
MATHEMATICS APPLIED TO SOME ASPECTS OF DYNAMIC METEOROLOGY

A Thesis 

Presented, to 

the Faculty of the Department of Mathematics 

The University of Houston

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

M. 9. ANDERSON MEMORIAL LIBRARY 
UNIVERSITY OF HOUSTON

by 

Marvin R. Rogers 

June 1954

112318



MATHEMATICS APPLIED TO SOME ASPECTS OF DYNAMIC METEOROLOGY

A Thesis 

Presented, to

The Faculty of the College of Arte and. Sciences

The University of Houston

In Partial Fulfillment 

of the Requirements for the Degree 

Master of Science in Mathematics 

by

Marvin R. Rogers 

June 195^



MATHEMATICS APPLIED TO SOME ASPECTS OF DXMAAIC METEOROLOGY

It is the purpose of this thesis to review and. collect 

fundamental mathematics that bears on the motion of air 

particles in dynamic meteorology. Many of the derivations 

have been supplied by the author. The section on the curl 

of the relative acceleration and the development of the 

vector equation concerning the center of curvature are the 

author’s own work.
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CHAPTER I

FORCES ON A ROTATING EARTH AND ATMOSPHERE

The aim of this chapter ie to demonstrate mathemati­

cally the acceleration that a moving particle experiences 

from the forces that are present in a rotating system, and 

integrate these forces into a consideration of an air par­

ticle^ movement with respect to the earth. From a meteoro­

logical view point, the total acceleration of the air parti­

cle combines the effect of the rotating system and of the 

forces that act upon the air particle. In particular, 

these include gravity, pressure, and friction.1

I. OUTLINE OF MATHEMATICS IN A ROTATING SYSTEM1 2

1 Sverre Petterson, Weather Analysis and Forecagting 
(first edition; New York: McGraw-Hill Book Company, Inc., 
19^0), p. 206.

2 Arthur Haas, Introduction to Theoretical Physics 
(Vol. 1; second edition; London: donstable and Company, 
Ltd., 1928), pp. 38-51.

If a system of coordinates whose fundamental vectors 

are T, *J, and k, changes in position relative to a second 

system which is regarded as fixed, then the fundamental 

vectors themselves become functions of the time with re­

spect to the fixed system.

To analyze this statement, consider the dot product
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of unit vector 1.

T . I s 1.

1

Differentiating with respect to time

I • 12 0
dt ^dt

T’S-0. 
at ~ “•

Kow Al o, thua dZ perpendicular to

From thia it follows!

T • S - o, I * o k • dk_ 
dt V| dt u* at ~ 0

are all at right angles to corresponding fundamental vectors.

These three vectors di, dj .and dk are oo-planar. The 
dt dt dt

proof follows from the following relationship:

1x7 = 1.
Differentiating with respect to time 

d^ — dT x 7 -<■ T x d7 
dt - dt dt.

Performing a cross product with d7 
dt>

dj x dk = dT x d7 x 7 * d7 x 1 x d7 
dt dt dt dt dt dt.

Making use of the following formula from vector analysis: 

a x T> x o* s • a) - "oCa. *- T>), 

the right side of the equation becomes
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since

avat • J/= o

dj and J
dt

are perpendicular to each other.

Dotting both sides of the remaining equation with dT, 
- at

dt dt dt----- ldt • J 1 ldt e dt '

*(5 . T) (Si «I) 
^ldt 11 ldt * dt'

3 Harry Lass, Vector and Tensor Analysis (New York:
McGraw-Hill Company, Inc., 1950), p. 23.

"(It • at) • T).

The second term on the right drops out since

S T A 
dt * 1 * °»

and regrouping the terms

S . S. , _ faT aji /aT al dt • at * at = -‘at * at1 <at • I at

The term

and

thus

(S-3 H • I) = tttt • I'
(3 • J)= o,
S . di x S - 0 
dt dt dt -

The scalar triple product represents the volume of a 

parallelepiped formed by coterminous sides, a# b, and c.

a • E x e s I al |b| 1^1 sin 0 cos a

"a • 15 x "c a hA a volume,3 3 *

T).
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It a • b x c = 0,

then the vectors ere co-planar.^

Suppose a unit vector w, is perpendicular to the 

plane common to the three vectors 

di, dT, and dk, 
dt at at

then dT is perpendicular to both and also to T| 
dt

similar relations hold for

and J, and || and "F.

Then the following is true:

(1) a(ve x T) a dT. b(we x J) s dT. and
dt dt

c(we x k)s dk 
dt.

Now from the time derivative of T • J a 0,

(2) 5. j+t.aso.
dt dt

Then substituting values above for dT and dj 
dt dt

(3) T • a(we x T) ♦ T • b(we x 7) s 0, 

interchanging dot and cross, and carrying out cyclic pro­

cess, and letting our scalar be associated with we

(4) • (I x 7) + • Q x I) s 0,

* 1^1^. - P- 24-.
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(5) av« • k • bwe • k a 0,

(6) (w» • k) (a - b) s 0.

Similar statements could be made for the x and y axes* and 

hence both we ♦ T and w, * "J would also be equal to zero.

This, of course, is not true since v would be perpendicu­

lar to all three co-ordinate axes. Consequently, a a b. 

Similarly, by cyclic interchange, b s o and o s a. Thus, 

the three fundamental vectors dj, dj, and dk can be 
dt It dt

represented as vector products of one vector w:

^7) SlawxT, Sj.ewx'J, and dk as w X k. 
dt dt ’ dt

Carrying the investigation further, consider an 

arbitrary vector a. Let a be associated with a system 

whose fundamental vectors are T, J, and k. The projection 

of a along each axis of the co-ordinate system yields

(8) a s T ax + *J ay+ T ae>

Differentiating with respect to time:

s dax . J day . k dag . ax dT . ay dj . a- dk 
at aF 5t dT+ at+yat+ dt.

Letting the time rate of change of a with respect to the 

co-ordinate system T, T, and IE be denoted by

(10) d*a  T dax .J day ^k da, 
dt dt dt

and
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dt dt

'1

which la simply w x a.

Then

Suppose vector Z le of constant magnitude and is

directed fx*om an origin of a co-ordinate system to a fixed

and its direction is the same as that of a right-hand screw

point P. It ie obvious, then that

da is a vector perpendicular to the plane of w x a 
dt

and da
dt

d*a dT= 0

(12) ja - *
dt " dt

Figure 1
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Further consideration shows that w x a swa sin (w,a) e 

where e Is a unit vector.

In Figure 2, the point P moves In a circle of radius 

laf with w constant. If w Is not constant, then it Is 

considered as the Instantaneous motion. It Is now apparent 

that w is the angular velocity of the particle P, Its di­

rection, in the future, shall be directed along the axis of 

earth, and its magnitude Is de* 
dt.

II. RELATIVE MOTION

Motion that Is described as relative must be relative 

to some particular thing. In this case, movement with re­

spect to a system of co-ordinates or a frame 0, whose funda­

mental vectors T, *J, and k vary with the time In regard to a 

fixed system or frame 01, Is denoted as relative motion.
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Consider a moving point P, and let its position be 

described from both reference frames 0 and O’. Point P may 

be represented by drawing a directed vector length from 0 to 

P and 0* to P. This may describe the motion relative to a 

particular frame, but since 0 may move with respect to O', 

a fixed system, a directed vector length from O1 to 0 com­

pletes the description of motion of point P. Note Figure 3.

In vector fora, let r* be a position vector from 0* 

to P, r be a position vector from 0 to P, and si be directed 

from 0* to 0, thus

(1) r1 = a + r.

z.

I P

A 
». y

X

Figure 3 
I

If r a xi * yj * ak is a position vector of a moving 

particle P(x,y,z) in three dimension, then the change in r 

is dr a dxi + dyj dzk, 

and the velocity is

dt dt * dt J * dt ’
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The acceleration, being time rate of change of the 

velocity, is of form

® s j5X - T * dL2y 7
d5"dr‘1*ar*j*ar’k’

Thus, in describing the motion of point P, equation (1) it 

differentiated with respect to time

<2) dr1 - da . dr 
dt ’ dt “r dt.

Examining each term of (2) separately:

v a d?1.
dt

represents the velocity of moving particle with respect to 

first system of co-ordinates 0‘.

▼t * S
dt

is the motion carried out by the origin of second system 0

with respect to first 0*. Now

dr - d*r 
dt dt

5*5 term Is the time rate of change with respect to 
dt

system 0, that is

r dt - 1 dt + J dt * k dt.

The w x r term, as presented in the last section. Is the 

velocity of a particle attached rigidly to system 0, which 

in turn rotates around 0*.

5 Ibid.. p. 30.
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Thus equation (2) takes the form

(3) + vr4- (v x r).

It follows, that the total acceleration may be ac­

complished. by d.lfferentlatlng (3) with respect to time

(M
dt

Examining each term on the right separately, is the 

acceleration of the origin of the second system with respect 

to the first. The term dtVy) breaks up into two parts, 
"dt

since vr is the velocity of a particle relative to the 

second system, and thus it takes the following form 

d(vr) d*vp _ _
-dt— ’3FE**XTr.

The last term becomes

* X * (w x r)) - w x tz2 4- w x (w x r)

= w X Vr + (w X w X r). 

Finally,

(5) dv dvt d#vP _ __ dw — ~ -
dt 4 ------► 2(w x vr) + x r-h w x (w x r)

From equation (5) the significance of the term w x w x r 

can be better understood if examined closely
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Let w4 be a unit vector along w and. rw projection of

r on w. Note Figure 4.

Figure 4

Then w x w x r s (w * r) v - (w • w) r,

w x w x r = w (wr oos(w,r) - r (w2),

v x v x r s we (x*w2 ooe(w,r) - r (w2^

w x w x r a v2 (rwvo - Y).

Now rwwe » r ♦ P

eo that w x w x r * w2 (y + T - r) x w2?.

Then it ie evident, if a particle ie rigidly con­

nected with system 0, and the vector of angular velocity is 

constant both in magnitude and direction, and there ie no 

translational acceleration, equation (5) becomes 

w2? is directed towards the center and reveals itself as a 
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center e^eklng acceleration end la co.amonly called centripetal 

acceleration.

If v vanishes, the axes of the second system remains 

constantly parallel to those of the first, then 

SL - d.vt dvr
“ dt + dt .

Limiting conditions to the case in which the motion 

of the origin of the second with respect to the first is 

unifoili, then

§ - f^r 
~ dt , 

and the acceleration is identical for both systems.

In conclusion to this analysis, two co-ordinate 

eysteal in a state of uniform translatory motion with re­

spect to each other are known as an inertial system and 

are equivalent for the description of mechanical processes 

provided speeds are v** C vhere C equal speed of light. 

This conclusion is known as the mechanical principle of 

relativity.

III. L'OHCES PRODUCING MOTION RELATr/E TO EARTH

In the preceding section, mathematics was applied to 

chow accelerations and forces on a rotating system. Now it

6 Robert Lindsey, General Physics (New York: John 
’flley and Sons, Inc., 1W), p. 51o.
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remains to show what are the contributors to forces and. 

accelerations in regard to the earth and its atmosphere. 

According to Kewton

d(mv) * md^r — 
dt - dF - 1

if the mass is constant. The force resulting is the net 

unbalanced force acting on a particle, air in our study. 

Thus it becomes apparent that in the atmosphere, the acting 

forces are the pressure force, the force of gravity, and the 

frictional force. These forces coupled with forces experi­

enced by a rotating system tell the story of a particle's 

acceleration. In this section, however, frictional force 

will not be considered. A word definition of Newton's 

second law, here, will portray the following work most 

appropriately: “The change of motion Is proportional to 

the force and takes place in the direction in which the 

force acts.*

Reference system. The systems of co-ordinates or 

frames used are commonly called the relative frame and the 

absolute frame. The former is attached rigidly to the sur­

face of the earth with origin 0, and quantities referred to 

the relative or ’•local* system will carry subscripts of r. 

The absolute system 0* will be attached to some point on the 

axis of the earth and be oriented so that the "fixed stars* 

appear fixed. References of quantities to the absolute 

frame will carry no subscript
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It should, be noted here that Newton* e second law, 

for astronomical calculations, should refer motion to a 

system located at the center of gravity of the solar system 

and fixed with respect to the stars, but for dynamic meteor­
ology the system to be used Is sufficient.^

Pressure force. The pressure force arises from Inter­

action of the air elements and is independent of the refer­

ence system from which it is observed. In general, the 

atmosphere can be handled as a fluid medium, and mathematical 
equations expressing its motions follow hydrodynamic equations.® 

Rigorous derivations can be studied in textbooks on hydrodyna­

mics, but for the purposes of this study, the equations and 

statements will be very compact and brief.

It can be stated that the pressure force per unit 

volume Is a potential vector, and its potential is the 

pressure. Since the potential vector Is directed toward 

decreasing pressure, "the pressure force per unit volume is 
the gradient of the pressure, or simply the pressure gradient.**^

7 Jbrgen Holmboe, Dynamlo Meteorology (New York: John 
Wiley and Sons, Inc., 194$), p. 152.

8 Bernard Haurwlts, Dynamic Meteorology (New York: 
McGraw-Hill Book Company, Inc., 1941), p. 12?.

9 Holmboe, op. cit.. p. 99.
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If p represents pressure and. p(x,y,z) is a continuous 

differentiable space function, the calculus gives

Row, let r be a position vector to the point of pressure 

(x,y,z). 

and 

Now let 

be denoted as
35 * T '* T

It is obvious then, that if

dp st dr • Vp a 0, 

then the equation points out that 7p is perpendicular to dr 

as long as dr represents a change from a point (x,y,z) to a 

point (x«, y, , se) on the surface p constant. Vp then is 

normal to all the tangents to the surface at (x,y,x) and is 

normal to surface p(x,y,s) x constant. Since Vp is fixed at 

any point (x,y,s) the change in p will depend on dr. The 

term dp will be at a maximum when dr is parallel to p. 

Then p is in the direction of maximum increase. Now since 

the definition calls for the vector to point to decreasing 

pressure, it can be expressed

S s Vp pressure per unit volume 

and the pressure force for a volume SV is -SV Vp.

dr s dxT -t* dyj + dzk. 

del p a Vp
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Dividing bylM

Ya • $V VP»-etVp for per unit maes.
Im

Gravitation. *Every particle in the universe attracts 

every other particle with a force which is directed along the 

line. Joining the particles and varies directly as the pro­

duct of the masses and inversely as the square of the distance
10 between them* is a fundamental assumption proposed by Newton.

The coefficient of proportionality is called the constant of 

gravitation and is denoted by G. Thus,

F  Gm^m*

where G a 6.658 x 10"® (Hoimboe, p 153)

and M s 5.988 x 1021 Metric Tons.

10 Robert Lindsay. General Physics (New Xork: John 
Wiley and Sons, Inc., 19*0), p. 96.

Since the particle is of unit mass

M si 0^2 = mass of earth, = unit mass)

and then the equation can take the form

(1) g — GM where ‘g s F. 
r2.

The particle of air is in the gravitational field of force 

produced by M(earth). The relation holds only if the earth 

is considered as a perfect homogeneous sphere, but actually 

the earth is an oblate spheroid with the polar radius about
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6^57 klloiaetcre and the equatorial radius 6378 kilometers.

Ueinj.- r s 6371, ths equation (1) teoomes

- ^7- a 9.322 mns"*^. 
r

The forc<? of gravitation is directed along a line from 

the cent-jr of the earth to a point in question, thus, to get a 

vector representation ef this force, it will he necessary to 

determine if 1; has a potential. In this case, potential 

energy is a function of the position of a particle and is 

Independent of its velocity.^2 Furthermore, the total energy 

of a particle, the era of its kinetic energy and its potential 

energy, ren.ain constant. From these statements, equipotential 

surfeoes can be considered ar, infinitesim.'! spherical shells 

and the distcr.ce between two consjoutive shells is dr. Letting 

$be the grrvitatlonal potential, the following relation must 

hold:

gdrs -d(^)r.^ 

Substituting from g - CM 
r2,

5 GM r

11 Holnboe, or. olt.. p. 153.

12 Lindsey, op. cit.. p. 93.

13 lulu.. p. 92.
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Integrating - Gy dr

di sSM which is the gravitational
91 r

14potential.

The directional derivative of (ft in any direction s
18 M - X dz . a<n dy . dg1^

ds ** jx ds ay ds as ds •

Treating this is the same manner applied in the section on 

pressure dot stAQ* dr s 0.

Obviously dt will be at a maximum when dr is parallel 

to Then V® is in the direction of maximum increase, but 

letting V® point in the direction of maximum decrease in 

gravitational potential, the vector force of gravitation

g sr

Absolute Motion. The forces observed from the absolute 

frame or system O' acting upon a particle of unit mass are the 

gravitational force g and the pressure force 5which is the 

pressure force per unit mass.

Kewton’s second law equates the absolute acceleration

14 Ivan S. Sokol«nikoff. Higher Mathematics for Engineers 
and Physicists (New York; McGraw-Hill Book Company, Inc., 1941), 
p. 219.

15 Loo. eit.
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to the resultant of the forces applied. Then obviously

g s - V<?.

By letting - dv  tt,
dt *’

the equation for absolute motion can be expressed as an 

equllibrum of forces

0 s 5 + g* F»,

y» is called the inertial force of reaction, it arises from 

the inertia of a particle moving relative to the absolute 

frame.An observer attached to the moving particle is 

unable to distinguish between real forces and the inertial 

torce of reaction. Thus when forces are measured relative 

to a moving particle which is accelerating relative to the 

absolute frame, inertial forces appear. Whenever a particle 

is moving with respect to some ^reference system with constant 

velocity, the particle is said to be attached to an inertial 

system.

Velocity and acceleration of a point of earth. The 

earth rotates from west to east at a constant speed w. Since 

w is considered with respect to "fixed stars*, it is necessary 

to determine w s de
dt

in that relationship.

16 Jorgen Holmboe, pynsmic Meteorology (New Xork: John 
Wiley and Sons, Inc., 19^5), P- 155•
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In one year or approximately solar days, earth has 

rotated 365i times with respeet to the sun. Also, it has 

made one complete turn in absolute space around the sun 

from west to east. Thus in one year it has rotated 366^ 

times with respect to the stars. The ratio

s a sidereal day, and

v 2 TTradlana 3661 • 2TT radlane „ „ o- _ .5
1 sidereal day ** 3651 solar days ” * iu

radians sec”^.

Let the earth and all points that appear at rest when 

observed from a point of the earth constitute a space. Call 

this space relative space. It is evident that every point 

of relative space rotates at a constant angular speed w around 

the axis of the earth in a fixed circle of curvature centered 

on the axis.

Now, consider a point P of earth, fixed in relative 

space. Let the system O' be located at the center of the 

earth with the x, y plane in the equatorial plane and s axis 

pointed towards north pole along the axis of the earth, Direct 

position vector r to a point P from O’. Note Figure 4. Let 

Irl be the radius of the earth in this discussion. Now, w is 

defined as the angular velocity of the earth; since the ro­

tation is described by the numerical value of the angular 

speed, the orientation of the axis, and the sense of rotation. 

Specifically, the vector of magnitude w directed along the
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axis of rotation according to the right-hand screw rule 

portrays the necessary information about the rotation. The 

velocity of a point of the earth is the time derivative of 

the position vector r of constant length.

Ve=s-||awxr. ref: p. 6, if r« a

The acceleration of a point of the earth is determined 

by differentiating ve with respect to time. (Note w is 

constant in direction and magnitude.)

av __ — —xHt t v x (w x r)

which is recognizable as dve  frOm the section on we**** W JT 
dt

relative motion, as the centripetal force.

An examination of the movement of a point at rest in 

relative space demonstrates clearly that there is an un­

balanced force exerted against the point which can be con­

sidered as a particle of unit mass. This force causes the 

particle to have an acceleration towards the center of 

curvature. Otherwise, according to Newton’s first law of 

motion, the moving particle would travel in a straight line. 

Now, talcing into consideration Newton's third law of motion 

which states: "For every action, there is an equal and 

opposite reaction, and the two are along the same straight 

line", it is obvious there exists an equal and opposite reaction 
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directed, radially outward from the center of curvature. 

This force ia known as the centrifugal reaction. It should 

be stated that these forces do not balance each other because 

they are not acting upon the same object.

From these considerations, the equation of absolute 

motion for a particle at rest in relative space is
0 s b •* g 4. k. (k s» w2?)

This is the equation of relative or hydrostatic equilibrium, 

expressed from the absolute frame or system 0*. To an 

observer in space, the pressure force is balanced by the 

force g k, but to an observer at rest in relative space, 

the pressure force b appears to be balanced by a single force, 

g. Thus

gr = g 4- k, 

and the moving observer is unable to distinguish between 

real and inertial forces.^

Velocity Equation. In the last section, motion of a 

particle that was fixed to the earth was considered. The 

question arises as to what is the nature of arbitrary motion 

of a particle moving with respect to system 0' and system 0. 

From Figure 5 it is easily seen that a moving particle P can 

be described by the following vector relationship 

r^ * a r.

17 Holmboe, oj>. cit.. p. 156.
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Figure 5

The time derivative
dr1  da dr 
dt dt dt

gives an equation recognisable from the section on Relative 

Motion. Furthermore, 
.-1

s v s vt + vp + (w x r)

where v is the velocity of particle relative to system O’, 

absolute frame, v^ is the motion of second system 0, relative 

frame, with respect to first O’. vp is the relative velocity 

of point P with respect to system 0 and w x r is the velocity 

of a point rigidly attached to earth.

Acceleration Equation. Acceleration, of course, is 

the time rate of change of the velocity, and in this case by 

performing a differentiation with respect to time of the
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equation

▼ s 4 vr (w x r) 

ylelde

dv _ dv* dvr _ _ _
at ' ar "*■ dt * 2(w x Tr) * x F* T x (FxF).

Qv

(From section on Relative Motion, page 10)

The earth rotates at a constant velocity w and Its 

rotation Is described by vector w which Is constant In 

direction and magnitude, thus the term

dt

Also, limiting the conditions to the Instant that the 

motion of the origin of the second system 0 with respect to 

O' Is uniform or rigidly attached, 

= 0.

The resulting equation is

dv dv* . «/— — % xft x —E 4. 2(w x vr) 4 w x (v x r),

This equation shows that the acceleration of a particle 

with respect to absolute frame O' Is the sum of three vectors. 

The first term is the acceleration of a particle with respect 

to relative frame 0. The last term is the centripetal ac» 

oeleratlon of a coinciding point of the earth. The middle 

term is called the Coriolis acceleration.
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Coriolis Acceleration. A clearer idea of Coriolis 

acceleration, named, after its discoverer, can be determined 

by definition of the oroee product. The two vectors w and r 

have been described previously. The cross product of these 

two vectors yields a third vector which is perpendicular to 

the plane of w and v and directed according to the right hand

screw rule. Note Figure 6. 

It should be added that 

Coriolis acceleration acts 

normal to the velocity v, 

thus does not contribute to 

the tangential component of 

the motion. From the dis- 

cuselon of centripetal 

acceleration, it is apparent 

that if Newton*s second law is

*14 of Earfk.

to hold on a rotating earth, a 

fictitious force -2w x v must Figure 6.

be added. This inertial force will be called the Coriolis force.

Relative Motion. Earth. Eliminating the absolute 

velocity between the two equations

E * g « dvr x vr 4- 4ve 
dt dt .

Solving for «£
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= Sx Vr-^S..

This equation states that the acceleration relative to the 

earth Is equal to the sum of all the forces. Including the 

Inertial forces arising from the absolute motion of the 

relative frame. The term-^e which is equal and opposite 

to the centripetal acceleration is called the centripetal 

reaction. It has been shown previously that gr s g - dve 
dF, 

thus the above equation becomes 

dvr „
= b - 2w x vr * gp

As stated before -2w x vr is called the Coriolis 

force, the equal and opposite force of reaction. Letting 

"o s -2w x vP

the final form of the equation is

&Vr —- — —— „ fl. S h 4. a g dt Br.

This is the equation of relative motion, because it gives 

Newton’s second law of motion with respect to observations 

from a relative frame.



CHAPTER II

HORIZONTAL FLOW

Since a rigorous analysis of the study of motion of 

the air poses extremely complicated mathematical equations, 

solutions can be attained only by certain simplifying 

assumptions. Thus, an assumption that motion of the air 

is strictly horizontal in nature will be considered in 

this chapter. It might be added, that observations indi­

cate that most large scale movements of the atmosphere are 

horizontal. Friction and some consideration of vertical 

motion will be considered later. The equations of motion 

developed in the last chapter, are valid for arbitrary 

motion of air particles on the earth, and thus, they are 

certainly valid for horizontal motion.

In introducing horizontal motion, the use of the 

standard co-ordinate system T, J, k will be supplemented 

by three fundamental vectors T, n, "k. The latter vectors 

will be oriented such that t is tangent to the flow, n is 

normal to the flow and IE is perpendicular to the plane of 

*5 and H; these are all unit vectors. The right-hand screw 

system prevails in both systems. Now any vector projected 

into the system T, n, IE, is equal to the sum of its pro­

jections along each perpendicular axis of the system. A 

vector a then would be
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a s aflt * * a2k

in standard, system 

a^aJ^ayj^a^k.

I. OUTLINE GF MATHEMATICS INVOLVED IN HORIZONTAL FLOW

Centripetal Acceleration. Consider a particle moving 

on a circle of radius r with a constant angular speed w - dg 
dt

or instantaneous speed w. Note Figure ?,

Figure 7

Now r s r cos ®T + r sin©J, and the time rate of 

change of r is the velocity

T s 5? st (-r sin OT - r cos
U* dt.

Obviously, the acceleration
~ S*- as 2

& “ ~~ ” =• (-r cos G i - r sin ej)
U.V (*»
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since d /dr\ at lail = °-

Thue, the acceleration reveals itself to be 

a s -w2?

which is a center seeking acceleration. If a vector P s Jr# 

and n is a unit vector directed towards center 0 from point 

P, the eouatlon

*& si P .

Arbitrary Motion. The point P is any point on the

space curve

X S xts^ 

y - y(s), 

£ = £(s).

where s is an arc length measured from some fixed point.

Note Figure 8.

Figure 8
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Then a position vector r from reference frame 0 la

(1) r •=» x(a)T + y(e)J + s(a)k.

The change In r along a

da da * * ts j * da k*

Hov . S = tix|z+zazi2+ /4£1Z- a*2 to4 ae2 _ 
da da 'da1 ks1 T (del - 2 1.

This, of course, la the magnitude of the vector d?, and by 
ds

definition It la a unit vector. Furthermore, it la tangent 

to the space curve under discussion.

Kow consider the relation

(2) v = v dr, where v =s velocity.
ds

If differentiated with respect to time

(3) S- aiS d /S) 
dt dt ds * Si1 ds'.

Kow» (££) part of the last term on the right, la perpen­

dicular to the unit vector dr which la tangent to the curve, 
da

In other words, the acceleration has been divided into 

compeaenta tangential and normal to the path of particle 

under consideration.

Investigating d /d^Ft 
dt Ida'

(^t) Sl. I§£.\ - d/drt de  d^r ds
dt 'del * 'del dt "" *5^7 dt.

da
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Since dr is a unit vector it can be expressed as

5s - coseT slnflj.

Differentiating with respect to s

(oosOT sindJ) s (-slndT + oosdj) 

ena s? • a? a i*1®2® ■*•eof|2e >(afl.z

|<^e|- 42= AS., 1
I ds * ds rdd r.

This gives the magnitude, thus by denoting a unit 

vector n as being normal to the tangent,

at (Hll = n • r • at. at-T-
Substituting into equation (3)

— —
(5) dv  dv /dri i, v —

(ST dt »ds* r

When w - da
** dt,

v — d s  d s dd
-St - d9dt= wr.

“4 S = g
In previous work r s r R. R is a unit vector directed 

from origin 0 towards a point. The position vector r of 

magnitude r then becomes the vector radius of curvature. 

Thus, r x -rn where n is the vector in the direction opposite 

to R.

Equation (5) which gives the vector curvature 7,
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ITI — and. la directed toward the center of curvature, la 
r

composed of two components

P = Pnn + P,T.

k is perpendicular to the plane of n and dr and thus the 
ds,

three unit vectors form an orthogonal system. If T and n 

are tangent to the earth’s surface, a local system is 

realised. This system of dr =s"t, n. It will simplify some 
ds

problems later. The components for horizontal flow ares

4vs 
li-----

dt
■2P,

Sense of Curvature. At this point, the idea of what 

direction a curve is taking would clarify later discussions 

of circular motion. When a particle appears to be moving 

in a clockwise direction, viewed from the zenith, its cyclic 

movement will be negative, and anticlockwise will be positive. 

Movement that Is along a great circle may be defined as 

positive or negative. Also, it is obvious that the cyclic 

sense of rotation of a particle fixed to the earth1s surface 

is positive in the northern hemisphere and negative in the 

southern hemisphere.
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Angular Radin a o_f Curvature.^*

Figure 8a Figure 8b

The angle 0 will be called, the angular radius of 

curvature. As shown in Figure 8a, it is the angle subtended, 

at the center of the sphere (earth in later problems) by 

the radius of curvature r.

The radius of curvature subtending 9 is r a a sin9 

and its reciprocal 1 is the curvature P.
a sin0

The vector curvature appears from a point on x to point 

to the left of flow in a positive circular sense. Since n 

points to the left of flow, then P x Pn. Note Figure 8b.

1 Jorgen Holmboe, Dynamic Meteorology (New York: John 
Wiley and Sons, IW)# pp.



Using

Pn5 P 008 O (2).

Pgti -P sine (3).

P - 1
a sin6 >

PB s P cos e cos 9 - 1
"* sin 0 a ** a tan .

Pz- -P sine- -1 eine.3 - 1 
a sin0 a

a a radius of sphere.

Horizontal and Vertioal Curvature. The spherical 

path of a particle can be projected upon a horizontal plane, 

and the resulting curve is called the horizontal path. "The 

curvature of the horizontal projection of the path is equal 
2 

to the horizontal component of the vector curvature." Thus, 

if Pjj represents the curvature of the horizontal projection, 

Pjj = P oosG -s Pn>

From the previous section, the vertical component of 

the vector curvature

- X 
a

or Rz=. . a

where Rs equals radius of curvature, a is the radius of a 

great circle and it can be stated that "the spherical path 

projects into the vertical plane as an arc of a great circle

2 Ibid.. p. 179.
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no matter how strongly curved the spherical path may beM.^ 

The vertical plane is normal to the horizontal plane and 

passes through the unit tangent. The mathematical proof of 

both statements concerning the curvature in the horizontal 

and vertical planes can be found in any good dynamic meteor 

ology book.

It can be stated here that the three radii of curvature, 

R, and Rs emanate from points on the axis of rotation to 

a moving point P. In other words, the centers are collinear. 

Then vectors P, and drawn from point P to respective 

centers of curvature can represent this condition quite 

clearly. Note Figure 9.

Figure 9

Further consideration of the relationship of these three 

vectors yields

■$ s * f y ?h

3 Ibid.. p. 182
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* 

where x s eln 6

and. y = ooe2 0 .

The proof follows. Let 0 divide B 0 in the ratio x:y where 

x + y » 1. How

Ta Fh-t BC,
F = + xtr, - Fh),

F = S, + (l-xlFjj, y = l-x,

F= yFh.

From Figure 9

Fh •F = 7h •F.x+Fh • Fhy.

so*. F, • F= o
since the horizontal plane is tangent at P, therefore P£ is 

perpendicular to P^^ and thus

Fh F cos (Pn p) = eos (Ph Ph)y, 

y_ P oo. (Ph P) t

F - y eoe G - a sin 6 oosO 2 
** Pu "* a sln0 - COB 

coeG

P^x a tane.

?ze 55 • F8)x * (Pa • Fh)y,

P8 P 008 (Pe P) = Pg2 X, 

P COS (P, P)
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elnoe

thus

From the 

requirement 

and. then

Paa sine, 

a ein 6 cos -9) „ 
a " x>

x a sin26.

x + yx 1 

sin2d * oos2^» 1

T s sin2 6 oos20 Pfce

II. APPLICATIONS OF MATHEMATICS TO EARTH AND ATMOSPHERE

The Angular Velocity of the-Earth. Since angular 

velocity is a vector in a meridional plane, its component 

wx s 0, in the standard T, J, E system. Note Figure 10.

Figure 10

The components are then

Wy s I wl cosG,
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where y is directed, towards the local north and 6 is the 

degree of latitude, and

wz s Iwl sinQ

along the local zenith. It should be noted that w is positive 

in the northern hemisphere and negative in the southern 

hemisphere.

Coriolis Force. The vector equation of this force is

"o s ~2w x vr
*■ >

and the equation can be expressed in the determinant form

and expanded by the ordinary method of determinants.

c s -2 1
1 J k
0 wywz
VX Vy 0

s 2wz vy 1 - 2wz vx j + 2wy Vx k.

Its components in the standard system are

°x = 2*z Vyf

Oy = -2wz vx>

°z = vx.
For the t, n, k system 

and the components along each axis

cs~ 0»

on s -2wzv = -2w sine v, 

cz = 2wnv.
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Obviously the only horizontal component of the Coriolis

Force is normal to the flow, thus the horizontal vector component 

°h a °n n s •*2wzvn = -^Wg. x v, 

since wz s wk and. n » k x t.

The Pressure Force and, the Force of Gravity. Since 

the force of gravity has no horizontal components

a g • k a -g.

The horizontal force of pressure Is 

b * -v *P
Tx ly,

and. this force acts normal to the horizontal Isobars (lines 

of constant pressure) towards lower pressure.

Total Components of Relative Motion. Earth. Each

vector In the equation

dVy. — — — —
= b -2w x vr + gr

has been examined from the standpoint of their components.

The component equations for the standard 1, J, k system are

dvx .
w A# W w V vrdt tx 2 y»

avy

"dt 3 "^z vx,

4vz 
dt az y vx ge

The component equations for the "t, n, k, system are:
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dr -- 
dt 5e,

2
ph v * **- 2ve v, 

t2 .
”■ n * 2*y TX -8.

These equations have the advantage of being dependent 

on the direction of motion.

Vertical Equation.

ar* y x 8-

This equation states that the vertical acceleration 

is equal to the sum of the vertical components of the forces 

acting.

The term 2»y vx clearly indicates that the vertical 

Coriolis force acts upward for motion towards the east and 

downward, for motion towards the west. Also since e w cosG , 

the absolute value of the Coriolis force in the vertical is 

greatest at the equator and zero at the pole.
2

The dvx is the centripetal term and is equal to v 
dt” a

since the vertical path is an arc of a great circle. The 

equal and opposite centrifugal reaction opposes the force 

of gravity.

The last term on the right -g is the force of gravity

4 Ibid.. pp. 187-188
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measured, at a fixed, point, but it is of interest to note 

that the vertical accelerations created, by horizontal 

flow actually affects the so-called “pull" of gravity. 

Examination of an observer's horizontal movement with the 

flow yields the fact that measure of gravity would be

B’ = 8 - 21 _ 2w v 
a 4Wy Tx.

If g' > g, a moving particle is "heavier* and if

g* 4, g it is lighter* is a conclusion reached by consideration 

of the above equation. Experiments and computations have 

shown that correction terms are very small thus 

g‘<S 8.

A consideration of strictly vertical motion from our 

equation

dv-

is of some Interest. The first term on the right would be

8=8 • I s -g

and the Coriolis force

oh = . 2
T J k I
0 Vy . I s .2*^ Tt 1.
0 0 T,l

The result is (relative acceleration components)

dv
H1





CHAPTEH III

FRICTION

If the earth were perfectly smooth, the equation of 

motion dvr _ r . t -l.at = D + ot g

could, be satisfactorily used In the surface layers. However, 

observations demonstrate clearly that friction Is present. 

Friction created by the rough surface of the earth and an 

Internal friction within the air mass itself are principally 

effective In slowing air movements. Then, the scope of this 

chapter is to present general theory on friction; the type 

prevalent in air motion, and the effect it has on air move­

ment. It might be added that laws concerning friction ex­

perienced by air masses are still In the process of study.

I. FRICTIONAL THEORY

Analysis of a particle resting on a rough horizontal 

plane Indicates that when a force Is Imparted to the particle, 

a greater force Is necessary to accelerate the particle In a 

given direction than under the same conditions for a smooth 

plane. It Is reasonable to assume that the Irregularities 

between two surfaces which touch each other produce 

accelerations opposite In direction to the movement. Then 

it can be stated that the force of friction is proportional 

to the force exerted by the particle against the rough plane.
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This thrust against the plane is denoted by vector n and 

the proportionality factor is called the coefficient of 
friction x*1 Note Figure 11. It is easily seen that the 

magnitude of n is n a mg, and then the magnitude of T?

1 Robert Bruce Lindsey. General Physios (New York: 
John Wiley and Sons, Inc., 19W, p. 69.

F^-ayn-ax/mg.

Figure 11

If a rough inclined plane is considered, it cannot 

be assumed that the total reaction of friction acts normal to 

the plane. In Figure 12, n, the normal thrust, is the 

component of the weight of the particle normal to a flat 

plane. From Newton's third law, it is evident that an 

equal and opposite reaction takes place in the case of 1n.



Thus, since n is the force which 

the particle pushes down perpen­

dicular to the inclined plane, 

an opposite reaction is the 

force which the plane pushes up 

on the particle. The total 

reaction of the surface on the 

particle is the resultant of 

two forces R and

Figure 1?

In Figure 12

Fa mg sine,

F^^jUn a.//mg 008 0, 

and using these equations, the motion of the particle Is

mg sin® -xmg coed a ma,
2

a s g(sin 0 - //cos 0). a a 1.

II. RELATIONSHIP BETWEEN FRICTION AND

CORIOLIS FORCE

It is now apparent, that a frictional force per unit 

mass Fj, can be added to the equation of motion when motion 

takes place near the earth’s surface. Thus the equation of

2 Ibid.. p. 68.
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motion la

dv* — — — —
* 0 "* 8 * Fr.

AcoordLing to various textbooks on Dynamic Meteorology, 

frictional force depends upon the motion, physical state of 

the atmosphere, and the underlying surface of the earth. The 

height to which it extends is roughly the half kilometer 

level where air movement is in good agreement with the general 

equation of motion.

An idea of the nature of the friction term 7^ may be 

asoertalned by assuming that constant rectilinear motion 

exists in a horizontal plane at the earth’s surface. This 

flow is commonly called geostrophic or great circle flow. 

The equation of motion then takes the form

(1) 0 2^* ch + Fhe

If the friction term did not exist, then the wind 

would blow along the Isobar balanced by the pressure gradient 

and the Coriolis force, but the wind deviates from this type 

of flow and the deviation will be called v’. Thus

(2) v a v_ + v’. Note Figure 13.

Since c^ •= -2w2 x v

°h 3 ”2we x (v * v’) 
6

X Vg -2wx X V' .

From the definition of geostrophic flow,

b s 2w x v.



and. substituting values in equation (1)

0 = 2wa x 7g . x vg - 2wa x P + Fh 

x v’s

From the last equation, it is apparent that the 

Coriolis force arising from the deviation of the geostrophio 

wind must balance the frictional force.

III, SURFACE FRICTION

An approach to this problem was presented by Guldberg 

and Mohn as early as 1875• They worked on assumptions similar 

to those presented in the section on Frictional Theox*y. They 

assumed that the frictional force is directed opposite to 

the velocity and its magnitude is proportional to the speed. 

Note Figure 14. Constant rectilinear motion is assumed

3 Jorgen Holmboe, Dvnamio Meteorology (New York: John 
Wiley and Sons, Inc., 1945), p. 234.
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o^ce again (1) 0=^* ch* Ff

Fs-Kv

Figure 14

The force triangle ia similar to the velocity triangle, 

as can be determined from the diacuealon in thelaat section 

when thia relation held with the factor of proportionality 

2wte Thue the velocity triangle ie a right triangle, and the 

horizontal component of the terms of equation (1) are

- 2wa v* -Vtev- coe Sf - kv.

since ch = •ZWg v -h kv,8 'g

kv * Vg cosy. Note Figure 14. 

Finally,

' "Tg (2ws - k cos y) - kv.

The proportionality factor k was assumed to decrease 

with height, and the angle y was largest at the ground and 

decreased with height. Calculations of values indicated 

that these assumptions were not accurate. Later, Sanstrom 



defined, a residual force to be used with Guldberg and Mohns 

assumptions, and from this. Hesseiburg and Sverdrup developed 

a method for determining the force of friction by adding in 

Sanstroms residual force.Thia technique fit the observed 

facts but was empirical in nature and did not explain the 

physical characteristics of frictional resistance. Thus it 

became necessary to take into account the internal friction 

created by molecular activity and interaction of air masses 

of different velocity and direction. With this in mind, 

study was turned to fluid motion.

IT INTERNAL FRICTION

Considerable literature has been written concerning 

interm al friction, and this writer does not propose to go 

into all the theoretical approaches, but rather to present 

some basic ideas. The essential parts of internal friction 

can be summed up into two parts: molecular friction and 

turbulencej eddies embodied in the general flow.

Viscous Stress and Viscosity. Consider two parallel 

plates which incase fluid at a distance i from each other. 

(Note Figure 15). Let the upper plate be moved at a hori­

zontal velocity v, while the lower plate remains stationary.

4 Thy0iob of the Earth*.(Bulletin of National Research 
.Council. Feb., 1931), Published by the National Research 
Council of the National Academy of Sciences, Washington, D. 0., 
pp. 182-183.



Experiments have proved that when 

steady oonditions exist, the 

velocity decreases linearly from 

the moving plate to the resting 

plate. The shear >v is constant. 
4s 

The consensus is that the motion 5 >> ।

5 Bernhard Haurwits, Dynamic Meteorology (New Xork: 
McGraw-Hill Book Company, Inc., 1941), p. 188.

t 
develops as a result of internal 

 7 f 
friction which arises from the --_______________

disturbance of fluid molecules.

In order to keep the lower Figure 15 

plate at rest, it is necessary to apply a force equal and 

opposite to the force applied to produce motion in the top 

plate. It might be added that no lost motion is assumed 

between the plates and the fluid in direct contact with them. 

It is reasonably assumed, from experiments, that a force -T, 

which is proportional to velocity v of the upper plate and 

inversely proportional to the distance s, must be applied on 

a unit area of the resting plate.Thus the viscous or shear­

ing stress

at the bottom plate 
"5a

and T/wjr at the top plate.
ds
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Similarly, each horizontal infinitesimal fluid, layer 

between the two plates can be shown to have the same shear. 

To arrive at an equation, a proportionality factor must be 

Introduced. The symbol p is used and

This equation is *Bewton,s formula" for the stress, m is 

called the molecular viscosity which is variable from a 

physical and temperature standpoint, and it is a pure
6 number. The viscosity values for air in the meter, ton,

—8 e ft
second unit are: 1.7 x 10 at 0 centigrade and 2.2 x 10*0 
at 100* centigrade.?

Molecular Internal Friction Tenn. Observations of 

wind direction and velocity with altitude have clearly 

demonstrated that a shear exist, thus in the case of 

horizontal motion with uniform velocity at each level 

the frictional force can be related to the shearing stress. 

Picture an infinitesimal cube of unit cross section and 

height dz. The stress exerted on the bottom face is T and 

the drag on the upper face is T dz. The difference 

between the two gives the force exerted on the element of

6 Holmboe, on. cit.. p. 236

7 Xbid.. p. 238.
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volume dva ds. Then is the frictional force per 

unit volume. For unit mass^,

fh s* * jl since si X.

This equation is derived under the considerations 

that the horizontal variations of velocity components or
8horizontal shears are neglible.

Application of this result to our horizontal equations 

of motion gives

It can be added that calculations of this source of 

friction yields results that are too small for what is 

actually observed.

Molecular and Eddy Viscosity. The equation that 

Newton developed for the stress

t a //^v 
5z

where//, the viscosity, was presented in a new form by 

Maxwell from a theoretical approach to molecular action of 

gas under similar considerations outlined in the section

8 Ibid.. p. 239.
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on vibogus stress. He found.

whereto is the density of gas, 1 is the mean free path ofx 

molecule, c is the mean heat speed due to internal heat 

energy.

An analogous formula was developed when it was 

apparent that the above type of friction would create 

forces only a few meters in depth. The study of fluid 

motion subjected to mild disruption showed that small eddies 

appeared downstream for short distances beyond points of 

disturbance. From this transfer of momentum from layer to 

layer which is called eddy stress, a formula for stress was 

presented with the use of a new viscosity term //•

Nx e/»wl.

To get the expression for eddy stress, it is assumed 

that the parcels of fluid which are affected by the eddies 

move an average distance 1. It should be noted that this 

hypothesis has Its limitations in that it assumes mixing to 
be a discontinuous process.^ Also, as the parcels are 

displaced from * to z * ds, there arise components of the 

eddy velocity which are perpendicular to the constant flow v. 

This is called w. Thus, the eddy stress can be written

T » p wl jv
*8.

9 Ibid.. p. 237.

10 Bernhard Haurwitz, Dynamic Meteorology (New York: 
McGraw-Hill Book Company, Inc., 19^1), p. 195.
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After due consIderationa, the above equation can be 

called semi-empirical.

V. WIND VARIATION FROM SURFACE TO GRADIENT LEVEL

W. F. Ekman solved the problem of the turning of 
ocean currents in the surface layers of the ocean in 1902.^ 

He developed the "Ekman spiral" or logarithmic spiral of 

the currents, and analogous to this result, meteorologists 

developed the solution of the corresponding problem of wind 

deviation.

Essentially, the problem was attacked by assuming 

that horizontal pressure force has the same direction and 

magnitude for all levels. Thus the geostrophic wind Is 

constant in magnitude and direction. As stated before, the 

level at which the wind is in fair agreement with our equa­

tions of motion is approximately at the five hundred meter 

level, thus the assumptions are not too great. The viscosity 

and specific volume are constant with height.

Using Newton's formula

(1) t = ^iv
dz 

and the frictional force per unit mass

(2) fy sM it 3 g- x
wZ • 

Recalling v = vg-** vj

11 Ibid.. p. 207.
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(sinoe Vg is constant)

(3) A- 
T*z *

Thus equation (2) ean be written

N* — 2w x V1

The right side of this equation is

2
I I $ 
0 *y v8 
▼*X V’y 0

* <

S -T'y », T * V, V'x I -«y Vx 5,

since v1 Is considered In the horizontal plane. The com­

ponents In the x,y plane are then

(6)
"Cl — 2y wi 

J s2 T x.

(6) can be multiplied by 1 and added to (5) with the result

that 42 (Ti + iTi ) 3 > sin e (It' . Tt ), 
IT? x H* «IN J

- <r,x = 21B2(-v»x - It',), 

since I2 s -1 and B2 — w sine

an4 <7> 5F <T'3I‘*‘ ” 21b2<tIx* 1T'y>-

s Is the only Independent variable, thus (7) takes

the fora 
2A (v'x * lv,y) -21B2(V' + lv' ) e 0.
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The final form of this linear differential equation ie 
2

- (1+ i)z bz = o
2

when 2i s (1 + i) and ▼* = * j e

The solution of this equation can be obtained by use

of differential operator D s d procedure, 
da

(D2 - (1 + I)2 B2) v1 = 0.

D - ± (1 + 1) B.
Thus ▼ ■* 0,6^ * 1^Ba*ee,

After due considerations of the assumptions and 

restrictions, the following definite solutions:
(1) ▼• = to* e*Bx,

(2) e = »Bs,
12 are acquired for the anemometer level. This solution is

known, as stated before, as the "Ekman spiral*. Note Figure 16.

Figure 16

12 Ibid.. p. 244.



CHAPTER IV

THE CURL OF THE VECTOR EQUATIONS OF MOTION

This chapter is concerned, with a mathematical in­

spection of vector terms encountered in the development of 

the equations of motion from the standpoint of curl.

I. VELOCITY EQUATION

The velocity equation in vector form is

(1) v = vr * (w x r), from Chapter I.

Curl. The curl of the velocity equation is defined

(2) Vx v S v X Vr 4- Vx (w X r).

Consideration of each term separately, yields for the 

first term on the left

Obviously the first term on the right Is

The last term on the right of (2)

V x (w x r) « (r • v) w - r (V • v) * w (V • r) - (v • V )r.

The first term on the right

(r • V ) w s 0,

-since w is constant in magnitude and direction.
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The second, term

-r (V • 7) s -r /»*, iv, . >*,1 
^TE T‘ST11

To simplify, let x be oriented along the easterly direction 

and consider only horizontal flow, then

=-7(^)

The third term on the right

T(v- r) =(3st.>ltg)T = 37

and -(w -V)r - wx 4-vy 4 wi |X

• wx 1 > Wy J * wx k « w, 

thus w ( V • r) - (w • V )r s 2w.

Now adding the results after restricting x to the easterly 

direction and considering horizontal flow only.

Dotting with k

'TrJ = ** '■v^)*te2w<r
<x ey lx ’ z

since 2w • k = 2wt^ k • 1 * 0, k • J * 0.

Thia equation is a result gained from consideration 

of motion viewed from the absolute frame.
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Vorticity. "The limit of the ratio of the circulation 

do around an infinitesimal element to the area dA of that 
element ie called vorticity."1

1 Jorgen Holmboe, Dynamic Meteorology (New York: John 
Wiley and Sons, Inc., 19^5/» P. 320.

In the equation (3) of the last section the result 

would be

$a $r + 2w sine.

To acquire the vorticity term in the t, n, k system, 

consider two parallel curving streamlines at a distance dn 

apart. Let two normals extend from the outer streamline to 

the center of curvature of the outer streamline. Note 

Figure 17.

Figure 17

Circulation around this horizontal area in a counterclockwise 

direction yields
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do = vr6de- (t* ix dn) (re - dn) de, 
an

W46=(5,-£H,£an)Man,

dividing by dA = rededn
2$-Ao = Z-.iX

dA re an,
after considering the third term in (4) which approaches zero.

chapter on horizontal motion the following component equations 

Vian

In the following analysis, motion In a plane and

be used in conjunction with the vorticity equation

an,

o

Substituting In (2)

ro
Solving for r0

Vorticity and Horizontal Circular Motion. In the

tangential to the isobar will be considered. The streamlines 

and isobars are assumed to coincide. Thus equation (2) will

* e*e z n

in the t, n, k system were presented:

<1) 5Z s -.i£,

(2) £
r0 

11 _ w2

2 Ibid.. p. )22
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Solving for S

The term 2vz haa a maximum value at the pole and its 

value is

2 x 7.292 x 10"*3 x 1 a 1.4584 x 10**^ radians per eeo.

This term being so small, it can be deleted, thus

$=-*X-S:i2 
4n v in,

which gives a relationship for vorticity that is easily 

calculable from data existing on weather maps. The usefulness 

of this equation is not established yet, but its relationship 

to tornado or tornadio winds may bear fruit.

II. CURL OF ACCELERATION EQUATION

The acceleration equation in vector form is 

- - - ■57- il-t o + g,

but writing it in the form

- -*Vp - 2v xv -V<

it can be handled easier. The curl is then

(1) 7x £vj• . _ MVxVp - 2 x(w x v) - x . 
CL v

The right side of the equation may be analysed by 

considering each term separately
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First term on the right

provided, p has a continuous first partial derivative.

Similarly V x ss 0.

The second term
(2) -2fv x (w x v)J = -2 [(v • V )v - ▼(▼• w) 4* w( V • v)

- (W • v )t)

Considering each term on the right separately

-2(v • r )w = Tx -» Vy 15 +▼* 12 = o, (7 le oon.tant) 
w* wy •

since Wy s w cos0t wx * °» *s s v sinO when x points to east

- 2w (V . v)x -2w pvx 3Vy ^v2\ 
' 1y Ts'

and 2(w . V )v = 2(wx |v + wy Jv 4.w1 Vv \
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Adding the terms of the last two

-2w(T. ▼) * 2(w • 7 )v s -2wx jvx

Considering the tens on the left of equation (1)

T J k

*(n"7t -3xTt)7

+ ($xAt

Restricting motion to a horizontal plane and the x axis pointed 

east, (> - JL v - ”2*7 .iTx At TyTS' - 1 -jt J -z*g (j£| + .£i) E



Dotting with k.

" Ty* S ■2’* (,h " ’> * 2 w ooee (tx 4. vr)

-vL(S) ® *,2we * ▼) since 2w cosejg (rx + ▼») » 0.
• t i£ *
The change in vorticity with tiae is equal to -2w sine 

times the divergence of flow, and the right hand side of this 

equation is the time rate of change of the absolute vorticity 

as presented in Holmboe’s Dynamic Meteorology, page 324. 

(This book is listed in the bibliography).
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