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MATHEMATICS APPLIED TO SOME ASPECTS OF DYNAMIC METEOROLCGY

It 1s the purpose of this thesis to review and collect
Tundamentel mathematics that bears on the motion of alr
particles in dynamioc meteorology. Many of the derivations
have been supplied by the suthor, The sgeotion on the curl
of the relative acceleration and the development of the
vector equation concerning the center of curvature are the

suthor's own work.
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CHAPTER I
FORCES ON A ROTATING EARTH AND ATHOSPHERE

The aim of this chapter 1s to demonstrate mathemati-
cally the acceleration that a moving particle experiences
from the forces that are presént in & rotating eystem, and
integrate these forces into a consideration of an ailr psr-
ticle's movement with respect to the earth. From a meteoro-
logical view point, the total acceleration of the alr parti-
ocle combines the effect of the rotating system and of the
forces that act upon the alr particle. 1In particular,

these include gravity, pressure, and friction,l
I. OUTLINE OF MATHEMATICS IN A ROTATING SYSTEMZ

If a syetem of coordinates whose fundamental vectors
are 1, J, and k, changes in position relative to a second
system which is regarded as fixed, then the fundamental
vectors themselves become functions of the time with re-
spest to the fixed system.

To analyze this statement, conglder the dot product

1 Sverre Petterson, Westher Analysis and Forecasting
(first edition; New York: McGraw-Hill Book Company, Inc.,
1940), p. 206. |

2 Arthur Haas, Introduction %o Theoretical FPhysics
(Vol. 1; eecond edition; London: Constable and Gompany,
Ltd., 1928), pp. 38-51.




of unit vector 1.
T'T:lo
Differentiating with respect to time
T.d14pdl-T=0
dt+E¥
I’a‘f__o

Now & thus d1 is perpendiculer %o 1.
at = O at

From this it follows:

1.4_, "'- kK-
at =0, w=0

are all at right angles to corresponding fundamental vectors,

These three vectors di, dJ,end dk are co-planar. The
dt at at

proof follows from the following relationship:
1Ix7=k,
Differentiating with respect to time
dk - dix‘j+1x__.1

dt ~ dt at.
Pertorming a cross product with dJ
at,
&l x k- dlxd] x T4 A xTxd]
dt dt t 4t as ds.

Making use of the following rormula_rrom vector analysie:
ax5x3=25(3:3) -3@@ B,
the right side of the equation becomes

f@-0-3E . Devd. DH-dd .1



The term a1 4

‘a‘f‘a.‘z' . 3): 0
sinoe 4] and J

at

are perpendicular to each other.

Dotting both eides of the remailning equation with di,

at
41T 47 . dk _ 4T =\ 747 41
dt“%‘&?f“‘ﬁ-é“%%°%‘%)
al =y 741 43
a1  4a3) |4 -
-4 4)1g .9,

The sscond term on the right dreops out since

a4 -
@ 1=0,

and regrouping the terms

841 4]  dak _ (aT 4Ty ¢4t
dt'dtxat-"a%"a:%”a‘%‘-i' gg-l')
aT - 47 -

The term ‘EI‘J %_é_‘.n?_%%_(.{‘”

and (T . J)=0,

thus - d a ak _
%-'&%:‘&?-0.

The scalar triple product represents the volume of a
parallelepiped formed by coterminous sides, T\', "'6’ and 'J,
2B xo=1a B lel sin 0 cos a

2 P xC=hA= volume,3

3 Harry Lass, Vector and Tensor Analysis (New York:
McGraw-Hill Company, Inc., 1950), p. 23.




It a+*bxe=0,
then the vectors are co-planar."

Suppose & unit vector w, 18 perpendicular to the
plane common to the three vectors

&1, &f, ana gk,
at 4t at

then d1 i1s perpendicular to both We and also to 1}
it

similar relations hold for
g—% and J, and -g-% and k.

Then the following is true!
(1) al(vy x 1) = 8T, (W x J) = %I, and
4as t

0(;. xi): d-i

as.
Now from the time derivative of 1 - J= O

2) 41 T.4d] -
‘)-a—e-j‘fl g_o.

Then eubstituting values above for 5_1% and g
4

(3) T-a(io xT)+ 1. b(vwe xT)= 0,
interchanging dot and cross, end carrying out eyclic pro-

cess, and lstting our scalar be assoclated with W,

(3) oy * (I x PN+ - (TxT)=o0,

4 Ibid., p. 24,



(5) &;. ‘E-bg.’i:o
(6) (we + k) (a - b) = 0.

3imilar statements oould be made for the x and y axes, and
hence both W, * 1 and ¥, * J would also be equal to zero.
This, of course, 1g not true since w would be pérpendicu-
lar to all three co-ordinate axes. Consequently, a = b.
Similarly, by cyolic interchange, b = ¢ and ¢ = a. Thus,

the three fundamental vectors d3, 4], and dk can be
dat t at

represented as vector products of one vector w:

(?7) 2527, dl=¥w 8K = %
dt:wxi,dtswx']', anda_ﬁ._wxﬁ.

Carrying the investigation further, consider an
arbitrary vector a. Let '; be associated with a system
vhose fundamental vectors are 1, J, and k. The projection
of & along each axis of the ec-ordinate eystem yielde

(8) a=1ax+Jag+ka,

Differentiating with respect to time:

(9) da _Taa, ,Ta, ,Ea a1 T i
28 o X 4 a; L ax di _ay 43 . a, &k
t T _Idt + T + at +°7 at + at.

Letting the time rate of change of & with respect to the
co-ordinate system 1, J, and k be denoted by

(10) 4% _ 71 day _ 7T day _X da
U - 3 il e S et
at at as at

and



(11) axgi*a,%%...azais (-\;XT)&X‘P GI?)B’

at at

4-(?:;?)3‘
2aVxa, T4+vx 07'3'4-:1: &, kK
which is simply W x 2.
Then

Suppose vector a isg of constant magnitude and 1is
directed from an origin of a co-ordinate system to a fixed

point P, It is obvioug, then that

*

0
Y]

=0,

and =W X a.

algy &

Figure 1

da 1s a vector perpendicular to the plane of ¥ x &
at

and 1ts direction 1s the same as that of a right-hand serew.



Further consideration shows that w x & =wa s8in (w,a) ©

where @ is a unit vector.

>y

Figure 2

In Figure 2, the point P moves in a circle of radius
& with ¥ constant. If ¥ is not constant, then it is
conaldefed as the instantaneous motion. It 1le now apparent
that w is the angular velocity of the particle P, its di-
rection, in the future, shall be directed along the axis of
earth, and ite magnitude 1is de

4%,
II. RELATIVE MOTION

Motion that 1s desoribed as relative must be relative
to some particular thing. In this case, movement with re-
epect to a system of co-ordinates or a frame O, whose funda-
mental vectors 1, J, and X vary with the time in regard to a

fixed eystem or frame O', is denoted as relative motion.



Congider a moving point P, and let its position be
described from both reference framee O and O', Point P may
be represented 'by drawing & directed vector length from O to
P and O' to P. This may describe the motion relative to a
particulsar frame, but since O may move with respect to 0!,

a fixed system, a directed vector length from O' to O com-
pletes the desoription of motion of point P. Note Flgure 3,

In vector form, let r' be a position vector from O!
to P, T be a poesition vector from O to P, and a be directed
from O' to O, thus -

(1) r*= a+r,

Figure 3

If T 3 x1 + Y] + 2k 18 a position vector of a moving
particle P(x,y,z) in three dimension, then the change in T
is dr = daxi + dyJ + dzk,
and the velooclty is

Vo dr_ax7._ 8y, 4z
"dt‘dtl"dt""’dti'



The acceleration, being time rate of change of the

velocity, 18 of form

T - av_ a2x = 2, o5
a =.Q%L= Qii 1+ _?ILJ 4.9__ k.

Thus, in describing the motion of point P, equation (1) is
dirferentiated with respect to time

(2) é&r' . da_._dr
q C @ taEr.

Examining each term of (2) eeparately:

v. ar!
=dt'

repregents the velocity of moving partiole with resgpect to
first system of co-ordinates Of,

v,da
' at

18 the motion carried out by the origin of second system O
~with respect to first O'. Now
dr , 4%

The d'r term 1s the time rate of ohange with respect to
at .

gystem O, that is
Vo= 8T _—dx - dy dz
T IgrIgrER

The ¥ x T term, as presented in the las% section, is the
velooity of a particle attached rigidly to system O, which

in turn rotates around 0!,

5 ibid., p. 30.
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Thus equation ‘(2) takes the form
(3) F=Vp 47+ (WxF)
It follows, that the total acceleration may be ac-
complished by differentiating (3) with respect to time

(4) &y _ avy  a(vp) . &v at

Examining each term on the right separately, dv, is the

aéceleratlonbt the origin of the second system with respect

to the first. The term d(V,) breaks up into two parts,
av

since V. is the velogity of a partiole relative to the
second system, and thus it takes the following form

a(vp) avv,

The last term boconmes
. ' Y ... jo— —-‘ - ey “-- — -~ -
'x‘%-f?-+(wxr))—'x%-€-2+wx (v x )

:7:71.-{-(7:;1?).

- d— d’
(5) %% v -l-a-!--l-z(wxvr)"'dgxl‘*"‘("xr)

From equation (5) the significance of the term w X W x r

can be better understood if examined c¢losely.
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Let W, be a unit vector along W and ry projection of

T on w, Note Figure 4,

I

-\

Figure b
=W F)W-(W:WT,

W (vr cos(w,r) = F (w?),

<]
™
2}
»

Then

<} =|
M OM M
z|

<! =
MM
sl wl w] w4}

= We (rw? cos{w,r) - 7 (wz),
2 w2 (r e - F).

Now FyWe = T+ P

<}
M

g0 that Vxwxraw (F+F - 7) = wF,

Then it is evident, if a particle is rigidly cone
nected with system O, end the vector of angular velocity 1s
constant both in magnitude end direction, and there le no

translationsal acceleration, equation {(5) becomes

av | 2%
at YR

w<F 1g directed towards the center and reveals itself as a
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center seeklng acceleration end 1s coamonly called centripetal
ecoeleration,

If ¥ vanishes, the axes of the gecond system remains
constanily parallel to thoss of the first, then

&V _ dvy | dv,
[l vl

~imiting oondliiions to the case in which the motion
of tiae origin of the second with reaspeot to the first 1is
unifor:i, then

dv _ €v,

as ,
snd the acceleration is identical for both systems,
~ In conclusion %> this analysis, two co-ordinste

system3 in a etatavor uniform translatory mot%ion with re-
spect to 2ach other are known as an inertial system and
are ecuivalent fcr the deseription of nechanical processes
provided speeds are v<< C vhere € cqusl speed of 11ght.6
This oonclusion 13 znown as the mechanical principls of

I‘ﬁl(»tl?lt}{.
I1I. J'ORCES PRODUCING MOYION RELATIVE TO EARTH

In the preceding sccetion, matnematics was sapplied to

chow acoelerstlons and forces on a rotating system. HNow 1¢

6 Robert Lindeey, General Phrsics (New York: John
Yiley and Sons, Inec., 1540 0), p. 516.
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remalns to show what are the contributors to forces and
accelerations in regard to the earth and its atmoephere.

According to Newton

a(my) - mdz'._
t - EES"'F

if the mass 1s constant. The force resulting is the net
unbalanced force acting on a partiocle, air in our study.
Thus 1t becomea apparent that in the atmosphere, the acting
forces are the pressure force, the force of gravity, and the
frictional force. Theso-rorces coupled with forces experi-
enced by a rotating system tell the story of a particlels
acceleration, In this sectlion, however, frictional force
will not be considered., A word definition of Newton's
second law, here, will portray the following work most
appropriately: *The change of motion is proportional %o
the force and takes place in the direction in which the

force acts.”

Reference system, The systems of co-ordinates or
frames used are commonly called the relative frame and the
absolute frame. The former is attached rigidly to the sur-
face of the earth with origin 0, and quantities referred to
the relative or "local® system will carry subscripts of r.
The absolute system O' will be attached to some point on the
axis of the earth and be oriented so that the "fixed stars"
appear fixed., References of quantities to the absolute

frame will carry no subscript.



1k
It should be noted here that Newton's second law,
for astronomical calculations, should refer motion to a
system located at the center of gravity of the solar syetem
and fixed with respect to the gtars, dut for dynamic meteor-
ology the system to be used 1is sufrioient.7

Pregsure force. The pressure force arises from inter-

action of the sir elements and is independent of the refer-

ence gystem from which 1% ls observed, In general, the
atmosphere can be handled as a fluid medium, and mathematical
equations expregsing its motions follow hydrodynamic equatlons.8
Rigorous derivations can be studied in textbooks on hydrodyna-
mios, but for the purposes of this study, the equations and
statements will be very compact snd brief, '

It can be gtated that the pressure force per unit
volume is a potential veotor, and its potential 1s the
pressure. Since the potential vector is directed toward
deoreasing pressure, "the pressure foroe per unit volume 1s

the gradient of the pressure, or simply the pressure gradient.'9

7 Jorgen Holmboe, Dynamic Meteorology (New York: John
Wiley and Sons, Inec., 15#5;, p. 152,

8 Bernard Haurwitz, Dynamic Meteorology (Kew York:
McGraw-Hill Book Company, Ine., 1941), p. 127.

9 Holmboe, op. cit., p. 99.
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If p represents pressure end p{x,y,z) 1s a continuous

differentlable space function, the calculus gives
(1) dp:_gdx...%gdy... %gdz

Now, let T be a position vector to the point of pressure

(x,7,2).
T =x14 7-3 + 2k
and ar = ax1 + 4yJ + azk,
Now let del p = Vp
be denoted ag Vp-é.p.'h. ‘3'4.%2‘;

It is obvious then, that if

dp=4r - Vp = 0,
then the equation points out that ¥p is perpendicmlar to dr
as long as ar represents a change from a point (x,y,z) to a
point (x, Yo, %,) on the surface p constant, Vp then is
normal to all the tangents to the surface at (x,y,z) and is
normal to surface p(x,y,z) = constant. Since Vp is fixed at
any point (x,y,s) the change in p will depend on dr. The
term dp will be at a maximum when &% is parallel to p.
Then p is in the direction of maximum increase. Kow since
the definition calls for the vector to point to decreasing
pressure, 1t ocan be expressed

P = «VUp pressure per unit volume

and the pressure force for a volums $V isg -8V Vp.
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Dividing byéH
P2 wdVVPaad VP for per unit maes,
T _

Gravitation. "Every particle in the universe attracts
every other particle with a force which ia direoted along the
line, Joining the particleu and varles directly as the pro-
duct of the masses and inversely as the aquare of the distance
between them" is a fundamental essumption proposed by Newton.lo
The ecoefficient of proportionality is called the oonstant of

. gravitation and is denoted by G, Thus

)

F - Gmlm ,
" :
vhere : G =6.658 x 108 (¥~11342 ), (Holmboe, P 153)
and ¥ = 5.988 x 102 Metric Tons.

S8ince the particle 1s of unit mase

N = mym, (m1 = mass of earth, m, = unit mass)

2
and then the equation scan take the form

(1) g =.§% vwhere g = F.

T,

The particle of air iz in the gravitational field of force
produced by M(earth), The reiation holds only if the earth
is oonsidered.as a perfect homogeneous sphere, but actually

the earth is an oblate spheroid with the polar radius about

10 Robert Lindsay, General Physics (New York: John
Wiley and Sons, Inec., 1950), p. 96.
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6257 kilonsters and ihe eguatorial radius 6378 kilometere.
Ueing » = 6371, tke2 equation (1) tececnmes ‘
€= %z = 9,322 mpe™~2, 1
The forc? of grevitation 1s directed along a line from
the oentur of the earth to e point in question, thus, to get a
vector representation ef this force, it will be necessary to
determin? 1f 1 has 2 potential, In tals case, potential
ene:rgy 1a a function of the poeition of a particle and is
indepondant of its velocit:f.lz Furthermore, the total energy
of & purticl:z, tre prva of its kiretic energy and ite potential
ansray, rewain ocrnstant, From these statements, equipotential
surfeces gan be consldered an infinitesln~l sphericel shells
and the cistirce between two cong:0utive shells is dr, Letting
Qbe the gr-rvitaltional potentisl, the following relation must
hold:
gar= -a(Q)p 13

Substituting from g = (M

1’2,

-4(Q),, = G ar
2
r

-

11 Holuboe, ov. git., n. 153,

i
12 Lindsey, op. ¢it., p. 93.
13 Ivid., p. 92.
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Integrating - faq= Gder
!‘ .

— GM which 18 the gravitational
-r

potential.“
The directional derivative of Q in any direction s
is ga_ edx , 304y, a agld
JX ds ey ds z ds.
or dQ= 4@
?S =+ 5y &+ 3% az

Treating this is the same manner applied in the section on
pressure da =V@ ar = 0.

Obviously 4q will be at a maximum when 4r 1s parallel
to VQ. Then V@ is in the direction of maximum inorease, but
letting VQpoint in the direction of maximum decrease in
gravitational potential, the vector force of gravitation

E = -VQO

Absolute Motlon. The forces observed from the absolute
frame or system O' acting upon a particle of unit mass are the
gravitational force g and the pressure force D which iz the
pressure force per unit mass,

Newton's second law equates the absolute acceleration

14 Ivan 8. Sokol.nikoff, Higher Mathematics for Engineer
and Physiclsts (New York: MoGraw-Hill Book ¢ Company, ine., 1941),
P. p. 219,

15 Loc. eit.
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to the resultant of the forces applied. Then obviously

By letting -

. the equation for absolute motion ¢an be expresssd as an
6qullibrum of foroes

0=b+g+F',
F' 18 called the inertial force of resction, it arises from
the inertia of a particle moving relative to the abeolute

16 An obgerver attached to tha moving particle 1s

frame,
unable to distinguish between real forces and the inertial
force of reaction, Thus when forces are measured relative
to a moving particle which is accelerating relative to the
absolute frame, inertial forces appear. Whenever a particle
1s moving with respect to some reference system with constant
velocity, the particle 1s sald tovbe attached to an inertial

systenm,

Yelocity end acceleration of a point of esrth. The

earth rotates from west to east &t 2 constant speed w. 8ince
w 18 considered with respect to "fixed stars", it 1s necessary

to determine w40
at

in that relationship.

16 Jorgen Holmboe, D
Wiley and Sons, Inc., 1955

T}namic Meteorology (New York: John
» P. 155.
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In one year or epproximately 365% solar days, earth has
rotated 365% times with respeet te the sun. Also, it has
made one complete turn in absolute space sround the sun
from west to eagt. Thus in one year it has rotated 366%
timee with respect to the stars. The ratio

362' = a sldereal day, and

¥ 2TWredlens _ - _‘%_%._65 : 2Wradisns _ -
= Y eidereal day - 365% solar days - (+292 X 10 5

radians sec-1,

Let ths earth and all points that appear at rest when
observed from a point of the earth constitute a spsce. Call
this space relative epace., It 1z evident that every point
of relative space rotates at a constant angular speed w around
the axls of the earth in a fixed circle of curvature centered
on the axis.

Now, consider a point P of earth, fixed in relstive
epace, Let the eystem O' be located at the center of ths
earth with the x, y plane in the equatorial plane and £ axis
pointed towards north pole along the axis of the earth, Direct
position veotor T to a point P from O', Note Figure b4, Let
IT! pe the radius of the earth in this discusslon. Now, W is
defined as the angular velocity of the earth; sinoce the ro-
tation 1s described by the numerical value of the angular
speed, the orientation of the sxis, and the sense of rotation,

Specifically, the vector of magnitude w directed along the
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axls of rotation according to the right-hand screw rule
portrays the necessary information sbout the rotation. The
veloclty of a point of the earth is the time derivative of
the position vector T of constant length,

v°~%%=wxr. ref: p. 6, if T =8

The acceleration of a point of the earth is determined
by differentiating ¥y with respect to time. (Note W is
constant in direction and magnitude.)

dv
-—---—-("xr)- xr-l-

é“:l-'? i

%{-7—71 (Wx7T)

which is recognizable as AV, - w25 from the section on
at

relative motion, as the centripetal force,

An examination of the movement of a point at rest in
relative space demonstrates clearly that there is an un-
balanced force exerted against the point which c¢an be con-
sldered as a particle of unit mass, This force causes the
particle to have an acceleration towards the center of
curvature, Otherwige, according to Newton's first law of
motlon, the moving particle would travel in a straight line,
Now, taking into consideration Newton's third law of motion
which states: "For every action, there is an equal and

opposite resction, and the two are along the same st raight

1ine®, it is obvious there existsan equal and opposite reaction
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directed radially outward from the center of curvature,
This force 1s known as the centrifugal reaction. It should
be stated that these forces do not balance each other because
they are not acting upon the same object,
From these considerations, the equation of absolute
motion for a particle at rest in relative space is
0=b+g+k (k 2 wF)
This 1s the equation of relative or hydrostatic equilibrium,
expregsed from the absolute frame or system O', To an
observer in space, the preesure force is balanced by the
force g X, but to an observer at rest in relative epace,
the pressurs force b appears %o be balanced by a single force,
E} Thus .
€= E + K,
and the moving observer is unable to dietinguish between
real and inertial roroos.17

Yeloocity Equation., In the last section, motion of a
particle that was fixed to the earth was considered., The
question arises as to what ie the nature of arbitrary motion
of a partiecle moving with respect to gystem O' and system O,
From Figure 5 it is easlly seen that a moving particle P can
be deecribed by the following vector relationship

rl=3 +7T,

17 Holmboe, op. eit., p. 156.
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Figure 5
The time derivative

—l — ——

dr o da 4 &r

at > at T at
gives an equatlon recognizable from the gection on Relative
Motion. Furthermore,

-1

%%—:;:;t-b;r-&(-;x;)

where ¥ 18 the velocity of particle relative to system O',
abgolute frame. ‘;f is the motion of second system O, relative
frame, with respect to first 0'. ¥, is the relative velocity
of point P with respect to eystem O and W x r is the velocity
of a point rigidly attached to earth,

Acceleration Equation. Acceleration, of course, is

the time rate of change of the velocity, and in this case by
perforaing a differentiation with réspeot-to time of the
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equation
VaTy 4T+ (@xTF)
yields

%%-__.ggﬁf%?"'z(;x;r)*%gx?+71 (v x 7).
(Froh section on Relative xotign, page .10)
| The earth rotates at a constant velécity_w and its
rotation is described by vector w which is constant in
direction and magniﬁdde, thus the term .

h%%fx';'e 0.

Also, llmitlné the 6on&1flons tb the instant that the
motion of the origlp of tbe seoon¢‘system O with respect to
O' 1s uniform or rigidly #ttachéd,

"'?g = 0.

The roaulting'eqhatlon'is R

%{:a?x;‘iz(wxvjr)-b vx(vxr)
0F . &Fp . = _ = . av.
T vV, 40
as at ' r ,Td S

This,equatioﬁ shows that the acceleration of a particle
with respect to absolute fraeme O' 1s the sum of three vectors.
The first term is the acceleration of a partiole with reepect
to relative frame O. The last term is the éentripetal 8c-
celeration of a coinociding point of the earth. The middle

term is called the Coriolis acceleration.
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Coriolis Accelerstion. A clearer idea of Coriolis

acceleration, named after ite discoverer, can be determined
by definition of the cross product. The two vectors w and T
have been dsscribed previously. The oross product of these
two vectors yields a third vector which is perpendicular to
the plane of w and ¥ and directed according to the right hand
sorew rule. Note Figure 6.
It should be added that
Corlolis accelsration acts
normal to the velocity v, ;
thus does not oqntribute to

the tangentlial component of

<\

the motion. From the dis- { 2@y | )
cuselon of centripetal

acceleration, 1t 1s spparent

that if Newton's second law 1s

to hold on & rotating earth, a

fictitious force -2w x v must Figure 6.

be added., This inertial force will be called the Coriolis force,

Relative Motion, Earth. Eliminating the absolute

velocity between the two equations

and

Solving for %%-‘—'
]



This equation states that the acceleration relative to the
earth is equal to the gum of all the forces, including the
inertial forces arising from the absolute motion of the
relative frame. The tenm-ig, which is equal and opposite
to the centripetal acceleration 1s called the centripetal

reaction, 1t has been ghown previously that Ex' _-:-,E - d';,

at,

thus the above eguation becomes
%%I=='5- 2% X Vo4 B
As stated before -2w x ¥; 1s called the Coriolils
force, the equal and oppogite force of reaction. Letting
0= 2w x Vp
the final form of the egquation is
a

<}

l

L=B+0+ ¢,

o

t
This is the equation of relative motion; because 1t gives
Newton's second law of motion with respect to observations

Ifrom a relative frame,

26



CEAPTER 11
HORIZONTAL FLOW

Bince a rigorous snalysis of the study of motion of
the air poses extremely complicated mathematical equations,
solutions can be attained only by certain simplifying
assumptions, Thus, an assumption that motion of the alr
is strictly horizontal in nature will be consldere.d in
this chapter. It might be added, that observatlions indi.
cete that most large scale movements of the atmosphers are
horizontal., Frlction and some consideration of vertical
motion will be conglidered later. The equations of motion
developed in the last chapter, are valid for arbitrary
motion of alr particles on the earth, and thus, they are
certainly valid for horizontal motion.

In Antroducing horizontal motion, the use of the
gtandard co-ordinate system 1, J, X will be supplemented
by three fundamental vectors t, n, XK. The latter vectors
w11l be oriented such that © is tangent to the flow, 1 is
normal to the flow and k is perpendicular to the plane of
¥ and n; these are all unit vectors, The right-hand screw
system prevallse in both systems, Now any vector projected
into the system T, n, k, is equal to the sum of its pro-
Jections along each perpendicular axis of the system. A

vector & then would be
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azat+an+ak
in standard system
a=al+ ay','f + a.X,
I. OUTLINE GF MATHEMATIC3 INVOLVED IN HORIZONTAL FLOW

Centripetal Accelerstion. Consider a particle moving

on a circle of radius r with a constant angular speed w = 40
at

or instantaneous speed w. Note Figure 7.

=X

Figure 7
Kow * = r cos @1 + © 8in®), and the time rate of

changs of * ig the velocity

oz, T- T) &0
-dtz(rumei rcoaaﬂﬁ.

" Obviously, the acceleration

2= 36,2
==5E= (=r co08@1 - sinej)(du, ,
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since a_(an\ _
at (&) = o
Thue, the acceleration reveals itself to be
3 = -¥7
which is a center sseking acceleration. If a vector P = J;,

and n 18 a unit vector directed towards center O from point
P, the ecuation

Arbltrary Motion., The point P 18 any point on the

space curve

X = x(s)’
¥ = y(s),
t = e(s),

vhere 8 18 an arc length meagured from som=2 fixed point,
Note Figure 8.

Figure 8
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Then a position vector r from reference frame O is
(1) * = x(a)T + y(8)J + 2(a)k.

The change in r along 8

ds ~ ds 8
Now dr &r . dxlzf(éx)z... an?_ ax® dxz az?
das * ds ds’! ds (da = as® = 1.

This, of course, is the magnitude of the vector dr, and by
ds

definition 1t is a unit vector. Furthermore, it 1s tangent
to the space curve under discussion.
Now consider the relation

(2) ¥ = v 4T, where ¥ = velocity.
: ds

If differentiated with respect to time

(3)‘_@3:_@1&!' vd ( )
at  dat as *

Now, %ﬁ' (g) part of the last term on the right, is perpen-
’
dicular to the unit vector _;_(E vhich is tangent to the curve,
ds
In other words, the acceleration has been divided into
compenents tangential and normal to the path of particle
under consideration,

Investigating & (g}_-")
at ‘ds

(b)a (_g_r':’ ( ds _ 4%F ae
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Bince %‘E 18 a unit vector it can be expressed as
8 |

= 00807 +81n0J.

ole

Differentiating with respect to 8

and

veoctor

When

and

(005011- 8in@jJ) = (-sinOi.%-oesGJ) e
2“" 2= 2
-g‘-é-’-'- . %;3: = (sinQ + coaze)(%-g
o
5|~ 20, 88 - 1
ldg = d "~ rdd T.

This gives the magnitude, thus by denoting a unit

N es being normal to the tangent,

1 48 g
L(ET Foq, @

Substituting into equanon (3)

(5) &
5’;- ( }-l-—--n

In previous work * = r R. R 18 a unit vector directed

from origin O towards a point. The position vector r of

magnitude r then becomes the vector radius of curvature,

Thus, r = -rn where n 1s the vector in the direction opposite

to R.

Equation (5) which gives the vector ourvature P,
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Il = 1 and 1s directed toward the center of curvature, is
r

compogsed of two components

P = P + P,X,

¥ 18 perpendicular to the plsne of n and dr and thus the
8,

three unit vectors form an orthogonal system. If T and n
are tangent to the earth's surface, a local system is

realized. This system of dr =%, n, k will simplify some
ds

problems later. The components for horizontal flow are:

dv dv
B8 o orum

4

dv.
- ol

ERt

n

2
=V g,

Benes of Curvature. At thie point, the idea of what

direction a curve 18 taking would clarify later dlscussions
of circular motion. ¥When a particle appears to be moving

in a clockwise direction, viewed from the zenith, its cycliec
movement will be negative, and antiolockwise wlll be poesitive,
Movement that is along a great circle may be defined as
positive or negative. Also, 1%t 1s obvious that the cyclioc
gsense of rotation of a particle fixed to the earth's surface
i8s positive in the northern hemigphere and negative in the

southern hemisphere.
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Anguler Radiusg of Curvature,t

z r

Horizontal Plans £

Figurs 8a - Figure 8b

The angle @ will be called the anguler radius of
curvature. 4As shown in Figure 8a, 1t is the angle subtended
at the center of the sphere (earth in later problems) by
the radius of curvature r.

The radius of curvature subtending @ is r= a s8in®

and its reciprocal _ 1 1s the curvature P,
& 8in®

The vector curvature appears from a point on £ to point
to the left of flow in e positive circular sense. Since n

points to the left of flow, then P = Pn, Note Figure 8b,

1 Jorgen Holmboe, Dynamic Metsorology (New York: John
Wilsy and Sons, 1945), pp. %77-5:73.
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Ppn=Pocosd® (2).
~ Pg=-P s1n® (3).
Using P= 1

‘aslna.

Pn-..-.Pcose._._ cos® . 1
8inO a & tan .

Py= «P gin®= - ) ein@ _ - 1
& £ingd a

a = radlus of sphere.

Horizontal and Vertieal Curvature. The spherical

path of a particle can be projected upon & horizontal plane,
and the resulting curve is called the horizontsl path. *The
ourvature of the horiszontal projection of the path is equal
%o the horlzontal component of the vector curvature.“z Thus,
if P, represents the curvature of the horizontal projeetion,
Pp = P cosd= Fpn,
From the previous gection, the vertical componsnt of

the vector curvature

Pz =2
8

where R, equals radius of curvature. a is the radius of a
great circle and it can be atated that "the spherical path

projects into the vertical plane as an aro of & great circle

2 Ibia., p. 179.
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no matter how strongly curved the gphericsal path may be".3

The vertical plane is normal to the horizontal plane and
passes through the unit tangeﬁt. The mathematicsal proof of
both statements concerning the curvature in the horizontal
and vertical planeg e¢an be found in any good dynamic meteore
ology book, '

It can be stated here that the three radii of curvature,
R, By, and R, emanate from points on the axis of rotation to
a moving point P. In other words, the centers are collinear.
Then veotors F£1 P, and ¥, drevn from point P to respective
centers of curvature oan represent this condition quite

clearly. Kote Figure 9,

Figure 9
Further oconsideration of the relationship of these three

vectors ylelds

?:;XFZ*’Fh

3 Ibid., p. 182,



where

and
The proof follows.
xX4+y=1. How

From Figure 9

Now,

x = 8in%@
¥y = c0s2@ .
Let ¢ divide B 0 in the ratio x:y where

since the horizontal plane is tangent at P, therefore F, is

perpendicular to f;h, and thus

Py P cos (Pp P) = I}? eos (Py Py )y,

¥~ Poos (P, P)
h
Y=P ¢os® _ asin® c0sO

At - oy 2
Pp = & 8ino = c0s8"@,
coe®

Py = a tan@,
Fz- Fs= (‘5; . 'Fz)x + (-fz . Fh)y,
P, P cos (P, P) = P,2 x,

P cos (Pé P)

= Xq
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since P=asinéd,
g___s_i}ni cos (99 -6) _ x,
thus x 2 sin?6,
From the x+y=1
requirement 81n’0 + cos’@ = 1
and then F = e1n2 0 F, + cos?@ Ty

II. APPLICATIONS OF MATHEMATICS TO EARTH AND ATMOSPHERE

The Angular Velocity of the ‘Earth. 8ince angular
velocity 1s a vector in a meridional plane, 1ts component

Wy = 0, in the standard 1, J, k eystem. Note Figure 10,

£7uc¥or

Figure 10

The components are then

wy = 1wl cos@,
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where y is directed towards the local north and @ is the
degree of latitude, and

v, =1ul sin@
along the local zenith. It should be noted that w 1s positive
in the northern hemisphere and negative in the southern

hemisphere,

Coriolls Force. The vector equatlon of this force is

C=2-2WxXV

and the equation can be expressed in the determinant form

and expanded by the ordinery method of determinants.

— 17k _
vxvyO

Its components in the standard system are

Cy = =2W, Vg,

Cy = 2Wy Vx.
For the t, n, k system
T n k
Wg Wp W,
v 0 O

= =2w,vn + 2w, VK,

T = =2

and the components along each axis
cg = 0,
Ch = ~2W,v= -2w 8ine@ v,

Cg = 2wV,
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Obviously the only horizontal component of the Coriolis

Force 1s normal to the flow, thus the horizontal vector component
Eh acy n = -ZWZﬁa -Z-V;'z XV,

since W, = wk andn=k x T,

The Pressure Force and the Force of Gravity. Since

the force of gravity has no horizontal components
gz = E b -k- = "'go
The horizontal force of pressure 1is

’b-’ -‘vph= - ol 3 -« ‘P
i 3y,

and this force acts normal to the horizontal isobars (lines

of constant pressure) towards lower pressure,

Total Components of Relative Motion, Earth. Each

vector in the equation
dv. - - =
dtr-.b-zw X Vp 4+ 8,

has been examined from the standpoint of their components,

The component equations for the standard 'j_., '5, k gystem are

avg

== = -c_t_g o+ 2w, vy,

—za-‘t -
.3-3 szvx,

av, _ —3p

The component equations for the t, n, k, system are:



Lo
gy = ’4‘%2.
at

8,

2 .
Fa¥'= B 2w, v,

.'.'.!..ig“a
- 3-% +2vy vy -g.
These eqﬁationu have the advantage of being dependent

on the direction of motion.

Vertical Egnation.&

avs o -«
T ex TPy Vx -e.

This equation states that the vertical acceleration
is squal to the sum of the vertical components of the forces
acting.

The term Zw’ Vy Clearly indicstes that the vertical
Coriolls force acts upward for motion towards the eest and
downwerd for motion towards the west. Also since Vy = w cos@,
the absolute value of the Coriolis force in the vertical is
greatest at the equator and zero at the pole,

The ﬂzi is the centripetal tsrm and 1s equal %o ZE

at a
since the vertical path is an erc of a great circle, The
equal and opposite centrifugal reaction opposes the force
of gravity.

The last term on the right -g is the force of gravity

& Ibid., pp. 187-188,
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measured at a fixed point, but it 1s of interest to note
that the vertical accelerations created by horizontal
flow aoctually affects the so-called "pull" of gravity.
Examination of an observer's horizontal movement with the

flow ylelds the fact that measure of gravity would be

2
g'=g-~-y2
a = 2wy ¥x.

If g' > g, & moving particle is "heavier" and if
B' <« g it 1s Mighter® is a conclusion resched by consideration
of the above equation, Experiments and computations have
shown that correction terms are very small thus
g'x &.
A consgideration of strictly vertical motion from our
equation
dv.

-&-5;':34-'5'4-"5'

is of some interest. The first term on the right would be

Y ;.-.'--t%%

E=g - E=-g
and the Coriolis foroe

17 %

00 Vg

ch=-2 .i..

The result 1s (relative acceleration components)

av
—A - ey
at = « %% -8



b2

= -2wy Ve = =2% aincvz.

- >
g 2l



CHAPTER III
FRICTIOR

If the earthwere perfectly smooth, the equation of

motion %%:g_'_g*g
could be satisfactorily used in the surface layers. However,
observations demonstrate elearly that friction is present,
Friction created by the rough surface of the earth and an
internal fristion within the air mass itself are principally
effective in slowing air movements. Then, the scope of this
chépter is to present general theory on friotion; the type
prevalent in air motion, and the effect 1t has on alir move-
ment. It might be added that laews concerning friction ex-

perienced by air masses are still in the process of study.
I. FRICTIONAL THEORY

Analyeis of a particle resting on a rough horizontal
plane indicates that when & forece is imparted to the particle,
a greater force 1s necessary to accelerate the particle in a
given direction than under the same conditions for a sgmooth
plane. It 1s reasonable to agsume that the irregularities
between two surfaces whiech touch eéch other produce
accelerations opposite in direction to the movement. Then
1% can be stated that the force of friction is proportional
to the force exerted by the particle againat the rough plane,
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This thrust against the plene 1g denoted by vector n and
the proportionslity factor 1s called the coefficient of |
friotlonp.l Note Figure 11, It is easily sesn that the

magnitude of n 1s n = mg, and then the magnitude of Fg

Feaun=ymg,

P"r_"IE
 pnd Duswan »
/Illlllj/lf’/rl

-—

N

Figure 11
If a rough inclined plane is considered, 1t cannot
be assumed that the total reaction of friotion acts normal to
the plane. In Figure 12, n, the normal thrust, is the
component of the weight of the particle normal to a flat
plane, From Newton's third law, it 18 evident that an

equal and opposite reaction takes place in the case of n.

1 Robert Bruce Lindsey, General thaic (Kew York:
John Wiley and 8ons, Ine., 19507, p. 6 ), P. 6



Thus, since n is the force which
the particle pushes down perpen-
dicular to the inclined plane,
an opposite reaction 1s R, the
force which the plane pusghes up
on the particle., The total
reaction of the surface on the
particle ia the resultant of

tvo forces R and ?r.

In Figure 12
F= mg 8in@,

ik

Filzure 12

Ftspn = pMug 008,

and using these equations, the motion of the particle 1is

%2?4'?:,

Bg 8ind - ,ng c08Q = nma,
a=2g(sin ® - ﬂoose)? n=l,

II. RELATIONSHIP BETWEEN FRICTION AND

CORIOLIS FORCE

It is now apparent, that a frictional force per unit

mass 'f"r can be added to the equation of motion when motion

takes place near the earth's surface.

2 Inid., p. 68.

Thus the equation of
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motion is

#25*0*8"'

L.

According to various textbooks on Dynamioc Meteorology,
frictional force dependé upon the motion, physioal state of
the atmosphere, and the underlying surface of the earth., The
helight to which it extends 1s roughly the half kilometer
level where alr movement 1s in good agreement with the general
equation of motion,

An idea of the nature of the friction term'?} may be
agoertained by assuming that constant rectilinear motion
exists in a horizontal plane at the earth's surface, This
flow is commonly called geostrophlic or great circle flow,

The equation of motion then takes the form
(1) 0 2By + 5 + Fy

If the friction term did no% exlet, then the wind
would blow along the isobar balanced by the pressure gradient
and the Coriolis force, dut the wind deviates from this type
of flow and the deviation will be called ¥'., Thus

(2) V2V 4+ 7', Fote Figure 13.
8ince O -2’:2 xv
zh’='-§;; x (;%-t V')
=-2vw, x ;8 '-2-\;1-z x v,
From the definition of geostrophic flow,

‘5:2?23?,



and substituting values in equation (1)

0=2wzxvg-zwzxvg-hzx'v"-i-?h’

W, x ¥ = h.

Figure 13
From the last equation, it is apparent that the

Coriolis force arising from the deviation of the geostrophic
wind must balance the frictional roroe.3

III., SURFACE FRICTION

An epproach to this problem was presented by Guldberg
and Mohn as early as 1875, They workéd on essumptions similar
to those presented in the section on Frictional Theory. They
assumed that the frictional force is directed opposite to
the velocity and its magnitude is proportional to the speed,

Note Figure 14, Constant rectilinear motion 1s assumed

3 Jorgen Holmboe g*gamio Meteorology (New York: John
Wiley end Sons, Inc., 1§h5 » Pe 234,
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Figure 1k
The force triangle 1s similar to the velocity triangle,
a8 ¢an bes determined from the discussion in thelast section
when this relation held with the factor of proportionality
2w, Thus the veloocity triangle is a right triangle, and the

horizontal component of the terms of equation (1) are
°=""‘-:—%- 2wy Ve +kvg cos ¥ - kv,
gince o©p = 2w, Vg kv,

kv x ¥, cosy. Note Figure 1k,
Finally,

J%% 3 =Vg (2w, - k cos y) - kv,

The proportionality factor k was assumed to dscrease
with keight, and the angle ¥ was largest at the ground and
decreased with height. Caloulations of values indicated

that these assumptions were not accurate., Later, Sanstrom
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defined a residual force to be used with Guldberg and Mohns
assumptions, and from this, Hesselburg and Sverdruﬁ developed
& method‘:or determining the force of friction by adding in
Sanstroms reglidual force.b This technique fit the observed
facts but was empirical in nature and d4id not explain the
physlical characteristics of frictional resgistance, Thus it
became neéeasary to take into account the internal friction
¢reated by molecular activity and interaction of air massges
of different velocity and direction., With this in mind,
study was turned to fluid motion.

IV INTERNAL FRICTIOR

Conglderable literaturs has been written concerning
internal friction, and this writer does noi propose to go
into all the theoretical approaches, but rather to present
some basic ldeas. The essential parts of internal friction
can be summed up into two parts: moleoular frictlion and

turbulence; eddies embodied in the general flow.

Viscoung Stress and Viscosity. Consider two parallel
plates which incase fluid at a distance & from each other,

(Note Figure 15). Let the upper plate be moved at & horil-

zontal veloeity ¥, while the lower plate remains stationary.

I whysies of the Earth®,{Bulletin of National Reseerch
Council, Feb., 1931), Published by the National Research
Council of the National Academy of Sclences, Washlngton, D. C.,




Experiments have proved that when
steady oconditions exist, the
velocity decreases linearly from
the moving plate to the resting

plate., The ghear 3V ie constant.
4z

The consengus is that the motion

develops as a result of internal

A

friction which arises from the
dlisturbance of fluid molecules,
In order to keep the lower Figurs 15
plate at rest, it 1s necessary %o spply a force equal and
opposite to the force applied to produce motion in the top
plate. 1% might be added that no lost motion is assumed
between the plates and the fluild in direct contact with them,
It 1s ressonably assumed, from experiments, that a force -%,
which e proportional to velocity ¥ of the upper plate and
inversely proportional to the distance gz, must be applied on
a unit area of the resting plate.5 Thus the viscous or shear-
ing stress

«t+-3v at the bottom plate
oz

end  TA¥ at the top plate,
oz

5 Bernhard Haurwitz, Dynamic Meteorology (New York:
McGraw-Hill Book Company, ino., 19417, p. 188,
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8imilarly, each horizontal infinitesimal fluild layer
between the two plates can be shown to have the sgame ‘shear
To arrive at an squation, a proportionality factor must be

introduced., The symbol & 1s used and

et 13
This equation is "Newton's formula® for the gtress. w is
called the molecular viscoslty which is variable from a
physical and temperature standpoint, and it is a pure
number.6 The viscoslity values for alr in the meter, ton,

-8

gecond unit are: 1.7 x 10~° at 0° centigrade aend 2.2 x 10~8

at 100° eentigrade.7

Moleculsr Internal Friction Term. Observations of
wind direction and velocity with altitude have clearly
demonsirated that a shear exist, thus in the case of
horizontal motion with uniform veloclity at each level
the frioctional force can be related to the shearing streas.
Ploture an infinitesimal cube of unit cross seotion and
‘height dz. The stress exerted on the bottom face is © and
the drag on the upper face 13'?-h(%§) dz. The difference

between the two gives the force exerted on the element of

6 Holmbhoe, op. cit., p. 236.
7 Ibid., p. 238.
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volume dv = 4z, Then (g_'_é:) is the frictional force per
- _

unit volume, For unit mass,

T, 2«9t sinco xa 1.
m <3 s =

Thls equation is derived undet the considerations
that the horizontal varlatibns of velocity components or
horizontal shears are neguble.8

Application of thies result to our horizontal equations
of motion gives

av
LR S A 1%.3]

avy .y
=T P e gk (o).

It can be added that calculations of this source of
friction yields results that are too small for what is

aotually observed.

Molecular and Eddy Viscosity. The equation that
Newton developed for the stress

K3 ::;rgg

wvhere p, the viscosity, wae presented in a new form by
Maxwell from & theoretical approach to molecular sasotion of

gag under gimilar considerations outlined in the gection

8 Ibid., pr. 239.
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on viscous stress, He found

=Apol
y 4 3P

whers © 1s the density of gas, 1 is the mean free path ofa
molecule, ¢ 1a the mean heat gpeed due to internal heat
energy.9

An analegous formula was developed when it was
gpparent that the above type of friction would oreate
forces only a few meters in depth. The study of fluid
motion subjected to mild disruption showed that small eddies
appeared downstream for short distances beyond points of
disturbance, From this transfer of momentum from layer to
layer which is called eddy stress, a formula for stress was
presented with the use of a new viscosity term o'

' ~” o= pwl.

To get the expression for eddy stress, it is assumed
that the parcels of fluid which are affected by the eddles
move an average distence 1. It should be noted that this
hypothesis has its limitations in that it assumes mixing to
be a discontinuous process.m Also, as the parcels are
displaced from z to z 4 dz, there arlse- components of the
eddy veloocity which are perpendicular to the constant flow V.
This 1s called w, Thus, the eddy stress can be written

Tsowl iy

9 ibid., p. 237.

10 Bernhard Haurwitz, Dynamic Meteorology (New York:
McGraw-H111 Book Company, Inc., 19417, p. 195.
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After due oconsiderstions, the sbove equation can be

called seml-.empirical.
V. WIRD VARIATION FROM SURFACE TO GRADIENT LEVEL

¥, F. Ekman golved the problem of the turning of
ocean currents in the surface layers of the ocean in 1902.11
He developed the *Ekman spiral® or logarithmic spiral of
the currents, and analogous to this result, meteorologlasts
developed the solutlon of the corresponding problem of wind
deviation,

Egsentlally, the probleg wag attacked by assuming
that horizontal pressure force has the same direction and
megnitude for all levels. Thus the geostrophic wind 1s
constant in magnitude and direction, As stated before, the
- level at which the wind is in fair agreement with our equa-
tions of motion 1s approximately at the five hundred = 'meter
level, thus the assumptions are not too gréat. The viscosity
and specific volume are constant with helght.

Using Newton's formula

(1) % = paY
iz

and the frietional force per unit mass

(2) 1, =« -}E 32w, x V.
Recalling ¥ = ?8*- v

11 Ibid., p. 207.
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%{_3 ;_1_;.', (since Vg 18 constant)
(3) 3% _ 3%
Szz azz

Thus equation (2) can be written

(&) ﬂd%z-:-:': =%, x ¥

The right side of this equation is

T 7 k
210 Wy Vgl = -V.y \18 T 4+ Wy v.x .3 -U, vx k,
vy "y 0

since v' is considered in the horizontsl plane, The com-

ponents in the x,y plane are then

(6) can be multiplied by i and added to (5) with the result

"h“’ %;2 (vig+iv'y) = .é".‘.';_z!-!.!..?. (av'y - vy),

2 ;
- .g-;-z (v'y +1vy) = zmz(-v'x - iv'y),

elnoce 12= -1 and Bz_-; ¥ sin®©
<y,

2
end (7) ..:_;z (v'y + ivty) = Zle(v'x-l- 11',)-

£ is the only independent variable, thus (7) takes

the form

2 ., ' )
a_%z (Y x 4+ 1v'y) -2w2("x + 1'.1) = 0.
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The final form ¢f this linear differential equation is
2
4 v!

oz -a+0?B2vi=o

when 21 = (1 + 1)2 and v' = v'y 4+ 17',

The solution of this equation can be obtained by use

of differential operator D = 4 procedurs,
ds

(02 - (1 +1)2 8% v = 0.
D =+(1 +1) B.

Thus v =o,efl+ 1)Be  ,  -(1+ 1)Bz,

"3
After due considerations of the assumptions and
restrictions, the following definite solutions:
(1) v = v} e"B",
(2) e:*B"

are acquired for the anemometer 1evesll..l

2 This solution is
known, as stated before, as the "ZXman spiral®, Note Figure 16.

+ 7

- z>
— T~ F 8
- ~

Figure 16

12 Idid., p. 244,



CHAPTER IV
THE CURL OF THE VECTOR EQUATIONS OF MOTION

This chapter is concerned with a mathematical ine
gpection of vector terms encountered in the development of

the equations of motion from the standpoint of curl,
I. VELOCITY EQUATION

The velocity equation in vector form 1s
(1) ¥ =7, +# (v xT), from Chapter I.
Curl. The curl of the velooity equatien i1s defined
(2) 9xVv=9xv,+9x (WxT).
- Consideration of each term eeparately, ylelds for the

first term on the left

17 k
y
l“"“‘aa--—i'" Wy o W\ = (3Vy _ -
R M R R S RN B AR

Obviously the first term on the right is

Vx'r:(3 )1*'(‘;&-'3—1‘)1"'(-—2!-315)):.
The last term on the right of (2)
Vx(WxT)=(F - 9)W-TFT (VW) *W(P:T) - (V- V)T,
The first term on the right
r-7)w=o0,
since ¥ is constant in megnitude snd direction.
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The second term

et (V* W)= -7 ;vx W T“)

To simplify, let x be orlented along the easterly direction
and oongider only horisontal flow, then
=T [3¥
(5%
Fx1 5T

The third term on the right

V(7T = (3 4.%14..}%);:311

and -(—V)rw_;wgrvﬁ
x 4-,3_’.4-53‘

wi

"

<
»

Tvy 1T+ vy T+ v,
thus w (V- T) = (W - 9)F = 2w,
Now adding the results after restricting x to the easterly
direction and considering horizontal flow only,

R s i )

Dotting with k

(3) (%'% ‘gih(‘"' -3_'_1:5)4-2‘:3

sinchw-k=2vz, Xk-T=20, X-J= o0,

This equation ia a result gained from conslderation

of motion viewed from the sbeolute frame,
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Yorticity. "The limit of the ratio of the ciroculation
dc around an infinitesimal element to the area dA of thet

element 1s called vortiolty.'l

§=4¢ -.%;I.— bvx)

In the equation (3) of the last section the result

would be
$a28, + 2v 8100,

To acquire the vorticity term in the ¢, n, k systenm,
conslder two parallel curving streamlines at a‘distance dn
apart. Let two normals extend from the outer gtreamline to
the center of curvature of the outer streamline. Note

Figure 17.

Figure 17
Circuletion around thie horizontal area in a counterclockwise

direction ylelds

1 Jorgen Holmboe, Dynamic Meteorology (New York: John
Wiley and Sons, Inc., 1945), p. 320.
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do = vrgde - (v 4 3@1 dn) (r, - dn) de,
n
{4) 46 = (¥ _3v .1 Jv
(F, Tﬁ'"r,%ﬁ dn) red dn,
dividing by dA = rgdedn
2

S dA  r, In,

after considering the third term in (4) which approaches zero.

Vorticity and Horlzontal Circuler Motion. In the

chapter on horizontal motion the following component equations
in the ¢, n, k system were presgentesd:

(1) .Q!. - -« 2D
at Js’

-2_-
(3) == "'}%+2ﬂ, vy 8.

In the following analysis, motion in a plane and
tangential to the lsobar will 'be considered, The streamlines
and isobars are assumed to coincide. Thus equation (2) will
be used in conJunctsiori with the vorticity equation

$= To n

Solving for ry r

e =

Y
S+l

51

Substituting in (2) v A4 3 .
g (S+ .‘ia.)-.- -‘T% 2wgv,

2 Ibia., p. 322,
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Solving for $

The term 2w, has a maximum value at the pole and its
value is

2x7.292 x 1079 x 1 = 1.4584 x 10~% radians per seo,
Thies term being so small, 1% can be deleted, thus

§=-ix - !f%%;

en Vv
¥hich gives a relationship for vorticity that is easily
calculable from data existing on weather maps. The usefulness
of thls equation is not established yet, but its relatlonship

to tornado or tornadic winds may bear fruit.
II. CURL OF ACCELERATION EQUATION

The acceleration equation in vector form is
as =b+0+8,
but writing it in the form

av. R —
ST -2vx¥-vQ

it can be handled easler. The curl is then

) vx%%:-“'pr- 2x(wx¥)-x .

The right side of the equation may be analyzed by

considering each term separately,



61
First term on the right

-¥XxXVp = -«1 17k
TN ((
4x T’_-‘ﬁ- )yéz éyéz
3p dp 3
221
Jz)x Jxéz
(o - I iz] =0,
Ixdy  Ixdy
provided p has a continuous first partial derivative.
Similarly vVvx Y@ =0,

The seoond term
(2) 2fox Fx V)] = 2[F 9 =-F(¥: V) +W(v- ¥
- (¥ -9)5).
Consldering each term on the right separately

=2(V « V)W = v, )w +Vy )_1 +Vs :" o, ('; 18 constant)

v (Vew) =2v (yw W v
- (52 ¥ 3,

since vy = w c08@, ¥y = 0, v, = ¥ 8in® vwhen x points to east,

-2w (V.7¥)= -2vw () ‘a'S'! é;'!‘)
L

and 26")?: 2(wx§+w’§§+'z%z)
. z

- z(wx 3"y

-;; i+ ’3;.1-5“"3.);__-)



Adding the terms of the last two
~2w(Ve V)4 2(W +9)V 2 2wy gv

y - v - Wy —
x Py 3 I 51T

-2We [V »w
y X
-2v_ (Y Wel =
L
Gz 3pi=.
Congidering the term on the left of equation (1)
T 7
Vxdv.|d & Y Vg - ) Wyy =
e N R[S SHT
44

+(= 5% 3" 5% 3
‘T b 37 ._
'*(ax '75)
Restricting motion to a horizontal plane and the x axis pointed

' \Z v
G TR N ST (g ¢
7

ng-’-;-'-}'i'-r-’;%v,'j'-p "xi;ﬁf
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Dotting with k,

Wy o L\
-;e-:- ) :!y‘ = -2v (Tx.‘. \'x)+2vx TE"‘Z""‘"&'

v .
% (.Ll 'T%) ==2ug (T *¥)+ 2w ooae‘_; (v + Vy),

.;E(s) = -2w, (¥4 * ¥) since 2w c_oso.%g_ (v + vy) = 0.

The change in vorticity with time 18 equal to -2vw gine
times the divergence of flow, and the right hand silde of this
equation is the time rate of change of the absolute vorticity
as presented in Holmboe's Dynamlo Meteorology, page 324,

(This book 18 listed in the bibliography).
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