A Thesis

Presented to the Faculty of the Department of Mathematios The Oniversity of Houston
In Partial Fulfillment
of the Requirements for the Degree Master of Science
M. D. ANDERSON MEMORIAL LIBRARY UNIVERSITY OF HOUSTON
by

Marvin R. Rogers June 1954

MATHEMATICS APPLIED TO SOME ASPECTS OF DYNAMIO METEOROLOGY

A Thesis
Presented to
The Faculty of the College of Arts and Sciencea
The Oniversity of Houston

In Partial Fulfillment of the Requirements for the Degree Master of Science in Mathematics
by
Marvin R. Rogers
June 1954

MATHEMATICS APPLIED TO SOME ASPECTS OF DYNLMIC METEOROLOGY

It is the purpose of this thesis to review and collect fundamental mathematies that bears on the motion of air particles in dynamio meteorology. Many of the derivations have been supplied by the author. The gection on the curl of the relative acceleration and the development of the vector equation concerning the center of curvature are the author's own work.

TABLE OF CONTENTSOutiline of Mathematics in a Rotating syster . . 1Relative Motion 7
Forces Producing Motion Relative to Earth 12
Feference system 13
Pressure Force 14
Gravitation 16
Absolute Motion 18
Velocity and Acceleration of a Point of
Earth 19
Velocity Equation 22
Acceleration Equation 23
Coriolis Acceleration 25
Relative Motion, Earth 25
II. HORIZONTAL MOTION 27
Outiine of Mathematics Involved in Horizontal
Flow 28
Centripetal Acceleration 28
Arbitrary Motion. 29
Sense of Curvature 32
Angular Radins of Curvature 33
Horizontal and Vertioal Curvature 34
Applications of Mathematios to Earth and
Atmosphere 37
The Angular Velocity of the Earth 37
The Pressure Force and the Force of Gravity 38
Total Components of Relative Motion, Earth 39
Vertical Equation 40
III. FRICTION 42
Frictional Theory 42
Relationship Between Friotion and Coriolis
Force 44
Surface Triction 46
Internal Friction 48
Viscous Stress and Viscosity 48
Molecular Internal Friotion Term 50
Moleoular and Eddy Viscosity 51
Wind Variation from Surface to Gradient Level 53
IV. THE CURL OF THE VECTOR EQUATIONS OF MOTION 56
Velooity Equation 56
Curl 56
Vorticity 58
Vorticity and Horizontal Circular Motion 59
Curl of Aoceleration Equation 60
BIBLIOGRAPHY 64

CHAPTER I

FORCES ON A ROTATING EARTH AND ATMOSPHERE

The aim of this chapter is to demonstrate mathematioally the acceleration that a moving particle experiences from the forces that are present in a rotating system, and integrate these forces into a consideration of an air particle's movement with respect to the earth. From a meteorological viem point, the total acceleration of the air parti0le combines the effect of the rotating eystem and of the forces that act upon the air particle. In particular, these include gravity, presaure, and friction. 1
I. OUTLINE OF MATHEMATICS IN A ROTATING SYBTEM ${ }^{2}$

If a syatem of coordinates whose fundamental veotors are \bar{I}, \bar{J}, and $\overline{\mathbf{k}}$, changes in position relative to a second system which 18 regarded as fixed, then the fundamental vectors themselves become functions of the time with respect to the fixed sygtem.

To analyze this statement, consider the dot product

1 Sverre Petterson, Weather Analysis and Foreogeting (first edition; New York: McGraw-Hill Book Company, Inc., 1940). p. 206.

2 Arthur Hass, Introduction to Theoretical Physics (Vol. 1; second edition; London: Constable and Company, Ltd., 1928), pp. 38-51.
of unit vector \bar{I}.

$$
\bar{I} \cdot \bar{I}=1
$$

Differentiating with respect to time

$$
\begin{aligned}
& I \cdot \frac{d \bar{I}}{d t}+\frac{d \bar{I}}{d t} \cdot \bar{I}=0 \\
& I \cdot \frac{d \bar{I}}{d t}=0 .
\end{aligned}
$$

Now $\frac{d \bar{T}}{d t} \geqslant 0$, thus $\frac{d \bar{I}}{d t}$ is perpendicular to \bar{I}.
From this it follows:

$$
\bar{I} \cdot \frac{d \bar{I}}{d t}=0, \bar{J} \cdot \frac{d \bar{J}}{d t}=0, \bar{x} \cdot \frac{d \bar{k}}{d t}=0
$$

are all at right angles to corresponding fundamental vectors. These three vectors $\frac{d \bar{s}}{d t}, \frac{d \bar{J}}{d t}$, and $\frac{d \bar{x}}{d t}$ are co-planar. The proof follows from the following relationship:

$$
\bar{I} \times \bar{J}=\bar{E} .
$$

Differentiating with respect to time

$$
\frac{d \bar{x}}{d t}=\frac{d \bar{I}}{d t} \times J+\bar{I} \times \frac{d \bar{I}}{d t} .
$$

Performing a cross product with $\frac{d J}{d t}$;

$$
\frac{d J}{d t} \times \frac{d \bar{k}}{d t}=\frac{d \bar{I}}{d t} \times \frac{d J}{d t} \times \bar{J}+\frac{d \bar{J}}{d t} \times \bar{I} \times \frac{d \bar{J}}{d t}
$$

Making use of the following formula from vector analysis:

$$
\bar{a} \times \bar{b} \times \overline{0}=\bar{b}(\bar{o} \cdot \bar{a})-\bar{o}(\bar{a} \cdot \bar{b}),
$$

the right side of the equation becomes

$$
\frac{d \bar{I}}{d t}\left(\frac{d \bar{J}}{d t} \cdot \bar{J}\right)-\bar{J}\left(\frac{d \bar{I}}{d t} \cdot \frac{d \bar{I}}{d t}\right)+\bar{I}\left(\frac{d \bar{J}}{d t} \cdot \frac{d \bar{I}}{d t}\right)-\frac{d \bar{J}}{d t}\left(\frac{d \bar{J}}{d t} \cdot \bar{I}\right)
$$

The serin

$$
\begin{aligned}
& \frac{d \bar{J}}{d t}\left(\frac{d \bar{J}}{d t} \cdot \bar{J}\right)=0 \\
& \frac{d \bar{J}}{d t} \text { and } \bar{J}
\end{aligned}
$$

are perpendicular to each other.
Dotting both sides of the remaining equation with $\frac{d I}{d t}$,

$$
\begin{aligned}
\frac{d \bar{I}}{d t} \cdot \frac{d \bar{J}}{d t} \times \frac{d \bar{x}}{d t}= & -\left(\frac{d \bar{I}}{d t} \cdot \bar{J}\right)\left(\frac{d \bar{I}}{d t} \cdot \frac{d \bar{I}}{d t}\right) \\
& +\left(\frac{d \bar{I}}{d t} \cdot \bar{I}\right)\left(\frac{d \bar{I}}{d t} \cdot \frac{d \bar{I}}{d t}\right) \\
& -\left(\frac{d \bar{I}}{d t} \cdot \frac{d \bar{J}}{d t}\right)\left(\frac{d \bar{J}}{d t} \cdot \bar{I}\right) .
\end{aligned}
$$

The second term on the right drops out since

$$
\frac{d \bar{I}}{d t} \cdot \bar{I}=0 .
$$

and regrouping the terms

$$
\frac{d \bar{I}}{d t} \cdot \frac{d \bar{I}}{d t} \times \frac{d \bar{x}}{d t}=-\left(\frac{d \bar{I}}{d t} \cdot \frac{d \bar{J}}{d t}\right)\left(\frac{d \bar{I}}{d t} \cdot \bar{J} \frac{d \bar{J}}{d t} \cdot I\right)
$$

The term

$$
\left(\frac{d \bar{I}}{d t} \cdot \bar{J} \quad \frac{d \bar{j}}{a t} \cdot \bar{i}\right)=\frac{d}{d t}(\bar{I} \cdot \bar{j})
$$

and

$$
(\bar{I} \cdot \bar{j})=0,
$$

thus

$$
\frac{d \bar{I}}{d t} \cdot \frac{d \bar{J}}{d t} \times \frac{d \bar{k}}{d t}=0 .
$$

The scalar triple product represents the volume of a parallelepiped formed by coterminous sides, \bar{a}, \bar{b}, and \bar{c}.

$$
\begin{aligned}
& \bar{a} \cdot \bar{b} \times \bar{a}=|\bar{a}||\bar{b}||\bar{c}| \sin O \cos a \\
& \bar{a} \cdot \bar{b} \times \bar{c}=h A=\text { volume } 3
\end{aligned}
$$

[^0]$$
\bar{a} \cdot \bar{b} \times \overline{0}=0,
$$
then the vectors are coplanar. 4
Suppose a unit vector \bar{w}_{0} is perpendicular to the
plane common to the three vectors
$$
\frac{d \bar{I},}{d t} \frac{d \bar{I},}{d t} \text { and } \frac{d \bar{x}}{d t}
$$
then $\frac{d \bar{I}}{d t}$ is perpendicular to both \bar{w}_{0} and also to $\overline{I_{i}}$
similar relations hold for
$$
\frac{d \bar{J}}{d t} \text { and } \bar{J}, \text { and } \frac{d \vec{k}}{d t} \text { and } \bar{k} \text {. }
$$

Then the following is true:
(I) $a\left(\bar{w}_{0} \times \bar{I}\right)=\frac{d \bar{I}}{d t}, b\left(\bar{w}_{0} \times \bar{j}\right)=\frac{d \bar{J}}{d t}$ and

$$
o\left(W_{0} x \bar{k}\right)=\frac{d \bar{x}}{d t} .
$$

Now from the time derivative of $\bar{I} \cdot \bar{J}=0$,
(2) $\frac{d \bar{I}}{d t} \cdot \bar{J}+\bar{I} \cdot \frac{d \bar{J}}{d t}=0$.

Then substituting values above for $\frac{d \bar{I}}{d t}$ and $\frac{d \bar{J}}{d t}$
(3) $\bar{J} \cdot a\left(\bar{w}_{0} \times \bar{I}\right)+\bar{I} \cdot b\left(W_{0} \times \bar{J}\right)=0$,
interchanging dot and cross, and carrying out cyclic process, and letting our scalar be associated with \bar{w}_{0}
(4) $\mathrm{aw}_{0} \cdot(I \times J)+\mathrm{b}_{0} \cdot(J \times I)=0$,

4 IbId., p. 24.
(5) $a \bar{w}_{0} \cdot \bar{x}-b \bar{w}_{0} \cdot \bar{x}=0$,
(6) ($\left.\bar{w}_{0} \cdot \overline{\mathrm{E}}\right)(\mathrm{a}-\mathrm{b})=0$.

Similar statements could be made for the x and y axes, and hence both $\bar{w}_{0} \cdot \bar{I}$ and $\bar{w}_{0} \cdot \bar{j}$ would also be equal to zero. This, of course, is not true since $\overline{\mathrm{v}}$ would be perpendicular to all three coordinate axes. Consequently, $a=b$. Similarly, by cycle interchange, $b=c$ and $c=a$. Thus, the three fundamental vectors $\frac{d \bar{I}}{d t}, \frac{d \bar{y}}{d t}$, and $\frac{d \bar{x}}{d t}$ can be represented as vector products of one vector $\overline{\mathrm{w}}$:
(7) $\frac{d \bar{I}}{d t}=\bar{w} \times \bar{I}, \frac{d \bar{J}}{d t}=\bar{w} \times \bar{J}$, and $\frac{d \bar{K}}{d t}=\bar{w} \times \bar{E}$.

Carrying the investigation further, consider on arbitrary vector \bar{a}. Let \bar{a} be associated with a system whose fundamental vectors are \bar{I}, \bar{J}, and $\overline{\mathbf{x}}$. The projection of \bar{a} along each axis of the coordinate system yields
(8) $\bar{a}=\bar{i} a_{x}+\bar{J} a_{y}+\bar{x} a_{z}$.

Differentiating with respect to time:
(9) $\frac{d \bar{a}}{d t}=\bar{I} \frac{d a_{x}}{d t}+\bar{J} \frac{d a_{y}}{d t}+\bar{x} \frac{d a_{z}}{d t}+a_{x} \frac{d \bar{i}}{d t}+{ }^{a_{y}} \frac{d \bar{j}}{d t}+{ }^{a_{z}} \frac{d \bar{x}}{d t}$.

Letting the time rate of change of \bar{a} with respect to the co-ordinate system \bar{I}, \bar{J}, and $\bar{\Sigma}$ be denoted by

$$
\text { (10) } \frac{d^{-} \bar{Z}}{d t}=\bar{I} \frac{d a_{x}}{d t}+\bar{J} \frac{d a_{y}}{d t}+\bar{x} \frac{d a_{2}}{d t}
$$

and
(11) $a_{x} \frac{d \bar{I}}{d t}+a_{y} \frac{d \bar{I}}{d t}+a_{z} \frac{d \bar{u}}{d t}=(\bar{w} \times \bar{I}) a_{x}+(\bar{w} \times \bar{J}) a_{y}$

$$
\begin{gathered}
+(\bar{w} \times \overline{\mathrm{F}}) a_{z} \\
=\bar{w} \times a_{x} \bar{I}+\bar{w} \times a_{y} \bar{J}+\bar{w} \times a_{z} \bar{x}
\end{gathered}
$$

which is simply $\overline{\mathrm{w}} \times \overline{\mathrm{a}}$.
Then

$$
\text { (12) } \frac{d \bar{a}}{d t}=\frac{d^{*} \bar{a}}{d t}+\bar{w} \times \overline{\mathrm{a}} .
$$

Suppose rector a is of constant magnitude and is directed from an origin of a coordinate system to a fixed point P. It is obvious, then that

$$
\frac{d^{*} \bar{a}}{d t}=0 \text {. }
$$

and $\frac{d \bar{B}}{d t}=\bar{w} \times \bar{a}$.

Figure 1
$\frac{d \bar{a}}{d t}$ is a vector perpendicular to the plane of $\bar{w} \times \bar{a}$ and its direction is the same as that of a right-hand screw.

Further consideration shows that $\bar{w} \bar{x} \bar{a}=w a \sin (w, a) \bar{\theta}$ where $\overline{-}$ is a unit vector.

Figure 2

In Figure 2, the point P moves in a circle of radius $|\bar{a}|$ with \bar{w} constant. It \bar{w} is not constant, then it is considered as the instantaneous motion. It is now apparent that \bar{W} is the angular velocity of the particle P, its direaction, in the future, shall be directed along the axis of earth, and its magnitude is $\frac{d \bar{e}}{d t}$.

II. RELATIVE MOTION

Motion that is described as relative must be relative to some particular thing. In this case, movement with resect to a system of coordinates or a frame 0 , whose fundmental vectors \bar{I}, \bar{J}, and \bar{k} vary with the time in regard to a fixed system or frame O^{\prime}, is denoted as relative motion.

Consider a moving point P, and let its position be described from both reference frames O and O^{\prime}. Point P may be represented by drawing a directed vector length from 0 to P and O^{\prime} to P. This may describe the motion relative to a particular frame, but since 0 may move with respect to 0^{\prime}, a fixed system, directed vector length from o' to 0 completes the description of motion of point P. Note Figure 3.

In vector form, let \bar{r}^{\prime} be a position vector from 0^{\prime} to P, \bar{F} be a position vector from 0 to P, and \bar{a} be directed from O^{\prime} to 0 , thus
(1) $\bar{r}^{\prime}=\bar{a}+\bar{r}$.

Figure 3
If $\bar{r}=x \bar{I}+y \bar{\jmath}+2 \bar{x}$ is a position vector of a moving particle $P(x, y, z)$ in three dimension, then the change in \bar{r} is $\quad d \bar{r}=d x \bar{I}+d y \bar{J}+d x \overline{\mathrm{x}}$,
and the velocity is

$$
\bar{V}=\frac{d \bar{r}}{d t}=\frac{d x}{d t} \bar{I}+\frac{d y}{d t} \bar{j}+\frac{d z}{d t} \bar{x} .
$$

The acceleration, being time rate of change of the velocity, is of rom

$$
\bar{a}=\frac{d \bar{v}}{d t}=\frac{d^{2} x}{d t} \bar{i}+\frac{d^{2} y}{d t} \bar{j}+\frac{d^{2} z}{d t} \overline{\mathbf{x}} .
$$

Thus, in describing the motion of point P, equation (I) is differentiated with respect to time
(2) $\frac{\frac{\bar{r}}{}{ }^{\prime}}{d t}=\frac{d \bar{a}}{d t}+\frac{d \bar{r}}{d t}$.

Examining each term of (2) separately:

$$
\overline{\mathrm{v}}=\frac{\mathrm{d} \bar{r}^{1}}{\mathrm{~d} t}
$$

represents the velocity of moving partiole with respect to first system of co-ordinates 0^{\prime}.

$$
\bar{\nabla}_{t}=\frac{d \bar{a}}{d t}
$$

is the motion cerried out by the origin of second syster 0 with respect to IIrst 0^{\prime}. Now

$$
\frac{d \bar{r}}{d t}=\frac{d^{*} \bar{r}}{d t}+\bar{w} \times \bar{r} .
$$

The $\frac{d^{*} \bar{r}}{d t}$ term is the time rate of change with reapect to system 0 , that is

$$
\bar{\nabla}_{r}=\frac{d^{*} \bar{r}}{d t}=\bar{I} \frac{d x}{d t}+\bar{J} \frac{d y}{d t}+\bar{\Sigma} \frac{d z}{d t} .
$$

The $\overline{\mathrm{W}} \mathrm{x} \overline{\mathrm{F}}$ term, as presented in the last section, is the velooity of a partiole attached rigidy to gystem 0 , which in tum rotatea around 0^{\prime}.

5 IbId., p. 30.

Thus equation (2) takes the form
(3) $\overline{\boldsymbol{V}}=\overline{\boldsymbol{\gamma}}_{t}+\overline{\boldsymbol{\gamma}}_{\boldsymbol{r}}+(\overline{\mathbf{w}} \times \overline{\boldsymbol{F}})$.

It follows, that the total acceleration may be aocomplished by differentiating (3) with respeot to time

$$
\text { (4) } \frac{d \bar{v}}{d t}=\frac{d \bar{v}_{t}}{d t}+\frac{d\left(\bar{v}_{r}\right)}{d t}+\frac{d \bar{w}}{d t} x \bar{r}+\bar{w} x \frac{d \bar{r}}{d t}
$$

Examining each term on the right separately, $\frac{d \bar{v}_{t}}{d t}$ is the
acceleration of the origin of the second system with respect to the first. The term $\frac{d\left(\bar{v}_{r}\right)}{d t}$ breaks up into two parts, since $\overline{\mathbf{V}}_{\mathbf{r}}$ is the velozity of a partiole relative to the second system, and thus it takes the following form

$$
\frac{d\left(\bar{\nabla}_{r}\right)}{\bar{d} t}=\frac{d^{*} \bar{\nabla}_{r}}{d t}+\bar{x} \times \bar{\nabla}_{r} .
$$

The last temi becomes

$$
\begin{aligned}
\bar{w} \times\left(\frac{d^{*} \bar{r}}{d t}+(\bar{w} \times \bar{r})\right) & =\bar{w} \times \frac{d^{*} \bar{r}}{d t}+\bar{w} \times(\bar{w} \times \bar{r}) \\
& =\bar{w} \times \bar{v}_{r}+(\bar{w} \times \bar{w} \times \bar{r}) .
\end{aligned}
$$

Finally,
(5) $\frac{d \bar{r}}{d t}=\frac{d \bar{r}_{t}}{d t}+\frac{d^{*} \overline{\bar{r}}_{r}}{d t}+2\left(\bar{w} \times \bar{v}_{r}\right)+\frac{d \bar{w}}{d t} \times \bar{x}+\bar{w} \times(\bar{w} \times \bar{r})$

From equation (5) the significance of the term $\overline{\mathrm{X}} \times \overline{\mathrm{W}} \times \overline{\mathrm{r}}$ can be better understood if examined olosely.

Let \bar{W}_{0} be a unit vector along \bar{w} and r_{w} projection or \bar{r} on $\overline{\mathbf{w}}$. Note Figure 4.

Figure 4
Then

Now

$$
\begin{aligned}
& \bar{w} \times \bar{w} \times \bar{r}=(\bar{w} \cdot \bar{r}) \bar{w}-(\bar{w} \cdot \bar{w}) \bar{r}, \\
& \bar{w} \times \bar{w} \times \bar{r}=\bar{w}\left(w r \cos (w, r)-\bar{r}\left(w^{2}\right),\right. \\
& \bar{w} \times \bar{w} \times \bar{r}=\overline{w_{0}}\left(w^{2} \cos (w, r)-\bar{w}\left(w^{2}\right),\right. \\
& \bar{w} \times \bar{w} \times \bar{r}=w^{2}\left(x_{w} \bar{w}_{0}-\bar{F}\right) .
\end{aligned}
$$

$$
x_{w} \bar{w}_{\theta}=\overline{\mathbf{r}}+\bar{p}
$$

so that

$$
\bar{w} \times \bar{w} \times \bar{r}=w^{2}(\bar{r}+\bar{p}-\bar{r})=w^{2} \overline{\bar{F}} .
$$

Then it is evident, if a particle is rigidly conneoted with system 0 , and the vector of angular velocity is constant both in magnitude and direction, and there is no translational acceleration, equation (5) becomes

$$
\frac{d \bar{\gamma}}{d t}=w^{2} \bar{P} .
$$

$w^{2} \overline{\bar{p}}$ is directed toward a the center and reveals itself as a
center aseking acceleration end is commonly called centripetal acceleration.

If $\overline{\mathrm{E}}$ vanishes, the axts of the second system remains constently parallel to those of the first, then

$$
\frac{d \bar{v}}{d t}=\frac{d \bar{v}_{t}}{d t}+\frac{d \bar{r}_{3}}{d t} .
$$

Einiting conditions to the case in which the motion of tise origin of the second with respeot to the first is unifor:a, then

$$
\frac{d \bar{v}}{d t}=\frac{c \bar{\nabla}_{r}}{d t}
$$

and the acceleration ia identical for both systems.
In conolusion ts this anelysis, two co-ordinate system in a etate of uniform translatory motion with respect to sach other are known as anertial system and are equivalent ficr the description of mechanical processes provided speeds are $v \lll$ there c equal speed of 11 ght. 6 This conclusion is jnown as the mechanical principle of relritivity.
III. :ORCES PRODUCING NOMION FELATIVE TO EARTH

In tise preceaing acction, matimematics was applied to show acoelerstions and forces on a rotating system. Now it

6 Robert Lindsey, General Physios (New York: John Yiley and Sons, Inc., 1940), p. 516 .
remains to show what are the contributors to forces and accelerations in regard to the earth and its atmosphere. According to Newton

$$
\frac{d(\bar{m})}{d t}=\frac{m d^{2} \bar{r}}{d t^{2}}=\bar{F}
$$

if the mass is constant. The force resulting is the net unbalanced force acting on a particle, alr in our study. Thus it becomee apparent that in the atmosphere, the acting forces are the pressure force, the force of gravity, and the frictional force. These forces coupled with forces experienoed by a rotating system tell the atory of a partiole's acceleration. In thls section, hovever, frictional force will not be considered. A vord definition of Newton's second law, here, will portray the following work most appropriately: "The change of motion is proportional to the force and takes place in the direction in which the Force acts."

Reference system. The systems of comordinates or frames used are commonly called the relative frame and the absolute frame. The former is attached rigidy to the surface of the earth vith origin 0 , and quantities referred to the relative or "local" system will carry subscripts of r. The absolute system O^{\prime} w 111 be attached to some point on the axis of the earth and be oriented so that the "fixed stars" appear flxed. References of quantities to the absolute frame will oarry no subscript.

It should be noted here that Newton's second law, for astronomical calculations, should refer motion to a system located at the center of gravity of the solar syetem and ilxed with respect to the stars, but for dynamic meteorology the system to be used is sufficient. ${ }^{7}$

Pressure force. The pressure force arises from interaction of the air elements and is independent of the reference pyatem from which it is observed. In general, the atmosphere can be handled as a fluid mediun, and mathematical equations expressing its motions follow hydrodynamic equations. 8 Rigorous derivations can be stualed in textbooks on hydrodynamios, but for the purposes of this study, the equations and statements will be very compact and brief.

It can be stated that the pressure force per unit volume is a potential vector, and its potential is the pressure. Since the potential vector is directed toward deoreasing pressure, "the pressure force per unit volume is the gradient of the pressure, or simply the pressure gradient." 9

[^1]If p represents pressure and $p(x, y, z)$ is a continuous differentiable space function, the calculus gives

$$
\text { (1) } d p=\frac{\partial p}{\partial x} d x+\frac{d p}{\partial y} d y+\frac{\partial p}{\partial z} d z
$$

Now, let $\overline{\mathrm{F}}$ be a position rector to the point of pressure (x, y, z).
and

$$
\bar{x}=x \bar{I}+\bar{y} \bar{J}+2 \bar{x}
$$

Now let

$$
d r=d x \bar{\jmath}+d y \bar{j}+a z \bar{X} .
$$ del $p=\nabla D$

be denoted as

$$
\nabla p=\frac{\partial p}{\partial x} \bar{I}+\frac{\partial p}{\partial y} \bar{J}+\frac{\partial p}{\partial z} \bar{z} .
$$

It is obvious then, that if

$$
d p=\overline{\mathbf{r}} \cdot \nabla p=0
$$

then the equation points out that $\overline{F p}$ is perpendicular to $d \bar{F}$ as long as \bar{d} represents a change from a point (x, y, z) to a point (x_{0}, y_{0}, y_{0}) on the surface p constant. ∇p then is normal to all the tangents to the surface at (x, y, z) and is normal to curface $p(x, y, z)=$ constant. Since ∇p is fixed at any point (x, y, z) the ohange in p will depend on $\overline{d r}$. The term dp will be at a maximum when des parallel to p. Then p is in the direction of maximum inerease. Now ince the definition calls for the vector to point to decreasing pressure, it can be expressed

$$
\bar{\square}=-\nabla p \text { pressure per unit volume }
$$

and the pressure force for a volume $\delta \nabla$ is $-\delta \nabla V p$.

Diviaing by 8 m

$$
\nabla=-\frac{\delta V}{\delta M} \nabla P=-\alpha \nabla P \text { for per unit maes. }
$$

Gravitation. "Every particie in the universe attracte every other particle with a force which is dirested along the inne, joining the particies and varies directiy as the product of the masses and inversely as the square of the distance between them" is a sundamental assumption proposed by Newton. ${ }^{10}$ The coefficient of proportionality is called the constant of gravitation and is denoted by G. Thus,

$$
F=\frac{\mathrm{Gm}_{2} \mathrm{IH}_{2}}{x^{2}}
$$

where

$$
G=6.658 \times 10^{-8}\left(\mu^{-1} \mathrm{~L}^{3} \mathrm{~T}^{2}\right), \quad \text { (Holmboe, } \mathrm{P} 153 \text {) }
$$

and

$$
M=5.988 \times 10^{21} \text { Ketric Tons. }
$$

Since the particle is of unit mass

$$
\left.M=m_{1} \mathbb{m}_{2} \text { (} m_{1}=\text { mass of earth, } m_{2}=\text { unit mass }\right)
$$

and then the equation can take the form

$$
\text { (1) } \bar{g}=\frac{G M}{r^{2}} \quad \text { where } \bar{g}=F
$$

The particle of air is in the gravitational field of force produced by M(earth). The relation holds only if the earth is considered as a perfeot homogeneous sphere, but actually the earth is an oblate spheroid with the polar radius about

10 Robert Lindsay, General Physics (Hew York: John Wiley and Sons, Inc.. 1940T. p. 96.

6557 kilonstere and the equatorial radius 6378 kilometers. Usine $r=6371$, the equation (1) tecomes

$$
E=\frac{Q}{r^{2}}=2.822 \mathrm{~m}_{2}-2.11
$$

The fore of grevitation is cirected along a line from the center of the earth to e point in question, thus, to eet a Vector representation of this rorce, it will be neceseary to determine if is has potential. In tilis case, potential energy is a function of the position of a partiole and is indepondent of its velooitri. ${ }^{12}$ Furthermore, the total energy of a jarticls, ty bea of its kineilo energy and its potential ensrigy, reaian ocnstant. Fron these statements, equipotential surfeces oan be considered ar infinitesing spherical shells and the cistrco between two conasoutive shells is dr. Letting Qbe tize greitational potential, the following relation must hold:

$$
g d r=-a(Q)_{r}{ }^{13}
$$

Substituting from

$$
\begin{aligned}
& g=\frac{c M}{x^{2}} \\
& -d(\&)_{r}=\frac{G Y}{x^{2}} d x
\end{aligned}
$$

11 Holuboe, oc. git., p. 153.
12 Lindsey, op. cit., p. 93.
13 Ioli.. p. 92.

Integrating

$$
\begin{aligned}
& -\int a Q=G M\left(\frac{d r}{r^{2}}\right. \\
& Q \equiv \frac{G M}{r} \text { which is the gravitational }
\end{aligned}
$$

potential. 14
The directional derivative of a in any directions 1s
or

$$
\begin{aligned}
& \frac{d Q}{d s}=\frac{\partial Q}{\partial x} \frac{d x}{d s}+\frac{\partial Q}{\partial y} \frac{d y}{d s}+\frac{\partial Q}{\partial z} \frac{d z}{d s} . \\
& a Q=\frac{\partial Q}{\partial x} d x+\frac{\partial Q}{\partial y} d y+\frac{\partial Q}{\partial z} d z
\end{aligned}
$$

Treating this is the same manner applied in the section on pressure $d Q=\bar{Q} \cdot d \bar{r}=0$.

Obviously dawill be at a maximum when $\overline{d r}$ is parallel to $\mathbb{F Q}$. Then VQ_{Q} is in the direction of maximum inorease, but letting VQpoint in the direction of maximum deorease in gravitational potential, the vector force of gravitation

$$
\overline{\mathrm{g}}=-\nabla Q .
$$

Absolute Motion. The forces observed from the absolute frame or system O^{\prime} acting upon a particle of unit mass are the gravitational force $\overline{\mathrm{g}}$ and the pressure forse $\overline{\mathrm{b}}$ which is the pressure force per unit mass.

Newton's second law equates the absolute acceleration

14 Ivan S. Sokol, nikoff, Higher Mathematics for Engineers and Physio1sts (New York: MoGraw-Hill Book Company, Inc., 1941), p. 219.

15 Loo. eit.
to the resultant of the forces applied. Then obviousiy

$$
\frac{\bar{\partial} \bar{\psi}}{d t}=\bar{b}+\bar{g}=-\alpha \nabla p-\nabla Q
$$

By letting $\quad-\frac{d \bar{v}}{d t}=\bar{F}:$
the equation for absolute motion oan be expressed as an oquilibrua of forces

$$
0=\bar{b}+\bar{G}+\bar{F}
$$

Fi is called the inertial force of reaction, it arises fros the inertia of a particle moving relative to the abcolute irame. ${ }^{16}$ An observer attached to the moving partiole is unable to distinguish between real forces and the inertial force of reaction. Thus when forces are measured relative to a moving particle which 18 accelerating relative to the absolute Irame, inertial forces appear. Whenever a particle is moving with respect to some reference aystem with constant Velooity, the particie is said to be attached to an inertial system.

Yelocity and acceleration of a point of earth. The earth rotates irom west to east at a constant apeed w. Since W is considered with respeot to "IIxed stars", it 18 necessary to determine

$$
v=\frac{d O}{d t}
$$

In that relationship.

[^2]In one year or approximately $365 \frac{1}{4}$ solar days, earth has rotated 365 times with respect to the sun. Also, it has made one complete turn in absolute space around the sun from west to east. Thus in ore jear it has rotated 366 times with respect to the stars. The ratio

$$
\begin{aligned}
& \frac{366 \frac{1}{3}}{365 \frac{1}{2}}=\text { a sidereal day, and } \\
& w=\frac{2 \pi \text { radians }}{1 \text { sidereal day }}=\frac{366 \frac{1}{4} \cdot 2 \pi \text { radians }}{365 \frac{1}{4} \text { solar days }}=7.292 \times 10^{-5} \\
& \text { radians } \mathrm{sec}^{-1} .
\end{aligned}
$$

Let the earth and all points that appear at rest when observed from a point of the earth constitute a space. Call this space relative space. It is evident that every point of relative space rotates at a constant angular speed w around the axis of the earth in a fixed circie of curvature centered on the axis.

Now, consider a point P of earth, fixed in relative space. Let the system O^{\prime} be located at the center of the earth with the x, y plane in the equatorial plane and z axis pointed towards north pole along the axis of the earth, Direot position veotor $\overline{\mathrm{F}}$ to a point P from 0^{\prime}. Note Figure 4. Let $|\bar{r}|$ be the radius of the earth in this discussion. Now, \bar{w} is defined as the angular velocity of the earth; since the rotation is described by the numerical value of the angular speed, the orientation of the axis, and the sense of rotation. Specifically, the vector of magnitude w directed along the
axis of rotation according to the right-hand sorev rule portrajs the necessary information about the rotation. The velocity of a point of the earth is the time derivative of the position vector $\overline{\mathrm{F}}$ of constant length.

$$
\bar{v}_{e}=\frac{d \bar{a}}{d t}=\bar{w} \times \bar{r}_{.} \text {ref: p. 6, if } \bar{r}=\bar{a}
$$

The acceleration of a point of the earth is determined by differentiating $\overline{\mathrm{F}}_{\boldsymbol{e}}$ with respect to time. (Note $\overline{\mathrm{w}}$ is constant in direction and magnitude.)

$$
\begin{aligned}
& \frac{d \bar{v}_{e}}{d t}=\frac{d}{d t}(\bar{w} \times \bar{r})=\frac{d \bar{w}}{d t} \times \bar{r}+\bar{w} \times \frac{d \bar{r}}{d t} . \\
& \frac{d \bar{v}}{d t} \bar{T} \times(\bar{w} \times \bar{r})
\end{aligned}
$$

which is recognizable as $\frac{d \bar{v}_{\theta}}{d t}=v^{2} \bar{p}$ from the section on relative motion, as the centripetal force.

An examination of the movement of a point at rest in reiative space demonatrates olearly that there is an unbelanced force exerted against the point which can be considered as a particle of unit mass. This force causes the particle to have an acceleration towards the center of curvature. Otherwise, according to Newton's first law of motion, the moving particle would travel in a straight ine. Now, taking into consideration Newton's third law of motion which states: "For every action, there is an equal and opposite reaction, and the two are along the same straight ine", it is obvious there exists an equal and opposite reaction
direoted radially outward from the center of curvature. This force is known as the centrifugal reaction. It should be stated that these forces do not balance each other because they are not acting upon the same object.

From these considerations, the equation of absolute motion for a particle at rest in relative space is

$$
0=\bar{b}+\bar{g}+\bar{x} . \quad\left(k=w^{2} \bar{s}\right)
$$

This is the equation of relative or hydrostatic equilibrium, expressed from the absolute frame or system O^{\prime}. To an observer in space, the pressure force is balanced by the force $\overline{\mathbf{g}} \quad \overline{\mathbf{K}}$, but to an observer at rest in relative space, the pressure force \bar{b} appears to be balanoed by a single force, g. Thus

$$
\bar{g}_{r}=\bar{g}+\overline{\mathbf{k}}_{z}
$$

and the moving observer is unable to distinguish between real and inertial forces. ${ }^{17}$

Velooity Equation. In the last section, motion of a particle that was fixed to the earth was considered. The question arises as to what is the nature of arbitrary motion of a particle moving with respect to gystem O^{\prime} and system O. From Figure 5 it is easily seen that a moving particle P can be described by the following vector relationship

$$
r^{1}=\bar{a}+\overline{r_{0}}
$$

17 Holmboe, op. cit., p. 156.

Figure 5
The time derivative

$$
\frac{\frac{d \bar{r}}{d t}}{d t}=\frac{d \bar{a}}{d t}+\frac{d \bar{r}}{d t}
$$

gives an equation recognizable from the section on Relative Motion. Furthermore,

$$
\frac{d \bar{r}^{1}}{d t}=\bar{\nabla}=\bar{\nabla}_{t}+\bar{\nabla}_{r}+(\bar{w} \times \bar{r})
$$

where $\bar{\nabla}$ is the velocity of particle relative to system O^{\prime}, absolute frame. \bar{T}_{t} is the motion of second system O, relative Srame, with respect to first $0^{\prime} . \bar{\nabla}_{r}$ is the relative velocity of point P with respect to eystem O and $\bar{w} \bar{F}$ is the velooity of a point rigidly attached to earth.

Acceleration Equation. Acceleration, of course, is the time rate of change of the velocity, and in this oase by performing a differentiation with respect to time of the
equation

$$
\bar{\nabla}=\bar{\nabla}_{t}+\bar{\nabla}_{r}+(\bar{w} \times \bar{r})
$$

yields

$$
\frac{d \bar{v}}{d t}=\frac{d v_{t}}{d t}+\frac{d v_{r}}{d t}+2\left(\bar{w} \times \bar{\nabla}_{r}\right)+\frac{d \bar{w}}{d t} \times \bar{r}+\bar{w} \times(\bar{w} \times \bar{r}) .
$$

(From section on Relative Motion, page 10)
The earth rotates at constant velocity x and its rotation is described by vector $\overline{\mathbf{w}}$ which is constant in direction and magnitude, thus the term

$$
\frac{d \bar{w}}{d t} \times \bar{r}=0 .
$$

Also, limiting the conditions to the instant that the motion of the origin of the eecond system 0 with respect to O^{\prime} is uniform or rigidy attached.

$$
\bar{v}_{t}=0 .
$$

The resulting equation is

$$
\begin{aligned}
& \frac{d \bar{v}}{d t}=\frac{d \bar{v}_{r}}{d t}+2\left(\bar{w} \times \bar{\nabla}_{r}\right)+\bar{v} \times(\bar{w} \times \bar{r}), \\
& \frac{d \bar{v}}{d t}=\frac{d \bar{v}_{r}}{d t}+2 \bar{w} \times \bar{v}_{r}+\frac{d \bar{v}_{\theta}}{d t} .
\end{aligned}
$$

This equation showe that the acceleration of a particle with respect to absolute frame O^{\prime} is the sum of three vectors. The first term is the acceleration of a particle with respect to relative frame 0 . The last term is the centripotal acceleration of a coinoiding point of the earth. The midde term is called the Coriolis acceleration.

Coriolis Acceleretion. A clearer ldea of Coriolis acceleration, named after its discoverer, can be determined by definition of the cross product. The two vectors \bar{w} and \bar{r} have been described previously. The cross product of these two vectors yields a third vector which is perpendicular to the plane of \bar{w} and \bar{v} and directed according to the right hand sorew rule. Note Figure 6.

It should be added that
Coriolis acceleration acts normal to the velocity $\bar{\nabla}_{1}$ thus does not contribute to the tangential component of the motion. From the discusbion of centripetal acceleretion, it is apparent that if Newton's second law is
 to hold on rotating earth, a ILctitious force $-2 \bar{w} \times \overline{\mathrm{V}}$ must Figure 6. be aded. This inertial force will be called the Coriolis force.

> Relative Motion, Earth. Eliminating the absolute velocity between the two equations
and

$$
\frac{d \bar{v}}{d t}=\bar{b}+\bar{g}
$$

$$
\begin{aligned}
& \frac{d \bar{v}_{x}}{d t}=\frac{d \bar{v}_{r}}{d t}+2 \bar{w}_{x} \times \bar{v}_{r}+\frac{d \bar{v}_{e}}{d t} \\
& \bar{b}+\bar{g}=\frac{d \bar{v}_{r}}{d t}+2 \bar{w} \times \bar{\nabla}_{r}+\frac{d \bar{v}_{e}}{d t} .
\end{aligned}
$$

Solving for $\frac{d \overline{d r}}{d t}$.

$$
\frac{d \bar{v}_{r}}{d t}=\bar{b}+\bar{g}-2 \bar{w} \times \bar{v}_{r}-\frac{d \bar{v}_{e}}{d t} .
$$

This equation states that the acceleration relative to the earth is equal to the sum of all the forces, including the inertial forces arising from the absolute motion of the relative frame. The term - - $\frac{\text { He }}{\delta f}$ which is equal and opposite to the centripetal acceleration is called the centripetal reaction. It has been shown previously that $\overline{\mathrm{B}}_{\mathrm{r}}=\overline{\mathrm{B}}=\frac{\mathrm{d} \overline{\mathrm{r}}_{\mathrm{e}}}{\mathrm{dt}}$, thus the above equation becomes

$$
\frac{d \bar{v}_{r}}{d t}=\bar{b}-2 \bar{w} \times \bar{\nabla}_{r}+\bar{E}_{r} .
$$

As stated before $-\mathbf{2} \overline{\mathrm{w}} \times \overline{\mathbf{T}}_{\mathrm{r}}$ is called the Coriolis
force, the equal and opposite force of reaction. Letting

$$
\overline{0}=-\overline{2 \bar{w}} \times \bar{\gamma}_{r}
$$

the final form of the equation 18

$$
\frac{d \bar{v}_{r}}{d t}=\bar{b}+\bar{e}+\bar{g}_{r} .
$$

This is the equation of relative motion, because it gives Newton's second law of motion with respect to observations from a relative frame.

CRAPTER II

HORIZONTAL FLOW

Since a rigorous analysis of the gtudy of motion of the air poses extremely complicated mathematical equations, solutions can be attained only by certain simplifying assuipptions. Thus, an assumption that motion of the ar 1s etriotis horizontal in nature will bo considered in this chapter. It might be added, that observations indicate that most large seale movements of the atmosphere are horizontal. Friotion and some consideration of vertical motion will be considered later. The equations of motion developed in the last chapter, are valid for arbitrary motion of air particies on the earth, and thue, they are certainly valid for horizontal motion.

In introducing horizontal motion, the use of the standard co-ordinate system $\bar{I}, \bar{J}, \bar{E}$ will be supplemented by three fundamental vectors $\overline{\boldsymbol{T}}, \overline{\mathrm{n}}, \overline{\mathrm{K}}$. The latter vectore W111 be oriented suon that F is tangent to the $110 w, \bar{n}$ is normal to the flow and $\overline{\mathrm{F}} 18$ perpendicular to the plane of \bar{F} and $\overline{\mathrm{n}}$; these are all unit vectors. The right-hand serew systen prevails in both systems. Now any vector projeoted Into the system $\bar{T}, \bar{n}, \bar{E}, 18$ equal to the surs of $1 t s$ proJectione along each perpendicular axds of the syetem. A vector \bar{s} then would be

$$
\bar{a}=a_{s} \bar{t}+a_{n} \bar{n}+a_{2} \bar{z}
$$

In standard system

$$
\bar{a}=a_{x} \bar{I}+a_{y} \bar{j}+a_{z} \bar{x} .
$$

I. outline cr mathematics involved in horizontal flo

Centripetal Aocelerstion. Consider a particle moving on a circle of radius r with a constant angular speed $w=\frac{d \theta}{d t}$ or instantaneous speed w. Note Figure 7.

Figure 7
Now $\bar{r}=r \cos \theta \bar{I}+r \sin \theta \bar{J}$, and the time rate of change of \bar{F} is the velocity

$$
\bar{v}=\frac{d \bar{r}}{d t}=(-r \sin \theta \bar{I}-r \cos \theta \bar{j}) \frac{d \theta}{d t} .
$$

Obviously, the acceleration

$$
\bar{a}=\frac{d \overline{\bar{r}}}{d t}=\frac{d^{2} \bar{r}}{d \bar{J}}=(-r \cos \theta \bar{i}-r \sin \theta \bar{\jmath})\left(\frac{d \theta}{d t}\right)^{2} .
$$

ennee

$$
\frac{d}{d t}\left(\frac{d r}{d t}\right)=0
$$

Thus, the acceleration reveals itself to be

$$
\bar{a}=-w^{2} \bar{r}
$$

which is a center secking acceleration. If a vector $\overline{\mathcal{P}}=\overline{\mathrm{F}}$. and \bar{n} is a unit vector directed towarde center o from point P, the equation

$$
\bar{a}=w^{2} \bar{n} p
$$

Arbitrary Motion. The point P is any point on the space curve

$$
\begin{aligned}
& x=x(s) \\
& y=y(s) \\
& y=x(s)
\end{aligned}
$$

where s is an arc length measured from some fixed point. Note Figure 8.

Figure 8

Then a position vector $\overline{\mathbf{r}}$ from reference frame 0 1t

$$
\text { (1) } \bar{r}=x(s) \bar{I}+J(s) \bar{J}+z(s) \bar{F} .
$$

The change in $\overline{\mathrm{F}}$ along

$$
\frac{d \bar{r}}{d s}=\frac{d x}{d s} \bar{I}+\frac{d y}{d s} \bar{J}+\frac{d z}{d s} \bar{E} .
$$

Now $\quad \frac{d \vec{r}}{d s} \cdot \frac{d \bar{r}}{d s}=\left(\frac{d x}{d s}\right)^{2}+\left(\frac{\partial y}{d s}\right)^{2}+\left(\frac{d z}{d s}\right)^{2}=\frac{d x^{2} d y^{2} d z^{2}}{d s^{2}} \equiv 1$.
This, of course, is the magnitude of the vector $\frac{d \bar{p}}{d s}$ and by definition it is a unit vector. Furthermore, it is tangent to the space curve under discussion.

Now consider the relation
(2) $\bar{\nabla}=\bar{d} \frac{\bar{r}}{d s}$, where $\bar{\nabla}=$ velocity.

If differentiated with respect to time
(3) $\frac{d \bar{r}}{d t}=\frac{d v}{d t} \frac{d \bar{r}}{d s}+V \frac{d}{d t}\left(\frac{d \bar{r}}{d s}\right)$.

Now, $\frac{d}{d t}\left(\frac{d \vec{r}}{d s}\right)$ part of the last terw on the right, 18 perpendicular to the unit vector $\frac{d \bar{r}}{d s}$ which is tangent to the curve.

In other words, the acceleration has been divided into components tangential and normal to the path of partiole under consideration.

Investigating $\frac{d}{\partial t}\left(\frac{d \bar{r}}{d s}\right)$
(4) $\frac{d}{d t}\left(\frac{d \bar{r}}{d s}\right)=\frac{d\left(\frac{d \bar{r}}{d s}\right)}{d s} \frac{d s}{d t}=\frac{d^{2} \bar{r}}{d s^{2}} \frac{d s}{d t}$.

Since $\frac{d \bar{r}}{d s}$ is a unit vector it can be expressed as

$$
\frac{d \bar{r}}{d s}=\cos \theta \bar{I}+\sin \theta \bar{\jmath} .
$$

Differentiating with respect to s
$\frac{d}{d \theta}(\cos \theta \bar{I}+\sin \theta \bar{J})=(-\sin \theta \bar{I}+\cos \theta \bar{J}) \frac{d \theta}{d s}$
and

$$
\begin{aligned}
& \frac{d^{2} r}{d s} \cdot \frac{d^{2} r}{d s}=\left(\sin ^{2} \theta+\cos ^{2} \theta\right)\left(\frac{d \theta}{d s}\right)^{2} . \\
& \left|\frac{d^{2} r}{d s}\right|=\frac{d \theta}{d s}=\frac{d \theta}{r d \theta}=\frac{1}{r} .
\end{aligned}
$$

This gives the magnitude, thus by denoting a unit vector $\overline{\mathrm{n}}$ as being normal to the tangent,
$\frac{d}{d t}\left(\frac{d \bar{r}}{d s}\right)=\bar{n} \cdot \frac{1}{r} \cdot \frac{d s}{d t}, \quad \frac{d s}{d t}=V_{0}$
Substituting into equation (3)
(5) $\frac{d \bar{v}}{d t}=\frac{d r}{d t}\left(\frac{d \bar{r}}{d s}\right)+\frac{r^{2}}{r} \bar{n}$.

When $\quad w=\frac{d \theta}{d t}$,

$$
V=\frac{d \mathrm{~s}}{d t}=\frac{\mathrm{ds}}{d \theta} \frac{d \theta}{d t}=w r
$$

and $\quad \frac{d \bar{v}}{d t}=\frac{d v}{d t}\left(\frac{d \bar{r}}{d s}\right)+w^{2} \bar{p} \bar{n}$.
In previous work $\bar{r}=r \bar{R}$. $\overline{\operatorname{R}}$ is a unit rector directed from origin O towards a point. The position vector \bar{r} of magnitude r then becomes the vector radius of curvature. Thus, $\bar{r}=-\bar{m}$ where \bar{n} is the vector in the direction opposite to $\overline{\mathrm{F}}$.

Equation (5) which gives the vector curvature \bar{F},
$|F|=\frac{1}{\frac{1}{r}}$ and is directed toward the center of curvature, is composed of two components

$$
\bar{P}=P_{n} \bar{n}+P_{z} \bar{x} .
$$

$\overline{\mathrm{I}}$ is perpendicular to the plane of $\overline{\mathrm{n}}$ and $\frac{d \bar{r}}{d \mathrm{~s}}$, and thus the three unit vectors form an orthogonal system. If $\overline{\mathrm{t}}$ and $\overline{\mathrm{n}}$ are tangent to the earth's surface, a local system is realized. This system of $\frac{d \overline{\mathfrak{F}}}{d s}=\overline{\mathrm{F}}, \overline{\mathrm{n}}, \overline{\mathrm{K}}$ will simplify some problems later. The components for horizontal flow are:

$$
\begin{aligned}
& \frac{d v_{g}}{d t}=\frac{d v}{d t}, \\
& \frac{d v_{n}}{d t}=v^{2} p_{n}, \\
& \frac{d v_{k}}{d t}=v^{2} p_{z} .
\end{aligned}
$$

Sene of Curvature. At this point, the idea of what direction a curve is taking would clarify later discussions of circular motion. When a particle appears to be moving in a clockwise direction, viewed from the zenith, its cyclic movement will be negative, and anticlockwise will be positive. Movement that 1 s along a great circle may be defined as positive or negative. Also, it is obvious that the cycle sense of rotation of a particle fixed to the earth's surface is positive in the northern hemisphere and negative in the southern hemisphere.

Angular Rediug of Curvature. ${ }^{1}$

Figure 8a
Figure 8b

The angle θ will be called the angular radius of curvature. As shown in Figure 8a, it is the engle subtended at the center of the sphere (earth in later problems) by the radius of curvature r.

The radius of curvature subtending θ is $r=a \sin \theta$ and its reciprocal $\frac{1}{\sin \theta}$ is the curvature P.

The vector curvature appears from a point on z to point to the left of flow in a positive elrcular sense. since \bar{n} points to the left of flow, then $\bar{P}=\bar{P} \bar{n}$. Note Figure 8 b .

1 Jorgen Holmboe, Dynamic Meteorology (New York: John Wilsy and Sons, 1945), pp. 177-178.

$$
\begin{aligned}
& P_{n}=P \cos \theta \\
& P_{z}=-P \sin \theta(3) .
\end{aligned}
$$

Using

$$
\begin{aligned}
& P=\frac{1}{2 \ln \theta}, \\
& P_{n}=P \cos \theta=\frac{\cos \theta}{\sin \theta a}=\frac{1}{2 \tan } . \\
& P_{z}=-P \sin \theta=-\frac{1}{a} \frac{\sin \theta}{\sin \theta}=-\frac{1}{2}
\end{aligned}
$$

a \Rightarrow radus of sphere.

Horizontal and Vertical Curvature. The spherical path of a particle can be projected upon a horizontal plane, and the resulting curve is called the horizontal path. "The ourvature of the horizontal projection of the path is equal to the horizontal component of the vector curvature. ${ }^{2}$ Thus, if P_{h} represents the curvature of the horizontal projection,

$$
P_{h}=P \cos \theta=P_{n}
$$

From the previous gection, the vertical component of the vector ourvature

$$
\begin{aligned}
& P_{z}=-\frac{1}{2} \\
& R_{z}=-a
\end{aligned}
$$

or
where R_{z} equals radius of curvature. a is the radius of a great circle and it can be stated that "the spherical path projects into the vertical plane as an aro of a great circle

$$
2 \text { Ibla., p. } 179 .
$$

no matter how strongly curved the spherical path may be ". ${ }^{3}$ The vertical plane is normal to the horizontal plane and passes through the unit tangent. The mathematical proof of both statements concerning the curvature in the horizontal and vertical planes can be found in any good dynamic meteorology book.

It can be stated here that the three radil of curvature, R, R_{h}, and R_{z} emanate from points on the axis of rotation to a moring point p. In other words, the centers are collinear. Then vectors \bar{F}_{h}, \bar{P}_{1} and $\overline{\bar{F}}_{2}$ dremn from point P to respective centers of curvature cen represent this condition quite clearly. Note Figure 9.

F1gure 9
Further consideration of the relationship of these three vectors jields

$$
\bar{P}=x \bar{P}_{z}+y \bar{P}_{h}
$$

[^3]where
$x=\sin ^{2} \theta$
and
$y=\cos ^{2} \theta$.
The proof follows. Let C divide B in the ratio x:y where $x+y=1$. Now
\[

$$
\begin{aligned}
& \bar{P}=\bar{P}_{h}+\overline{B C}, \\
& \bar{P}=\bar{P}_{h}+x\left(\bar{P}_{z}-\bar{P}_{h}\right) \\
& \bar{P}=x \bar{P}_{z}+(1-x) \bar{P}_{h}, \quad y=1-x, \\
& \bar{P}=\bar{P}_{z}+y \bar{P}_{h} .
\end{aligned}
$$
\]

From Figure 9

$$
\overline{\bar{F}}_{h} \cdot \bar{F}=\overline{\bar{F}}_{h} \cdot \bar{P}_{z} x+\bar{P}_{h} \cdot \bar{P}_{h} \bar{J}
$$

NOW:
$\bar{F}_{z} \cdot \bar{F}_{h}=0$
since the horizontal plane is tangent at P, therefore \tilde{F}_{2} is perpendicular to \bar{P}_{h}, and thus

$$
\begin{aligned}
& P_{h} P \cos \left(P_{h} P\right)=P_{h}^{2} \cos \left(P_{h} P_{h} l y,\right. \\
& I=\frac{P \cos \left(P_{h} P\right)}{P_{h}}, \\
& J=\frac{P \cos \theta}{P_{h}}=\frac{a \sin \theta \cos \theta}{a \frac{\sin \theta}{\cos \theta}}=\cos ^{2} \theta
\end{aligned}
$$

$$
P_{h}=a \tan \theta .
$$

$$
\bar{F}_{z} \cdot \bar{F}=\left(\bar{P}_{z} \cdot \bar{F}_{z}\right) x+\left(\bar{P}_{z} \cdot \bar{F}_{h}\right)_{y_{1}}
$$

$$
P_{z} P \cos \left(P_{z} P\right)=P_{z}^{2} x
$$

$$
\frac{P \cos \left(P_{z} p\right)}{P_{z}}=x_{4}
$$

since

$$
P=a \sin \theta
$$

$$
\frac{a \sin \theta \cos (9 \theta-\theta)}{a}=x
$$

thus $x=\sin ^{2} \theta$.

From the $x+y=1$
requirement
and then
$\sin ^{2} \theta+\cos ^{2} \theta=1$
$\bar{P}=\sin ^{2} \theta \bar{P}_{z}+\cos ^{2} \theta \bar{P}_{h}$.
II. APPLICATIONS OF MATHEMATICS TO EARTH AND ATMOSPHERE

The Angular Velocity of the Earth. Since angular velooity is a vector in a meridional plane, its component $w_{x}=0$, in the standard $\bar{I}, \bar{J}, \bar{E}$ gstem. Note Figure 10.

Figure 10
The components are then

$$
\bar{w}_{y}=|\bar{w}| \cos \theta
$$

where y is directed towards the local north and 8 is the degree of latitude, and

$$
\bar{w}_{z}=|\bar{w}| \sin \theta
$$

along the local zenith. It should be noted that w is positive in the northern hemisphere and negative in the southern hemisphere.

Coriolis Force. The vector equation of this force is

$$
\bar{c}=-2 \bar{w} \times \bar{v}_{r}
$$

and the equation can be expressed in the determinant form and expanded by the ordinary method of determinants.

$$
\bar{c}=-2\left|\begin{array}{ccc}
\bar{i} & \bar{j} & \bar{k} \\
0 & w_{y} & w_{z} \\
\nabla_{x} & \nabla_{y} & 0
\end{array}\right|=2 w_{z} \nabla_{y} \bar{i}-2 w_{z} \nabla_{x} \overline{\bar{j}}+2 w_{y} \nabla_{x} \overline{k_{0}}
$$

Its components in the standard system are

$$
\begin{aligned}
& c_{\mathrm{x}}=2 \mathrm{w}_{\mathrm{z}} \mathrm{v}_{\mathrm{y}}, \\
& c_{\mathrm{y}}=-2 \mathrm{w}_{\mathrm{z}} \nabla_{\mathrm{x}}, \\
& c_{\mathrm{z}}=2 \mathrm{w}_{\mathrm{y}} \nabla_{\mathrm{x}}
\end{aligned}
$$

For the $\overline{\mathrm{t}}, \overline{\mathrm{n}}, \overline{\mathrm{x}}$ system

$$
\bar{c}=-2\left|\begin{array}{ccc}
\bar{t} & \bar{n} & \bar{k} \\
w_{s} & w_{n} & w_{z} \\
v & 0 & 0
\end{array}\right|=-2 w_{z} \nabla \bar{n}+2 w_{n} \nabla \bar{k},
$$

and the components along each axis

$$
\begin{aligned}
& c_{\mathrm{s}}=0 \\
& c_{\mathrm{n}}=-2 \mathrm{w}_{\mathrm{z}} \mathrm{v}=-2 \mathrm{w} \sin \theta \mathrm{v} \\
& c_{\mathrm{z}}=2 \mathrm{w}_{\mathrm{n}} \mathrm{v}
\end{aligned}
$$

Obviously the only horizontal component of the Coriolis Force is normal to the flow, thus the horizontal vector component

$$
\bar{c}_{h}=c_{n} \bar{n}=-2 w_{z} \bar{v}=-2 \bar{w}_{2} \times \bar{\nabla}
$$

since $\bar{W}_{Z}=w \bar{x}$ and $\overline{\mathrm{n}}=\overline{\mathrm{k}} \times \overline{\mathrm{t}}$.

The Pressure Force and the Force of Gravity. Since the force of gravity has no horizontal components

$$
g_{z}=\bar{g} \cdot \bar{k}=-g
$$

The horizontal force of pressure is

$$
\overline{\mathrm{b}}=-\alpha \nabla \mathrm{p}_{\mathrm{h}}=-\alpha \frac{\partial p}{\partial x}-\alpha \frac{\partial p}{\partial y}
$$

and this force acts normal to the horizontal isobars (Iines of constant pressure) towards lower pressure.

Total Components of Relative Motion, Earth. Each vector in the equation

$$
\frac{d \bar{v}_{r}}{d t}=\bar{b}-2 \bar{W} \times \bar{v}_{r}+\bar{g}_{r}
$$

has been examined from the standpoint of their components. The component equations for the standard $\bar{i}, \bar{j}, \bar{k}$ system are

$$
\begin{aligned}
& \frac{d \nabla_{x}}{d t}=-\frac{\partial p}{\partial x}+2 w_{z} \nabla_{y} \\
& \frac{d \nabla_{y}}{\partial t}=-\alpha \frac{\partial p}{\partial y}-2 w_{z} \nabla_{x}, \\
& \frac{d \nabla_{z}}{d t}=-\alpha \frac{\partial p}{\partial z}+2 w_{y} \nabla_{x}-g
\end{aligned}
$$

The component equations for the $\bar{t}, \overline{\mathrm{n}}, \overline{\mathrm{F}}$, system are:

$$
\begin{aligned}
& \frac{\partial v}{\partial t}=-\alpha \frac{\partial p}{\partial g_{1}} \\
& P_{h} \nabla^{2}=-\alpha \frac{\partial p}{\partial n}-2 w_{z} \nabla_{,}, \\
& \frac{-v^{2}}{2}=-\alpha \frac{\partial p}{\partial z}+2 w_{y} \nabla_{x}-8 .
\end{aligned}
$$

These equations have the advantage of being dependent on the direction of motion.

Verticel Equation. 4

$$
\frac{d v_{z}}{d t}=-\alpha \frac{\partial p}{\partial z}+2 w_{y} v_{x}-g .
$$

This equation states that the vertical acceleration is equal to the sum of the vertical components of the forces acting.

The term $2 w_{y} v_{x}$ clearly indicates that the vertical Coriolis force acts upward for motion towards the east and downerd for motion towards the west. Also since $w_{y}=w \cos \theta$. the absolute value of the Coriolis force in the vertical is greatest at the equator and zero at the pole.

The $\frac{d v_{z}}{d t}{ }^{18}$ the centripetal term and is equal to $\frac{v^{2}}{a}$ since the vertical path is an arc of a great circle. The equal and opposite centrifugal reaction opposes the force of gravity.

The last term on the right -g is the force of gravity

4 IbId. . pp. 187-188.
measured at a fixed point, but it is of interest to note that the vertical accelerations created by horizontal flow aotually affeots the so-called "puil" of gravity. Examination of an observer's horizontal movement with the flow jields the fact that measure of gravity would be

$$
E^{\prime}=g-\frac{v^{2}}{a}-2 w_{y} v_{x}
$$

If $g^{\prime}>\mathrm{E}$, a moving particie is "heavier" and if
$g^{\prime}<g$ it is Mighter" is a conclusion reached by oonelderation of the above equation. Experiments and computations have shown that correction terms are very small thus

$$
g^{\prime} \approx g
$$

A conalceration of strictiy vertioal motion from our equation

$$
\frac{d \bar{v}_{Y}}{d t}=\bar{b}+\bar{c}+\bar{E}
$$

is of some interest. The first term on the right would be

$$
\begin{aligned}
& \bar{b}=-\frac{\partial p}{\partial z} \\
& \bar{g}=\bar{g} \cdot \bar{z}=-\bar{g}
\end{aligned}
$$

and the Corlolis force

$$
\bar{c}_{h}=-2\left|\begin{array}{lll}
\bar{I} & \bar{j} & \bar{E}_{1} \\
0 & w_{y} & w_{z} \\
0 & 0 & v_{z}
\end{array}\right|=-2 w_{y} \nabla_{z} \overline{\bar{I}} .
$$

The result is (relative aceleration components)

$$
\frac{d v_{z}}{d t}=-\alpha \frac{\partial p}{\partial z}-g_{j}
$$

$$
\begin{aligned}
& \frac{d v_{y}}{d t}=0, \\
& \frac{d v_{x}}{d t}=-2 w_{y} \quad \nabla_{z}=-2 w \text { aine } v_{z} .
\end{aligned}
$$

CHAPTER III

FRICTION

If the earth were perfectiy smooth, the equation of motion

$$
\frac{d \vec{v}}{d t}=\bar{b}+\overrightarrow{0}+\bar{g}
$$

could be satisfactorily used in the surface layers. However, observations demonstrate olearly that friotion is present. Friction created by the rough surface of the earth and an internal iriction within the air mass itself are principally effective in slowing air movements. Then, the scope of this chapter is to present general theory on friation; the type prevalent in ais motion, and the effect it has on air movement. It might be added that laws concerning friction experienced by air masses are still in the process of study.

I. FRICTIONAL THEORY

Analysis of a particle resting on a rough horizontal plane indicates that when a force is imparted to the particle, a greater force is necessary to aocelerate the particle in a given direction than under the ame conditions for a smooth plane. It is reasonable to assume that the irregularities between two surfaces which touch each other produce aocelerations opposite in direction to the movement. Then it can be stated that the force of friction is proportional to the force exerted by the particle againgt the rough plane.

This thrust against the plane is denoted by vector \bar{n} and the proportionality factor is called the coefficient of sriction μ_{1}^{1} Note Figure 11. It is easily seen that the magnitude of \bar{n} is $n=m g$, and then the magnitude of \bar{F}_{I}

$$
F_{\mathrm{r}}=\mu_{\mathrm{n}}=\mu_{\mathrm{mg}} .
$$

F1gure 11

If a rough inciined plane is considered, it cannot be assumed that the total reaction of friotion acts normal to the plane. In Figure 12, \bar{n}, the normal thrust, is the component of the weight of the particle normal to a flat plane. From Newton's third law, it is evident that an equal and opposite reaction takes place in the case of \bar{n}.

1 Robert Bruce Lindsey General Physios (New York: John Wiley and gons, Inc., 1940), p. 69.

Thus, since $\overline{\mathrm{n}}$ is the force which
the particle pushes down perpendicular to the inolined plane, an opposite reaction is $\overline{\bar{R}}$, the Porce which the plane pushes up on the particle. The total reaction of the surface on the particie is the resultant of two forces $\overline{\mathrm{R}}$ and $\overline{\mathrm{F}}_{\mathrm{r}}$.

Figure 12

In Figure 12

$$
\begin{aligned}
& F=\operatorname{mg} \sin \theta, \\
& F_{I}=\mu n=\mu \mathrm{mg} \cos \theta .
\end{aligned}
$$

and using these equations, the motion of the particie is

$$
\begin{aligned}
& \frac{d \bar{Y}}{d t}=\bar{F}+\bar{F}_{I_{2}} \\
& \text { mg } \sin \theta-\mu \operatorname{sg} \cos \theta=m a, \\
& a=g(\sin \theta-N \cos \theta)_{0}^{2} \quad \text { in }=1 .
\end{aligned}
$$

II. RELATIONSHIP BETWEEN FRICTION AND CORIOLIS FORCE

It is now apparent, that a frictional force per unit mass \bar{F}_{f} cen be added to the equation of motion when motion takes place near the earth's surface. Thus the equation of
motion 18

$$
\frac{a \bar{v}_{I}}{d \bar{t}}=\bar{b}+\bar{a}+\bar{g}+\bar{F}_{I} .
$$

According to various textbooks on Dynamic Meteorology, frictional force depends upon the motion, physioal state of the atmosphere, and the underiying aurface of the earth. The height to which it extends is roughiy the half kilometer level where air movement is in good agreement with the general equation of motion.

An idea of the nature of the iriction term \bar{F}_{f} may be asoertained by assuaing that constant rectilinear motion exists in a horizontal plane at the earth's surface. This flow is commonly called geostrophic or great circle flow. The equation of motion then takes the form

$$
\text { (1) } 0=\bar{E}_{h}+\bar{c}_{h}+\bar{F}_{h}
$$

If the friction teri did not exist, then the wind would blow along the isobar balanced by the pressure gradient and the Coriolis force, but the wind deviates from this type of flow and the deviation will be called $\overline{\mathrm{V}}$. Thus

Since

$$
\text { (2) } \begin{aligned}
\bar{\nabla} & =\bar{\nabla}_{g}+\bar{\nabla}^{\prime} . \quad \text { Note Figure } 13 . \\
\bar{o}_{h} & =-2 \bar{w}_{z} \times \bar{\nabla} \\
\bar{o}_{h} & =-2 \bar{w}_{z} \times\left(\bar{v}_{g}+\bar{v}^{\prime}\right) \\
& =-2 \bar{w}_{2} \times \bar{\nabla}_{g}-2 \bar{w}_{z} \times \bar{v}^{\prime}
\end{aligned}
$$

From the definition of geostrophic flow,

$$
\bar{b}=2 \bar{w}_{z} \times \bar{v}_{s}
$$

and substituting values in equation (1)

$$
\begin{aligned}
& 0=2 \bar{w}_{z} \times \bar{v}_{g}-2 \bar{w}_{z} \times \bar{v}_{g}-2 \bar{w}_{z} \times \bar{v}^{\prime}+\bar{F}_{h}, \\
& 2 \bar{u}_{z} \times \bar{v}^{\prime}=\overline{\bar{F}}_{h} .
\end{aligned}
$$

Pigure 23

From the last equation, it 18 apparent that the Coriolis force arlsing from the deviation of the geostrophio wind must balance the frictional force. ${ }^{3}$

III. SURFACE FRICTION

An approach to this problem was presented by Guldberg and Mohn as early as 1875. They worked on assumptions similar to those presented in the section on Frictional Theory. They assumed that the frictional force is directed opposite to the velocity and its magnitude is proportional to the speed. Note Figure 14. Constant reotilinear motion is assumed

[^4]urices again
(1) $0=\bar{\sigma}_{h}+{\overline{\sigma_{h}}}+\bar{F}_{f}$.

Figure 14
The force triangle is similar to the velocity triangle. as can be determined from the discusaion in thelast section when this relation held with the ractor of proportionality $2 W_{z}$. Thus the velooity triangle 1 s a right triangle, and the horizontal component of the termg of equation (2) are

$$
0=-\frac{\partial p}{\partial n}-2 w_{z} \nabla_{g}+k \nabla_{g} \cos \psi-k v_{y}
$$

since

$$
c_{h}=-2 W_{z} \nabla_{G_{c}}+k \nabla_{j}
$$

$\mathbf{k v}=\mathrm{T}_{\mathrm{g}} \cos \boldsymbol{\psi}$. Note Figure 14.

Finally,

$$
\alpha \frac{p}{\partial n}=-\nabla_{g}\left(2 v_{g}-k \cos \psi\right)-k v
$$

The proportionality factor in was asgumed to decrease with keight, and the angle φ was largest at the ground and decreased with height. Calculations of values indicated that these assumptions were not accurate. Later, Sanstrom
defined a residual force to be used with Guldberg and Mohns assumptions, and from this, Hesselburg and Sverarup developed a method for determining the force of friction by adding in Sanstroms resicual force. ${ }^{4}$ This technique fit the observed facts but was empirical in nature and ala not explain the physical characteristics of frictional resistance. Thus it became necessary to taike into account the internal friction oreated by molecular activity and interaction of air masees of different velooity and direction. With this in mind, ctuay was turned to pluid motion.

IT INTERNAL FRICTION

Considerable ifterature has been written concerning internal iriction, and this writer does not propose to go into all the theoretical approaches, but rather to present some basic ideas. The essential parts of internal friction can be summed up into two parts: moleoular iriction and turbulence; edaies embodied in the general flow.

Viscous Stress and Viscosity. Consider two parallel plates which incase fluid at a distance e from each other. (Note Figure 15). Let the upper plate be moved at a horizontal veloeity $\bar{\nabla}$, while the lower plate remains stationary.

4 Physios of the Earth", (Bulletin of National Reseerch Council, Feb., 1931). Published by the National Research Council of the National Aoademy of Sciences, Washington, D. C., pp. 182-183.

Experiments have proved that when steady conditions exist, the velocity decreases linearly from the moving plate to the resting plate. The shear $\frac{\partial \bar{\nabla}}{\partial z}$ is constant. The consensus is that the motion develops as a result of internal friction which arises from the disturbance of fluid molecules.

In order to keep the lower

plate at rest, it is necesaary to apply a force equal and opposite to the force applied to produce motion in the top plate. It might be added that no lost motion is assumed between the plates and the fluid in direct contact with them. It is reasonably assumed, from experiments, that a force $-\bar{t}$, which is proportional to velocity $\overline{\mathbf{v}}$ of the upper plate and inversely proportional to the distance z, must be applied on a unit area of the resting plate. 5 Thus the viscous or shearing stress
$-\bar{\mp} \sim-\frac{\partial \bar{v}}{\partial z}$ at the bottom plate
and $\bar{F}^{r} \frac{0 \bar{y}}{\partial z}$ at the top plate.

[^5]Similarly, each horizontal infinitesimal fluid layer between the two plates can be shown to have the same shear. To arrive at an equation, a proportionality factor must be introduced. The symbol μ is used and

$$
\bar{t}=\mu \frac{\partial \bar{v}}{\partial z} .
$$

This equation is "Newton's formula" for the stress. N is called the molecular viscosity which is variable from a physical and temperature standpoint, and it is a pure number. ${ }^{6}$ The viscosity values for air in the meter, ton, second unit are: 1.7×10^{-8} at 0° centigrade and 2.2×10^{-8} at 100° centigrade.?

Molecular Internal Friction Term. Observations of wind direction and velocity with altitude have clearly demonstrated that a shear exist, thus in the case of horizontal motion with uniform velooity at each level the friotional force oan be related to the shearing stress. Picture an infinitesimal cube of unit cross section and height dz. The stress exerted on the bottora face is $\overline{\mathrm{t}}$ and the drag on the apper tace is $\bar{t}+\left(\frac{\partial \bar{t}}{\partial z}\right) \mathrm{dz}$. The alfference between the two gives the force exerted on the element of 6 Holmboe, op. cit. , p. 236. 7 IbId. . p. 238.
volume $\mathrm{dv}=\mathrm{dz}$. Then $\left(\frac{\partial \bar{E}}{\partial z}\right)$ is the irictional force per unit volume. For unit mass,

$$
\bar{I}_{h}=\alpha \frac{\partial \bar{t}}{\partial z} \text { since } \alpha=\frac{1}{p} .
$$

This equation is derived under the considerations that the horizontal variations of velooity components or horizontal shears are neglible. ${ }^{8}$

Application of this result to our horizontal equations of motion gives

$$
\begin{aligned}
& \frac{d v_{x}}{d t}=-\alpha \frac{\partial p}{\partial x}+2 w_{z} v_{y}+\alpha \frac{\partial}{\partial z}\left(N \frac{\partial v_{x}}{\partial z}\right), \\
& \frac{d v_{I}}{d t}=-\alpha \frac{\partial p}{\partial x}-2 w_{z} v_{x}+\alpha \frac{\partial}{\partial z}\left(N \frac{\partial v_{y}}{\partial z}\right) .
\end{aligned}
$$

It can be added that caloulations of this source of Iriction jields results that ar too small for what is aotually observed.

Molecular and Eddr Viscosity. The equation that Newton developed for the stress

$$
\bar{t}=\mu \frac{\partial \bar{r}}{\partial z}
$$

where μ, the viscosity, was presented in a new form by Maxwell from a theoretical approach to molecular aotion of gas under similar considerations outlined in the seotion 8 IbIa., p. 239.
on viscous stress. He tound

$$
\mu=\frac{1}{3} \rho c l
$$

where p is the density of gas, 1 is the mean free path of a molecule, c is the mean heat mpeed due to internal heat energy. 9 .

An analagous formula was developed when it was apparent that the above type of friotion would oreate forces only a few meters in depth. The study of iluid motion subjeoted to mild disruption showed that mall edaies appeared downstream for short distances beyond points of disturbance. From this transfer of momentum from layer to layer whioh is called eddy stress, formula for stress was presented with the use of a new viscosity term p'

$$
N^{\prime}=\rho w l
$$

To get the expression for eddy stress, it is assumed that the parcels of fluid whion are affected by the oddies move an average distance 1 . It should be noted that this hypothesis has its initations in that it assumes mixing to be a discontinuous process. ${ }^{10}$ Also, as the parcels are displaced from z to $z+d z$, there arise components of the ediy velocity which are perpendicular to the constant flow $\bar{\nabla}$. This is called w. Thus, the eddy gtress can be written

$$
F=\rho w 1 \frac{\partial \bar{v}}{\partial z_{0}}
$$

9 Ibld., p. 237.
10 Bernhard Haurwite, Dynamio Meteorology (New York: MeGraw-H111 Book Company, Inc. 1941). p. 195.

After due considerations, the above equation can be called semi-empirical.
V. WIND VARTATION FROM gURFACE TO GRADIENT LEVEL
W. F. Ekman solved the problem of the turning of ocean currents in the surface layers of the ocean in 1902. ${ }^{11}$ He developed the "Ekman spiral" or logarithmio spiral of the currents, and analogous to this result, meteorologists developed the solution of the corresponding problem of wind deviation.

Essentially, the probler was attacked by assuming that horizontal pressure force has the same direction and magnitude for all levels. Thus the geostrophic wind is constant in magnitude and direction. As stated before, the level at which the wind is in fair agreement with our gquations of motion is approximately at the five hundred meter level, thus the assumptions are not too great. The viscosity and speoific volume are constant with height.

Using Newton's formula
(1) $\vec{t}=\mu \frac{\partial \vec{y}}{\partial z}$
and the irictional force per unit mass
(2) $\bar{F}_{r}=\alpha \frac{\partial \bar{t}}{\partial z}=2 \bar{W}_{z} \times \bar{V}^{\prime}$.

Recalling

$$
\bar{\nabla}=\bar{\nabla}_{g}+\bar{\nabla}!
$$

11 IbId., p. 207.

$$
\frac{\partial \bar{v}}{\partial z}=\frac{\partial \bar{v}^{\prime}}{\partial z}, \text { (since } \bar{v}_{g} i s \text { constant) }
$$

(3) $\frac{\partial^{2} \bar{v}}{\partial z^{2}}=\frac{\partial^{2} \sqrt{1}}{z^{2}}$.

Thus equation (2) can be written
(4) $\mu \alpha \frac{\partial^{2} \bar{V}^{\prime}}{\partial z^{2}}=2 \bar{w}_{z}=\bar{\nabla}$!

The right side of this equation is

$$
2\left|\begin{array}{ccc}
\bar{I} & \bar{J} & \bar{x} \\
0 & w_{y} & v_{z} \\
\nabla_{x}^{\prime} & \nabla^{\prime} y & 0
\end{array}\right|=-\nabla^{\prime} y{w_{z}} \bar{I}+w_{z} \nabla_{x}^{\prime} \bar{J}-w_{y} \nabla_{x} \overline{k_{y}},
$$

since $\overline{\mathrm{F}}$ ' is considered in the horizontal plane. The components in the x, y plane are then
(5) $\alpha \mu \frac{\partial^{2} v^{\prime} x}{\partial z^{2}}=-2 x_{z} V^{\prime} y_{y}$
(6) $\alpha \mu \frac{\partial^{2} \nabla^{\prime} T}{\partial z^{2}}=2 w_{z} \nabla_{x}^{\prime}$.
(6) can be multiplied by 1 and added to (5) with the result that $\frac{d^{2}}{d \varepsilon^{2}}\left(\nabla^{\prime} x+1 \nabla^{\prime} y\right)=\frac{2 w \sin \theta\left(1 \nabla^{\prime} x-\nabla^{\prime} y^{\prime}\right)}{\alpha \beta}$

$$
-\frac{\partial^{2}}{\partial x^{2}}\left(\nabla^{\prime} x+i \nabla_{y}\right)=2 i B^{2}\left(-\nabla^{\prime} x-i \nabla^{\prime} y\right)
$$

since $i^{2}=-1$ and $B^{2}=\frac{v \sin \theta}{\alpha N}$,
and (7) $\frac{\partial^{2}}{\partial z^{2}}\left(v^{\prime} x+i v^{\prime} y\right)=2 i B^{2}\left(v^{\prime} x+i v^{\prime} y\right)$.
8 is the only independent variable, thus (7) takes
the form

$$
\frac{d^{2}}{d z^{2}}\left(\nabla^{\prime} x+i \nabla^{\prime} y^{\prime}-21 B^{2}\left(\nabla^{\prime} x+i \nabla^{\prime} y\right)=0\right.
$$

The final form of this linear differential equation is

$$
\frac{d^{2} \nabla^{\prime}}{d z^{2}}-(1+1)^{2} B^{2} \nabla^{\prime}=0
$$

when $21=(1+1)^{2}$ and $\nabla^{\prime}=\nabla^{\prime} x+1 \nabla^{\prime} y$.
The solution of this equation can be obtained by use of aifferential operator $D=\frac{d}{d \Sigma}$ procedure,

$$
\begin{aligned}
& \left(D^{2}-(1+1)^{2} B^{2}\right) \nabla^{\prime}=0 . \\
& D= \pm(1+1) B .
\end{aligned}
$$

Thus

$$
v=0, e^{(1+i) B z}+c_{2} e^{-(1+1) B z} .
$$

After due considerations of the assumptions and restrictions, the following definite solutions:

$$
\begin{aligned}
& \text { (1) } \nabla^{\prime}=\nabla_{0}^{\prime} e^{-B z} \\
& \text { (2) } \theta=-B \varepsilon_{y}
\end{aligned}
$$

are acquired for the anemometer level. ${ }^{12}$ This solution is known, as stated before, as the "Eman spiral". Note Figure 16.

Figure 16

12 IbId. . p. 244.

CHAPTER IV

THE CURL OF TEE VECTOR EQUATIONS OF MOTION

This chapter is concernea with a mathematical inapeotion of vector terms encountered in the development of the equations of motion from the standpoint of curl.

I. VELOCITY EQUAPION

The velocity equation in vector form is
(1) $\overline{\bar{v}}=\overline{\boldsymbol{\nabla}}_{\mathrm{I}}+(\bar{w} \times \bar{x})$, from Chapter I.

Curl. The curl of the velooity equation is defined
(2) $\nabla x \bar{\nabla}=\nabla x \bar{\nabla}_{r}+\nabla x(\bar{w} \bar{x})$.

Consiceration of each term separately, flelda for the pirst term on the left

$$
\left|\begin{array}{lll}
\bar{I} & \bar{j} & \bar{y} \\
\frac{\partial}{x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\nabla_{x} & \nabla_{y} & \nabla_{z}
\end{array}\right|=\left(\frac{\partial v_{z}}{\partial y}-\frac{\partial v_{z}}{\partial z}\right) \bar{I}+\left(\frac{\partial v_{x}}{\partial z}-\frac{\partial v_{z}}{\partial z}\right) \bar{J}_{+}\left(\frac{\partial \nabla_{y}}{\partial x}-\frac{\partial v_{x}}{\partial y}\right) \bar{z}_{.}
$$

Obviousiy the first term on the right is

$$
\nabla x \bar{\nabla}_{r}=\left(\frac{\partial_{r z}}{\partial y}-\frac{\partial \nabla_{r y}}{\partial z}\right) \bar{I}+\left(\frac{\partial_{r x}}{\partial z}-\frac{\partial \nabla_{r z}}{\partial x}\right) \bar{J}+\left(\frac{\partial^{\top} V_{r y}}{\partial x}-\frac{\partial^{V} r x}{\partial z}\right) \bar{z}_{0}
$$

The last term on the right of (2)
$\nabla \times(\bar{W} \times \bar{r})=(\bar{r} \cdot \nabla) \overline{\mathbf{T}}-\overline{\mathbf{r}}(\nabla \cdot \overline{\mathbf{w}})+\bar{w}(\nabla \cdot \overline{\mathrm{r}})-(\overline{\mathrm{Y}} \cdot \nabla) \overline{\mathrm{r}}$.
The rirst term on the right

$$
(\bar{x} \cdot \nabla) \bar{w}=0_{2}
$$

since $\overline{\mathrm{w}}$ is constant in magnitude and direotion.

The second term

$$
\bar{r}(\nabla \cdot \bar{w})=-\bar{r}\left(\frac{\partial w_{x}}{\partial x}+\frac{\partial w_{y}}{\partial \bar{y}}+\frac{\partial w_{x}}{\partial z}\right) .
$$

To simplify, let x be oriented along the easterly direction and consider only horizontal flow, then

$$
\begin{aligned}
& =-\bar{r}\left(\frac{\partial w_{y}}{\partial y}\right) \\
& =-\frac{\partial w_{y}}{\partial y} \times \bar{I}-\frac{\partial w_{y}}{\partial y} \bar{y} .
\end{aligned}
$$

The third term on the right

$$
\bar{w}(\nabla \cdot \bar{x})=\left(\frac{\partial x}{\partial x}+\frac{\partial y}{\partial y}+\frac{\partial z}{\partial z}\right) \bar{w}=3 \bar{w}
$$

and $\quad-(\bar{w} \cdot \nabla) \bar{F}=W_{I} \frac{\partial \bar{F}}{\partial x}+V_{y} \frac{\partial \bar{F}}{\partial \bar{y}}+w_{z} \frac{\partial \bar{r}}{\partial z}$

$$
=w_{x} \bar{I}+w_{y} \bar{J}+w_{z} \bar{k}=\bar{w}_{0}
$$

thees $\overline{\mathbf{w}}(\nabla \cdot \overline{\mathrm{r}})-(\overline{\mathrm{w}} \cdot \nabla) \overline{\mathrm{x}}=2 \overline{\mathrm{w}}$.
Now adding the results after restricting x to the easterly direction and considering horizontal flow only,
$\left(\frac{\partial V_{y}}{\partial x}-\frac{\partial \nabla_{x}}{\partial y}\right) \bar{E}=\left(\frac{\partial V_{r y}}{\partial x}-\frac{\partial \gamma_{r x}}{\partial z}\right) \bar{E}+2 \bar{w}-\frac{\partial w_{y}}{\partial y} x \bar{I}-\frac{\partial w_{y}}{\partial \bar{y}} \bar{j}$.
Dotting with $\overline{\mathbf{x}}$
(3)

$$
\left(\frac{\partial v_{y}}{\partial x}-\frac{\partial v_{x}}{\partial y}\right)=\left(\frac{\partial v_{r y}}{\partial x}-\frac{\partial v_{r x}}{\partial z}\right)+2 w_{z}
$$

since $\overline{2} \cdot \bar{K}=2 w_{z}, \bar{K} \cdot \bar{I}=0, \bar{K} \cdot \bar{J}=0$.
This equation is a result gained from consideration of motion viewed from the absolute frame.

Vorticity. "The limit of the ratio of the ciroulation de around an infinitesimal element to the area dA of that element is called vorticity. ${ }^{1}$

$$
S=\frac{d o}{\partial A}=\left(\frac{\partial V_{Y}}{\partial x}-\frac{\partial V_{X}}{\partial y}\right)
$$

In the equation (3) of the last seotion the result would be

$$
S=5_{r}+2 w \sin \theta .
$$

To acquire the vorticity term in the t, n, k system, consiãer two parallel curving streamines at a distance an apart. Let two normala extend from the outer streamilne to the center of curvature of the outer streamine. Note Figure 17.

Figure 17
Circulation around this horizontal area in a counterclocirwise direction jields

1 Jorgen Holmboe, Dynamic Meteorology (New York: John Wiley and Sons, Inc., 1945), p. 320.

$$
\begin{aligned}
d o & =\nabla r_{s} d \theta-\left(v+\frac{\partial v}{\partial n} d n\right)\left(r_{8}-d n\right) d \theta_{s} \\
\text { (4)dc} & =\left(\frac{\nabla}{r_{s}}-\frac{\partial V}{\partial n}+\frac{1}{r_{8}} \frac{\partial v}{\partial n} d n\right) r_{g} d d n g
\end{aligned}
$$

dividing by $d A=$ Faded

$$
S=\frac{d c}{d A}=\frac{\nabla}{r_{c}}-\frac{\partial \nabla^{2}}{\partial n_{n}}
$$

after considering the third tern (4) which approaches zero.

Vorticity and Horizontal Circular Motion. In the chapter on horizontal motion the following component equation e in the t, n, k system were presented:

$$
\begin{aligned}
& \text { (1) } \frac{d v}{\partial t}=-\alpha \frac{\partial p}{\partial s} \\
& \text { (2) } \frac{\nabla^{2}}{r_{0}}=-\alpha \frac{\partial p}{\partial n}-2 w_{z} \nabla_{3} \\
& \text { (3) } \frac{-\nabla^{2}}{a}=-\alpha \frac{\partial p}{\partial z}+2 w_{y} \nabla_{x}-g .
\end{aligned}
$$

In the fallowing analysis, motion in a plane and tangential to the isobar will be considered. The streamlines and isobars are assumed to coincide. Thus equation (2) will be used in conjunction with the vorticity equation

Solving for r_{0}

$$
\begin{aligned}
& S=\frac{\nabla}{r_{0}}-\frac{\partial \nabla}{\partial n_{0}} \\
& r_{0}=\frac{\nabla}{S+\frac{\partial \nabla}{\partial n}} .
\end{aligned}
$$

Substituting in (2)

$$
V\left(S+\frac{\partial \nabla}{\partial n}\right)=-\alpha \frac{\partial p}{\partial n}-2 v_{z} \nabla .
$$

2 IbId., p. 322.

Solving Iors

$$
\begin{aligned}
& S+\frac{\partial \nabla}{\partial n}=-\frac{\alpha}{\nabla} \frac{\partial p}{\partial n}-2 u_{z} \\
& S=-\frac{\partial}{\partial n}-\frac{\alpha}{\nabla} \frac{\partial p}{\partial n}-2 w_{2}
\end{aligned}
$$

The tera $2 W_{z}$ has a maximun vaine at the pole and its Value is

$$
2 \times 7.292 \times 10^{-5} \times 1=1.4584 \times 10^{-4} \text { radians per seo. }
$$

This ters being so small, it can be deleted, thus

$$
S=-\frac{\partial \nabla}{\partial n}-\frac{\alpha}{\nabla} \frac{\partial p}{\partial n}
$$

which gives a relationship for vorticity that is easily calculable from data existing on weather maps. The ugefulnese of this equation $1 s$ not established yet, but its relationship to tornado or tornadis winds may bear fruit.
II. CURL OF ACCELERATION EQUATION

The acceleration equation in vector form is

$$
\frac{d \bar{T}}{d t}=\bar{b}+\bar{c}+\overline{\mathrm{B}}
$$

but writing it in the form

$$
\frac{d \bar{v}_{i}}{d t}=-d \bar{p}-2 \bar{w} \times \bar{\nabla}-\nabla a
$$

1t can be handied easier. The curl is then

$$
\text { (1) } \nabla x \frac{d \bar{v}}{d t}=-\infty \nabla x \nabla p-2 x(\bar{w} x \bar{v})-x
$$

The right side of the equation may be analyzed by considering each term separately.

First term on the right

$$
-\alpha \nabla \times \nabla p=-\alpha\left|\begin{array}{lll}
\bar{i} & \bar{\jmath} & \bar{z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\frac{\partial p}{\partial x} & \frac{\partial p}{\partial y} & \frac{\partial p}{\partial z}
\end{array}\right|=-\alpha\left[\left(\frac{\partial^{2} p}{\partial y \partial z}-\frac{\partial^{2} p}{\partial y \partial z}\right) \bar{i}\right.
$$

$$
\begin{aligned}
& \left(\frac{\partial^{2} p}{\partial z \partial x}-\frac{\partial^{2} p}{\partial x \partial z}\right) \bar{z} \\
& \left.\left(\frac{\partial^{2} p}{\partial x \partial y}-\frac{\partial^{2} p}{\partial x \partial y}\right) \bar{k}\right]=0 .
\end{aligned}
$$

provided p has a continuous first partial derivative.
Similarly

$$
\nabla \times \nabla Q=0
$$

The second term

$$
\text { (2) } \begin{aligned}
-2[\nabla \times(\bar{w} \times \bar{\nabla})]=-2[(\bar{v} \cdot \nabla) \bar{w}-\overline{\mathrm{V}}(\nabla \cdot \bar{w}) & +\bar{w}(\nabla \cdot \bar{\nabla}) \\
& -(\bar{w} \cdot \nabla) \bar{\nabla}] .
\end{aligned}
$$

Considering each term on the right separately

$$
\left.\begin{array}{l}
-2(\bar{v} \cdot \nabla) \bar{w}=\nabla_{x} \frac{\partial \bar{w}}{\partial x}+\nabla_{y} \frac{\partial \bar{w}}{\partial y}+\nabla_{z} \frac{\partial \bar{w}}{\partial z}=0, \text { (} \bar{w} \text { is constant) } \\
2 \bar{v}(\bar{v} \cdot \bar{w})=2 \bar{v}\left(\frac{\partial w_{x}}{\partial x}\right.
\end{array} \frac{\partial w_{y}}{\partial y} \quad \frac{\partial w_{z}}{\partial z}\right)^{\prime} .
$$

since $w_{y}=w \cos \theta, w_{x}=0, w_{z}=w \sin \theta$ when x points to cast.

$$
-2 \bar{w}(\nabla \cdot \bar{\nabla})=-2 \bar{w}\left(\frac{\partial r_{x}}{\partial x} \quad \frac{\partial v_{y}}{\partial y} \quad \frac{\partial v_{z}}{\partial z}\right)
$$

and

$$
\begin{aligned}
2(\bar{w} \cdot \nabla) \bar{v} & =2\left(w_{x} \frac{\partial \bar{v}}{\partial x}+w_{y} \frac{\partial \bar{v}}{\partial y}+w_{z} \frac{\partial \bar{v}}{\partial z}\right) \\
& =2\left(w_{x} \frac{\partial v_{x}}{\partial x} \bar{I}+w_{y} \frac{\partial v_{y}}{\partial y} \bar{j}+w_{z} \frac{\partial v_{z}}{\partial z}\right)
\end{aligned}
$$

Adding the terms of the last two

$$
\begin{aligned}
& -2 \bar{w}(\nabla \cdot \bar{\nabla})+2(\bar{w} \cdot \nabla) \bar{\nabla}=-2 w_{x} \frac{\partial v_{x}}{\partial x} \bar{I}-2 w_{x} \frac{\partial v_{y}}{\partial y} \bar{I}-2 w_{x} \frac{\partial v_{g}}{\partial x} \bar{I} \\
& -2 w_{y} \frac{\partial v_{X}}{\partial x} \bar{j}-2 v_{y} \frac{\partial v_{y}}{\partial y} \bar{\jmath}-2 w_{y} \frac{\partial v_{z}}{\partial z} \bar{J} \\
& -2 w_{z} \frac{\partial \nabla_{x}}{\partial x} \bar{E}-2 w_{z} \frac{\partial \nabla_{y}}{\partial y} \bar{E}-2 w_{z} \frac{\partial \sigma_{z}}{\partial z} \bar{z} \\
& +2 v_{x} \frac{\partial \nabla_{x}}{\partial x} \bar{x}+2 w_{y} \frac{\partial \nabla_{y}}{\partial y} \bar{j}+2 v_{z} \frac{\partial v_{z}}{\partial z} E \\
& =-2 w_{z}\left(\frac{\partial V_{Y}}{\partial J}+\frac{\partial V_{z}}{\partial z}\right) I \\
& -2 v_{y}\left(\frac{\partial v_{x}}{\partial x}+\frac{\partial v_{z}}{\partial z}\right) J \\
& -2 w_{z}\left(\frac{\partial v_{x}}{\partial x}+\frac{\partial v_{y}}{\partial y}\right) E_{.} .
\end{aligned}
$$

Considering the term on the left of equation (1)

$$
\begin{aligned}
& \nabla \times \frac{\partial \bar{v}}{d t}=\left|\begin{array}{ccc}
\bar{I} & \bar{J} & \bar{z} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\frac{\partial v_{x}}{\partial \varepsilon} & \frac{\partial V_{y}}{\partial t} & \frac{\partial v_{z}}{\partial t}
\end{array}\right|=\left(\frac{\partial}{\partial z} \frac{\partial \nabla_{z}}{\partial t}-\frac{\partial}{\partial z} \frac{\partial V_{Y}}{\partial t}\right) \bar{I} \\
& +\left(\frac{\partial}{\partial z} \frac{\partial \nabla x}{\partial t}-\frac{\partial}{\partial x} \frac{\partial v}{\partial t}\right) \bar{J} \\
& +\left(\frac{\partial}{\partial x} \frac{\partial^{V} T}{\partial t}-\frac{\partial}{\partial y} \frac{\partial{ }^{V} x}{\partial t}\right) \bar{E} .
\end{aligned}
$$

Restricting motion to horizontal plane and the x axis pointed east, $\left(\frac{\partial}{\partial x} \frac{\partial \nabla_{y}}{\partial t}-\frac{\partial}{\partial y} \frac{\partial v_{x}}{\partial t}\right) \bar{x}=-2 w_{y} \frac{\partial \nabla_{x}}{\partial x} \bar{J}-2 w_{g}\left(\frac{\partial V_{x}}{\partial x}+\frac{\partial \nabla_{y}}{\partial y}\right) E$

$$
2 \nabla_{x} \frac{\partial W_{y}}{\partial y} \bar{I}+\frac{\partial W_{y}}{\partial y} \nabla_{y} \bar{J}+2 \nabla_{x} \frac{\partial w_{z}}{\partial z} \bar{E}
$$

$$
+2 \nabla_{y} \frac{\partial w_{\varepsilon}}{\partial z} \overline{z_{0}} .
$$

Dotting with $\overline{\mathbf{K}}$,

$$
\begin{aligned}
& \frac{\partial}{\partial x} \frac{\partial v_{y}}{\partial t}-\frac{\partial}{\partial y} \frac{\partial v_{x}}{\partial t}=-2 w_{z}\left(\frac{\partial v_{y}}{\partial y}+\frac{\partial r_{x}}{\partial x}\right)+2 v_{x} \frac{\partial w_{z}}{\partial z}+2 v_{y} \frac{\partial w_{z}}{\partial z}, \\
& \frac{\partial}{\partial t}\left(\frac{\partial v_{y}}{\partial x}-\frac{\partial v_{x}}{\partial y}\right)=-2 w_{z}\left(\nabla_{h} \cdot \bar{v}\right)+2 w \cos \theta \frac{\partial \theta}{\partial z}\left(v_{x}+\nabla_{y}\right), \\
& \frac{\partial}{\partial t}(S)=-2 w_{z}\left(\nabla_{h} \cdot \bar{v}\right) \text { since } 2 w \operatorname{cose} \frac{\partial \theta}{\partial z}\left(r_{x}+\nabla_{y}\right)=0 .
\end{aligned}
$$

The change in vorticity with time is equal to -2 w sine tines the divergence of flow, and the right hand side of this equation is the time rate of change of the absolute vorticity as presented in Holmboe's Dynamic Meteorology, page 324. (This book is listed in the bibliography).

BIBLIOGRAPHY

Abbe, Cleveland. The Mechanics of the Earth's Atmosohere. Washington, D. C.: Published by the Smithsonian Institution, 1910. 610 pp.
"A Digest of Procedures Used by the Alr Weather Service Severe Weather Warning Center," Air Weather Manual No. 105-32. Washington, D. C.: Department of the Alr Force, 1952. pp. 1-63.

Brunt, David, physioal and Dynamicel Meteorology. Cambridge: At the University Press, 1934. 403 pp .

Byers, Horace Robert, General Meteorology. New York: McGrawHill Book Company, Inc.. 1944.630 pp .

Geddes, A. E. M., Meteorology. London: Blackio and Son, Ltd., 1930. 386 pp.

Haas, Arthur, Introduction to Theoretical Physics. Second edition, Volume I; London: Constable and Company, Ltd., 1928. 324 pp.

Haurwite, Bernhard, Dynamic Meteorology. New York: McGrawHill Booz Company, Inc., 1941. 340 pp .

Hausmann, Erioh, and Edgar P. Slaok, Physics. Third edition; New York: D. Van Nostrand Company, Inc., 1948. 777 pp.

Holmboe, Jorgen, George E. Forsythe, and Willian Gustin, Dynamie Meteorology. New York: John Wiley and Sons, Inc.. 1945. 363 pp.
 Book Company, Ino., 1929. 615 pp .

Lass, Harry, Vector and Tensor Analysis. New York: MoGraw-Hill Book Company, Inc., 1950. $340 \mathrm{pp}$.

Lindsay, Robert Bruce, General Physics. New York: John Wiley and Sons, Inc., 1940. 520 pp.

Malone, Thomas F_{0}, editor, Compendium of Meteorology. Baltimore: Waverly Press Inc., 1951. 1315 pp .

McDonald, James E. Remarks on the Development of the Coriolis Principle," Builetin of the American Meteorological Society, 34:192-195, May, 1953.

Milham, Willis Isbister Meteorology. New York: The Macmillan Company, 1936. 498 pp.

Petterssen, Sverre, Yeather Analyais and Forecasting. New York: McGraw-Hill Book Company, Inc., 1940. 490 pp.
"Physios of the Earth, III, " Bulletin of the Nationel Research Council Number 79. Washington, D. C.: Published by the National Research Council of the National Aoademy of Solences, 1931. pp. 154-188.

Redalck, Harry W., Differential Equations. New York: John Wiley and Sons, Inc., 1949. 270 pp .

Sokolnikoff, Ivan S., and Elizaboth S. Sokolnikoff, Higher Mathematios for Engineers and Physicists. Second edition; New York: McGraw-H111 Book Company, Inc., 1941. 560 pp.

Taylor, George F., Areonautical Meteorology. New York: Pitman Publishing Corporation, 1938. 394 pp.
"Tornado Oocurences in the United states," Technical Paper No. 20. Washington, D. C.: U. S. Government Printing office, September 1952. pp. i-53.

[^0]: 3 Harry Lass, Vector and Tensor Analysis (New York: MoGraw-Hill Company, Inc., 1950), p. 23.

[^1]: 7 Jorgen Holmboe, Dynamio Meteorology (New York: John Wlley and Sons, Inc., 1945), p. 152 .

 8 Bernard Haurwitz, Dynamic Meteorology (New York: McGraw-E111 Book Company, Inc., 1941), D. 127.

 9 Holmboe, op. cit. . p. 99.

[^2]: 16 Jorgen Holmboe, Dynamic Meteorology (New York: John wiley and Sons, Inc. 1945), p. 155.

[^3]: 3 IbId. P. p. 182.

[^4]: 3 Jorgen Holmboe, Dynamic Meteorology (New York: John Wiley and Sons, Inc., 1945), p. 234 .

[^5]: 5 Bernhara Haurwitz, Dynamic Keteorology (New York: MeGraw-Hill Book Company, Inc., 1941), p. 188.

