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Abstract

Signal processing has been at the forefront of modern information technology as

the need for storing, analyzing, and interpreting data gathered all around us is ever

growing. Multi-dimensional sparse signal representations occupy a significant part

of the literature on multi-scale decompositions. The interest in such representations

arises from their ability to analyze, synthesize, and modify signals carrying informa-

tion about the behavior of specific phenomena.

This work is devoted to the development and design of application-targeted tools

for the multi-variable analysis of image data. Our main interests revolve around

both the theoretical and practical aspects of signal processing, machine learning,

and deep neural networks. In Chapter 1 we present the necessary mathematical

background this work is based on. In Chapter 2 we develop a theoretical base for

the construction of a specific class of compactly supported Parseval Framelets with

directional characteristics. The framelets we construct arise from readily available

refinable functions and their filters have few non-zero coefficients, custom-selected

orientations and can act as finite-difference operators. We present explicit examples

related to well-known directional representations (directional filter banks). Finally,

in Chapter 3 we explore the capabilities of our construction in the growing field of

deep convolutional neural networks.
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Chapter 1

Previous Mathematical Results

In this chapter we give a short introduction leading up to the results presented in this

dissertation. We wish to make this document as self-contained as possible. The proofs

of the statements made here are omitted, but the inquiring reader may find a more

detailed discussion in the books of Ole Christensen [15, Chapters 7, 8, 9][14, Chapters

3, 4, 5] as well as in the classical treatise of Weiss and Hernandez [40, Chapters 2, 3, 7,

8]. We begin with the Fourier Transform and the insights leading to the Short-Time

Fourier Transform (STFT). We continue with Shannon’s Sampling Theorem and close

with the basics of one-dimensional wavelet bases and the concept of a multiresolution

analysis (MRA), the wavelets of Daubechies, and frames in Hilbert spaces.

1.1 The Fourier Transform

The Fourier Transform in L2(R) is a very important tool used both in theory and

applications to extract the frequency content of a given function (signal). Recall

that for a periodic signal f ∈ L2[0, 1) its Fourier Series allows us to express f as a
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superposition of oscillatory functions in the form
∑

k∈Z cke
2πikx. However, expansions

of non-periodic functions are just as desired, but not equally simple. In this case, all

frequencies can appear in the signal. Loosely speaking, the Fourier Series is replaced

by an integral over the real numbers giving rise to the Fourier Transform in L1(R).

Definition 1.1.1. [15, Definition 7.1.1] Let f ∈ L1(R). The Fourier Transform

associates to f a new function f̂ : R→ C given by

f̂(γ) =

∫
R
f(x)e−2πiγxdx, γ ∈ R.

The Fourier Transform in L1(R) can be seen as an operator, denoted by F , map-

ping the function f to f̂ . Furthermore, the triangle inequality for integrals implies

∣∣Ff(γ)
∣∣ =

∣∣∣f̂(γ)
∣∣∣ ≤ ∫

R

∣∣∣f(x)e−2πiγx
∣∣∣ dx =

∫
R

∣∣f(x)
∣∣ dx <∞,

so F is a well-defined integral operator. We also observe that F is linear, i.e., for

f, g ∈ L1(R) we have

F(af + bg)(γ) = aF(f)(γ) + bF(g)(γ).

Moreover, the following theorem helps us gain insights into the range space of F as

well as establish that F is also bounded.

Theorem 1.1.2. [15, Theorem 7.1.5] (Riemann-Lebesgue) Let f ∈ L1(R). Then

f̂ : L1(R)→ C0(R).

Theorem 1.1.2 implies that F is a bounded linear operator since |Ff(γ)| ≤ ‖f‖1,

which in turn implies that

‖Ff‖∞ ≤ ‖f‖1, f ∈ L1(R).

More importantly, we will later see that the Fourier Transform in L1 can be extended

to a unitary bounded operator mapping L2(R) onto L2(R). In the relevant literature,

2



several extensions of the Fourier Transform to other spaces have been established,

e.g., to Lp(R). The extension to L2(R) is particularly useful since L2(R) is a Hilbert

space yielding some very special properties.

Next, under certain assumptions, knowledge of the Fourier Transform of a signal

f can help us fully recover the signal in its original form. This result is known as the

inversion formula of the Fourier Transform.

Theorem 1.1.3. [15, Theorem 7.1.7] (Inversion of the Fourier Transform in L1(R))

Assume that both f and f̂ are L1(R) functions. Then

f(x) =

∫
R
f̂(γ)e2πixγdγ

for almost every x ∈ R. If f is continuous, the above formula holds pointwise for all

x ∈ R.

As mentioned at the beginning of this section, the Fourier Transform can be

used to reveal the frequency content in a given signal. For example, assume f is

a continuous function representing a piece of music starting at time t = 0 sec and

running until time t = 4 sec. This signal is therefore compactly supported over this

time interval. The frequencies present are not immediately accessible and this is

where the Fourier Transform comes into play. Figure 1.1 below shows how such a

signal changes over time as well as the amplitude of its Fourier Transform.

3



Figure 1.1: (Left) Audio signal changing over 4 seconds. (Right) Magnitude of the

Fourier Transform of the audio signal.

By looking at the magnitude of f̂ , we are able to obtain the frequency information

appearing in f . We can then expect the drums and bass in the lower frequency

range, the vocals as mid range frequencies, and any possible noise in high frequencies.

However, the Fourier transform is non-local in the sense that the frequency content in

our signal does not yield information about how these frequencies line up in the time

interval the signal was generated. This information is contained within the phase of

f̂ and is essentially what allows us to recover the piece of music as it was originally

played. In other words, if we write f̂(γ) = |A(γ)|eiφ(γ), then |A(γ)| determines the

relative presence of a sinusoid e2πiγt in f(t) while φ(γ) determines how the sinusoids

line up relative to one another to form f(t).

In real life applications, just as described above, signals are compactly supported.

For this reason, this motivates examining the space Cc(R) of continuous compactly

supported functions as a stepping stone to extend the Fourier Transform to the Hilbert

space L2(R). The following lemma shows that if we equip Cc(R) with the L2(R) norm,

the Fourier Transform is an isometry from Cc(R) into L2(R).

4



Lemma 1.1.4. [15, Lemma 7.2.1] For any f ∈ Cc(R) we have∫
R
|Ff(γ)|2dγ =

∫
R

∣∣f(x)
∣∣2 dx.

Finally, the next theorem helps us arrive at the extension of the Fourier Transform

in L2(R).

Theorem 1.1.5. [15, Theorem 3.3.2] (Extension by uniform continuity) Let X and

Y be Banach spaces. Let K be a dense subspace of X and T : K → Y a bounded

linear operator. Then there exists a unique bounded linear operator S : X → Y for

which Sv = Tv for all v ∈ K. The operator S satisfies that ‖S‖ = ‖T‖.

Using the fact that Cc(R) is dense in L2(R) and Theorem 1.1.5 we have the extension

theorem of the Fourier Transform in L2(R).

Theorem 1.1.6. [15, Theorem 7.2.2] The Fourier Transform can be extended to a

unitary mapping of L2(R) onto L2(R) satisfying the following:

(i) (Plancherel) For all f ∈ L2(R), we have ‖Ff‖2 = ‖f‖2.

(ii) (Parseval) For all f, g ∈ L2(R), we have 〈Ff,Fg〉 = 〈f, g〉.

Recall that unitary operators are invertible and so Theorem 1.1.6 helps us define the

inverse Fourier Transform as a mapping from L2(R) onto L2(R).

Theorem 1.1.7. [15, Theorem 7.2.3] Assume that f ∈ L2(R) and that f̂ ∈ L1(R).

Then

f(x) =

∫
R
f̂(γ)e2πixγdγ

for almost every x ∈ R. If f is continuous, the above formula holds pointwise for all

x ∈ R.
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We have seen how the Fourier Transform is defined as a bounded unitary operator

in L2(R). We also mentioned the non-local nature of the Fourier Transform. To

address this issue we will define The Short-Time Fourier Transform, but before doing

so we introduce various useful linear operators on L2(R).

Definition 1.1.8. Let f ∈ L2(R). For a, b ∈ R and c ∈ R+, we define:

(i) The translation operator τaf(x) := f(x− a), x ∈ R,

(ii) the modulation operator Mbf(x) := e2πibxf(x), x ∈ R, and

(iii) the dilation operator Dcf(x) :=
√
cf(cx), x ∈ R.

Lemma 1.1.9. The translation, modulation, and dilation operators are unitary linear

operators mapping L2(R) onto L2(R) satisfying the following:

(i) For a ∈ R, we have τ−1
a = τ−a = τ ∗a .

(ii) For b ∈ R, we have M−1
b = M−b = M∗

b .

(iii) For c ∈ R+, we have D−1
c = D1/c = D∗c .

Compositions of these operators have proven to play an important role in various

branches of mathematics. For example, the results presented in this document re-

volve around wavelet systems, which consist of dilated and translated versions of fixed

functions. In terms of the Fourier Transform, the following theorem shows the be-

havior of F when composed with the translation, modulation, and dilation operators.

We note that the translation and modulation operators have dual roles.

Theorem 1.1.10. Let f ∈ L2(R). Then
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(a) For a ∈ R, the Fourier Transform of τaf satisfies

Fτaf(γ) = f̂(γ)e−2πiaγ = M−af̂(γ).

(b) For b ∈ R, the Fourier Transform of Mbf satisfies

FMbf(γ) = f̂(γ − b) = τbf̂(γ).

(c) For each c ∈ R+, the Fourier Transform of Dcf satisfies

FDcf(γ) = D1/cf̂(γ).

1.2 The Short-Time Fourier Transform

The Short-Time Fourier Transform serves as a remedy for the non-local nature of the

Fourier Transform. It is used to analyze the frequency and phase content of local

sections of a signal. In practical applications, the process of computing the Short-

Time Fourier Transform is to partition a longer time signal into shorter equal length

intervals and then compute the Fourier transform separately on each short interval.

This reveals the spectrum over each interval.

For example, let us consider f(t) = sin(2π15t) + sin(2π20t), t ∈ [0, 1]. Suppose

we are interested in obtaining the frequency content of this function over the interval

[1/4, 3/4]. We consider the function fχ[1/4,3/4] and compute its Fourier Transform by∫
R
f(t)χ[1/4,3/4](t)e

−2πiγtdt =

∫ 3/4

1/4

f(t)e−2πiγtdt.

Figure 1.2 below shows the windowed signal and the magnitude of its Short-Time

Fourier Transform.
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Figure 1.2: (Left) Windowed signal over [0, 1]. (Right) Magnitude of the Fourier

Transform.

One thing to keep in mind is that calculating the Fourier Transform of a func-

tion fχwindow will produce unwanted oscillations in the frequency domain due to the

discontinuity cut-offs imposed by the characteristic function. These oscillations can

be seen in the figure above, where instead of having just two spikes corresponding to

frequencies γ = 15 and γ = 20, we get visible oscillations around these frequencies as

well. However, we do gain some understanding of the time information contained in

our signal f . We can then use the translation operator to slide the window accordingly

and cover the whole time interval over which our signal exists.

1.3 The Sampling Theorem

We saw how knowledge of the frequency content in a given signal can be sufficient

to completely reconstruct the signal. In this Section we present Shannon’s Sampling

Theorem, which not only is the key tool that leads to a different view on the same

problem, but also leads to a notion of efficient signal compression.
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The task at hand is the following: How can we fully recover a signal f : R → C

if we only know a countable set of its values {f(xk)}k∈I? Formulated this way the

problem is ill-posed: there are infinitely many functions having the same values on a

given countable set. So we need appropriate conditions to impose on the function f

for such a problem to make sense. This is usually done by requiring f to belong to a

certain function space. A classical example is to consider the space of functions whose

Fourier transform is compactly supported or, in other words, the space of band-limited

functions.

Definition 1.3.1. [15, Definition 7.4.1] The Paley-Wiener space PW is the subspace

of L2(R) defined by

PW :=

{
f ∈ L2(R) : supp f̂ ⊂

[
−1

2
,
1

2

]}

The Paley-Wiener space, just as any other subspace of L2(R), consists of equiv-

alence classes of functions. Due to the fact that the Fourier transform of functions

in PW has compact support, each of these equivalence classes contains a continuous

representative.

Theorem 1.3.2. [15, Theorem 7.4.3] (Continuity of functions in PW ) Assume that

f ∈ PW . Then f is equivalent to a continuous function. Moreover, f̂ ∈ L1(R).

In order to get a representation for functions in PW we first need to establish an

orthonormal basis for PW . Shannon’s theorem shows that the Paley-Wiener space

has an orthonormal basis consisting of translates of the sinc function

sinc(x) :=


sin(πx)
πx

, x 6= 0

1, x = 0.

9



Moreover, the theorem states that any continuous function f in the Paley-Wiener

space can be fully recovered from its samples on the integer grid.

Theorem 1.3.3. [15, Theorem 7.4.5] (Shannon’s sampling theorem) The functions

{sinc(· − k)}k∈Z form an orthonormal basis for PW . If f ∈ PW is continuous, then

f(x) =
∑
k∈Z

f(k) sinc(x− k),

with two convergence interpretations of the infinite series:

(i) The symmetric partial sums converge pointwise, i.e.,

lim
N→∞

N∑
k=−N

f(k) sinc(x− k) = f(x),

for all x ∈ R.

(ii) The symmetric partial sums converge in L2(R), i.e.,

lim
N→∞

∥∥∥∥∥∥f −
N∑

k=−N

f(k) sinc(· − k)

∥∥∥∥∥∥
L2(R)

= 0.

With the appropriate scaling, Shannon’s sampling theorem can be extended to

functions whose Fourier transform is supported over any arbitrary interval. In fact,

if supp f̂ ⊂ [−a/2, a/2], the result takes the form

f(x) =
∑
k∈Z

f

(
k

a

)
sinc(ax− k), x ∈ R. (1.1)

The underlying principle in Shannon’s theorem was the basis for modern com-

munication technology. Most signals in real life applications depend on continuous

variables and their processing is facilitated efficiently if they can be handled in terms

of sequences of samples.
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Returning to our example of the recorded piece of music, all frequencies might

appear in the signal. But humans can only hear frequencies within a certain range

(at most up to 20, 000 Hz). Thus, we can discard the high frequencies and consider the

piece of music f as band-limited, e.g., with supp f̂ ⊂ [−20000, 20000]. Equation (1.1)

shows that this signal can be reconstructed from its samples at the points k/40000,

k ∈ Z. Thus, all information about the signal is contained in a discrete sequence of

numbers. This principle was used in CD players and in other applications where an

analog-to-digital conversion is needed.

However, sinc has a very slow decay rate. Thus, in trying to have a good finite-

sum approximation of a given signal, we need to store a large number of its samples

f(k). This problem gave rise to the analysis of wavelets: functions with faster decay

and the ability to achieve more efficient representations of signals (compression)!

1.4 Wavelet Analysis

Although the first wavelets appeared a century ago, their systematic analysis began

in the 80s. The concept of a Multiresolution Analysis (MRA) was introduced in

1987, and shortly thereafter Daubechies used it to construct a special class of wavelet

orthonormal bases with very useful properties in the context of data compression.

Wavelet theory gives us a way of constructing orthonormal bases for L2(R) from

dyadic dilations and translations of a fixed set of functions. This unique structure

was the key idea that led to the success of wavelets in various signal processing

applications. In fact, if {ek}k∈Z is an orthonormal basis for L2(R), we know that

all functions f ∈ L2(R) have an expansion f =
∑

k∈Z ckek for suitable coefficients

{ck}k∈Z. However, in order for this representation to be of practical use, one hopes

11



that the relevant signals f can be well approximated by finite partial sums with only

a few nonzero coefficients. In other words, we want the representation of f to be

sparse.

Definition 1.4.1. [15, Definition 8.1.1] Let ψ ∈ L2(R). For j, k ∈ Z, define the

functions ψj,k by

ψj,k(x) := Dj
2τkψ(x) = 2j/2ψ(2jx− k), x ∈ R.

The function ψ is called an orthonormal wavelet if the functions {ψj,k}j,k∈Z form an

orthonormal basis for L2(R).

If ψ is an orthonormal wavelet, then for any function f ∈ L2(R), we have a represen-

tation of the form

f =
∑
j∈Z

∑
k∈Z

〈
f, ψj,k

〉
ψj,k.

This is a very special property which suggests that only very special functions can be

orthonormal wavelets. The first orthonormal wavelet construction was achieved by

Haar who in 1910 proved that with

ψ(x) =



1, 0 ≤ x < 1/2,

−1, 1/2 ≤ x < 1,

0, otherwise,

(1.2)

the functions {ψj,k}j,k∈Z form an orthonormal basis for L2(R). The proof of the basis

property is quite technical and exceeds the purpose of this introductory presentation.

However, the reader can refer to [29] for more details. Another famous construction

was the Shannon wavelet for which ψ = χS, where S = [−1,−1/2) ∪ [1/2, 1). In this

case, Theorem 1.1.10 suggests that for a function ψ ∈ L2(R), we have

ψ̂j,k(γ) = 2−j/2e−2πik2−jγψ̂(2−jγ) (1.3)
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for j, k ∈ Z. A closer examination of the sets {2jS : j ∈ Z} reveals that they form a

mutually disjoint cover of R \ {0}. Since

{e−2πik·χS : k ∈ Z}

forms an orthonormal basis for L2(S), the functions 2−j/2e−2πik2−j · in Equation (1.3),

restricted on 2jS, form an orthonormal basis for L2(2jS) for each j ∈ Z. Hence, the

collection of functions {ψj,k : j, k ∈ Z} forms an orthonormal basis for L2(R), i.e., ψ

is an orthonormal wavelet.

As one suspects, the construction of orthonormal wavelets is not a straightforward

task. The following section is based on the theoretical foundations developed for

achieving this goal.

1.5 Multiresolution Analysis

In 1987, Mallat and Meyer introduced Multiresolution Analysis (MRA) as a general

tool to construct wavelet orthonormal bases [51, 52].

Definition 1.5.1. [15, Definition 8.2.1] A MRA for L2(R) consists of a sequence of

closed subspaces {Vj}j∈Z of L2(R) and a function φ ∈ V0 such that the following

conditions hold:

(i) The spaces Vj are nested, i.e.,

· · ·V−1 ⊂ V0 ⊂ V1 ⊂ · · · .

(ii) ∪j∈ZVj = L2(R) and ∩j∈ZVj = {0}.

(iii) For all j ∈ Z, we have Vj+1 = D2Vj.

13



(iv) f ∈ V0 implies τkf ∈ V0 for all k ∈ Z.

(v) {τkφ}k∈Z is an orthonormal basis for V0.

In Definition 1.5.1, condition (ii) means that ∪j∈ZVj is dense in L2(R), i.e., for any

f ∈ L2(R) and any ε > 0, there exists a function g ∈ ∪j∈ZVj such that ‖f − g‖2 ≤ ε.

The function g will belong to VJ for some J ∈ Z, and so by condition (i), to all spaces

Vj with j ≥ J . Lastly, a closer look reveals that the choice of the function φ in a MRA

actually determines the spaces Vj uniquely. For this reason, we say that φ generates

the MRA, but we have to emphasize the fact that only very special functions φ can

generate multiresolution analyses. φ is called an orthonormal scaling function.

Lemma 1.5.2. [15, Theorem 8.2.2] Assume that conditions (iii - iv - v) in Definition

1.5.1 hold. Then

(i) Vj = Dj
2V0 for all j ∈ Z.

(ii) Vj = span{Dj
2τkφ}k∈Z for all j ∈ Z.

For example, the Haar MRA is defined by the function φ = χ[0,1) and the relevant

spaces {Vj}j∈Z are given by

Vj =
{
f ∈ L2(R) : f is constant on 2−j[k, k + 1) for all k ∈ Z

}
.

The orthonormal wavelet associated with this MRA is the Haar wavelet ψ defined in

Equation (1.2). Note that ψ is a finite linear combination of dilated and translated

versions of φ. It turns out that a similar result is true for all orthonormal wavelets

generated from a multiresolution analysis.

We will now see how we can use a multiresolution analysis to construct an or-

thonormal basis for L2(R), but we first need to consider a class of vector spaces

related to the spaces {Vj}j∈Z.
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Definition 1.5.3. [15, Definition 8.2.4] Assume that Vj is a sequence of closed sub-

spaces of L2(R) and that condition (i) in Definition 1.5.1 holds. For any j ∈ Z, let

Wj denote the orthogonal complement of Vj with respect to Vj+1, i.e.,

Wj =
{
f ∈ Vj+1 : 〈f, g〉 = 0 for all g ∈ Vj

}
.

Out of the spaces Wj, j ∈ Z, it turns out that the role of W0 is crucial. In fact,

the following result states that the collection of functions {Dj
2τkψ}k,j∈Z forms an

orthonormal basis for L2(R) if there exists a function ψ ∈ W0 such that {τkψ}k∈Z is

an orthonormal basis for W0.

Proposition 1.5.4. [15, Proposition 8.2.5] Assume that φ ∈ L2(R) generates a

MRA. Let ψ ∈ L2(R) and suppose that {τkψ}k∈Z is an orthonormal basis for W0.

Then the following hold:

(i) For each j ∈ Z, the functions {Dj
2τkψ}k∈Z form an orthonormal basis for Wj.

(ii) The functions {Dj
2τkψ}j,k∈Z form an orthonormal basis for L2(R), i.e., ψ is an

orthonormal wavelet.

(iii) The functions {τkφ}k∈Z∪{Dj
2τkψ}j∈N,k∈Z form an orthonormal basis for L2(R).

Conceptually, Proposition 1.5.4 offers a simplification in the construction of orthonor-

mal wavelets: the wavelet system {Dj
2τkψ}j,k∈Z involves the operations of scaling and

translation, while {τkψ}k∈Z just consists of translations. The following result is a key

step in the construction of an appropriate function ψ.

Proposition 1.5.5. [15, Proposition 8.2.6] Assume that φ ∈ L2(R) generates a

MRA. Then there exists a 1-periodic function H0 ∈ L2(0, 1) such that

φ̂(2γ) = H0(γ)φ̂(γ), γ ∈ R. (1.4)
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The above equation is called a refinement equation. A function φ that satisfies

a refinement equation is said to be refinable. The function H0 is called a low-pass

filter associated with the refinable function φ. We are now ready to present the main

construction of orthonormal wavelets via a MRA. We note that the result is only

based on knowledge of the low-pass filter H0.

Theorem 1.5.6. [15, Theorem 8.2.7] Assume that φ ∈ L2(R) generates a MRA and

let H0 ∈ L2(0, 1) be a 1-periodic function satisfying the scaling Equation (1.4). Define

the 1-periodic function H1 by

H1(γ) := H0

(
γ + 1/2

)
e−2πiγ. (1.5)

Also define ψ via

ψ̂(2γ) = H1(γ)φ̂(γ). (1.6)

Then the following hold:

(i) {τkψ}k∈Z is an orthonormal basis for W0.

(ii) {Dj
2τkψ}j,k∈Z is an orthonormal basis for L2(R), i.e., ψ is an orthonormal

wavelet.

Equation (1.6) implies that ψ is a refinable function. The function H1 is called

a high-pass filter. We also notice that ψ is defined in terms of its Fourier transform,

which means that we have to apply the inverse Fourier transform in order to obtain

an expression for ψ.

Proposition 1.5.7. [15, Proposition 8.2.8] Assume Equation (1.6) holds for some

1-periodic trigonometric polynomial H1 ∈ L2(0, 1), i.e., H1(γ) =
∑

k∈Z dke
2πikγ. Then

ψ(x) =
√

2
∑
k∈Z

dkφ(2x+ k), x ∈ R. (1.7)
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The results in the previous proposition imply that we can find the orthonormal wavelet

ψ whenever H0 in the refinement equation is known. Moreover, in most cases of

practical interest, the low-pass filter H0 is actually a trigonometric polynomial of the

form

H0(γ) =
N∑

k=−N

cke
2πikγ.

A closer look at Equation (1.7) leads naturally to a criterion for obtaining a com-

pactly supported orthonormal wavelet. Indeed, the function ψ is given in terms of

the refinable function φ. Thus, if φ ∈ L2(R) is compactly supported and H0 is a

trigonometric polynomial, then the orthonormal wavelet ψ is compactly supported.

We have seen how the choice of a scaling function φ characterizes a multiresolution

analysis completely. It therefore makes sense to seek a formulation of a MRA in terms

of the properties of the function φ. Such a formulation is presented below.

Theorem 1.5.8. [15, Theorem 8.2.11] Let φ ∈ L2(R). Define the spaces Vj as in

Definition 1.5.1. Then φ generates a MRA if the following conditions hold:

(i) infγ∈(−ε,ε)

∣∣∣φ̂(γ)
∣∣∣ > 0 for some ε > 0.

(ii) The scaling Equation (1.4) is satisfied for a bounded 1-periodic function H0.

(iii) {τkφ}k∈Z is an orthonormal system.

Condition (iii) in Theorem 1.5.8 is still a tricky one to satisfy for a function

φ ∈ L2(R). So it would be convenient to obtain an alternative characterization

of the functions φ ∈ L2(R) for which {τkφ}k∈Z is an orthonormal system. Such a

characterization is given below:
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Theorem 1.5.9. [15, Theorem 8.2.12] Let φ ∈ L2(R). Then {τkφ}k∈Z is an or-

thonormal system if and only if

∑
k∈Z

∣∣∣φ̂(γ + k)
∣∣∣2 = 1, a.e. γ ∈ R.

1.6 Vanishing Moments and the Wavelet Construc-

tion of Daubechies

In this section we explain why orthonormal wavelets proved to be very useful in signal

processing applications, as well as present Daubechies’ construction of compactly

supported orthonormal wavelets. Let us assume that the orthonormal wavelet ψ ∈

L2(R) comes from a MRA generated by the function φ ∈ L2(R). Then we already

mentioned in Proposition 1.5.4 that the collection of functions

{τkφ}k∈Z ∪ {Dj
2τkψ}j∈N,k∈Z

forms an orthonormal basis for L2(R). We therefore know that any f ∈ L2(R) has a

representation

f =
∑
k∈Z

〈f, τkφ〉τkφ+
∞∑
j=1

∑
k∈Z

〈f, ψj,k〉ψj,k. (1.8)

Such a representation allows us to reconstruct the signal f based on the coefficients

{
〈f, τkφ〉

}
k∈Z ∪

{
〈f, ψj,k〉

}
j∈N,k∈Z .

However, in practical applications one cannot store an infinite sequence of nonzero

numbers. So one has to select a finite number of these coefficients to represent a given

signal f . Thus, the goal is to deal with the infinite sequence of coefficients in a way

that only large enough coefficients are kept and the rest can be ignored. Then the

function f will be hopefully well-approximated by a finite sum of only a few terms.
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This is usually done by thresholding: that is, we specify an appropriate ε > 0 and

keep only the coefficients for which |〈f, ψj,k〉| ≥ ε. Wavelet analysis has been very

successful in signal processing since we can often choose orthonormal wavelets for

which a large number of the coefficients in the sequence {〈f, ψj,k〉}j∈N,k∈Z are small

for a given signal f .

For example, recall the Haar orthonormal wavelet given by Equation (1.2) and

consider the terms in the second infinite sum in Equation (1.8). We then have that

2j/2〈f, ψj,k〉 = 2j
∫

2−j [k,k+1/2)

f(x)dx− 2j
∫

2−j [k+1/2,k+1)

f(x)dx.

The above expression implies that the coefficients in the representation of f are de-

pendent on the behavior of f on the interval 2−j[k, k + 1). If the signal is contin-

uous, then many coefficients are expected to be small, at least for larger values of

j. Assume that f is discontinuous at a point x0. Then if j, k are chosen so that

x0 /∈ 2−j[k, k + 1), the above argument still works. On the other hand, if j, k are

chosen so that x0 ∈ 2−j[k, k+ 1), then the coefficients can be expected to be approx-

imately half the size of the jump

f(x+
0 )− f(x−0 ),

at least whenever j is large. Thus, large values of the coefficients that persist through

the different scales j indicate discontinuities in the function f . In other words, knowl-

edge of the coefficients allows us to detect discontinuities in a signal.

There exist orthonormal wavelets that perform much better than the Haar wavelet.

The key feature turns out to be what is called their vanishing moments :

Definition 1.6.1. [15, Definition 8.3.2] Let N ∈ N. A function ψ has N vanishing

moments if ∫
R
xlψ(x)dx = 0
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for l = 0, 1, . . . , N − 1.

It can be shown that the Haar orthonormal wavelet has only one vanishing mo-

ment. The next theorem shows that if an orthonormal wavelet has a large number of

vanishing moments, then only a few coefficients will be large.

Theorem 1.6.2. [15, Theorem 8.3.3] (Decay of wavelet coefficients) Assume that

the function ψ ∈ L2(R) is compactly supported and has N vanishing moments. Then

for any N times differentiable function f ∈ L2(R) for which the N th derivative is

bounded, there exists a constant C > 0 such that

|〈f, ψj,k〉| ≤ C2−jN2−j/2

for all j ≥ 1 and k ∈ Z.

The estimate above states that a high number of vanishing moments implies that

the terms in the sequence {〈f, ψj,k〉} have a fast decay rate as j → ∞. It turns

out that the problem of obtaining orthonormal wavelets with a certain number of

vanishing moments can be formulated in terms of the low-pass filter H0.

Theorem 1.6.3. [15, Theorem 8.3.4] Let φ be a compactly supported scaling function

associated with a MRA and let ψ be the corresponding orthonormal wavelet. Then

the following are equivalent:

(i) ψ has N vanishing moments.

(ii) The function H0 can be factorized as

H0(γ) =

(
1 + e−2πiγ

2

)N

L(γ)

for some 1-periodic trigonometric polynomial L.
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Additionally, knowledge of the low-pass filter H0 determines (up to scalar multiplica-

tion) the associated refinable function φ. Indeed, for any K ∈ N, the scaling equation

shows that

φ̂(γ) = H0(γ/2)H0(γ/4) · · ·H0(γ/2K)φ̂(γ/2K).

One can then prove that φ̂ is continuous at zero and that

φ̂(γ) = lim
K→∞

φ̂(γ/2K)
K∏
j=1

H0(γ/2K)

 = φ̂(0)
∞∏
j=1

H0(γ/2j).

The orthonormal wavelets introduced by Daubechies are the best known construc-

tions based on the above idea. Except for N = 1 (Haar), the orthonormal wavelets of

Daubechies are not given by an explicit formula, but it is known that their smooth-

ness increases with N . This construction is based on a family of polynomials given

by

PN−1(y) =
N−1∑
k=0

(
2N − 1

k

)
yk(1− y)N−1−k, N ∈ N.

Theorem 1.6.4. [15, Theorem 8.3.5] (Daubechies) For any N ∈ N, there exists a

trigonometric polynomial L such that

|L(y)|2 = PN−1(sin2(πγ)).

With such a choice for L, the following statements hold:

(i) The function H0 is associated with a MRA.

(ii) With H0 as in (i), the orthonormal wavelet ψ has N vanishing moments and is

supported on [0, 2N − 1].

The orthonormal wavelets of Daubechies were used in a variety of important ap-

plications, including signal compression (FBI fingerprint database), noise reduction,

self-similarity problems, etc.
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In the following section we wish to expand our universe of representation systems

from bases to frames in Hilbert spaces. There are multiple reasons to justify such

a generalization due to the inflexible character of bases. For example, it is often

impossible to construct application-specific bases. Moreover, slight modifications of

bases might lose the basis property completely.

1.7 Frames in Hilbert Spaces

Just as in the case of bases in a Hilbert space H, a frame is also a collection of

functions {fn}n∈N ⊂ H such that each f ∈ H has a representation

f =
∞∑
n=1

cn(f)fn

and the convergence of the series is with respect to the norm of H. However, in the

case of a basis representation of an element f ∈ H, the coefficients cn(f) are unique.

This is not necessarily the case when it comes to frames, i.e., frames are not always

bases. The concept of frames was first introduced by Duffin and Schaeffer in 1952 [24],

and it took nearly 35 years before the value of frame theory was properly recognized.

In 1985 Daubechies, Grossmann, and Meyer [20] proved they could use frames to find

expansions of L2(R) functions similar to those obtained by orthonormal bases.

Definition 1.7.1. [14, Definition 5.1.1] A sequence {fk}k∈N of elements in a Hilbert

space H is a frame for H if there exist constants A,B > 0 such that every f ∈ H

satisfies

A‖f‖2 ≤
∞∑
k=1

|〈f, fk〉|2 ≤ B‖f‖2. (1.9)

The constants A,B are called frame bounds, and they are not unique since any

A′, B′ > 0 with A′ < A and B′ > B are also frame bounds. If A = B, then
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{fk}k∈N is called a Tight frame, and if A = B = 1, then {fk}k∈N is called a Parseval

frame. A frame is called redundant if it is not a basis for H.

It is important to understand the nuances involved in satisfying an inequality

like (1.9). Specifically, for an upper bound analysis, every sequence {fk}k∈N ⊂ H

satisfying
∞∑
k=1

|〈f, fk〉|2 ≤ B‖f‖2 (1.10)

for some constant B > 0 is called a Bessel family. Thus, every frame is a Bessel

family. Having the Bessel property leads to important results due to the following

facts.

Theorem 1.7.2. [14, Lemma 3.2.1 & Theorem 3.2.3] Let {fk}k∈N be a sequence in

H.

(a) Suppose that
∑∞

k=1 ckfk is convergent for all {ck}k∈N ∈ `2(N). Then

T : `2(N)→ H, T{ck}k∈N :=
∞∑
k=1

ckfk

defines a bounded linear operator. The adjoint operator is given by

T ∗ : H → `2(N), T ∗f = {〈f, fk〉}k∈N.

Furthermore,
∞∑
k=1

|〈f, fk〉|2 ≤ ‖T‖2‖f‖2,

for all f ∈ H.

(b) The sequence {fk}k∈N is a Bessel family if and only if

T : {ck}k∈N →
∞∑
k=1

ckfk

is a well-defined bounded operator from `2(N) into H and ‖T‖ ≤
√
B.
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Theorem 1.7.2 shows that if one is only interested in the Bessel property and

not in the value of the Bessel bound, then it suffices to establish that T is well-

defined. Moreover, if {fk}k∈N is a sequence in H and
∑∞

k=1 ckfk is convergent for all

{ck}k∈N ∈ `2(N), then {fk}k∈N is a Bessel family. On the other hand, if {fk}k∈N is a

Bessel family in H, then
∑∞

k=1 ckfk converges unconditionally for all {ck}k∈N ∈ `2(N).

For an interpretation of the lower frame bound, we note that Definition 1.7.1

implies that a frame for H is complete, i.e.,

span{fk}k∈N = H.

Indeed, assuming {fk}k∈N is not complete, let span{fk}k∈N = W ⊂ H. Then we know

that H = W ⊕W⊥. So there exists a nonzero element w ∈ W⊥ satisfying

0 < A‖w‖2 ≤
∞∑
k=1

|〈w, fk〉|2 = 0,

which is a contradiction. In general, obtaining a lower bound that satisfies the frame

condition is not an easy task. Interestingly, we often have to consider sequences that

are not complete in H but form frames for the closed linear span of their elements.

Definition 1.7.3. [14, Definition 5.1.3] Let {fk}k∈N be a sequence in H. We say

{fk}k∈N is a frame sequence if it is a frame for span{fk}k∈N.

The operator T defined in Theorem 1.7.2 is called the synthesis operator, and its

adjoint operator T ∗ is called the analysis operator. The composition operator

S : H → H, Sf = TT ∗f =
∞∑
k=1

〈f, fk〉fk

is called the frame operator. We note that since {fk}k∈N is a Bessel family, the series∑∞
k=1〈f, fk〉fk converges unconditionally for all f ∈ H.

Lemma 1.7.4. [14, Lemma 5.1.5] Let {fk}k∈N be a frame with frame operator S and

frame bounds A,B. Then the following hold:
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(a) S is bounded, invertible, self-adjoint, and positive.

(b) {S−1fk}k∈N is a frame with bounds B−1, A−1; if A,B are the optimal bounds for

{fk}k∈N, then the bounds B−1, A−1 are the optimal bounds for {S−1fk}k∈N and

the frame operator for {S−1fk}k∈N is S−1.

If {fk}k∈N is a frame for H, then the frame {S−1fk}k∈N is called the dual frame of

{fk}k∈N. The following theorem allows us to view frames as a generalization of bases

and is therefore the tool that provides flexibility in the representation of functions in

H.

Theorem 1.7.5. [14, Theorem 5.1.6] Let {fk}k∈N be a frame with frame operator S.

Then

f =
∞∑
k=1

〈f, S−1fk〉fk

for all f ∈ H. The series converges unconditionally for all f ∈ H.

Theorem 1.7.5 shows that frame theory is parallel to the main discussion of this

chapter; For a given signal f ∈ L2(R), all information about f can be found in

the sequence of frame coefficients {〈f, S−1fk〉}k∈N. In what follows we relate the

preliminary analysis of this chapter with the design of multi-dimensional Parseval

Wavelet frames for the qualitative analysis of visual signals.
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Chapter 2

Compactly Supported Parseval

Wavelet Frames for L2(Rs).

From the early years of filter banks and wavelets, image decompositions for compres-

sion and analysis have been on the focus of many researchers. The vast majority

of multi-dimensional designs was based on real-valued tensor product constructs of

one-dimensional multi-scale decompositions. However, even in the early 90s, it was

realized that such constructs do not seem to give optimal results, especially on curved

boundaries [45, 57]. This motivated several researchers to explore non-separable (non-

tensor product) designs [5, 6], or other dilation operators [45], which later led to the

popular design of shearlets and curvelets ([11, 10, 22, 9, 13, 47]).

In this chapter we attempt to propose an alternative view on this problem. We

develop a new method to design wavelet frames which combine the advantages of

compactly supported wavelets, namely small support and vanishing moments, but

also the directionality and anisotropy of curvelets and shearlets. One of the key

novelties of this work is that we trade classical filter design, formulated as a problem of
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solving trigonometric polynomial systems of equations in the frequency domain, for a

much more computationally efficient method based on Singular Value Decomposition

(SVD) (Theorems 2.2.6 and 2.3.2). This new method is the key contribution of this

work.

2.1 Dyadic Wavelet Frames in L2(Rs)

We begin with a refinable function with compact support or, in other words, a function

φ ∈ L2(Rs) satisfying the following conditions:

(a) The Fourier transform φ̂ is continuous in a neighborhood of the origin and

φ̂(0) = 1.

(b) The Zs-periodic function Φ =
∑

k∈Zs |φ̂(· + k)|2 is in L∞(Ts), the space of all

measurable essentially bounded functions on Ts. The spectrum of Φ is denoted

by σφ = {γ ∈ Ts : Φ(γ) 6= 0}.

(c) The function φ is refinable, i.e., φ̂(2γ) = H0(γ)φ̂(γ) for almost every γ and for

some Zs-periodic function H0 ∈ L2(Ts) called a low-pass filter.

(d) For v ∈ N we consider a vector of refinable functions

Ψ = (ψ1, . . . , ψv)
v
i=1 ∈ L1×v

2

called a multi-wavelet satisfying Ψ̂(2γ) = H1(γ)φ̂(γ) for almost every γ ∈ Rs and

for another Zs-periodic vector-valued function H1 ∈ Lv×1
2 (Ts) called a high-pass

filter.

We define the dilation and translation operators on L2(Rs) by D2f = 2s/2f(2·) and

τkf = f(· − k), k ∈ Zs, respectively. For the above selection of Ψ its corresponding
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homogeneous wavelet family or affine Family XΨ is defined by

XΨ =
{
ψi,j,k = Dj

2τkψi : j ∈ Z, k ∈ Zs, i = 1, ..., v
}
. (2.1)

Additionally, for any j0 ∈ Z we define the non-homogeneous Wavelet Family X
(j0)
φ,Ψ by

X
(j0)
φ,Ψ =

{
Dj

2τkψi : j ≥ j0, k ∈ Zs, i = 1, . . . , v
}
∪
{
Dj0

2 τkφ : k ∈ Zs
}
. (2.2)

Definition 2.1.1. If there exist two positive constants C1 and C2 such that the

inequality

C1‖f‖2
2 ≤

∑
j∈Z

∑
k∈Zs

v∑
i=1

|〈f, ψi,j,k〉|2 ≤ C2‖f‖2
2

holds for any f ∈ L2, we say XΨ is an affine frame or a homogeneous wavelet frame

for L2(Rs) and the elements of Ψ are often called framelets. If C1 = C2, then XΨ is

called a tight wavelet frame and if C1 = C2 = 1, then XΨ is called a Parseval wavelet

frame or a Parseval framelet.

Homogeneous wavelet frames have only theoretical interest. In applications we

are more interested in non-homogeneous frames because they model an image decom-

position into various fine scales and a coarse residual created by the integer translates

of the refinable function.

As mentioned at the beginning of this chapter, the majority of multi-dimensional

affine wavelets are orthonormal or Riesz wavelets defined as tensor products of one-

dimensional multiresolution analysis wavelets. However, tensor product constructs

tend to favor horizontal or vertical image characteristics and even introduce direc-

tional filtering variability depending on orientation. This fact was recognized by

Kovacevic and Vetterli [45] who attempt to construct the first finite length filters

for non-tensor product filter banks. Notably, different are the non-tensor product

constructs of [6, 4, 25, 2, 31, 33, 30] which start from a single, compactly supported
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refinable function whose integer shifts form a Riesz or an orthonormal basis [25].

General dilation matrices and properties such as compact support, decay, smooth-

ness, symmetry and vanishing moments are explored in depth. We remark that all

these constructs produce only real-valued wavelets.

An alternative way, which combines directionality and avoids the preferred hori-

zontal and vertical filtering orientations of real-valued tensor products, is the intro-

duction of complex-valued wavelets and frames pioneered by Kingsbury [43, 55] and

more recently [37, 36].

The construction of refinable functions with stable integer shifts is all but an easy

task, as the work of Cabrelli et al. [8] demonstrates. It is therefore quite easier to

resort to plain refinable functions whose integer shifts form a Bessel family. We fully

adopt this position, which breaks away from the MRA-orthodoxy. Ron and Shen [54]

demonstrated that this can be done with the so-called Extension Principles with added

benefits, the combination of small filter support with symmetry or anti-symmetry.

Our work is influenced by [54, 21, 32, 16]. We focus on the Unitary Extension

Principle characterization of wavelet frames, which gives an elegant interpretation of

framelet sets via systems of equations involving their low and high pass filters.

Theorem 2.1.2. (Unitary Extension Principle) Let φ ∈ L2(Rs) satisfy conditions

(a)-(d) at the beginning of this section and let v ∈ N. The family of functions XΨ

given by Equation (2.1) is a Parseval Framelet for L2(Rs) if and only if there exists

a complex-valued vector function H1 ∈ Lv×1
2 (Ts) satisfying

H0(γ + q)H0(γ) +H∗1 (γ + q)H1(γ) = δ0,q (2.3)

for all q ∈ {0, 1/2}s and for almost every γ ∈ Ts.

29



Remark 2.1.3. We can see that the system of Equations (2.3) implies that if the

first row of the modulation matrix
H0(γ) H1,1(γ) · · · H1,v(γ)

H0(γ + q2) H1,1(γ + q2) · · · H1,v(γ + q2)
...

...
. . .

...
H0(γ + q2s−1) H1,1(γ + q2s−1) · · · H1,v(γ + q2s−1)


satisfies

|H0(γ)|2 +
v∑
k=1

|H1,k(γ)|2 = 1

for almost every γ ∈ Ts, and if it is orthogonal to every other row, then XΨ forms

a Parseval wavelet frame for L2(Rs) associated with φ. Since the modulation matrix

has 2s rows, we observe that we must have v ≥ 2s − 1.

Solving the Equations in (2.3) can be very challenging. Our goal is not to propose

new filters and framelets but to provide a design framework through which one can

create ensembles of Parseval framelets defined by sets of high pass finite-length filters.

We want these filters to be a mix of well-known filters and of other custom-made ones

as we wish to use them to capture edges, textures and surfaces of singularities with

enough sensitivity to preselected orientations.

The use of compact support eliminates ringing artifacts commonly appearing with

the use of truncated infinite-length filters and at the same time promotes sparsity and

localization of convolutional response, which is important for many applications. In

that regard, our gold standard is the sparsity asymptotics of continuous curvelets

and shearlets [13, 46]. Both families achieve their optimal sparsity by continuously

increasing the orientation resolution with scale, something our constructs are not

meant to do because we use a fixed number of filters common to every scale. However,

the small compact support of our framelets in space gives them an advantage that

curvelets and shearlets lack, because those are compactly supported in frequency,
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with the notable exception of the compactly supported shearlets developed in [44].

An entirely different approach was proposed in [1, 56] where a filter-bank pre-

cursor of directional atoms was proposed, the steerable pyramids, aiming to define

rotationally covariant multi-scale transforms. In theory, rotational covariance can be

realized by continuous directional transforms such as the Curvelet and Shearlet trans-

forms. For discrete transforms this is not always obviously true or even realizable.

Nonetheless, some rotational covariance can be achieved also by directional atoms as

in [11, 10, 12, 28]. In this context, the rotational covariance of the representation is

important because it makes feature extraction resistant to misclassification of struc-

tures due to rotations [53]. With shearlets, rotational covariance is different because

different orientations are implemented by powers of the shearing matrices and not by

rotations. Results in [27] may help elucidate this fact. At any rate, if frame atoms

are directional and orientable ([11, 10, 12, 22, 9, 13, 1, 47]), then rotational covari-

ance is well-approximated because the induced transforms can be thought of as good

approximations of their continuous counterparts.

More recently, a very interesting projection method has been proposed by Han et

al. to define framelets with small supports in various orientations [35]. We reproduce

the main results of [35] in Corollary 2.2.7.

The difficulty to construct orientable frame atoms with small spatial support mo-

tivated us to seek an alternative way to construct multi-scale framelets or, more

generally, atoms with this kind of support in space, oriented to have targeted filtering

selectivity along a single direction selected by us from a set of several, predetermined

orientations. We can increase the number of those orientations by enlarging the spa-

tial support of the generating refinable function.
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The framelet construction method with respect to isotropic dyadic dilations we

introduce here is based on Theorem 2.2.6, which bears no similarity to classical wavelet

constructions. The refinable functions we use are tensor products of one-dimensional

spline functions, which endows Ψ with axial symmetries, sufficient smoothness and

compact support. We are bound to use refinable functions whose low-pass filter

coefficients are positive. The essence of our approach is that framelets Ψ can be

derived from any high pass filter H as long as H(0) = 0 and the support of H is

contained in the support of the low-pass filter (Section 2.5). Of course, there is an

associated cost for this procedure because it is rather unlikely that we can construct

sets of Parseval Framelets exclusively containing the high pass filters H of our choice.

The multi-wavelet Ψ will likely contain other framelets introduced by the process

Theorem 2.2.6 prescribes, but as we show in Theorem 2.3.2 these auxiliary elements

of Ψ may end up having negligible contributions.

The framelets we construct have similar properties with parabolic molecules [27],

but unlike the latter, the number of their orientations is fixed for all scales. The orien-

tation of parabolic molecules is defined in the frequency domain. This is not suitable

for us, since our framelets have compact support in space and are not C∞. Directional

filter banks as well as atoms with higher order directional vanishing moments were

studied in [1, 56, 49, 50, 18, 17]. All of them are constructed in the frequency domain.

One of our novelties is the adaptation of these concepts in the spatial domain. We

also provide a characterization of the Directional Vanishing Moment (DVM) orders of

wavelets and an algorithmic construction to generate wavelets with maximum DVMs.

Moreover, we can customize our DVMs to be directed toward a certain orientation

which does not have to coincide with the orientation of its wavelet. This helps to

increase local sensitivity to wavefronts with the same orientation.
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Although directionality is a frequently used term in this work, we do not attempt

to define it rigorously. In fact, a careful examination of the literature reveals that

other authors who use the term also avoid to do so. We invoke directionality in a

descriptive manner in the sense that such directional filters or framelets have pro-

nounced anisotropies in certain orientations, but may also have directional vanishing

moments not necessarily aligned with their pronounced orientation or its normal.

This chapter is divided into four main sections. In Section 2.2 we begin our

discussion with the equations of the Unitary Extension Principle (UEP), where in

lieu of Harmonic Analysis, we use basic Linear Algebra to derive a method which

transforms the design problem of framelets to a problem of designing Parseval frames

in finite-dimensional spaces. In Section 2.3 we develop an algorithm which allows

us to custom-select the orientation and other properties of the filters defining these

Parseval framelets in order to achieve high spatial orientation of the resulting high

pass filters. In Section 2.4 we extend our results to cover the case of arbitrary dilation

matrices in the setting of adaptive multiresolution analyses [34]. Finally, in Section

2.5 we show how to include high-pass filters of our choice in the high-pass filter set

defining Ψ and present several typical examples of the filter design strategies we

propose based on the methods we develop in the preceding two Sections.

2.2 The Geometry of the Proposed Construction

This part of our work explores a sufficient condition for solving the equations of the

Unitary Extension Principle, which in essence is a system of polynomial equations

with a large number of degrees of freedom and therefore quite hard to solve in closed

form and in a way that yields compactly supported wavelets. In what follows H0 is
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assumed to be a trigonometric polynomial of the form

H0(γ) =
N∑
k=1

ank
e2πink·γ

for ank
∈ R \ {0}, N > 1, and nk ∈ J ⊂ Zs, i.e., the exponents of the complex

exponentials in the representation of such a low-pass filter are characterized by s-

dimensional vectors with integer components. We also have

H0(0) = 1,

or equivalently
∑N

k=1 ank
= 1. We rewrite H0 using the factorization

H0 = aw

where a is the 1×N vector of coefficients

a = (ank
)Nk=1

and w ∈ CN×1 is the vector-valued function of complex exponentials given by

w(γ) =
(
e2πink·γ

)N
k=1

.

From now on we express the high-pass filter H1 ∈ Lv×1
2 (Ts) as

H1 = Bw

for some B ∈ Rv×N . Using these expressions for H0 and H1 we state the main problem

this Section addresses.

Problem [A]: Let H0 = aw be a low-pass filter as above. Given a natural number

v ≥ 2s − 1, we want to determine (if it exists) a real matrix B ∈ Rv×N such that the

v×1 vector-valued function H1 = Bw satisfies Equation (2.3) and so its corresponding

family XΨ forms a Parseval framelet for L2(Rs).
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Focusing on Problem [A], we consider {mkt}Nk,t=1 to be the elements of the N ×N

matrix

M := aTa+BTB (2.4)

and we notice that Equation (2.3) can now be written as

δ0,q = w∗(γ + q)(aTa+BTB)w(γ)

=
N∑
k=1

mkke
−2πink·q +

N∑
k,t=1,k 6=t

mkte
−2πink·qe2πi(nt−nk)·γ, (2.5)

for all q ∈ {0, 1/2}s and for almost every γ ∈ Ts. The second summand on the right

hand side of Equation (2.5) is a linear combination of not necessarily distinct expo-

nentials. Specifically, the second term may consist of several monomials associated

with the same exponential, which means that uniqueness of coefficients cannot be

directly assumed unless all terms associated with the same exponential are grouped.

This gives rise to a rather complex system of non-linear equations, even in the case

where the number of unknown parameters is not large. Equation (2.5) implies that

Problem [A] has a solution if we can find appropriate entries for the matrix B (hence

for M) such that for all γ ∈ Ts and for all q ∈ {0, 1/2}s the following equations are

satisfied:

N∑
k=1

mkke
−2πink·q = δ0,q, (2.6)

N∑
k,t=1,k 6=t

mkte
−2πink·qe2πi(nt−nk)·γ = 0. (2.7)

We provide insight into the analysis concerning the system of (2.6) and (2.7) in

Example 2.6.1, but for the purpose of this work we study the case where M is a

diagonal matrix or, in other words, the case where mkt = 0 for k 6= t. The second

summand in Equation (2.5) vanishes for all γ and so Equation (2.7) is always satisfied.

However, the hypothesis that M is diagonal imposes the constraint v ≥ N − 1 as the
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next Lemma indicates. In other words, the number of non-zero Fourier coefficients of

the low-pass filter H0 affects the dimensionality of the high-pass filter H1.

Lemma 2.2.1. Let H0 = aw be a low-pass filter supported on a bounded set J as

above and let v ≥ 2s−1. If M = (mkt)
N
k,t=1 is a diagonal matrix as in Equation (2.4),

then

(a) mkk > 0 for all k = 1, . . . , N .

(b) v + 1 ≥ N .

Proof. (a) Since all the components of the vector a in the expression of H0 are non-

zero, and since the k-th element in the diagonal of M , mkk, corresponds to the square

of the norm of the k-th column vector of ( aB ) ∈ R(v+1)×N , we have mkk > 0.

(b) If v+ 1 < N , then we would have at least one element of the diagonal of M being

equal to zero, which by (a) leads to a contradiction.

In view of Lemma 2.2.1 the pursuit of solutions for Problem [A] leads to the following

modified formulation:

Problem [A′]: Let H0 = aw be a low-pass filter with bounded support J such that

H0(0) = 1. Given a natural number

v ≥ max {N − 1, 2s − 1} ,

we want to determine the real matrices B ∈ Rv×N for which the matrix M is diagonal

and Equation (2.6) is satisfied.

We now notice that if Problem [A′] admits a solution B, then B is a solution to

Problem [A] as well. However, the solutions of Problem [A] are not exhausted by
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the solutions of Problem [A′] since solutions of the former arise even when M is not

diagonal. With this in mind, from now on we focus on Problem [A′] and we show

that all its solutions define Parseval frames in finite dimensional spaces, which in turn

define high-pass filters H1 for homogeneous Parseval wavelet frames XΨ. Lemma 2.2.2

helps us get a good picture of the underlying geometry.

Lemma 2.2.2. Let α, c ∈ R1×N , c 6= 0 and suppose D ∈ Rv×N is such that

(a) the rows of ( αD ) form a Parseval frame for RN .

(b) DcT = 0.

Then α and c are collinear vectors.

Proof. Let di denote the i-th row vector of D. Then for c ∈ RN our assumptions

imply that

c = 〈α, c〉α +
v∑
i=1

〈c, di〉di = 〈α, c〉α.

Hence, α and c are collinear.

Lemma 2.2.3. Let α ∈ R1×N be such that ‖α‖2 = 1. Then for any v ≥ N − 1, there

always exists a matrix D ∈ Rv×N such that the rows of ( αD ) form a Parseval frame

for RN .

Proof. We prove the statement by presenting an explicit construction of such a matrix

D. Suppose V ∈ RN×N is such that its first row vector is equal to α and its columns

form an orthonormal set for RN . Therefore, we can write

α = eT1 V

where e1 ∈ RN×1 is the first vector of the standard basis for RN . We set

D =
(

0v×1 | Uv×(N−1)

)
V
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and assume that the columns of U form an orthonormal set. Such a matrix U exists

because v ≥ N − 1. Then(
α
D

)T (
α
D

)
= αTα +DTD

= V T

(
e1e

T
1 +

(
0v×1 | Uv×(N−1)

)T (
0v×1 | Uv×(N−1)

))
V

= V T INV = IN

Hence, the columns ( αD ) are an orthonormal set of RN and so the rows of ( αD ) form

a Parseval frame for RN .

Remark 2.2.4. The conclusion of Lemma 2.2.3 stems from the fact that if k ≥ N

and A is a k × N matrix whose columns form an orthonormal set of vectors in RN ,

then the rows of A are a Parseval frame for RN . Indeed, let R = {r1, . . . , rk} be the

rows of A = [aij]. Then for every x ∈ RN , we have

k∑
i=1

∣∣〈x, ri〉∣∣2 =
k∑
i=1

 N∑
j=1

xjaij

2

=
k∑
i=1

N∑
j=1

N∑
l=1

xjaijxlail

=
N∑
j=1

N∑
l=1

xjxl

k∑
i=1

aijail

=
N∑
j=1

x2
j

= ‖x‖2 .

We are now ready to present the complete solution of Problem [A′].

Proposition 2.2.5. Problem [A′] admits a solution if and only if

(a) ank
> 0 for all k = 1, . . . , N .
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(b) H0(q) = δ0,q for q ∈ {0, 1/2}s.

Proof. Based on the statement of Problem [A′], let M = aTa + BTB be a diagonal

matrix and let B be such that Equation (2.6) is satisfied. We define the 1×N vector

c = (cnk
)Nk=1 by

cnk
=

ank√
mkk

, k = 1, . . . , N

where ank
are the low-pass filter coefficients and we notice that c is well defined since

Lemma 2.2.1 implies mkk > 0. Moreover, the low-pass filter condition H0(0) = 1

gives
N∑
k=1

ank
=

N∑
k=1

cnk

√
mkk = 1, (2.8)

while by Equation (2.6) for q = 0 we obtain
∑N

k=1 mkk = 1. This means that the

vector m = (
√
mkk)

N
k=1 ∈ R1×N has unit norm. Next, we note that M is diagonal if

and only if there exists a v ×N matrix D such that

B = D diag(
√
m11, . . . ,

√
mNN)

and the rows of ( c
D ) ∈ R(v+1)×N form a Parseval frame for RN . This implies that for

any α ∈ RN we have

‖α‖2
2 =

∣∣〈α, c〉∣∣2 +
v∑
i=1

∣∣〈α, di〉∣∣2 . (2.9)

Applying Equation (2.9) for α = m and utilizing Equation (2.8) gives DmT = 0.

Hence, Lemma 2.2.2 implies that c and m are collinear and so cnk
= λ
√
mkk, or

equivalently, ank
= λmkk for some λ ∈ R. By Equation (2.8) we deduce

1 =
N∑
k=1

ank
= λ

N∑
k=1

mkk = λ,

so ank
= mkk > 0 for all k = 1, . . . , N by Lemma 2.2.1. Finally, this and Equation

(2.6) also imply H0(q) = δ0,q.
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Conversely, if (ank
)Nk=1 is a sequence of positive coefficients, then c = (

√
ank

)Nk=1 is

a well-defined unit vector of RN . For v ≥ N − 1, Lemma 2.2.3 implies we can always

find a real matrix D ∈ Rv×N so that the rows of ( c
D ) form a Parseval frame for RN .

Then for B = D diag(
√
an1 , . . . ,

√
anN

) we have that cT c + DTD = IN is equivalent

to aTa+BTB = diag(an1 , . . . , anN
). Hence M is diagonal and mkk = ank

. Then

δ0,q = H0(q) =
N∑
k=1

ank
e−2πink·q =

N∑
k=1

mkke
−2πink·q

and the proof is complete.

A surprising consequence of Proposition 2.2.5 is that in order to have a solution to

Problem [A′], all the Fourier coefficients of the low-pass filter must be positive. Tensor

products of spline refinable functions yield low-pass filters satisfying both conditions

of Proposition 2.2.5. As a result, the first of the main results of this work summarizes

the preceding discussion.

Theorem 2.2.6. Let H0 = aw ∈ L2(Ts) be a low-pass filter with positive coefficients

supported on a finite set of indices J and suppose H0(q) = δ0,q for all q ∈ {0, 1/2}s.

Then for v ≥ max{N − 1, 2s − 1} and c = (
√
ank

)Nk=1 we have the following:

(a) All solutions of Problem [A′] are of the form

B = D diag(
√
an1 , . . . ,

√
anN

)

where the rows of ( c
D ) form a Parseval frame for RN .

(b) Such matrices D always exist.

(c) Any solution B of Problem [A′] defines a high-pass filter H1 = Bw whose asso-

ciated family XΨ forms a homogeneous compactly supported framelet for L2(Rs)

and therefore is a solution of Problem [A].
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Proof. As we see in the proof of the converse of Proposition 2.2.5 the assumptions

imposed on H0 guarantee the existence of a diagonal matrix

M =

(
a
B

)T (
a
B

)

whose entries satisfy
N∑
k=1

mkke
−2πink·q = δ0,q.

Now (a) follows from the equivalence between M being a diagonal matrix and the

rows of ( c
D ) forming a Parseval frame for RN . (b) follows directly from Lemma 2.2.3.

Lastly, for (c) we have

H0(γ + q)H0(γ) +H∗1 (γ + q)H1(γ) = W ∗(γ + q)

(
a
B

)T (
a
B

)
W (γ)

=
N∑
k=1

mkke
−2πink·q

= δ0,q.

Thus XΨ is a Parseval frame for L2(Rs).

The next step we take is to generalize the construction of directional frame atoms

with small spatial support presented in [35, Theorem 2], where the authors use a

“projection method” to create orientations in the space domain essentially projected

from higher dimensional Euclidean spaces to spaces with lower dimensionality. The

resulting filters act like first order finite difference operators along the orientation of

the atom. Here we recreate their main result in a somewhat more general framework,

specifically for low-pass filters with positive coefficients satisfying H0(q) = δ0,q for all

q ∈ {0, 1/2}s. This result was also generalized independently in [23], where the very

interesting constructs of quasi-tight framelets were also first introduced.
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Corollary 2.2.7. Let H0 = aw ∈ L2(Ts) be a low-pass filter with positive coefficients

supported on a finite set J and suppose H0(q) = δ0,q for all q ∈ {0, 1/2}s. Then the

N(N − 1)/2× 1 high-pass filter vector H1 with components

√
ank

ant

(
−e2πink· + e2πint·

)
for all k 6= t with k < t defines an affine Parseval framelet for L2(Rs).

Proof. From the definition of H1 we have
(
H0
H1

)
(γ) = ( aB )w(γ) where

(
a
B

)
=



an1 an2 an3 · · · anN−1
anN

−√an1an2

√
an1an2 0 · · · 0 0

−√an1an3 0
√
an1an3 · · · 0 0

. . .

−√an1anN
0 0 · · · 0

√
an1anN

0 −√an2an3

√
an2an3 · · · 0 0

. . .

0 −√an2anN
0 · · · 0

√
an2anN

...
0 0 0 · · · −√anN−1

anN

√
anN−1

anN


for γ ∈ Ts. Essentially, the rows of B are generated from all possible permutations of

non-zero column pairs. This implies that M = aTa+BTB is a diagonal matrix since

the columns of ( aB ) form an orthogonal set of N vectors in RN . Moreover, computing

the norm of the k-th column of ( aB ) gives

ank
an1 + ank

an2 + . . .+ a2
nk

+ . . .+ ank
anN

= ank

N∑
i=1

ani
= ank

,

for all k = 1, . . . , N . Therefore, M = diag(a) and B is a solution of Problem [A′].

The result follows by Theorem 2.2.6.
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2.3 Wavelets with Directional Vanishing Moments

and Customizable Filters.

The core message of Section 2.2 is that under the assumptions of Theorem 2.2.6 one

can construct affine Parseval framelets for L2(Rs) arising from a refinable function by

constructing Parseval frames for RN . This theorem not only allows us to translate the

difficult problem of solving the system of equations of the UEP into the much more

algorithmically tractable problem of designing Parseval frames in finite dimensions,

but furthermore enables us to custom-shape the filters defining the sought framelets.

For example, sparse filters, edge detection filters, filters inducing wavelets with a high

order of vanishing moments, etc. are some of the high-pass filter families we know of

that produce informative results in a variety of applications.

Our goal here is to propose a theoretical framework that enables us to hand-pick

the high-pass filters that define a Parseval framelet. We can also impose certain direc-

tional vanishing moments to increase their sensitivity to singularities in application-

specific targeted orientations. These design choices, although not the only realizable

ones, are the ones that drive the filter constructs in Section 2.5. The key tool is The-

orem 2.2.6, which dictates that the matrix entries of the filters h1,i are determined by

the rows of the sub-matrix D of ( c
D ) ∈ R(v+1)×N , v ≥ N − 1, whose rows form a Par-

seval frame for RN , and c is a given unit norm 1×N vector with positive components

defined by the Fourier coefficients of H0.

Customizing filters that define affine multi-dimensional Parseval frames and/or

selecting the number and direction of their vanishing moments is not a straightforward

task. It requires the development of a number of tools which will guarantee that in

every Parseval frame filter ensemble we create we maximize the number of filters with
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those desirable properties. Each such filter set may have to contain a number of filters

acting as a complement to the set of filters with predesigned properties in order to

derive a Parseval frame. A significant amount of this Section is devoted to making

their contributions and their number as small as possible (Theorem 2.3.2). In order

to achieve these goals, we first need to develop certain filter design tools utilizing

Theorem 2.2.6.

(i) We begin by presenting a sufficient condition for pre-determining L rows of D,

or a sub-matrix D1 ∈ RL×N whose rows are orthogonal to c so that there exist

appropriate matrices D2 for which the rows of c
D1

D2


form a Parseval frame for RN [Lemma 2.3.1]. The sub-matrix D2 determines

the filters acting as a complement to the set of customized filters defined by D1.

(ii) Next, we seek a technique to optimize the rows of D1 to control redundancy and

simultaneously minimize the reconstruction error when we choose to omit the

framelets ψi resulting from D2 [Theorem 2.3.2]. The algorithm implementing

(i) and (ii) can be found at the beginning of Section 2.5.

(iii) Finally, we give a characterization of the directional vanishing moment orders

(DVM) of framelets but also show how one can explicitly construct wavelets

with up to N − 1 DVM.

The next lemma addresses (i). In this setting the affine framelets induced by the

rows of D1 are predesigned but it is not necessary that they form an affine frame for

L2(Rs). From now on we use the notation Q := ( c
D1 ).
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Lemma 2.3.1. Let D1 be a fixed L × N matrix with rows orthogonal to c. If the

singular values of Q satisfy σi ≤ 1 for all i = 1, . . . , L+1, then there exists an N ×N

matrix D2 such that the rows of

(
Q
D2

)
=

 c
D1

D2


form a Parseval frame for RN . In this case the Parseval frame consists of v = L+N+1

vectors in RN .

Proof. We prove the case where L + 1 ≤ N . Using Singular Value Decomposition

(SVD), we have Q = UΣ1V
T for U ∈ R(L+1)×(L+1) and V ∈ RN×N unitary matrices

and

Σ1 =
(

diag(σ1, . . . , σL+1) | 0(L+1)×(N−L−1)

)
∈ R(L+1)×N .

Now let D2 = Σ2V
T ∈ RN×N with

Σ2 = diag

(√
1− σ2

1, . . . ,
√

1− σ2
L+1, 1, . . . , 1

)
∈ RN×N .

This gives

QTQ+DT
2 D2 = V (ΣT

1 Σ1 + ΣT
2 Σ2)V T = V INV

T = IN .

The case L+ 1 > N is similar and the proof is omitted.

We remark that the number of non-zero singular values of Q is directly linked to

the total number v of high-pass filters. The larger the number of singular values equal

to 1, the smaller the number of rows of Σ2 is going to be, thus providing us with a

tool to control the overall redundancy of the affine family XΨ.

However, this is not the only notable aspect of this construction. All singular

values σ1 ≥ σ2 ≥ · · · ≥ σL+1 come from the predesigned filters induced by D1. If
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σi = 1 for i = 1, . . . , L + 1, then whatever complementary filters we add using D2

can be considered as the only part of the framelet construction over which we have

no control, for it is determined by V T . This observation leads us to consider (ii), the

second point mentioned at the beginning of this Section.

One way to control the D2-contributions is to eliminate the chance of introducing

zeros as singular values or, in other words, by ensuring that rank(Q) = N . As we will

see in Theorem 2.3.2, this can be done in a way that keeps the resulting singular values

σi as close to 1 as possible. Nevertheless, this is one aspect of the D2-construction we

do not control.

The next theorem shows there exist matrices D1 for which we can jointly maximize

all singular values of Q under the constraint σmax(Q) ≤ 1. Moreover, provided that

rank(Q) = N , we want to see how accurate an approximation of an L2 function f

one can obtain when disregarding the completion matrix D2. For this, recall that if

Ψ = (ψ1, . . . , ψv) is a multi-wavelet whose corresponding affine family X0
φ,Ψ forms a

Parseval frame for L2(Rs), then the Calderon Condition states

|φ̂(γ)|2 +
∞∑
j=0

v∑
i=1

∣∣∣∣∣ψ̂i
(
γ

2j

)∣∣∣∣∣
2

= 1.

We define

E := 1−
∞∑
j=0

L∑
i=1

∣∣∣∣∣ψ̂i
(
γ

2j

)∣∣∣∣∣
2

− |φ̂(γ)|2 =
∞∑
j=0

v∑
i=L+1

∣∣∣∣∣ψ̂i
(
γ

2j

)∣∣∣∣∣
2

,

as well as the reconstruction error of f

E(f) : = ‖f‖2
L2
−
∞∑
j=0

∑
k∈Zs

L∑
i=1

|〈f, ψi,j,k〉|2 −
∑
k∈Zs

|〈f, Tkφ〉|2

=
∞∑
j=0

∑
k∈Zs

v∑
i=L+1

|〈f, ψi,j,k〉|2.

We seek to establish a connection between the reconstruction error E(f) and the

simultaneously maximized singular values of Q.
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Theorem 2.3.2. (a) Let c be a 1 × N vector such that ‖c‖2 = 1 and suppose the

rows of D1, {di}Li=1, satisfy

dic
T = 0

for all i. For λ ∈ RL, we define Q(λ) :=
( c

diag(λ)D1

)
and

fc(λ) := trace
(
QT (λ)Q(λ)

)
.

Then the problem

P :


max fc(λ)

subject to
∥∥QT (λ)Q(λ)

∥∥ ≤ 1

admits a solution.

(b) Let λ̃ ∈ RL be a solution of problem P and let D̃1 = diag
(
λ̃
)
D1 ∈ RL×N be

such that rank(Q) = N . Then

E(f) ≤ σ‖f‖2
L2

where σ := 1− σ2
N and the truncated non-homogeneous affine wavelet family

{Dj
2Tkψi : j ∈ Z, k ∈ Zs, i = 1, . . . , L} ∪ {Tkφ : k ∈ Zs}

is a frame with lower frame bound σ2
N and upper frame bound 1.

Proof. (a) We define Γ =
{
λ ∈ RL :

∥∥QT (λ)Q(λ)
∥∥ ≤ 1

}
and notice that if λ ∈ Γ,

then for any D1 ∈ RL×N with rows in the orthogonal complement of c we have

σmax

(
Q(λ)

)
≤ 1.

Moreover, Γ is non-empty since 0L ∈ Γ, but also bounded. Now for a sequence

(λn)n∈N ⊂ Γ such that λn → λ0 as n→∞, we have

‖QT (λn)Q(λn)−QT (λ0)Q(λ0)‖ = ‖DT
1

(
diag(λn)2 − diag(λ0)2

)
D1‖

≤ ‖D1‖2
∥∥∥diag

(
λ2
n − λ2

0

)∥∥∥→ 0
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as n → ∞ and so Γ is also closed. The result follows by the continuity of the trace

function fc.

(b) Since the rows of D̃1 are orthogonal to c and since ‖c‖2 = 1, we have σ1 = 1.

Then by applying Lemma 2.3.1 to D̃1, we have

ΣT
1 Σ1 = diag(1, σ2

2, . . . , σ
2
N)

and

ΣT
2 Σ2 = (0, 1− σ2

2, . . . , 1− σ2
N),

where Σ1 and Σ2 are defined as in Lemma 2.3.1. First, we claim

v∑
i=L+1

|Hi,1(γ)|2 ≤ (1− σ2
N)

v∑
i=1

|Hi,1(γ)|2. (2.10)

Indeed, since σ2
N − σ2

i ≤ 0 for all i = 1, . . . , N , we notice that the matrix

S : = ΣT
2 Σ2 − (1− σ2

N)
(

ΣT
1 Σ1 + ΣT

2 Σ2 − diag(1, 0, . . . , 0)
)

= diag(0,−σ2
2 + σ2

N , . . . ,−σ2
N−1 + σ2

N , 0)

is negative semi-definite. Hence

w∗(γ)
(
M1/2

)T
V SV TM1/2w(γ) =

v∑
i=L+1

|Hi,1(γ)|2 − (1− σ2
N)

v∑
i=1

|Hi,1(γ)|2 ≤ 0

for M1/2 = diag(
√
an1 , . . . ,

√
anN

) and for almost every γ ∈ Ts. Next, let θj : Ts → C

be given by

θj(·) =

j−1∏
k=0

H0(2j−1−k·)H1(2j·)

for any j ≥ 0. Recall that the Fundamental Function Θ : Ts → R+ associated with

the family XΨ is given by

Θ(·) =
∞∑
j=0

|θj(·)|2
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and recall that, [21, 16], for almost every γ ∈ Ts we have

lim
j→∞

Θ

(
γ

2j

)
= 1. (2.11)

We begin by considering the error of approximation for two scales of resolution.

Specifically, using (2.10) and the definition of the Fundamental function above we

have

v∑
i=L+1

1∑
j=0

∣∣∣∣∣ψ̂i
(
γ

2j

)∣∣∣∣∣
2

=
v∑

i=L+1

∣∣∣ψ̂i(γ)
∣∣∣2 +

∣∣∣∣∣ψ̂i
(
γ

2

)∣∣∣∣∣
2


≤ σ
v∑
i=1

∣∣∣∣∣H1,i

(
γ

2

)∣∣∣∣∣
2 ∣∣∣∣∣φ̂

(
γ

2

)∣∣∣∣∣
2

+

∣∣∣∣∣H1,i

(
γ

4

)∣∣∣∣∣
2 ∣∣∣∣∣φ̂

(
γ

4

)∣∣∣∣∣
2


= σ

∣∣∣∣∣H1

(
γ

2

)∣∣∣∣∣
2 ∣∣∣∣∣H0

(
γ

4

)∣∣∣∣∣
2

+

∣∣∣∣∣H1

(
γ

4

)∣∣∣∣∣
2
∣∣∣∣∣φ̂

(
γ

4

)∣∣∣∣∣
2

= σ
1∑
j=0

∣∣∣∣∣θj
(
γ

4

)∣∣∣∣∣
2 ∣∣∣∣∣φ̂

(
γ

4

)∣∣∣∣∣
2

≤ σΘ

(
γ

4

) ∣∣∣∣∣φ̂
(
γ

4

)∣∣∣∣∣
2

for almost every γ ∈ Ts. Hence if j0 ∈ N, proceeding inductively using the same

technique yields

v∑
i=L+1

j0∑
j=0

∣∣∣∣∣ψ̂i
(
γ

2j

)∣∣∣∣∣
2

≤ σ

j0∑
j=0

∣∣∣∣∣θj
(

γ

2j0+1

)∣∣∣∣∣
2 ∣∣∣∣∣φ̂

(
γ

2j0+1

)∣∣∣∣∣
2

≤ σΘ

(
γ

2j0+1

) ∣∣∣∣∣φ̂
(

γ

2j0+1

)∣∣∣∣∣
2

Finally, using (2.11) and φ̂(0) = 1 and by letting j0 tend to infinity we obtain E ≤ σ.

The result follows from Theorem 3.2 of [40] for Parseval frames.
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2.3.0.1 A Characterization of Directional Vanishing Moments (DVM)

Recall that for a given unit vector β ∈ Rs, we say a compactly supported wavelet ψ

has n vanishing moments in the direction of β if

Dr
βψ̂(0) = 0

for all r = 0, 1, . . . , n − 1, where Dr
β represents the r-th order directional derivative

in the direction of β. A routine calculation shows

Dr
β f̂(0) = F

((
−2πi(x · β)

)r
f(x)

)
(0)

for every compactly supported f ∈ L1, where F denotes the Fourier transform. The

previous equation shows that DVM act just like regular moments, primarily in the

direction of β. As in the one-dimensional case, the number of directional vanishing

moments of a wavelet ψ is expected to affect the rate of decay of the frame coefficients

with respect to the scale j at various directions at any point, especially at points of

singularity. We illustrate this effect with Figure 2.1 below. Specifically, we consider

a cubic polynomial image and the high-pass filter

h =

 0.1655 −0.2372 0.0718
−0.0073 0.0146 −0.0073
−0.0207 0.0414 −0.0207


corresponding to a wavelet with four DVM in the direction of (0, 1) and we notice

that 2D convolution with h produces an output with no edges.
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Figure 2.1: Left: Cubic spline interpolation of binary image containing a single hor-

izontal non-zero band. Values in this image are constant in the direction of (0, 1).

Right: 2D convolution with h defining a wavelet with 4 directional vanishing mo-

ments in the direction of (0, 1). As expected, the lower polynomial degree of the

intensity profile of the left panel relative to the number of DVM of h parallel to (0, 1)

practically flattens the cubic spline bump in the middle of the left panel.

Next, assuming B ∈ Rv×N is a solution to Problem [A′], we translate the DVM orders

of a wavelet ψi into certain geometric conditions in RN via the following characteri-

zation:

Proposition 2.3.3. Let β ∈ Rs and Ψ = (ψi)
v
i=1 be a multi-wavelet arising from a

matrix D as described in Theorem 2.2.6. Then if di denotes the i-th row vector of D,

a given wavelet ψi has n vanishing moments in the direction of β if and only if

cZrdTi = 0

for all r = 0, 1, . . . , n− 1 and for Z := diag(β · n1, . . . , β · nN).

Proof. Since the multi-wavelet Ψ satisfies the two-scale equation Ψ̂(2·) = H1(·)φ̂(·),

we infer that ψi has n vanishing moments in the direction of β if and only if H1,i has

n vanishing moments in the direction of β, where H1,i denotes the i-th component of

H1. Next, using D2
β to denote the second order directional derivative in the direction
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of β, we have

D2
β

(
H1,i(γ)

)
= Dβ

(
Dβ

(
H1,i(γ)

))
= Dβ


∇∑

nk∈J

√
ank

di,ke
2πink·γ

 · β


= 2πiDβ

∑
nk∈J

√
ank

di,ke
2πink·γ(β · nk)


= (2πi)2

∑
nk∈J

√
ank

di,ke
2πink·γ(β · nk)2.

Proceeding inductively we find that the r-th order directional derivative in the direc-

tion of β is given by

Dr
β

(
H1,i(γ)

)
= (2πi)r

∑
nk∈J

√
ank

di,ke
2πink·γ(β · nk)r.

Therefore, a given wavelet ψi has n vanishing moments in the direction of β if and

only if ∑
nk∈J

√
ank

di,k(β · nk)r = 0

for all r = 0, 1, . . . , n− 1, or equivalently if and only if

cZrdTi = 0

for all r = 0, 1, . . . , n− 1.

Next, based on Proposition 2.3.3, we claim that for a given set of low-pass filter

polynomial exponents {nk}Nk=1, there exist uncountably many direction vectors for

which one can construct wavelets with N − 1 DVM inducing solutions to Problem

[A′]. The following proposition supports this claim.

Proposition 2.3.4. There exists a unit vector β ∈ Rs and a vector d ∈ RN such

that the high-pass filter with coefficients (
√
ank

dk)
N
k=1 induces a wavelet with N − 1

vanishing moments in the direction of β.
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Proof. First, we claim that there always exists a vector β ∈ Rs such that all dot

products

β · nk, k = 1, . . . , N

are distinct. Equivalently, one can always find a β such that (nk − nt) · β 6= 0 for all

k 6= t. Indeed, to not have (nk − nt) · β = 0 for some β and for all k 6= t, we have

to exclude
(
N
2

)
hyperplanes from Rs. However, by Baire’s Category Theorem, Rs is

not the union of a finite number of hyperplanes and hence uncountably many such β

vectors exist. Next, for such a β ∈ Rs we consider the N ×N Vandermonde matrix

V =


1 · · · 1

n1 · β · · · nN · β
(n1 · β)2 · · · (nN · β)2

...
. . .

...
(n1 · β)N−1 · · · (nN · β)N−1


for which det(V) 6= 0, since all β ·nk, k = 1, . . . , N are distinct. Moreover, the matrix

R := V diag(
√
an1 , . . . ,

√
anN

) =


√
an1 · · · √

anN

(n1 · β)
√
an1 · · · (nN · β)

√
anN

(n1 · β)2√an1 · · · (nN · β)2√anN

...
. . .

...
(n1 · β)N−1√an1 · · · (nN · β)N−1√anN


is invertible, since ank

6= 0 and so the last column vector of R−1 is orthogonal to

all first N − 1 rows of R. Therefore, by Proposition 2.3.3, choosing d to be the last

column vector of R−1 and applying Theorem 2.3.2(a) implies that the corresponding

wavelet ψ has N − 1 vanishing moments in the direction of β.

Remark 2.3.5. Although we cannot expect the order of directional vanishing mo-

ments to exceed N − 1, the previous proposition shows that there are uncountably

many direction vectors β for which this order of moments is realized.
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2.4 Adaptive MRA and Compactly Supported Par-

seval Frames.

The dyadic multi-wavelet construction presented in the previous Sections is based

on a single refinable generator φ ∈ L2(Rs) corresponding to a low-pass filter H0 ∈

L2(Ts). In this Section we adopt a slightly different approach focusing on using the

methodology of Section 2.2 solely on the digital setting. Our starting point is the

work of Han, Kutyniok, and Shen [34], where the idea of an adaptive multiresolution

analysis (AMRA) was introduced. The main objective of an AMRA is to provide

a structure for a data-adapted fast decomposition strategy at each level of scaling.

General affine-like systems are studied and a Unitary Extension Principle is derived for

obtaining low and high-pass filters. However, this theoretical base lacks an algorithmic

method for filter bank constructions. This is precisely the reason why our methods

can be used to associate the filter design for such general affine-like systems with the

construction of Parseval frames in finite-dimensional spaces.

The word ”adaptive” refers to the fact in UEP low and high-pass filters are treated

in the same way. It is therefore not necessary to use one low-pass filter only. Using

a multitude of low-pass filters enables the construction of systems that achieve di-

rectionality in the discrete domain. Moreover, UEP generates filters implementable

by a fast wavelet transform. In what follows we present a brief introduction of the

AMRA structure and the treatment of each decomposition level. For a more detailed

analysis the reader may refer to [34].

Let Sl, l = 1, . . . , r be s× s integer matrices and let al, l = 1, . . . , r be Zs-periodic

low-pass filter trigonometric polynomials supported over finite sets Jl ⊂ Zs. We

consider J =
⋃r
l=1 Jl := {n1, . . . , nN} ⊂ Zs and write the low-pass filters al with
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respect to J as

al(γ) =
∑
nk∈J

alnk
e2πink·γ, γ ∈ Ts, l = 1, . . . , r

where if nk /∈ Jl, we set alnk
= 0, l = 1, . . . , r. We also assume

al(0) 6= 0, l = 1, . . . , r. (2.12)

Equation (2.12) is the only distinction between low and high-pass filters. Once again

we put in action the low-pass filter factorization

H0(γ) = Aw(γ) (2.13)

for

A =

a
1
n1
· · · a1

nN
...

...
arn1

· · · arnN

 ∈ Rr×N

and w(·) =
(
e2πin1·, . . . , e2πinN ·

)T
. On the other hand, let bl, l = 1, . . . , v be Zs-

periodic high-pass filter polynomials (bl(0) = 0) supported over J . We write each bl

as

bl(γ) =
∑
nk∈J

blnk
e2πink·γ, γ ∈ Ts, l = 1, . . . , v

and consider

H1(γ) = Bw(γ) (2.14)

with

B =

b
1
n1
· · · b1

nN
...

...
bvn1

· · · bvnN

 ∈ Rv×N .

For a multi-scale analysis in the discrete domain, let us consider f to be a signal

in `2(Zs). We wish to discuss one level of decomposition of such a signal. So let

A and B be the low and high frequency coefficients that we have acquired from the

previous decomposition step. We then compute the next level low and high frequency

55



coefficients by fl = Tal,Sl
f , l = 1, . . . , r and fl = Tbl,Sl

f , l = 1, . . . , v, respectively,

where for any invertible integer matrix S ∈ Rs×s and any finitely supported sequence

a : Zs → C, the transition operator Ta,S : `2(Zs)→ `2(Zs) is defined by

Ta,Sf(n) :=
∑
k∈Zs

f(k)a(k − Sn).

The transition operator splits the given signal into different non-overlapping channels.

We then enter the next level of analysis with the decomposition of fl, l = 1, . . . , v+ r

and we note that in the discrete domain, this type of analysis is used for a finite num-

ber of decomposition steps and is associated with a perfect reconstruction algorithm

based on the reverse application of appropriate subdivision operators T ′ of the form

T ′a,Sf(n) = | det(S)|
∑
k∈Zs

f(k)a(n− Sk)

for a suitable invertible integer matrix S ∈ Rs×s and a finitely supported sequence

a : Zs → C.

Lemma 2.4.1. Let S be an s × s invertible integer matrix and a : Zs → C be a

finitely supported sequence. Then

T̂ ′a,Sf(γ) = | det(S)|f̂(STγ)â(γ)

and

T̂a,Sf(STγ) = | det(S)|−1
∑
q∈ΩS

f̂(γ + q)â(γ + q),

where

â(γ) :=
∑
k∈Zs

a(k)e−2πik·γ

and

ΩS =
[
(ST )−1Zs

]
∩ [0, 1)s.
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Han, Kutyniok, and Shen prove in [34] that a perfect reconstruction can be

achieved if and only if each decomposition level is associated with a generalized version

of the UEP system of equations.

Theorem 2.4.2. ([34]) Let Sl, l = 1, . . . , v + r be s × s invertible integer matrices.

Let al, l = 1, . . . , r and bl, l = 1, . . . , v be finitely supported low and high-pass filters,

respectively, and let H0 and H1 be defined as in Equations (2.13) and (2.14). Then

for any f ∈ `2(Zs) we have the perfect reconstruction

r∑
l=1

T ′al,Sl
Tal,Sl

f +
v∑
l=1

T ′bl,Sl
Tbl,Sl

f = f

if and only if, for any q ∈ Ω =
⋃v+r
l=1 ΩSl

, where ΩSl
:=
[
(STl )−1Zs

]
∩ [0, 1)s,

H0(γ + q)H0(γ) +H1(γ + q)H1(γ) = δ0,q. (2.15)

The proof of the above Theorem is achieved by utilizing the expressions of the

Fourier transforms of the transition and subdivision operators given in Lemma 2.4.1.

For more details one may refer to [34].

We notice that the generalized Unitary Extension Principle equations of Theorem

2.4.2 differ from then ones stated in Equation (2.3) only in their respective cosets

defined by the sequence of dilation matrices Sl, l = 1, . . . , v + r.

Our goal is to analyze the AMRA case of [34] using the tools presented in Propo-

sition 2.2.5. Specifically, we note that the factorization of H0 and H1 implies that

Equation (2.15) is equivalent to

δ0,q =
N∑

k,t=1

mkte
−2πink·qe2πi(nt−nk)·γ, q ∈

v+r⋃
l=1

ΩSl

where M = (mkt)
N
k,t=1 = ATA+ BTB for some appropriate B ∈ Rv×N (see Equation

(2.5)). Just as in Section 2.2, we assume M is a diagonal matrix and so the above
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system of equations takes the form

δ0,q =
N∑
k=1

mkke
−2πink·q, q ∈

v+r⋃
l=1

ΩSl
. (2.16)

As in Lemma 2.2.1, B ∈ Rv×N must satisfy v ≥ N − r and mkk > 0 for all k. We

then claim that M = ATA + BTB = diag(m11, . . . ,mNN), mkk > 0, k = 1, . . . , N if

and only if there exists D ∈ Rv×N , v ≥ N − r such that

B = D diag(
√
m11, . . . ,

√
mNN)

and the rows of
(
C
D

)
∈ R(v+r)×N form a Parseval frame for RN where

C = A diag(1/
√
m11, . . . , 1/

√
mNN).

Indeed, let Q :=
(
C
D

)
. Then QTQ = IN and

ATA+BTB =
(
Q diag(

√
m11, . . . ,

√
mNN)

)T (
Q diag(

√
m11, . . . ,

√
mNN)

)
= diag(

√
m11, . . . ,

√
mNN)QTQ diag(

√
m11, . . . ,

√
mNN)

= diag(m11, . . . ,mNN).

Additionally, Equation (2.16) gives
∑N

k=1mkk = 1 for q = 0. This means that the

vector m = (
√
m11, . . . ,

√
mNN)T has unit norm. Then if the rows of Q form a

Parseval frame for RN , then for any α ∈ RN we have

‖α‖2 =
r∑
i=1

|〈α, ci〉|2 +
v∑
i=1

|〈α, di〉|2.

We notice that the previous equation for α = m gives

1 =
r∑
i=1

|ai(0)|2 +
v∑
i=1

|〈m, di〉|2.

A closer look at Equation (2.12) reveals that is we assume that ai(0) = 1/
√
r for all

i = 1, . . . , r, then the previous equation implies Dm = 0. We are now ready to state

a generalized version of Proposition 2.2.5.
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Proposition 2.4.3. The system of Equations (2.16) admits a solution if

(a) al(0) = 1/
√
r for all l = 1, . . . , r.

(b) δ0,q = 1√
r

∑r
l=1 al(q) for q ∈

⋃v+r
l=1

(
STl
)−1 Zs ∩ [0, 1)s.

Proof. We look at the following configuration for the matrix M ∈ RN×N : Let M =

diag(m11, . . . ,mkk) with

mkk =
1√
r

r∑
l=1

alnk
, k = 1, . . . , N.

We then notice that the above choice implies that Equation (2.16) becomes

δ0,q =
N∑
k=1

1√
r

r∑
l=1

alnk
e−2πink·q =

1√
r

r∑
l=1

al(q)

for q ∈
⋃v+r
l=1

(
STl
)−1 Zs ∩ [0, 1)s.

2.5 Algorithmic Construction of Parseval Framelets

As indicated in Sections 2.2 and 2.3, the purpose of this work is to develop techniques

to handcraft affine Parseval framelet sets, or at least handcraft the part of them

which most significantly contributes to multidimensional image reconstructions. In

this section we propose a four-step algorithmic process via which for any high-pass

filter

H(·) =
(
H1(·), . . . , HL(·)

)T ∈ LL×1
2 (Ts)

with components Hi(·) =
∑N

k=1 b
i
nk
e2πink·, i = 1, . . . , L, one can force a Parseval

framelet for L2(Rs) to comprise wavelets ψi with corresponding high-pass filtersHi (up

to scalar multiplications). Using this algorithm, we construct classes of representative

examples of explicit affine framelet sets containing atoms implementable by sparse
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filters with directional characteristics. The algorithm below can easily be applied to

every finite set of high-pass filters of our choice multiplied by an appropriate set of

scalars.

Specifically, for nk ∈ J ⊂ Zs, let H0 be a low-pass filter with positive coefficients

a = (ank
)Nk=1 and let H be any high-pass filter of the form

H(·) =

b
1
n1

. . . b1
nN

...
...

bLn1
· · · bLnN


e

2πin1·

...
e2πinN ·


with H(0) = 0.

Step 1: We define the 1×N vector c =
(√

ank

)N
k=1

and notice that for any λ ∈ RL,

the matrix

D1(λ) = diag(λ)

b
1
n1

. . . b1
nN

...
...

bLn1
· · · bLnN


1/cn1

. . .

1/cnN


is well-defined and D1(λ)cT = 0 since H is a high-pass filter and therefore

satisfies
∑N

k=1 b
i
nk

= 0 for all i = 1, . . . , L.

Step 2: We use Theorem 2.3.2(a) to obtain λ∗ such that

trace
(
cT c+D1(λ∗)TD1(λ∗)

)
=


max trace

(
cT c+D1(λ)TD1(λ)

)
subject to

∥∥cT c+D1(λ)TD1(λ)
∥∥ ≤ 1.

Step 3: We use Lemma 2.3.1 to find a completion matrix D2 for which the rows of c
D1(λ∗)
D2

 ∈ R(v+1)×N , v ≥ N − 1

form a Parseval frame for RN .
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Step 4: We use Theorem 2.2.6 to guarantee that the wavelets ψi with corresponding

high-pass filters λ∗iHi, i = 1, . . . , L are components of a multi-wavelet Ψ whose

associated family XΨ is a Parseval framelet for L2(Rs). Indeed, this follows

from Theorem 2.2.6(a) since the high-pass filter matrix B is obtained by

B =

(
D1(λ∗)
D2

)
diag(cn1 , . . . , cnN

)

Remark 2.5.1. (a) The cost of incorporating into Ψ the frame wavelets defined

by λ∗iHi is paid in part by having to include in Ψ the filters that come from

D2. This cost can only be controlled if we select multiple high-pass filters of our

choice for which we have rank(Q) = N . This particular process will become

more clear in what follows.

(b) The previous algorithm demonstrates the potentially limited role of the refin-

able function in the construction of H1. As we see, as long as H has enough

hand-picked filters to exhaust the available dimensionality of the construction

space RN , the D2-contribution in the high-pass filter set H1 may be limited

as measured by the reconstruction error E(·). Consequently, we are led to the

conclusion that the significance of the refinable function is limited as the only

role its seems to play is to set N .

In the spirit of the previous remark, we introduce the typical models of high-pass

filter designs of our choice including high-pass filters acting as first and second order

directional finite-difference, Prewitt and Sobel operators, known to produce desirable

results in edge and singularity detection in two dimensional imaging applications.
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2.6 Filter Bank Examples

We recall that first and second order directional finite-difference filters are associated

with the operators δh,u and δ2
h,u, respectively, where

δh,u[f ](·) = f(·+ hu)− f(· − hu),

and

δ2
h,u[f ](·) = f(·+ hu)− 2f(·) + f(· − hu).

In one dimension, the corresponding filter matrices are (1, 0,−1) and (1,−2, 1) (see

[54]). Those are used to generate tensor product filters, such as the Prewitt and Sobel

filters [38] given by

Px =

−1 0 1
−1 0 1
−1 0 1

 Py =

−1 −1 −1
0 0 0
1 1 1


and

Sx =

1 0 −1
2 0 −2
1 0 −1

 Sy =

 1 2 1
0 0 0
−1 −2 −1

 ,

respectively. Both the Prewitt and Sobel operators are used to approximate or detect

horizontal and vertical intensity changes. They are obtained as tensor products of

smoothing and finite-difference operators, hence they are separable. We are interested

in directing the action of such operators to several orientations to promote sparse

decompositions and use them in feature extraction applications. For example, we
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notice that the matrices
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 −1 0 0 0




0 1 0 0 0
−1 0 1 0 0
0 −1 0 1 0
0 0 −1 0 1
0 0 0 −1 0




0 0 0 0 0
0 0 0 0 1
0 0 −2 0 0
1 0 0 0 0
0 0 0 0 0




−1 0 1 0 0
0 0 0 0 0
0 −2 0 2 0
0 0 0 0 0
0 0 −1 0 1


are sparse and oriented at 63.43◦, 135◦, 26.57◦, and 116.57◦, respectively, but can-

not be obtained as tensor products of one-dimensional kernels. This is where our

algorithm comes in handy, since it permits filters like the above to be part of filter

families inducing Parseval framelets. Next, we construct families of wavelet frames

arising from Cardinal B-spline refinable functions, whose low-pass filters have positive

coefficients.

For N1N2 = N , let h be an N1×N2 filter matrix. We define the map Λ : RN1×N2 →

RN given by

Λ(h) =
(
hN1,1, . . . , hN1,N2 , hN1−1,1, . . . , hN1−1,N2 , . . . , h1,1, . . . , h1,N2

)
∈ RN

to turn h from a matrix to a vector, in accordance with Theorem 2.2.6. As will

become clear in Examples 2.6.2, 2.6.3 and 2.6.4, we use Λ in the following way: first,

we pre-specify the form of a desirable high-pass filter matrix, say h, and then we

define

d(λ) := λ

(
Λ(h)k
cnk

)N

k=1

for a given vector c = (cnk
)Nk=1. We then apply Steps 2, 3 and 4 of our algorithm as

stated above. When we do this for more than one filter h, then we must solve the

optimization problem of Theorem 2.3.2(a). If the filters we intend to use give pairwise
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orthogonal vectors through Λ, then the steps of the algorithm presented above can

be applied to each filter individually.

The first case we examine is a high-pass filter family arising when we only apply

Lemma 2.3.1 and Theorem 2.2.6. In other words, we do not pre-design any of the

filters.

Example 2.6.1. Let ϕ be the one-dimensional second order cardinal B-spline refin-

able function with corresponding low-pass filter

µ0(γ) =

(
1 + e2πiγ

2

)2

=
1

4

(
1 + 2e2πiγ + e4πiγ

)
, γ ∈ T

and consider φ to be the tensor product refinable function ϕ ⊗ ϕ. Then H0(γ) =

µ0(γ1)µ0(γ2) for γ = (γ1, γ2) ∈ T2 and the low-pass filter matrix is given by

h0 =
1

16

1 2 1
2 4 2
1 2 1

 .

Using Λ, we define

c =
1

4

(
1,
√

2, 1,
√

2, 2,
√

2, 1,
√

2, 1
)
.

For symmetry purposes we translate φ so as to obtain J = {−1, 0, 1} × {−1, 0, 1}. If

we merely apply the SVD method of Lemma 2.3.1 we obtain

B = 10−2



−8.84 31.8 −1.77 −3.54 −7.07 −3.54 −1.77 −3.54 −1.77
−6.25 −2.5 23.8 −2.5 −5 −2.5 −1.25 −2.5 −1.25
−8.84 −3.54 −1.77 31.8 −7.07 −3.54 −1.77 −3.54 −1.77
−12.5 −5 −2.5 −5 40 −5 −2.5 −5 −2.5
−8.84 −3.54 −1.77 −3.54 −7.07 31.8 −1.77 −3.54 −1.77
−6.25 −2.5 −1.25 −2.5 −5 −2.5 23.8 −2.5 −1.25
−8.84 −3.54 −1.77 −3.54 −7.07 −3.54 −1.77 31.8 −1.77
−6.25 −2.5 −1.25 −2.5 −5 −2.5 −1.25 −2.5 23.8


We notice that the fifth column of B contains the constant terms in the generated

high-pass filter polynomials. Based on this observation, we note that even though
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Theorem 2.2.6 guarantees that B induces a Parseval frame for L2(R2), none of the

high-pass filter matrices are sparse, symmetric, anti-symmetric, or directional.

SVD for the construction of the high-pass filter set was first used in [26] for

proving the existence of periodic tight frame multiwavelets L2([0, 2π)s) arising from

multi-refinable periodic functions. As we see, apart from generating compactly sup-

ported frame wavelets, there is essentially no luck in obtaining filters with some of

the desirable properties by using SVD only.

Example 2.6.2. Let ϕ be an even-order cardinal B-spline refinable function and let

φ be the tensor product ϕ⊗ϕ as before, centered at the origin. Using Λ and the fact

that the symmetry of h0 implies ani
= anN−i+1

for i = 1, . . . , (N − 1)/2, we define

Q =

(
c
D1

)
=


√
an1 · · ·

√
an(N−1)/2

√
an(N+1)/2

√
an(N−1)/2

· · · √an1

−
√

2
2
· · · 0 0 0 · · ·

√
2

2
...

...
...

...
...

0 · · · −
√

2
2

0
√

2
2

· · · 0

 .

We notice that D1 defines central-difference filters with orientations parallel to the

vectors ni, i = 1, . . . (N − 1)/2. If β is an arbitrary unit vector in R2, then we write

cZ =
(

(n1 · β)
√
an1 , . . . , (n(N+1)/2 · β)

√
an(N+1)/2

, . . . , (nN · β)
√
an1

)
as in Proposition 2.3.3 and note that the symmetry of the vectors ni and nN−i+1

about the origin implies

ni · β = −nN−i+1 · β, i = 1, . . . ,
N − 1

2
.

This means that if a vector belongs to the orthogonal complement of the linear span

of the rows of Q, then it is automatically orthogonal to cZ. In this setting, the rows

of Q are pairwise orthogonal unit vectors. Any choice of a D2 matrix for which the

rows of
(

Q
D2

)
form a Parseval frame for RN will define an affine Parseval framelet for
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L2(R2), where the ψi defined by the rows of D2 have exactly one directional vanishing

moment for all β ∈ R2.

By Proposition 2.3.3, each of the high-pass filters generated by Q makes its cor-

responding wavelet insensitive to singularities parallel to β when β is perpendicular

to nk, since then the wavelet has infinite moments along these directions. In fact, by

continuity of the inner product, each wavelet loses its sensitivity as β converges to

the unit vector perpendicular to nk.

Example 2.6.3. Starting with the same refinable function φ as in Example 2.6.1, our

next effort is to design B so that it is associated with four first-order and four second-

order directional finite-difference high-pass filter matrices. Specifically, we consider

the matrices

h1 =

 0 0 1

0 0 0

−1 0 0

 , h2 =

0 1 0

0 0 0

0 −1 0

 , h3 =

1 0 0

0 0 0

0 0 −1

 , h4 =

 0 0 0

−1 0 1

0 0 0



h5 =

0 0 1

0 −2 0

1 0 0

 , h6 =

0 1 0

0 −2 0

0 1 0

 , h7 =

1 0 0

0 −2 0

0 0 1

 , h8 =

0 0 0

1 −2 1

0 0 0

 ,

which we vectorize using the map Λ to obtain the rows of D1(λ) given by dk(λ),

k = 1, . . . , 8. This gives the matrix

D1(λ) := diag(λ)



−4 0 0 0 0 0 0 0 4

0 −2
√

2 0 0 0 0 0 2
√

2 0
0 0 −4 0 0 0 4 0 0

0 0 0 −2
√

2 0 2
√

2 0 0 0

0 0 0 −2
√

2 4 −2
√

2 0 0 0
0 0 −4 0 4 0 −4 0 0

0 −2
√

2 0 0 4 0 0 −2
√

2 0
−4 0 0 0 4 0 0 0 −4


whose rows are in the orthogonal complement of c. Here the rows of D1(·) are not

pairwise orthogonal and so the largest singular value of

Q(λ) =

(
c

D1(λ)

)
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is expected to be strictly greater than 1, even in the case where the rows of Q are

normalized. At this point, we invoke Theorem 2.3.2(a). Specifically, we can find an

optimal λ∗ so that D1(λ∗) is a solution to
max trace

(
cT c+DT

1 (λ)D1(λ)
)

subject to
∥∥cT c+DT

1 (λ)D1(λ)
∥∥ ≤ 1

.

We use Matlab’s built-in function fmincon to solve this problem and obtain

λ∗ = (0.0442, 0.0884, 0.0442, 0.0884, 0.0234, 0.0293, 0.0088, 0.0316) ,

but also the high-pass filter coefficients

B = 10−2



−17.7 0 0 0 0 0 0 0 17.7

0 −25 0 0 0 0 0 25 0

0 0 −17.7 0 0 0 17.7 0 0

0 0 0 −25 0 25 0 0 0

0 0 0 −6.63 13.26 −6.63 0 0 0

0 0 −11.75 0 23.5 0 −11.75 0 0

0 −2.5 0 0 5 0 0 −2.5 0

−12.65 0 0 0 25.3 0 0 0 −12.65
0.002 0 0.001 0.0003 −0.008 0.0003 0.001 0 0.002

−8.52 0.0288 9.59 0.233 −2.66 0.233 9.59 0.0288 −8.52
5.46 −0.939 5.69 −19 17.5 −19 5.69 −0.939 5.46

3.39 −21.5 3.4 8.1 13.2 8.1 3.4 −21.5 3.39


by Lemma 2.3.1 and Theorem 2.2.6. The SVD process of Lemma 2.3.1 introduces

four new filters, from the lower four rows of B, in order to complete the Parseval

frame for R9. Moreover, as shown in Example 2.6.2, the wavelets induced by the rows

{bi}13
i=5 have first-order directional vanishing moments in the direction of all β ∈ R2.

If we decide to omit the four filters added by D2, Theorem 2.3.2(b) implies that for

an arbitrary function f ∈ L2(R2), we have

E(f) ≤ (1− σ2
9)‖f‖2

L2
≈ 0.987‖f‖2

L2
.

Additionally, by Theorem 2.3.2(b), the family

{Dj
2Tkψi : j ∈ Z, k ∈ Zs, i = 1, . . . , 8}
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is a frame, which guarantees the representation’s injectivity. We also point out that,

if all the row-vectors of D1(λ) are pairwise orthogonal, then the optimal λ∗ gives

σi(D1(λ∗)) = 1 for all i. The reader may refer to [3] for a Parseval framelet induced

by the first five rows of D1(λ). In that paper we also present an application of the

high-pass filter matrices arising from rows 3, 4, 5 and 6 of B given by the first-order

finite-difference filters

h3 = 10−2

17.7 0 0
0 0 0
0 0 −17.7

 h4 = 10−2

 0 0 0
−25 0 25

0 0 0


and the second-order finite-difference filters

h4 = 10−2

 0 0 0
−6.63 13.26 −6.63

0 0 0

 h6 = 10−2

−11.75 0 0
0 23.5 0
0 0 −11.75



Figure 2.2: This is a 256x256 image freely available with Matlab 2017. We use

it to demonstrate the interaction of the designed filters with singularities in various

directions.
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Figure 2.3: Application of hi, i = 3, 4, 5, 6 constructed in Example 2.6.3 as discrete

2D-convolution kernels at native resolution. The first two filters act as first-order

directional central-difference filters oriented at 135◦ and 0◦, respectively. The last

two act as second-order central-difference filters oriented at 0◦ and 135◦, respectively.

Note that singularity detection strength increases as edges are oriented closer to being

perpendicular to the orientation of each filter. In Fig 2.5 we see that this effect may

also be related to the anisotropy of the filter and its size.

Example 2.6.4. We consider the fourth order Cardinal B-spline refinable function

ϕ(x) =



1
6
x3, 0 < x ≤ 1

1
6
(−x3 + 12x2 − 18x+ 8), 1 < x ≤ 2

1
6
(−x3 − 12x2 + 78x− 88), 2 < x ≤ 3

1
6
(x3 − 48x+ 128), 3 < x ≤ 4

with corresponding low-pass filter

µ0(γ) =

(
1 + e2πiγ

2

)4

=
1

16

(
1 + 4e2πiγ + 6e4πiγ + 4e6πiγ + e8πiγ

)
,
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and we set φ to be the tensor product ϕ⊗ϕ. Then H0(γ) = µ0(γ1)µ0(γ2), the low-pass

filter matrix is given by

h0 =
1

64


1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1


and c takes the form

c =
1

16

(
1, 2,
√

6, 2, 1, 2, 4, 2
√

6, 4, 2,
√

6, 2
√

6, 6, 2
√

6,
√

6, 2, 4, 2
√

6, 4, 2, 1, 2,
√

6, 2, 1
)
.

Centering φ at the origin implies J = {−2, . . . , 2}×{−2, . . . , 2}. We use our algorithm

to create filters with different orientations from those along which their corresponding

finite-difference kernels act. More specifically, we consider first and second-order

filters of the form
0 0 0 −1 0
0 0 −1 0 1
0 −1 0 1 0
−1 0 1 0 0
0 1 0 0 0




0 0 −1 0 1
0 0 0 0 0
0 −1 0 1 0
0 0 0 0 0
−1 0 1 0 0




0 −1 0 1 0
0 −1 0 1 0
0 −1 0 1 0
0 −1 0 1 0
0 −1 0 1 0




−1 0 1 0 0
0 0 0 0 0
0 −1 0 1 0
0 0 0 0 0
0 0 −1 0 1




0 0 0 1 −1
0 0 1 −2 1
0 1 −2 1 0
1 −2 1 0 0
−1 1 0 0 0




0 0 1 −2 1
0 0 0 0 0
0 1 −2 1 0
0 0 0 0 0
1 −2 1 0 0




0 1 −2 1 0
0 1 −2 1 0
0 1 −2 1 0
0 1 −2 1 0
0 1 −2 1 0




1 −2 1 0 0
0 0 0 0 0
0 1 −2 1 0
0 0 0 0 0
0 0 1 −2 1


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First, with this new design approach we mimic one of the popular properties of

curvelets and shearlets: We define filters that act as singularity detectors perpen-

dicularly to the local orientation of a wave-front. Since our design is limited within

J , the discreteness of this spatially limited integer sub-grid constrains our ability to

direct the action of the associated differential operator perpendicularly to the filter’s

orientation. Moreover, the smaller number of bands of the filter matrix relative to

the length along its orientation seems to better focus the direction of its action (see

Fig. 2.5). This is something we also observe to a greater degree with shearlets and

curvelets, because they are designed in the frequency domain where one can control

their shape more easily.

The prototype of each of the two classes of the filters we design in this example

is directed along the x or y axis. The third and seventh matrices above are the

prototype filters for the first and second order directional central difference operators

acting along the x direction. Both filters have vertical orientation. To switch these

filters to another orientation, we re-position their central band by selecting one-by-

one the lead point of the central band on the x and y-axis of the grid as shown in

Figure 2.4.

This process gives a filter bank with 24 high-pass filters with hand-picked orienta-

tions. Next, SVD adds 24 more to complete a Parseval frame. The full list of all 48 fil-

ters of this example and of Example 2.6.3 can be found in the supplementary file which

can be retrieved from github.com/nkarantzas/multi-d-compactly-supported-PF-

along with the codes used for the generation of the presented filter-banks.

71

github.com/nkarantzas/multi-d-compactly-supported-PF-


Figure 2.4: The dashed lines show four successive positions of central bands defining

this predesigned filter set. Once the central band has been set, we choose its nearest

diametrically opposite bands to create all first and second-order finite difference filters

allowed by this process.
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Figure 2.5: Application of hi, i = 5, 6, 17, 18 at native resolution. The first two

convolutions correspond to filters with orientations at 135◦ and 153.43◦, respectively.

The last two convolutions correspond to filters with orientations at 135◦ and 153.43◦,

respectively.

Example 2.6.5. As promised in Section 2.2, we illustrate the geometric implications
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and complexities of solving the system of Equations (2.6) and (2.7). Equation (2.7) is

relevant only when M is not a diagonal matrix. Recall that our analysis in Sections

2.2 and 2.3 is based on M being diagonal. To avoid computational complications, we

consider the one-dimensional case, i.e., s = 1. Without loss of generality, we assume

{nk}Nk=1 are consecutive integers. Then

e2πi(n2−n1)γ = e2πi(n3−n2)γ = . . . = e2πi(nN−nN−1)γ

e2πi(n3−n1)γ = e2πi(n4−n2)γ = . . . = e2πi(nN−nN−2)γ

...

e2πi(nN−1−n1)γ = e2πi(nN−n2)γ.

The above equalities indicate that by rearranging and regrouping the monomials in

(2.7) with respect to a fixed-valued nt−nk, we conclude that Equation (2.7) is satisfied

if and only if
N−t∑
k=1

mk,k+te
−2πink+tq = 0,

for all t = 1, . . . , N − 1, which along with Equation (2.6) gives a full characterization

of the problem.

However, even though the above equation indicates there is a relationship between

the elements of the j-th off-diagonal of the matrix M , it does not provide us with any

insight on the dimension of the desired high-pass vector, or a definite way of acquiring

it.

For example, in the setting of the classical construction of orthonormal wavelets,

let H0 be a low-pass filter with 4 coefficients given by a = [a1, a2, a3, a4] and H1

be a high-pass filter with coefficients B = [b1, b2, b3, b4]. Since M = aTa + BTB is
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symmetric, the previous system of equations is equivalent to

m11 +m22 +m33 +m44 = 1,

m11 −m22 +m33 −m44 = 0,

m12 +m23 +m34 = 0,

m12 −m23 +m34 = 0,

m13 +m24 = 0,

m13 −m24 = 0,

m14 = 0,

from which we deduce m13 = m14 = m23 = m24 = 0 and m12 = −m34. Now let

vk ∈ R2, k = 1, 2, 3, 4 be the column vectors of(
a
B

)
=

(
a1 a2 a3 a4

b1 b2 b3 b4

)
.

Then the above linear system suggests

• v1 is orthogonal to v3 and v4, and v2 is orthogonal to v3 and v4. Hence m12 6= 0,

v1 ‖ v2 and v3 ‖ v4.

• Finally, since m12 = −m34, if v1 and v2 are parallel, v3 and v4 must be anti-

parallel and vice versa.

This analysis indicates that the vectors vk can only form a capital T-shaped config-

uration as indeed they do, for example in the Daubechies D4 case [19] where the

corresponding matrix ( aB ) is given by(
a
B

)
=

1

8

(
1 +
√

3 3 +
√

3 3−
√

3 1−
√

3

1−
√

3
√

3− 3 3 +
√

3 −1−
√

3

)
.
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v3

v4

Finally, we notice that if one wants to have additional high-pass filters or increase

the length of the filters, the number of degrees of freedom increases significantly and

the problem of maintaining a geometric intuition of the underlying properties becomes

more complex. Moreover, we note that in the case of a four non-zero coefficient low-

pass filter, we cannot have only non-negative coefficients.
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Chapter 3

A Neural Network Application to

the Kaggle Quick, Draw! Data Set

The final chapter of this dissertation is devoted to the application of the filter bank

constructions of Chapter 2 in Deep Convolutional Neural Networks (CNN). This work

is a collaborative effort with Mohamadkazem Safaripoorfatide, Mozahid Haque, and

Saeed Sarmadi, all fellow doctoral students of the University of Houston. All of us

toiled in the planning, preprocessing, and coding stages of this two month project,

and special thanks are given to Kazem for developing the initial code implementation

of the results presented in Chapter 2. The code for the implementation of what

follows can be found at github.com/nkarantzas/quick_draw.

3.1 Project Description

Our project is based on an image classification competition posted on Kaggle. The

specific challenge is the Quick, Draw! Doodle Recognition challenge (www.kaggle.
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com/c/quickdraw-doodle-recognition). The data set consists of 45, 512, 752 hand

drawn images representing 340 classes. The task is to outperform the existing Quick,

Draw! classifier. This would have potential impact on Handwriting Recognition along

with Optical Character Recognition systems, Automatic Speech Recognition, and

Natural Language Processing. Our strategy is twofold: We initially train architectures

known to perform well on large data sets (ResNet18, ResNet34, ResNet50) to achieve

a high enough Leaderboard score on the competition’s ranking page. We then used

a combination of the ideas proposed in [42] (see Section 3.5.2) and the filter bank

constructions of Chapter 2 to see if we could get comparable results to state-of-the-

art architectures as well as to high-ranked algorithms developed by other contestants.

The utilization of the directional filter banks of Chapter 2 is related to the nature

of our data set, which consists solely of images characterized by geometric features

(edges, ridges, etc.). This is also inextricably linked to the choice of residual networks

(ResNet) because their special architecture allows for informative feature extraction

at every level of decomposition (see Section 3.5.1).

3.2 The Data Set

The Quick, Draw! data set consists of 45, 512, 752 training images of certain objects

(airplanes, hamburgers, hockey puck, etc.) belonging to 340 classes. They are given

in a *.csv format along with 112, 199 test images. There are two versions of each of

these sets: a simplified version and a raw version. The raw version contains additional

information such as the timing of each stroke drawn by the person who sketched the

image. Each stroke is given by sampled coordinates (x, y) that would need to be

interpolated to give the original drawing. In the simplified version, unnecessary points
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are removed from vector information (e.g., a straight line may have been originally

recorded with 8 points, but since you only need 2 points to uniquely identify a line,

6 points can be dropped). We opted to use the simplified version due to limited

computational resources and modest initial ambitions. The columns of the training

data set are as follows:

• Country Code: two letter abbreviation of a drawer’s country of origin;

• Drawing: a digitized object given in the form of an array with shape (stroke, x,

y) where

(a) Stroke: a particular stroke drawn by the user without lifting their drawing

stylus,

(b) x: the x coordinate of a subsample of points that can be interpolated to

form a single stroke, and

(c) y: the y coordinate of a sub sample of points that can be interpolated to

form a single stroke;

• Key ID: a unique identifier used by Quick, Draw! to catalogue the images;

• Recognized: a boolean consisting of whether the drawing matched the prompt

given to the user to draw out;

• Time-stamp: date and time of the drawing; and

• Word: the word that describes the prompt that the user must draw (e.g., air-

plane, jail, hockey puck).

We ended up using just the drawing and word columns for training. One thing to

note is that the (x, y) data given in the drawing column are a sample of the drawing
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data which we are meant to interpolate to get the drawing data. Clearly, we could not

work with this discrete set of data points as the convolutions in a deep CNN would

zero out the data as it progresses through the network. Here are some examples of

just drawing the discrete set of points.

Figure 3.1: Strokes belonging to 2 classes drawn by linear interpolation.

We also note that the size of the data set is of major concern. The training data

on its own was 7.6 gigabytes compressed and 27 gigabytes uncompressed. This is

prior to drawing the images which would compound the size very quickly.

3.3 Scoring

The trained networks give the top three predictions for each image in the test set

provided by the competition. After submitting our predictions, a Mean Average

Precision @3 (MAP@3) is calculated by

MAP@3 =
1

N

N∑
k=1

min(n,3)∑
s=1

P (s)

where N is the number of scored drawings in the test data, n = 340 (number of

predictions per drawing), and P (s) is the precision at cutoff k = 3 assigned by the
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classifier. In this case, our final layer is a softmax layer defined by

softmax(x)i =
exi∑340
j=1 e

xj
, i = 1, . . . , 340, x = (x1, . . . , x340) ∈ R340.

For an instance x in the test set, let Network(x) ∈ R340 denote the output of the

softmax layer. We extract the 3 largest components of Network(x) and sort them from

largest to smallest. Suppose these sorted components are associated with Classes s, t

and u for s, t, u = 1, . . . , 340. Then

score(x) =



1, if x ∈ Class(s)

1/2, if x ∈ Class(t)

1/3, if x ∈ Class(u)

0, otherwise.

Then MAP@3 = 1
N

∑N
i=1 score(xi).

3.4 Preprocessing

Since our focus is on training a convolutional neural network, we have to come up

with an efficient strategy for drawing the sketches from their under-sampled versions

to generate the image arrays for our training and validation sets. However, the sheer

size of the data set prevents us from reading from the interpolated versions of the

images since that would require around 7 terabytes of space. So we opt to draw the

images in batches during training. We use gray-scale images of size 128× 128 due to

the depth of our chosen models. An important aspect of drawing the images using

the raw strokes is that we are able to encode the timeline of strokes of each drawing,

starting with 255, by assigning different intensity values to each stroke. For stroke t,
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its assigned intensity is given by 255− 2 min(t, 10). A normalization factor of 1/255

is applied to the images since the original data is given with intensities ranging from

0 to 255. Examples of these images are given in the figure below.

Figure 3.2: Drawing images from the sampled strokes for a variety of classes. Note

that the images are not binary. There is a difference in intensity values from stroke

to stroke.

3.5 Models

We train two different types of residual networks, namely standard residual networks

[39] (ResNet18, 34, 50), but also a residual network based on convolutional kernels

obtained as linear combinations of fixed Parseval frame filter banks [42].

3.5.1 ResNet

Deep residual neural nets [39] were introduced by He, Zhang, Ren, and Sun in 2015

to address accuracy saturation problems in Dense Convolutional Networks. It is

known that the need to build deep networks for classification is unfortunately coupled

with the notorious issue of vanishing gradients. As the gradient is back-propagated

to earlier layers of the network, repeated multiplication operations might result in
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very small gradients. This has evident adverse effects as performance gets saturated

and often starts degrading rapidly. In ResNet architectures, residuals are learned as

opposed to features. Residuals are subtractions of features learned from inputs of a

particular layer by utilizing shortcut connections between the input of layers n and

n+ k. These shortcuts define residual blocks such as the one shown below.

Figure 3.3: A residual block used for propagation of information over multiple layers.

The image is taken from [39].

The rectified linear unit function is defined as

relu(x) =


x, x > 0

0, otherwise.

The motivation behind replacing the classical feature extraction block F with F + Id

comes from the observation that a successive composition of feature extraction blocks

followed by non-linearities often diminishes gradients during back propagation. One

of the main arguments of [39] is that this type of architecture avoids these gradual

degradations of gradients. For the purpose of this work we chose to work with the

three smallest ResNet models, namely the ones with 18, 34, and 50 convolutional

layers, respectively.
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3.5.2 ResNetRF

We train our final model implementing the idea of Structured Receptive Fields (SRF)

in CNNs [42]. This idea can be traced back to Mallat and Bruna [7] who introduced In-

variant Scattering Convolution Networks to compute invariant image representations,

stable to deformations and preserving high frequency information for classification.

The basic ingredient of a SRF network is a fixed linear basis of 2D filters out of which

the network learns the coefficients of their linear combinations. Specifically, for a

fixed basis filter bank H = {hi}mi=1 ∈ R, the convolutional node N is defined by m∑
i=1

λihi

 ∗ IN ,
where IN : Z2 → R denotes the input of the layer and {λi}mi=1 are the scalar trainable

parameters. The goal here is twofold: qualitative and quantitative. Qualitatively,

when training data is limited, one can utilize predesigned priors into the model,

such as tuned hyperparameters or even fully engineered representations like Scatter-

ing transforms. Quantitatively, it is possible to significantly reduce the number of

trainable parameters which is a common practice to avoid over-fitting.

Withing the SRF framework, we test the effectiveness of the predesigned direc-

tional Parseval frame filter banks of Chapter 2 on the Quick Draw data set for all

three ResNet models.

3.5.3 Model Architectures

We present the three ResNet architectures below. As mentioned above, they consist of

bundled residual blocks and block-to-block shortcut identity mappings. Their residual

blocks are defined as follows:

83



Table 3.1: (Left) Basic residual block. (Right) Bottleneck residual block.

ResNet18 & ResNet34

3× 3 Convolutional Layer

Batch Normalization

relu

3× 3 Convolutional Layer

Batch Normalization

relu

ResNet50

1× 1 Convolutional Layer

Batch Normalization

relu

3× 3 Convolutional Layer

Batch Normalization

relu

1× 1 Convolutional Layer

Batch Normalization

relu

We note that ResNet50 differs from the other two in that it contains 1× 1 convo-

lutions as well. This operation was first proposed in [48] and it was used by Google

in the inception module as a means to reduce the layer input dimensionality across

channels.

Batch normalization is a speed, performance, and stability improving technique

used in artificial neural networks by normalizing the input layer and adjusting and

scaling the activations appropriately [41]. We denote the mean and variance of a

training set batch B consisting of n images x1, . . . , xn by

µB =
1

n

n∑
i=1

xi

and

σ2
B =

1

n

n∑
i=1

(xi − µB)2.

Then each input xi of a layer is normalized by

x̂i =
xi − µB√
σ2
B + ε

, i = 1, . . . , n.

The ε in the denominator is added for numerical stability and can be arbitrarily small.
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An affine transformation step follows as

yi = γx̂i + β,

where the parameters γ and β are subsequently learned in the optimization process.

Max and Average pooling layers perform down-sampling by dividing the input

into k × l rectangular pooling regions and computing the max and average values of

each region, respectively. Table 3.2 shows the full network architectures of all three

networks.

Table 3.2: Network architectures. We note that there are shortcut identity connec-

tions from block to block in all three architectures.

ResNet18

7x7 conv
64 kernels

BatchNorm

relu

Maxpool

2 x basic block
64 kernels

2 x basic block
128 kernels

2 x basic block
256 kernels

2 x basic block
512 kernels

Average Pooling

Fully Connected

Softmax

ResNet34

7x7 conv
64 kernels

BatchNorm

relu

Maxpool

3 x basic block
64 kernels

4 x basic block
128 kernels

6 x basic block
256 kernels

3 x basic block
512 kernels

Average Pooling

Fully Connected

Softmax

ResNet50

7x7 conv
64 kernels

BatchNorm

relu

Maxpool

3 x bottleneck
64 kernels

4 x bottleneck
128 kernels

6 x bottleneck
256 kernels

3 x bottleneck
512 kernels

Average Pooling

Fully Connected

Softmax

To give a mathematical representation of a residual network’s architecture, we will

define ResNet18. The other two networks can be defined similarly. Let Bl : Rn×n →

Rn×n denote the ResNet18 basic block function and let Bn and T1 denote the batch
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normalization operator and two dimensional 3× 3 discrete convolution, respectively.

For x ∈ Rn×n, we can write Bl by

Bl(x) = relu(Bn(T1(relu(Bn(T1(x)))))) + x

Based on Table 3.2, ResNet18: R128×128 → R340 is given by

ResNet18(x) = softmax(fc(AvP( Bl···Bl
8 times(MaxPool(relu(Bn(T2(x)) · · · )

where T2, AvP, and MaxPool denote the two dimensional 7× 7 discrete convolution,

the Average pooling, and the Max pooling operators, respectively.

3.6 Training Strategy

3.6.1 Feed-forward Scheme

The training strategy is customized based on the nature of the test set provided

by Kaggle. The test set, which represents 10% of the entire test set, is uniformly

distributed across all classes. Therefore, we decided to work with a uniformly sampled

training set as well. We noticed that the smallest class in the data set contains 113, 613

images and so we chose an equal number of samples of less than 113, 613 images from

each class. The results presented here are for a sample of 20, 000 images per class.

This makes sure that we avoid both over-represented and under-represented classes.

We also generate a validation set consisting of 6, 800 images (20 images per class).

The under-sampled images are sketched and normalized in batches on the fly and

then are propagated through the network.
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3.6.2 Model Compilation

We used a Cross Entropy loss function and we compiled our models with an Adam

optimizer with learning rate 0.001. Cross Entropy is given by

−
340∑
c=1

yx,c log(px,c)

where yx,c is a binary indicator (0 or 1) stating if the class c is the correct classification

for observation x, and px,c is the predicted softmax probability that observation x is

in class c. Obviously, one can try different configurations in an effort to optimize the

hyperparameters of the networks, but for the purposes of this work we focused on

a more theoretical approach for improving our results. We chose the same baseline

for every network and explored the effects the switch from conventional ResNet to

ResNetRF has. We tested the constructions of Chapter 2 by considering the following

two opposite poles of the ResNetRF model:

• ResNetRF-One: A ResNet network where each 2D convolutional node is asso-

ciated with a single predesigned fixed filter taken from a fixed Parseval frame

filter bank. An arbitrary convolutional node would be defined as

λh ∗ IN

where IN : Z2 → R denotes the input of the Nth layer, λ is a scalar trainable

parameter, and h a single fixed filter.

• ResNetRF-All: A ResNet network where if H = {hi}mi=1 is a Parseval frame

filter bank, then the convolutional layer N is defined as m∑
i=1

λihi

 ∗ IN ,
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where IN : Z2 → R denotes the input of the layer and {λi}mi=1 are the scalar

trainable parameters.

We saw that in all three ResNet models we trained, we came across two types of

2D filtering operations, namely 7× 7 and 3× 3 convolutions. We generated the cor-

responding filter banks as follows. For the conventional ResNet models all filters are

randomly initialized. For ResNetRF we noticed that our data set comprises images

dominated by edge and/or ridge characteristics. Hence, we wanted our frame filter

banks to include directional finite-difference filters of various orders and orientations

to steer our networks towards more meaningful features. Moreover, in the case of

ResNetRF-One we attempted to significantly reduce the number of trainable param-

eters by considering sparse filter banks. The 7× 7 and 3× 3 filters used can be found

in the Appendix.

3.7 Results

Finally, we present our results on all trained models. We first stress that all RF-One

models reduce the number of trainable parameters by a significant amount. Table 3.3

below illustrates this fact.

Table 3.3: Number of trainable parameters.

Conventional RF-All RF-One

ResNet18 11,344,660 11,344,660 1,576,724

ResNet34 21,452,820 21,452,820 2,706,452

ResNet50 24,198,420 24,198,420 14,135,572

We trained 9 classifiers on 20, 000 images per class (6, 800, 000 images) for 2 epochs
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with batch size 128. Each network took approximately 3 hours to train on 8 NVidia

V100 GPUs provided by the Sabine cluster of the University of Houston (uh.edu/

cacds/resources/hpc/sabine/). We obtained MAP@3 validation precisions and

cross entropy losses and we present our findings in the Figures below. We noticed

that during the training process of all three ResNet models, ResNetRf-All consistently

outperformed both the conventional ResNet and ResNetRF-One. This trend persisted

on the test set as well as will be shown shortly.

It is clear that RF-One does not perform as well as the other two, but when

tested on ResNet50, the gap starts to close and its results improve. This could be

due to the difference in the nature of the basic and bottleneck blocks. The bottleneck

1 × 1 convolutions of a layer n can be seen as weighted averages of the activated

filter responses of the previous RF-One convolutional layer, which creates a new

post-activation linear combination of kernels.

Figure 3.4: ResNet18 MAP@3 validation precision (left) and cross entropy loss (right).
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Figure 3.5: ResNet34 MAP@3 validation precision (left) and cross entropy loss (right).

Figure 3.6: ResNet50 MAP@3 validation precision (left) and cross entropy loss (right).
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3.7.1 A Qualitative Error Examination

We noticed interesting post-classification facts after a closer look at the quartiles of the

validation confusion matrices of each network. To make our results more informative

we tested our networks on a validation set consisting of 200 images per class. We

give the two classes that a certain class is most confused by in a specific quartile

for our best networks (RF-All). It is interesting to see how the networks commit

errors between classes, the subtleties of which are sometimes difficult to incorporate

in a sketch. We also present all confusion matrices in log scale for better visual

representation.

• ResNet18 RF-All:

– Quartile(1): marker (77% miss-classified) is mostly confused with crayon

(18% error) and pencil (13% error).

– Quartile(2): bear (59% miss-classified) is mostly confused with teddy-bear

(10% error) and panda (8% error).

– Quartile(3): ambulance (27% miss-classified) is mostly confused with fire

truck (8% error) and van (5% error).

– Quartile(4): airplane (12% miss-classified) is mostly confused with flying

saucer (1% error) and crocodile (1% error).
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Figure 3.7: ResNet18 validation confusion matrices for 200 samples per class.

• ResNet34 RF-All:

– Quartile(2): bear (50% miss-classified) is mostly confused with teddy-bear

(12% error) and dog (4% error).

– Quartile(3): ambulance (28% miss-classified) is mostly confused with van

(6% error) and firetruck (5% error).

92



– Quartile(4): airplane (10% miss-classified) is mostly confused with ceiling

fan (2% error) and shark (1% error).

Figure 3.8: ResNet34 validation confusion matrices for 200 samples per class.

• ResNet50 RF-All:

– Quartile(2): bear (58% miss-classified) is mostly confused with teddy-bear

(13% error) and monkey (4% error).
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– Quartile(3): ambulance (42% miss-classified) is mostly confused with po-

lice car (16% error) and van (12% error).

– Quartile(4): airplane (8% miss-classified) is mostly confused with ceiling

fan (3% error) and mosquito (1% error).

Figure 3.9: ResNet50 validation confusion matrices for 200 samples per class.
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3.7.2 Test Results

We tested our results at the end of epochs 1 and 2 and present our MAP@3 preci-

sions in Table 3.4. All accuracy results are provided by Kaggle on the competition’s

webpage. It is once again evident that the RF-All variant is the go-to variant when

comparing the three different ResNet models.

Table 3.4: Test accuracy provided by Kaggle

Test Accuracy Epoch 1 Epoch2

ResNet18 Conventional 0.867 0.886

RF-All 0.872 0.891

RF-One 0.83 0.855

ResNet34 Conventional 0.875 0.894

RF-All 0.878 0.896

RF-One 0.845 0.867

ResNet50 Conventional 0.872 0.895

RF-All 0.875 0.898

RF-One 0.859 0.888

Lastly, based on this work, we trained one final ResNet50 RF-All network on

100, 000 samples per class (34, 000, 000 images). We achieved a test MAP@3 precision

of 93.68%, which would place our team in the top 8% of all participating teams.
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Chapter 4

Conclusions

In Chapter 2, we developed theoretical tools and an algorithmic process to construct

compactly supported multi-dimensional Parseval Frame and/or frame filter banks

comprising filters designed to address the specific nature of image decomposition

tasks. Our methods are easily implementable and provide a framework within which

we are able to better understand the geometric nuances of the Unitary Extension

Principle equation for a useful class of its solutions. We presented explicit examples

of filter banks consisting of well-known first and second order central-difference filters,

as well as filters with directional vanishing moments. We tested our construction on

the Quick, Draw! image classification task and obtained comparable results to popular

convolutional neural network architectures.

Limitations

As shown in Chapter 2, designing application-specific Parseval Frame filter banks

will often produce filters with unwanted characteristics. Even though Theorem 2.3.2
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helps us minimize their contribution, fully designed filter banks still remain difficult

to achieve. Another limitation of our construction is that it does not allow us to

increase the size of the high-pass filters generated, which can only have at most as

many non-zero coefficients as the low-pass filter has. Removing this limitation would

be very useful in many applications, e.g., when one wishes to increase the number of

orientations of the high-pass filters.

Future work

We wish to further explore the applications of our methods in tasks that we believe

are crucial. For example, we wish to extend our research by constructing 3D filter

banks for the analysis and accurate segmentation of dendritic spines in neuronal

structures. This would have potential impact in the monitoring and understanding

of the evolution of brain diseases such as autism, etc. Moreover, our neural network

application indicated that directional representations can boost the performance of

well-known architectures. We aim to continue testing these ideas in more complex

data sets to produce efficient and informative learning algorithms.
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Appendix A

Filter Banks

A.1 3x3 Filters for ResNetRF-One

A.1.1 Low-pass Filter0.0625 0.1250 0.0625
0.1250 0.2500 0.1250
0.0625 0.1250 0.0625



A.1.2 High-pass Filters

A.1.2.1 First-order Finite-difference Filters

 0 0 −0.1750
0 0 0

0.1750 0 0


 0 0 0

0.2475 0 −0.2475
0 0 0


0.1750 0 0

0 0 0
0 0 −0.1750


 0 −0.2475 0

0 0 0
0 0.2475 0


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A.1.2.2 Second-order Finite-difference filters

 0 − 0.1170 0
0 0.2341 0
0 − 0.1170 0


−0.0988 0 0

0 0.1976 0
0 0 −0.0988


 0 0 0
−0.1220 0.2440 −0.1220

0 0 0


 0 0 −0.0908

0 0.1817 0
−0.0908 0 0



A.2 7x7 Filters for ResNetRF-One

A.2.1 Low-pass Filter

0.0002 0.0015 0.0037 0.0049 0.0037 0.0015 0.0002
0.0015 0.0088 0.0220 0.0293 0.0220 0.0088 0.0015
0.0037 0.0220 0.0549 0.0732 0.0549 0.0220 0.0037
0.0049 0.0293 0.0732 0.0977 0.0732 0.0293 0.0049
0.0037 0.0220 0.0549 0.0732 0.0549 0.0220 0.0037
0.0015 0.0088 0.0220 0.0293 0.0220 0.0088 0.0015
0.0002 0.0015 0.0037 0.0049 0.0037 0.0015 0.0002



A.2.2 High-pass Filters

A.2.2.1 First-order Finite-difference Filters

0 0 0 0 0 0 −0.0110
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0.0110 0 0 0 0 0 0





0 0 0 0 0 0 0
0 0 0 0 0 0 −0.0270
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0.0270 0 0 0 0 0 0
0 0 0 0 0 0 0


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

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 −0.0427
0 0 0 0 0 0 0

0.0427 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0





0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0.0493 0 0 0 0 0 −0.0493
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




0 0 0 0 0 0 0
0 0 0 0 0 0 0

0.0427 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 −0.0427
0 0 0 0 0 0 0
0 0 0 0 0 0 0





0 0 0 0 0 0 0
0.0270 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 −0.0270
0 0 0 0 0 0 0




0.0110 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 −0.0110





0 0 0 0 0 −0.0270 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0.0270 0 0 0 0 0




0 0 0 0 0 0 0
0 0 0 0 0 −0.0662 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0.0662 0 0 0 0 0
0 0 0 0 0 0 0





0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 −0.1046 0
0 0 0 0 0 0 0
0 0.1046 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0.1208 0 0 0 −0.1208 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0





0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0.1046 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 −0.1046 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0



100





0 0 0 0 0 0 0
0 0.0662 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 −0.0662 0
0 0 0 0 0 0 0





0 0.0270 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 −0.0270 0




0 0 0 0 −0.0427 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0.0427 0 0 0 0





0 0 0 0 0 0 0
0 0 0 0 −0.1046 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0.1046 0 0 0 0
0 0 0 0 0 0 0




0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 −0.1654 0 0
0 0 0 0 0 0 0
0 0 0.1654 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0





0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0.1910 0 −0.1910 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0.1654 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 −0.1654 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0





0 0 0 0 0 0 0
0 0 0.1046 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 −0.1046 0 0
0 0 0 0 0 0 0




0 0 0.0427 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 −0.0427 0 0





0 0 0 −0.0493 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0.0493 0 0 0


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

0 0 0 0 0 0 0
0 0 0 −0.1208 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0.1208 0 0 0
0 0 0 0 0 0 0





0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 −0.1910 0 0 0
0 0 0 0 0 0 0
0 0 0 0.1910 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


A.2.2.2 Second-order Finite-difference Filters



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 − 0.0055 0 0 0
0 0 0 0.0110 0 0 0
0 0 0 − 0.0055 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0





0 0 0 0 0 0 0
0 0 0 −0.0082 0 0 0
0 0 0 0 0 0 0
0 0 0 0.0165 0 0 0
0 0 0 0 0 0 0
0 0 0 −0.0082 0 0 0
0 0 0 0 0 0 0




0 0 0 − 0.0331 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0.0662 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 − 0.0331 0 0 0





0 0 −0.030 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0.061 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 −0.030 0 0




0 0 0 0 0 0 0
0 0 −0.013 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0.027 0 0 0
0 0 0 0 0 0 0
0 0 0 0 −0.013 0 0
0 0 0 0 0 0 0





0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 −0.005 0 0 0 0
0 0 0 0.011 0 0 0
0 0 0 0 −0.005 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 −0.005 0.011 −0.005 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0





0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 −0.005 0 0
0 0 0 0.011 0 0 0
0 0 −0.005 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


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

0 0 0 0 0 0 0
0 0 0 0 −0.013 0 0
0 0 0 0 0 0 0
0 0 0 0.027 0 0 0
0 0 0 0 0 0 0
0 0 −0.013 0 0 0 0
0 0 0 0 0 0 0





0 0 0 0 −0.030 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0.061 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 −0.030 0 0 0 0




0 −0.022 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0.044 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 −0.022 0





0 0 0 0 0 0 0
0 −0.035 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0.071 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 −0.035 0
0 0 0 0 0 0 0




0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 −0.013 0 0 0 0 0
0 0 0 0.027 0 0 0
0 0 0 0 0 −0.013 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0





0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 −0.008 0 0.016 0 −0.008 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 −0.013 0
0 0 0 0.027 0 0 0
0 −0.013 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0





0 0 0 0 0 0 0
0 0 0 0 0 −0.035 0
0 0 0 0 0 0 0
0 0 0 0.071 0 0 0
0 0 0 0 0 0 0
0 −0.035 0 0 0 0 0
0 0 0 0 0 0 0




0 0 0 0 0 −0.022 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0.045 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 −0.022 0 0 0 0 0





−0.010 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0.020 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 −0.010


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

0 0 0 0 0 0 0
−0.022 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0.044 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 −0.022
0 0 0 0 0 0 0





0 0 0 0 0 0 0
0 0 0 0 0 0 0

−0.030 0 0 0 0 0 0
0 0 0 0.061 0 0 0
0 0 0 0 0 0 −0.030
0 0 0 0 0 0 0
0 0 0 0 0 0 0




0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

−0.033 0 0 0.066 0 0 −0.033
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0





0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 −0.030
0 0 0 0.061 0 0 0

−0.030 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




0 0 0 0 0 0 0
0 0 0 0 0 0 −0.022
0 0 0 0 0 0 0
0 0 0 0.044 0 0 0
0 0 0 0 0 0 0

−0.022 0 0 0 0 0 0
0 0 0 0 0 0 0





0 0 0 0 0 0 −0.010
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0.020 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

−0.010 0 0 0 0 0 0



A.3 3x3 Filters for ResNetRF-All

A.3.1 Low-pass Filter0.0625 0.1250 0.0625
0.1250 0.2500 0.1250
0.0625 0.1250 0.0625



A.3.2 High-pass Filters

A.3.2.1 First-order Finite-difference Filters0.1768 0 0
0 0 0
0 0 −0.1768


0 0.2500 0

0 0 0
0 −0.2500 0


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 0 0 0.1768
0 0 0

−0.1768 0 0


 0 0 0

0.2500 0 −0.2500
0 0 0


A.3.2.2 Second-order Finite-difference Filter with 2 Vanishing Moments −0 −0 −0

0.1768 −0.3536 0.1768
0 −0 −0


A.3.2.3 Filters with 2 Vanishing Moments 0.0250 0.0333 0.1417

−0.1000 −0.2000 −0.1000
0.1417 0.0333 0.0250


 0.0177 0.2003 −0.0766
−0.0707 −0.1414 −0.0707
−0.0766 0.2003 0.0177


 0.1625 −0.0750 −0.0375
−0.0250 −0.0500 −0.0250
−0.0375 −0.0750 0.1625



A.4 7x7 Filters for ResNetRF-All

A.4.1 Low-pass Filter

0.0002 0.0015 0.0037 0.0049 0.0037 0.0015 0.0002
0.0015 0.0088 0.0220 0.0293 0.0220 0.0088 0.0015
0.0037 0.0220 0.0549 0.0732 0.0549 0.0220 0.0037
0.0049 0.0293 0.0732 0.0977 0.0732 0.0293 0.0049
0.0037 0.0220 0.0549 0.0732 0.0549 0.0220 0.0037
0.0015 0.0088 0.0220 0.0293 0.0220 0.0088 0.0015
0.0002 0.0015 0.0037 0.0049 0.0037 0.0015 0.0002


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A.4.2 High-pass Filters

A.4.2.1 First-order Finite-difference Filters



0.0110 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 −0.0110





0 0.0271 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 −0.0271 0




0 0 0.0428 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 −0.0428 0 0





0 0 0 0.0494 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 −0.0494 0 0 0




0 0 0 0 0.0428 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 −0.0428 0 0 0 0





0 0 0 0 0 0.0271 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 −0.0271 0 0 0 0 0




0 0 0 0 0 0 0.0110
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

−0.0110 0 0 0 0 0 0





0 0 0 0 0 0 0
0.0271 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 −0.0271
0 0 0 0 0 0 0




0 0 0 0 0 0 0
0 0.0663 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 −0.0663 0
0 0 0 0 0 0 0





0 0 0 0 0 0 0
0 0 0.1048 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 −0.1048 0 0
0 0 0 0 0 0 0


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

0 0 0 0 0 0 0
0 0 0 0.1210 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 − 0.1210 0 0 0
0 0 0 0 0 0 0





0 0 0 0 0 0 0
0 0 0 0 0.1048 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 −0.1048 0 0 0 0
0 0 0 0 0 0 0




0 0 0 0 0 0 0
0 0 0 0 0 0.0663 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 −0.0663 0 0 0 0 0
0 0 0 0 0 0 0





0 0 0 0 0 0 0
0 0 0 0 0 0 0.0271
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

−0.0271 0 0 0 0 0 0
0 0 0 0 0 0 0




0 0 0 0 0 0 0
0 0 0 0 0 0 0

0.0428 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 −0.0428
0 0 0 0 0 0 0
0 0 0 0 0 0 0





0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0.1048 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 −0.1048 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0.1657 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 −0.1657 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0





0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0.1914 0 0 0
0 0 0 0 0 0 0
0 0 0 −0.1914 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0.1657 0 0
0 0 0 0 0 0 0
0 0 −0.1657 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0





0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0.1048 0
0 0 0 0 0 0 0
0 −0.1048 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


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

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0.0428
0 0 0 0 0 0 0

−0.0428 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0





0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0.0494 0 0 0 0 0 −0.0494
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0.1210 0 0 0 −0.1210 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0





0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0.1914 0 −0.1914 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


A.4.2.2 Filters with 2 Vanishing Moments



−0.0003 −0.0006 −0.0008 −0.0007 −0.0005 −0.0002 −0.0001
−0.0001 −0.0005 −0.0011 −0.0014 −0.0010 −0.0004 −0.0001
−0.0002 −0.0010 −0.0024 −0.0032 −0.0024 −0.0010 −0.0002
−0.0002 −0.0013 0.1322 −0.2252 0.1322 −0.0013 −0.0002
−0.0002 −0.0010 −0.0024 −0.0032 −0.0024 −0.0010 −0.0002
−0.0001 −0.0004 −0.0010 −0.0014 −0.0011 −0.0005 −0.0001
−0.0001 −0.0002 −0.0005 −0.0007 −0.0008 −0.0006 −0.0003




0.0012 0.0023 0.0029 0.0026 0.0017 0.0007 0.0002
0.0005 0.0018 0.0039 0.0049 0.0036 0.0015 0.0003
0.0006 0.0034 0.0085 0.0113 0.0085 0.0034 0.0006
0.0008 0.0901 −0.0845 − 0.1413 −0.0845 0.0901 0.0008
0.0006 0.0034 0.0085 0.0113 0.0085 0.0034 0.0006
0.0003 0.0015 0.0036 0.0049 0.0039 0.0018 0.0005
0.0002 0.0007 0.0017 0.0026 0.0029 0.0023 0.0012




0.0021 0.0039 0.0048 0.0044 0.0029 0.0012 0.0003
0.0008 0.0030 0.0065 0.0082 0.0061 0.0025 0.0004
0.0010 0.0058 0.0143 0.0190 0.0142 0.0057 0.0010
0.0362 − 0.0530 −0.0488 − 0.0853 −0.0488 −0.0530 0.0362
0.0010 0.0057 0.0142 0.0190 0.0143 0.0058 0.0010
0.0004 0.0025 0.0061 0.0082 0.0065 0.0030 0.0008
0.0003 0.0012 0.0029 0.0044 0.0048 0.0039 0.0021
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

0.0017 0.0032 0.0041 0.0037 0.0024 0.0010 0.0003
0.0007 0.0025 0.0054 0.0069 0.0051 0.0021 0.0004
0.0008 0.0048 0.0119 0.0159 0.0119 0.0048 0.0311
−0.0236 −0.0365 −0.0320 −0.0571 −0.0320 −0.0365 −0.0236
0.0311 0.0048 0.0119 0.0159 0.0119 0.0048 0.0008
0.0004 0.0021 0.0051 0.0069 0.0054 0.0025 0.0007
0.0003 0.0010 0.0024 0.0037 0.0041 0.0032 0.0017




0.0008 0.0015 0.0018 0.0017 0.0011 0.0005 0.0001
0.0003 0.0011 0.0025 0.0031 0.0023 0.0009 0.0002
0.0004 0.0022 0.0054 0.0072 0.0054 0.0763 −0.0210
−0.0170 −0.0274 −0.0266 −0.0457 −0.0266 −0.0274 −0.0170
−0.0210 0.0763 0.0054 0.0072 0.0054 0.0022 0.0004
0.0002 0.0009 0.0023 0.0031 0.0025 0.0011 0.0003
0.0001 0.0005 0.0011 0.0017 0.0018 0.0015 0.0008




0.0004 0.0007 0.0009 0.0008 0.0005 0.0002 0.0001
0.0002 0.0006 0.0012 0.0015 0.0011 0.0005 0.0001
0.0002 0.0011 0.0026 0.0035 0.1198 −0.0514 −0.0150
−0.0121 −0.0200 −0.0204 −0.0344 −0.0204 −0.0200 −0.0121
−0.0150 −0.0514 0.1198 0.0035 0.0026 0.0011 0.0002
0.0001 0.0005 0.0011 0.0015 0.0012 0.0006 0.0002
0.0001 0.0002 0.0005 0.0008 0.0009 0.0007 0.0004




0.0007 0.0013 0.0016 0.0015 0.0010 0.0004 0.0001
0.0003 0.0010 0.0022 0.0028 0.0020 0.0008 0.0001
0.0003 0.0019 0.0048 0.1417 −0.0781 −0.0351 −0.0104
−0.0083 −0.0126 −0.0106 −0.0192 −0.0106 −0.0126 −0.0083
−0.0104 −0.0351 −0.0781 0.1417 0.0048 0.0019 0.0003
0.0001 0.0008 0.0020 0.0028 0.0022 0.0010 0.0003
0.0001 0.0004 0.0010 0.0015 0.0016 0.0013 0.0007




0.0015 0.0029 0.0036 0.0033 0.0021 0.0009 0.0002
0.0006 0.0022 0.0048 0.0061 0.0045 0.0018 0.0003
0.0007 0.0043 0.1277 −0.0817 −0.0481 −0.0220 −0.0069
−0.0052 −0.0051 0.0020 −0.0010 0.0020 −0.0051 −0.0052
−0.0069 −0.0220 −0.0481 −0.0817 0.1277 0.0043 0.0007
0.0003 0.0018 0.0045 0.0061 0.0048 0.0022 0.0006
0.0002 0.0009 0.0021 0.0033 0.0036 0.0029 0.0015
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

0.0024 0.0044 0.0055 0.0051 0.0033 0.0014 0.0004
0.0009 0.0034 0.0074 0.0094 0.0069 0.0028 0.0005
0.0011 0.0807 −0.0666 −0.0461 −0.0252 −0.0121 −0.0043
−0.0029 0.0010 0.0131 0.0149 0.0131 0.0010 −0.0029
−0.0043 −0.0121 −0.0252 −0.0461 −0.0666 0.0807 0.0011
0.0005 0.0028 0.0069 0.0094 0.0074 0.0034 0.0009
0.0004 0.0014 0.0033 0.0051 0.0055 0.0044 0.0024




0.0027 0.0051 0.0063 0.0058 0.0038 0.0016 0.0004
0.0011 0.0039 0.0085 0.0108 0.0080 0.0032 0.0006
0.0316 −0.0449 −0.0399 −0.0230 −0.0107 −0.0057 −0.0025
−0.0014 0.0045 0.0187 0.0232 0.0187 0.0045 −0.0014
−0.0025 −0.0057 −0.0107 −0.0230 −0.0399 −0.0449 0.0316
0.0006 0.0032 0.0080 0.0108 0.0085 0.0039 0.0011
0.0004 0.0016 0.0038 0.0058 0.0063 0.0051 0.0027




0.0023 0.0042 0.0052 0.0048 0.0031 0.0014 0.0003
0.0009 0.0033 0.0071 0.0089 0.0066 0.0027 0.0196
−0.0203 −0.0308 −0.0260 −0.0133 −0.0053 −0.0031 −0.0016
−0.0008 0.0044 0.0162 0.0204 0.0162 0.0044 −0.0008
−0.0016 −0.0031 −0.0053 −0.0133 −0.0260 −0.0308 −0.0203
0.0196 0.0027 0.0066 0.0089 0.0071 0.0033 0.0009
0.0003 0.0014 0.0031 0.0048 0.0052 0.0042 0.0023




0.0013 0.0024 0.0031 0.0028 0.0018 0.0008 0.0002
0.0005 0.0019 0.0041 0.0052 0.0039 0.0484 −0.0133
−0.0145 −0.0226 −0.0203 −0.0119 −0.0056 −0.0029 −0.0013
−0.0007 0.0021 0.0090 0.0111 0.0090 0.0021 −0.0007
−0.0013 −0.0029 −0.0056 −0.0119 −0.0203 −0.0226 −0.0145
−0.0133 0.0484 0.0039 0.0052 0.0041 0.0019 0.0005
0.0002 0.0008 0.0018 0.0028 0.0031 0.0024 0.0013




0.0008 0.0015 0.0019 0.0018 0.0011 0.0005 0.0001
0.0003 0.0012 0.0026 0.0033 0.0765 −0.0322 −0.0094
−0.0103 −0.0163 −0.0151 −0.0094 −0.0047 −0.0024 −0.0010
−0.0006 0.0011 0.0053 0.0065 0.0053 0.0011 −0.0006
−0.0010 −0.0024 −0.0047 −0.0094 −0.0151 −0.0163 −0.0103
−0.0094 −0.0322 0.0765 0.0033 0.0026 0.0012 0.0003
0.0001 0.0005 0.0011 0.0018 0.0019 0.0015 0.0008


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

0.0008 0.0016 0.0020 0.0018 0.0012 0.0005 0.0001
0.0003 0.0012 0.0027 0.0890 −0.0499 −0.0224 −0.0066
−0.0072 −0.0107 −0.0088 −0.0042 −0.0015 −0.0009 −0.0006
−0.0003 0.0018 0.0062 0.0079 0.0062 0.0018 −0.0003
−0.0006 −0.0009 −0.0015 −0.0042 −0.0088 −0.0107 −0.0072
−0.0066 −0.0224 −0.0499 0.0890 0.0027 0.0012 0.0003
0.0001 0.0005 0.0012 0.0018 0.0020 0.0016 0.0008




0.0013 0.0023 0.0029 0.0027 0.0018 0.0008 0.0002
0.0005 0.0018 0.0781 −0.0555 −0.0334 −0.0151 −0.0045
−0.0047 −0.0058 −0.0017 0.0030 0.0034 0.0011 −0.0001
0.0002 0.0036 0.0104 0.0135 0.0104 0.0036 0.0002
−0.0001 0.0011 0.0034 0.0030 −0.0017 −0.0058 −0.0047
−0.0045 −0.0151 −0.0334 −0.0555 0.0781 0.0018 0.0005
0.0002 0.0008 0.0018 0.0027 0.0029 0.0023 0.0013




0.0017 0.0032 0.0040 0.0036 0.0024 0.0010 0.0003
0.0007 0.0493 −0.0471 −0.0360 −0.0212 −0.0097 −0.0030
−0.0030 −0.0018 0.0044 0.0095 0.0080 0.0030 0.0003
0.0006 0.0055 0.0147 0.0194 0.0147 0.0055 0.0006
0.0003 0.0030 0.0080 0.0095 0.0044 −0.0018 −0.0030
−0.0030 −0.0097 −0.0212 −0.0360 −0.0471 0.0493 0.0007
0.0003 0.0010 0.0024 0.0036 0.0040 0.0032 0.0017




0.0019 0.0035 0.0043 0.0040 0.0026 0.0011 0.0003
0.0199 −0.0304 −0.0312 −0.0229 −0.0131 −0.0061 −0.0020
−0.0018 0.0005 0.0076 0.0128 0.0102 0.0039 0.0005
0.0009 0.0063 0.0164 0.0217 0.0164 0.0063 0.0009
0.0005 0.0039 0.0102 0.0128 0.0076 0.0005 −0.0018
−0.0020 −0.0061 −0.0131 −0.0229 −0.0312 −0.0304 0.0199
0.0003 0.0011 0.0026 0.0040 0.0043 0.0035 0.0019




0.0016 0.0030 0.0037 0.0034 0.0022 0.0010 0.0081
−0.0129 −0.0211 −0.0212 −0.0151 −0.0085 −0.0040 −0.0014
−0.0011 0.0011 0.0072 0.0115 0.0090 0.0035 0.0005
0.0008 0.0054 0.0140 0.0186 0.0140 0.0054 0.0008
0.0005 0.0035 0.0090 0.0115 0.0072 0.0011 −0.0011
−0.0014 −0.0040 −0.0085 −0.0151 −0.0212 −0.0211 −0.0129
0.0081 0.0010 0.0022 0.0034 0.0037 0.0030 0.0016


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

0.0010 0.0019 0.0024 0.0022 0.0014 0.0197 −0.0054
−0.0092 −0.0151 −0.0154 −0.0111 −0.0063 −0.0030 −0.0010
−0.0008 0.0005 0.0043 0.0071 0.0056 0.0022 0.0003
0.0005 0.0034 0.0089 0.0118 0.0089 0.0034 0.0005
0.0003 0.0022 0.0056 0.0071 0.0043 0.0005 −0.0008
−0.0010 −0.0030 −0.0063 −0.0111 −0.0154 −0.0151 −0.0092
−0.0054 0.0197 0.0014 0.0022 0.0024 0.0019 0.0010




0.0007 0.0012 0.0016 0.0014 0.0312 −0.0131 −0.0038
−0.0065 −0.0107 −0.0110 −0.0080 −0.0046 −0.0021 −0.0007
−0.0006 0.0002 0.0028 0.0046 0.0037 0.0014 0.0002
0.0003 0.0023 0.0059 0.0078 0.0059 0.0023 0.0003
0.0002 0.0014 0.0037 0.0046 0.0028 0.0002 −0.0006
−0.0007 −0.0021 −0.0046 −0.0080 −0.0110 −0.0107 −0.0065
−0.0038 −0.0131 0.0312 0.0014 0.0016 0.0012 0.0007




0.0006 0.0011 0.0014 0.0362 −0.0206 −0.0092 −0.0027
−0.0046 −0.0074 −0.0074 −0.0053 −0.0029 −0.0014 −0.0005
−0.0004 0.0005 0.0027 0.0043 0.0033 0.0013 0.0002
0.0003 0.0020 0.0052 0.0068 0.0052 0.0020 0.0003
0.0002 0.0013 0.0033 0.0043 0.0027 0.0005 −0.0004
−0.0005 −0.0014 −0.0029 −0.0053 −0.0074 −0.0074 −0.0046
−0.0027 −0.0092 −0.0206 0.0362 0.0014 0.0011 0.0006




0.0007 0.0013 0.0318 −0.0233 −0.0142 −0.0064 −0.0019
−0.0031 −0.0049 −0.0044 −0.0027 −0.0013 −0.0007 −0.0003
−0.0001 0.0011 0.0038 0.0055 0.0042 0.0017 0.0003
0.0004 0.0024 0.0061 0.0081 0.0061 0.0024 0.0004
0.0003 0.0017 0.0042 0.0055 0.0038 0.0011 −0.0001
−0.0003 −0.0007 −0.0013 −0.0027 −0.0044 −0.0049 −0.0031
−0.0019 −0.0064 −0.0142 −0.0233 0.0318 0.0013 0.0007




0.0008 0.0206 −0.0195 −0.0157 −0.0096 −0.0043 −0.0013
−0.0021 −0.0030 −0.0021 −0.0006 0.0001 −0.0001 −0.0001
0.0001 0.0017 0.0049 0.0069 0.0052 0.0021 0.0003
0.0005 0.0029 0.0073 0.0097 0.0073 0.0029 0.0005
0.0003 0.0021 0.0052 0.0069 0.0049 0.0017 0.0001
−0.0001 −0.0001 0.0001 −0.0006 −0.0021 −0.0030 −0.0021
−0.0013 −0.0043 −0.0096 −0.0157 −0.0195 0.0206 0.0008


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

0.0087 −0.0120 −0.0132 −0.0105 −0.0064 −0.0029 −0.0008
−0.0014 −0.0017 −0.0006 0.0007 0.0008 0.0003 −0
0.0002 0.0019 0.0053 0.0073 0.0055 0.0022 0.0004
0.0005 0.0030 0.0076 0.0102 0.0076 0.0030 0.0005
0.0004 0.0022 0.0055 0.0073 0.0053 0.0019 0.0002
−0 0.0003 0.0008 0.0007 −0.0006 −0.0017 −0.0014

−0.0008 −0.0029 −0.0064 −0.0105 −0.0132 −0.0120 0.0087


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Rendus Académie des Sciences de Paris, 325:17–20, 1997.

[5] A. Ayache. Some methods for constructing nonseparable, orthonormal, com-
pactly supported wavelet bases. Applied and Computational Harmonic Analysis,
10:99–111, 2001.

[6] E. Belogay and Y. Wang. Arbitrarily smooth orthogonal nonseparable wavelets
in R2. SIAM J. Math. Anal., 30(3):678–697, 1999.

[7] J. Bruna and S. Mallat. Invariant scattering convolution networks. CoRR,
abs/1203.1513, 2012.

[8] C. A. Cabrelli and M. L. Gordillo. Existence of multiwavelets in Rn. Proc. Amer.
Math. Soc., 130(5):1413–1424, 2000.

[9] E. J. Candès. Harmonic analysis of neural netwoks. Appl. Comput. Harmon.
Anal, 6:197–218, 1999.

[10] E. J. Candès and L. Demanet. The curvelet representation of wave propagators
is optimally sparse. Comm. Pure Appl. Math., 58(11):1472–1528, 2005.

[11] E. J. Candès, L. Demanet, D. Donoho, and L. Ying. Fast discrete curvelet
transforms. Multiscale Model. Simul., 5(3):861–899, 2006.

114



[12] E. J. Candes and D. L. Donoho. Ridgelets: A key to higher dimensional inter-
mittency? Phil. Trans. R. Soc. London, A:2495–2509, 1999.

[13] E. J. Candès and D. L. Donoho. New tight frames of curvelets and optimal
representations of objects with piecewise C2 singularities. Comm. Pure Appl.
Math., 57(2):219–266, 2004.

[14] O. Christensen. An introduction to frames and Riesz bases. Applied and Numer-
ical Harmonic Analysis. Birkhäuser Boston, 2002.
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