapify the binary heap. Else, ignore the element

since it cannot be the top k elements. Finally, the heap has k largest elements as we

need. Overall, the time complexity of this approach is bounded by O(Blogk). The

space complexity of this algorithm is O(k). In our implementation of PsFFT, we use

the Quick Select algorithm, since it delivers on average linear runtime (i.e., O(B))

without extra space cost. The details of the algorithm can be found at [45].

Figure 5.8 shows the parallel cutoff function. In PsFFT, we decide to parallelize

the outer loop instead of the quick select algorithm itself for two reasons. First of all,
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1 void c u t o f f ( int oute r l oops ,
2 int ∗∗J , int num,
3 complex t ∗∗x sampt ,
4 r e a l t ∗∗ samples ,
5 int B) {
6 int i , j ;
7
8 #pragma omp p a r a l l e l for
9 for ( i = 0 ; i < o u t e r l o o p s ; i++) {

10
11 // Transform the complex number,
12 // from a + bi to complex absolue value a^2 + b^2
13 for ( j = 0 ; j < B; j++) {
14 samples [ i ] [ j ] = cabs2 ( x sampt [ i ] [ j ] ) ;
15 }
16
17 // Quick select algorithm
18 f i n d l a r g e s t i n d i c e s ( samples [ i ] , // input
19 B, // input size
20 J [ i ] , // output
21 num ) ; // output size
22 }
23 }

Figure 5.8: Stage 4: Parallel cutoff function

according to the profiling results discussed in Section 4.4, the B-dimensional FFT +

Cutoff (i.e., Stage 3&4) together takes less than 10% of the overall sFFT execution

time. Thus, it will not make much difference to parallelize the inner loop of this stage,

i.e., the quick select algorithm. Second, it is non-trivial to parallelize the quick select

algorithm due to the strong dependency nature in the algorithm. Therefore, it is

a nature choice to exploit a coarse-grained parallelism (i.e., to parallelize the outer

loop) instead of a fine-grained parallelism (i.e., the inner loop).
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5.4.4 Stage 5: Recover Hash Function for Location Recovery

The Stages from 1 to 4 define a hash function mapping each coefficient into one of the

buckets. The “real” locations of large coefficients need to be reversed by eliminating

the phase changes caused by spectrum permutation and filtering.

To parallelize this stage, each thread independently computes the reverse hash

function to recover the location of the potential large coefficients. As described in

Section 3.2, Stages 1 to 5 iterates for a number of location loops times, so for each

inner loop (determining the location), we increment the occurrences(score) of the

location recovered. Once the score of the frequency equals to the threshold, we

consider this location of the coefficient to be large and add it to hits.

5.4.5 Stage 6: Magnitude Estimation

The purpose of this step is that given the locations of large coefficients we need to

reconstruct the magnitudes. Since the inner loops are repeated for a number of L

loops, given a specific location r ∈ I ′, we can get a set of magnitudes {x̂ri |i ∈ L}. So

the magnitude x̂r is computed as the median of the candidate magnitudes for all the

L location loops, i.e., median({x̂ri |i ∈ L}).

To parallelize this stage, given the number of num hits, which is the number of

potential large coefficients obtained from the previous stage, each thread computes

the reconstruction of the magnitude for a given location in parallel.
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5.5 Data Locality Optimization

As studied in Chapter 4.5, sFFT is a memory-bounded algorithm with poor spatial

and temporal locality, it is of key importance to exploit the available memory band-

width. As an early effort, we explore the blocking techniques for sFFT due to two

reasons.

First of all, blocking computations via loop nest restructuring has been used suc-

cessfully to improve memory hierarchy utilization in regular applications; yet it is

not thoroughly understood how blocking works on irregular applications. Second,

not all memory references are irregular in sFFT. As is shown in Figure 5.3, data

accesses to the array filter and bucket are still regular. Consequently, loop block-

ing techniques still make effects for this complex irregular application. Furthermore,

keeping data in cache or registers for the regular computations, therefore, reduce the

memory traffic pressure and can save more memory bandwidth for irregular memory

accesses.

In our blocking implemented for sFFT, the data is divided into several cache line

sized blocks and operations are carried on this block in order to avoid repeatedly

fetching data from main memory. We evaluate the effects of blocking techniques

later in Section 5.6.
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5.6 Performance Evaluation

In this section, we evaluate the performance of the PsFFT on an Intel Sandy Bridge

architecture, the same as we used to evaluate the sequential implementation of sFFT

in Chapter 3. Table 4.2 shows the experimental setup. The compiler version used to

build the sFFT is gcc-4.8.2 with optimization level -O3. In addition, the cache data

is collected using Valgrind 3.8.1 [68]. The FFTW version we used is 3.3.4. Similar

to Chapter 4, we evaluate both double-precision and single-precision floating point

numbers as the input data.

5.6.1 Choosing the Best Block Size

In the first experiment, we explore different block sizes and choose the size of blocks

which delivers the best performance for the following experiments. Table 5.1 shows

the execution time of the perm+filter stage for various block sizes ranging from 32

to 4096. As we can see from the table, for a smaller number of threads, different

block size does not make too much difference. For the number of threads being larger

(e.g., 6 threads), an over-large block can greatly increase the execution time. For

this reason, we choose the block size to be 32 for the rest of the experiments.
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Table 5.1: Execution time (sec) of different block sizes for PsFFT (N = 222, k =
1000)

no. of threads 1 2 3 4 5 6

block size = 32 0.22 0.12 0.09 0.07 0.08 0.06

block size = 64 0.22 0.12 0.09 0.08 0.08 0.07

block size = 128 0.22 0.12 0.09 0.09 0.06 0.06

block size = 256 0.22 0.12 0.09 0.08 0.07 0.07

block size = 512 0.22 0.12 0.09 0.08 0.08 0.07

block size = 1024 0.22 0.12 0.09 0.08 0.08 0.09

block size = 2048 0.22 0.12 0.12 0.09 0.08 0.08

block size = 4096 0.22 0.12 0.12 0.13 0.16 0.15

5.6.2 Experimental Results – Double Precision

In this subsection, we evaluate the performance of PsFFT for the double-precision

floating point numbers. We compare the performance of PsFFT with 1) UH se-

quential sFFT implementation (i.e., UH sFFT), 2) MIT original sequential sFFT

implementation (i.e., MIT sFFT) and 3) parallel FFTW.

Execution Time vs. Signal Size N

In this experiment, we fix the signal sparsity k = 1000 and report the execution time

of the compared algorithms for signal sizes n ranging from 219 to 228.

Figure 5.9(a) plots the average execution time of the compared algorithms. From

the figure, we can see that the MIT sFFT is the slowest while the UH sFFT im-

plementation reduces the execution time by 2x. The PsFFT, on the other hand,

significantly reduces the execution time compared to the sequential UH sFFT and

MIT sFFT implementation.
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Table 5.2(a) shows the speedup of PsFFT over the sequential version of sFFT.

It can be seen from the table that, compared to UH sFFT, the PsFFT achieves 2.9x

speedup on average. The PsFFT achieves the average speedup of 4.95x compared to

the MIT sFFT implementation.

Compared to parallel FFTW, Figure 5.9(a) shows that the execution time of

PsFFT and FFTW are approximately linear in the log scale. However, the slope of

the line of PsFFT is less than the slope of FFTW, which is a result of the sublinear

runtime of sFFT. Furthermore, the PsFFT becomes faster than FFTW when the

signal size is around 222 (more than 4 million data points) at recovering the exact

1000 non-zero large coefficients. Compared to the sequential implementations of

sFFT where the cross point is 226 and 224 for MIT and UH sFFT implementation,

respectively, the PsFFT greatly reduces the signal size by 16x and 4x in order to be

faster than FFTW.

Figure 5.10(a) (also shown in Table 5.3(a)) shows the speedup of PsFFT over

parallel FFTW at k = 1000. It can be seen from the figure that PsFFT is faster

than FFTW from 0.27x to 9.24x with the increase of the signal size n. It is interesting

to note that the gap of execution time between PsFFT and FFTW diverges fast with

the signal size n due to the sublinear execution time of sFFT. This gives more credits

to the PsFFT for large input signals.

Figure 5.11(a) also compares the speedup of PsFFT and FFTW on 6 threads.

From the figure, we can see that the average speedup of PsFFT is 3x out of 6 threads.

So the parallel efficiency is 50%. Compared to PsFFT, the speedup of parallel FFTW

is slightly better for most of the signal sizes. The average speedup for FFTW is 3.14x
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on 6 threads.

Execution Time vs. Signal Sparsity k

In this experiment, we fix the signal size to n = 227 (i.e., 134,217,728) and evaluate

the execution time of PsFFT vs. the number of non-zero frequencies k. We range

the k from 1000, 3000, to as dense as 31, 000. Figure 5.9(b) illustrates the average

execution time of the compared algorithms. We can see from the figure that the

PsFFT significantly reduces the execution time compared with MIT sFFT and UH

sFFT implementations.

Table 5.2(b) shows the speedup of PsFFT over the sequential version of sFFT

when we fix the signal size n and vary the signal sparsity k. It can be seen from

the table that, compared to UH sFFT, the PsFFT achieves 3.62x speedup on aver-

age. The PsFFT achieves the average speedup of 6.48x compared to the MIT sFFT

implementation.

Compared to parallel FFTW, Figure 5.9(b) shows that the PsFFT is faster than

FFTW for k up to 23000. Compared to the sequential MIT and UH sFFT imple-

mentation where the cross point is at k = 2000 and k = 5000, the PsFFT greatly

expands the signal sparsity k by 5x, indicating more applications with broader signal

bands can fit into the PsFFT.

Figure 5.10(b) (also shown in Table 5.3(b)) shows the speedup of PsFFT over

parallel FFTW at k = 1000. As is shown in the figure, the PsFFT is faster than

FFTW by 6.03x at k = 1000 and the gap reduces with larger sparsity k. Finally
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Table 5.2: Speedup of PsFFT (6 threads) over sFFT (1 thread)

(a) Fix k = 1000, varying n from 219 to 228

Signal
size 2n

PsFFT
(sec)

UH
sFFT
(sec)

MIT
sFFT
(sec)

Speedup
PsFFT
vs. UH
sFFT

Speedup
PsFFT
vs. MIT
sFFT

19 0.05 0.12 0.22 2.47 4.50

20 0.07 0.18 0.29 2.72 4.37

21 0.09 0.22 0.39 2.58 4.49

22 0.10 0.31 0.51 3.03 5.05

23 0.14 0.41 0.70 3.01 5.12

24 0.18 0.54 0.97 3.03 5.44

25 0.25 0.78 1.37 3.12 5.46

26 0.30 1.04 1.87 3.42 6.16

27 0.59 1.67 2.65 2.83 4.47

28 0.84 2.37 3.73 2.84 4.46

average 2.90 4.95

(b) Fix n = 227, varying k from 1000 to 31000

Signal
sparsity
k

PsFFT
(sec)

UH
sFFT
(sec)

MIT
sFFT
(sec)

Speedup
PsFFT
vs. UH
sFFT

Speedup
PsFFT
vs. MIT
sFFT

1000 0.61 1.70 2.72 2.78 4.44

3000 0.72 2.62 4.61 3.63 6.39

5000 1.02 3.67 6.27 3.60 6.15

7000 1.33 4.76 8.13 3.57 6.10

9000 1.65 6.03 10.54 3.65 6.39

11000 2.07 7.60 13.75 3.68 6.65

13000 2.58 9.68 17.85 3.76 6.93

15000 2.55 8.85 15.55 3.47 6.09

17000 2.89 10.17 17.72 3.53 6.14

19000 3.18 11.53 20.47 3.63 6.45

21000 3.46 12.57 22.87 3.63 6.61

23000 3.78 14.00 25.60 3.71 6.78

25000 4.16 15.49 28.67 3.72 6.89

27000 4.49 17.04 31.55 3.80 7.03

29000 4.79 18.41 34.77 3.84 7.26

31000 5.20 20.09 38.34 3.86 7.37

average 3.62 6.48
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Table 5.3: Speedup of PsFFT over parallel FFTW (6 threads)

(a) Fix k = 1000, vary n from 219 to 228

Signal size 2n PsFFT
(sec)

FFTW
(sec)

Speedup
of PsFFT
vs. FFTW

19 0.05 0.01 0.27

20 0.07 0.02 0.34

21 0.09 0.05 0.59

22 0.10 0.13 1.26

23 0.14 0.27 1.98

24 0.18 0.48 2.69

25 0.25 0.96 3.82

26 0.30 1.78 5.87

27 0.59 3.64 6.15

28 0.84 7.72 9.24

(b) Fix n = 227, vary signal sparsity k from 1000 to 31000

Signal sparsity
k

PsFFT
(sec)

FFTW
(sec)

Speedup
of PsFFT
vs. FFTW

1000 0.61 3.70 6.03

3000 0.72 3.61 5.00

5000 1.02 3.59 3.52

7000 1.33 3.59 2.69

9000 1.65 3.68 2.23

11000 2.07 3.63 1.76

13000 2.58 3.59 1.40

15000 2.55 3.62 1.42

17000 2.89 3.59 1.24

19000 3.18 3.54 1.12

21000 3.46 3.60 1.04

23000 3.78 3.55 0.94

25000 4.16 3.75 0.90

27000 4.49 3.59 0.80

29000 4.79 3.62 0.76

31000 5.20 3.59 0.69
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PsFFT becomes slower than FFTW when signal spectra become dense.

Figure 5.11(b) plots the speedup for various signal sparsity k with fixed signal

size n. From the figure, we can see that the speedup of PsFFT is 3.61x on average,

while for FFTW, the average speedup is 4.35x. While the parallel speedup of PsFFT

is slightly lower than FFTW, it is still way faster than FFTW for a wide range of

signal size n and sparsity k.

5.6.3 Experimental Results – Signal Precision

In this subsection, we evaluate the performance of PsFFT for input data sets of

single-precision floating point numbers.

Execution Time vs. Signal Size N

In this experiment, we fix the signal sparsity k = 1000 and report the execution time

of the compared algorithms for signal sizes n ranging from 219 to 228.

Figure 5.12(a) plots the average execution time of the compared algorithms. From

the figure, we can see that the result is consistent with the double-precision inputs.

That is, the MIT sFFT is the slowest while the UH sFFT implementation reduces

the execution time by 2x. The PsFFT, on the other hand, significantly reduces the

execution time compared to the sequential UH sFFT and MIT sFFT implementation.

Table 5.4(a) gives the speedup of PsFFT over the sequential version of sFFT. It

can be seen from the table that, compared to UH sFFT, the PsFFT achieves 2.9x
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speedup on average. The PsFFT achieves the average speedup of 5.18x compared

to the MIT sFFT implementation. The experimental result is relatively the same as

the double-precision results.

Compared to parallel FFTW, Figure 5.12(a) shows that the execution time of

PsFFT and FFTW are approximately linear in the log scale. However, the slope of

the line of PsFFT is less than the slope of FFTW, which is a result of the sublinear

runtime of sFFT. Furthermore, the PsFFT becomes faster than FFTW when the

signal size is around 223 (i.e., 8,388,608) at recovering the exact 1000 non-zero large

coefficients. Compared to the sequential implementations of sFFT where the cross

point is 227 and 225 for MIT and UH sFFT implementation, respectively, the PsFFT

greatly reduces the signal size by 16x and 4x in order to be faster than FFTW.

Table 5.5(a) shows the speedup of PsFFT over parallel FFTW at k = 1000. It

can be seen from the figure that PsFFT is faster than FFTW from 0.1x to 6.45x with

the increase of the signal size n. It is interesting to note that the gap of execution

time between PsFFT and FFTW diverges fast with the signal size n due to the

sublinear execution time of sFFT. This gives more credits to the PsFFT for large

input signals.

Execution Time vs. Signal Sparsity k

In this experiment, we fix the signal size to n = 227 (i.e., 134,217,728) and evaluate

the execution time of PsFFT vs. the number of non-zero frequencies k. We range

the k from 1000, 3000, to as dense as 31, 000. Figure 5.12(b) illustrates the average
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Table 5.4: Speedup of PsFFT (6 threads) over sFFT (1 thread), single precision

(a) Fix k = 1000, varying n from 219 to 228

Signal
size 2n

PsFFT
(sec)

UH
sFFT
(sec)

MIT
sFFT
(sec)

Speedup
PsFFT
vs. UH
sFFT

Speedup
PsFFT
vs. MIT
sFFT

19 0.04 0.11 0.14 2.52 3.43

20 0.05 0.12 0.16 2.35 3.18

21 0.07 0.17 0.26 2.58 4.05

22 0.10 0.26 0.47 2.62 4.71

23 0.12 0.36 0.68 2.93 5.49

24 0.15 0.50 1.00 3.25 6.50

25 0.20 0.71 1.37 3.64 7.04

26 0.27 0.96 1.94 3.58 7.22

27 0.54 1.54 2.74 2.85 5.06

28 0.75 2.17 3.82 2.91 5.12

average 2.92 5.18

(b) Fix n = 227, varying k from 1000 to 31000

Signal
sparsity
k

PsFFT
(sec)

UH
sFFT
(sec)

MIT
sFFT
(sec)

Speedup
PsFFT
vs. UH
sFFT

Speedup
PsFFT
vs. MIT
sFFT

1000 0.52 1.56 2.77 2.99 5.31

3000 0.61 2.424 4.783 3.95 7.79

5000 0.91 3.444 6.561 3.80 7.24

7000 1.25 4.523 8.462 3.61 6.76

9000 1.53 5.677 10.949 3.70 7.14

11000 1.93 7.116 13.906 3.69 7.22

13000 2.37 9.025 17.745 3.80 7.47

15000 2.18 8.185 15.576 3.75 7.13

17000 2.49 9.349 17.834 3.75 7.15

19000 2.84 10.64 20.368 3.75 7.17

21000 3.05 11.545 22.827 3.79 7.49

23000 3.29 12.916 25.457 3.92 7.74

25000 3.71 14.362 29.145 3.87 7.86

27000 4.01 15.811 31.263 3.94 7.80

29000 4.26 16.95 34.324 3.98 8.05

31000 4.65 18.633 37.577 4.01 8.08

average 3.77 7.34
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Table 5.5: Speedup of PsFFT over parallel FFTW (6 threads), single precision

(a) Fix k = 1000, vary n from 219 to 228

Signal size 2n PsFFT
(sec)

FFTW
(sec)

Speedup
of PsFFT
vs. FFTW

19 0.04 0.00 0.10

20 0.05 0.01 0.20

21 0.07 0.02 0.35

22 0.10 0.05 0.46

23 0.12 0.16 1.32

24 0.15 0.31 2.01

25 0.20 0.76 3.90

26 0.27 1.24 4.64

27 0.54 2.80 5.18

28 0.75 4.81 6.45

(b) Fix n = 227, vary signal sparsity k from 1000 to 31000

Signal sparsity
k

PsFFT
(sec)

FFTW
(sec)

Speedup
of PsFFT
vs. FFTW

1000 0.52 2.74 5.24

3000 0.61 2.81 4.58

5000 0.91 2.73 3.01

7000 1.25 2.64 2.11

9000 1.53 2.77 1.81

11000 1.93 2.70 1.40

13000 2.37 2.77 1.17

15000 2.18 2.85 1.30

17000 2.49 2.75 1.10

19000 2.84 2.77 0.97

21000 3.05 2.68 0.88

23000 3.29 2.73 0.83

25000 3.71 2.83 0.76

27000 4.01 2.79 0.70

29000 4.26 2.77 0.65

31000 4.65 2.75 0.59
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execution time of the compared algorithms. We can see from the figure that the

PsFFT significantly reduces the execution time compared with MIT sFFT and UH

sFFT implementations.

Table 5.4(b) shows the speedup of PsFFT over the sequential version of sFFT

when we fix the signal size n and vary the signal sparsity k. It can be seen from

the table that, compared to UH sFFT, the PsFFT achieves 3.77x speedup on aver-

age. The PsFFT achieves the average speedup of 7.34x compared to the MIT sFFT

implementation.

Compared to parallel FFTW, Figure 5.12(b) shows that the PsFFT is faster

than FFTW for k up to 19000. Compared to the sequential MIT and UH sFFT

implementation where the cross point is at k = 1000 and k = 3000, the PsFFT

greatly expands the signal sparsity, indicating more applications with broader signal

bands can fit into the PsFFT.

Table 5.5(b) shows the speedup of PsFFT over parallel FFTW at k = 1000. As

is shown in the figure, the PsFFT is faster than FFTW by 5.2x at k = 1000 and

the gap reduces with larger sparsity k. Finally PsFFT becomes slower than FFTW

when signal spectra become dense.

5.6.4 Effects of Data Locality Optimization

In this subsection, we evaluate the performance improvements by employing the

blocking technique. Figure 5.13 shows the execution time of the perm+filter before

and after using the blocking technique. It can be seen from the figure that, the
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Table 5.6: Cache Miss Rate on blocking vs. non-blocking

blocking non-blocking

L1 Miss Rate 11.35% 15.63%
LL Miss Rate 11.29% 15.54%

blocking reduces the average execution time by 20%.

Furthermore, we also measure the cache miss rate before and after applying the

blocking optimization. Table 5.6 shows the L1 and LL cache miss rate results. As

is shown in the table, the blocking optimization reduces the L1 and LL cache miss

rates from 15.63% to 11.35%, a 38% cache performance improvement. The result

justifies the effectiveness of the blocking optimization.

5.7 Summary

In this chapter, we present our parallel sFFT implementation, namely PsFFT, on

multicore CPUs. We start with discussions on the challenges in paralleling the sFFT

at scale. After that, we introduce the PsFFT algorithm and present how we address

these challenges. We evaluate the performance of the PsFFT on an Intel Sandy

Bridge architecture with 6 cores in one socket. The experimental results show that

PsFFT achieves more than 3x speedup compared to our UH sequential sFFT im-

plementation, and more than 5x speedup if compares with the MIT’s original sFFT

implementation, on 6 threads. Compared to the parallel version of FFTW, the

PsFFT reduces the execution time by up to 9x for a considerable wide range of sig-

nal sizes and sparsity. Note that the performance gap is expected to be greater for
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larger signals. It indicates a variety of applications with wide signal bands can fit

into the sFFT and get the performance improvement by using the sFFT.

In next chapter, we will move to another parallel architecture, namely GPUs.

GPUs become widely used as a high-performance computing platform due to its

impressive computing capacity and the affordable cost. However, it is a non-trivial

task to port the sFFT to GPUs because of the huge divergence in architectures

compared to multicore CPUs. In next chapter, we will present the GPUs challenges

and discuss the approaches we parallelize the sFFT on GPUs.
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Chapter 6

cusFFT: A CUDA-based Sparse

FFT on Accelerator-based

Architectures

6.1 Overview

Parallel processors such as GPUs have played a significant role in the practical im-

plementation of many numerical applications. The computations that arise in these

applications lend themselves naturally to efficient parallel implementations. In this

chapter, we present a high-performance parallel algorithm for computing sFFT on

GPUs, namely cusFFT, using CUDA programming language 1. Before we present

1The majority of contents in this chapter are based on our prior publication in [20]
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the cusFFT algorithm, we will briefly review the salient details of NVIDIA’s state-of-

the-art GPU architecture and the CUDA parallel programming model in Section 6.2.

Although the increase in the number of cores and memory bandwidth on mod-

ern GPUs present an opportunity to improve the performance through sophisticated

parallel algorithm design, numerous challenges that need to be addressed to deliver

optimal performance. These challenges include evenly partitioning the workload to

maximize hardware utilization, minimizing the need for global synchronization that

may impede the parallelism in the fine-grained GPU computing, reducing the num-

ber of redundant operations caused by the parallelization, and coalescing access to

the global memory whenever possible. The parallelization and optimization tech-

niques used in the cusFFT algorithm meet the challenges mentioned above for GPU

architectures. Section 6.3 discuss some challenges in order to efficiently port sFFT

to GPUs.

6.2 Introduction to GPUs and CUDA

Before discussing the design and implementation of our cusFFT algorithm on GPUs,

we very briefly review the salient details of NVIDIA’s current GPU architecture and

the CUDA parallel programming model. GPU is being increasingly adopted as a

general-purpose computing platform to accelerate a vast majority of scientific and

engineering applications.

While different NVIDIA GPUs offer various hardware configurations, in this pa-

per, we focus on state-of-the-art Kepler GK110 architecture [4] as a testbed. A
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full Kepler GK110 configuration consists of an array of 15 Streaming Multiproces-

sors(SM), each of which features 192 single-precision CUDA cores, and each core has

fully pipelined floating-point and integer arithmetic logic units. Each SM could ac-

cess up to 65536 registers. Thread management, including thread creation, schedul-

ing, and synchronization are managed entirely by the hardware, so essentially the

overhead is minimum. To efficiently manage the large number of threads on the

hardware, the SM schedules threads in groups of 32 parallel threads called a warp.

In the Kepler GK110 architecture, each SM features four warp schedulers, each with

dual instruction dispatch units, allowing four warps to be issued and executed con-

currently.

In the memory subsystem, each SM has 64 KB of on-chip memory which can

be configured as shared memory/L1 cache, or both. In addition to L1 cache and

shared memory, Kepler also introduces a 48 KB cache for data that is known to be

read-only for the duration of the function. Use of the read-only path is beneficial

because it takes the load footprint off of the shared/L1 cache path. In addition, the

read-only data cache provides higher tag bandwidth. Use of the read-only path can

be managed automatically by the compiler or explicitly by the programmer by using

ldg() intrinsic. The GK110 GPUs also equip a DDR memory up to 6 GB that can

be addressable by all the SMs.

From the programmer’s perspective, a CUDA program invokes parallel functions

called kernels that execute across many parallel threads. A group of threads is

organized as a block, and an array of blocks are organized as a grid. A block is a group

of concurrent threads that can interact with each other through synchronization and
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per-block shared memory space private to that block. When invoking a kernel, the

programmer specifies both the number of blocks and the number of threads per block

to be created when launching the kernel. So we can essentially map the CUDA’s

hierarchy of threads to the hierarchy of processors on a GPU. A GPU executes on

one or more kernel grids; an SM executes one or more blocks; and CUDA cores and

other execution units in the SM execute thread instructions.

6.3 GPU Challenges

To achieve maximal performance on the GPU platform, in many cases, it requires

a deeper understanding of the memory hierarchy and the execution model of the

hardware. For instance, it is very important to follow the right memory access pattern

to the global memory failing which performance can be affected. To achieve good

performance, all threads of a warp should read/write global memory in a coalesced

way, i.e., the k-th thread accesses the k-th word in a cache line. Non-coalesced

memory access (meaning that it strides across memory lines in the global memory)

could lead to more memory transactions than necessary. Because a global memory

transaction incurs hundreds of cycles of latency, non-coalesced memory access could

significantly degrade the effective throughput of GPUs. An additional challenge is to

find an effective way to partition the workload evenly among the hundreds or even

thousands of CUDA cores. Parallelism if too fine-grained can result in insufficient

balance of work per thread, on the other hand, if a thread has too much workload, this

may over-pressure the registers per core and incur more register spilling behaviors.
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It is very difficult to design an effective sFFT algorithm that can achieve a high

level of parallelism at the same time maximize utilization on the GPU. Parallelizing

the algorithm is even more challenging due to loop-carried dependencies in the most

time-consuming kernel. The algorithm being heavily memory-bound leads to the

relatively small amount of workload per thread, this is yet another performance

barrier. For the rest of the chapter, we will highlight potential solutions to these

major challenges.

6.4 GPU Sparse FFT

In this section, we present the cusFFT algorithm, a parallel algorithm for computing

the sparse FFT on GPUs. We will still adopt a step-by-step approach by partitioning

the sFFT into multiple major stages, and discuss the parallel approach respectively.

In this section, we will mainly outline the most straight-forward techniques to par-

allelize the sFFT. Some optimizations will be discussed in Section 6.5.

6.4.1 Stage 1&2: Random Spectrum Permutation and Fil-

tering

The sFFT starts with convolving the permuted input signal with a well-designed

filter and binning them into a small number of buckets. Algorithm 2 shows the code

snippet of the inner loop in the sequential implementation. Noted that the iterations

in the loop is filter size rather than signal size n because the tails of the filter is
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Algorithm 2 Pseudo code for serial permutation and filtering

1: Input: signal[n], filter[filter size]
2: Output: buckets[B]
3: procedure PermFilter(signal, filter, buckets,B, n,

filter size)
4: Initialize: index← init val
5: while gcd(a, n) 6= 1 do . a,n are co-prime
6: a← random() mod n
7: end while
8: ai← mod inverse(a) . ai is modular inverse of a
9: for i← 1, B do

10: buckets[i]← 0 . initialize buckets
11: end for
12: . Main body of spectrum permutation and filtering
13: for i← 1, filter size do
14: buckets[i mod B] + = signal[index]× filter[i]
15: index← (index + ai) mod n
16: end for
17: end procedure

almost zero, so it is not needed to convolve the signal points to a zero-sized filter.

There are multiple challenges need to be addressed in order to efficiently port the

sFFT to GPUs. Some of the challenges are independent to specific architectures.

For instance, index mapping technique is used to break the loop-carried dependence

which is an essential step to port sFFT to any parallel architectures. Since we have

already discussed these techniques when we parallelized the sFFT to multicore CPUs

(i.e., PsFFT in Chapter 5), this section we mainly highlight on the techniques specific

to massively parallel architectures such as GPUs.
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GPU Bucket Tiling

Similar to PsFFT, there is a hash collision issue caused by binning the permuted

signal into a reduced set of buckets. Collisions arise when multiple threads try to

update the same bucket simultaneously. For instance, as is shown in Algorithm 2,

signal on the loop iterations i = 0, B, 2B, ..., are binned into the same bucket,

leading to the hash collision.

Compared to multicore CPU architecture, a GPU typically has thousands or even

tens of thousands number of cores. It is a unique challenge to address the “hash

collision” problem since there would be as many as hundreds numbers of threads

updating the same bucket concurrently, leading to serialize the thread execution. As

was introduced in Section 6.2, GPU threads are grouped and executed in a lock-step

way in a unit of wrap (32 threads). Each time four wraps of threads will be issued

and executed concurrently. Therefore, thread serialization will seriously impede the

GPU performance.

There are several major approaches to address the hash collision issue. One

commonly used approach is to use histogram on GPUs. Specifically, each thread

creates its own private copy of sub-histogram and performs the local reduction, which

is collision-free. At the final stage, all threads need to combine all the local private

copy of the histograms into a global final histogram by using atomic operations.

Although this approach might be a general solution to many applications, un-

fortunately, it has two major drawbacks for the sFFT problem. First of all, the
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per-thread approach (i.e., each thread maintains a local histogram) requires a signifi-

cant amount of memory replication in the size of B×N bins, where B is the number

of bins and N is the number of threads. For GPUs with thousands of threads, it

is quite obvious that this approach can be extremely expensive in terms of memory

space.

Further, to minimize the memory access latency, most of the implementations

in the per-thread approaches [32, 73] utilize on-chip GPU shared memory to store

the private sub-histograms. Unfortunately, the size of the shared memory is limited

to 48KB even if the state-of-the-art Nvidia Tesla K20x GPUs is considered. This

significantly limits the number of bins to 256 or even smaller for a conventional

histogram computation [73]. This is a major limitation for sFFT which has much

larger number of buckets, B =
√
nk/logn. For instance, for even a fairly small signal

with size of size of n = 218 and k = 1000, B could be as large as 3,816. The number

of buckets B grows quickly with the size of the input signal and sparsity k.

For a typical GPU architecture with size of 48 KB shared memory, suppose each

element in the histogram has complex double type (i.e., 16 byte), a histogram with

number of 3816 elements would need at least 3816 × 16/1024 = 59.6KB memory

space, which is greater than the size of the shared memory. This indicates that the

shared memory could not even hold a single sub-histogram for even relatively a small

input signal size.

Some of the histogram computation approaches in [32, 73] use per-warp or per-

block replication instead of the per-thread approach, i.e, privatize the sub-histograms

per each warp or per thread block. Since a warp usually consists of 32 threads and a
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thread block size could reach to as large as 512 for mainstream GPUs, this approach

could significantly relieve shared memory pressure. However, the main drawback of

this approach is that it still needs atomic operations to update the sub-histograms

within a warp or thread block. The usage of atomic operations can be a major

bottleneck to performance. In addition, the atomic merging of sub-histograms into

a global one at the final stage can become another bottleneck of the performance.

To address this issue, we propose a GPU bucket tiling approach. The idea is

based on an observation with respect to histogram computation, which accesses the

input data array sequentially (or follow a certain pattern), but updates the bucket

array in a data-dependent (i.e., random) way. The issue with sFFT, however, is

just as opposite: accessing the input signal is random while updating the buckets is

predictable, as shown in Algorithm 2. Specifically, the number of rounds to access the

buckets, filter size, can be divided into filter size/B rounds. The filter size

is divisible by B, since both of them are powers of 2. As a result, there is no collision

within a round, i.e., intra-round, and collision occurs only across rounds, i.e., inter -

round. For instance, updating the buckets when i equals to (0,B) is collision-free

and collision only occurs when i = 0, B, 2B, etc..

Based on this observation, we propose a GPU bucket tiling approach. The basic

idea is to partition the original loop iteration into two nested loops, where the outer

loop is collision-free and suitable to be mapped to each CUDA thread and the inner

loop is processed by one thread. Algorithm 3 shows the pseudo code with loop

partition employed for perm+filter step. The outer loop, which has the size of the

buckets, is parallelizable and mapped to each CUDA thread, each thread executes
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Algorithm 3 Pseudo code for GPU permutation and filtering

1: Input: signal[n], filter[filter size], buckets[B], ai
2: Output: buckets[B]
3: procedure permFilter(signal, filter, buckets,

B, n, filter size, ai)
4: rounds← filter size/B
5: for all tid← 1, B in parallel do
6: Initialize myBucket← 0
7: for j ← 1, rounds do
8: off ← idx + B × j
9: index← off × ai mod n

10: myBucket+ = signal[index]× filter[off ]
11: end for
12: buckets[tid]← myBucket
13: end for
14: end procedure

the reduction operation for one bucket, independently.

Compared to the conventionally GPU histogram reduction approaches, the bucket

tiling approach has mainly three advantages: (a) Bucket replication is not required.

Each CUDA thread is responsible for one bucket. (b) Does not require the sub-

histograms to merge to a single histogram, as a result we avoid using atomic opera-

tions (c) Strikes a balance between fine-grained and coarse-grained parallelism, since

the size of the inner loop is very small, each thread does a small amount of work.

6.4.2 Stage 3: B-dimensional cuFFT

After binning the spectra into a smaller number of B buckets, the B-dimensional

FFT is performed. In our GPU algorithm, we simply employ the cuFFT [7] to

perform this function. Furthermore, since this step will be repeated for the number
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Algorithm 4 Pseudo code for sort & select

1: Input: buckets[B], k
2: Output: buckets[k], J [k] . Location and value of the top-k largest elements
3: procedure sortSelect(buckets, J,B, k)
4: for all tid← 1, B in parallel do
5: J [tid] = tid . Store the index
6: end for
7: ReverseSortByV alue(buckets[B], J [B])
8: Select(buckets[k], J [k])
9: end procedure

of outer loops times, of each calculates the same dimension of cuFFT, we use the

batched mode of cuFFT and we compute cuFFT only once. By sharing the twiddle

factors, the batched cuFFT combines the number of outer loops transforms into

one function call, which is much faster than repeatedly calling the cuFFT function.

6.4.3 Stage 4: Cutoff

After we apply the B-dimensional cuFFT, there are buckets containing potentially

large Fourier coefficients in the frequency domain. Since the spectra is sparse in

frequency, very few of them are potentially large. The objective of the cutoff function

is to select the top k largest number of coefficients in the magnitude and store their

locations.

In the baseline implementation, we apply the sort&select method, as is shown

in Algorithm 4. Specifically, we first sort the B buckets in a decreasing order and

store the locations of values of the top k largest elements. Here we use the sorting

algorithm to perform the cutoff function for several reasons. First of all, sorting is a

key building block of many algorithms. It has received a large amount of attention
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in both sequential and parallel implementations [22, 23, 85]. For GPU algorithms,

the studies in [57, 74, 84] suggest an increase in performance using the right sorting

algorithms.

In this dissertation, we use Nvidia’s Thrust library [10] to implement the sort&select

algorithm. Thrust is a CUDA-based library performing the GPU-accelerated sort,

scan, transform, and reduction operations. Using Thrust has several benefits: Thrust

is Nvidia’s official library integrated with state-of-the-art CUDA API. As a result,

our implementation depending on the Thrust could achieve better robustness, per-

formance and maintains, compared to relying on any external third-party libraries.

Nevertheless, sorting is sub-optimal especially for k � n. We discuss an alternate

technique, in the next section, to fulfill the cutoff function.

6.4.4 Stage 5: Reverse Hash Functions for Location Recov-

ery

The Stages from 1 to 4 define a hash function that maps each coefficient into one of

the buckets. The “real” locations of large coefficients need to be reversed by elimi-

nating the phase changes caused by spectrum permutation and filtering. Algorithm 5

shows the pseudo code for the parallel location recovery on GPUs. Specifically, we

launch a number of k threads and each thread independently computes the reverse

hash function to recover the location of the potential large coefficients. As described

in Chapter3, stages 1 to 5 repeats a number of location loops times, so for each inner

loop (determining the location), we increment the occurrences(score) of the location
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Algorithm 5 Pseudo code for GPU location recovery

1: Input: J [k], score[n], a, B
2: Output: hits[num hits]
3: procedure locRecovery(J, hits, score, k,

num hits, a, n,B)
4: for all tid← 1, k in parallel do
5: my J ← J [tid]
6: low ← (ceil((my J − 0.5)× n/B) + n) mod n
7: high← (ceil((my J + 0.5)× n/B) + n) mod n
8: loc← (low × a) mod n
9: for j ← low, high do

10: atomicAdd(score[loc], 1)
11: if score[loc] == threshold then
12: atomicAdd(num hits, 1)
13: hits[num hits]← loc
14: end if
15: loc← (loc + a) mod n
16: end for
17: end for
18: end procedure

recovered. Once the score of the frequency equals to the threshold, we consider this

location of the coefficient to be large and add it to hits.

6.4.5 Stage 6: Magnitude Reconstruction

The purpose of this step is that given the locations of large coefficients we need to

reconstruct the magnitudes. Since the inner loops are repeated for a number of L

loops, given a specific location r ∈ I ′, we can get a set of magnitudes {x̂ri |i ∈ L}. So

the magnitude x̂r is computed as the median of the candidate magnitudes for all the

L location loops, i.e., median({x̂ri |i ∈ L}). To parallelize this step, we launch the

number of threads equal to num hits, which is the number of potential large coeffi-

cients obtained from the previous step. Each thread computes the reconstruction of
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Algorithm 6 Pseudo code for GPU magnitude reconstruction

1: Input: hits[num hits], buckets[B], ai, filter[filter size]
2: Output: loc[num hits], val[num hits]
3: procedure MagRecon()
4: for all tid← 1, num hits in parallel do
5: my hits← hits[tid]
6: n div B ← n/B
7: for j ← 1, outer loops do
8: permuted loc← ai[j]×my hits mod n
9: hashed to← permuted loc/n div B

10: dist← permuted loc mod n div B
11: if dist > n div B/2 then
12: hashed to← (hashed to + 1) mod B
13: dist← dist− n div B
14: end if
15: dist← (n− dist) mod n
16: mag[j]← buckets[j][hashed to]/filter freq[dist]
17: end for
18: sort(mag, outer loops)
19: median← (outer loops− 1)/2
20: loc[tid]← my hits
21: val[tid]← mag[median]
22: end for
23: end procedure

the magnitude for a given location independently.

6.5 Optimizations

In Section 5.4, we had presented some basic techniques to parallelize sFFT for

GPUs. In this section, we present some performance optimization techniques for

sFFT achieving better performance on GPUs.
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6.5.1 Fast K-selection Algorithm

As was presented in Section 6.4, stage 4 of the algorithm applied a cutoff function

to select the k largest elements from a set of B buckets. In Section 6.4, we employed

a basic sort&select algorithm which basically sort the entire array and select the k

largest elements from the sorted set. At that time we decided to use the sort&select

algorithm mainly because sorting is well supported on GPU architecture for which

we can expect an acceptable performance, robustness and ease of maintains in sFFT.

The approach is inefficient when the input data increases, thus, sorting the en-

tire list becomes too expensive. That is, BlogB operations with a typical sorting

algorithm only leads to k useful data points, where k � B. Therefore, one could

expect to accomplish this task in a time proportional to the data size, i.e., at the

linear time.

Further, beyond sFFT, there also exists numerous applications requiring the same

use case where only the k largest values in a list are retained while the remaining

entries are ignored or set to zero [16, 46]. Linear-time fast selection algorithms have

received a large amount of attention in sequential and parallel implementations [23,

44]. For GPU algorithms, Alabi et. al [13] proposed a BucketSelect algorithm.

Similar to bucket sorting, the proposed algorithm works well only when the data is

uniformly distributed, i.e., the number of elements assigned to each bucket is roughly

equal. For the sFFT algorithm, unfortunately, only very few of the buckets are large

while the rest of them are almost empty.

In this dissertation, we propose a fast selection algorithm which is simple but
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Algorithm 7 Pseudo code for GPU fast k-selection algorithm

1: Input: buckets[B], k
2: Output: J [k]
3: procedure FastSelect(buckets, J,B, k)
4: Initialize: count← 0
5: for all tid← 1, B in parallel do
6: key ← tid
7: value← buckets[tid]
8: if value ≥ thresh then
9: myCount← atomicAdd(count, 1)

10: J [myCount− 1]← key
11: end if
12: end for
13: end procedure

effective in sFFT. As shown in Algorithm 7, we assign a number of B threads and

each thread processes one element in the buckets. If the value in the buckets is

greater than the threshold, the element is chosen and the index is stored. It is noted

that the choice of the threshold is important for the algorithm. If it is too small,

many small coefficients will be picked up and falsely treated as “large”. On the other

hand, if the threshold is too large, some useful large coefficients will be lost. In this

dissertation work, we choose the threshold based on a key observation: only the k

out of B buckets are large while rest of them are very small with similar amplitudes.

Consequently, the value of the threshold is chosen to be in the same order of the

“small” noise coefficients, of which the value could be empirically obtained from

past experience. Most of the time, this approach might yield slightly more than

the number of k elements. Nevertheless, this minor false positive will not affect the

correctness of the algorithm but only add slight extra time on computing the extra

“large” coefficients for the rest of the stages.
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6.5.2 Asynchronous Data Layout Transformation

Note that in the first two steps of the sFFT (perm+filter), the algorithm permutes

the input signals and bins them into a smaller number of buckets. As shown in

Algorithm 3 (line 10), since the index is calculated as index = (i * ai ) % n,

the data reference pattern to the input signal (signal[index]) is largely strided.

Such irregular memory reference access pattern leads to non-coalesced global memory

accesses on GPUs, which creates memory traffic and is a significant bottleneck for

achieving good performance.

Prior work [47, 88] relies on static compiler-based techniques that detect the ir-

regularities and reorders the computations at compile time. In sFFT, since the ai

is randomly generated, the irregular access pattern is dynamic, i.e., it will remain

unknown until run time and even change during computation. Such dynamic na-

ture severely limits the compiler techniques to be effectively adopted for the sFFT

problem. Other conventional approaches relying on shared memory technique may

achieve substantial performance improvement. Those techniques are very effective

for block-based matrix multiplication as well as matrix transpose problems. In sFFT,

however, since the data reference stride is too large, simply loading a block of the

signal will easily stride out of the shared memory size. A number of prior stud-

ies [26,65] also explore runtime data transformation techniques that reorder the data

layout at runtime. However, the issue here is that this approach can create overhead

due to data transformation. problem of this approach is the overhead of data layout

transformation will be added to the critical path of the application.
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Figure 6.1: Asynchronous data layout transformation

To coalesce the memory access, we propose an asynchronous data layout trans-

formation technique that reorders the data on-the-fly. To achieve this, the original

non-coalesced computation kernel is split into two kernels: one performs the data

layout transformation while the other one accesses the ordered data. In order to

hide the overhead of data layout transformation, we take advantage of CUDA con-

current kernel executions where multiple kernels execute concurrently on different

CUDA streams. Figure 6.1 shows an example illustrating the use of asynchronous

data layout transformation technique to hide the overhead. The remapping kernel

creates a chunk of new array, A′, containing the coalesced data. The new order is

created based on a desirable mapping technique between threads and data locations,

i.e., for loop iteration i, A′[i] = A[index], where A is the original input signal. The

second kernel, execution kernel, computes the original program but directly accesses

the reordered data A′. The chunk size is empirically chosen to be the bucket size

B. So after reordering a chunk of B-size data, the second kernel launches a number

of B threads that computes the B elements in a batch. Note that there is no data
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dependence between two remapping kernels (so does execution kernel), so remap-

ping the data chunk δ and δ + i can happen concurrently. The maximum depth

of the concurrency depends on the CUDA compute capability that is different for

different GPU architecture. For GK110 used in this paper, the maximum number of

concurrently executed kernels is 32.

6.6 Performance Evaluation

We evaluate the performance of cusFFT in this section. We compare the performance

with:

• cuFFF, the fastest implementation for computing the ordinary full-sized FFT

with the runtime of O(nlog(n)) on NVIDIA GPUs.

• We also evaluate against both of our implementations: the baseline implemen-

tation as was described in Section 6.4 and the performance improvements of

optimizations discussed in Section 6.5.

• For completeness, we also compare with OpenMP version of sFFT (PsFFT)

on multicore CPUs as was described in Chapter5, UH sequential sFFT imple-

mentation and MIT sFFT implementation.

• We also evaluate the performance of cusFFT with the parallel FFTW, one of

the most widely used ordinary full-sized FFT library for multicore CPUs.
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Table 6.1: GPU test-bench

GPU Type Nvidia Tesla K20x

CUDA capability 3.5

No. of CUDA cores 2688 cores / 14 SMs

Processor clock 732 MHz

Shared memory size 64 KB

Global memory size 6 GB

Memory bandwidth 250 GB/s

6.6.1 Experimental Setup

Table 6.1 shows the experimental configurations for this evaluation. We evaluated

the cusFFT on NVIDIA Kepler K20x GPU. For the experiments on CPUs, we still

use the same platform as PsFFT (i.e., Table 4.2). The CUDA compiler is NVIDIA’s

nvcc compiler with version 5.5. The FFTW library used is the version 3.4 with

multi-threading configured.

6.6.2 Experimental Results – Double Precision

In this subsection, we evaluate the performance of cusFFT for the input data as

double-precision floating point numbers.

Execution Time vs. Signal Size n

In Figure 6.2(a), we have fixed the sparsity parameter k = 1000. We report the

runtime of the algorithms compared for different signal sizes n ranging from 219 to

227. The execution time is also shown in Table 6.2. In Figure 6.2(a), we plot the

average execution time for cusFFT, Parallel sFFT (PsFFT), the MIT’s original sFFT
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implementation and cuFFT. As expected, the cusFFT performs the best, followed

by the PsFFT and the MIT sequential sFFT. The figure also shows that the original

MIT sFFT implementation is always slower than cuFFT. For the PsFFT, the figure

shows that it is faster than cuFFT for signal size n > 224 in recovering the exact

1000 non-zero coefficients. The cusFFT, on the other hand, reduces the cross point

as n = 220 to be faster than cuFFT. Figure 6.2(a) also shows that the execution time

of cusFFT and cuFFT are approximately linear in the log scale. However, the slope

of the line for cusFFT is less than the slope for cuFFT, which is a result of cusFFTs

sub-linear runtime. The gap becomes greater when the data size increases, meaning

that speedup of cusFFT will be more than cuFFT.

Table 6.4 shows the speedup of cusFFT compared to the other versions of sFFT,

namely PsFFT and MIT sFFT. From the table, we can see that the average speedup

of cusFFT over PsFFT is 4.28x on 6 threads. Compared to the MIT’s original sFFT

implementation, the average performance improvement is over 21x.

Compared to full-size standard FFT implementations, Table 6.6 shows the speedup

of cusFFT over cuFFT and parallel FFTW. As can be seen from the table, we in-

crease the signal size n from 219 to 227 by fixing the signal sparsity k = 1000. Com-

pared to the cuFFT, cusFFT is faster by the factor of 0.5x to 11.15x. The gap is

increasing with the size of input signals. Compared to the parallel FFTW, cusFFT

outperforms by the factor from 0.93x to 26.25x.
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Table 6.2: Execution time (in second) of cusFFT (k = 1000)

Signal
size 2n

cusFFT PsFFT
(6
threads)

MIT
sFFT (1
thread)

cuFFT FFTW
(6
threads)

19 0.01 0.05 0.22 0.01 0.01

20 0.02 0.07 0.29 0.01 0.02

21 0.02 0.09 0.39 0.03 0.05

22 0.02 0.10 0.51 0.06 0.13

23 0.03 0.14 0.70 0.11 0.27

24 0.04 0.18 0.97 0.23 0.48

25 0.06 0.25 1.37 0.45 0.96

26 0.08 0.30 1.87 0.98 1.78

27 0.14 0.59 2.65 1.55 3.64

Execution Time vs. Signal Sparsity k

In this experiment, we fix the signal size n to be n = 225 and change the signal

sparsity k from 1000 to 41,000. Figure 6.2(b) shows the average execution time of

the compared algorithms while the number of non-zero frequencies k ranges from

1000 to 41000. The same data points are shown in Table 6.3. Since cuFFT has a

runtime of O(nlogn), they are independent of the number of non-zero frequencies k,

as can be seen in the figure.

Figure 6.2(b) also shows that the MIT’s sFFT implementation is always much

slower than the cuFFT. The PsFFT reduces the execution time such that it is faster

than cuFFT only when the signal sparsity k < 3000 while for most of the data points

shown in the figure, PsFFT is slower than cuFFT. The cusFFT, on the other hand,

is significantly shower than cuFFT until the signal sparsity k becomes as large as

41000.

Table 6.5 shows the speedup of cusFFT compared to other versions of the sFFT
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Table 6.3: Execution time (in second) of cusFFT (n = 225)

Signal
sparsity
k

cusFFT PsFFT
(6
threads)

MIT
sFFT(1
thread)

cuFFT FFTW
(6
threads)

1000 0.08 0.32 1.47 0.67 0.93

3000 0.10 0.45 2.41 0.61 0.95

5000 0.11 0.59 3.22 0.61 0.92

7000 0.13 0.68 4.08 0.61 0.93

9000 0.14 0.91 5.27 0.61 0.93

11000 0.16 1.08 6.72 0.61 0.96

13000 0.19 1.19 6.97 0.61 0.95

15000 0.20 1.34 8.19 0.67 0.96

17000 0.22 1.62 9.74 0.64 0.97

19000 0.23 1.75 11.64 0.67 0.93

21000 0.25 1.94 13.19 0.61 0.93

23000 0.27 2.19 15.43 0.67 0.96

25000 0.29 2.48 17.53 0.64 0.94

27000 0.30 2.65 19.98 0.61 0.95

29000 0.32 2.96 21.75 0.66 0.97

31000 0.34 3.14 24.96 0.67 0.95

33000 0.35 3.46 28.88 0.61 0.95

35000 0.39 3.79 30.24 0.61 0.96

37000 0.38 3.99 34.80 0.64 0.94

39000 0.42 4.30 36.18 0.67 0.97

41000 0.42 4.52 39.15 0.67 0.94
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Table 6.4: Speedup of cusFFT vs. PsFFT (6 threads) and MIT sFFT (1 thread)
(k = 1000)

Signal
size 2n

cusFFT
(sec)

PsFFT
(sec)

MIT
sFFT
(sec)

Speedup
cusFFT
vs.
PsFFT

Speedup
cusFFT
vs. MIT
sFFT

19 0.01 0.05 0.22 3.50 15.75

20 0.02 0.07 0.29 3.53 15.40

21 0.02 0.09 0.39 4.30 19.31

22 0.02 0.10 0.51 4.39 22.16

23 0.03 0.14 0.70 5.07 25.99

24 0.04 0.18 0.97 5.11 27.83

25 0.06 0.25 1.37 4.56 24.92

26 0.08 0.30 1.87 3.75 23.13

27 0.14 0.59 2.65 4.27 19.08

average 4.28 21.51

median 4.30 22.16

implementations including PsFFT and MIT’s original sFFT. We can see from the

table that cusFFT is faster than PsFFT by the factor of 7.7x. Compared to the

original MIT sFFT sequential implementation, it achieves over 55x performance im-

provement.

Table 6.7 shows the speedup of cusFFT over the full-size FFT implementations.

As can be seen from the table, the execution time of cusFFT increases with the

signal sparsity k while the execution time of fulls-size FFT is irrelevant of the signal

sparsity. The table shows that the cusFFT is largely faster than cuFFT by the factor

from 8.47x to 1.58x. Compared to FFTW on 6 CPU threads, the cusFFT is faster

from 11.72x to 2.22x. The experimental results indicate that the cusFFT largely

outperforms the full-size standard FFT for a wide range of signal spectrum.
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Table 6.5: Speedup of cusFFT vs. PsFFT (6 threads) and MIT sFFT (1 thread)
(n = 225)

Signal
sparsity
k

cusFFT
(sec)

PsFFT
(sec)

MIT
sFFT
(sec)

Speedup
cusFFT
vs.
PsFFT

Speedup
cusFFT
vs. MIT
sFFT

1000 0.08 0.32 1.47 4.05 18.65

3000 0.10 0.45 2.41 4.32 23.44

5000 0.11 0.59 3.22 5.18 28.24

7000 0.13 0.68 4.08 5.46 32.66

9000 0.14 0.91 5.27 6.33 36.56

11000 0.16 1.08 6.72 6.84 42.52

13000 0.19 1.19 6.97 6.43 37.66

15000 0.20 1.34 8.19 6.70 40.95

17000 0.22 1.62 9.74 7.33 44.07

19000 0.23 1.75 11.64 7.68 51.05

21000 0.25 1.94 13.19 7.83 53.17

23000 0.27 2.19 15.43 8.21 57.79

25000 0.29 2.48 17.53 8.49 60.04

27000 0.30 2.65 19.98 8.78 66.17

29000 0.32 2.96 21.75 9.28 68.17

31000 0.34 3.14 24.96 9.36 74.29

33000 0.35 3.46 28.88 9.85 82.28

35000 0.39 3.79 30.24 9.79 78.14

37000 0.38 3.99 34.80 10.42 90.87

39000 0.42 4.30 36.18 10.30 86.75

41000 0.42 4.52 39.15 10.66 92.32

average 7.77 55.51

median 7.83 53.17
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Table 6.6: Speedup of cusFFT vs. cuFFT vs. FFTW (6 threads) (k = 1000)

Signal
size 2n

cusFFT
(sec)

cuFFT
(sec)

FFTW
(sec)

Speedup
cusFFT
vs.
cuFFT

Speedup
of
cusFFT
vs.
FFTW

19 0.01 0.01 0.01 0.50 0.93

20 0.02 0.01 0.02 0.68 1.21

21 0.02 0.03 0.05 1.45 2.55

22 0.02 0.06 0.13 2.57 5.52

23 0.03 0.11 0.27 4.19 10.04

24 0.04 0.23 0.48 6.46 13.77

25 0.06 0.45 0.96 8.22 17.42

26 0.08 0.98 1.78 12.10 22.02

27 0.14 1.55 3.64 11.15 26.25

6.6.3 Experimental Results – Single Precision

In this subsection, we evaluate the performance of cusFFT for the input data as

single-precision floating point numbers.

Execution Time vs. Signal Size n

Figure 6.3(a) shows the execution time of the compared algorithms when the signal

size ranges from 219 to 227 and fix the signal sparsity k = 1000. Similar to the

double-precision results, the MIT sFFT performs the worst, always slower than the

cuFFT. The PsFFT is slower than the cuFFT until n = 225. The cusFFT reduces

the cross point to be less than n = 222 in order to beat cuFFT. The data points of

the execution time are also shown in Table 6.8.
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Table 6.7: Speedup of cusFFT vs. cuFFT vs. FFTW (6 threads) (n = 225)

Signal
sparsity
k

cusFFT
(sec)

cuFFT
(sec)

FFTW
(sec)

Speedup
cusFFT
vs.
cuFFT

Speedup
cusFFT
vs.
FFTW

1000 0.08 0.67 0.926 8.47 11.72

3000 0.10 0.61 0.953 5.92 9.25

5000 0.11 0.61 0.924 5.39 8.11

7000 0.13 0.61 0.931 4.90 7.45

9000 0.14 0.61 0.929 4.24 6.45

11000 0.16 0.61 0.959 3.85 6.07

13000 0.19 0.61 0.948 3.30 5.12

15000 0.20 0.67 0.964 3.34 4.82

17000 0.22 0.64 0.971 2.89 4.39

19000 0.23 0.67 0.929 2.96 4.07

21000 0.25 0.61 0.927 2.46 3.74

23000 0.27 0.67 0.965 2.51 3.61

25000 0.29 0.64 0.937 2.19 3.21

27000 0.30 0.61 0.948 2.02 3.14

29000 0.32 0.66 0.972 2.07 3.05

31000 0.34 0.67 0.945 2.00 2.81

33000 0.35 0.61 0.951 1.75 2.71

35000 0.39 0.61 0.961 1.59 2.48

37000 0.38 0.64 0.94 1.66 2.45

39000 0.42 0.67 0.968 1.60 2.32

41000 0.42 0.67 0.941 1.58 2.22

132



 0.001

 0.01

 0.1

 1

 10

 19  20  21  22  23  24  25  26  27

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
)

Signal Size (2
n
)

GPU: NVIDIA Tesla K20x.  CPU: Intel Xeon E5-2640 (Sandy Bridge)

sFFT (MIT)
PsFFT (6 threads)

cusFFT
cuFFT

(a) Execution time vs. signal size (k = 1000)

 0.01

 0.1

 1

 10

 100

 5000  10000  15000  20000  25000  30000  35000  40000

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
)

Signal Sparsity k

GPU: NVIDIA Tesla K20x.  CPU: Intel Xeon E5-2640 (Sandy Bridge)

sFFT (MIT)
PsFFT (6 threads)

cusFFT
cuFFT

(b) Execution time vs. signal sparsity k (n = 227)

Figure 6.3: Execution time of cusFFT, single precision
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Table 6.8: Execution time (in second) of cusFFT (k = 1000), single precision

Signal
size 2n

cusFFT PsFFT
(6
threads)

MIT
sFFT (1
thread)

cuFFT FFTW
(6
threads)

19 0.02 0.04 0.14 0.01 0.01

20 0.01 0.05 0.16 0.01 0.01

21 0.02 0.07 0.26 0.01 0.02

22 0.02 0.10 0.47 0.03 0.05

23 0.02 0.12 0.68 0.05 0.16

24 0.03 0.15 1.00 0.11 0.31

25 0.05 0.20 1.37 0.22 0.76

26 0.07 0.27 1.94 0.47 1.24

27 0.11 0.54 2.74 0.77 2.80

Table 6.9: Execution time (in second) of cusFFT (n = 225), single precision

Signal
sparsity
k

cusFFT PsFFT(6
threads)

MIT
sFFT(1
thread)

cuFFT FFTW
(6
threads)

1000 0.05 0.30 1.48 0.24 0.75

3000 0.07 0.39 2.43 0.24 0.77

5000 0.14 0.53 3.20 0.24 0.78

7000 0.10 0.69 4.13 0.22 0.78

9000 0.18 0.83 5.19 0.22 0.76

11000 0.23 0.98 6.50 0.22 0.74

13000 0.46 1.12 6.81 0.24 0.74

15000 0.55 1.26 8.10 0.24 0.72

17000 0.63 1.45 9.58 0.24 0.74

19000 0.68 1.63 11.07 0.24 0.74

21000 0.76 1.78 12.92 0.22 0.73

23000 0.72 2.05 15.10 0.22 0.75

25000 0.43 2.27 17.25 0.22 0.77

27000 0.99 2.42 20.12 0.24 0.75

29000 1.04 2.74 22.71 0.22 0.73

31000 1.11 2.91 25.27 0.22 0.75

33000 1.16 3.19 26.92 0.22 0.76

35000 1.15 3.45 29.51 0.23 0.75

37000 1.19 3.69 33.37 0.24 0.76

39000 1.31 3.99 36.41 0.22 0.74

41000 1.34 4.22 39.38 0.22 0.78
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Execution Time vs. Signal Sparsity k

In this experiment, we evaluate the performance of cusFFT by fixing the signal size

to be 225 and varying the signal sparsity k from 1000 to 41000. Figure 6.3 shows the

execution time of the compared algorithms. It can be seen from the figure that the

execution time of the MIT’s sFFT and PsFFT are always greater than the cuFFT.

The cusFFT on the other hand, reduces the cross point to k = 10000. Note that

in the work of developing the cusFFT, we mainly focus on the double-precision

inputs for the consideration of the numerical accuracy. We did not exploit much

optimizations on single-precision numerical operations.

6.7 Summary

In this chapter, we present an effective parallel algorithm for computing sparse FFT

on GPUs, namely cusFFT. We report the bottlenecks in the algorithm that impedes

the performance. We explore several suitable and optimized solutions to tackle these

issues and demonstrate that the proposed cusFFT algorithm is over 10x faster than

cuFFT for large data size, and over 26x compared to the parallel FFTW on multicore

CPUs. Moreover, compared to the sequential and parallel version of the sFFT imple-

mentations, the cusFFT improves the performance by the factor by 4.3x and 21.5x,

respectively, due to the power of GPU computing. The promising results indicate

that cusFFT is able to replace the full-size standard FFT routines widely used in a

vast of scientific and engineering applications and is expected to gain the significant

performance improvement.
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Chapter 7

Parallel Sparse FFT on

Heterogeneous Multicore

Embedded Systems

7.1 Overview

In this chapter, we port the sFFT to a Texas Instruments (TI) KeyStone II plat-

form, a high-performance heterogeneous System-on-Chip (SoC). As the architecture

is relatively novel, we first give an overview of the architecture, from the perspective

of CPU and memory subsystems in Section 7.2. After that, we present the major

challenges in programming heterogeneous multicore embedded system in Section 7.3,

and present the OpenMP accelerator model as a high-level programming model to

address the challenge in Section 7.4.

136



We measure the memory access latency of the system’s memory hierarchy in

Section 7.5. Memory access latency is an important performance metrics as it can

be used to measure the effectiveness of the data locality optimizations, and include

the cache hits and misses as well as delays in buses and memory controllers.

In Section 7.6, we present the approaches we port the sFFT to the Texas In-

struments KeyStone II ARM+DSP heterogeneous architecture. We also discuss the

key techniques in exploiting locality of sFFT in Section 7.7. Finally, we show how

these techniques can effectively improve the locality of the sFFT on the platform in

Section 7.8.

7.2 Architecture Overview

The Texas Instruments (TI) Keystone II architecture integrates an octa-core C66X

DSP with a quad-core ARM Cortex A15 RISC processor in a non-cache coherent

shared memory environment. Figure 7.1 shows the block diagram of the device. The

Cortex-A15 quad-cores are fully cache-coherent, although as on the C6678 the DSP

cores do not maintain cache coherency. External memory bandwidth is doubled with

dual DDR3 controllers. An additional Hyperlink interface is also included.
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Figure 7.1: Texas Instruments KeyStone II SoC block diagram

7.2.1 C66x DSP Core

The main compute core inside the Keystone II architecture is the C66x DSP from

Texas Instruments, which is based on a Very Long Instruction Word (VLIW) archi-

tecture. The core has two data paths, each capable of executing four instructions per

cycle on four functional units named M, D, L and S. The M unit primarily performs

multiplication operations, the D unit performs load/store and address calculations,

and the L and S units perform addition and logical operations. Overall the two data
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Figure 7.2: C66x cache memory block diagram

paths appear as an 8-way VLIW machine capable of executing up to eight instruc-

tions in each cycle. The instruction set also includes Single Instruction Multiple Data

(SIMD) instructions allowing vector processing on up to 128-bit vectors. For exam-

ple, the M unit can perform four single precision multiplies per cycles whereas each

L and S unit can each perform two single precision additions per cycle. Together the

two data-paths can issue 16 single FLOP per cycle. The double precision capability

is about one-fourth of single precision FLOPs.
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7.2.2 C66x DSP Memory Subsystem

The memory system is a Non-Uniform Memory Architecture (NUMA) [70]. A C66x

subsystem can access different memory regions, with accesses to memories that are

physically closer to a processor being faster. The memory regions (Figure 7.2) are

as follows:

• Level-1 program (L1P) and data (L1D): 32KB, 1-cycle access time, configurable

as mapped sRAM, cache, or a combination of mapped and cached.

• Local-L2: 1MB, configurable as mapped sRAM, cache, or a combination of

mapped and cached, and shared between the L1D and L1P caches.

• Shared-L2: 6MB, shared memory on-chip, can be only configurable as sRAM.

• DDR: multiple 2GB of off-chip memory.

7.3 Challenges in Programming on Heterogeneous

Multicore Embedded Systems

Multicore embedded systems usually consist of embedded CPUs, sensors and ac-

celerators to provide high-performance but low-power solutions. Although these

embedded systems offer high hardware capabilities, two challenges have started to

emerge that require innovative approaches [82,83].

The first challenge comes that the programming models and standards have not

140



kept pace with the increasing number/type of cores in a SoC. The limited availability

of multicore software programming models and standards pose a challenge for their

full adoption. Programmers typically have to write low-level codes, schedule task

units, and manage synchronization explicitly between cores. As the hardware com-

plexity is rapidly growing, it is nearly impossible to expect programmers to handle

manually all the low-level details. This is not only time-consuming but an error-prone

approach.

The second challenge is the software portability. The state-of-the-art for pro-

gramming embedded systems includes proprietary vendor-specific software devel-

opment toolchains which are tightly coupled with specific platforms. As a result,

software developers have to significantly restructure the code if they want to port

it to other platforms, while at the same time, ensure the performance. It leads to

a less-productive and error-prone software development process that is unacceptable

for the fast-growing complexity of embedded hardware. If the multicore embedded

industry is to adopt quickly multicore embedded devices, one of the key factors to

consider is to move from proprietary solutions to open standards.

7.4 OpenMP Accelerator Model

To address the programming challenges, the Texas Instruments KeyStone II SoC

supports a subset of OpenMP 4.0 accelerator model. OpenMP is a high-level pro-

gramming model for shared-memory parallel programming. OpenMP 4.0 extends

its execution model to support heterogeneous accelerator-based architectures. The
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OpenMP accelerator model assumes that a computation node has a host device con-

nected with one or more accelerators as target devices. It uses a host-centric model

in which a host device “offloads” code regions and data to accelerators for execution,

specified using the target construct. This construct causes the data and the exe-

cutable to be offloaded to the accelerators. So far the KeyStone II mainly supports

the following OpenMP 4.0 features:

• #pragma omp target: specifies the region of code that should be offloaded

for execution onto the target device.

• #pragma omp declare target: specifies functions mapped to a device.

• #pragma omp target data: creates a device data environment by mapping

host buffers to the target for the extent of the associated region.

• #pragma omp target update: used to synchronize host or device buffers

within a target data region as required.

7.4.1 A Code Example of OpenMP Accelerator Model

Figure 7.3 shows an code example of the classic “vector-add” operations using OpenMP

4.0 on the TI KeyStone II. In OpenMP 4.0, The target construct is used to specify

the region of code that should be offloaded for execution onto the target device. The

map clauses on the target construct specify data movement from host to device before

execution of the offloaded region, and device to host after execution of the offloaded

region.
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1 int s i z e = 1024 ;
2 f loat a [ s i z e ] ;
3 f loat b [ s i z e ] ;
4 f loat c [ s i z e ] ;
5
6 #pragma omp t a r g e t map( to : a [ 0 : s i z e ] , b [ 0 : s i z e ] , s i z e ) \
7 map( from : c [ 0 : s i z e ] )
8 {
9 int i ;

10 #pragma omp p a r a l l e l for
11 for ( i = 0 ; i < s i z e ; i++) {
12 c [ i ] = a [ i ] + b [ i ] ;
13 }
14 }

Figure 7.3: Vector-add using OpenMP 4.0

As is shown in the figure, the arrays a, b, c with the size of 1024 initially reside

in host (ARM Linux) memory. Upon encountering a target construct, space is

allocated in device memory for arrays a[0:size], b[0:size] and c[0:size]. Any

variables annotated ‘to’ are copied from host memory to device memory. The target

region is executed on the device (DSPs). Note that the #pragma omp parallel for

is used to distribute iterations of the for loop across the 8 DSP cores. Any variables

annotated ‘from’ are copied from device memory to host memory.

7.4.2 Texas Instruments-Specific Extensions to OpenMP 4.0

So far we have seen that OpenMP 4.0 provides a very simple approach for pro-

gramming heterogeneous platforms. Programmers just use the target construct

associated with the map clauses to offload the code and data to/from the host and

target devices. However, there are still some extra efforts a programmer needs to

handle to exploit the better performance. This section we introduce some additional
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language features that Texas Instruments extended as a complement to the OpenMP

4.0 specification.

Reducing the Offload Overhead

As is shown in Figure 7.3, arrays which were initially allocated on host memory need

to be transferred to the device memory on DSPs. Data synchronization between the

host and target device can be a significant source of overhead. On the TI KeyStone

II, although the host and target device share internal and external physical memory,

the target device does not have a memory management unit (MMU); and there is

no hardware cache coherency between the target and host device.

As a result, the host accesses shared memory using virtual addresses and the

target accesses the shared memory using physical addresses. Moreover, host device

variables can span multiple non-contiguous pages in Linux virtual memory whereas

the target device operates on contiguous physical memory. When mapping variables

from the Linux process space, the variables must be copied into contiguous memory

for target operation. This copy is inefficient, especially for large variables. For

the code example shown in Figure 7.3, the arrays a[0:size] and b[0:size] are

firstly copied from host-only virtual memory to a contiguous memory space which

is addressable by both of the host and target devices. At the end of the target

region, the array c[0:size] will be copied back to the host-only memory region. As

we can see, this data transfer scheme does not take advantage of the nature of the

“shared-memory” on the platform.
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1 /* Allocate buffer in device memory */
2 f loat ∗ a = ( f loat ∗) ma l l o c ddr ( s i z e ) ;
3 f loat ∗ b = ( f loat ∗) ma l l o c ddr ( s i z e ) ;
4 f loat ∗ c = ( f loat ∗) ma l l o c ddr ( s i z e ) ;
5
6 /* Initialize buffer on the host */
7 for ( int i = 0 ; i < s i z e ; i++)
8 {
9 a [ i ] = 1 . 0 ;

10 b [ i ] = 1 . 0 ;
11 c [ i ] = 0 . 0 ;
12 }
13
14 /**
15 * Map to is a cache write-back operation on host.
16 * Map from is a cache invalidate operation on host.
17 * No copy performed on map to and from.
18 */
19 #pragma omp t a r g e t map( to : a [ 0 : s i z e ] , b [ 0 : s i z e ] , s i z e ) \
20 map( from : c [ 0 : s i z e ] )
21 {
22 int i ;
23 #pragma omp p a r a l l e l for
24 for ( i = 0 ; i < s i z e ; i++) {
25 c [ i ] = a [ i ] + b [ i ] ;
26 }
27 }
28
29 /* Free buffer */
30 f r e e d d r ( a ) ;
31 f r e e d d r (b ) ;
32 f r e e d d r ( c ) ;

Figure 7.4: Vector-add using TI-specific extensions for contiguous memory allocation
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To eliminate this copy, TI provides a set of special purpose dynamic mem-

ory allocation APIs, namely malloc ddr(), malloc msmc(), free ddr(), and

free msmc(), for dynamic memory allocation and free on the shared DDR and

MSMC memory, respectively. The physical memory associated with this heap is

contiguous and is mapped to a contiguous chunk of virtual memory on the host. If

any host variables allocated via this API are mapped into target regions, the map

clauses translate to cache management operations on the host, significantly reducing

the overhead. Figure 7.4 shows the “vector-add” example using the TI extensions

for physically contiguous memory allocation.

Local Data

For most of the general-purpose CPU programmers, most of the time they do not

need to worry about the data placement in memory. They simply call the function

malloc() to allocate the memory and the compiler and hardware will handle the

cache and data locality for them. For embedded systems such as TI DSPs, on the

other hand, programmers always have to manage the data placement manually in

order to achieve the optimal performance. For example, for the code in Figure 7.4,

the arrays are initially allocated in DDR memory. But what if we need to allocate

them on local memory, such as L2 scratchpad memory?

To support this requirement, an additional local clause has been added by TI,

which maps a variable to the L2 scratchpad memory. Variables allocated using the

local clause have an undefined initial value on entry to the target region and any

updates to the variable in the target region cannot be reflected back to the host.
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1 /* Allocate a 1KB scratch buffer */
2 char∗ s c r a t c h b u f f e r = mal loc ( 1 0 2 4 ) ;
3
4 /**
5 * a[] is copied to the device
6 * scratch_buffer[] is allocated in L2 SRAM,
7 * scratch_buffer[] is not copied to the device
8 */
9 #pragma omp t a r g e t map( tofrom : a [ 0 : s i z e ] ) \

10 map( l o c a l : s c r a t c h b u f f e r [ 0 : 1 0 2 4 ] )
11 {
12 // Perform operations on buffer a[] in DDR using
13 // the L2 SRAM scratch_buffer
14 operate on ( a , s c r a t c h b u f f e r ) ;
15 }
16 /**
17 * a[] is copied back to the Host,
18 * scratch_buffer[] is not copied back to host
19 */

Figure 7.5: A code example using the local extension.

Mapping host variables to target scratchpad memory provides significant perfor-

mance improvements in many cases. On the TI KeyStone II, each DSP core’s 1MB

L2 memory can be configured as 128K cache, 768K scratchpad available to user pro-

grams and 128K reserved by the runtime. The 768K scratchpad is accessible via

the local map type. Figure 7.5 shows a code example using the local clause which

allocates a local buffer on the L2 scratchpad memory.

7.5 Memory Access Latency Measurements

The average data access latency in memory hierarchies is a critical metric which

is used to measure the effectiveness of data locality optimizations. In this section,

we measure the average memory access latency for both load and write operations.
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The experimental results provide an important performance metric in evaluating the

locality optimizations for sFFT.

7.5.1 Experimental Setup

The TI DSP compiler version used for the experiments is version 7.6.0. To turn the

cache on/off, we utilize the TI Chip Support Library (CSL) [49]. The CSL provides

a set of APIs used for configuring and controlling the DSP on-chip peripherals. The

CSL is compatible with various TI C6000 series DSPs, which shortens the develop-

ment time by providing standardization and portability.

7.5.2 EDMA Bandwidth Measurement

The EDMA engine was used to manage the data transfer, as it usually delivers

higher transfer speed. So EDMA is a preferred way to move a large bulk of data

between different levels of memory hierarchy. Since the EDMA transfers the data in

an asynchronous way, an “EDMA wait” function is used to synchronize the events,

which leads to waiting on a “barrier” until the EDMA finishes the data transfer.

To measure the EDMA bandwidth, we developed a micro-benchmark which moves

contiguous chunks of data between different levels of memory and measured the

memory throughput. The chunk size is chosen as 512 KB.

Table 7.1 shows the results. We measure the single channel EMDA bandwidth

in Gbyte per second, one core at a time. As is shown in the table, the bandwidth
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Table 7.1: Single channel EDMA bandwidth measured in GB/s

DSP Core 0 1 2 3 4 5 6 7

ddr → ddr 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3

ddr → msmc 6.0 6.0 6.0 6.0 5.9 5.9 11.7 11.7

ddr → l2 6.0 6.0 6.0 6.0 5.9 5.9 6.1 6.1

msmc → ddr 5.3 5.3 5.3 5.3 5.0 5.0 7.2 7.2

msmc → msmc 6.2 6.2 6.2 6.2 6.2 6.2 12.2 12.2

msmc → l2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2

l2 → ddr 5.3 5.3 5.3 5.3 5.0 5.0 5.9 5.9

l2 → msmc 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2

l2 → l2 5.8 5.8 5.8 5.8 6.2 6.2 5.8 5.8

between DDR, MSMC, and L2 memory is measured. Each measurement performs

on a single DSP core from core 0 to core 7. The data shows an empirical peak

bandwidth we can achieve using EDMA to transfer a block of contiguous data on a

single DSP core. Also, note that core 6 and 7 deliver a higher bandwidth. That is

because the DSP core (0-5) is assigned to an EDMA channel controller from 1 to 3.

Core 6 and 7 use the EDMA controller 4, which gives higher bandwidth.

7.5.3 Memory Copy Bandwidth Measurement

Typically, there are two approaches of moving a block of data between different

levels of the memory hierarchy: asynchronous and synchronous methods. The asyn-

chronous approach transfers the data asynchronously to the CPU calculations. So

the CPU does not need to stall and wait for the data to be ready. Therefore, it does

not cost the CPU cycles to load and store the data. As we described in the last

subsection, the asynchronous data transfer is performed by using EDMA.

In this subsection, we measure the synchronous data movement bandwidth. In
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Table 7.2: Single core memory copy bandwidth measured in GB/s

DSP Core 0 1 2 3 4 5 6 7

ddr → ddr 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

ddr → msmc 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

ddr → l2 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6

msmc → ddr 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7

msmc → msmc 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5

msmc → l2 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5

l2 → ddr 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7

l2 → msmc 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6

l2 → l2 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1

this approach, the CPU gets involved into the data transfer to load/store each

data element. To achieve this, we also developed a micro-benchmark by employ

the memcpy() function to copy the data. Since we configure both the L2 and MSMC

memory as the sRAM, the data is not cacheable. Table 7.2 shows the experimental

results.

Compared to the EDMA data transfer rate shown in Table 7.1, the memory

bandwidth on synchronous movement is much lower. That is because the CPUs

need to get involved into the data movement.

7.5.4 Memory Access Latency on L1 Cache

L1 Load Test

A micro-benchmark is developed to test the memory access latency on the L1 cache.

Figure 7.6 shows the kernel of the code for the L1 load test. Note that in Fig-

ure 7.6, the variable c is intentionally defined out of the function to avoid the dead
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Table 7.3: L1 load test results (in CPU cycles)

Hardware prefetching ON OFF

L1 load (warm cache) 1.13 1.13

coding issue caused by the TI compiler. Also, we use the compiler hint #pragma

MUST ITERATE(1) immediately before the loop to instruct the compiler not to check

the zero-trip loop to avoid the additional overhead on branch.

1 #pragma MUST ITERATE(1)
2 #pragma UNROLL(1)
3 for ( int i = 0 ; i < sz ; i++) {
4 c += s r c [ i ] ;
5 }

Figure 7.6: L1 load test

Moreover, we use another compiler hint, #pragma UNROLL(1) to tell the compiler

not to unroll the loop. So in this case, each loop iteration takes only one CPU

cycle, which is called “single-cycle loop”. Note that the loop has both load and add

operations, but it still takes 1 CPU cycle because of the software-pipelined loops.

That is, the accumulation of the src[i] will execute with loading the next element

src[i+1] simultaneously. Also, the array src is pre-loaded into the L1 cache, so the

L1 is warm. We test the L1 load performance for the hardware prefetching is both

turned on and off, respectively.

Table 7.3 shows the results of the L1 load test. It can be seen from the table

that loading from L1 takes around 1 CPU cycle, which is as expected. We can also

observe from the table that hardware prefetch did not make any difference on the

result because the cache is already warm. Noted that the number is a little larger
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Table 7.4: L1 store test results (in CPU cycles)

Hard prefetching ON/OFF

L1 Store Cold cache Warm cache
1.17 1.06

than one because the loop is not perfectly software-pipelined, i.e., the load and add

operations may not be entirely overlapped.

L1 Store Test

In this subsection, we test the CPU cycles for storing data into the L1 cache, while

the L1 is cold and warm, respectively. To measure the L1 ‘cold’ cache, we first turn

off the L1 cache. Then preload data into L2 and turn the L1 on again. So now L2

is ‘warm’ but L1 is still ‘cold’. Then we run the L1 ‘cold’ store test.

According to the DSP Cache Guide [51], the L1 cache is read-allocate only. So

in the code for the L1 store test, once there is a cache miss, it will store the data

into the L2 cache via the write buffer (see the Figure 7.2). In the ‘warm’ store test,

since data has been pre-loaded to the L1 cache before, there will be no cache misses

and all data is stored at the L1D cache.

Table 7.4 shows the results for L1 store test. When the cache is cold, according

to the DSP cache guide, L1D is a read allocate cache, meaning that a cache line is

allocated on a read miss only. For a write miss, the data is written to the lower-level

memory through a write buffer, bypassing the L1D cache. Therefore, it indicates

that the data is stored in L2 cache via the write buffer. In other words, the ‘cold’

store test tests the CPU cycles for storing a cache line into the L2 cache via the write
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buffer. The ‘warm’ cache test is easier to understand because it tests when the store

hits at L1D. From the results, we can see that the CPU cycles taking on ‘warm’ store

are less than the ‘cold’ store. That is because in the ‘cold’ store test, data has to

go to the L2 cache and a new line needs to allocate in the L2. For the warm test,

on the other hand, no new cache line allocation is needed. Furthermore, noted that

the prefetch did not make any difference for both cold and warm test because L1 is

read-allocate only, meaning it will not allocate any new cache line on L1 in the store

test.

7.5.5 Memory Access Latency on L2, MSMC and DDR Mem-

ory

L2 Load Test

We develop a micro-benchmark for the L2 load and store test. It tests when data

is initially in DDR and MSMC, respectively. Table 7.5 shows the results. Note

that in the table, 1/1 annotates that one data entry loaded and the stride is 1.

On/On/DDR means the L1 cache is turned on, the L2 is on, and data is initially in

the DDR memory.

From the Table 7.5, we could see that the column of Off/On/DDR is the case

for testing the memory access latency on L2. That is because L1 is turned off while

L2 is on, and the data entry is pre-loaded into the L2, which is warm. It can be

seen from the table that the memory access latency for L2 load test is 9 CPU cycles.

Noted that in Table 7.5 that when N = 2 and the stride is 16 and 32, the results are
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Table 7.5: L2, MSMC and DDR load test results in CPU cycles

N/Stride,
L1/L2/DDR
or MSMC

On / On
/ DDR

Off / On
/ DDR

Off / On
/ MSMC

Off / Off
/ DDR

Off / Off
/ MSMC

1/1 1 9 24 100 24

1/16 1 9 24 100 24

1/32 1 9 24 100 24

2/1 1 9 24 100 24

2/16 1 6 13 60.5 13

2/32 1 6.5 13 60.5 13

Table 7.6: Strided load terst

N/Stride,
L1/L2/DDR
or MSMC

Cold / Warm /
DDR

Cold / Warm /
MSMC

Cold / Cold /
DDR

2/1 13.5 15.5 61.5

2/16 16.5 23 68

2/32 16.5 23 68

reduced to around half. That is because the instructions of two parallel loads are

issued in parallel.

We also experiment on the strided load test, of which the results are shown in

Table 7.6. The experiments show results when the L1 and L2 are turned on, while

L2 is warm and cold, respectively. The first and second column in the table are tests

when L2 is warm. To achieve this, we first turned off L1D, pre-loaded data into L2,

and turned L1D on again. The third column showed when L2 is cold and data is in

DDR. To do this, we invalidate both of the L1 and L2 in each test.
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MSMC Load Test

According to the Table 7.5, MSMC load test is for N/stride equals to 1/1, 1/16,

1/32, L1 is off while L2 is on, data in MSMC. That is because L1 is turned off and

MSMC is not cached through L2 by default. From the table, the CPU cycles on

MSMC load test is 24 cycles.

Similarly, we tested for n/stride equals to 1/1, 1/16, and 1/32, both L1 and L2

are off, but data in MSMC (Column 6). It also tested the CPU cycles loading from

MSMC. The results should be the same as L1 is off and data in MSMC (column 4).

It is because MSMC is not L2 cacheable by default. And the results confirm the

hypothesis which equals to 24 cycles.

For n/stride equals to 2/1, 2/16, 2/32, L1 is off while L2 is on, data in MSMC.

We noted CPU cycles while loading from MSMC but loading two words in parallel.

For n/stride equals to the 2/1, the result is 24, which is the same as n/stride equals

to 1/1.

DDR Load Test

To test the CPU cycles on loading data from DDR memory, we turn both L1 and L2

off and keep the data in DDR initially, as is shown in Table 7.5 (Column 5). From

the table, we could see that the CPU cycles on DDR load test are 100.
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Table 7.7: CPU store test on L2, MSMC and DDR

L2 MSMC DDR

Cold Warm Cold Warm Cold Warm

1.77 1.00 1.00 1.00 1.00 1.00

L2, MSMC and DDR Store Test

Table 7.7 shows the results of the CPU store test. For all the tests, stride equals to

1 and n = 3200 to compensate the loop overhead. For L2 and MSMC tests, L1D is

turned off while L2 is invalidated before each test. For DDR test, both L1D and L2

are turned off.

From the result, store to L2 takes 1.77 cycles on the cold cache and 1.00 on the

warm cache due to the effects of the write buffer. When L2 is cold, for write requests

to DDR misses on L1D (which is turned off), it is passed on to L2 through the write

buffer. If L2 detects a miss for this address, the corresponding L2 cache line fetches

from external memory. So the L2 test measured the write buffer cycles, which is

closed to 1 cycle. The result is consistent with L1 store test when the cache is cold.

Furthermore, the cold cache takes more CPU cycles than the warm cache because of

the additional cycles on fetching a line from DDR memory.

For the store test on to MSMC memory: The result for both warm and cold

cache is 1 cycle, which is close to L1D results. It is because the write buffer can only

bypass L1D and write results to L2. Also, MSMC is not L2-cacheable by default.

As a result, when L1 is turned off, the CPU cycles should be equal to writing data

to MSMC, not to L1D.
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Table 7.8: Interference of write-on-read

Regular (PF ON) Regular (PF OFF) Irregular

L1 SRAM DDR L1 SRAM DDR L1 SRAM DDR

10.4 12.0 5.3 6.1 143.4 145.7

For the store test to DDR memory. Since the L1D and L2 are disabled, the results

should be equal to storing in DDR. Again, the write buffer should not matter since

now L1 and L2 are disabled.

In summary, the results in Table 7.7 indicate that all write operations take only

1 CPU cycle. That is because the C66x CorePac has improved write merging and

optimized burst sizes that reduce the stalls to external memory. It can also be seen

from the table that when there is a write miss on L1 cache, it takes 1.17 cycles, which

is slightly longer than others. It is because L1D is the read-allocate only, meaning

that a cache line is allocated only when a read miss occurs. On a write miss, the data

is written to the lower-level memory through a write buffer, bypassing L1D cache

(see Figure 7.2). The write buffer consists of 4 entries. On C66x devices, each entry

is 128-bits wide [51].

7.5.6 Interference of Write-on-Read

In the sFFT inner loop, the next load of orgix[index] may not get started until the

last write of x sampt[i] instruction finishes. To investigate this, the array x sampt[]

is put into both L1 SRAM and DDR, respectively. We put the array into L1 SRAM

since this will cause the next load to never stall. Table 7.8 shows the results. From

the result we can see that putting x sampt into L1 SRAM saves around 2 cycles per
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loop iteration, indicating store will not stall the load.

7.6 Parallel Sparse FFT on TI KeyStone II

In this section, we present our approach to port the parallel sFFT on the Texas

Instruments KsyStone II SoC. According to the time distribution we measured in

Section 4.4, the stage perm+filter dominates the overall execution time. Therefore,

we only port the perm+filter stage onto DSPs while remaining the rest of functional

stages on the ARMs.

Figure 7.7 shows the code snippet of the perm+filter step on theDSPs. We can see

from the code that we use the OpenMP 4.0 target construct and map clause to port

this stage onto DSPs. Specifically, the code region inside of the target construct

will execute on DSPs. The map clause transfers the data between ARMs and DSPs.

The parallel region inside of the target is precisely the same as the PsFFT on

mulcore CPUs, but executes on the DSPs. It indicates the major advantage of using

OpenMP that programmers can largely preserve the code structure among different

possible architectures. Note that the code in Figure 7.7 is a naive version without any

in-depth performance optimizations. Section 7.7 will discuss multiple performance

optimization techniques for the sFFT on DSPs.
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1 void i n n e r l o o p p e r m f i l t e r d s p ( complex t ∗ or igx , int n ,
2 complex t ∗ f i l t e r ,
3 int f i l t e r s i z e ,
4 complex t ∗x sampt , int B,
5 int a i )
6 {
7 #pragma omp t a r g e t map( to : o r i gx [ 0 : n ] , \
8 f i l t e r [ 0 : f i l t e r s i z e ] , \
9 n , B, ai , f i l t e r s i z e ) \

10 map( from : x sampt [ 0 :B ] )
11 {
12 int i , j ;
13 int round = f i l t e r s i z e / B;
14
15 // Buckets initialized to 0
16 #pragma omp p a r a l l e l for
17 for ( i = 0 ; i < B; i++) {
18 x sampt [ i ] . r e = 0 . ;
19 x sampt [ i ] . im = 0 . ;
20 }
21
22
23 // Main body of the sFFT permutation and filter
24 for ( i = 0 ; i < round ; i++) {
25 int o f f = i ∗ B;
26 #pragma omp p a r a l l e l for
27 for ( j = 0 ; j < B; j++) {
28 int o f f 2 = o f f + j ;
29 unsigned index = (unsigned ) ( o f f 2 ∗ a i ) % n ;
30 cmpy acc ( f i l t e r [ o f f 2 ] ,
31 o r i gx [ index ] ,
32 x sampt [ o f f 2 % B] ,
33 x sampt [ o f f 2 % B ] ) ;
34 }
35 }
36 }
37 }

Figure 7.7: The perm+filter stage on DSPs using OpenMP 4.0
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7.7 Performance Optimizations

In this section, we present a set of performance optimization techniques on the TI

KeyStone II platform. Those optimization techniques aim to reduce the data trans-

fers between the ARMs and DSPs, improve multiple levels of parallelism, and enhance

the data locality for sFFT.

7.7.1 Optimization of the data transfer between the ARM

and DSP

As introduced in Secion 7.4.2 about the TI specific extensions to the OpenMP 4.0,

the main DDR memory on the TI KeyStone II is physically shared between the host

ARM CPUs and the target DSP accelerators. Logically, however, it is partitioned

into two regions, one for ARM Linux and the other is a physically contiguous memory

shared by the ARMs and DSPs. As a result, if one allocates a memory region on

the ARM using e.g., malloc(), that memory will be allocated on the heap memory

on the ARMs and can be only addressable by the ARMs. To make this data region

accessible by both the ARMs and DSPs, we can use the OpenMP 4.0 map() clause

to copy the data from the heap to the shared contiguous memory region. The data

copy between the ARMs and DSPs memory is, unfortunately, very expensive.

In order to address this issue, we use the TI-specific extensions to allocate and

free contiguous segments of memory that can be accessed by both of the ARMs and

DSPs cores. Specifically, we use the malloc ddr() and free ddr() routines to
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allocate and free the shared memory.

7.7.2 Hardware Prefetching

Hardware prefetching is an important performance improvement feature of todays

processors. It has been shown to improve performance by 10-30% without requiring

any programmer effort. Prefetching is the concept of fetching data closer to the

processor before it is needed. The intent is that the data will be readily available

when the processor needs it. Without prefetching, the processor will have to stall

and wait for the data.

Hardware may improve the performance of regular applications as it can reduce

the number of capacity misses in a cache. For irregular applications, however, hard-

ware prefetching may saturate memory bandwidth as the irregular memory access

pattern is dynamic thus hardly predictable. Hence, we turn off the feature of the

hardware prefetching on the TI KeyStone II for the sFFT.

To evaluate the impacts of the hardware prefetching, we develop a benchmark

based on the “vector add” operations, i.e., adding the elements of two arrays, a[i]

and b[i], and store the results back to the array c[i]. This way, accessing each

element of the arrays is in sequential order and regular. We expect the performance

decrease if we turn off the hardware prefetching.

Table 7.9 shows the results of the vector addition when the hardware prefetching

is on and off, respectively. As expected, the execution time of “VecAdd” is increased

from 0.05 sec to 0.07 sec after the hardware prefetching is turned off.
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Table 7.9: Effects of hardware prefetching (in second)

Hardware prefetching ON Hardware prefetching OFF

VecAdd Strided
VecAdd

VecAdd Strided
VecAdd

Core 0 0.05 0.70 0.07 0.67

Core 1 0.05 0.70 0.07 0.68

Core 2 0.05 0.70 0.07 0.67

Core 3 0.05 0.70 0.07 0.67

Core 4 0.05 0.70 0.07 0.67

Core 5 0.05 0.70 0.07 0.68

Core 6 0.05 0.70 0.07 0.67

Core 7 0.05 0.70 0.07 0.67

Furthermore, we developed another benchmark named “Strided VecAdd” in the

form of c[i] = a[index] + b[i], where the array a is accessed at random as the

index is generated randomly at runtime. The purpose is to intentionally “interfere”

the hardware prefetcher and make each prefetching a wrong prediction.

Table 7.9 shows the performance (“Strided VecAdd”). From the table, quite

suprisingly, it does not make a significant difference when the prefetching is on and

off. That is because TI memory controller is “smart” enough to keep track of the

memory access pattern and the hardware prefetching will be kicked in only when it

observes a stream of contiguous memory reference. Consequently, in this example

of strided vector addition, the hardware prefetcher is not triggered so there is no

much performance difference. From the table, the performance is slightly better

when the prefetching is turned off. That is because the extra overhead on memory

controller is not added while the hardware prefetching is turned off. For the rest

of the experiments, we leave the hardware prefetching on as it does not make much

difference to the performance.
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Table 7.10: Clock cycles per loop iteration for various block sizes in L1 SRAM

Block size 16 32 64 128 256 512 1024

L1 OFF 1465.1 776.1 429.2 255.8 170.5 127.0 104.4

L1 ON 98.3 90.0 89.2 87.9 87.5 87.1 87.1

7.7.3 Packing Optimizations

The purpose of the packing optimization is to improve the locality for irregular

memory accesses in the sFFT. The basic idea is to split the original irregular memory

accesses into two steps. In the first step, it “packs” a block of data by gathering

it from DDR and stores it into the on-chip local memory (L1/L2 sRAM). Then, in

the second step, the original sFFT inner loop executes but loads the “packed” data.

The benefits of the packing optimization highly depend on many factors, including

the block size, memory hierarchy to store the block and whether the cache is turned

off during the packing process.

We conducted several experiments with different configurations to find out the

optimal combination of block size and its location. Table 7.10 shows the clock cycles

per loop iteration with various block sizes; a block is stored in the L1 SRAM. We

also measure the results when the L1 is turned on and off, respectively, during the

packing process.

We can observe from the table that the clock cycles per loop iteration are much

smaller if the cache is turned on during the packing process. The primary purpose of

turning off the cache during the packing process is to avoid the extra cache misses.

However, the result shows that turning cache off incurs a substantial overhead.
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Table 7.11: Clock cycles per loop iteration for the block in L2 SRAM

Block size 16 32 64 128 256

L1/L2 OFF 1471.6 781.5 433.0 259.6 175.2

L1/L2 ON 106.1 91.3 90.6 91.5 94.3

Block size 512 1024 2048 4096 8192

L1/L2 OFF 131.8 108.7 97.6 92.1 89.2

L1/L2 ON 94.3 93.1 91.5 91.4 91.4

Table 7.11 shows the results when the local block is in L2 SRAM. In can be seen

from the table that the clock cycles per loop iteration are slightly greater than the

block in L1 SRAM. That is because the L2 SRAM has larger memory access latency.

Nevertheless, the L2 can store more blocks since the size of L2 is far greater than

L1. As a result, when the block size is equal to 8192, the cycles when the cache is

turned off is 89.2 whereas it is 91.4 when the cache is ON. This shows the benefits

when the cache is turned off.

7.7.4 Blocking Optimization

The blocking optimization is based on the packing optimization discussed previously,

which intends to address the following issues:

• Cache capacity (i.e., working set size with respect to cache),

• cache conflicts should be virtually eliminated,

• cold start misses (via packing loop),

• and false sharing in case of parallelization.
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There are several expected benefits of this optimization strategy. First of all,

global network traffic is significantly reduced. When this loop is parallelized, at

most one thread will read or write array data that map to the same cache line.

Secondly, each memory location in DDR is read at most once. If L1 SRAM is

data is cacheable in L2, then virtually all cache lines will be written back to memory

exactly once. Otherwise, multiple instructions will be needed to write out a single

cache line, but this will be the minimum supported by the system.

Thirdly, each thread finishes reading/writing a given cache line before accessing

another cache line from the same array. Fourthly, footprint in the cache is slight

(and independent of problem size).

Last but not least, the blocking optimization reduces of memory access latency

(cold start misses) to origx which accounts for the bulk of memory system latency.

This is accomplished by fetching two distinct cache lines in parallel which is the

only way to hide misses to arrays with large non-power of two strides. This was

accomplished by “coaxing” the compiler without needing to resort to assembly code.

The compiler does not automatically attempt this.

This parallelization of memory loads was intentionally not done for origx[] and

x sampt[]. At last measurement, due to high spatial and temporal locality, loads

of these arrays were taking too few cycles on average to justify extra CPU cycles to

optimize for this. It would also add additional complexity to the code which could

not be justified in the writing of this dissertation.

However, there are several expected drawbacks for this optimization strategy.
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Table 7.12: Clock cycles per loop iteration different optimization strategies

Original Optimized Blocking

241.4 154.9 91.7

First of all, compared to the original version, it no longer exploits hardware prefetch-

ing of the origx array because cache lines of the origx are not accessed consecutively.

This loss is expected to be at most a few cycles/per result (result = original loop

iteration). Secondly, it incurs CPU cycle overhead compared to other serial versions

of about 3-4 cycles/result (result = original loop iteration). Both of these draw-

backs are supposed to be minor compared to the expected benefits of best-possible,

scalable, parallel performance.

Table 7.12 shows results for the “original” version i.e., the naive version without

applying any specific optimization. The optimized version uses software pipelin-

ing, elimination of loop-carried dependency, balancing resources and enabling SIMD

instruction. The blocking version is what we have discussed above.

7.7.5 Miscellaneous Optimizations

Exploiting Software-Pipelining

Many application routines are loop-centric, including irregular applications. In the

sFFT, the inner loop takes more than 70% of the total execution time [80]. Identifying

the most time-consuming loop and speeding the looped code is the key to the overall

performance improvements. A technique called software pipelining [34] contributes

the biggest boost to improving looped code performance.
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Figure 7.8: Software pipelined loops [34]

Figure 7.8 shows the software pipelined loops. Without software pipelining, loops

are scheduled so that loop iteration i completes before iteration i+1 begins. Software

pipelining allows iterations to be overlapped. Thus, as long as correctness can be

preserved, iteration i+1 can start before iteration i finishes. It leads to a much higher

utilization of the machines resources than might be achieved from non-software-

pipelined scheduling techniques.

As is shown in the Figure 7.8, in a software-pipelined loop, even though a single

loop iteration might take s cycles to complete, a new iteration is initiated every

ii cycles. In an efficient software-pipelined loop, where ii < s, ii is called the

initiation interval ; it is the number of cycles between starting iteration i and iteration

i + 1. ii is equivalent to the cycle count for the software-pipelined loop body. s is

the number of cycles for the first iteration to complete, or equivalently, the length

of a single scheduled iteration of the software-pipelined loop. Consequently, we can

see that software pipelining can potentially improve the performance as multiple

iterations of the loop can execute in parallel. To make the best of the performance,

the pipeline should be utilized as full as possible.
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Eliminating Loop-Carried Dependency

The main goal in loop optimization is to minimize the iteration interval (ii). The

iteration interval is the number of cycles it takes the CPU to complete one iteration

of the parallel representation of the loop code. The overall cycle count of the software

pipelined loop can be approximated with ii * number of iterations. The value

of ii is bounded below by two factors: the loop-carried dependency bound and the

partitioned resource bound, determined by the compiler.

The loop-carried dependency bound is defined as the distance of the largest loop

carry path, and a loop carry path occurs when one iteration of a loop produces a

value that is used in a future iteration. The loop-carried dependency bound can be

visualized with a dependency graph, which is a graphical representation of the data

dependency between each instruction. Figure 7.9 shows the simplified, corresponding

dependency graph (i.e., branch related code removed). The nodes in the graph are

the instructions executed in a loop iteration. The edges (arrows between node pairs)

denote the ordering constraints. The edges are annotated with the number of cycles

needed between the source and destination instructions. In most cases, results are

written to registers at the end of the cycle in which the instruction executes and

available on the following cycle.

In this graph, there are two critical cycles, each with length 7. To reduce the

loop-carried dependency bound, the largest cycle in the graph must be shortened or

eliminated. This can be accomplished by eliminating one of the edges in the cycle.

To do so, one must understand the origin of the edges.
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Figure 7.9: Loop-Carried dependency cycles

To the compiler, the address of the data pointed to load and store are unknown

at compile time; it has to prepare for all possible outcomes during compilation.

In the worst case where memory access patterns are dynamically irregular, as the

dependency graph shows, load (i+1) depends on store (i), which in turn depends

on add (i), which depends on load (i). In other words, iteration (i+1) is dependent

on iteration (i), and it cannot be started until 7 cycles after iteration (i) is started.

Therefore, the loop carried dependency bound for the loop is 7. However, if the

load and store will never point to the same memory buffer, there should not be any

loop-carried dependency. In this case, the restrict keyword can be used to inform the

compiler that the pointers in a given function will never point to the same memory

buffer [89]. This can avoid the unnecessary high loop-carried dependency that the

compiler might conclude.

169



Exploiting SIMD Instructions

The TI C66x DSP improved the SIMD capability (each instruction can process multi-

ple data in parallel) combined with the natural instruction level parallelism of C6000

architecture (e.g., execution of up to 8 instructions per cycle) results in a very high

level of instruction-level parallelism. C66x ISAs can now execute instructions that

operate on 128-bit vectors [50].

Two of the most frequently used SIMD instructions are the LDDW and STDW

instructions, which perform aligned 64-bit load and 64-bit store, respectively. As-

suming all the data used are 16-bit data (short), it would be ideal if the LDDW and

STDW instructions can operate on 4 elements every time. If the data is declared as

32-bit type (int, float), LDDW and STDW can operate on 2 elements every time.

Exploiting the SIMD instructions is an essential optimization for irregular appli-

cations. It is simply because loading/storing multiple words in a single instruction

rather than of multiple short loads/store instructions can significantly reduce the

memory traffic and efficiently improve the memory bandwidth.

Figure 7.10 shows the sFFT inner loop optimized by using SIMD instructions.

The amemd8(void *ptr) allows aligned loads and stores of 8 bytes to memory. Note

that when performing SIMD operations on C66x, the x128 t type is often used,

which is a container type for storing 128-bit of data.
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1 /** sFFT complex number multiplication
2 * using SIMD instructions
3 * c1 = c2 + c3 * c4
4 */
5 #define cmpy acc ( c1 , c2 , c3 , c4 )
6 {
7 lddw re im(&c1 , c1 re , c1 im ) ;
8 lddw re im(&c2 , c2 re , c2 im ) ;
9 lddw re im(&c3 , c3 re , c3 im ) ;

10
11 c 4 r e = c 1 r e ∗ c 2 r e − c1 im ∗ c2 im + c 3 r e ;
12 c4 im = c 1 r e ∗ c2 im + c1 im ∗ c 2 r e + c3 im ;
13
14 stdw re im(&c4 , c4 re , c4 im ) ;
15 }
16
17 /** 128 bit types are double-word aligned.
18 * Use aligned loads
19 */
20 #define lddw re im ( b2 , re , im)
21 {
22 ( re ) = amemd8 ( ( void ∗) (&(( b2 ) . re ) ) ) ;
23 ( im) = amemd8 ( ( void ∗) (&(( b2 ) . im ) ) ) ;
24 }
25
26 /** 128 bit types are double-word aligned.
27 * Use aligned stores
28 */
29 #define stdw re im ( b2 , re , im)
30 {
31 amemd8 ( ( void ∗) (&(b2 . re ) ) ) = re ;
32 amemd8 ( ( void ∗) (&(b2 . im ) ) ) = im ;
33 }

Figure 7.10: SIMD instructions in sFFT inner loop
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Loop Unrolling and Resource Balancing

As introduced in the architectural overview, the C6x DSP architecture is partitioned

into two nearly symmetric halves (A-side and B-side) with limited connectivity be-

tween the two. Each side contains half the registers and four functional units, noted

by the types of instructions that execute on multiplication, load and store, shifts,

branches, logical and arithmetic operations. Consequently, it is a key to evenly par-

tition the computations between the two halves and balance the available resources.

For example, if 8 multiply instructions need to be completed every iteration, each .M

unit (multiplication) needs to complete 4 multiply instructions per iteration (since

there are two .M units). Therefore, the next iteration, regardless of whether software

pipelining is used or not, will not be able to start until at least 4 cycles later.

In irregular applications, the irregular memory accesses can easily cause the un-

balanced resource partition, which significantly burdens the traffic of the cross path

between the two halves. If the resource partition information indicates an unbalanced

partition between the A side and B side functional units, additional techniques, such

as loop unrolling, can be used to balance the usage of the two halves of the core.

Figure 7.11 shows the concept of unrolling the loop for better (more balanced)

utilization of the critical .D unit (for load and store) resource (the situation would

be analogous for the critical .T address path). On the left side, four loop iterations

are shown, as indicated by the double arrows, producing eight results in four cycles.

One .D unit is unused every other cycle. The right side shows performance after

unrolling the loop by 2x. Both .D units are therefore executing useful instructions
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Figure 7.11: Loop unrolling and resource balancing.

in every cycle and the CPU cycles are further reduced to 6 to produce the 4 results.

Unrolling the loop manually, however, is usually tedious and error-prone, even for

quite simple loops. For the TI’s compiler, one can pass hints to the compiler via direc-

tives and instruct the compiler to unroll the loop automatically. This is done by using

the MUST ITERATE pragma: MUST ITERATE(lower bound, upper bound, factor).

It specifies to the compiler certain properties of the loop count. The lower bound

defines the minimum possible total iterations of the loop, the upper bound defines the

maximum possible total iterations of the loop, and the factor tells the compiler that

the total iteration is always an integer multiple of this number. The lower bound

and upper bound must be divisible and at least as big as the factor. Any of the

three parameters can be omitted if unknown, but if any of the value is known, it

is recommended to provide this information to the compiler. For instance, #pragma

MUST ITERATE(1,,2) instructs the compiler that the loop trip count is at least 1,

and is a factor of 2. So the compiler is most likely to unroll the loop by the factor of

2.
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7.8 Performance Evaluation

In this section, we evaluate the performance of the sFFT on TI KeyStone II platform.

Currently, we developed five versions of the sFFT inner loop (i.e., perm+filter stage)

on DSPs as below:

• DSP Version 1 – Original baseline version without any optimization

• DSP Version 2 – Optimized version after applying the above mentioned low-

level optimizations (without SIMD optimization)

• DSP Version 3 – Sequential blocking version with SIMD optimization

• DSP Version 4 – Parallel blocking version with SIMD optimization

• DSP Version 5 – Porting Intel parallel blocking version (As described in Chap-

ter 5) to DSPs

For the performance evaluation purpose, we also developed three different versions

of the sFFT inner loop for the ARM architecture.

• ARM Version 1 – Original baseline version without any optimization

• ARM Version 2 – Intel parallel blocking version described in Chapter 5

• ARM Version 3 – Parallel blocking version for ARM. A newly developed ver-

sion. Took DSP Version 4 as the code base

Note that the Intel code (i.e., PsFFT) can be directly ported to the ARM archi-

tecture without any modifications to the sFFT source code.
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Table 7.13: sFFT time distribution on ARMs (k = 1000)

Signal size (2n) 18 19 20 21 22 23

Original MIT sFFT C++ version

perm+filter 0.177 0.448 0.784 1.277 1.966 3.021

overall 0.756 0.941 1.406 1.761 2.463 3.521

percentage 23.3% 47.6% 55.8% 72.5% 79.8% 85.8%

Sequential baseline C version

perm+filter 0.167 0.481 0.914 1.479 2.196 3.445

overall 0.422 0.692 1.164 1.700 2.445 3.711

percentage 39.6% 69.5% 78.5% 87.0% 89.8% 92.8%

Parallel baseline C version (4 threads)

perm+filter 0.1855 0.4812 0.9131 1.4843 2.2004 3.4387

overall 0.2732 0.5791 1.0103 1.5791 2.3081 3.5636

percentage 67.9% 83.1% 90.4% 94.0% 95.3% 96.5%

7.8.1 sFFT Time Distribution

As a very first experiment, we executed the baseline version of the sFFT on the ARM

and measured the execution time. The objective is to justify the time distribution

on the stage of the perm+filter domains the overall execution time.

Table 7.13 shows 3 groups of data on ARM for original MIT C++, our C baseline

sequential implementation (described in Chapter 4), and our C baseline parallel

implementation (perm+filter is still sequential while the rest stages are in parallel).

The purpose is to justify that the perm+filter stage takes most of the execution

time. From the table, the third group shows that in the parallel baseline version,

perm+filter stage takes most of the time. The stages other than the perm+filter are

parallelized on the ARM. This serves as the baseline version for the sFFT ARM +

DSP code. Noted that perm+filter is the stage that is executed on the DSP while

the rest of them are executed on ARM, either sequential or in parallel.
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Table 7.14: Execution time (sec) of DSP Version 1

Signal size 2n 18 19 20 21 22 23 24 25 cycles

perm + filter 0.67 0.93 1.28 1.73 2.42 3.43 4.57 6.39 252

Table 7.15: Execution time (sec) of DSP Version 2

Signal size 2n 18 19 20 21 22 23 24 25 cycles

perm + filter 0.40 0.59 0.84 1.12 1.57 2.24 2.98 4.16 165

For the results shown in rest of this chapter, otherwise specified, the execution

time refers to the time on perm+filter only.

7.8.2 Execution Time of DSP Version 1

Table 7.14 shows the execution time (perm+filter) of DSP version 1, the naive DSP

version without any architecture-specific optimization. From the results, we could

see that the average CPU cycles per loop iteration is 252.

7.8.3 Execution Time of DSP Version 2

Table 7.15 shows the execution time (perm+filter) of DSP version 2, the optimized

DSP version after applying the CPU-level optimizations. It can be seen from the

results that the average cycles per loop iteration have been reduced from 252 to 165,

1.5 times performance improvements.
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Table 7.16: Execution time (sec) of different batch sizes for DSP Version 4 (n = 224,
block size = 16)

no. of threads 1 2 4 8

batchsz = 1 1.88 1.31 0.71 0.41

batchsz = 2 1.84 1.29 0.69 0.41

batchsz = 4 1.80 1.29 0.68 0.41

batchsz = 8 1.85 1.28 0.69 0.42

batchsz = 16 1.90 1.28 0.68 0.41

7.8.4 Exploring Different Batch Sizes for DSP Version 4

Since the performance of DSP version 4, parallel blocking version, potentially lies on

the different batch size and block size. In this subsection, we explore the performance

impact on different batch sizes.

Table 7.16 shows the execution time of different batch sizes for the DSP version

4, by varying the number of threads. From the table, we can see that the batch

size does not have a significant impact on performance. Consequently, we fix the

batch size to 1 to reduce the loop overhead. In addition, we change the #pragma

MUST ITERATE(1) to #pragma MUST ITERATE(1, BATCHSZ) to allow the compiler to

better handle the pipelined code.

7.8.5 Exploring Different Block Sizes for DSP Version 4

In this subsection, we measure the execution time of the DSP version 4 by varying

the blocking size. The result is shown in Table 7.17.

It can be seen from the table that the performance is improved with the increase

of the block size. For the block size equals to 64, which is the largest possible size
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Table 7.17: Execution time (sec) of different block sizes for DSP Version 4 (n = 223,
batch size = 1)

no. of threads 1 2 4 8

blocksz = 1 1.40 1.03 0.54 0.33

blocksz = 4 1.32 0.81 0.45 0.29

blocksz = 16 1.27 0.75 0.43 0.27

blocksz = 32 1.25 0.73 0.41 0.27

blocksz = 64 1.23 0.74 0.41 0.26

fitting into the L1 SRAM, it delivers best performance. Therefore, we choose the

block size as 64 for future performance measurements.

7.8.6 Execution Time of DSP Version 4

In this subsection, we measure the execution time of DSP Version 4, the parallel

blocking version. According to the measurements above, we set the batch size to be

1 and block size 64, for the best performance. It is worth to note that we did not

explicitly measure the performance of DSP Version 3. It is because DSP Version 3 is

essentially the same as Version 4 for the single thread. So the results of DSP Version

4 on 1 thread represents the results of DSP Version 3. Table 7.18 shows the results.

7.8.7 Execution Time of DSP Version 5

The DSP Version 5 is adapted from the old Intel blocking version (corresponding to

Intel Version 2), which was ported to the TI KeyStone II platform for the performance

comparison purpose. Table 7.19 shows the results. The block size is 16.

It can be seen from the table that TI version 5 has poor scalability. In particular,
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Table 7.18: Execution time (sec) of DSP Version 4 (batchsz = 1, blocksz = 64)

no. of threads 1 2 4 8

n = 218 0.24 0.16 0.1001 0.0755

n = 219 0.35 0.22 0.13 0.10

n = 220 0.45 0.27 0.16 0.11

n = 221 0.64 0.39 0.21 0.14

n = 222 0.92 0.50 0.28 0.19

n = 223 1.19 0.72 0.41 0.26

n = 224 1.62 0.94 0.52 0.34

n = 225 2.43 1.33 0.75 0.48

speedup(n = 225) 1.00 1.82 3.24 5.03

Table 7.19: Execution time (sec) of DSP Version 5

no. of threads 1 2 4 8

n = 218 0.54 0.33 0.19 0.15

n = 219 0.76 0.44 0.25 0.22

n = 220 1.05 0.62 0.34 0.29

n = 221 1.39 0.82 0.46 0.42

n = 222 1.97 1.14 0.66 0.57

n = 223 2.76 1.61 0.89 0.87

n = 224 3.73 2.17 1.20 1.15

n = 225 5.12 2.98 1.62 1.48

speedup(n = 225) 1.00 1.72 3.15 3.46

the performance improvement is only marginal from 4 cores to 8. The result indi-

cates that irregular memory references, which result in high memory traffic is the

principal performance bottleneck. The results also justify the hypothesis in version

4; the packing algorithm can substantially reduce the memory traffic and bandwidth

burden.
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Table 7.20: Execution time (sec) of different block sizes for ARM Version 3 (n = 223,
batch size = 1)

no. of threads 1 2 4

blocksz = 1 1.88 0.98 0.55

blocksz = 4 1.79 0.93 0.53

blocksz = 16 1.76 0.91 0.52

blocksz = 32 1.76 0.91 0.51

blocksz = 64 1.76 0.91 0.52

Table 7.21: Execution time (sec) of ARM Version 3 (batchsz = 1, blocksz = 16)

no. of threads 1 2 4

n = 218 0.08 0.04 0.02

n = 219 0.24 0.13 0.08

n = 220 0.44 0.23 0.13

n = 221 0.73 0.38 0.22

n = 222 1.10 0.57 0.32

n = 223 1.75 0.91 0.51

speedup(n = 223) 1.00 1.93 3.45

7.8.8 Exploring Different Block Size for ARM Version 3

The ARM Version 3 is adapted from DSP Version 4, by removing the DSP-specific

optimization. In this subsection, we measure the execution time of ARM Version 3

by varying the block sizes. Table 7.20 shows the results. From the result, we could

see that for block size equals to 16 generates the best performance.

7.8.9 Execution Time of ARM Version 3

In this subsection we focus on measuring the execution time of ARM Version 3. The

batch size is set to 1, and the block size is 16, which generates the best performance.

Table 7.21 shows the results.
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Table 7.22: Execution time (sec) of regular memory access for DSP Version 4

no. of threads 1 2 3 4

n = 223 0.31 0.18 0.11 0.07

n = 224 0.22 0.21 0.12 0.08

n = 225 0.44 0.33 0.19 0.12

7.8.10 Exploring the Performance of Regular Memory Ac-

cesses

In this subsection, we explore the performance of regular memory access pattern on

TI KeyStone II platform. Specifically, we changed DSP Version 4 code from irregular

memory access to origx to regular. Table 7.22 shows the performance.

7.9 Summary

In this chapter, we port the sFFT to the Texas Instruments KeyStone II SoC, a

novel heterogeneous multicore embedded system. We explored key performance op-

timization techniques to deliver the best performance of the sFFT. The experimental

results indicate that the optimizations can effectively improve the performance.

OpenMP 4.0 provides a high-level programming model to program heterogeneous

accelerator-based architectures. Programmers can easily use the target and map

directives to offload the code to the accelerator device and transfer the data between

in between. However, programmers still need to strike the balance between the

code’s portability and performance, which are often non-trivial to achieve at the

same time. In order to achieve the optimal performance, programmers need to use
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the TI-specific extensions to handle manually the data transfer and data placement

in the local memory. As a result, it makes the code ”TI-specific” thus loses the

portability to other possible architectures. Furthermore, as the OpenMP handles

only the parallelization and synchronization of a program, it is still the programmer’s

responsibility to optimize the computational kernel inside of the “parallel” region.

It is usually a non-trivial and tedious task, which requires the specific knowledge of

the underlying architecture, and the learning curve is usually quite steep.

182



Chapter 8

A Heuristic to Further Improve

Data Locality for Sparse FFT

8.1 Overview

As is discussed in Chapter 1, there are two major challenges in exploiting the data

locality for irregular applications: dynamic irregularity and transformation overhead

at runtime. In this chapter, we present an online transformation algorithm which

aims to address the challenges. The new algorithm significantly reduces the inherent

complexity in finding out an optimal data layout and makes it feasible to generate

a better data layout on the fly. We apply the online transformation algorithm to

the sFFT. The experimental results show that it can significantly improve the data

locality and performance of sFFT.
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8.2 An Online Data Transformation Algorithm

8.2.1 Data Reordering and NP-Completeness

Despite that many prior studies have shown promising results using data reorder-

ing transformations, the understanding of data reordering for minimizing irregular

memory accesses still remain preliminary. The prior work mainly focused on heuris-

tic approaches to exploit the temporal and spatial locality of irregular applications.

However, they have not explored fundamental issues on data reorganization and its

relation with irregular memory access patterns. As a result, the prior data reordering

algorithms they have proposed either lack performance guarantees or are effective to

only limited scenarios.

One of the most commonly adopted approaches is consecutive packing (CPACK)

algorithm [25]. The essential idea of the CPACK is to use a first-touch policy that

packs the data into consecutive memory locations in the order they are first accessed

in time. Figure 8.1 demonstrates the CPACK algorithm. In Figure 8.1(a), four

data elements in the array A[] are accessed in the order of A[9], A[23], A[67],

A[103]. Figure 8.1(b) shows the number of cache misses under the original data

layout and access sequence. To calculate the cache miss, we make additional sim-

plistic assumptions: there is fully-associative cache that can hold only one cache

block at a time; each holding up to two array elements. Therefore, the data ele-

ments are grouped into the cache blocks such as (8,9), meaning elements A[8] and

A[9] are grouped in the same cache block. Since the cache is able to hold only one

block a time, each access to the array will results in a cache miss, as is shown in
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Access order 0 1 2 3

Data layout A[9] A[23] A[67] A[103]

(a) Original data layout and access order (simple case)

Original (8, 9) (22, 23) (66, 67) (102, 103)

Cache Hit/Miss 5 5 5 5 # cache misses

Cache block (8, 9) (22, 23) (66, 67) (102, 103) 4

(b) Cache misses on original data layout (5: miss 3: hit)

CPACK (9,23) (67,103)

Cache Hit/Miss 5 3 5 3 # cache misses

Cache block (9,23) (9,23) (67, 103) (67, 103) 2

(c) Cache misses after applying CPACK algorithm (5: miss 3: hit)

Figure 8.1: An example that illustrates the CAPCK algorithm. Simple case that
each element is accessed by only once. Assume 2 elements in a cache block and only
1 cache block fits in the cache

Figure 8.1(b). Consequently, the total number of cache misses is 4. Figure 8.1(c)

illustrates the cache misses has been reduced to 2 after the data layout has been

reordered by the CPACK algorithm. Based on the first-touch policy, the CPACK

algorithm packs the original data into two cache blocks: (9,23) and (67,103). As a

result, accessing to element A[23] and A[103] will hit in the cache, and the number

of cache misses is reduced by 2.

Although Figure 8.1 shows promising results that cache misses can be substan-

tially reduced by using the CPACK algorithm, it can be extremely complicated if the

array elements are accessed repetitively. Consider the example shown in Figure 8.2.

Figure 8.2(a) illustrates the scenario that array elements are accessed repetitively.

For instance, A[23] is accessed at iteration 1, 3 and 5, respectively. Figure 8.2(b)

shows the original data layout and the cache misses. Although certain elements are
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accessed more than one times, showing potential temporal locality, each data ac-

cess still ends up with a miss because the cache can hold only one block at a time.

Therefore, the total number of cache misses is 7. In Figure 8.2(c), elements A[9] and

A[23] will be packed into one cache block by the CPACK algorithm since they are

accessed consecutively in time. As is shown in Figure 8.2(c), the total cache misses

is reduced to 6.

However, it is obvious to see that packing (A[9], A[23]) into one cache block is

not optimal; instead, it should yield better locality if it packs (A[23], A[67]) into

once cache block because A[23] and A[67] are accessed consecutively twice (See the

Figure 8.2(a) for the access order from 3 to 6). Figure 8.2(d) shows the optimal data

layout by packing (A[23], A[67]) together. It can be seen from the Figure that

the number of cache misses has been further reduced to 4.

The issue has been largely limiting the applicability of the CPACK. Despite

many recent efforts, CPACK has been effective for only the cases where each data

element is accessed by only once. In an application with dynamic irregular references,

however, this assumption hardly holds: in many irregular applications elements can

be accessed repeatedly; in the sFFT code, a data entry of the signal can be sampled

more than once.

It is important to note that the optimal data layout shown in Figure 8.2(d) is

found by hand. Unfortunately, finding the optimal data layout in memory with min-

imum cache misses is a NP-complete problem in general [72], making it impractical

to solve the problem precisely. Next, we will show that the challenge can be circum-

vented if a constraint assumed by the approach can be relaxed. We will show that
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Access order 0 1 2 3 4 5 6

Data layout A[9] A[23] A[103] A[23] A[67] A[23] A[67]

(a) Original data layout and access order (complex case)

Original (8, 9) (22, 23) (66, 67) (102, 103)

Cache Hit/Miss 5 5 5 5 5 5 5 # misses

Cache block (8,9) (22,23) (102,103) (22,23) (66,67) (22,23) (66,67) 7

(b) Cache misses on original data layout (5: miss 3: hit)

CPACK (9,23) (67,103)

Cache Hit/Miss 5 3 5 5 5 5 5 # misses

Cache block (9,23) (9,23) (67,103) (9,23) (67,103) (9,23) (67,103) 6

(c) Cache misses after applying CPACK algorithm (5: miss 3: hit)

Optimal (23,67) (9,103)

Cache Hit/Miss 5 5 5 5 3 3 3 # misses

Cache block (9,103) (23,67) (9,103) (23,67) (23,67) (23,67) (23,67) 4

(d) An optimal data layout that yields minimal cache misses (5: miss 3: hit)

Optimal (9,23) (103,23) (67,23) (67,-)

Cache Hit/Miss 5 3 5 3 5 3 5 # misses

Cache block (9,23) (9,23) (103,23) (103,23) (67,23) (67,23) (67,-) 4

(e) Padding algorithm that generates optimal data layout (5: miss 3: hit)

Figure 8.2: An example that illustrates the algorithms of CAPCK, optimal, and
padding. Simple case that each element is accessed only once. Assume 2 elements
in a cache block and only 1 block fits in the cache
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the essence for designing a new data transformation algorithm can be reduced to a

classical tradeoff between time and space complexity.

8.2.2 An Online Data Transformation Algorithm that Cir-

cumvents the Complexity

In last section, we reveal that finding an optimal data layout through data reordering

to minimize the cache misses is generally a NP-complete problem. The rule implies

that the essential challenge in data reordering comes from an implicit constraint that

the produced new data layout uses no more space than the original; in other words,

each item in the original data structure has only one copy in the transformed struc-

ture. In fact, if we allow more space to be used, the complexity of the problem would

be reduced significantly. In this section, we present a new online data transforma-

tion algorithm which aims to circumvent the limitations of the CPACK algorithm

especially at the scenario of repeated data accesses.

The idea is based on padding. For an irregular reference, say A[B[i]], the

padding algorithm creates a new array A’ such that A’[i] = A[B[i]]; the refer-

ence to A[B[i]] is then replaced with A’[i]. Figure 8.2(e) illustrates an example

using the padding algorithm. Similar to the CPACK algorithm, it packs the data

elements into consecutive memory locations in the order such that they are accessed

in time. As is shown in the Figure 8.2(e), (A[9],A[23]) are packed into the same

cache block and (A[103],A[23]) are packed together, and so on. Therefore, the orig-

inal array A will be replaced with a padded array A’ with elements A[9], A[23],
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A[103], A[23], A[67], A[23], A[67]. As is shown in the Figure 8.2(e), the total

number of cache misses has been reduced to 4, the same as the optimal data layout

shown in Figure 8.2(d).

The algorithm is able to find better data layout than CPACK in the scenario of

repeated data accesses because it allows to create duplicated copies of elements in

the transformed array when the original data is accessed repetitively. So it relaxes

the constraints that each item in the original array can have only one copy in the

transformed array; instead, the size of transformed array is as large as the number of

loop iterations that encloses the irregular data references, no matter how large of the

original array. In the Figure 8.2(e), the padding algorithm produces 4 cache blocks,

doubling the size of the original array. We name the new online data transforma-

tion algorithm as CPACK-E algorithm 1, because it extends the CPACK algorithm

and circumvents its limitations in finding an appropriate data layout in the case of

repeated data accesses.

8.2.3 Time-space Tradeoff

Although CPACK-E algorithm transforms the irregular accesses to regular and gen-

erates better data layout than CPACK, it comes at the cost of space overhead. For

the data entry accessed by k times, the CPACK-E algorithm will generate k copies

of the item in the transformed array. In this subsection, we point out that designing

a new data reordering algorithm can be reduced to a classical tradeoff between time

and space complexity. We will show how to reduce the space cost in next subsection.

1The character ‘E’ stands for extension

189



no. of cache misses

s
p
a
c
e
 o

v
e
rh

e
a
d

padding (CPACK-E)

CPACK

partial padding

0

block padding

(block CPACK-E)

(a) space vs. transformation quality

computational complexity

s
p
a
c
e
 o

v
e
rh

e
a
d

padding 

(CPACK-E)

Optimal

0

block padding

(block CPACK-E)

NP-complete

solvable

CPACK

(b) space vs. time complexity

Figure 8.3: Positions of various algorithms in the space-time trade-off

Figure 8.3 illustrates the conceptual time-space positions for the several data

reordering approaches. Figure 8.3(a) shows the space overhead vs. transformation

quality in terms of cache misses. We can see from the figure that CPACK-E (based

on the idea of padding) and CPACK fall into two extreme ends of the space cost

and transformation quality; CPACK-E generates the better data layout but at the

cost of the space overhead. CPACK, on the other hand, has less space cost but

loses the guarantee of performance. It is worthy noting that several prior studies

used partial padding approach [90] where only partial of the data are duplicated.

Although it reduce the space overhead, it compromises the quality of the optimization

proportionally, as is shown in the Figure 8.3(a). Figure 8.3(b) presents the time-space

tradeoff. The CPACK-Ealgorithm has the time complexity as CPACK, but comes

with greater space overhead; finding an optimal data layout by data reordering, on

the other hand, has no space overhead but ends with a NP-completeness problem

regarding to the time complexity. Next we propose the block CPACK-E algorithm

which aims to reduce the space overhead of the CPACK-E algorithm.
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8.2.4 Block CPACK-E Algorithm

In last section, we figure out that it is a NP-complete problem to find out a general

data reordering algorithm that can generate the optimal data layout with minimal

cache misses. We also reveal that the problem can be further reduced to a tradeoff

between time and space. Based on the insights, we proposed a CPACK-E algorithm

that is able to produce a better layout at the cost of space overhead. In this section,

we present a new block CPACK-E algorithm that aims to reduce the space overhead.

In fact, the block CPACK-E algorithm only uses several blocks of constant space.

The essential idea of the block CPACK-E algorithm is to apply the blocking

optimization on the CPACK-E algorithm. Therefore, instead of allocating a large

array A′ to store the transformed data elements with repeated data entries, the block

CPACK-E algorithm only requires to allocate a small block of data which has the

size of several cache lines.

There are several expected benefits for this block CPACK-E algorithm. First of

all, the preserve the benefit of CPACK-E algorithm that can effectively find out a

better data layout in memory. Second, it overcomes the drawback of the CPACK-E

algorithm with small memory footprint. In particular, the block usually has the

size equals to several cache lines. Since it is independent with the problem size, the

space cost of the CPACK-E algorithm has been reduced to constant. Furthermore,

it inherits the benefit of the blocking optimization that spatial and temporal locality

is well exploited before a cache block is evicted from the cache.
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Complexity Analysis

As is shown in Figure 8.3, the block CPACK-E algorithm could generate better data

layout than CPACK with constant space overhead. In the Figure 8.3(b), the block

CPACK-E algorithm has the same order of time complexity as CPACK because it

only needs to traverse the original irregular array once before producing the trans-

formed data layout. Therefore, the time complexity of block CPACK-E is linear, i.e.,

O(n), and the space complexity is O(1), namely constant.

8.3 Performance Evaluation

In this section, we evaluate the performance improvement by the CPACK-E algo-

rithm. Since the CPACK-E algorithm is a blocking-based algorithm, we first deter-

mine the best block size which delivers the highest performance. Then, we apply the

CPACK-E algorithm on the perm+filter stage of sFFT, which performs the irregular

memory access pattern. We evaluate the performance improvement after applying

the CPACK-E algorithm. The experimental results show that the CPACK-E algo-

rithm can further improve the performance of the perm+filter kernel by 30% and

overall performance improvement by 20%.

8.3.1 Determining the Best Block Size

In the first experiment, we run the experiments multiple times with different block

sizes in order to determine the best block size for the CPACK-E algorithm. Table 8.1
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Table 8.1: Execution time (sec) of different block sizes for PsFFT (N = 227, k =
1000)

no. of threads 1 2 3 4 5 6

block size = 1 3.87 2.09 1.41 1.26 0.94 0.83

block size = 2 2.38 1.23 0.92 0.68 0.61 0.49

block size = 4 2.05 1.12 0.75 0.68 0.60 0.44

block size = 8 1.45 0.78 0.56 0.53 0.42 0.38

block size = 16 1.39 0.75 0.54 0.51 0.39 0.31

block size = 32 1.21 0.65 0.47 0.42 0.36 0.29

block size = 64 1.05 0.59 0.41 0.41 0.34 0.26

block size = 128 0.99 0.56 0.39 0.37 0.29 0.28

block size = 256 0.99 0.54 0.38 0.39 0.30 0.23

block size = 512 0.99 0.54 0.38 0.33 0.30 0.24

block size = 1024 0.99 0.53 0.39 0.32 0.28 0.24

block size = 2048 0.99 0.54 0.39 0.34 0.34 0.26

block size = 4096 0.99 0.53 0.39 0.32 0.32 0.28

shows the execution time different block sizes. We fix the signal size to be relatively

large with n = 227 and k = 1000, and change the block size from 1 to 4096. We

measure the execution time of perm+filter for the number of threads from 1 to 6,

respectively. It can be seen from the Table 8.1 that the execution time significantly

reduces by increasing the block size. It becomes relatively stable for even larger block

size (e.g., block size greater than 512), and slightly increases then. For this reason,

we choose the block size to be 512 for the rest of the experiments since it can usually

deliver the best performance.
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Table 8.2: Performance evaluation before and after applying the CPACK-E algorithm
on PsFFT – 1 thread

(a) Execution time of the perm+Filter stage (in second)

Signal size
2n,k = 1000

After
CPACK-E

Before
CPACK-E

Speedup

19 0.03 0.03 1.06

20 0.07 0.09 1.30

21 0.11 0.15 1.37

22 0.16 0.22 1.37

23 0.25 0.33 1.33

24 0.34 0.46 1.34

25 0.50 0.68 1.36

26 0.68 0.92 1.36

27 1.00 1.37 1.37

28 1.39 1.92 1.39

average 1.33

(b) Execution time of the overall PsFFT (in second)

Signal size
2n,k = 1000

After
CPACK-E

Before
CPACK-E

Speedup

19 0.12 0.12 1.01

20 0.16 0.18 1.13

21 0.18 0.22 1.21

22 0.25 0.31 1.24

23 0.33 0.41 1.25

24 0.43 0.54 1.27

25 0.61 0.78 1.29

26 0.80 1.04 1.30

27 1.30 1.67 1.29

28 1.83 2.37 1.29

average 1.23
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Table 8.3: Performance evaluation before and after applying the CPACK-E algorithm
on PsFFT – 6 threads

(a) Execution time of the perm+Filter stage (in second)

Signal size
2n,k = 1000

After
CPACK-E

Before
CPACK-E

Speedup

19 0.01 0.01 1.20

20 0.02 0.02 1.20

21 0.03 0.04 1.45

22 0.05 0.06 1.34

23 0.08 0.09 1.23

24 0.12 0.13 1.11

25 0.12 0.20 1.65

26 0.19 0.26 1.36

27 0.22 0.38 1.72

28 0.39 0.48 1.24

average 1.35

(b) Execution time of the overall PsFFT (in second)

Signal size
2n,k = 1000

After
CPACK-E

Before
CPACK-E

Speedup

19 0.05 0.05 1.02

20 0.06 0.07 1.10

21 0.06 0.09 1.34

22 0.09 0.10 1.19

23 0.13 0.14 1.10

24 0.17 0.18 1.05

25 0.18 0.25 1.41

26 0.25 0.30 1.24

27 0.43 0.59 1.37

28 0.75 0.84 1.11

average 1.19
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8.3.2 Experimental Results

Execution Time – Sequential

In this experiment, we evaluate the performance improvement by applying the CPACK-

E algorithm to the sFFT. We measure the sequential execution time of the PsFFT

(i.e., on 1 thread). We compare the results of the PsFFT after using the CPACK-E

algorithm with the best performed version (i.e., Intel blocking version as was dis-

cussed in Chapter 5).

Table 8.2 shows the execution time of PsFFT before and after applying the

CPACK-E algorithm. In the experiment, we change the signal size n from n = 219

to 228 and fix the sparsity k = 1000. As is shown in the table, the execution time

of the perm+filter stage is improved by 33% on average. Overall, the performance

of PsFFT has been improved by 23%. The results prove the effectiveness of the

CPACK-E algorithm.

Execution Time – Parallel

In this experiment, we evaluate the performance improvement of the CPACK-E

algorithm on 6 threads. Table 8.3 shows the execution time of the perm+filter stage

as well as the overall PsFFT algorithm for various signal sizes. It can be seen from

the table that the average performance improvement of the perm+filter stage is 35%.

Overall, the CPACK-E improves the performance of PsFFT by 19% on average. The

result shows that the CPACK-E can effectively improve the performance of PsFFT.
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8.4 Summary

In this chapter, we propose an online data transformation algorithm called CPACK-

Ealgorithm, which can effectively exploit data locality for irregular applications.

The CPACK-E algorithm overcomes the limitation of a canonical data transforma-

tion approach, CPACK, and points out that designing a new runtime transformation

algorithm can be reduced to the time-space tradeoff. Based on the insight, the pro-

posed CPACK-E algorithm can generate a better data layout at the linear time with

constant space cost. The experimental results show that the CPACK-E algorithm

significantly improves the performance of an irregular computation kernel in sFFT

by more than 30% and improves the overall performance of sFFT by 20%.
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Chapter 9

Conclusion and Future Work

9.1 Conclusion

In this dissertation, we present efficient parallel implementations for computing the

sFFT on three state-of-the-art multicore and massively parallel architectures. We

report the bottlenecks in the algorithm that impede the performance. We explore

various suitable and optimized solutions to tackle the challenges. The experimental

results show that our parallel sFFT is more than 5x and 20x faster than the MIT

original sequential sFFT implementation on multicore CPUs and GPUs, respectively.

Compared to the full-size standard FFT libraries, the parallel sFFT achieves more

than 9x speedup on multicore CPUs and 12x speedup on GPUs for a broad range of

signal spectra.
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9.2 Future Directions

There are several future directions we intend to explore, building on the work com-

pleted. In this dissertation, we mainly focus on implementations of the sFFT algo-

rithm. As a future work, we plan to explore more real applications with a massive

need for FFT computations. We plan to study the sparsity of spectra in the appli-

cations and to replace the FFT routines by the sFFT. We expect it can significantly

improve the performance of the applications.

Furthermore, our current parallel sFFT is implemented on a shared-memory mul-

ticore CPUs and a single GPU. For the input data continuously increases, it can be

expected that it will eventually exceed the size of the main memory in a single com-

pute node. In future work, we plan to extend the sFFT by exploiting the distributed-

memory CPU and GPU clusters. That requires largely to re-design the algorithm

by carefully partitioning the workloads among the compute nodes and minimize the

communication and synchronization whenever possible.
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