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• Between 1200 and 1500 school-aged children in the 
U.S. are diagnosed with cerebral palsy [1], and about 
400 to 600 boys are born with Muscular Dystrophy 
every year [2]

• Lightweight and custom exoskeletons are being 
developed to assist children with locomotion 
disabilities

• Measurement of the torque exerted at the joints of the 
exoskeleton will improve operation safety and allow 
safer human-robot interaction

• A custom torque sensor has been developed to 
estimate joint torques in an exoskeleton

Background
• Strain gauges are used to measure the material 

deformation on the output plate of the exoskeleton joint 
when a torque is applied

• Two Wheatstone Bridges are mounted at 90-degree 
angles apart from each other

• Static tests were conducted by applying known weights to 
the system and comparing measured output values to a 
reference torque transducer

• The signal was amplified and digitized for better signal 
resolution, and data was collected at 500 Hz

Methodology
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Figure 3. Wheatstone Bridge Sensor

Similar to HBM Company methods for characterizing torque 
sensors [3] :
• Three load cycles with clockwise increasing torque were 

recorded at unequal load steps up to a maximum applied 
torque of 58 [Nm]. Average results:
- Sensitivity: 0.08 mV/V - Linearity: 2.91 %
- Calibration constant: 6.56

• Three load cycles with clockwise torque were recorded at 
0%, 33%, 66%, 100%, 66%, 33%, and 0% of a maximum 
applied torque of 85 [Nm]. Average results:
- Sensitivity: 0.10 mV/V - Hysteresis: 20.6 %
- Linearity (including Hysteresis): 11.8 %
- Calibration constant: 7.29

Results

• A custom torque sensor was developed and 
characterized to be used in a pediatric exoskeleton

• Preliminary results show the system is capable of 
detecting increasing and decreasing loads, indicating 
the system can be used for volitional control

• Future work includes:
• Testing the system at other angle configurations
• Determine how to reduce the large hysteresis if 

caused by the shape of the joint plate or the 
system installation

• Perform tests on a new joint with better ground 
support

• Perform dynamic tests

Conclusions

Figure 5. Output vs. Torque for the Commercial and Custom Torque 
Sensors before system calibration, for the average of 3 load cycles 

up to a maximum applied torque of 58 [Nm].)

Figure 6. Output vs. Torque for the Custom Torque Sensor showing 
hysteresis curve, for the average of 3 load cycles up to a maximum 

applied torque of 85 [Nm].)
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ReferencesFigure 2. Simulated Strain when a torque of 10 [Nm] is applied

Figure 1. Pediatric Exoskeleton Model
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Figure 4. Static test setup showing the commercial torque sensor 
attached to the system 
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