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ABSTRACT

A new uncoupling algorithm for system differential equa-
tions based on the matrix sign function is presented in this
paper. Special forms of system equations arising in many classes
of system optimization are investigated. The set of n differ-
ential equations formed by the states and costates are uncoupled
requiring only the integration of one matrix differential equa-
tions of the order n/2. 2mong the special forms considered are
the stiff state equations with constant coefficients for which
a numerical algorithm is presented. The algorithm groups the
system eigenvalues into separated subsets and generates complete-
ly uncoupled filter matrices. Several example solutions are de-
veloped using the new method to illustrate the outlined procedures

and the numerical accuracy.
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CHEAPTER I
INTRODUCTION

Considerable research has been carried out in the problem
areas of optimal linear guadratic control and optimal filtering
[2]. The two main theore*ical approaches to the solution of a
control optimization problem have been Bellman's maximum princi-
ple, which is based on thz principle of optimality, and Pontry-
agin's minimum principle, which is an extension of the classical
calculus of variations [3,7). The minimum principle was origi-
nally developed for continuous-time problems and recently has
been extended to discrete-time problems [32].

The application 2£ the minimum principle of Pontryagin
to the optimal control problem results in a numerical solution
of the "two-point boundary value problem,”’ The computational
procedure for solving the linear two-point boundary value pro-
blems has been the subject of many recent technical reports. The
most common technigue for the solution of linear optimal control
developed to date deals with the algebraic Riccati equation gen-
erated from a canonical set of system equations [2Q,23].

In addition, thz anpearance of Riccati equations in the
optimal linear filter with Caussian randomness has been report-
ed in many papers. The solution matrix for the error covariance
Riccati equation governs all the behévior and contains the nec-
essary information for characterizing the optimal filter [9,21,
29,30,391.

The theorem of duality has proved that the error
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covariance equation in optimal estimation is closely related to the
Riccati equation for an optimal gain in the linear quadratic op-
timal control [19]. The integration of Riccati equations instead
of the basic form of the state transition approach has been
favored because of the improved stability properties [15,31,34,
38}. The two most widely-used technigques for solving the Riccati
equation are the direct numerical integration and the automatic
synthesis program (ASP) matrix integration procedure [22]. Sev-
eral papers have shown the matrix Riccati equation from an alge-
braic point of view and determined the asymptotic or steady-state
solution to the equation [27,28,33]. The results are applied
to the spectral factorization of a class of matrices arising in
filtering theory and network synthesis [1,28 ]. A few additional
papers have been devoted to the determination of the algebraic
expression for the solution of the matrix Riccati equation with-
out iterative procedures [44,45]. |

During the past year, the matrix sign function has been
introduced as an efficient tool in the computation of eigenvalues
and eigenvectors for a square matrix and in the asymptotic solu-~
tion of an algebraic Riccati equation [4,5,6]. A new uncoupling
algofithm for system differential equations based on the matrix
sign function is presented in this paper. Special forms of sys-
tem equations arising in many classes of system optimization
are investigated. Among the special forms considered are the
stiff state equations with constant coefficients for which a
numerical algorithm is presented. The purpose of this study is

twofold:
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1) To develop a new uncoupling algorithm to solve a set
of differential or difference equations appearing
in optimal control and filtering

2) To present a matrix filter algorithm for integration
of system eguations with constant coefficients whose

eigenvalues are wicdely spaced

b))

In the development of the second purpose of this study
(i.e., to present a new matrix filter algorithm for the integra-
tion of system equations with constant coefficients whose eigen-
values are widely spaced}, the eigenvalues of the considered ma-
trix are isolated into subsets in which each eigenvalue has the
same requisite characteristic, such as the same sign or the same
order of magnitude. For the systems with widely spaced eigen-
values, the conventional explicit integration methods may require
excessively small integration steps.

Numerical integration techniques suitable for the solu-
tion of stiff state eguaticons have appeared in the literature
over the past decade [40,43]. One stability concept that is
widely used in connection with stiff systems, called A-stability,
was introduced early by Dahlcuist [12], Lawson [25] has reported
on an example of the A-stable Runge Kutta method which is termed
the generalized Runge-XKutta process. Rosenbrook [37] and Calahan
[10] have described the implicit Runge-Kutta methods which are
similar in many respects <o Lawscon's and are implicitly analogous
to the conventional process.

Certaine [11] has considered the problem of devising a

predictor-corrector method for stiff ordinary differential equa-
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tions. Gear [17,18] devised a practical automatic integration
routine based on Adam's predictor-corrector algorithm. Recently,
Klopfensten, et al,[24] developed an algorithm, called PECE, |
consisting of a predictor-corrector associated with iterations
of a pseudo Newton-Raphson method.

Outside the realm of direct consideration in this study
is the work of Richards, et al, [36] who reported on an explicit
method for large stiff systems associated with the qualitative
picture of the solution paths (the direction of eigenvectors
corresponding to dominant eigenvalues). A more éystematic method,
a second-order exact multistep method, for large systems has
been developed by Fowler and %YWaten [161}.

Somewhat related to the study developed in this paper
is an important area often more limited by the "stiffness"
phenomenon in the numerical detarmination of the transient re-
sponse of electrical circuits [35,41,42]. Branin [8] has used
the eigenvalue method to compute the frequency and time response
of the circuit. More closely related to this study is the work
of Richard, et al, [35] who proposed a procedure for removing
the stiffness of the equations themselves during the course of
the solution. The state variable corresponding to the largest
pole has been discarded whenever the steady-state excitation of
a linear network reach the time constant to that pole. A similar
approach by Davison [13,14] is based on finding the dominant
poles and zeros of the system and then determining the time
solution in terms of those proles and zeros. Also interested in

this problem is Lee [26] who has reported a more practical pro-
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cedure to integrate such linear time-invariant system equations
by means of a conventional matrix filter theory. He proposed
that both a low-pass and a high-pass filter be constructed, and
that these filters then be used to uncouple the system equations
into two sets, a set with large eigenvalues and one with small
eigenvalues. The development herein is related to his work.

Numerical technigues in the optimization of a linear
quadratic system and the Kalman filter are reviewed in Chapter I
along with a brief historical background. In addition, certain
recent theoretical developments in the area of numerical integra-
tion techniques for stiff ordinary differential equations are
presented.

New algorithms are developed in Chapter II to uncouple
the particular forms of system matrices arising in many important
classes of optimal control and estimation problems. Examples
using the new algorithm in both time domains, continuous and
discrete, are presented. Particular emphasis is placed on de-
veloping a new technigque that groups the system eigenvalues into
separated subsets and generates completely uncoupled filter ma-
trices.

Chapter III includes an outline of existing methods for
the solution of a continuous-time linear regulator with quadratic
criteria. A new computational procedure is then developed using
the uncoupling algorithm. This new procedure employs a forward-
ing integration scheme and does not require the storage of feed-
back gains for a complete solution.

In Chapter IV, the uncoupling algorithm is extended to
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the discrete time case, and uncoupled discrete linear system equa-
tions are studied. The application of the algorithm to solve a
discrete regulator problem is shown, along with a discussion of
the variance equation for the Kalman filter. The derivation of
a non-recursive expression for a solution matrix of a discrete
Riccati equation is included.

Chapter V discusses an integration procedure for a linear
stiff equation derived from the numerical determination of the
transient response of electrical circuits. The merits of the
band-pass filter matrix are demonstrated.

Chapter VI concludes with remarks concerning the use of
the method discussed in this paper and suggestions for possible
further study.

Each chapter contains example solutions using the new
method to illustrate the outlined procedures and the numerical
accuracy. The mathematical concept of the matrix sign function
and the derivation of the steady—~state solution of the matrix

Riccati equation will be presented in the Appendices.



CHAPTER II

DEVELOPMZNT OF ALGORITHMS

2.1 Generation of the Transformation Matrix

A recently develoved similarity transformation matrix
[4,5] has been constructed from a matrix sign function, and,
as will be shown, reduces a matrix to a block diagonal form
under proper operations.

In the generation of the matrix, if A is of the order
n¥n and £ eigenvalues have positive real parts while m eigen-
values have negative real parts so that 2+m = N, then the ma-
trix sign function sign (Z) is obtained by

I 0 M M, .17+

Myp M) 2% 11 My»

sign (A) =

M 0 -I M M

21 22 - mxm 21 Moo
(2.1)

where Mij are partitions of the eigenvector matrix M and ngg
is an x4 identity matrix. The dimensions are then compatible

for matrix operations. A transformation matrix V of the order

nxn can now be defined as follows:
V = sign (A) + K A (2.2)

where K is the matrix of I in the diagonal form shown in (2.1).
The matrix K can be formed by computing the trace of sign A.
Substituting (2.1) into (2.2) and using simple matrix

operations,



-1
Toxg O Mypg Myot | M1 Mpy
+ (2.2a)
0 “Toxm) M21 Mool LMoy My,
which gives
- -1
My, My, Mip Myofl (M1 My
v + |
Mar Mool IMpr Mapli LMy My
-1
Mijp O My, My,
=2 (2.2b)
0 Mool M1 Moo

Matrix V in (2.2b) is the general form of the transformation ma-
trix and may be applied to any particular form of square matrix

to obtain a block diagonal form.

2.2 Block Diagonal Form of a General Square Matrix

A square matrix A is assumed where

Myp Myo) 97 O ][ My My A1 By,

A = = (2.3)

Mayy My 2l LMyp My Aoy By

In this development, the submatrices Jl and J2 are Jordan blocks
or are made up of the eigenvalues of A.
The matrix in (2.2b) is then used to perform a similarity

transformation on A to find a new matrix Ki as follows:



. -1 -1
Ay1My18117B1 250553 My Mo oRo My 18 1M M5
-1 -1
118711 !

RyoMynSoy

M A, M, .S +A,,M,,S

Moy 11511700 1R oM 0801 7R My 8 TR My 5 S 5y

. V] _ -1
AyMy18197B1 9150850 M M5 R, 1 My 181 )My M58, M558,
-1 -1 _
My My 3B My981 075181181 9M5 859 R My 181 51 My 585,
(2.43a)

In the above development, the submatrices of M—l, Sij are given

by

i o -1 -1
11 S12 1y 1 =My oMy oM 4 )

« -1
21 ©°22 (Mg 57My My M5 5)

_.l —
(Mg My oMy 5My4)

(M. .~M Mo M Yy~
227My1My 1My
(2.4b)

1

-1 1

In considering the (1.2) and (2.1) submatrices of (2.4a),

the (2.1) submatrix is zero, as shown below:

leMiiAllMll(xll'ﬁlegémzlj_1’M21M1iA12M22(Mlz’MllMgiMzz)_l
= ByyMyg (g =¥ 50, 0) TR M O My MM ) T

= My HITA) #, MY JA My MY Ry Ay My M)

. (I—Mle;;M2lM1§)_l = 0 (2.5)

since the bracketed term is the asymptotic solution to the Riccati
equation. The (1.2) submatrix is also zero since the bracketed
term in (2.5a) below is an asymptotic solution to the matrix

Riccati equation. (see Avppendix)
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1, -1 -1

_.1 —
Myq) 12Mo (Myo=M, My 1My 5)

AyqMyy (Mg =My oMy o

“la M -1

1
= My oMyoRy My (M) =My M5

M)

-1 ~ -1 -1
M) oMo o, oMy o (M) 5 =My My 1My o)

+

-1 -1 -1 -1
LT M_SAL, M, M

= (a 127 My My 5B My oMy 5 My My 5B, 5)

-1 -1,-1 _
(I—MZlMllMlZMZZ) =0 (2.5a)

Rearranging these terms and using the definition of Jl
and J, (2.3), it can be shown that the submatrices along the

diagonal are as given below:

-1 -1 -1

block (1.1) = (M11‘M12M21M21)J1(Mll—M12M22M21) (2.5b)
block (2.2) (M. .~M MoIM. g (M., ,—M Mo M )'l (2.5c)
. 22 72111127 227 01 1112 .
The matrix Al is then of the form
K 0 (4, . -M M-I YT, (M, . =M MM )"l 0
_ 11 117122221/ 1 Y 11 T 12722721
A = =
1 = -1 -1 -1
0 Ay 0 (Myo=My My My o) Ty (My)-My My 7N, )
(2.6)

which breaks A into submatrices of a block diagonal lower order
so that the eigenvalues of Kl are the same as those of A.
On the other hand, it can be shown that the similarity

transformation Vﬂv_l gives a different block diagonal form.

-1
Myt

(2.7)
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From Equation (2.3),

-1
. M, O g, 0 M7 O
vav 't = N
0 Mool 0 dy 0 M55
-1
Miq9iM; O
= -1 (2.7a)
0 M) T Mo

Thus, either v iav or vEvTt may be used for the block

diagonalization of A.

2.3 Continuous Linear Systers

As will be discussed in Chapter III,a solution is required
for a two-point boundary-value problem. This problem is encoun-

tered in the optimization of linear control with a quadratic per-

estimation of a continuous Xalman filter. In both cases, a sys-
tem matrix is formed in a vartitioned square matrix given by

(2.8).

A1y By
Hop = o | (2.8)
21 B2

The elements of Aij are the coefficient matrices of the system

equations and have these vproperties in common: All = =R,y ¢

T T . . .
A12 = A12 , and A21 = AZl . The matrix HCR is of the order thus,

the submatrices are of the order n/2 x n/2.
The transformation matrix V may be written by the sub-

stitution of (2.4b) into (2.2b) as follows:
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vV =2 (2.9)

_ -1 _ -1 _ _ -1
where Tl = M21Mll’ T2 = M12M22 and S = (I TZTl) .

The first column of (2.9) is postmultiplied by s7L to
construct a new transformation matrix. The transformation matrix

V for the uncoupling of continuous systems is developed as fol-

lows:

V=2 (2.9a)

) —ST2
=—1 1
v = -2- (2.9b)
Tl -T
V1 is the desired transformation matrix for the block
diagonalization process of the system matrix given by (2.8). 1If
a similarity transformation is performed on Hor by V, then
S -ST A A I =T ST
_ 1 _ 2 11 12 2
=V "H,.V =
CR CR ‘ T
Tl -I AZl A22 T1 S
S (g 1=TyRy thy T THRyTy)
TyR117Bp T AT 7By Ty
~S(An T =T A, T +A, ~T. A, . }S"
1172 272172 712 T27°22
T
(—T1A11T2+A21T2 T1A12+A22)S (2.10)

since Tl and T, are the asymptotic solutions to the matrix Riccati
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equations, the (1.2) arnd (2.1) subblocks are zero. The details

~

on asymptotic solutions of Riccatli equations will be discussed

in Chapters III and IV.

HCR now becomes an uncoupled form

_ ey 0 7]
i (2.10a)
CR
o )

and taking the transpose of subblock Hao yields

™ m fTI
HY = s(-1.Ta. o Tap Ta Ton To Tia Ty

2 By1 Ty Ty Ay TR, Ty A, (2.10b)

. . _ T _ T _ T e T
In considering that All = A22 r A12 = Al2 ’ A21 = A21 ' Tl = Ll

and T2 = T2T, a relation is obtained between submatrices H

so that H

Cl

and H = -chT. This particular form of H

c1 cr P~

pears in the solution of wvarious optimal controls and estimation

Cc2

problems.

A éonsiderable reduction in computational efforts may be.
obtained by the use of the new transformation matrix given by
(2.9a), since the resulting submatrices are of the order n/2 x n/2
rather than n X n. The computational procedures of an uncoupling
algorithm for a continuvous linear system are summarized in the

following steps:

a) Obtain the state and costate differential equations

and construct HCR'

b) Compute the sign function matrix of Hor and construct

the transformation matrices V and V in (2.9) and

(2.9a).
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c) Apply a similarity transformation to the system ma-

trix HCR by V.

2.4 Discrete Linear Systems

The canonical difference equations obtained for the op-
timization of linear discrete systems can be interpreted as
either forward or backward integration schemes. As will be shown

in Chapter IV, the corresponding system matrices for both cases

are
¢+BrR™ 18T Tg —BR_lBT¢—T
HDR(forward) = o o (2.11)
-6 "0 ¢
and
o1 37 lpp~1pT
HDR(backward) = (2.11a)

0s™t ¢T+0s 1R 1BT

where Hor denotes the system matrix of a discrete regulator.

The dual nature of optimal estimation problems and opti-
mal regulator problems provides equivalent relations between co-
efficient matrices of both systems. The system matrix for the
forward canonical equations for the optimal filter will have
the following general form:

6~ o"THTR 1
= (2.11b)

BoB 6" T ¢+BoRTe tuTR 1

T

HDF(forward)

The sign algorithm is useful for computing the block

diagonalization form of the discrete forms. Since the sign al-
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gorithm separates the eigenvalues by the sign of the real parts,
the discrete canonical matrix nmust be mapped into the continuous
domain. The bilinear transformation known in sampled data theory

may be considered as

_ 1+s
Z = J-q (2.12)
where w is a complex variable; that is, 8 = ocrjw.

The transformaticn in (2.12) maps the interior of the
unit circle in the Z-plane onto the left half of the w-plane.
Similarly, the bilinear transformation given by (2.12a) also

maps the inside of the Z-rvlane unit circle into the left half

of the w-plane.

1
-1

i
+

A

(2.12a)

Il

99}

Either transformation will convert the original characteristic
equation in 7 into a guotient of the polynomial in S of the same
order. Therefore, the domain transformation can be interpreted
in terms of system eigenvalues in both planes.

Using either (2.12) or (2.12a},

_ _ -1
AC = (AD I)(AD+I) (2.13)

where AD and AC denote the Jordan forms of the system matrix in
the discrete and complex planes, respectively. 1In solving (2.13)

for AD' the following is obtained:

_ -1
AL = (I—AC)

.
D (I+2

C) (2.13a)
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It has been shown that the eigenvalues of H and H

DR DF
given by (2.10) through (2.10a) occur in reciprocal pairs so that
for an eigenvalue Xi’ there exists an eigenvalue Aj = %— [45].

i

In other words, one half of the eigenvalues of the discrete sys-
tem matrix lies inside the unit circle in discrete domain, while

the other half lies outside. Hence, AD can be written in two

diagonal blocks as

A 0
AL = (2.14)

-1
0 ADl

Substituting (2.14) into (2.13) yields

ADl—I 0 !‘AD1+I 0
A — j (2.15)
C -1 -1
0 A - ?_o Ap7+T
which is
A 0 (h =Ty (A +1) "%
cl D1 D1
0 AC2 0 —(ADl—I)(ADl+I)
(2.15a)

From (2.15a), it can be concluded that the eigenvalues of a dis-

crete system matrix are transformed in such a manner that

Aoy = =4oy-

If M is the eigenvector matrix of the discrete system ma-
trix and both sides of (2.13a) are multiplied by M and M_l,

_ S R | -
HDR = MADM = M(I AC) (I+AC)M

1 (2.16)

Then solving (2.16) for the term Hop = MACM 1 gives
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— = —_ oy [} _l -7 -
Hop = MAM & = (H+I) " (Hpp-I) (2.17)

where HCR denotes a new system matrix transformed into the com~

plex plane whose eigenvalues are symmetric about the imaginary
axis.

The matrix sign function for H is defined by

CR
M M I 0] M M. 71
11 12 f 11 12
sign HCR = ! (2.18)
Myp ¥pp )0 -T) [ My My,
and the transformation matrix V 1s obtained as follows:
I 0 " S —T‘,ZST
V = sign HCR + ! = 2 . (2.19)
0 -~-I: TlS -S

= -1 = L = - -1
where Tl = M21Mll' T2 = M12“22 and S = (I T2Tl) .

Again, an alterrazesd form of matrix V may be reconstruct-
ed by postmultiplying the first column of V by Sfl. The desir-

ed transformation matrix in the complex plane is

i
V=2 j (2.19a)
J

The uncoupling procedure for the new system after trans-
formation is straightforward, using the same algorithm developed

in previous sections. If géR is the block diagonalized form of

H and the subblocks are

CR'’

(2.20)



18

then H and H have the same dimensions since I and -I in (2.18)

cl Cc2
are in the same order. From (2.20) Hop in terms of ﬁéR is
. =va.v? (2.21)
CR CR .

Substituting (2.21) for (2.17) results in

-1 1

—_— _l — e ——
HDR = [T~V HCRV ] [I4+V HCRV ] (2.22)
from which
— - -] — HDl 0 . |
HDR =V HDRV =V . . v (2.22a)
D2
where
A = [I-F. 1 1[1+F.1
DR CR - UCR°
- ~1
(T Hcl) (I+HC1) 0
= 1 (2.22b)
0 (I—ch) (I+HC2)

The block diagonalization of the discrete system matrix is com-
pleted by applying a similarity transformation directly to Hypi

i.e.,

H =V "H.V ‘ (2.22¢)

The system matrix for the discrete optimal filter given
by (2.11la) is chosen to investigate the relation between sub-

blocks HD and HDZ' From (2.1la) and (2.19a), HDR becomes

1



H 0 s -s7.le~t ¢ lmr 1sT
_ o |Tm 2
. =% e _V = = _ L
DR DR 0 . e -1 e
D2 1
T
I -T,8
: T
T, -S

1,.-1 T

S(¢"1—T2Q¢' +4  "BR BT 1

T ~1__~1_T
1~T,¢ T{~T,0¢ "BR "B T,)

-1 -1, ,-1__-1.T T =1 _-1T
T{$TT-Q¢ +T, ¢  BR "B'T;-¢ T ~Q¢ ~BR BT,

-1 =1 -1, =1 T . T -1,..-1_T, .T
S(9 TT,~T 0% TT o+ TBR B ~T,¢ -T,0¢ "BR "B)S
(7,6 7, —gs I 7 27 1gr 1T T-0s " ter"1BT) 5T

1 2 2771
(2.23)

In the (1.2) and (2.1) subblocks of (2.23), the bracket-
ed term of the (1.2) submatrix is zero since T, is the asymptotic
solution to the Riccati equation whose system matrix can be re-
presented by

I~ s~1pr~ 15T
H. . = (2.24)

DR
0o~l 4 Lligs~lpr 15T

The (2.1) submatrix is also zero, and the system matrix is

1

oT+0e tBRTIBT Qo7

Hpyp = 4 otg 1 J (2.24a)
¢ "BR "B '

The same procedures as above are applied to Hgl to de-

R

termine the relation between the diagonal terms. The inverse ma-

trix of Hy in partitioned form is given as

R
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o+BrR 18T¢ o -Br71BT47T

-1
H = (2.25
DR —(b—TQ 4= )

Applying the similarity transformation to Hgi by V will result in

S =57, [¢+BR—1BT¢_TQ -Br™1BT [T —Tst
v lnolg = ‘

DR -T T

s(¢+BR"lBT¢'TQ+T2¢'TQ-BR"IBT¢'TT1—T2¢—TT1)

-1.7,-T

—lBTi—TQ+¢—TQ—TlBR BT TT -9

T, $+T,3R

1
me~l T, =T T o= dlnT, =T o =T, T
S($T,+BR "B70 QI +T,¢ "QT,-BR "B ¢ ~T,¢ ~)S

-1,.T -T ~T, T

o -T -1,T, ~T_
(T,3T,+T,BR "B 6 QT +¢ QT,-T;BR "B ¢ ~=¢ )S

(2.26)

The submatrices (1.2) arnd (2.1) of (2.26) also vanish for the
same reason as discussed previously.

In taking the irnwverse of both sides of (2.22a), the fol-

lowing is obtained:

(2.27)

Equating (2.26) and (2.27)} and taking the transpose of the (1.1)

and (2.2) subblocks yielcls

—T 1BR_1BT—T§¢—ng)ST

D1

-— ...'] m —_ —
H (6740 1sr TBT4Q2 ngT-T§¢
(2.28)

and
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- e, TP T -1 -1 7T T -1 -1 -1 T T -1

H 5 = S(=T,¢ Ty-T,06  "BR "B T7-T,Q0¢ ~+¢ "BR "B T+¢ )

(2.28a)

Since the asymptotic solutions to Riccati equations Ty and T,

are symmetric matrices, it can be determined from (2.23), (2.28),

and (2.28a) that

~-T

HDl = HD2 (2.29)
and

H . = H.T (2.29a)

D2 D1 *

It has been proven that the backward system matrix for a
discrete linear regulator can be reduced to subblocks which hold
the relations in (2.29) and (2.29a). The same procedure, when
applied to the matrices in (2.11} and (2.11b), will uncouple
the systems.

The algorithm for uncoupling the canonical equations for

the discrete system is summarized in the following four steps:

a) Obtain the state and costate difference equations
to construct HDR and HDF'

b) TUse the bilinear transformation in (2.17) to trans-
form the discrete system matrices into a complex
plane.

c) Obtain the transformation matrix in (2.19) by the
use of matrix sicn algorithm and then construct V
in (2.19a).

d) Apply a similarity transformation directly to the

discrete system matrices.
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2.5 Generation of a Filter Matrix

A technique is developed here to generate the matrix fil-
ters by means of the sign of a matrix discussed previously. The
conventional filter theory requires approximate values of the
eigenvalues, and, in most cases, the eigenvalues are restricted
to lie along one of the coordinate axes. [ 26 1.

In addition, the filters are not ideal, and even a weak coupling
may seriously disrupt numarical calculations, accumulating errors
if the filter matrices are not of sufficiently high order. 1In
the new algorithm, the eicenvalues of a matrix are isolated in-
to subsets in which each eigenvalue has similar characteristics,
such as the same sign or the same order of magnitude. The fil~-
ters constructed from the sign function are of infinite order,
and there is no interacticon between the eigenvalues even though
closely spaced eigenvalues are separated into adjacent filters.

If it is assumed that A is an n X n system matrix of
differential equations to be integrated and has the Jordan form
A = diag (Al,kz,...,kn) with a corresponding eigenvector matrix

M, the sign matrix of A is then given by
. -1
sign A = MKM
where

K = diag [sign(Real), sign (Rexz),...].

2.5.1 Filter Matrix for Eigenvalues with the Same Sign

In the case where Al = diag (Al,kz,...,ks), a block for

eigenvalues with positive real parts, and A2-= diag (Xs+l,...,kn)
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for negative real parts, the sicn of A is then given as

I 0
sXs -1

sign A = M M (2.30)

The eigenvalues with positive real parts can now be iso-
lated. The first step in the procedure is to add the identity

matrix to sign A which gives

S = sign A+I = 2M¥

M 2.31
D (2.31)

:yl

The next step is to multioly bv the matrix Sp to form A+, the

desired matrix,
A =%SA=%’-AS = M1 (2.32)

\ - s o . .
Since A must be the complement of A , the eigenvalues with nega-

tive real parts are then isolated by subtracting A+ from A.

A" =A-A" = S A =2S_ =M M (2.32)

where

S. = I-5_ = %(I—sign 2) (2.32a)

Thus, two fundamental filter natrices, Sp and SN’ have been gen-

erated which pass only positive and negative eigenvalues of A,

respectively.
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2.5.2 Filter Matrix for the Same Order of Magnitude

All eigenvalues of A may have negative real parts with
IReAl[<|ReA2|<...<]ReAn| and be as shown in Figure 2.1. All com-
plex eigenvalues are assumed to occur in conjugate pairs. It
may also be assumed the matrix A can be separated into subblocks

so that the corresponding subsets of eigenvalues, Al and A2,

where A, = diag (Aq,...,A;) and A, = diag (A ..,A) contain

1

eigenvalues of the same order of magnitude.

s+1”°

Since the trace of A is equal to the sum of the éigen-

values, the mean eigenvalues of any matrix A is given by

trace A = %
K

=
il
S

X (2.33)
1 KX

Ho~13

If L is assumed to be in the range of AS>L>A a simple

s+1’

shift of the origin of the eigenvalues space can be made so that

the subset Al lies in the positive domain and A2 in the negative

domain.
high pass —»le— low pass S— Imx
%
A
X ¥ % > % % ReA
An As+l L A Al 0
P S X
R Al ——— A2 —

Figure 2.1
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If L is as shown in Figure 2.1, a shift of the origin by

~LT will produce a new natrix AL = A-LI, and AL can be written
as
AL = MAM Y -LT = nIZ-LIIm T
— -
Al L
}‘2"‘_1 —l
= M M (2.34)
>\ "L
L n
The sign of AL will be of the form
Is%s 0 N
sign AL = M M (2.35)
0 T Tn-gxn-s

Either of the subblocks in (2.35) can be isolated by adding or
subtracting the identity matrix I of the order n X n.

Since ]Rexl|<lRek2§<...<|ReAn[, the subset A; represents
the eigenvalues with the smaller IReAll.

should be included in the low pass filter. The low pass filter,

This set of eigenvalues

S__, is then

Lp

S. = 5. = :[Itsign(A-LI)] = MU Mt (2.36) -

Lp 1° 2 Y 1 -
where

U1 = diag (Ull' ’Unl)’ and

{ 1 i=1, 'S
U —
il 6] i=s+l,...,n
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The trace of Sl will be an integer which is equal to the

number of eigenvalues in the subset Al. The product S;A or ASq

isolates the subset»Al so that
A=2AS, =M M (2.37)

where the trace of A lequals the trace of A 1

Since the high pass filter SHp is the complement of SL

r

P
S. =8, = I-S. = :[T-sign(A-LI)]
Hp 2 Ip 2
= MUZM"l (2.38)
where U 0= diag (U21,...,U2n), and
0 i=1,...,8
Usp =
1 i=1s+l,...,n
then A2 is isolated as
0 0 -1
A, = S, A= A5, =M ’ M (2.39)
2 2 2
0 A2

2.5.3 Band-pass Filter Matrix

A band-pass filter matrix is now derived for the set of
eigenvalues with intermediate magnitude. The case where Al =

diag (A .,Ar), A2 = diag (Ar+l,...,ks) and A3 = diag (AS

l’oo +l'

...,xn) is shown in Figure 2.2.

The generation of the high-pass matrix, S is analogous

hp

to the previous case. Shp is then
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- = Lr1ocy -
Shp = S3 = 2[1 sign (A-LI)]
-1
= MU,M (2.40)
where U3 = diag (Ul3,...,Un3) and
{ 0 i=1,...1r
U,, = 0 i=r+l,...,s
i3 1 i=3s5+l,...,n
The matrix with the isolated subset A3 becomes
0 0 0
Ay =S;A=AS; = |0 0 0 ML (2.41)
Lo o Ay
To form the low-pass filter matrix, trace A, should be

3

subtracted from trace A and the remainder should be divided by
the number of remaining sigenvalues for a second shift of the
origin

trace A - trace A3

L1 = —w T %race S, ' (2.42)

which is assumed to be ezual to L., on Figure 2.2.

1

- high pass -k band pass - low pass -+ ImA
% X
% % & % * X * R A
Xn x As+l L ls r+l Ll xr x Al 0
‘——~—-A3 Ly T Al —

Figure 2.2



and the sign of Ap

where

of eigenvalues in subset Al'

low:

Since

- = Loas
SLp = Sl = 2(51gn
_ -1

= MUlM
Ul = dlag(Ull,...
{l i=1
U,, = 0 i=
il 0 1=

Similar to SHp’

the trace of S

28

The new shifted matrix is then
A, = A-L.T = MAM *-L.T
L1 1 : 1
[ 271y 1
A7l 1
= M M (2.43)
| An—L 1
1 is found as shown in
Iy O .
sign Arq =M M (2.44)
0 -

the subset A, revresents the low-pass filter,

1 ¥

AL1+I)

(2.45)

’Unl)’ and

,;--,r
r+1,...,s
s+1,...,n

1 is equal to the number

The isolation of Al is given be-
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A = AS, = M 0 0 0 M (2.46)

The band-pass filter S, must be the complement of SLp

and SHp; that is,

Spp = T=S1p Sk

Then S is expressed as

Bp
5. = MU M T (2.47)
Bp 2 -
where
U2 dlag(Ulz,...,C 2), and
{0 i=13,...,r

U = 1 i=rr+tli,...,s

12 0 i = g+1,...,n

The eigenvalues in the subset L, can now be isolated directly by

forming A2 as

(2.48)

S
o Qo O
=

Any number of band-pass filiters can be generated by the origin
shifting procedure outlined for SHp and SLp'
The algorithm described above does not consider the imag-

inary part Wy of any complex eigenvalue. The imaginary parts

can be examined since knowledge of wy for such eigenvalues may
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be important for the integration of step sizes. This examination
can be accomplished by rotating the spectrum of any Ai'

To rotate the spectrum, A; can be multiplied by j in
which case the sign algorithm becomes

i+1 1

(sign 3a)**1 = Z(sign 38" + Z((sign 3A)T)” (2.49)
Since j is a scalar, (2.49) can be written as
(sign A)l+l = %(sign Ayt - %((sign A)l)~l (2.49a)

which is the desired form for the rotated spectrum. The imag-
inary parts of the eigenvalues have now been mapped into the
real domain and the real parts into the imaginary. The sign ma-
trix of the rotated matrix will be the identity matrix if all
imaginary parts of the eigenvalues are zero or are of the same
sign.

The magnitude of w, can be determined by a sl:ift of the

origin of the rotated matrix.

2.6 Examples

Two example problems are designed to illustrate the nu-
merical procedure and the proverties of uncoupled systems. Ex-—

amples for a matrix filter generation will be given in Chapter V.

2.6.1 Continuous System Matrix

The backward system matrix for a linear regulator was

obtained using the following coefficient matrices:

0.0 1.0 [0.0 2.0 0.0
A= B = | Q = and R = [1.0]
2.0 =1.0 [ 1.0 0.0 1.0



31

which give

0.0 =-2.0]-2.0 0.0

-1.0 1.0! 0.0 -1.0

— —_—_—_-_l____——
CR 0.0 0.0 0.0 1.0

0.0 =-2.01| 2.0 =-1.0

A transformation matrix is constructed from the sign function of

HCR as
1.0 0.2220-15! -1.556 -0.1988
G o | -0.2220-15 1.0 : -0.1988 ~-0.4798
-0.6786 -0.718% | -0.8012 ~ 0.4798
-0.7189 -1.2005 | 1.3572  -1.2811

The uncoupled system matrix is then formed by the similarity

transforms
1.3572 -0.5622 | 0.2617-15 -=0.3451-17
|

=1 = -0.2811 2.2005 i 0.1388-15 -0.1388-15

\Y4 HCRV T
-0.1388-15 0.1388-16: -1.35722 0.2811
-0.4302-15 -0.441-15 f 0.5622 -2.2005
HCl 0
0 Heo

The desired relationship has been established hetween submatrices

T
Hop = 7Hepe

2.6.2 Discrete System Matrix

The block diagonalization procedure for a discrete system
matrix is illustrated by a numerical example. The coefficient

matrices considered are



-1
¢ = 0
0

1
-1

0

which give a

- -6.0 5.0 0.01 4.0
-5.0 5.0 2.0 : 4.0
g = | 223 T4 0101720
1.0 -1.0 0.01]-1.0
0.0 0.0 0.0 0.0
- -0.5 0.5 0.0l o0.0
Now HDR is transformed to the complex
r1.8 -0.4
0.8 0.6
(HDR+I)~1(HDR—I)= 0.6 ~-0.8
-0.5 0.1249-15
0.4163-16 -0.4163-16
-0.5551~-16 0.4163-16
0.1388-15 0.1388~15
0.9853-16 0.8604-16
0.8119-16 0.7910-16
~0.8  -0.6
~0.6 0.8
-0.8 -0.6

A transformation

.0 0.0

.0 0.0

0 -2.0

.0 1.0 0.0
.0

.0 0.0

forward system matrix in

2.
2.
-1.

0
0 R =
0

~1.0 =-2.01
~1.0 -2.0
0.5 1.0
0.0 0.0
0.0 0.5
-0.5 0.0~

0.1631—16:

0.1388-17 4

*0.2776—17!

matrix is constructed as before

32

[1.0] and

the discrete domain

-1.8
~0.4
-0.8
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where the inverse 1is

1.0 0.1337-16  0.2255-16 |-1.0518 0.1942
0.1789-17 1.0 -0.1301-16 { 0.1942 ~-0.1295
g - 201728707 ~0.26002-17 1.0 | 92147 79-97n0701
-0.1476 0.2289-02  0.5948-01 | -1.8196 -0.3474-01
0.2289-02 =-0.1356-01 ~-0.1132-01 | -0.9733-02 -1.9967
- 0.5948-01 ~0.1132-01 —0.5832—01# -0.8895-01  0.1868-01
0.4147 7
~-0.9710-01
~0.5442
-0.9382-01 |
0.8424-02
-1.9425
A similarity transformation can be applied directly on Hor by V
T T = o1 1
PR 0 Eny
- 6.711%8 -5.0453 -0.3659 |
5.7118 -5.0453 -2.3659 l
_| -2.8559 4.5227 0.1829 {
0.1091-15 -0.1440-15 0.1663-16 |
-0.1530-15 0.1278-15 0.1723-16
~0.1847-15 0.1995~15 0.1524-17 |
0.4230-15 -0.6705-15 -0.5794-15 A
0.5783-15 -0.7389-15 -0.7072-15
_0.1656-15 0.4004-15 0.7638-16
0.2997  0.1751  0.3502 |
-0.2243-01 0.5608-02  -0.4888
0.3093 0.4227 -0.1547 -
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R Hyp O
DR 0 gl
D2
~ 0.2997 -0.2243-01 0.3093 |
0.1751 0.5608-02 0.4227 |
0.3052 -0.4888 ~-0.1547 l

-0.4944-16 0.1179-15 0.2547-15 T—

0.7383-16 -0.1061-15 -0.2536-15
— -0.3260-16 -0.1537-16 —0.6397—17!

-0.1462-14 -0.1565-14 0.7695-15 7
-0.7747-15 -0.7736-15 0.2183-15
0.1448-14 0.1450-14 -0.7729-15

6.7118 5.7118 -2.8559
~5.0453 -5.0453 4.5227
-0.3659 -2.3659 0.1829 —~

~-T

which results in the expected relation Hy, = Hpyoe

2.6.3 Filter Matrix

The A matrix to illustrate the filter matrix generation

was constructed from A = M./\.M_1 with

=
il

diag [-1200 -500 ~-1.5 -0.5]

and

M=

N N O
w N
w NN
w Ww w N

Three filter matrices were computed, a low pass which contained
A =-1.5, and -0.5, a band pass with A = -500 and a high pass

with A = =1200. The filter matrices are given below



and

LP

BP

W O W W

.1E-15
.2E-15

.18E-15

4 -4
2 -1
2 -1
6 -6
-2
4 -2
8 -4
12 ~6
-0.18E-15
3
6
6

35

0.1E-15
0.2E-15

-0.18E-15



CHAPTER III

SOLUTION OF THE UNCOUPLED CONTINUOUS SYSTEM

3.1 Linear Systems with Quadratic Criteria

The theory of the linear optimal regulator problem is
well known and documented [9,39]. The process is controlled by

the state equation
X(t) = A x(t) + BU(t) (3.1)
with the initial condition

X(to) = X (3.1a)

0

The desired system is hrought from an initial state XO
to a terminal state X(tf) using acceptable levels of control
U(t) and the state X(t) on the trajectory. One way to accom-
plish this is to minimize a cost functional. This functional
is made up of a positive definite quadratic form in the terminal
state, in addition to an intecgral of positive definite quadratic
forms in the state and the control as shown bhelow:
1 xT 1 (Pe o T ;
Jg(u) = jx (t)H x (tg) + 5 ft [X7(£)OX(t)+U" (t)RU(t)At

0 (3.2)

where the final time te is fixed, H and Q are real symmetric
positive semi-definite matrices, and R is a real symmetric posi-
tive definite matrix.

It is assumed that the state and controls are not bound-

ed and X(tf) is free. The problem is solved via the Pontryagin
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maximum principle ¢ r the EHamilton-Jacobi equation. Here, the

former method is used.

The Hamiltonian is formed by introducing the costate vec-

tor A(t) as

,._l

HIX(t),U(t) A(t),t] = 5 XT(t)QX(tI + % UT(t)RU(t)

[\

+ 2T (e)AX(E) + AT (t)BU (t) (3.3)

The necessary conditions Zor the optimality are

X(t) = AX(t) + BT (t) : (3.4)
M(E) = -OX(t) - Aty () (3.4a)
U(t) = -R IBTa (t) (3.4Db)

with the terminal condition

A(tf) = HX(tf) (3.4c¢)

Substituting (3.4b) for (3.4) and repeating (3.4a), the

following linear two-point boundary-value problem may be develop-

[i(t) x(tq
) = H | (3.5)
A(t) CR | (v

where HCR is the system matrix associlated with the continuous

ed:

system with a quadratic performance index with coefficient ma-

trices as follows:

A -BR T3~
HCR = ) o (3.5a)
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Since the problem is linear, and the differential equa-
tions are homogeneous, it is clear that both X(t) and A(t) are
proportional to Xge All existing solutions to this boundary
value problem are designed to obtain the linear relation between
the state and costate vectors, denoted by the feedback optimal

gain matrix.

3.1.1 Solution by a Transition Matrix

The solutions to (3.5) may have the form

X (tg) 01q (Epk)  ¢q5 ()] [x(t)

(3.6)
M (Eg) byq (Egt) 2o (EcE) | [ (D)

where ¢ij are n X n partitions of the transition matrix of (3.5).

Substituting (3.6) for the terminal condition (3.4c),

H¢ll(tft)x(t) + H$l2(tfﬁ)A(t) = ¢21(tf;)x(t) + ¢22(tf;)x(t)

The solution for A(t) may be written as

A (t)

p(t)X(t) (3.7a)
where

Pt) = [y, (tat) = Hi ,(Egt)] =1 [Hoy, (tot) =0, (tat)]

(3.7h)
3.1.2 Solution by the Riccati Equation

The idea of an alternative approach is contained in
(3.7a) and (3.7b). The value p(t) is determined directly by
integrating a matrix Riccati eguation derived in the following

procedures:
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Substituting (3.7a) for (3.4a) yields
PEYX(£) + p(E)X(t) = -QX(£) - ATA(E) (3.8)

Next, substituting X(t) from (3.1) into (3.8) and using (3.7a)

again,
[p(£)+p (£)A () +27T (£)p (£) -p (£)BRTBTp (£) +QIX (£) = 0
{3.8a)
Since X(t) # 0, (3.8a) recuires that
p(t) = -p(t)Aa - AT p(t) + p(t)BR™IBTp(t)-Q (3.8Db)

From the terminal conditior in (3.4c¢), it is evident that

p(tf) = H (3.8¢)

Since p(t) is an n X n symmetric matrix, it is necessary
to solve the n(n + 1)/2 first-order differential equations.
Many numerical technigues have been developed to solve the matrix
Riccati equation efficiently. In general, the integration is

started at t = tf and proceeds backward in time to t = t and

OI
p(t) is stored for the feedback law and optimum state. It is

then possible to determine l(to) from (3.7a) as follows:

A(to) = p(tO)X(tO) (3.9)

which may be regarded as the equivalent of the terminal boundary
condition in (3.4c) at an earlier time. An alternate method has
been derived to obtain the solution to (3.6) by forward inte-~

gration, since k(to) and X(to) are both known (15,31,34).
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3.1.3 The Hamilton-Jacobi-Bellman Equation

The Hamilton-Jacohi-Bellman equation can be used as a
means of solving the general form of the continuous linear reg-
ulator problem [23]. The Hamiltonian for the use of Hamilton-

Jacobi-Bellman equation is formed in this case by the following:

HIX(£),U(t) ,J,,t] = %XT(t)QX(t)+%UT(t)RU(t)+J§(X(t)¢)

+ [AX(t)+BU(t) (3.10)

A necessary condition for U(t} to minimize H is that

SH _ .
_B—U_ = 0; thus,

17T

U(t) = -R BT, (X (t)it) (3.11)

which, when substituted in (3.10), yields

1,Ty 1. Too—-1 T T
SXTOX-5J. BR B I, +IAX (3.12)

H(X,U,Jx,t) = X

Now the Hamilton~Jacobhi-Bellman eguation is

_ i, 1.7 _-1.7T T
0 = J, + 3X"0X - 5JyBR "B J, + J AX (3.13)

with the boundary condition

I(X(tg) tg) = 3X° () HX (t) (3.13a)

It is assumed that the minimum cost for the linear reg-
ulator problem is a quadratic function of the state and has the

form

JIK(E) &) = 2X (£)p (£)X (k) (3.14)

where p(t) is a real symmetric positive-definite matrix to be
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determined.
Substituting (3.16) in (3.13) and using the property of

symmetric matrix,

* -1.7 T

p(t) = -Q-p(£)BR "B p(t)-p(t)A-A"p(t) (3.15)
and the boundary condition obtained from (3.13a) and (3.14) is

p(tf) = H (3.15a)

In the derivation of the Riccati equation developed in
(3.8b) and (3.8c), the eguation (3.13) gives another interpre-
tation of the meaning of p(t); that is, %XT(t)p(t)X(t) is the

minimum value of the cost function starting at time t with state

vector X(t).

3.2 A Reduced Linear Ragqulator

The uncoupling alcorithn based on the matrix block diag-
onalization can be a powerful tool in solving a two-point boundary
value problem. By reducing the system order to be integrated,
the determination of the rissing initial condition will be:
faster and more accurate. An efficient method for the solution
of a linear regulator is studied in this section. This tech-
nigue can be extended easily to other optimal controls and esti-
mation problems with quadratic criteria since their system ma-
trices have a structure analogous to that of the linear regu-
lator.

The vectors y(t}) and wu(t) are defined by the relation
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X(t) \% v y (t)
[ J =[j 11 12} [ J (3.16)
A(t) Vop Voo Lu(t)
where the elements of vij are given by (2.9a).

Differentiating both sides of (3.16) and substituting

(3.5) for it,

X x] Vi V[ Y Vip Vo[ Y
- | = Heg = Hep = .
A A Vor VoplLw Var Voo L W

(3.17)
from which
‘ ~1
y (£) Vi1 Va2 Vip Vi) Y8
‘ = Hop (3.18)
wt) v21 V22 Vo1 Vyy w(t)

Using the result given by (2.10), the uncoupled system
equation for the linear regulator becomes

y(t) “Hey 0 ( y(t)

= (3.18a)
&(t) 0 *Hgl L n(t)

If ¥(t to) is the state transition matrix for the un-
1]
coupled system (5.18a), it follows that

Vyp(E &) 0 } FHCl 0 bpp(E k) O
T
0 Voq (t to)J L0 -Hgy 0 Voo (t £p)
(3.19)

where the partitions of w,wll,'and ¢22 are the state transition

matrices for the system eguations y(t) and w(t), respectively.
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The initial conditions for (3.19) are
Uyq(tgrty) = vy, (tystg) = 1 (3.19a)

A direct series expansion has been adopted to integrate

(3.19) and (3.19a) for an increment of time t.

= ! A+ t = 7 T —
Awll ull(t+ab, O) ekp(HclAt) I+HC1At
(HCl)zitz (HC1)3At3
+ 57 + 37 + ... (3.19b)

The following recursive eguations carry on the forward-

ing integration

Yip1 = Bby1¥; (3.19¢)

w (3.194d)

141 T B¥gouyg

and it can be seen from (3.18a) that the differential equation
w = —nguis the adjoint tc the system equation y = HclyQ
The importance of *this fact is that there exists a re-

lationship between the state transition matrices of the adjoint

system and the original system so that

t

(3.20)

~ =3

byy (B Eg) = 75 (

This relationship will reduce the computational effort so that
it is necessary to solve only one differential egquation, either
&(t) or w(t).

Another advantace of the adjoint system is that the

physically realizable solution of the adjoint system represents
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the physically unrealizable portion of the solution of the orig-
inal system.

Now the solution vectors y(t) and w(t) are given by

y(£) = ¥, (£t y(Ey) (3.21)
and
w(t) = (W], (8,800 e (ty) (3.21a)

The initial conditions y(to) and w(to) must be determined
to complete the formulation. Using the relationship between the
coupled and uncoupled solution vectors defined by (3.16), the

terminal condition in (3.4c) can be rewritten as

V21Y(tf) + szw(tf) = H[VllY(tf)+V12w(tf)] (3.22)

from which a new terminal condition is defined as

Y(tg) = ﬁm(tf) '(3.22a)

where

H = -(V,,-HV

21 ll) (3.22Db)

-1
(Vyp~HV,5)

H represents a terminal weighting matrix for the uncoupled sys-
tem.
Substituting Y(tf) and w(tf) in (3.21) and (3.2la) for

(3.22a) and solving for y(to) results in

y(to) = Sow(to) (3.23)
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where

1 1

S = [hyq Eek)1 h AV, Epte))” (3.23a)

The initial conditions for the uncoupled system are de-

termined from the given initial condition X Using (3.16)

00

again,

_ -1

and

_ _ s -1,-1
y(to) = Sow(to) = (Vll'Jl2SO ) XO (3.24a)
The desired solution for the original system equations
can then be reconstructed from the solution of the uncoupled sys-

tem

X (t) Vip Vig [ vyl O y (t4)
B T -1
A(t) Vyp Vyod L0 [y ll(t £o) w(t,)
(3.25)

The technique described offers several advantages over
conventional methods. The main advantage-is that there is no
need for any calculation of the feedback gain matrix, thus elim-
inating costly storage problems. Since the uncoupled system
equations are adjoint to each other, the 2n x 2n original coupled
system is transformed to an n X n subsystem without changing
any system characteristics.

The missing initial condition XO can be obtained from

(3.24) and (3.24a).
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AO = POXO (3.26)

where

Py = (Vy1S5+V,,) (vllsowlz)_l (3.26a)
It can be seen that Py is the initial condition in Riccati equa-
tions for the continuous optimal feedback gain of linear regu-
lators (3.8b) and is equivalent to the kickback eguation in the
matrix increment coefficient (MIC) algorithm developed earlier
[31,34].

Recalling that the solution matrix P(t) of the Riccati
equation is defined by X (t) = p(t)x(t), and using the relation

in (3.16), P(t),

P(t) =[V, ¥ (£)+V, 50 (£)] [V, Y(EHV o ()] -1 (3.27)

Substituting (3.21), (3.21a)/and (3.23) for (3.27), p(t) becomes

. : - -
P(t) = Vo0 1t £)Sy + Voot (E ,to)]

(3.27a)
- -1
[Vygu gt tg) Sy + Vyp0qq (£t

At t = tO’ the value P(to) is obtained. This value is equivalent
to PO in (3.26a). Equation (3.27a) is an algebraic expression
for the optimal feedback gain in the linear regulator. This
procedure can be ap%}ied to the estimation problem, and an alge-
braic solution for the covariance matrix can be obtained.

Since the reduced subblock HCl is assumed to contain

positive eigenvalues only, the inverse of its transition matrix
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is numerically stable and will vanish when the terminal time be~-
comes infinite. The situation in which the process is to be
controlled for an interval of infinite duration attracts special
attention in the performance evaluation of many types of linear
filtering, prediction, and optimum controls. In general, the
terminal weighting matrix H is assumed to be zero.

When the terminal time is infinite, the uncoupled sys-

tems have simpler solutions as follows:

Since SO = 0 as tpe
lim ~ y—L :
tf+“ w(to) = V12XO (3.283)
and
lim y(tO) = 0 (3.28a)
tf >0

Therefore, from (3.21) and (3.21a),

y(t) =0 (3.29)
and

w(e) = 197 (6 £)17H vI; xg (3.29a)

The steady state solutions for the original system be-
come

X(t) = vlz[wril(t ,to)]'l v'l'Jz“ X, (3.30)

_ T -1 -1
At) = sz[@ll(t to)] V12 XO (3.30a)
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The steady state solution for p(t) can be obtained either

from (3.27a) or (3.30) ard {(3.30a). Both cases result in

1im - -1 _ T Ty -1
chM‘,p(t) VooVis s (T,87)
B i &
=T, = M, M (3.31)

which is equivalent to the conventionai positive definite solu- .
tion of a matrix quadratic eguation [28,33]. In many practical
problems, the steady state solutions have been implemented with-
out significant performance degradation to compare system per-

formance using the time wvarving optimal gain.

“h

The algorithm for solving the constant coefficient linear

regulator problem can be summarized in the six steps below:

a) Obtain the state and costate equations to construct

HCR'

b) Use the sign algorithm to construct the transforma-
tion matrices V and V.
¢) Compute &ll&f.ﬁo)(or &22(tfx0) from (3.19b) and (3.19c).
d) Obtain a new terminal weighting matrix H as given
in (3.22b).
e) Compute SO from (3.232a).
f) Compute new initial condition vectors as specified
in (3.24) and (3.24a).
g) Reconstruct solution vectors for a coupled system

by (3.25).
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3.3 Examples

The algorithm has been used to solve numerous linear reg-
ulator problems. There is excellent agreement when results ob-
tained by using the algorithm are compared with results obtained
by using othexr computational procedures. Two examples will be
discussed. The numerical values given were obtained by using
the algorithm and by using a procedure for the EISPAK subroutine
package.

The state equations for the first example are as follows:

X(t) = Ax(t) + Bu(t)

-0.21053 -0.10526 =-0.0007378 0.0 0.0706 0.0 7
1.0 ~0.03537 -0.0001180 0.0 0.0004 0.0

A | 0.0 0.0 0.0 1.0 0.0 0.0
0.0 0.0 -605.16 ~4.92 0.0 0.0
0.0 0.0 0.0 0 0.0 1.0

L 0.0 0.0 0.0 0 ~3906.25 -12.5-

BT = [-7.211 -0.05232 0.0 1.0 0.0 =1.0]

Q = [I]6><6

R = 1.0

H = [0lguq

xg = [1.0 0.0 0.0 0.0 0.0 0.0]

The computational results are given below where Xl’Xz’
and u are given. The values from the EISPAK program are given
in the first column; the values from the algorithm are in the

second column.
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Numerical Results for Example 1
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9
X1 X2 u
t EISPAK algorithm EISPAK algorithm EISPAK algoritt
0.2 | 0.84040 | 0.84040 | 0.099001 | 0.099001 | -1.3221 ~1.3221
2.0 | 0.022247] 0.022247| 0.4430 0.4430 ~0.39998 | -0.3999¢
4.0 | -0.16908 | -0.16908 | 0.32909 | 0.32909 | ~0.021178 | —=0.02117
6.0 | -0.12993 | -0.12993 | 0.16242 | 0.16242 0.056753 0.0567¢
8.0 | ~0.069071| -0.069072| 0.058280 | 0.058280 | 0.038792 | 0.03884
10.0 | -0.040360] -0.041177| 0.0043283| 0.0043727| 0.6605-02| ~0.357C
A system in which A is 9 x 9 was selected as the second
example.
- 0 10 0 0 0 0 0 0
0 0 0.2165 -0.0356 0 ~0.0299 0 ~0.027 0
-0.0458 1 =-0.0133 0.0004 0 0.0006 0 0.0007 0
0 0o 0 0 1 0 0 0
A% 0 0 0 ~29.81 -0.0546 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 ~169 -0.13 0 0
0 0o 0 0 0 0 0 0 1
Lo 0 0 0 0 0 0 ~334.3 -0.187
BT = [0 -1.138 -0.0348 0 29.56 0 47.25 0 16.4]
Q = diagfo 0.05 107% 107% 107% 107% 1074
R =1
Xr = [-4.0 -3.0 -2.0 -1.0 1.0 2.0 3.0 4.0 5.0]

0
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The first two states and the control are given in Table 3.2.

Table 3.2

Numerical Results for Example 2

t EISPAKXlalgorithm EISPAK K algorithm EISPAK 5 algorithm
0.2 -4.4914] -4.4914 | -1.9499 -1.9499 -4.6531 -4.6531
2.0 -3.7688| -3.7688 1.1625 1.1625 -0.18305| -0.18305
4.0 ~-2.4121 | -2.4121 0.19929 0.19929 0.40611 0.40611
6.0 -2.3989 | -2.3989 | -0.14663 -0.14663 0.22003 0.29003
8.0 -2.6751| —-2.6751 | -0.12266 ~0.12266 0.10517 0.10517

10.0} -2.7900| =-2.7900 0.064273 0.064273 0.22-11 0.17-09

Both problems were run

on an IBYM 360 Model 44 in double precision.

The first problem required 77.1 seconds of execution time by the

new algorithm versus 88.8 seconds with EISPAK.

the algorithm was not optimized.

The program for



CZAPTER IV

SOLUTION OF THE UNCOUPLZD DISCRETE SYSTEMS

4.1 A Discrete Linear Recgulator

This section considers a linear constant coefficient dis~

crete system represented by

XK+l = ¢X\ + BUK (4.1)

with the initial condition vector

X(0) = Xgr ¥=0,1,2,...,N (4.1a)
where ¢ is the state transitior natrix and N is assumed to he a

fixed integer. The quadratic vsrformance criterion is

1 LT T T
_ 1 Y ¥ 103 2 .2

where it is assumed that the w=2ichting matrices Q and R are in-
dependent to stage K.

The Hamiltonian is Zormed by

T

_ LT 1 Toy .
H = 5 XKQX + 5 % ] ] (4.3)

K [¢XK+BU

X

When the discrete maximum principle is applied, the opti-

mal control is given by

u, = -R*

T
K B XK+1 (4.4)

where A, is the costate vecior which obeys the equation
K+1
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. _ T,
Ag = QX t 6 Xy (4.5)

The boundary condition for the unspecified terminal states

is given as

A, = HX (4.6)

Equations (4.1), (4.4}, and (4.5) represent a set of
linear difference equations for an open-loop control.

The system matrix of the discrete Riccati equation has
been introduced previously (Section 2.2). The matrix is formu-
lated from the canonical forward equations instead of the con-
ventional backward approach, but it will be shown in a later part
of this chapter that both structures of the system matrix pro-
duce equivalent feedback gain matrices at each stage.

The equation can be solved for kK+l in terms of AK since

the state transition matrix, 2, always has an inverse

A -7

K ). (4.7)

= 4T
41 T 70 Q% 0 Ty

Substituting (4.7) into (4.1), with the expression of
optimal control in (4.4), yields this equation for the state vec-

tor.

X (¢+BR"1BT¢”TQ)XK - sr7 18T T (4.7a)

K+1 K

Equations (4.7) and (4.7a) are the desired canonical
state and costate difference equations for the discrete linear
regulator. This set of coupled equations may be expressed in

the following compact form:
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HDR (4.8)

K+1 X

| SRS

1

A

>

where HDR represents the Iorward system matrix associated with

~

the coefficients of the discrets linear regulator so that

o+ 18T 779 -r7IBTy7T
"pr T, o (4.8a)
- Q ¢
4.2 The Riccatli Eguatison for Discrete Optimal Feedback Gain

Several alternative, bhut equivalent, recursive relations
have been derived to solve the set of discrete boundary value
problems in Section 4.1. 1In general, a closed loop solution Py

is assumed as

A, = P_X, (4.9)

Substituting (4.4) and (£.9) into (4.1) and (4.5) to eliminate

AK yields
-1 7
= - -3~ v

Rppp = 0Ky = BR 3Py ¥ (4.10)
and

P X, = OX,_ + &P, .X (4.10a)

KK K TOUEAITKYL '
By solving for XK+1 and eliminating it, the following is obtain-
ed:

T -1_7T -1
PrXy OXp + ¢ Py, [I+BR "B'P ] %% (4.11)

K+1 K
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from which

_ T -1.7T -1
PK =Q + ¢ PK+1[I+BR B PK+1] b (4.11a)
or equivalently
_ T, -1 -1.T,-1
P, = Q+ ) [PK+1+BR B7] ) (4.11b)

The terminal condition for PK is provided by (4.6) and (4.9) so

that

P, =H (4.12)

Equations (4.1la) and (4.11b) are developed in the well known
discrete matrix Riccati egquation associated with discrete optimal
controls.

Usually, the matrix Riccati eguation is solved recursive-
ly backward in time, starting K=N to K=0, and the feedback gain
matrix PK is stored at each stage. From (4.10), the recursive
equation for the closed-loop state vector is expressed in terms

of the prestored gain.

_ -1 -1
XK+l = (I+BR "B PK+l) XK (4.13)

The optimal control UK is then obtained as

_ -1_T,-T B
UK = -R "B ¢ [PK Q]xK (4.13a)

or in terms of PK+l

_ _omlmoo -1 -1.7,-1
U, = -R B [PK+1+BR B™]

4
X OX (4.13Db)
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4.3 The Discrete Kalman Filter

The developnent of the discrete filter model may be given

by the following set of first-order difference equations:

where
E(XO) = >_<0 (4.14a)
E(wg) = 0 (4.14Db)
E(X . =-X.) (X =X )T = P (4.14¢)
“A0 20 0 0 0 TRy
E(w.,08) = Q.. (4.14Q)
i3 “i] ° T
E(w.) (XX )T = 0 (4.14e)
R ¢ 0“0 '

Measurements ZK are made at stage K, and are related to

the state XK by

ZK = HXK + VK K=20,...,N (4.15)
where
E(Vy) = 0 (4.15a)
E(V.VY.) = R.. (4.15Db)
i3 "1 i
E(w,V%) = 0 (4.15¢)
i°3

= T
7 - = 4
E(X0 XO)VK 0 (4.154)
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It is assumed that the state transition matrix ¢, input
noise w, system noise Q, and observation noise R are independent
of stage X.

Numerous studies are available concerning least-square
curve fitting, variationzl techniques, and maximum likelihood
estimations to deal with the filtering problems. In cases where
~an additive input noise Syr o @s well as the output measurement
error VK exist, variable arproaches have resulted in the follow-
ing sets of estimation eguztions from either deterministic or
statistical considerations.

The optimum stats estinate X, satisfies
¥+l

X Xy + P E R'l(zK+l—H¢XK) (4.16)

r+1 = g K

and the equation for the covariance of the estimation error PK+l

is

Prpy = Mpyq - MK+1HT[HMK+1HT+R]~1 M, o (4.16a)
where M, 4 is defined by

M, = ¢pK¢T + Q7T (4.16b)
The initial conditions arse

X(KO) = XO (4.16c)
and P(KO) = P, (4.164)

As shown in (4.16a) and (4.16b), Py is independent of

the measurement ZK; thus, the covariance matrix can be precom-
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puted and stored to carry out the computation of the updated esti-
mate in (4.16) with the current measurement.

In the case where ,P,R,D, and H are all constant matrices,
the filtering process may reach a steady state in the sense that
M and PK become constant matrices, M and P, as K+, The two ma-

K

trix equations for deternining 1 and P are

-1 -1 T, -1.

P =M + H'R H (4.17)
T cpaeer Ty =4
oxr P =M - MH (R+HEME") 1 (4.17a)
T T
and M = ¢P¢p~ + I'QT (4.17b)

An algebraic norrecursive expression for PK is derived
in Section 4.4. The new technigue based on the uncoupling al-
gorithm developed in Section 2.2 provides the determination of
the transient solution at any varticular stage without accunu-
lating iteration from a civen starting value. Furthermore, the

steady-state solution is Irmediate and does not require the in-~

formation about the eigenvzlue and eigenvector of the system.

4.4 Reduced Discrete Zinear Systems

In Section 3.3, a linezr regqulator problem was solved
when the set of continuous systen equatibns was coupled. An
analogous techniqgue to the continuous case is developed for a
solution to a discrete linear regulator. An uncoupling algorithm

for canonical system matrices associated with the discrete opti-

ed in detail. An algebraic expression for the solution matrix

to a Riccati difference eguation is presented as a subsidiary
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of the procedure.
The coupled set of difference equations for the optimiza-

tion of the discrete linear regulator was derived in Section 4.2

X X
= H (4.18)

A K+1 A K

The uncoupling of (4.18) may be preceded by introducing a set of

new vectors YK and W by the relation

X Y Vll V12 Y

=T = (4.19)

My W-x Vor Voot tulg

where the transformation matrix V has the structure given hy
(2.19a). Substituting (4.19) for (4.18) and premultiplying both

sides by v gives

=V "H..V (4.20)

Wigs1

Using the result of the uncoupling algorithm developed
in Section 2.4, it follows that the uncoupled system equations
for the discrete linear regulator will be

Y HDl 0

b
| SN |

(4.20a)

-
K+1 0 HhyJ Bug

W

The solution vectors for (4.20a) are then obtained as
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Ve = 6 (Ky K, (4.21)

and

We = ¢22(K0,K)w0 : (4.21a)

The uncoupled system equations in (4.21) and (4.21la) adjoin each
other and have a set of properties which are directly analogous
to the properties listed Zor a continuous system in Section 3.3.

The transition matrices éll and ¢22 have the relation-

ship
0. (K. K) = [6oL(x,,®)1" (4.22)
11 ‘Ko 92 (£ ¥) ] 22
where
6. (K., K) = HN (4.22a)
P11 Ko b1 - 22
and
(K = (mohH® (4.22b)
990 (KgrK) = (Hp, .

In a development similar to the continuous case, the un-

YO and ng can be determined by the use

of (4.19) and the terminal condition given by (4.6).

known initial conditions

' = EIiv + 4.,
V21YN + szwN hl]llYN Vl2wN] (4.23)
Solving for YN yields
Y., = Hw (4.23a)
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where H is a final-value weichting matrix for the uncoupled sys-

tem and is provided by

—~ -1

H = [V, -HV (4.23Db)

Considering the solution vectors Yy and w, at final stage
£
N, a constant factor betwsen uncoupled initial conditions is de-

termined from (4.23a).

Yy = Sgug (4.24)
where

S, = B R T (4.24a)
Then YO and wy may be obtzined in terms of the given value X5

Wy (Vllso+v12)—— X (4.25)
and

YO = Somo (4.25a)

Since S0 can be czalculated so that the N powers of HB%
can be built up by sguaring H;% and squaring the results, etc.,

the new initial conditicns <o not cause computational difficul-
ties.
At each stage, ths desired solution vectors for the

coupled system can be reconstructed using the relation in (4.19).
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Vi1 Vi Hp1 0 Y,
-T. K
Mg LVyy Vool O (1) o
-{N~-K)=,..~N,T
Vit Viao| | ¥y H(Hp,) 0 W
-T. K
Va1 Va2 0 (Hpq) W
(1.26)

Since the eigenvalues of the submatrix H are located outside

D1
the unit circle and the elements of (4.26) have only negative

powers of H the expression in (4.26) will be stable numerically

D1’
throughout the whole stages.
For convenient reference, the necessary computational

procedures, similar to those previously outlined in Section 3.2,

are summarized in the following gteps:

a) Obtain the set of difference egquations in (4.1) and
(4.5) and construct the system matrix HDR’

b) Use the sign algorithm for a discrete system out-
lined in Section 2.4 to obtain the transformation
matrix V and V.

c) Compute Nth vower of subblock HDl where N is the
terminal time stage.

d) Obtain H given by (4.25b).

e) Compute S0 using (4.24a).

f) Compute initial conditions for uncoupled system.

g) Reconstruct the desired solution vectors XK and XK
by (4.26).
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4.5 An Algebraic Solution for a Discrete Riccati FEquation

It has been reported that an algebraic solution to the
discrete Riccati equation can be obtained by use of the eigen-
values and eigenvectors of the system matrix [45]. A non-recur-
sive expression for a solution matrix Py made it possible to de-
termine the steady-state solution of the Riccatli equation as well
as the transient solution at any particular time stage without
iteration. The method reported, although conceptually simple,
is not suitable for this study because of the complexity of
finding the associated eigenvalues and eigenvectors.

In this section, a new procedure is presented which does
not require either the iterational process or the burden of find-
ing eigenvalues and eigenvectors. An algebraic expression for a
feedback gain matrix of a discrete linear regulator is developed

from the results described in Section 4.3. In (4.9) and (4.19),

vV, Y +V

21 ¥tV Uy = Pp(V

11 7%V 120K (4.27)

Using the solution vectors in (4.21) and (4.2la), a non-recursive

expression is derived for PK as follows:

-1

P = (V31975150 + Vopd00) (Vi1¢11Sg + Vy5955) (4.28)
From (2.28), it can be shown that
lim P
K -1 ~1 -1
N, K> = VY = T = (4.29)
R<N 22 12 2 22 12

since
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lim 54~ 0
N, K> (4.29a)

K<N
The result of (4.29) is a steady-state solution conéisting of
eigenvectors of the system matrix corresponding to these eigen-
values which lie inside the unit circle.

A similar approach provides a nonrecursive solution for
an error covariance matrix in the discrete Kalman filter. Since
the initially known error covariance matrix in (4.16d4) is dual
to the terminal condition of the linear regulator given by
(3.8c), the relation between the uncoupled initial vector is
also dual in integration time.

From (4.9) and (4.19),

Vo Yy + v22w0 = PylVy ¥, vlsz] (4.30)

Assuming that

0y = S4Y, (4.30a)
then

Sy = —[v22-P0v12]'l[vzl—Povll] (4.30b)

The linear relation between solution vectors Y., and o

X K
can be written
We = SKYK (4.31)
where
sy = () ® sHCE (4.31a)
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Substituting (4.19) and (4.31) for (4.9) yields

_ . -1
PK = [V21+V22SK][¥11+V128K] (4.32)
Equations (4.30b), (4.31la), and (4.32) constitute the
desired nonrecursive algebraic solution for the error covariance
matrix P_,. At any particular X, P

K
-1
DL*

g can be obhtained only by com-
puting X powers of H

The steady-state solution P is obtained by letting K»w,

_ lim _ e -1
Py = xow Px = VoiViy = T = My M (4.33)

since Hyy corresponds to the eigenvalues outside the unit circle

and SK contains only necztive powers of HDl’

_ lim _ lim -7 K -K _
Se = Xaew Sy = xon (H])T SgHT =0 (4.33a)

The steady-state soluticn derived in (4.33) is analogous to that

of the continuous Riccatil ecuation reported earlier [27,33].

4.6 Examples
4.6.1 Uncoupling Procecdure for the Solution of a Discrete System

The uncoupled discrete obtained from Section 2.6.2 is
solved completely by the outlined procedure in Section 4.4. Ini-
tial conditions and the terminal welighting matrix of the original

problem are given as
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The initial vectors for the reduced system are calculated as

]
Il

[-0.3722-17 0.4568-17 0.3241—17]T

3.1803 -4.0186]17

=
i

and 15.508

0 [

The desired optimal states and bptimal controls for the coupled

system are tabulated in Table 4.1.

Table 4.1

Optimal States and Controls for a Discrete Linear Regulator

K X1 *2x X3K Ux
1 1.3904 -0.600%6 -3.6952 1.6952
2 -4.7513 1.2487 1.8517 ~3.0709
3 -0.8559 0.1920 0.5497 1.9477
4 0.1830 ~-0.6054~01 -0.1354 0.51¢5
5 ~0.6955-01 0.1827-01 0.5196-02 -0.1263
10 ~0.1939-03 0.4172-04 0.1495-03 0.6260-03
5 0.3686-06 -0.1050-06 -0.4741-06 =0.6190-06
20 ~-0.1410-06 -0.5022-07 -0.1043-06 -0.3052~07
4.6.2 Ssolution for a Discrete Riccati Equation of Error Co-

variance
An initial navigation problem from Mehra [30] is adopted
as a numerical example. The discrete Kalman filter is construct-

ed from the system whose coefficient matrices are

~0.75  =1.75  -0.3 0 -0.15 7]
0.09 0.91 -0.0015 0 ~0.008
o = 0 0 0.95 0 0
0 0 0 0.55 0
Lo 0 0 0 0.905 -
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0 0 -
0 0 0 1 0 0 0 1
I' = 24.64 0 0 H =
0 0.835 0 6 1 0 1 0
L0 0 1.83-
0.25 0 0 0.4 0
Q=0 0.5 0 R =
0 0 0.75 0 0.6

and the initial error covariance matrix is given

—0.1 0.2 0.4 0.57
0.2 0.1 0.3 0.4
Po= 0.3 0.2 0.2 0.3
0.4 0.3 . 0.1 0.2
~0.5 0.4 0.2 0.1-

Two programs were used to calculate the error covariance matrix,
one based on the new non-recursive technigque in Section 4.5 and
the other based on the conventional recursive solution of the
associated discrete Riccati equation. The results from both
methods are compared to show the maximum error in the 12th and
13th significant digits in double precision on the IBM 360-44.
The diagonal elements of the computed PK are presented in Table

4.2.



Table 4.2

Solution Matrix of a Discrete Riccati Equation

K Pll(K) P22(K) P33(K) P44(K) PSS(K)
=0.4949 -0.11372 151.67 | 0.30929 2.3724
24.038 0.21626 310.28 0.42450 6.8506

10 24.741 0.66461 320.13 0.46808 8.1641
15 24.810 0.68089 321.32 0.47168 8.2999
20 24.821 0.68212 321.33 0.47174 8.3214
25 24.822 0.68231 321.34 0.47176 8.3219
30 24.822 0.68232 321.34 0.47176 8.3220
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Table 4.2 shows the convergence of PK to the steady-state solu-

tion with increasing K.

The steady-state solution for the Riccati

equation is obtained from the partitions of the transformation

matrix used;

1 _

Pe=Vo1V11 =

i.e.,
— 24.822 1.6052
1.6052 0.68232
-59.609 -3.2971
- 0.21033 -0.16927
— - 6.9568 -1.5205

-59.60
- 3.29
321.34
0.67
9.12

9 -0.21033
71 -0.16927

0.67997
997 0.47176
2 0.26422

-6.95687
-1.5205
9.122
0.26422
8.322 ~




CHAPTER V
NUMERICAL INTEGRATION OF A STIFF SYSTEM

5.1 The Set of Uncoupled Differential Ecquations

A new algorithm is developed for the numerical integration
~ of linear stiff systems with constant coefficients having eigen-
values which differ greatly in magnitude. The intermediate size
eigenvalues which may still bhe troublesome in either of the two
sets are brought into consideration. When the new algorithm of
the matrix filter generation in Section 2.5 is applied, the re-~
sulting state equations are completely uncoupled, and standard
integration techniques can be utilized.

The differential equations for the eigenvalue suhset
matrices can now be generated by considering the first-order

differential equations
X(t) = AX(t) + BE(t) (5.1)
with initial conditions

X(tO) = XO (5.1a)

It is assumed that the eigenvalues in the same order of magnitude
are isolated into subsets and Xyre-.sX, are the corresponding

uncoupled state vectors

X(t) = Xl(t) + Xz(t) + ... + Xz(t) (5.2)

where £ is the number of filters or subsets.

In addition, Si denotes a matrix filter of the order n x n



generated from the algorithm in Section 2.5.

M

92]
i

where the partitioned identity matrix is

column and row and where

The vectors Xi(t) in (5.2) then become

Xi(t) = SiX(t)

so that

SiX(t)
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(5.3)

located at the ith

(5.4)

(5.5)

(5.6)

To derive the desired differential equations in uncoupled

form, the first differentiated equation (5.5) with respect to t

is

xi(t) = SiX(t) = Si[AX(t) + BE(t)]

The matrix Si will commute with A, thus

Xi(t) = ASiX(t) + SiB:(t)
which finally gives
Xi(t) = AXi(t) + SiB:(t)

(5.7)

(5.7a)

(5.7b)
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The terms of (5.7b) are multiplied through by the identity
matrix, and (5.4) is used along with (5.5) to simplify as shown
below:
)

A( ] S.%, () + S.BE(t)
i=1

il

Xi(t)

i

AS X, (t) + A( z 85X, (£)X(T)+5 BE ()
#

I

ASiXi(t) + A( Sj)Si(t) + SiBf(t) (5.8)

.Ut
T I )
e

Since Sj(t)Si(t) = 0 for all j#i, then

Xi(t) SiAXi(t) + SiBf(t) : (5.8a)

i

AiXi(t) + SiBf(t)

Equation (5.8a) is the desired uncoupled differential equation,
and the eigenvalues are completely isolated into the subsystem

matrix Aj.

The initial conditions for (5.8a) are developed from

(5.5)

Xi(O) = SiX(O) (5.8b)

The integration step size for each uncoupled state equation is
determined in the usual mzanner.

Since IRell|<|ReA2!<...<lReAnl,the step size can be
changed accordingly for each subset. The step size can be select-

ed by taking the average trace for each subset matrix Ai.
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5.2 Examples
For the first example, a simple network analysis problem
given by Lee was selected and compared [26]. The state equations

toc be integrated are
X, (£) -1000 0 7 X, (t) 1
NE 5] e
X2(t) 2000 -1 Xz(t) 0

and the initial conditions are given as

X, (0) 0’1

X, (0) 0o J
where
Xl [—"‘1000 0 - 1
X = A=L B = £(t) = I(t)
X2 2000 -1 0
The eigenvalues of A are Al = 1000 and AZ = -1, thus widely
spaced. The step size was taken to be hl = g%— = 0.0002 during
1
the transient time period due to a large eigenvalue, then changed
to h2 = g%— = 0.2 for the subset of small eigenvalues.
2

The integration interval is taken to be 0<t<5, and 75
integration steps were used. The high-and low-pass matrices

generated by the algorithm developed in Section 2.5 are

1.000000000 -0.617958115-17

HP
-2.002002002 -0.5551115123-14



and

-0.1110223023-15

2.002002002

1.000000000
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0.6179585115-17

For the purpose of comparison, the matrix filters con-

structed from the Butterworth function are presented.

and

up

Lp

-2.00200203

-1.00000002~-16

2.00200203

1.0-8

1.00000001

The solution vector X2 for a high-pass matrix are compared in

Table 5.1

Table 5.1

Solution Vector X, for a High-Pass Matrix

Integ Conventional
Step t Filter Theory New Algorithm Exact X,
0 0.0 0.0 0.0 0.0
10 0.002 2.26895019E-03 2.268942174-03 2.69894021F-03
20 0.004 6.02667963E-03 6.026679269-03 6.02670013E-03
30 0.006 9.97900485E~03 9.979008405-03 9.97900962E-03
40 0.008 1.39507856E-02 1.395079204-02 1.39507949E-02
50 0.01 1.79183299E-02 1.791834164-02 1.79183483E-02
*55 1.01 1.27082125E00 1.270821384E00 1.27083286E00
60 2.01 1.73174577E00 1.7317459851E00 1.73175437E00
65 3.01 1.90131311E00 1.901313295E00 1.90131793E00
70 4,01 1.96369442E00 1.963694618E00 1.96369389E00
75 5.01 1.98664358E00 1.986643786E00 1.98664483E00
*Step size changed after 50th step
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For the second example, a 4 x 4 matrix with widely spaced
eigenvalues was selected to illustrate the procedure of the band-
pass filter algorithm. The state equation was assumed to be of

the form X{t) = AX(t) where A = MAM T with
A = diag[~1200 =500 ~1.5 ~0.5]

and

NN O
W N e
w NN
w W Ww w

e

L

which gives

-1.493+03 1.99+03 -1.988+03 9.93+02
A = 2.106+03 -1.609+03 1.6105+03 -1.406+03
4.206+03 -3.209+03 3.2105+03 -2.806+03
2.710+03 -1.215+03 1.218+4+03 -1.8105+03

The initial conditions are given as

xT(0) = [2 1 -1 -2]
The eigenvalues were isolated so that A = -1200 was con-
tained in the high-pass filter, A = -500 in the band-pass fil-

ter, and the remaining two in a low-pass filter. The submatrices

for the uncoupled state equations are given below

7.0 -10.0 12.0 -7.0
6.0 - 9.0 10.5 -6.0
6.0 - 9.0 10.5 -6.0
10.5 -15.0 18.0 -10.5



~.158+04  .20F+04  —~.20E+04  .LORE+04
A o —-1SE404  .20B+04  -.20E+04  .10E+04
2 | _.30E+04  .40E+04  -.40E+04  .20E+04
~.45E4+04  .60E+04  ~.60E+04  .30E+04
and
.0 .0 .0 .0
A o| -36E+04  -.36E+04  .36+04  —.24E+04
3 | .72E4+04  -.72E404  .72404  -.48E+04
JT2E+04  —.72E+04  .72+04  —.48E+04
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Eighteen iterations were programmed in the sign algorithm.

All calculations were 1in double precision on the UNIVAC 1108,
and the filter matrices are correct to 16 digits which were pre-
sented in Chapter II. The trace of the matrices Al'AZ’ and A3
were -2.0, =500, and -1200, respectively. Integration step sizes
of 0.05, 0.005, 0.0005 were used in a fourth-order Runge-Kutta
élgorithm to calculate Xl(t), Xz(t), and X3(t).

The calculated values for Xl(t), Xz(t) and X3(t) are

-

. . T
5 A =1
given in Tables 5.2 through 5.4 where Xi(t) [Xli'XZi’X3i’X4i]'

Table 5.2

Solution Vector Xl(t) for a Low-Pass Matrix

t Xll(t) X21(t) X3l(t) X4l(t)
0 0 0 0 0

1 2.30040 4.11999 4.11999 3.45060
2 1.90855 3.01219 3.01219 2.86283
3 1.27212 1.94151 1.94151 1.90819
4 0.79714 1.20314 1.20314 1.19570
5 0.48919 0.73545 0.73545 0.73379




Table 5.3

Solution Vector Xz(t) for a Band-Pass Matrix
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t Xlz(t) X22(t) X32(t) X42(t)

0 2 2 4 6

0.01 0.55373E~02 0.55373E-02 0.11074E-01 0.16611E-01
0.02 0.15331E~04 0.15331E-04 0.30662E~04 0.45993E-04
0.03 0.42446E-0 0.42446E-07 0.84892E-07 0.12733E-06
0.04 0.11751E-09 0.11751E-09 0.23503E-09 0.35254E~-09
0.05 0.32082E-12 0.32054E-12 0.64165E-12 0.96076E-12

5 -0.455E-14 0.482E-14 -0.908E-14 -0.153E-13

Table 5.4

Solution Vector X3(t) for a High-Pass Matrix

t Xy 4 () Xyq (t) X44(t) X453 (t)

0 0 ~4 -8 -8
0.0025 | -0.11E~-16 | -0.19914 -0.39829 ~0.39829
0.0050 0.45E-18 | -0.99149F-02 | -0.19829E-02| -0.19829E-02
06.0075 0.10E-17 | -0.49363E-03| -0.98726E-03| —-0.98726E-03
0.0100 0.10E-17 | ~0.24576E-04 | -0.49153E~-04| -0.49153E-04
0.0125 0.10E~-17 | -0.12235E-07 | -0.24471E-05| -0.24471E-05
0.0150 0.10E-17| -0.60918E~07 | -0.12183E-06| -0.12183E-06
0.0175 0.10E~17| -0.30329E-08| -0.60658E-08| ~0.60658E-08
0.0200 0.10E-17| -0.15100E-09{ ~0.30200E-09| -0.30200E-09

The solution vector X(t) =

Xl(t) + Xz(t) + X3(t) is

given in Table 5.4 and agrees with the exact solution to 10 digits

for whole intervals 0<t<5.

The exact solution is obtained from known eigenvalues and

eigenvectors.



X (8) + X,y (£) + Xy (t)

t Xl l X2 X3 X4

0 2 I 1 -1 =2
0.0025| 0.58797 | 3.38504 | 3.75894 | 1.34318
0.0050| 0.19403 | 3.17662 | 3.33087 | 0.51746
0.0075 0.091702 3.07998 | 3.12652 | 0.20712
0.0100| 0.07288 i 3.05789 | 3.07134 | 0.12948
0.0125| 0.07793 | 3.05924 | 3.06310 | 0.12268
0.0150| 0.08977 | 3.06735 | 3.06692 | 0.13631
0.0175| 0.10350 | 3.07736 | 3.07768 | 0.15572
0.0200 0.11772 ' 3.08787 | 3.08796 | 0.17671
0.03 0.17469 : 3.13002 | 3.13002 0.26203
0.04 0.23061? 3.17120 | 3.17120 | 0.34591
0.05 0.285403 3.21133 | 3.21133 | 0.42810

- - - - -
1.0 2.30040} 4.11999 | 4.11999 | 3.45060

— - l - — —
5.0 0.48919| 0.73545| 0.73545 | 0.73379

It should be noted

limiting values set by the

2€ro.

in

S,

a

This problem can ke

that the vectors Xz(t) and X3(t) reach

elements in 82

3

77

and S, which should be

alleviated by setting all elements

to zero when they are at machine limit.



CHAPTER VI
CONCLUSIONS

In this study, new algorithms for the integration of the
coupled differential equations from the optimal control with
quadratic criteria and optimal filtering have been developéd.

The matrix sign function made it possible to uncouple the
set of differential equations so that the resulting computations
for the state transition matrix are of the order n/2 when the
original system matrix A is of the order n X n. The algorithm
required two subblocks of state transition matrices to solve
the géneral forms of system equations. However, certain important
classes of system optimization problems require only one half-
sized subblock due to the particular form of system coefficient
matrices. This advantage saves considerable computational efforts
particularly when the system order is high.

The new method permitted the state and costate equations
from a quadratic linear regulator to be integrated simultaneously
forward in time, thereby; the storage problem was overcome in
calculating the feedback control law of the more conventional
method.

Test problems have been made in several cases and results
show a reduction in both the computation time and the size of
the program regquired. The results of the new method show satis-
factory agreement with solutions from the more common methods.

This study also developed a numerical integration technigue
suitable for the solution of stiff state equations by isolating

the eigenvalues with large magnitude. Instead of dealing with
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the integration method itself, the new technique gradually reduced
the stiffness during the integration process. This was accomplish-
ed by discarding the uncoupled solution set corresponding to the
eigenvalues having the largest negative real parts as their con-
tribution becomes negligible. The effect of the troublesome
eigenvalues was therefore removed.

The sign of the complex eigenvalue space was shifted by
adding 8I to the system matrix A, and the matrix filters were
generated. The amount of the shifting factor § was selected to iso-
late the troublesome eicenvalues. The presence of eigenvalues
with large negative real parts is readily recognized by observing
the main diagonal of the matrix A, since the trace of A is the
sum of the real part of thes eigenvalues.

Filter matrices cenerated by the new algorithm uncoupled
the solution sets to the accuracy attainable from the machine.

The advantage of the band-vass filter was demonstrated in an ex-
ample problemn.

In this paper the uncoupling procedure has been applied
only to the linear time-invariant case. The same approach could
be extended to the time-varying and nonlinear stiff equations
with an increased number of calculations. The generation of the
filter matrix will be more complicated by periodically repeating
the computation of a matrix sign function of a time-varying system
matrix or the Jacobian matrix and the uncerfainty of the selection
of a shifting factor §. This process should be undertaken when-
ever there is an abrupt change in the coefficients of the state

equations.
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This work suggests further studies in the following areas:

a)

b)

c)

d)

Extension of the sign algorithm to the time-~varying
matrix

Application of the uncoupling algorithm to the sys-
tem optimization with time-varying system coeffici-
ents

Development of integration techniques to solve the
time varying stiff equations using the matrix f£il-
ter algorithm

Improvemen£ of the computation of the matrix sign

function
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APPENDIX A

MATRIX SIGN FUNCTION

Consider a square matrix A of the order N and

A= MaML ' (A.1)

where M is the eigenvector matrix of A. Suppose that p of the
N eigenvalues are positive and n are negative so that p+n = N.

The matrix function sign A is defined by

PXp
sign A = M M (A.2)

n*n

The sign A is calculated by the algorithm

(sign M3 = Lisign myt 4 3 (signm)H 7 (A.3)

with (sign A)O = A.
~The iterative process is terminated when trace[(sign A)l+l]

= trace[(sign A)l] to the desired accuracy.



APPENDIX B

Asymptotic Solution of Riccati Equation

Consider the Riccati equation
A+ BP + PC + PDP = 0 (B.1)

The matrix of coefficients takes the form

B ['B A]
A = (B.2)
-D -C

Let the Jordan form of Z be

-
Mll M12 Al 0 o B A Mll M12
= (B.3)
My Moo |0 Ly _-D =C My, My,
Equating terms after the block multiplication gives
MllAl = BM11+AM21 Ml2h2 = BM12+AM22
MZlAl = --DMll—CMZ1 M22ﬂ2 = —DMlz—CM22 (B.4)

Performing multiplications on both sides,assuming the M L and

21
MoL exist
22 ’
R -1
My MMy = BM MDY+ A
1 _ o oy le o1l -1
My AQMoT = =My MOTDM, MOT = My MOTC (B.5a)

and

AMTE

— - l ,
Moy = By Mys + A

My,
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-1 -1 -1 -1

ohMyy = =My ML ODMy Mo 5 = My My 5C (B.5k)

My

Subtracting the lower equation from the upper in (B.5a) and (B.5b)

gives

-1 -1 1 -1
A+BM, | M T+M M TCHMy MO IDM (Mo T = 0

“1og L -1 -1
A+BI\’.[12 22 12 22C+M M,oDM, M = 0 (B.6)

1277227712722

. . . . . - -1 B
which are the Riccati equations with P = M12M21 and P = M12M22.



