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ABSTRACT 

 

 The success rate of high school and college students in algebra is low (Tyson et al., 2007; 

Croft, 2006). As such, the present study compared the effectiveness of conceptual and procedural 

algebra ―refresher‖ interventions for 63 college students and investigated the relationship of 

cognitive variables to math outcome. Results revealed that participants in both interventions 

improved significantly from pretest to posttest, but that there was no significant difference 

between the two interventions. However, a follow-up analysis in which participants who scored 

at ceiling or at floor on pretest were excluded revealed an advantage for the conceptual treatment 

group relative to the procedural group in terms of educationally meaningful effect size (d = 

+0.53). There were no relationships between cognitive variables and math outcomes; however, in 

the follow-up analysis, long-term memory was positively correlated with posttest performance, 

but working memory and executive functioning were still unrelated to math outcomes. There was 

no interaction between cognitive variables and posttest performance of the two groups, which 

likely reflects the lack of differential treatment effects or robust zero-order correlations. The 

present study addresses the shortage of research on algebra, particularly the shortage of 

experiments that compare the effectiveness of different algebraic interventions. It also provides 

insight into intervention methods that educators may potentially use.  

Keywords: algebra interventions, math difficulty, long-term memory, working memory, 

executive functions 
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PROCEDURAL VERSUS CONCEPTUAL ALGEBRA REFRESHER INTERVENTIONS IN 

ADULTS AND MODERATING EFFECTS OF COGNITIVE ABILITIES 

Introduction 

Prevalence of Difficulty in Math 

Learning math is difficult. In a Gallup survey of more than one thousand American 

children ages thirteen to seventeen, thirty seven percent of respondents reported that math was 

their most difficult subject in school, more than that who reported science (20%) or English 

(18%) to be their most difficult subject (Saad, 2003).  

With regard to research in the field of academic learning, the math research literature is 

not as mature as the reading literature, and as of yet, is not as extensive (Chiappe, 2005), despite 

rapid growth in this area, particularly over the last decade. In addition, in educational settings, 

greater emphasis is placed on reading relative to math. For example, teachers in early education 

tend to focus more on language than math, and the amount of time and resources parents of 

young children tend to invest in providing math context is considerably less than the time and 

resources invested in providing language context (Cannon & Ginsburg, 2008). There is 

considerable consensus on underlying deficits that lead to reading difficulty—for example, 

deficits in phonological awareness and rapid naming of letters (Schatschneider, Fletcher, Francis, 

Carlson, & Foorman, 2004)—and as a consequence, a number of empirically-derived reading 

interventions and preventative measures have been developed. Accordingly, government-

supported reading interventions such as Reading First (U.S. Department, 2009), Early Reading 

First (U.S. Department, 2012), No Child Left Behind (U.S. Department, 2010), and Get Ready to 

Read (2011) have been heavily funded.  

In contrast, much work remains until we achieve a similar understanding of all the 

variables that play a causal role in math difficulties; as such understanding increases, 
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preventative and intervention procedures are likely to follow (Chiappe, 2005). The Center for 

Education (2001) and the National Math Advisory Panel (NMAP) (2008) conceded that, albeit 

the great strides in the area of math learning research as of late, the field still has room to grow. 

While U.S. schools have seen success in implementing reading interventions, math continues to 

be problematic, and the United States continues to lag behind other industrialized countries in 

mathematics. The Center stressed the global importance of learning mathematics and of 

understanding why mathematics works the way it works, emphasizing that ―All young 

Americans must learn to think mathematically, and they must think mathematically to learn.‖ 

(Center for Education, p. 16). Of particular relevance for the present study, in their 

recommendations, they addressed the particular need for research into instructional strategies 

that would assist individuals in transitioning from arithmetic to algebraic thinking. 

Math Education and Performance 

Math education in the United States has followed a cyclical process, in terms of the 

teaching emphasis and the motivation for learning (Miller & Mercer, 1997). The emphasis was 

on learning basic math for everyday living in the early 1900s and shifted to an accentuation of 

discovery methods in the 1930s. The 1950s saw an increased emphasis of discovery methods and 

concern over math performance at a time when mathematical and technological prowess was 

deemed exigent in establishing the nation’s world status after losing the space race to the Soviet 

Union. Finally, in recent decades, math education returned to emphasize fundamental basics 

when it became evident that students with math learning disabilities were being left behind 

(Miller & Mercer, 1997). There is, however, considerable variability in the approach currently 

taken toward math instruction, with some districts and curricula focused more on discovery 
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learning, with others focused on more explicit instruction, including practice with basic facts 

(Star & Rittle-Johnson, 2008; NMAP, 2008).  

The current state of math performance is low, especially in the U.S, and especially for 

higher-level math, despite small recent increases in the percentage of students at or above the 

―proficient‖ level in math according to the National Assessment of Educational Progress (NAEP, 

2011). Sixty percent of fourth graders and 65% of eighth graders perform lower than a proficient 

level. Furthermore, 18% of fourth graders and 27% of eighth graders perform below even a 

basic, fundamental level. These numbers show a trend of decreasing proficiency with age, 

especially as required math concepts become difficult (NAEP, 2011). 

Arithmetic and early foundation-level math have been the focal point for much of the 

math research thus far, in regards to both descriptive and intervention studies. However, beyond 

arithmetic, mathematics encompasses a range of skills. Of these, algebra has received attention, 

given its role as a bridge between basic and more advanced mathematics. Students who struggle 

with algebra have difficulty progressing through more advanced mathematical courses, 

particularly for science, technology, engineering, or mathematics (STEM) based careers (NMAP, 

2008). Therefore, learning algebra early on can be beneficial for those interested in pursuing 

higher education. High school students who take and pass algebra and increasingly higher-level 

math courses are more likely to graduate from college, and of those who graduate from college, 

those who learn higher-level math in high school are more likely to graduate with a STEM 

degree (Tyson et al., 2007). College algebra is useful for preparation for STEM degrees but is 

increasingly becoming a requirement for non-STEM degrees as well; fewer than 20% of students 

taking college algebra plan to major in a STEM subject (Herriott & Dunbar, 2009). Even beyond 

degree or career requirements, advanced mathematical knowledge is still relevant for 
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competitiveness in a culture that is increasingly technological (Center for Education, 2001). 

Learning algebraic concepts is useful for even everyday living activities such as planning 

purchases, renovating a house, or calculating interest on investments. Its mastery is mandatory 

for many undergraduate degrees, and it is essential for those wishing to pursue a career in STEM.  

The content of algebra is markedly different in character from the basic math usually 

taught before it, and it can, hence, be especially difficult to learn. According to Tyson et al. 

(2007) 32.8% of individuals in high school either do not take or do not pass any math class 

Algebra I or higher. Difficulty in learning algebra is not unique to high school students; the 

success rate in college algebra tends to be much lower than in other freshman classes such as 

English, government, economics, and biology. Grade distributions at two 2-year institutions 

indicated that 47.3% and 63% of students received a D, F, or withdrew from college algebra 

courses (Herriott & Dunbar, 2009). According to Croft (2006), as much as 17% of the total 

undergraduate population at the University of Houston take introductory college algebra in a 

given year, and as many as 22.2% of those students fail each year, illustrating the need for 

further investigation into how adults learn algebra.  

Cognitive Functions and Math 

Much of the research relating cognitive constructs to math has focused on elementary 

math processes such as quantity estimation, number sense, place value, simple arithmetic, fact 

retrieval, and simple problem solving (e.g, Cirino, 2011; Fuchs et al., 2009; Geary, Hoard, & 

Hamson, 1999) with only a few studies focused on cognitive skills involved in algebra or higher-

level math processes (e.g., Tolar, Lederberg, & Fletcher, 2009). Conclusions across studies vary 

but generally agree that verbal ability, memory, executive functioning, and spatial cognition are 

important skills for elementary math processes (e.g., Geary, Hoard, Nugent, & Byrd-Craven, 
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2007; Swanson & Kim, 2007; Geary et al., 2009). One study of third grade students showed that 

verbal reasoning, verbal concepts, nonverbal reasoning, planning, visuospatial working memory, 

phonological working memory, and verbal working memory were underlying factors in recalling 

simple rules about numbers, computing addition and subtraction problems, and solving word 

problems (Männamaa et al., 2012). In a meta-analysis, Swanson and Jerman (2006) found that 

average-achieving children performed better than children with MD on different measures of 

problem solving, working memory, and long term memory and that children with MD performed 

better on these tasks than children with comorbid MD and reading disability (MDRD). A similar 

meta-analysis by Swanson, Jerman, and Zheng (2009) saw that those with reading disabilities 

(RD) performed worse on measures of working memory and short term memory than average 

achievers. The two main methods of investigating the determinants of math outcomes include 

correlational studies (relating cognitive abilities to math outcomes across a continuum of 

performance) or causal-comparative studies (comparing pre-existing groups, such as individuals 

with or without math disability. However, there is a deficiency of studies that examine cognitive 

constructs in the context of true experiments with randomization of subjects, as these skills may 

moderate treatment effects in this context. 

Memory 

Memory is among the most studied of cognitive abilities with regard to conceptualizing 

mathematics learning, and within memory, working memory (WM) is the component that has 

received the most attention. According to Cowan (2010), WM is the ability to hold information 

in an accessible state in order to complete cognitive tasks. A number of studies indicate that 

executive and spatial aspects of WM impairment tend to be associated with mathematics 

disability (MD) (McLean & Hitch, 1999; Hitch & McAuley, 1991; Siegel & Ryan, 1989; Adams 
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& Hitch, 1997; Holmes & Adams, 2006). DeCaro, Rotar, Kendra, and Beilock (2010) proposed 

that interventions which reduce situation-induced worries free up the resources on which 

individuals with high WM tend to rely, suggesting that those with high WM may benefit the 

most from such interventions. On the other hand, Huang-Pollock and Karalunas (2010) showed 

that skill acquisition was more negatively affected for those with low WM than with high WM 

when demands were increased, suggesting that an intervention which reduced WM demand 

would be most helpful for those with low WM. Measures of WM usually involve either (1) 

storing information while performing a less pertinent task; (2) storage and mental manipulation 

of that stored information; or (3) tracking a continuous sequence according to the relationship 

among its elements. ―Digits‖ tasks, which require a subject to listen to a string of numbers and 

repeat it backward are perhaps the most common WM exemplar, and satisfy the requirements 

under (2) above; such tasks are robust in their relation to math performance (e.g., Bull, Espy, & 

Wiebe, 2008). Digits tasks are also part of many commonly used batteries that test WM such as 

the Working Memory Test Battery for Children (WMTB-C) (Pickering & Gathercole, 2001) or 

the Weschler Adult Intelligence Scale (WAIS) (Weschler, 1997). 

Beyond WM, the relationship between long-term memory (LTM) and math has also been 

investigated; for example, Prevatt, et al. (2010) found that LTM was related to math applications, 

computations, and concepts, but not to math fluency. Seethaler and Fuchs (2006) suggest that 

verbal LTM may be more related to word problems than computational estimation. Both of these 

studies use a subtest of the Woodcock Johnson-III Cognitive Battery (WJ-III) that requires 

memory of already-acquired information such as animal names (Retrieval Fluency) as a measure 

of LTM. The study by Prevatt, et al. (2010) used the WJ-III Visual-Auditory Learning subtest 

which requires learning symbol meanings and then reading sentences formed from these 
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symbols. However, LTM measures differ in their demands from one another as well as from 

other commonly used tasks. Therefore, it would be beneficial to understand the relationship of 

more types of LTM to math. For example, in list-learning tasks, participants are repeatedly 

presented with a list until mastery. Such tasks can be used in assessment of both immediate and 

delayed verbal recall. List-learning tasks provide repeated exposure that requires self-

organization and retention over time. The relation of LTM and math is understudied and will 

become more cogent as more forms of LTM are included in analyses that seek to understand its 

relationship to math.  

In contrast to a robust literature on the cognitive determinants of arithmetic, less is known 

about the determinants of higher-level math processes such as algebra. However, recent studies 

have highlighted the relationships of WM and LTM (to a greater and lesser degree, respectively), 

to algebra. In a study of college students, computational fluency, spatial visualization, and WM 

all had an effect on algebra achievement (Tolar et al., 2009). Furthermore, computational fluency 

and spatial visualization were shown to be mediators of the effect of WM on algebra 

achievement. Another study (Lee et al., 2011) showed that strengths in pattern-making and 

procedural computation were predictive of algebraic performance and that ―updating,‖ which 

involves maintaining information while simultaneously absorbing new information, was 

predictive of both pattern-making and procedural computation in algebra. In a different large-

scale study of 11-year-olds, WM explained 23 and 27% of the variance in representation 

formation and solution formation of algebraic word problems, respectively (Lee, Ng, & Ng, 

2009). That WM is important for algebra is not surprising given the relationship of WM to math 

in general and the demands of algebra specifically. For example, algebraic word problems 

require the ability to represent words with numbers and also to choose the correct operators. 
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Although there is growing evidence for the role of WM for even older learners of more complex 

math like algebra, less is known about other types of memory such as LTM. Adults with low 

levels of math education who had taken algebra and geometry several years previous showed a 

pattern of steep and steady decline in LTM of algebra and geometry over the course of many 

years, whereas individuals with moderate to high levels of math education showed very little 

forgetting (Bahrick & Hall, 1991). This relationship could be due to a number of factors, 

including but not limited to stronger encoding of the algebraic information, better 

contextualization, or deeper processing of the information. 

Executive Functioning 

Another important construct used to conceptualize mathematics learning is executive 

functioning (EF). Working memory is sometimes included as a component of EF, though is 

treated separately above given its prominence in the mathematical literature and the robust 

empirical and theoretical literature on WM specifically (e.g., Engle, 2002). EF can be defined in 

numerous ways, though commonly it includes the management, organization, planning, and 

direction of other higher-level processes (Lee et al., 2011). A number of studies highlight the 

relationship of EF to math outcomes. For example, Mazzocco and Kover (2007) found that 

inhibitory control at ages 6 and 7 was a significant predictor of mathematics performance in later 

elementary school years. Bull, Espy, and Wiebe (2008) found corroborating evidence, showing 

that inhibitory control at age 7 was predictive of math performance and found that planning and 

monitoring skills were predictive as well. A study of kindergarten students showed that 

inhibitory control and attention shifting were associated with numeracy, shape knowledge, 

quantity, addition, and subtraction (Blair & Razza, 2007). Further evidence of the relationship 

between EF and math is exemplified in findings that students with math disabilities performed 
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significantly lower than those without math disabilities on a measure of planning and monitoring 

(Sikora, Haley, Edwards, & Butler, 2002). While much of the research in this area has studied 

children, a study by Osmon, Smerz, Braun, and Plambeck (2006) showed that EF in college 

adults was also related to math achievement. Of the many components of EF such as inhibition, 

planning, organizing, shifting attention, monitoring (Lee et al., 2011), planning is one key 

component of EF that may be especially important in higher-level math because of the multistep 

nature of algebra.  

Other Predictors of Math 

LTM, WM, and EF are strong cognitive predictors of math, but other variables beyond 

specific cognitive processes also contribute to math performance, so inclusion of these other 

variables is useful to help contextualize the roles of LTM, WM, and EF. These variables include 

initial math ability (Geary, 1993; Gersten, Clarke, & Mazzocco, 2007), reading ability (Jiban & 

Deno, 2007), and math anxiety and motivation (Wigfield & Meece, 1988; Wang & Pomerantz, 

2009).  

Initial Math Ability 

Given the complexity of math, it is not surprising that individual differences are robust. 

Some individuals have strong math skills, but others have math skills weak enough to be 

classified as a math learning disability depending on the cut-point used to define them; math 

disabilities affect anywhere between 5.9% (Barbaresi, Katusic, Colligan, Weaver, & Jacobsen, 

2005) and 17% (Mazzocco & Myers, 2003) of individuals. Math ability varies along a 

continuum, and one’s underlying math ability is predictive of performance on tasks which test 

specific math outcomes (Tolar et al., 2009). This is especially likely for adults, but in the context 
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of a randomized study, inclusion of pretest math skill should increase power for detecting group 

differences (Shadish, Cook, & Campbell, 2002). 

Reading 

Reading ability is closely tied to areas of math ability. For example, Jiban and Deno 

(2007) found that for statewide tests in Minnesota, performance in reading was significantly 

predictive of math performance at both third (R
2
 = 17%) and fifth (R

2
 = 38%) grades. Another 

study involving third graders showed that language skills and reading skills were significantly 

related to addition and subtraction estimation skills (Seethaler & Fuchs, 2006). A number of 

studies involving children with concurrent math and reading disabilities (MDRD) show that 

children with MDRD perform significantly worse than children with only a math disability on 

story problems in particular (e.g., Jordan & Hanich, 2000; Powell, Fuchs, Fuchs, Cirino, & 

Fletcher, 2008; Jordan & Montani, 1997), and generally across a range of other math skills as 

well (Cirino, Fuchs, Elias, Powell, & Schumacher, submitted). Because of the linguistic and 

textual nature of story problems, it makes sense that reading ability might be tied to math story 

problem ability (Powell et al., 2008). Lager (2006) showed that reading and linguistic ability 

were related to performance on algebra-related tasks for tasks that were more language-intensive 

or less language-intensive. Due to its close ties with math ability, reading ability is a useful 

construct to include in analyses in which math is an outcome.  

Math Perception: Anxiety and Motivation 

A number of studies indicate that math anxiety is common among children (Wigfield & 

Meece, 1988; Gierl & Bisanz, 1995) and adults (Prevatt et al., 2010; Hendel, 1980) and has 

recently been shown to have a distinct neural signature (Young, Wu, & Menon, 2012). The 

reasons math provokes greater anxiety than other academic subjects are unclear, but they could 
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be related to a number of different factors. For example, lack of support from instructors with 

high expectations has been demonstrated to elicit anxiety (Turner et al., 2002). Furthermore, the 

importance an individual places on math achievement is inversely related to the level of math 

anxiety, i.e., greater perceived importance is associated with less anxiety (Meece, Wigfield, & 

Eccles, 1990). The perception of a higher working memory (WM) demand for math than for 

other academic subjects increases actual difficulty and subsequently provokes anxiety (Hopko et 

al., 1998; DeCaro et al., 2010).  

Motivation is also important to consider with regard to math learning. Results of a 

longitudinal study of 825 American and Chinese middle-school-age children indicated that the 

quality of children’s motivation for mastery decreases with age, and this decrease is especially 

marked in the early teen years. The value placed on academics as a whole was a motivator and 

protective factor for children in China, whereas the lower value American children placed on 

academics accompanied declines in motivational behavior (Wang & Pomerantz, 2009). 

According to Zimmerman, Bandura, and Martinez-Pons (1992), academic motivation stems from 

personal goal setting and perceived academic efficacy. Students that feel they are capable of self-

regulating their activities are more confident of their ability to master academic concepts, are 

more motivated to attain academic goals, and ultimately perform better academically. 

IQ as a Predictor of Math 

 The measurement of intelligence varies, but it is clear that batteries of tests which 

produce an ―IQ‖ score do correlate with a wide variety of cognitive measures, likely because 

they themselves are often included in the battery. Francis, Fletcher, Shaywitz, Shaywitz, and 

Rourke (1996) stated that using a discrepancy score between IQ and achievement to define a 

learning disability has psychometric concerns because measures of IQ and measures of 
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achievement tap the same cognitive processes that might produce a disability in the first place, 

implying that there is a great deal of redundancy between IQ and measures of achievement and 

cognition. Siegel (1989) gave a different reason for hesitancy in using IQ tests, indicating that IQ 

is not effective in measuring one’s achievement ability and concurrently not sufficient in 

detecting learning disabilities, the overarching reason for this being that measures of IQ are 

imprecise and unspecific to real-life tasks like reading or math. Flynn (1987) agreed, arguing that 

problems on IQ tests are ―so abstracted from reality that the ability to solve them can diverge 

over time from the real-world problem-solving ability called intelligence;‖ he argued that they 

instead measure some weak correlate to intelligence. Therefore, using IQ as a predictor of math 

outcome would likely show much overlap with the cognitive constructs being measured, and the 

extent and the specificity of the redundancy would be difficult to define. 

Math Interventions 

One of the end goals in understanding the nature of mathematics learning is to optimize 

ways of teaching and remediating mathematics. For as little that is known about algebra and 

higher-level math in general, even less is understood about how to teach it or remediate it. Most 

published interventions are at the elementary school math level (e.g., Fuchs, Powell, Seethaler, 

Fuchs, Hamlett, Cirino, & Fletcher, 2010; Ma & Kessel, 2003; Poncy, McCallum, & Schmitt, 

2010; Xin, Wiles, and Lin, 2008), and there is less empirical data regarding learning algebra and 

other higher level math. Nonetheless, existing studies introduce intervention structures that are 

applicable across both developmental and skill-level continuums and may therefore have 

applicability to higher-level math as well (Fuchs, Fuchs, Powell, Seethaler, Cirino, & Fletcher, 

2008).  
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A common theme in the literature with young students is the teaching of procedural math 

fact skills. What is known about teaching in elementary math can be translated into higher-level 

math as well, so its examination is worthwhile. In teaching math fact fluency, the behavioral 

technique of Cover, Copy, and Compare (CCC), which consists of looking at a math fact and 

answer, covering it, copying it without looking, and finally comparing the copied response with 

what the covered math fact was, was more effective than other less direct techniques when 

employed over the course of a month (Poncy, McCallum, & Schmitt, 2010). Another technique 

that aims at teaching math fluency is Detect, Practice, Repair (DPR) which incorporates aspects 

of CCC but also incorporates timed components that build automaticity in math fact retrieval. 

Students who received DPR instruction each day over the course of four weeks showed 

significant improvement in math fact fluency (Axtell, McCallum, Mee Bell, & Poncy, 2009). A 

study by Powell, Fuchs, Fuchs, Cirino, and Fletcher (2009) illustrates the differential 

effectiveness of math interventions based on the nature of a student’s math deficit. Students with 

math difficulty alone improved more on math fact retrieval after receiving direct fact retrieval 

training three times a week for fifteen weeks than after receiving computation/estimation training 

or after receiving no training. On the contrary, students with concurrent math and reading 

difficulty did not respond differently to any of the interventions.  

Procedural interventions tend to be effective for elementary math, possibly because 

learning basic math facts is an automated process (Axtell et al., 2009) and may not require a 

great deal of conceptual knowledge. However, for higher-level math, procedural interventions 

may not be sufficient. Herscovics and Linchevski (1994) suggest that difficulty in algebra may 

be a result of teaching that does not emphasize learning conceptual strategies. There is a need for 

conceptual-based teaching strategies in higher level math (Mason, 1989; Sfard & Linchevski, 
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1994), and students may not receive the full benefits of algebra curricula if procedural math 

strategies alone are emphasized in higher-level math instruction.  

Even at the elementary level, some interventions seek to help students garner a 

conceptual understanding of math. In fact, Xin, Wiles, and Lin (2008) indicate that teaching 

basic math at a conceptual level in elementary school may help students to better transition to 

conceptual learning at higher levels of math. Herscovics and Linchevski (1994) introduced the 

idea of a cognitive gap between arithmetic and algebra, namely that the lack of conceptual 

learning in arithmetic makes the abrupt jump to conceptual learning in algebra difficult. An 

elementary level math intervention called Knowing Math (Ma & Kessel, 2003) involves 

encouraging the exploration of the mathematical concepts that underlie math procedures. 

Teachers encourage conversation about strategies, insights, and opinions as well as provide 

problems which students can use to practice and clarify any confusion. A study of fifth grade 

students showed that students who received the Knowing Math intervention four times a week 

for 16 to 20 weeks improved performance significantly more than the control group, which only 

received regular math instruction from the general education classroom (Ketterlin-Geller, Chard, 

& Fien, 2008). A case study of three elementary age students with behavioral and emotional 

disorders featured an intervention emphasizing conceptual understanding of math, math fluency, 

and problem solving. These students showed signs of improvement in math accuracy and on-task 

behavior after the intervention’s implementation (Alter, Brown, & Pyle, 2011). 

As there have been a number of intervention studies targeting elementary math, there 

have also been studies that examine interventions in higher-level math like algebra. Foegen 

(2008) reviews some of the types of remedial algebraic instruction. One of these is a cognitive 

strategy instruction developed by Hutchinson (1993) which involves teaching students how to 
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first represent problems mentally then make a plan for solving problems. Another is creating 

mnemonics to use as a step-by-step guide for algebraic procedures (Maccini & Hughes, 2000). 

An additional method uses peer tutoring in the classroom, where one classmate acts as a coach to 

another, and then they switch roles (Allsopp, 1997). One other method makes use of graphic 

organizers to help spatially represent simultaneous equation problems (Ives, 2007). Foegen 

(2008) indicates that the majority of empirical algebra instruction studies, including the 

aforementioned, have been developed to study remediation for those with math disabilities, not 

general algebra instruction. While remediation for those with math disabilities is certainly 

necessary, additional research that seeks to develop robust general algebra instructional practices 

will help address the variety of reasons that a high percentage of students around the United 

States do poorly in algebra (NAEP, 2011). Additionally, of the studies devoted to examining 

algebra interventions, few examine college students and/or adults, so there is a need for more 

research that addresses algebra interventions among adult populations. 

An alternative type of intervention, computer algebra systems (CAS), is increasingly 

being implemented in schools (Taylor, 1995). Anderson, Corbett, Koedinger, and Pelliet (1995) 

indicate that computer tutoring systems for algebra can be effective and that their effectiveness in 

remediating algebra skills may be due to a number of principles including that the programs 

target specific skills, promote abstract understanding of problem-solving knowledge, decrease 

WM load, and provide immediate feedback for errors. While these kinds of programs have 

appeal, a study interviewing teachers who used both computer and traditional teaching styles 

indicated that there might be some downsides as well: teachers reported that computerized 

instruction was not as effective at encouraging class discussion, that it usually taught only one 

approach to solving a problem that might have multiple methods of solving, and that it did not 
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inform teachers whether students were thinking about algebraic ideas conceptually or simply at a 

surface level (Kinney & Kinney, 2002). A large-scale study by the Institute of Educational 

Sciences (IES) (2009) showed that classrooms which used computerized algebra curriculum did 

not show any differential improvement in algebra in the first year a teacher used the curriculum. 

In the second year, classrooms which used the curriculum did slightly better than those that did 

not use the curriculum, but data was not used from teachers who discontinued use of the 

curriculum, and the possibility of differential attrition was not controlled. Regardless of the 

prospective efficiency of the host of algebraic interventions, specific intervention studies need to 

be done from a variety of perspectives to converge on the most appropriate instructional 

techniques and principles. 

Procedural Skills and Conceptual Knowledge in Algebra  

The idea of providing students with a conceptual understanding of math procedures is 

one that becomes increasingly more important as students transition from elementary math to 

algebra. Key to algebraic learning is the interplay between procedural and conceptual 

knowledge. An early study by Thorndike and Upton (1922) theorized that students of algebra 

struggle because algebra necessitates the ability to ―read between the lines‖ and infer 

connections that are not always explicitly stated. More recent research expounds upon this idea, 

suggesting that algebra is cognitively demanding because it requires one to be able to attend to 

math learning as an object or procedure and concurrently understand and apply the abstraction of 

that learning (Mason, 1989; Sfard & Linchevski, 1994). In a meta-analysis which included 82 

studies and 22,424 students, Rakes, Valentine, McGatha, and Ronau (2010) showed that the 

effect size for conceptual interventions was nearly double the effect size for procedural 

interventions. Several studies have shown that lower-level problem solving techniques may 
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actually interfere with learning problem solving techniques that require more conceptual, higher-

level understanding (Crowley & Siegler, 1999; McNeil, 2008; McNeil & Alibali, 2005). One 

instance of this interference effect may play out in the effect learning arithmetic has on learning 

algebra. Whereas arithmetic emphasizes procedural skills, algebra requires procedural skills in 

addition to the ability to understand number concepts conceptually, so procedural arithmetic 

knowledge may interfere with learning conceptual algebraic knowledge (Weaver & Kintsch, 

1992). Accordingly, Xin, Wiles, and Lin (2008) touched on the long-term importance of teaching 

math from a conceptual base even at the elementary level; elementary-age children with or at 

risk for a math disability who were given a conceptual-based math curriculum showed 

improvement on measures of equation solving and algebraic expressions. 

While the procedural-conceptual dichotomy is a popular one in mathematical learning, 

Schneider and Stern (2010) suggest that there is still much to understand in order to measure 

procedural and conceptual knowledge accurately and, subsequently, in order to study their 

interplay. Rittle-Johnson et al. (2001) demonstrated that students develop conceptual and 

procedural knowledge in an iterative fashion, i.e., gains in procedural knowledge predicted gains 

in conceptual knowledge and vice-versa. A study of second grade students found that conceptual 

instruction improved students’ flexibility in choosing procedures for solving math problems 

(Blöte, Van Der Burg, and Klein, 2001), and because there are multiple ways to solve math 

problems, choosing the correct procedure can lead to greater knowledge and use of more 

efficient strategies (Star & Rittle-Johnson, 2008). Therefore, conceptual instruction ought to lead 

to greater flexibility, which should in turn lead to greater knowledge and efficiency, which 

should ultimately end with better math performance.  
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Lee and Hutchison (1998) illustrated the procedural/conceptual paradigm in teaching 

chemistry stoichiometry principles. Students performed better on a posttest after seeing worked 

examples and responding to reflection questions that inquired about an underlying strategy than 

after seeing worked examples and responding to reflection questions that inquired about 

procedure, although both groups improved from pretest to posttest. Because of the conceptual 

nature of algebra, it makes sense to teach algebra in a similar manner which guides students to 

think conceptually – to understand why one needs two unique equations to solve for two 

unknowns, to understand why the intersection of two lines is the point at which the solutions to 

two equations are equivalent or to understand why algebraic variables represent real-life entities 

– not just to memorize a method. 

Many studies focus on teaching novel math concepts to students, but there is considerable 

need for remediation, especially for adults. Croft (2006) and Martin et al. (in preparation) 

provide evidence that even after taking algebra classes, sometimes at both the high school and 

college level, a large percentage of college students still are unable to perform critical algebraic 

procedures. Because of the success of conceptual interventions for algebra when it is being 

introduced for the first time, it is likely that conceptual interventions would be effective for 

remediation when algebra is being re-introduced or re-taught to students who have already taken 

algebra classes. However, more data is needed. For example, it is possible that procedural and 

conceptual interventions would both be enough to re-activate prior knowledge in students who 

have already learned the material, and the greater contextualization that a conceptual intervention 

offers would have no differential effect. Still another possibility may be that neither procedural 

nor conceptual interventions lead to any change in performance.  

Summary 
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The amount of research devoted to understanding algebra and other advanced math 

acquisition in adults is less extensive than that focused on arithmetic development in children. A 

complete understanding of algebra is critical for college students and adults working in a number 

of different STEM and non-STEM fields. For students at many colleges and universities, algebra 

is often an obstacle toward upper level coursework, and an inability to pass such a course, or 

retain the concepts therein, will have negative consequences for students with both STEM and 

non-STEM majors.  

The population for this experiment is a university where many students struggle with 

algebra, so this is an ideal setting for studying how college students learn algebra. Main 

components of algebra at the University of Houston (in sequential chapter order) are: graphs and 

lines, equations and inequalities, functions, polynomial and rational functions, exponentials and 

logarithms, and simultaneous (systems of) equations (University of Houston Department of 

Mathematics, 2011). Most undergraduate students at the University of Houston have taken 

courses at the introductory algebra level or higher in high school, and all students who attended 

high school in Texas were, in order to graduate, required to pass statewide tests whose content is 

the same as the content covered in the university’s introductory college algebra class (Croft, 

2006). Despite this, according to the University of Houston’s Office of Institutional Research 

Program Evaluation by Croft (2006), between 1996 and 2005 the failure rate of introductory 

college algebra at the University of Houston ranged from 8.4% to 22.2%, coupled with a  

dropout rate that varied between 14.2% to 22.1%.  

The Present Study 

 Data from the same population as that proposed for the current study (Martin et al., in 

preparation) showed that performance on items from a particular algebraic measure that involved 
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2-equation, 2-unknown (2x2) simultaneous equations, was very low, with only 28.57% of 

students providing the correct answer. Simultaneous equations is one of the more complex skills 

in introductory algebra at the University of Houston and therefore may show greater variability 

in performance; for example, it is last in the curricular sequence of the course textbook 

(University of Houston Department of Mathematics, 2011). Because it is a skill that is relatively 

more complex and one for which there is evidence for the need for remediation among this 

population, studying the effects of a ―refresher‖ on simultaneous equations is optimal because it 

should reduce the presence of possible ceiling performance on pretest and posttest.  

 The present study will examine the effect of intervention on re-learning simultaneous 

equations, while also examining the moderating effects of specific cognitive variables and 

employing reading and arithmetic measures as covariates. The study will employ two 

interventions, one procedural and one conceptual, which target re-teaching simultaneous 

equations to college students. Procedural versus conceptual math interventions are particularly 

relevant because they are analogous to the type of teaching and reflection questions a typical 

high school or college student might experience – learning to replicate an algebraic algorithm 

(procedural) versus organizing the learning of algorithms to allow for the abstraction of that  

procedural knowledge in order to solve diverse types of problems (conceptual). The procedural 

intervention will encourage students to think concretely about simultaneous equations examples 

with the goal of understanding what is being carried out. On the other hand, the aim behind the 

conceptual intervention is to encourage students to think through simultaneous equations 

examples with the mission of figuring out why certain procedures are carried out, not just that 

they are carried out. Reflecting what is seen in the literature (e.g., McLean & Hitch, 1999; Tolar 

et al., 2009; Blair & Razza, 2007; Jiban & Deno, 2007), moderators included in this experiment 
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will include measures of WM, LTM, and visuospatial EF; measures of reading, computational 

skill, and motivation/anxiety will be used as covariates.  

 The goals of the study are three-fold. One goal is to examine the roles of WM, LTM, and 

EF in the efficacy of an algebra intervention. The second goal is to directly compare the effects 

of a certain procedural and a conceptual intervention, modeled after the instructional paradigm of 

Lee and Hutchison (1998) referenced above, but with algebra-related worked examples, rather 

than chemistry-related worked examples. The third goal concerns moderation of the treatment 

effect by specific cognitive factors, i.e., whether different cognitive factors interact with the 

results of the procedural or conceptual interventions. Recognizing which type of instruction is 

most effective for students with different cognitive strengths and weaknesses may be important 

in crafting math curriculum and lesson plans relevant to student needs.  

 The present study is unique in many ways that enhance the mathematical literature: (1) its 

focus is on algebra; (2) it focuses on adult students who have recently taken algebra across a 

range of mathematical skill; (3) it emphasizes a refresher/re-learning approach that is brief 

(approximately 15-minute) rather than an intervention that takes several weeks or months; (4) it 

studies conceptual and procedural differences in algebraic learning; and (5) it studies cognitive 

correlates of algebraic learning and controls for relevant non-cognitive factors. For these reasons, 

the study is potentially far-reaching and widely relevant. The implications are significant in that 

the study seeks to acquire knowledge in several different areas in which research is sparse or 

weak, making it of interest to those concerned with many different aspects of math learning. 

Hypotheses 

The first hypothesis is that WM, LTM, and EF are positively correlated with math 

performance as other studies have shown (Männamaa et al., 2012; Prevatt et al., 2010). The 
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current study expands on previous studies by considering algebra specifically in addition to a 

broad computational measure.  

A second hypothesis is that students randomly assigned to the conceptual condition will 

perform better on posttest than those in the procedural condition. Both treatment groups will 

receive similar instruction, and both groups will answer questions about worked examples. The 

main distinction is that the conceptual group will be asked to answer ten questions about worked 

examples that force them to think holistically about the process, and the procedural group will be 

asked to answer thirty questions but that are at a more surface level. It is anticipated that the 

greater contextualization of the problems in the conceptual treatment group will decrease the 

necessary cognitive load; in other words, there will be less interference from the memory 

demands of the task (DeCaro et al., 2010). It is predicted that this difference will be even more 

marked on transfer-type questions. 

A third hypothesis concerns the moderation of the treatment effect by WM, LTM, and 

EF. It is predicted that the gap between the conceptual and procedural conditions will be largest 

for participants who are low in WM skills (Huang-Pollock & Karalunas, 2010), LTM skills 

(Prevatt et al., 2010), and EF skills (Passolunghi & Siegel, 2001) relative to those with other 

combinations of WM, LTM, and EF (see Figure 1). As per hypotheses 1 and 2, gains on outcome 

are expected to be greatest with high WM, LTM, or EF skills, and greatest with the conceptual 

rather than procedural treatment. However, the advantage for the conceptual treatment will be 

less for high WM, LTM, and EF than for low WM, LTM, and EF. Put another way, the 

conceptual treatment will compensate to a great extent for low WM, LTM, or EF and only 

modestly for high WM, LTM, or EF. Although there is literature suggesting that anxiety-

relieving interventions helps those with high WM more than those with low WM on math 
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performance (Beilock, 2008; DeCaro et al., 2010), the scope of the present intervention is 

different; the conceptual intervention focuses on decreasing reliance on WM by encouraging 

conceptual thinking when attempting to solve novel problems. In other words, being in the 

conceptual group ought to ―make up‖ for having low WM (Huang-Pollock & Karalunas, 2010). 

Low LTM is expected to be associated with greater improvement in the conceptual group than in 

the procedural group because greater LTM is associated with greater math performance, and low 

anxiety is a protective factor against the consequences of low LTM skills (Prevatt et al., 2010). 

Participants who are low in LTM skills are predicted to differentially benefit most from the 

conceptual instruction because the conceptual questions will decrease anxiety levels associated 

with performing the math tasks. The reason it is predicted that low EF will be associated with 

greater improvement in the conceptual group than in the procedural group is that greater EF is 

associated with greater math performance (Passolunghi & Siegel, 2001), and by decreasing 

cognitive demands in the conceptual group, those low in EF are expected to improve (Bull, Espy, 

& Wiebe, 2008). 

Methods 

Participants 

Participants were 63 undergraduates (12 male, 51 female) at the University of Houston 

recruited via the Sona system. Demographics are shown in Table 1. Thirty-one students were 

randomly assigned to the procedural group and 32 to the conceptual group. Sona is a 

commercially-based software system designed to manage research administration as well as 

conduct online surveys. When a student desired to participate, the student used the Sona system 

to sign up for a time when there was a slot available. The consent document was stored online, 

and students were able to view the document. Students in certain university psychology classes 

were given extra credit for participation in psychological research, per agreement with their 
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instructor. Undergraduate students age 25 or younger who had taken (in college or previously) 

algebra or were currently taking algebra were eligible to participate. The study was approved by 

the university’s Committee for the Protection of Human Subjects (CPHS). 

Measures 

 Algebra. To assess algebra, an experimental pretest and two experimental posttests were 

used. All three tests feature five problems, one at the top of each page, and participants solve and 

write answers at the bottom of the page. Participants are informed beforehand that they ―will 

earn points based on the work [they] show, not only [their] final answer.‖ Pretest consists of five 

2x2 simultaneous equations problems, and participants have up to ten minutes to complete the 

task. Posttest I is analogous to Pretest, with five 2x2 problems of similar difficulty, and 

participants have ten minutes to complete the task. Problems on Pretest and Posttest I are scored 

on a scale from 0 to 5, with points given according to a detailed rubric for work shown as well as 

the final answer. Posttest II consists of transfer tasks: two 3x3 problems and three 2x2 problems 

written in story form. Participants have ten minutes. Problems on Posttest II are scored on a scale 

from 0 to 7, with points given according to a detailed rubric (see Appendix) for work shown as 

well as the final answer. Thus, the maximum scores for Pretest or Posttest I are 25, and for 

Posttest II is 35. See Appendix for examples of Pretest and Posttest I and II problems. Test-retest 

between Pretest and Posttest I is .61 (though this occurs across intervention). Cronbach’s alpha 

for Pretest, Posttest I, and Posttest II are .85, .75. and .76, respectively. 

 WM. In the Digits Backward subtest of the Test of Memory and Language-2 (TOMAL-2), 

participants are verbally given strings of numbers varying from 2 to 9 numbers in length. 

Numbers range from 1 to 10. After hearing each string of numbers, participants are asked to 

repeat the string in backward order. The first string is 2 numbers in length, and strings become 



Running head: PROCEDURAL VS CONCEPTUAL ALGEBRA REFRESHER INTERVENTIONS 25 
 

 
 

progressively longer. The experimenter discontinues testing when, after the first 4 items are 

given, participants correctly answer 3 or fewer numbers correctly on two consecutive items. The 

total sum of numbers correct is recorded (not the total sum of items). Test-retest reliability is .87 

(Reynolds & Voress, 2007). 

LTM. The TOMAL-2 Word Selective Reminding subtest asks participants to listen to a list 

of twelve nouns between three and six letters in length, then repeat as many of the items as 

possible. Items not remembered are repeated by the examiner, and the participant is asked to 

recall the entire list again. The examiner continues to give feedback about missed items on 

successive trials until six trials have passed or until the participant successfully recalls all twelve 

words. The total number of words recalled is recorded; if the participant successfully recalls all 

twelve words before the sixth trial, credit is given for all remaining trials. Test-retest reliability is 

.73 (Reynolds & Voress, 2007). In the TOMAL-2 Word Selective Reminding Delayed subtest, 

participants are asked to repeat the twelve-word list after a 20-30 minute delay. Total words 

recalled are recorded. Test-retest reliability is .47 (Reynolds & Voress, 2007). The measure 

utilized in analysis is the standard score for immediate recall. 

EF. In the Planning subtest of the Woodcock-Johnson III (WJ-III) Tests of Cognitive 

Abilities, participants trace over a figure composed of a dotted line, but are not permitted to trace 

over a line over which they have already traced. The items are scored based on the number of 

line segments not traced. Internal consistency reliability is .75 (McGrew, Schrank, & Woodcock, 

2007). The measure utilized in analysis is the standard score. 

Reading. The blue form of the Word Reading subtest of the Wide Range Achievement 

Test 4 (WRAT-4) features a list of 55 words of varying difficulty, and participants are asked to 

pronounce each word. Items are given a score of 1 if they are pronounced correctly and scored 0 
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if there is any mistake in pronunciation. Internal consistency reliability ranges from .90 to .92 for 

ages 17-34, and alternate-form delayed-retest reliability is .85 for all adults (Wilkinson & 

Robertson, 2006). The measure utilized in analysis is the standard score. 

Initial Math Skill. The blue form of the Math Computation subtest of the WRAT-4 is a 

40-item paper-and-pencil math test ranging from single digit addition to fraction manipulation 

and long division. Items are scored 1 if the answer written is correct and 0 if it is incorrect. 

Internal consistency reliability ranges from .93 to .94 for ages 17-34, and alternate-form delayed-

retest reliability is .88 for all adults (Wilkinson & Robertson, 2006). The measure utilized in 

analysis is the standard score. 

Reflection Questions. The primary purpose of the experimental reflection questions is to 

foster either procedural or conceptual thinking, depending on the group to which participants are 

randomly assigned. Secondary to that goal, answers to reflection questions measure algebra 

aptitude in 2x2 simultaneous equations; scores on conceptual reflection questions indicate 

conceptual aptitude, and scores on procedural reflection questions indicate procedural aptitude. 

Following the paradigm of Lee and Hutchison (1998) in teaching chemistry 

stoichiometry problems, the conceptual group is presented with questions that stimulate the 

formation of a framework for approaching mathematical problems (―why‖ questions) and the 

procedural group is presented with questions that support the memorization of rote algebraic 

techniques (―what‖ questions). For example, the conceptual group answers questions such as, ―In 

step 2, why did the expert substitute 6-x for y?‖ and the procedural group answers questions such 

as, ―In step 2, what did the expert substitute for y?‖  

There are 30 procedural questions and 10 conceptual questions, which reflects the 

difference in time generally needed to think through the procedural versus conceptual questions. 
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Procedural questions will be scored as 1 if correct and 0 if incorrect. Conceptual questions will 

be scored as 3 if complete, 2 if mostly complete, 1 if minimally complete, and 0 if completely 

incorrect. An example problem and procedural and conceptual questions are presented in the 

Appendix. 

Math Perception. Math perception is assessed using an experimental written 

questionnaire with 14 items, each assessed on a Likert scale from 1 (Definitely Disagree) to 5 

(Definitely Agree). Some items are positively-keyed and some are negatively-keyed. Example 

items include: ―I dread having to do math‖; ―I would like to learn more math.‖ Negatively-keyed 

items are reversed in point value when totaling scores. There are three subscales: Math Anxiety, 

Perceived Math Importance, and Perceived Math Difficulty. See Appendix for example items. 

Cronbach’s alpha for Math Anxiety is .63, for Perceived Math Importance is .84, and for 

Perceived Math Difficulty is .77. 

Procedure 

 Participants were given tasks in the following order: Consent; Demographic 

Questionnaire; Math Anxiety Questionnaire; Previous Math Courses Questionnaire; Pretest; 

TOMAL-2 Word Selective Reminding; WRAT-4 Math; TOMAL-2 Digits Backward; WRAT-4 

Reading; TOMAL-2 Word Selective Reminding Delayed; Reminder Algebra Instruction; 

Reflection Questions (either conceptual or procedural); WJ-III Test of Cognitive Abilities 

Planning; Posttest I; Posttest II. The fixed order of administration was a strategic decision 1) in 

order to eliminate variability due to differences in test administration, 2) in order to maintain a 

consistent portion of time between Pretest and instruction and between instruction and the 

posttests, and 3) to allow for the proper amount of time between the TOMAL-2 Word Selective 

Reminding task and the Word Selective Reminding delayed task. Administering the tasks in 
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reverse order, for example, would have been nonsensical due to the mandatory sequential nature 

of certain tasks (like the Pretest, posttests, instruction, reflection questions, and TOMAL-2 Word 

Selective Reminding Delay Task). 

For the Reminder Algebra Instruction, a research assistant provided an introduction/recap 

of the content area, verbally explaining what simultaneous equations are, indicating how to solve 

simultaneous equations, and writing examples on a marker board. Subjects were presented with 

two methods of solving such problems procedurally (substitution and elimination). Subjects in 

the conceptual group received an extra 1-minute verbal explanation of how knowledge about 2x2 

simultaneous equations can be extended to simultaneous equations with more than two unknown 

values and also real-life situations.  

For the Reflection Questions, a research assistant placed in front of the participant pages 

with worked examples that illustrated the solution of 10 different simultaneous equation 

problems. Underneath each worked example were either conceptual- or procedural-style 

reflection questions, depending on the group to which they were assigned. In order to maintain 

equal time for answering reflection questions between the two groups, the procedural group 

answered 3 questions about each worked example instead of 1 because in pilot testing the 

conceptual questions took about 3 times as long to answer.  

The time of initial instruction was approximately 6 minutes for both groups; the average 

time of reflection questions was 8.7 minutes (approximately 15 minutes total). Although every 

effort was made to keep the amount of time for reflection questions similar for both groups, the 

conceptual group did spend slightly longer on the reflection question portion (9.4 minutes 

average) than the procedural group (8.0 minutes average). Total participation time varied 

between about 1 hour and 30 minutes and 1 hour and 45 minutes.  
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Analyses 

The primary analytic approaches include correlation, simultaneous regression, analysis of 

covariance (ANCOVA), and analysis of variance (ANOVA). Prior to analyses, key variable 

distributions were examined for their distributional properties (e.g., skew, kurtosis) and outliers. 

Internal consistency was assessed with Cronbach’s alpha. Assumptions for correlation are that 

data are interval and have a normal sampling distribution (Field & Miles, 2010); normality will 

be assessed by examining distributional properties. Assumptions for regression include linearity, 

homoscedasticity, and normality (Osborne & Waters, 2002). Linearity was assessed by 

examining the regression diagnostics, homoscedasticity was assessed by plotting residuals to 

make sure that variance of errors are consistent across both levels of the independent variable. 

Assumptions for ANOVA/ANCOVA include that population error scores will be independently 

and normally distributed and that the error scores will have an expected value of zero and 

constant variance (Maxwell & Delaney, 2004). The variance assumption was assessed with 

Levene’s test (Maxwell & Delaney, 2004). Given the preliminary nature of the study, in addition 

to the inferential statistics described above, effect sizes were also examined when comparing 

groups. Effect size was calculated using Cohen’s (1988) d derived from its original form as 

follows 
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In order to control for analyses that either used or did not use covariates, calculation for 

Cohen’s d was based on F rather than directly on the standard error of the samples. 

Pretest was part of the design and so was always included in models, and as noted above, 

was strongly related to posttest performance. Additional variables were also considered as 

potential covariates: age, sex, time spent on reflection questions, reading ability, math anxiety, 

perceived math importance, perceived math difficulty, and initial math skill. These covariates 

were tested to determine if they should be included in fuller models, with the criteria being that 

they were related to the outcome measures and unrelated to other covariates and the 

hypothesized predictive variables (Pedhazur, 1997). 

Hypotheses 

The first hypothesis, that the measures assessing WM, LTM, and EF are predictors of 

math performance, was tested using bivariate correlation to examine whether each cognitive 

variable is a significant predictor of posttest math performance. Next, forced entry multiple 

regression with all three cognitive variables (WM, LTM, and EF) was performed to identify 

unique contributions of the hypothesized variables. Finally, pretest was added to the multiple 

regression models, followed by other relevant covariates.  

The second hypothesis, that students randomly assigned to the conceptual condition will 

perform better than those in the procedural condition upon posttest, was tested using ANCOVA. 

Randomization ensured that Pretest scores were equal for both groups, but the Pretest was used 

as a covariate to increase power (Knapp & Schafer, 2009). In the context of the treatment effect, 

we evaluated the pretest variable for assumptions of 1) independence of the covariate and 

treatment effect and 2) homogeneity of regression slopes (Field & Miles, 2010).  
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The third hypothesis, that the gap between conceptual and procedural groups on posttest 

will be greatest for low WM, low LTM, and low EF was assessed by testing for an interaction 

between each cognitive variable and posttest performance using factorial ANOVA. Because 

somewhat different expectations are hypothesized, these potential cognitive moderators were 

examined individually rather than simultaneously. 

Power 

The study was powered for our primary hypothesis, which concerns the group differences 

between the experimental groups. There are few existing empirical studies on which to base 

potential effect sizes. However, in Lee and Hutchison (1998), one of the trials in which 

participants received either procedural or conceptual-type chemistry reflection questions used 41 

subjects, t(39) = 2.77, p < .01. This corresponds to a Cohen’s d effect size of .865. If a similar 

effect size were obtained in the present study, a sample size of approximately 20 per condition 

would be needed in order to detect a significant difference between groups with power=.80 and 

α=.05, suggesting a minimum overall sample size of 40 students. However, in order to maximize 

impact, 63 students were recruited; at power = .80 and α = .05, the minimum detectable effect 

size would be .70.  

Results 

Preliminary Results 

Descriptive statistics for the predictor and outcome variables are shown in Table 2. There 

were three cognitive variables (TOMAL-2 Word Selective Reminding, TOMAL-2 Digits 

Backward, and WJ-III Planning), three measures of anxiety/perception toward math (math 

anxiety, perceived math importance, and perceived math difficulty) and two academic measures 

(WRAT-4 Math and WRAT-4 reading). All the variables were normally distributed except WJ-
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III Planning, which was skewed to the right and leptokurtotic, and Posttest I, which was skewed 

to the left and leptokurtotic. However, this skew was exaggerated by the effects of large 

studentized residuals for both WJ-III Planning and Posttest I. Three individuals in WJ-III 

Planning and four individuals in Posttest I were found to be excessively influential to the entire 

sample results, and, therefore, analyses were conducted both with and without these individuals. 

When removed, the distributions of both of these variables improved substantially, but there was 

no difference in results when analyses were run with or without them.  

At pretest, there were four participants subjects who were at ceiling (a perfect score of 25 

out of 25), and nine additional participants at floor (a score of 0 out of 25); follow-up analyses 

evaluated the effect of these participants on results. Pretest ceiling performers were removed 

because these participants would be unable to improve from pretest to posttest, and Pretest floor 

performers were removed because these participants showed no evidence of even partial prior 

knowledge of the task, which potentially obscures the instruction’s status as a ―refresher 

intervention‖ for these participants. It is not clear whether these participants scored 0 on Pretest 

because of lack of attention, motivation, or skill. Floor performers were not significantly 

different from the rest of the sample in any cognitive ability or in reading or math perception (p ≥ 

.30), so that their differential performance was restricted to the algebraic task used in this study. 

 The relationships of covariates to outcomes are shown in Table 3. As noted, initial math 

ability, time spent on reflection questions, math anxiety, and perceived math importance were 

significantly related to outcomes, but age, sex, reading ability, and perceived math difficulty 

were uncorrelated. Therefore, covariates that were significantly related to outcomes were 

considered in analyses. Other relationships not considered for the analyses, but which may be of 

interest, are shown in Table 3.  
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Analyses were run both with and without the relevant covariates for each outcome; 

however, beyond Pretest, in no case did the substantive results change. Therefore, in the results 

section, analyses are presented with only Pretest included as a covariate. 

Hypothesis 1: WM, LTM, and EF will be positively correlated with math performance. 

Correlations between all variables are found in Table 3. There were no significant correlations 

between WM, LTM, and EF and any of the math outcome variables. Correlations ranged from 

.11 to .20 between WM (TOMAL-2 Digits Backward) and the outcome variables, from .19 to .24 

between LTM (TOMAL-2 Word Selective Reminding) and the outcome variables, and from .06 

to .17 between EF (WJ-III Planning) and the outcome variables. All of the math outcome 

variables, including Pretest, Posttest I, Posttest II, and initial math ability were significantly 

correlated with each other (p ≤ .0001). When multiple regression was performed with WM, 

LTM, and EF together and each math outcome variable separately, between 4.8 and 7.8% of the 

total variance was accounted for by the cognitive measures. The results did not change when 

additional covariates were included in these regression analyses. 

 In follow up analyses where floor and ceiling performers were excluded groups stayed 

relatively even; there were 24 participants in the procedural group and 26 in the conceptual 

group. Table 4 shows that LTM was now correlated with Posttest I, r = .36, p = .01, but there 

were no other significant correlations between LTM, WM, or EF and the different math 

outcomes. 

Hypothesis 2: Students in the conceptual condition will outperform those in the procedural 

condition at posttest. Table 4 shows a comparison of treatment groups on outcome variables of 

interest. As expected with the randomized design, there was no difference between treatment 

groups at Pretest, F(2,60) = .46, p = .50. To minimize error due to variation on pretest skills 
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within groups, Pretest was used as a covariate in the analysis. There was an overall effect of 

treatment; i.e., participants scored higher on Posttest I than on Pretest, F(2,60) = 50.13, p < 

.0001, d = 1.78. There was no significant difference between the conceptual and procedural 

groups on Posttest I, F(2,60) < 1. Effect size was d = .12. There was also no significant 

difference between the conceptual and procedural groups on Posttest II, F(2,60) < 1. Effect size 

was d = .00. The results did not change when additional covariates (beyond Pretest) were 

included in the analysis.  

 In the follow-up analyses that excluded floor and ceiling performers, there was still an 

overall effect of treatment from Pretest to Posttest I, F(2,47) = 47.47, p < .0001, d = 1.95, but 

there remained no difference between the conceptual and procedural groups, F(2,47) = 3.50, p = 

.068. Effect size was d = .53. There was no significant difference between the conceptual and 

procedural groups on Posttest II, F(2,47) < 1, p = .40. Effect size was d = .24. When only 

subjects who were at ceiling on Pretest were excluded, and analyses were run without Pretest as 

a covariate, there was no difference between groups, F (2,56) < 1, p = .89.  

Hypothesis 3: The gap between the conceptual and procedural conditions will be larger for 

participants who are low in WM, LTM, or EF relative to those with high WM, LTM, or 

EF. There were no interactions between any cognitive variable and either Posttest I or Posttest II 

performance (all p > .05). In many ways, this result follows from the first two hypotheses, which 

noted weak relationships between cognitive variables and posttest performance and the lack of 

clear difference between the experimental subgroups. The results did not change when additional 

covariates were included in the analysis. Testing hypothesis 3 without ceiling and floor 

performers did not alter results; there remained no interactions (all p ≥ .05). 

Discussion  
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 The goal of this study was to evaluate a brief remediation for algebraic simultaneous 

equations in a conceptual versus procedural experiment, and to understand the influence of 

individual cognitive differences on experimental effects. While some previous studies assess 

efficacy of conceptual versus procedural math interventions (e.g., Blöte et al., 2001; Xin et al., 

2008) and other studies assess the relationship of cognitive variables to math performance (e.g., 

Mazzocco & Kover, 2007; Lee et al., 2009; Prevatt et al, 2010), this study is unique in that it 

assesses the efficacy of algebra interventions under the context of differing cognitive variables. 

 This study contributes to existing literature in at least three ways. First, by virtue of this 

study being an experimental study devoted to algebra interventions, it addresses the shortage of 

research on algebra, particularly the shortage of experiments that compare the effectiveness of 

different algebraic interventions (Foegen, 2008). Second, participants’ performance substantially 

improved from Pretest to Posttest I on an advanced mathematical skill after an intervention that 

was only approximately 15 minutes long. Third, although the initial results did not conform to 

hypotheses, one of the follow-up analyses did reveal an advantage for the conceptual treatment 

group relative to the procedural group in terms of educationally meaningful effect size (d = 

+0.53).  

Was overall treatment effective? 

 From Pretest to Posttest I, participants improved, which suggests that while there was not 

a significant difference between treatment groups in the initial analyses, overall, participants 

scored better on Posttest I than Pretest, which were different forms of the same test (five 

procedural 2x2 systems of equations problems). Cohen’s d effect size is 1.78 which is large. 

Considering the fact that the intervention was only about 15 minutes total, the intervention was 

efficient with regard to time, compared to most other intervention studies that intervene over the 
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course of several weeks or months (e.g., Ketterlin-Geller et al., 2008; Hutchinson, 2003; Allsopp, 

1997).  

 It is possible to argue that Posttest I was simply easier than Pretest, or that improvement 

was due solely to practice effects. However, problems were matched according to difficulty 

beforehand and split evenly between Pretest and Posttest I, suggesting equivalent difficulty. 

Also, if practice effects drove the results, then within the Pretest and Posttest I, an upward linear 

increase in scores at the item level would be expected, and there was no such trend (i.e., in the 

sample as a whole, percentage of participants receiving full credit for each of the five Pretest 

items was, in order, 52.4%, 61.9%, 50.8%, 28.6%, and 17.5%, and 77.8%, 66.7%, 77.8%, 63.5%, 

30.2% received full credit for each of the 5 Posttest I items). If anything, participants tended to 

do more poorly on later problems. Therefore, it is reasonable to conclude that improvement on 

the posttest was due to the instruction and/or reflection questions, though differentiation between 

the type of reflection questions (conceptual or procedural) was not clearly demonstrable in the 

present case. Whether improvement was due to the instruction, reflection questions, or some 

combination of the two is unclear. 

Did students in the conceptual condition perform better on posttest than those in the 

procedural condition? 

 Students in the conceptual condition did not perform significantly better on Posttest I or 

Posttest II than those in the procedural condition, whether or not covariates were used in the 

analysis. Research that examines procedural and conceptual interventions tends to favor the use 

of conceptual interventions (Rakes et al., 2010; Xin et al., 2008, Blöte et al., 2001). Therefore, 

the results of this study did not concur with existing studies.  
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 It is possible that the study was underpowered. However, the current sample size was 

powered after an effect found in the literature for a similar type of intervention (i.e., Lee & 

Hutchison, 1998), and recruitment for the present study surpassed that goal. However, it is still 

the case that a larger sample may have helped in more clearly establishing intervention effects, 

particularly given the promising though tentative results of the follow up analyses. Power for 

detecting a significant difference between posttest performance in the conceptual and procedural 

conditions was also unexpectedly lowered due to ceiling-level (and floor-level) performance by a 

substantial portion of subjects. Participants who were at or near ceiling on Pretest could improve 

their conceptual or procedural efficiency, though this could not be demonstrated with the test 

utilized here.  

Another issue that may have masked a difference between the two groups on posttest is 

the effect of the reminder instruction itself. The instruction was the same for the two groups, and 

only the reflection questions differed. Therefore, it is possible that the instruction had so strong 

an effect that it masked any effect that the reflection questions afforded. The instruction was a 

refresher; in other words, it was instruction that the participants had already heard before. 

Because of this, perhaps the instruction itself was enough for the participants to remember how 

to do the algebra problems, and the reflection questions were unable to contribute to this 

remembering process above and beyond the effect of the instruction. In a meta-analysis of math 

remediation studies, Bahr (2008) postulated that ―math remediation works for some students,‖ 

and ―when remediation works, it works extremely well.‖ One factor Bahr (2008) used to decide 

whether remediation effectiveness was likely was the depth of remedial need (greater remedial 

need implying greater remediation effectiveness). Because the depth of remedial need on the 

present task was not immense for most of the participants (average score on the Pretest was fairly 
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high), perhaps very little remediation was needed for participants to remember the concepts and 

techniques. Therefore, the instructive part (the part that was consistent for both groups) apart 

from the reflection questions (the part that differed among groups) may have been sufficient in 

and of itself to remediate understanding of the algebraic concept, masking any differentiation 

between the effects of the two different types of reflection questions. Therefore, future research 

might utilize a control group that does not include reflection questions or does not include 

instruction. 

While the difference was not significant, those in the conceptual condition did score 

directionally higher at Posttest I than those in the procedural condition. When a portion of the 

sample was removed due to ceiling and floor effects on Pretest and analyses were re-run, the 

effect size was moderate favoring the conceptual group, though still not statistically significant 

(p < .07). Therefore, the hypothesized difference between conceptual and procedural methods of 

intervention may yet hold benefit, and this deserves further study. 

Were WM, LTM, and EF positively correlated with algebra performance? 

 None of the cognitive measures correlated with math performance on Pretest, Posttest I, 

Posttest II, or on WRAT-4 Math Computation. The only significant relationship identified was in 

follow-up analyses, showing that LTM with positively related to posttest algebraic performance, 

which makes particular sense in the present study where participants were required to remember 

information presented to them several minutes before Posttest I was given. The size of the 

correlation between LTM and math in the present study (r=.36) was similar to findings by 

Prevatt et al. (2010) (r=.30). 

 It is unlikely that the lack of findings in general was due to the use of a poor outcome 

measure, as the specific algebra skill measures (Pretest and posttests) did relate well to another 
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more general math test (WRAT-4 Math Computation) which lends validity to them, as others 

have also shown relationships between algebra and math construed more broadly (Tolar et al., 

2009). Further, algebra performance was also related to reading performance, which is in line 

with previous research that indicates that the ability to read and the ability to do math go hand-

in-hand (e.g., Seethaler & Fuchs, 2006). The fact that Posttest II, which included story problems, 

was correlated with WRAT-4 Reading provides further evidence that the linguistic and textual 

nature of story problems makes them easier for those with higher reading ability (Powell et al., 

2008). Math Anxiety and Perceived Math Importance were also correlated with all of the math 

variables including Pretest, Posttest I, Posttest II, and WRAT-4 Math. Perceived Math Difficulty 

was related to Pretest and Posttest II. In other words, participants who were anxious about math, 

perceived math as unimportant, and perceived math as difficult  tended to do worse on math 

outcome measures. These results are substantiated in previous findings; as other research has 

shown, an individual’s anxiety response to math is inversely associated with how well he or she 

performs, (Prevatt et al., 2010; Hendel, 1980), and an individual’s perception of the importance 

of math is inversely related to math anxiety (Meece, Wigfield, & Eccles, 1990). 

 Nonetheless, the lack of relationships between algebra and other cognitive skills such as 

WM and EF are, in general, in contrast to previous studies (e.g., Mazzocco & Kover, 2007; Lee 

et al., 2009; Prevatt et al, 2010; Tolar et al., 2009; Bull et al., 2008; Osmon et al., 2006). One 

possible reason is that the present study used a sample of typical (non-MD) adults, who actually 

seemed to be better than average at math. Participants in most of the previous studies have 

examined math performance in participants with MD, not typical-achieving participants. In 

addition, the mean of WRAT-4 Math performance for the entire sample was at the 79
th

 

percentile, well above the overall population average 50
th

 percentile, and higher than expected 
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based on recent previous assessment of the same population (Martin et al., in preparation). Thus, 

the somewhat restricted range may have mitigated against finding significant relationships.  

 Additionally, the present study sought to examine a specific algebraic skill in adults, 

while Tolar et al. (2009) and other algebra studies (Lee et al., 2009; Lee et al., 2011) looked at 

broad algebraic performance, and other studies (e.g., Swanson & Jerman, 2006; McLean & 

Hitch, 1999; Hitch & McAuley, 1991; Siegel & Ryan, 1989) examined more basic math skills. 

Therefore, perhaps the cognitive measures examined in the present study are more related to 

some aspects of algebra than others. It may also be that different algebra measures (e.g., one that 

had more difficult problems or more varied types of problems), may have been more sensitive to 

different cognitive skills (or indeed, to the different intervention groups). 

Another issue is that most prior studies look at correlations of cognitive abilities with 

basic math skills, not with algebra, and use children as participants, not adults. The exception is 

Tolar et al. (2009) which recruited from undergraduate college students, as did the present study, 

and found WM to be related to math achievement. However, the size of the relationships in Tolar 

et al. (2009) (r=.04 to .18) and the present study (r=.11 to .24) were similar, though in the former 

study the sample size was much larger (N = 195).  

Finally, the present study used only one measure of WM, LTM, and EF each, and so it 

was not possible to comprehensively address each cognitive construct as in a latent variable set 

up, which would ameliorate measurement issues attributable to any given measure. This is 

relevant given the variety of measures that can be construed to represent the constructs examined 

here. For example, EF’s relation to some measures of math has been shown using the Tower of 

London task (Bull et al., 2008) and the Contingency Naming Test (Mazzocco & Kover, 2007), 

but not visuospatial planning tasks as used in the present study.  
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Was the gap between the conceptual and procedural conditions largest for 

participants who were low in WM, LTM, or EF relative to those with high WM, LTM, or 

EF?  

 Groups did not perform as predicted, i.e., no interaction was found between the cognitive 

variables and posttest improvement. While participants in both groups improved from Pretest to 

posttest, the type of remediation (conceptual or procedural) did not affect participants of varying 

cognitive abilities in different ways. The same issues with power and sample size due to ceiling 

performance are applicable. However, the tests for interactions did not approach significance, so 

it is unlikely that even with a more ideal sample this hypothesis would have been confirmed. The 

literature focuses more on understanding relationships between math and cognitive areas than 

how cognitive variables moderate treatment; there were no studies found that explicitly show 

that cognition moderates treatment effects in a certain direction. Therefore, in examining 

cognition as a moderator of math remediation, even though significant results were not found 

one way or the other, the present study explores an area not yet studied. 

Conclusion 

 In sum, there was clearly a significant effect of overall treatment, with participants on the 

whole improving from pretest to posttest. However, there was no significant difference found 

between conceptual- and procedural-type algebra remediation, although a follow-up analysis did 

demonstrate a conceptual advantage with moderate effect size. Besides the fact that LTM was 

correlated with posttest in a follow-up analysis, WM, LTM, and EF were not found to be 

significantly correlated with math in most analyses; in contrast, reading and math 

perception/anxiety appeared to be larger contributors to math performance. Possible reasons for 

low relationships included sample size, sample shape, examining a narrow algebra topic rather 
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than a broad one, examining adults rather than children, and performance level (typical, rather 

than MD). There were no significant interactions between WM, LTM, or EF and posttest 

improvement, which most likely reflects the lack of robust zero-order correlations or differential 

treatment effects.  Despite the lack of robust results directly in line with hypotheses, some 

promising effects were noted, including substantial overall improvement with only a brief 

refresher intervention and a moderate effect size advantage of conceptual algebraic interventions 

over procedural interventions, which warrants future study. 
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Appendix 

Examples of Pretest/Posttest I Questions and Scoring Criteria: 

Solve for x and y: 

y = 3x – 2 

y = –x – 6 

2,2 procedural (5 pts possible) 

correct setup of elimination or substitution (more than one way) (2 pt) 

correct answer for one variable (1 pt) | answers are x= -1 and y= -5 

correctly plugged in first answer into one of the equations – first answer does not have 

to be correct (1 pt) 

correct answer for second variable (1 pt) | answers are x= -1 and y= -5 

 

 

Solve for x and y: 

6x - 3y = 12 

y = 2x – 4 

2,2 procedural (5 pts possible) 

correct setup of elimination or substitution (more than one way) (2 pt) 

correct answer for one variable (1 pt) | answers are x= 1 and y= -2 

correctly plugged in first answer into one of the equations – first answer does not have 

to be correct (1 pt) 

correct answer for second variable (1 pt) | answers are x= 1 and y= -2 
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Examples of Posttest II Questions and Scoring Criteria: 

Bill and Grace have received a total of 64 emails in the past week. If Grace received 5 fewer than 

twice the number of emails that Bill received, how many emails did they each receive? 

2,2 conceptual (7 pts possible) 

 correct setup of first eqn (1 pt) | b+g=64 

 correct setup of second eqn (1 pt) | g=2b-5  

correct setup of elimination or substitution – initial equations do not have to be correct 

(2 pt) 
 correct answer for one variable (1 pt) | answers are 23 and 41  

correctly plugged in first answer into one of the equations – first answer does not have 

to be correct (1 pt) 

correct answer for second variable (1 pt) | answers are 23 and 41  

 

 

Solve for x, y, and z: 

 3x − 5y + z = 22 

 2x + y = 1 

 x − 3y = 11 

3,3 procedural (7 pts possible) 

correct setup of elimination or substitution (2 pt) 

correct setup of elimination or substitution a second time (1 pt) 

correct answer for one variable (1 pt) | answers are x=2, y= -3, z=1  

correctly plugged in first answer into one of the equations – first answer does not have 

to be correct (1 pt) 

correct answer for second variable (1 pt) | answers are x=2, y= -3, z=1  

correct answer for third variable (1 pt) | answers are x=2, y= -3, z=1  
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Example of Reflection Question: 

The following is a worked example problem: 

Find the values for x and y. 

Eqn 1:  3x + 4y= 12   

Eqn 2:  18 - 2x= 6y  

 

1 Manipulating Equation 1 

3x+4y=12 

3(3x+4y=12) 

9x+12y=36 

 

2 Manipulating Equation 2 

18-2x=6y 

-2x-6y=-18 

2(-2x-6y=-18) 

-4x-12y=-36 

 

3 -4x-12y=-36 

9x+12y=36 

5x=0 

x=0 

 

4 3x+4y=12 

3(0)+4y=12 

4y=12 

y=3 

 

5 (0,3) 

 

Reflection Questions for Procedural Group:  

1. In Step 3, which variable was Jeanne trying to eliminate? 

2. In Step 1, what does Jeanne multiply the entire equation by? 

3. In Step 2, what does Jeanne multiply the entire equation by? 

 

Reflection Question for Conceptual Group:  

1. In steps 1 and 2, Jeanne multiplied the equations by different numbers. Why did she 

choose these numbers? 
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Math Perception Questionnaire: 

 

1=Definitely Disagree, 2= Somewhat Disagree, 3=Neutral, 4=Somewhat Agree 5=Definitely Agree 

I dread having to do math. 
 

1  2  3  4  5 

I have forgotten most of the math that I have learned. 
 

1  2  3  4  5 

I will just skip a math problem rather than “figure it out” if I don’t immediately 
know how to answer it.  

1  2  3  4  5 

I worry about math class more than any other subject. 
 

1  2  3  4  5 

I would like to learn more math. 
 

1  2  3  4  5 

I would rather take a harder math class if it meant that I learned the material 
better, even if it meant I would not get as good a grade. 

1  2  3  4  5 

If I were sitting in a math class, I would be afraid of being called upon. 
 

1  2  3  4  5 

It is harder for me to learn math than it is for other people. 
 

1  2  3  4  5 

Math is difficult and so it is hard to get motivated to do math related things. 
 

1  2  3  4  5 

Math is one of my least favorite subjects. 
 

1  2  3  4  5 

Math requires more mental effort than other subjects.  
 

1  2  3  4  5 

The thought of doing math makes me nervous. 
 

1  2  3  4  5 

There is little point in learning math for my every-day life. 
 

1  2  3  4  5 

When I have to do math problems, I “freeze up” and cannot think what to do 
even though I know I have learned it. 

1  2  3  4  5 
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Tables 

Table 1. Demographics (N=63) 

Variable Mean (SD) / Frequency 

Female 81.0% 

Age 21.5 (3.9) 

Race  

  White 25.4% 

  Black 23.8% 

  Asian 25.4% 

  Hispanic 14.3% 

  Multiracial 1.6% 

  Other 9.5% 

Right-Handed? 88.9% 

Major  

  Psychology 54.0% 

  Other Social Science/Humanities 28.6% 

  Natural Science/Engineering/Math 17.5% 

Year in College  

  1 23.0% 

  2 18.0% 

  3 26.2% 

  4 19.7% 

  5+ 13.1% 

Transfer Student? 55.6% 

 

Treatment groups do not differ significantly in any of these categories. 
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Table 2. Descriptive Statistics for Predictor and Outcome Variables 

 

 

N = number of participants; Std Dev = standard deviation; WST=Word Selective Reminding; DB=Digits Backward;  

 

 

 

       

Variable  Category/Scale N Mean  Std Dev Kurtosis Skewness 

Pre/Post Tests 

  Pretest 

  Posttest I 

 

0-25 

0-25 

 

63 

63 

 

14.19 

19.32 

 

7.75 

5.55 

 

-0.72 

2.31 

 

-0.64 

-1.51 

  Posttest II 0-34 63 20.89 10.27 -1.04 -0.41 

Cognitive Tests 

  TOMAL-2 WSR 

  TOMAL-2 DB 

  WJ-III Planning 

 

Scaled Score 

Scaled Score 

Standard Score 

 

63 

62 

63 

 

9.83 

10.55 

107.38 

 

2.59 

2.63 

15.93 

 

0.77 

-1.14 

6.56 

 

-0.76 

0.05 

2.36 

Math Anxiety/Perception 

  Anxiety-provoking 

  Unimportant 

  Difficult 

 

1-5 

1-5 

1-5 

 

63 

63 

63 

 

2.27 

2.71 

2.46 

 

0.71 

0.74 

0.63 

 

-0.43 

-0.96 

0.29 

 

0.32 

-0.06 

0.24 

Other Tests 

  WRAT-4Math 

  WRAT-4Reading  

 

Standard Score 

Standard Score 

 

63 

63 

 

111.95 

102.14 

 

13.25 

12.53 

 

-0.23 

0.68 

 

0.14 

0.23 



Running head: PROCEDURAL VS CONCEPTUAL ALGEBRA REFRESHER INTERVENTIONS 62 
 

 
 

Table 3. Correlations between variables (N=63) 

 

*=p<.05, **=p<.01, Pre=Pretest, Post1=Posttest I, Post2=Posttest II, WRATM=WRAT-4 Math, WRATR=WRAT-4 Reading, 

WSR=TOMAL-2 Word Selective Reminding, DB=TOMAL-2 Digits Backward, Plan=WJ-III Planning, Anx=Math Anxiety, 

Imp=Perceived Math Importance, Diff=Perceived Math Difficulty, Age=Age of participant, SemColl=Number of semesters 

participant has been in college. Means and standard deviations can be found in Table 2. 
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Pretest –              

Posttest I .67** –            

Posttest II .51** .47** –           

WRAT-4Math  .56** .51** .64** –          

WRAT-4Reading  .12 .19 .23 .39** –         

TOMAL-2 WSR  .20 .24 .19 .06 .22 –        

TOMAL-2 DB .20 .18 .11 .24 .23 .24 –       

WJ-III Planning .17 .10 .06 .22 .02 .13 .42** –      

Anxiety -.42** -.33** -.31* -.25* .00 -.06 -.14 -.22 –     

Importance -.42** -.37** -.41** -.29* -.12 -.14 -.16 .00 .63 –    

Difficult -.31* -.18 -.25* -.12 .02 .07 -.07 .00 .72 .46 –   

Age -.39** -.19 -.26* -19 -.13 -.27* -.09 .05 .27* .21 .15 –  

Sems. in College  -.28* -.14 -.24 -.14 .03 -.22 -.05 .01 .01 -.10 .05 .58** – 
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Table 4. Correlations between variables for separate analysis with ceiling and floor performers removed (N=50) 

 

*=p<.05, **=p<.01, Pre=Pretest, Post1=Posttest I, Post2=Posttest II, WRATM=WRAT-4 Math, WRATR=WRAT-4 Reading, 

WSR=TOMAL-2 Word Selective Reminding, DB=TOMAL-2 Digits Backward, Plan=WJ-III Planning, Anx=Math Anxiety, 

Imp=Perceived Math Importance, Diff=Perceived Math Difficulty, Age=Age of participant, SemColl=Number of semesters 

participant has been in college. Means and standard deviations can be found in Table 2. 
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Pretest –             

Posttest I .49** –            

Posttest II .48** .45** –           

WRAT-4Math  .47** .29* .60** –          

WRAT-4Reading  .03 .14 .18 .35* –         

TOMAL-2 WSR  .17 .36* .22 .07 .22 –        

TOMAL-2 DB .21 .15 .03 .22 .15 .22 –       

WJ-III Planning .10 -.08 -.01 .21 -.10 .07 .37** –      

Anxiety -.36* -.38** -.19 -.19 .08 .02 -.06 -.20 –     

Importance -.39** -.37** -.30* -.19 -.08 -.13 -.10 .05 .55** –    

Difficult -.29* -.13 -.15 -.05 .08 .16 -.03 .06 .62** .36* –   

Age -.22 -.22 -.25 -.36* -.09 -.44** .09 .25 .01 .08 -.14 –  

Sems. in College  -.25 -.25 -.23 -.16 .03 -.25 -.03 .13 -.08 -.14 -.05 .52** – 
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Table 5. Group comparisons on Pretest and outcomes 

 All Participants  Ceiling and Floor Performers 

Removed 

Conceptual 

Group 

Procedural 

Group 

Conceptual 

Group 

Procedural 

Group 

 N Mean (St. 

Dev.) 

N Mean (St. 

Dev.) 

F p d N Mean 

(St. 

Dev.) 

N Mean (St. 

Dev.) 

F p d 

Pretest 32 13.53 (7.98) 31 14.87 (7.57) .46 .50 .17 26 15.69 

(5.68) 

24 16.08 

(4.61) 

.07 .79 .08 

Posttest 

I 

32 19.25 (6.23) 31 19.39(4.85) .24 .63 .12 26 21.08 

(3.22)  

24 19.58(3.87) 3.50 .068 .53 

Posttest 

II 

32 20.44(10.62) 31 21.35(10.05) .00 .99 .00 26 21.96 

(10.69) 

24 20.13 

(10.22) 

.72 .40 .24 

N = number of participants; Std Dev = standard deviation; d= Cohen’s d effect size. For the posttests, F, p, and d were calculated 

using ANCOVA with Pretest as a covariate.  


