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ABSTRACT: 

This study uses satellite- and ground-based remote sensing techniques to detect hydrocarbon-

induced rock alterations at the Cement oil field, Oklahoma. Hydrocarbon seepage is the escape of 

oil and gas from petroleum reservoirs and their upward-migration to the surface. These 

hydrocarbons at the surface can generate rock alterations, including mineralogical changes, 

bleaching of red beds, and clay mineral alterations. Surficial expressions of such alterations are 

distinct from adjacent rocks, and could be detected by remote sensing techniques. 

The Cement field is a giant oil and gas field located in the southeastern Anadarko basin in 

Oklahoma. The surface structure is a northwest-trending, elongate and asymmetrical anticline. 

This field has been reported to have heavily altered surficial rocks. Loss of iron and impregnation 

of sandstone by carbonate cements, and replacement of gypsum by calcite, are the major 

alteration phenomena in this field.  

Remote sensing data hold great potential to characterize rocks with great precision and fine 

detail. This study identified outcrops with surficial rock alterations from Landsat 8 and ASTER 

multispectral data, as well as Hyperion and Specim hyperspectral imagery. Published geologic 

maps and geochemical data were combined to show the geologic extent and various degrees of 

rock alterations. Petrographic analysis showed bleaching and cementation of sandstones, as well 

as crystallization gradient of gypsum samples. Laboratory spectroscopy was used to assist with 

image classification. Principal component analysis, minimum noise fraction, spectral angle 
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mapper, and band ratios are used in image processing. Remote sensing data detected bleaching 

and carbonate cementation. Combining lithological, remote sensing and geochemical data, this 

study built a model for petroleum seepage and related rock alterations, and provides a workflow 

for employing remote sensing techniques in resource exploration. 
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1. Introduction 

Modern hydrocarbon exploration requires the combination of geophysics, geology, and 

geochemistry, but the oldest way to find oil and gas relies on the usage of near-surface seepage 

(Jones and Drozd, 1983). Seepage is the escape of oil and gas from petroleum reservoirs and their 

upward-migration to the surface. As no petroleum seal rock is completely impermeable, every 

reservoir leaks in various degrees and amounts (Philp and Crisp, 1982). Macroseepages display 

oil and gas outflow, whereas microseepages are too subtle to directly observe but identifiable by 

geochemical means (Price, 1986).  Hydrocarbon microseepages have been reported in many 

locations in the United States (Fig. 1-1); they are typically located above oil and gas fields. 

Hydrocarbons have lower density than water and soil/rock, thus they have a potential to 

migrate upward. Saunders et al. (1999) proposed that buoyant hydrocarbon micro-bubbles can 

rise through the water-filled network of fractures, joints, and bedding planes,  providing a logical 

mechanism for vertical migration of light hydrocarbons.  

Schumacher (1996) summarized that hydrocarbons present at surface can generate various 

kinds of alterations of soil/rock: 1) microbiological anomalies; 2) mineralogical changes; 3) 

bleaching of red beds; 4) clay mineral alterations; 5) electrochemical changes; 6) radiation 

anomalies; and 7) biogeochemical and geobotanical anomalies. Surficial expressions of such 

alterations are distinct from adjacent soil/rock, thus they could be used to detect hydrocarbon 

microseepages.  

Various methods including field lithological mapping, geochemistry, field spectroscopy, and 

carbon dioxide and methane monitoring, have been utilized to detect oil and gas seepages 

(Donovan, 1974; Yang et al., 1998; Etiope and Klusman, 2010; Klusman, 2011). Recently, the 
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applications of remote sensing techniques in detecting microseepages have gained more and more 

attention.  

 

Figure 1-1, Locations of surficial rock and soil alterations related to petroleum reservoirs reported 

in the United States, legend on the next page, from Petrovic et al. (2008).  
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Remote sensing involves the measurement of radiation reflected and emitted from the earth’s 

surface by a sensor at a distance from the object. Remote sensing spectra contain plenty of 

geologic information like topography and material chemistry. Various remote sensing techniques, 

including Landsat Multispectral Scanning System (MSS), the Landsat Thematic Mapper (TM), 

SPOT satellite, Advanced Spaceborne Thermal Emission and Reflection (ASTER) system, 

HyMap Imagery, Probe-1, and Hyperion, have been reported to image regional and local geologic 

features (Abrams et al., 1977; Berger et al., 1992; Van der Meer et al., 2002; Crósta et al., 2003; 

Khan and Jacobson, 2008; Petrovic et al., 2012).  

In this study, Landsat 8 and ASTER multispectral remote sensing imagery, as well as Hyperion 

and Specim hyperspectral remote sensing imagery, are used to detect and map surficial alterations 

in Cement field, Oklahoma. The areal extents of the satellite datasets are shown in Fig. 1-2. The 

purpose of this thesis is to test the possibility of using remote sensing techniques to detect 

surficial rock alterations, and build a geologic model relating rock alterations with underlying 
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hydrocarbon reservoirs. This work proposes a prospective tool for further petroleum investigation 

and exploration, especially in areas where field work is difficult. 

 

Figure 1-2, The areal extents of the satellite datasets. The dots show the sample locations. The 

magenta outlines show the areal extent of the Cloud Chief Formation, and the rest of the map 

outcrops the Rush Springs Formation.  
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2. Geologic Setting 

The Cement field is a giant oil and gas field located in the southeastern Anakarko basin in 

Caddo and Grady Counties, Oklahoma (Fig. 2-1). It consists of two closely related fields, East 

Cement, and West Cement. The surface structure is a northwest-trending, doubly plunging, 

elongate, slightly asymmetric anticline (Donovan, 1974). The accumulations are generally 

restricted to the structural highs (Fig. 2-2).  

 

Figure 2-1, Location and regional background of the Cement field, Oklahoma, generalized from 

(Northcutt and Campbell, 1995).  

A stratigraphic column of Cement field is shown in Fig. 2-3. Hoxbar Group rocks in 

Missourian Series are the most prolific reservoirs of Pennsylvanian age. Rocks exposed are 

composed of Whitehorse Group and Cloud Chief Formation of Guadalupian Series (Donovan, 

1974). The Rush Springs, a predominantly reddish-brown, fine-grained clayey quartz sandstone, 
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is the uppermost formation of the Whitehorse, which is unconformably overlain by the Cloud 

Chief Formation, a basal gypsum member. Previous work showed that the south-dipping reverse 

fault parallel with the anticline, and a major normal fault follows the crest (Herrmann, 1961).  

 

Figure 2-2, Structural contour map of the Hoxbar Group, Cement field, Oklahoma, redrawn after 

(Herrmann, 1961). The depths of well control points as well as contours of Hoxbar Group are 

labeled. Black lines show faults. 

Hydrocarbon-induced alterations in the Cement field, Oklahoma were first reported by Reeves 

(1921). Donovan (1974) performed a comprehensive investigation including surface lithological 

mapping and isotopic work. He found striking mineralogical and chemical changes, and 

confirmed the presence of hydrocarbon microseepage at this site.  

The red-brown sandstone of the Rush Springs Formation is heavily bleached along the 

anticlinal structure of the Cement field. The red-brown color changes progressively towards the 
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crest of the East and West Cement anticlines to pink, yellow, white and light gray (Reeves, 1921; 

Donovan, 1974). The Cyril Gypsum member grades from pure gypsum at flank locations to 

gypsum with admixed carbonate near the crest, and calcite with smaller amounts of dolomite on 

top of the structure (Donovan, 1974).  

Donovan et al. (1979b) tried to use Landsat remote sensing tools to detect these surficial 

alterations, but concluded that the Landsat I and II images had a limited ability to detect 

microseepage, largely because of the mask by unaltered overlying rock, soil, and dense vegetation, 

and suggested further experiments with higher resolution. 

Donovan et al. (1979a) reported that airborne magnetic survey detected high-wave-number 

magnetic anomaly in Cement field. They interpreted that as reflecting abundant near-surface 

diagenetic magnetite, and proposed further utility of this direct geophysical technique in oil 

exploration. A lot of research had been done to test the presence of diagenetic magnetite, however, 

the magnetic anomaly previously reported are mainly the result of the drilling contamination 

(Reynolds et al., 1990; Gay, 1992). Meanwhile, Reynolds et al. (1991) noted the presence of 

pyrite, marcasite and pyrrhotite, and suggested that the ferrimagnet is a possible natural source of 

magnetic anomaly. Gay (1992) concluded that magnetic anomalies in sedimentary rocks cannot 

be used as an exploration tool to find oil.  

This work uses modern remote sensing techniques to detect rock alterations induced by 

hydrocarbons. A vertical outcrop in a mining quarry was scanned with ground-based remote 

sensing cameras. Several rock samples were collected and scanned from planned location within 

and outside the alteration zone. Combining lithological, remote sensing, and geochemical data, 

this study tries to build a model for petroleum seepage and related rock alterations, and provide a 

workflow for resource exploration. 
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3. Petrography 

3.1 Introduction 

Petrography is the study of composition, texture and small-scale structure of rocks (Hefferan 

and O'Brien, 2010). A lot of geologic information including mineralogy, grain sizes, grain shape 

and their relative abundances, and textures could be revealed under microscopes. This chapter 

presents petrographic analysis which was used to gain a better understanding of the chemistry of 

rock samples, thus providing a useful reference for spectroscopy and remote sensing imagery. 

3.2 Methods 

The rock samples were cut into small chips by rock-cutting facility, then polished and mounted 

onto glass slides, and finally ground to 30 micrometers thick. The thin sections are observed 

under a Nikon Eclipse LV100POL microscope located at the University of Houston. Photographs 

of 2560 * 1920 in resolution were also taken. 

3.3 Results 

Samples were collected from field work, the number of which was highly limited by 

accessibility; the locations are displayed in Fig. 3-1.  

3.3.1 Sandstones 

The unaltered sandstones are very fine-grained to fine-grained, reddish brown subarkose (Fig. 

3-2). The rocks are soft and easy to break, indicating poor compaction and cementation. Thin 

sections (Fig. 3-3) show that the clastic grains are 80 – 200 micrometers in diameter, sub-angular, 

well sorted, mostly quartz with a small amount of K-feldspar. Some feldspar grains have been 
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altered into clay minerals. Besides some clastic grains being coated with hematite-limonite 

cement, no other cementation was observed, leaving about 15% – 20% pore space. 

 

Figure 3-1, Field sample locations superimposed on the surface geologic map. The red line 

indicates the areal extent of rock alteration (color change); other lines indicate lower 

concentration of iron towards the center, with contours representing iron concentration at 

intervals of 25 ppm. Data from (Donovan, 1974; Stanley and Miller, 2005). 

Eleven altered sandstone samples were collected from the field. These samples are compact 

and hard, very fine- to fine-grained, and have various colors including grey to dark grey, yellow, 

white, or a little bit of red (Fig. 3-4 & 3-5). Sample CF-9 has a significant color change from grey 
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to yellow, and the transition is almost a flat surface. Only samples CF-9 and sandstone-22 fizzed 

with dilute hydrochloric acid, indicating the presence of abundant calcite. 

 

Figure 3-2, Hand samples of unaltered sandstones, A) sandstone-unaltered-1, B) sandstone-

unaltered-3, C) sandstone-unaltered-4, and D) sandstone-unaltered-5. All unaltered sandstones are 

red in color, very fine to fine-grained, soft and easy to break because of poor compaction and 

cementation. 

Some samples exhibited surface alterations. Numerous pyrite grains displaying pale brass 

yellow color, metallic luster and good crystal faces could be identified from sample CF-2 (Fig. 3-

5). Pyrite is seen on exposed surfaces and is associated with rusty looking red surfaces. A similar 

red surface is present on an exposed surface of sample CF-4, but no pyrite is observed. Some 

bluish-green surface alterations are present on sample CF-3. 
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Figure 3-3, Photomicrographs of unaltered sandstone samples, A) and B) sandstone-unaltered-1, 

C) and D) sandstone-unaltered-4. The clastic grains are 80 – 200 micrometers in diameter, sub-

angular, well sorted, mostly quartz with small amount of K-feldspar; some feldspar grains have 

been altered into clay minerals. Besides some clastic grains being coated with hematite-limonite 

cement, no other cementation was observed. 

Thin sections (Fig. 3-6, 7, 8, 9) show that all altered samples have the same clastic grains as the 

unaltered ones: fine-grained to very fine-grained (80 – 200 micrometers in diameter), sub-angular, 

well-sorted, mostly quartz with some K-feldspars. Some feldspar grains have already been altered 

into clay minerals. However, all altered samples are well cemented by carbonates; hematite / 

limonite coating commonly observed in the unaltered samples are rare here. Hydrochloric acid 

tests show that the carbonate in samples CF-9 and sandstone-22 is calcite, and the rest is dolomite. 
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Differentiation of calcite versus dolomite in these thin sections is very hard due to unfavorable 

crystallization conditions. The color transition observed on hand sample CF-9 is unrecognizable 

under microscope.  

 

Figure 3-4, Hand samples of altered sandstones, A) CF-1, B) CF-5, C) CF-7, D) CF-9, E) 

sandstone-10, and F) sandstone-22. These samples are compact and hard, very fine- to fine-

grained, and have various colors including grey to dark grey, yellow, white, or a little bit of red.  
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Figure 3-5, Hand samples of altered sandstones with surface alterations, A) B) and C) CF-2, D) 

CF-4, E) and F) CF-3. All of these samples are very fine to fine-grained. Sample CF-2 has pyrite 

and red rust on surface; CF-4 has similar rust but no pyrite; CF-3 has bluish-green surface 

alterations. 
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Figure 3-6, Photomicrographs of altered sandstone samples, A) and B) CF-1, C) and D) CF-2, E) 

and F) CF-3. These samples are well cemented by carbonates. 
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Figure 3-7, Photomicrographs of altered sandstone samples, A) and B) CF-4, C) and D) CF-5, E) 

and F) CF-6. These samples are well cemented by carbonates. 
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Figure 3-8, Photomicrographs of altered sandstone samples, A) and B) CF-7, C) and D) CF-8, E) 

and F) CF-9. These samples are well cemented by carbonates. 
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Figure 3-9, Photomicrographs of altered sandstone samples, A) and B) sandstone-10, C) and D) 

sample sandstone-22. These samples are well cemented by carbonates. 

3.3.2 Gypsum Samples 

Two unaltered gypsum samples were collected outside the alteration zone and three altered 

gypsum samples were collected inside the alteration site. All gypsum samples are massive; one 

unaltered sample is pinkish red and the others are white (Fig. 3-10). The thin sections of the 

unaltered ones (Fig. 3-11) show that they are composed of almost pure gypsum. They have large, 

elongated, subhedral crystal pellets of 0.3-0.7 millimeters in length, and small, equant fragments 

of 0.05-0.1millimeters in diameter. The red color could not be recognized in the thin section. 
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Figure 3-10, Hand samples of gypsum samples: A) unaltered Gypsum-White, B) unaltered 

Gypsum-Red, C) altered Gypsum-1, D) altered Gypsum-2, and E) altered Gypsum-3. All gypsum 

samples are massive. 
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Figure 3-11, Photomicrographs of unaltered gypsum samples, A) and B) Gypsum-White, C) and 

D) Gypsum-Red.. 

The three altered gypsum samples (Fig. 3-12) show crystallization gradient: Gypsum-1 has 

smaller anhedral crystal pieces of about 0.3 millimeters in diameter, and irregular, pervasive 

gypsum; Gypsum-2 has almost no crystal pellets but their relics, and more irregular, pervasive 

gypsum than Gypsum-1; Gypsum-3 has no crystal pieces but all irregular, pervasive gypsum. No 

carbonate was observed in these thin sections. 
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Figure 3-12, Photomicrographs of altered gypsum samples, A and B showing sample Gypsum-1, 

C and D showing sample Gypsum-2, E and F showing sample Gypsum-3, note the crystallization 

gradient in these samples. 
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4. Spectroscopy 

4.1. Introduction 

Spectroscopy is the study of the emission, reflection, and scattering of light as a function of 

wavelength (Clark, 1999). When photons encounter the surface of a medium, some are reflected, 

some are transmitted, and some are absorbed. Reflected photons can be detected and measured by 

spectrometers, and the ratio of intensity of reflected light versus incident light is called 

reflectance. Diagnostic features in reflectance spectra are caused by vibrational overtones, 

electronic transitions, charge transfer, and conduction processes, thus containing information 

about the chemistry of materials (Hunt, 1977). As a result, we can use reflectance spectra to 

identify various kinds of materials, and provide spectral reference for remote sensing imagery. 

United States Geological Survey has published 6 versions of spectral library, including samples 

of minerals, rocks, soils, mixtures, plants, vegetation communities, micro-organisms, and man-

made materials (Clark et al., 2007). This library provides a knowledge base for spectroscopy of 

minerals as well as related materials, and permits accurate definitions of absorption features in 

spectra. By comparing with the spectral library, unknown spectra could be analyzed and chemical 

information contained in spectral features could be revealed.  

As stated before, loss of iron and impregnation of sandstone by carbonate cements and 

replacement of gypsum by calcite are the major alteration phenomena in Cement field, Oklahoma 

(Donovan et al., 1979b). In this study, the main focus is to detect ferrous iron and calcite in the 

sandstone.  

Ferric iron minerals show several absorption features in VNIR spectral range caused by crystal 

field effects of Fe3+ (F515, F668, and F900) (Murphy et al., 2014). All major ferric iron minerals like 

goethite (α-FeO(OH) ), limonite (FeO(OH)ˑnH20), and hematite (Fe2O3), have these 3 absorptions 
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in visible and near-infrared spectral range. Ferrous iron minerals like pyrite, pyrrhotite, and 

siderite, on the other hand, do not have these absorptions (Fig. 4-1). Magnetite has both ferric and 

ferrous iron, but the reflectance spectrum does not show major absorption features of ferric iron. 

Based on these differences, information about the existence of ferric iron minerals could be 

extracted from image and ASD spectra. F515 and F668 are relatively small. We mainly use F900 to 

identify ferric iron in spectra. Besides, the wavelength positions of F900 are different among ferric 

iron minerals: hematite has F900 at 852 nm, goethite has F900 at 926 nm, and limonite has F900 at 

945 nm. This could be used to identify minerals in whole rock samples. 

 

Figure 4-1, Spectra of iron minerals, wavelength positions of F900 are marked by arrows. Data 

from Clark et al. (2007). 
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Gypsum has major absorption features at 1445 nm, 1750 nm, 1945 nm and 2215 nm, and 

minor absorption features at 1000 nm, 1200 nm, 1490 nm, 1535 nm, and 2265 nm. The two major 

calcium carbonate have very similar spectral shape: calcite has major absorption features at 2340 

nm and 2530 nm, and minor absorptions at 1875 nm, 1995 nm, and 2165 nm; dolomite has a 

violet-shift of about 20nm for every absorption feature (Fig. 4-2). All minor absorptions of 

calcium carbonates are masked by gypsum absorption features; the 2530 nm absorption is out of 

the wavelength range, so the only indicator of carbonate in gypsum is the 2340 nm feature. 

 

Figure 4-2, Spectra of gypsum and carbonates. Wavelength positions of recognizable absorption 

features of carbonates are marked by arrows, green rectangle mark minor absorption features of 

carbonates which would be masked by gypsum. Data from Clark et al. (2007). 
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Azurite has major absorption features at 1500 nm, 2045 nm, 2290 nm, and 2350 nm, as well as 

a reflectance peak at 453 nm. Malachite has major absorption features at 2270 nm, and 2355 – 

2430 nm, as well as a reflectance peak at 537 nm. Other copper minerals do not have prominent 

features to be recognized from spectra (Fig. 3-3).  

 

Figure 4-3, Spectra of copper minerals, wavelength positions of major features are marked by 

arrows, data from Clark et al. (2007). 

Based on spectroscopy, we could build laboratory spectral references for data processing in 

remote sensing imagery. Bands of interest in remote sensing could also be extracted from spectra 

plots. 
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4.2 Methods 

In this study ASD FieldSpec Pro spectroradiometer was used to collect laboratory spectra. The 

FieldSpec Pro system (Fig. 4-4) is a high performance, single-beam portable spectrometry device 

manufactured by the Analytical Spectral Devices, Inc. (now PANalytical Boulder); it is able to 

provide standard or reference spectra for scientific or industrial applications. The 

spectroradiometer covers 350 – 2500 nm wavelength range with 1 nm band interval, 3 nm 

spectral resolution in VNIR region, and 10 nm spectral resolution in SWIR region. There are 

three sensors in the system: VNIR, SWIR1, and SWIR2, covering 350 – 1000 nm, 1001 – 1830 

nm, and 1831 – 2500 nm, respectively. A lot of remote sensing workers have reported the 

applications of ASD spectrometer to build reference libraries (Peddle et al., 2001; Vermote et al., 

2002; Herold et al., 2004). 

 

Figure 4-4, ASD Fieldspec Pro spectroradiometer, photo taken in the lab. 
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ASD spectra of field samples were taken in the laboratory in early-November, 2013. An 

average of three measurements was calculated for each sample. During the measurements, the 

system loses continuation frequently between contiguous sensors, displaying spectral curve jumps 

at 1000 – 1001 nm and 1830 – 1831 nm. These jumps were corrected by subtracting all the VNIR 

and SWIR2 reflectance values by the differences between the sensors. This process makes the 

spectra continuous without changing the spectral wavelengths of absorption features.  

4.3 Results 

4.3.1 Sandstones 

 

Figure 4-5, Spectra of unaltered Rush Springs sandstones, from Cement field, Oklahoma. Ferric 

iron absorption features could be identified in the VNIR spectral range. 
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ASD spectra of the unaltered sandstones (Fig. 4-5) show major absorption features at about 

900 nm, 1415 nm, 1915 nm, and 2207 – 2215 nm, and minor absorptions at about 510 nm, 670 

nm, and 1770 nm. Clear F900 absorption trough could be identified from all spectra of unaltered 

sandstones; F515 and F668 are also recognizable.  

 

Figure 4-6, Spectra of sample sandstone-10. These spectra have shallower ferric iron absorption 

features compared with the unaltered sandstones. Absorption features at 2322 nm indicate 

dolomite. 

ASD spectra of sample sandstone-10 (Fig. 4-6) have strong absorption features at 1413 nm, 

1915 – 1920 nm, 2209 – 2215 nm, and 2322 nm. The 2322 nm absorption feature indicates the 
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existence of dolomite. Shallower F900 troughs compared with the unaltered sandstones could be 

identified from the spectra. 

 

Figure 4-7, Spectra of sample sandstone-22. Absorption features at 2340 nm indicate calcite. Two 

spectra (SS22-1-1 and SS22-1-3) which were taken on reddish-brown bands on the sample show 

ferric iron absorption features. 

ASD spectra of sample sandstone-22 (Fig. 4-7) have strong absorption features at 1413 nm, 

1912 nm, 2208 nm and 2340 nm. The 2340 nm absorption feature indicates the presence of 

calcite in this sandstone. Two spectra were taken on reddish-brown bands, resulting in F900, F515, 

and F668 troughs in spectra. 
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ASD spectra of Cement factory samples were quite variable. Major absorption features were 

observed at about 1410 – 1440 nm, 1910 – 1940 nm, and 2320 nm.  

 

 

Figure 4-8, Spectra of sandstone sample CF-1.These spectra were taken on a dark exposed 

surface and a grey fresh surface, resulting in two different kinds of spectra. Absorption features at 

2322 nm indicate dolomite. 

Sample CF-1 has a dark exposed surface and grey fresh surface. Spectra of the dark surface 

(CF-1-1-4, 6, 8, and 9 in Fig. 4-8) have lower reflectance than those of the grey surface (CF-1-1-

10, 11, 14, and 15) in the visible spectrum, and higher reflectance in the NIR spectrum. They also 

have broader and deeper absorption features at longer wavelengths compared to the grey surface. 
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Spectra CF-1-1-4 and CF-1-1-6 show very broad absorption trough at 450 – 900 nm with a 

minimum at about 680nm. 

 

Figure 4-9, Spectra of sandstone sample CF-2. Most of these spectra were taken on the rusty 

surface and show ferric iron absorption features but no hydroxyl and carbonate absorptions. CF-

2-3-29 was taken on a fresh grey surface and shows hydroxyl and dolomite absorptions but no 

ferric iron absorptions. 

Sample CF-2 (Fig. 4-9) has pyrite – iron oxide surface alterations (Fig. 3-5, A, B, and C). 

Spectra of surface alterations do not show major absorptions observed on spectra of fresh surfaces, 

but they have a clear F900 trough, which is an evidence of ferric iron. CF-2-3-29 was taken on a 

fresh surface; it didn’t show ferric iron absorptions but hydroxyl and carbonate absorptions. 
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Figure 4-10, Spectra of sandstone sample CF-3. Some spectra were taken on brownish green 

surface alterations and show reflectance peaks at 550 – 570 nm, they were probably associated 

with copper. Most spectra have 2325 nm absorptions indicating dolomite, while CF-3-1-24 has a 

2336 nm absorption feature indicating calcite. The black line shows the wavelength position of 

2330 nm. 

Sample CF-3 (Fig. 4-10) has brownish green surface alterations (Fig. 3-5, E and F). Spectra of 

these alterations (CF-3-1-24, 3-1-28, 3-2-34, and 3-2-35 in Fig. 4-10) show a reflectance peak at 

550 – 570 nm in coincidence with the green color. A possible origin of this reflectance peak is 

copper. Spectrum CF-3-1-24 has an absorption feature at 2336 nm indicating calcite in this 

spectrum, whereas dolomite was found in other spectra. The black line in the figure indicates 

wavelength at 2330 nm.  
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Figure 4-11, Spectra of sandstone sample CF-4. Most of these spectra were taken on the rusty 

surface and show ferric iron absorption features. CF-4-1-40 was taken on a fresh grey surface and 

shows no ferric iron absorptions. Absorption features at 2324 nm indicate dolomite. 

Sample CF-4 has iron oxide surface alterations (Fig. 3-5, D). Spectra of surface alterations 

(CF-4-1-38, 39, and 41 in Fig. 4-11) have major absorptions at 1440 nm, 1940 nm and 2325 nm, 

which are not observed on spectra of alteration sites on CF-2; however they do have a clear F900 

trough, which is an evidence of ferric iron. CF-4-1-40 was taken on a fresh surface and did not 

show ferric iron absorptions. 
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Sample CF-7 (Fig. 4-12) is mostly yellow in color, except from the two spectra (CF-7-2-53 and 

54) taken on whitish spots. All spectra show broad F900 trough. All CF-7 spectra have a deep 2323 

nm absorption feature, a deep 1940 nm absorption feature, and a shallow 2215 nm absorption 

feature. 

 

Figure 4-12, Spectra of sandstone sample CF-7. Most spectra show ferric iron absorption features. 

Deep absorption features at 2323 nm indicate dolomite. 

Sample CF-9 (Fig. 4-13) has a color transition from yellow to light grey. Spectra taken on the 

yellow area show clear F900 troughs; however spectra of the grey area do not. All spectra have a 

deep absorption feature at 2335 nm. 
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The major absorption features in these spectra indicate the presence of clay minerals. Band 

ratio calculations suggest that there is not much kaolinite, but illite in these sandstones. Most 

spectra do not have F900 trough, meaning that most ferric iron has been reduced.  

 

Figure 4-13, Spectra of sandstone sample CF-9. Some spectra were taken on the yellow area and 

show clear ferric iron absorptions, whereas the other spectra taken on the grey area do not show 

ferric iron absorptions. Absorption features at 2335 nm indicate calcite. 

ASD spectra of most the sandstone samples have a 2325 nm absorption feature, while C-F-9 

and Sandstone-22 have a 2335nm absorption feature, indicating the impregnation of dolomite in 

most sandstone samples, and calcite in these two samples.  
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4.3.2 Gypsum Samples   

Nine ASD spectra (Fig. 4-14) are taken for 2 unaltered gypsum samples. These spectra show 

all major and minor absorption features found in the spectral library. In addition, spectra of the 

Gypsum-Red show a broad absorption feature at about 480 – 540 nm.  

 

Figure 4-14, Spectra of unaltered gypsum samples compared with the spectral library. All the 

spectra of unaltered samples have the same absorption features with the spectrum from spectral 

library. 

Twenty-three ASD spectra (Fig. 4-15, 16, 17) were taken for the 3 altered gypsum samples. 

These spectra show all major and minor absorption features in gypsum spectral library. Four 

spectra of surfaces on samples Gypsum-1and Gypsum-2 have minor absorption features at 437 
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nm, 490 nm, 627 nm, and 678 nm, and a big increase in reflectance near 700 nm. This 

phenomenon is believed to be caused by vegetation. Five spectra of surfaces on samples Gypsum-

2 and Gypsum-3 have broad absorptions at 480-540nm. No spectra of altered gypsum samples 

have a 2325 – 2340 nm absorption trough, indicating that there are no detectable carbonates in 

gypsum samples collected; this is also confirmed in the petrographic observation. No significant 

spectral difference has been identified among the 3 altered gypsum samples. 

 

Figure 4-15, Spectra of sample Gypsum-1. They have all absorption features in spectral library 

and no carbonate absorptions. 
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Figure 4-16, Spectra of sample Gypsum-2. They have all absorption features in spectral library 

and no carbonate absorptions. 
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Figure 4-17, Spectra of sample Gypsum-3. They have all absorption features in spectral library 

and no carbonate absorptions. 
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5. Remote Sensing Imagery 

5.1 Introduction 

Remote sensing is the acquisition, processing, and interpretation of measurements of radiation 

reflected and emitted from the earth’s surface by a sensor at a distance from the object (Campbell, 

2002). The practice of remote sensing began in mid-19th century when aerial photographs were 

taken with the help of balloons, kites, and pigeons. Wilber Wright was the first person to take an 

aerial photograph from an airplane in 1910. Later in the two World Wars, aerial photographs 

were extensively used for mapping and reconnaissance. In 1972, the launch of Landsat 1 marked 

a great advance of remote sensing in satellite imagery. From then on many remote sensing 

satellites have been launched by various countries. Most of these satellite sensors, like Landsat 

ETM+, Landsat 8, ASTER, and SPOT, have several broad bands of about 100 nm wide, and 

several spectral gaps between bands. They are called multispectral sensors. Comparing with 

multispectral techniques, hyperspectral sensors have tens or hundreds of bands of equal spectral 

width and full spectrum coverage. In the 1980s the first airborne hyperspectral sensors became 

available, Airborne Imaging Spectrometer (AIS) and Airborne Visible / Infrared Imaging 

Spectrometer (AVIRIS) are most known. In 2003, the first successful satellite-based 

hyperspectral sensor, Hyperion, was launched. Now remote sensing is rapidly developing towards 

higher and higher spatial, spectral and temporal resolution. 

Remote sensing imagery collects photographs of the ground in several spectral bands; each 

band collects emitted or reflected radiance at a spectral range. For each pixel in a remotely sensed 

image, a spectrum could be derived and physical and chemical information could be resolved 

from it. A lot of work in spectroscopy has been done to provide the basis for remote sensing 

imagery. In this way, field spectra collected with remote sensing instruments could be interpreted 
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and this information can be used for delineating surface geology. In this study, the main focus for 

remote sensing is to resolve mineral combinations and detect rock alterations.  

5.2. Methods 

5.2.1 Multispectral Remote Sensing 

Multispectral imaging has several broad bands that are not “continuous”, as the bands do not 

cover the solar reflection range (0.4 – 2.5 μm) but have several gaps. Numerous multispectral 

sensors are available: low spatial resolution sensors like AVHRR, MODIS, and SeaWiFS; 

intermediate spatial resolution sensors like Landsat, SPOT, and ASTER; high spatial resolution 

sensors like IKONOS, QuickBird, GeoEye, and WorldView. Most high resolution sensors are 

commercial; in this study we use two of the most popular intermediate resolution satellite 

imagery systems whose data is free: Landsat 8 and ASTER. 

5.2.1.1 Landsat 8 

The Landsat 8 (Landsat Data Continuity Mission) system was launched on February 11, 2013. 

Landsat 8 is equipped with two sensors: the Operational Land Imager (OLI) and the Thermal 

Infrared Sensor (TIRS). OLI provides two new spectral bands, and has a different band 

designations compared with the Thematic Mapper (TM) on Landsat 4 and 5, as well as the 

Enhanced Thematic Mapper (ETM+) on Landsat 7 (Table 5-1). All bands listed have a spatial 

resolution of 30 meters. Landsat 8 has a sun-synchronous orbit at 705km, orbiting the earth every 

98.9 minutes, and covers the same area every 16 days (http://landsat.usgs.gov/about_ldcm.php). 

The equatorial crossing time is about 10:00 am. Each Landsat scene has dimensions of 170 km × 

185 km. 
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Wavelength 

(micrometers) 

TM ETM+ OLI  

0.43 – 0.45   Band 1 – Coastal aerosol 

0.45 – 0.52  Band 1 Band 1 Band 2 – Blue 

0.53 – 0.59 Band 2 Band 2 Band 3 – Green 

0.64 – 0.67 Band 3 Band 3 Band 4 – Red 

0.85 – 0.88 Band 4 Band 4 Band 5 – Near Infrared (NIR) 

1.57 – 1.65 Band 5 Band 5 Band 6 – SWIR 1 

2.11 – 2.29 Band 7 Band 7 Band 7 – SWIR 2 

1.36 – 1.38   Band 9 – Cirrus 

Table 5-1, Band names and wavelengths in different Landsat sensors, redrawn after 

http://landsat.usgs.gov/band_designations_landsat_satellites.php 

5.2.1.2 ASTER 

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is an 

imaging system on the NASA Terra satellite launched on December 18, 1999. ASTER is a 

cooperative mission between the United States and Japan. ASTER consists of three separate 

subsystems: VNIR, SWIR, and TIR; each has different spatial resolution (Table 5-2). The 

backward-looking near-infrared Band 3B has the same wavelength range but different looking 

angle from the nadir-looking Band 3, thus providing stereo coverage. The Terra satellite has the 

same orbit as Landsat 8, but flies later than Landsat 8 with an equatorial crossing time at about 

10:30 am (http://asterweb.jpl.nasa.gov/eos.asp). ASTER has a smaller swath width compared 

with Landsat 8; each scene covers 60 km × 65 km on ground.  
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Wavelength 

(micrometers) 

Subsystem Band Names Spatial Resolution 

(meters) 

0.52 – 0.60 VNIR Band 1 15 

0.63 – 0.69 VNIR Band 2 15 

0.76 – 0.86 VNIR Band 3 15 

0.76 – 0.86 VNIR Band 3B 15 

1.60 – 1.70 SWIR Band 4 30 

2.145 – 2.185 SWIR Band 5 30 

2.185 – 2.225 SWIR Band 6 30 

2.235 – 2.285 SWIR Band 7 30 

2.295 – 2.365 SWIR Band 8 30 

2.360 – 2.430 SWIR Band 9 30 

8.125 – 8.475 TIR Band 10 90 

8.475 – 8.825 TIR Band 11 90 

8.925 – 9.275 TIR Band 12 90 

10.25 – 10.95 TIR Band 13 90 

10.95 – 11.65 TIR Band 14 90 

Table 5-2, Band names and wavelengths, redrawn after 

http://asterweb.jpl.nasa.gov/characteristics.asp 

5.2.2 Hyperspectral Remote Sensing 

Hyperspectral imaging combines the power of digital imaging and spectroscopy. For each pixel 

in an image, a hyperspectral camera acquires the light intensity (reflectance) for a large number of 

bands on a continuous spectrum and can be used to characterize the objects in the scene with 

great precision and detail (Lillesand et al., 2004). Hyperspectral imaging provides much more 
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bands than a normal color camera, so it leads to an improved capability in identifying objects. 

Hyperspectral imaging has a wide range of applications, ranging from satellite based/airborne 

remote sensing to industrial quality control and lab applications. It is utilized in areas of mining, 

geology, forestry, agriculture, environmental management and so on. 

Hyperspectral sensors image the scene line by line using a so-called "push-broom" scanning 

mode. One narrow spatial line in the scene is imaged at a time, and this line is split into its 

spectral components. On the two-dimension sensor array, one dimension is used for spectral 

separation and the second dimension is used for imaging in one spatial direction. The second 

spatial dimension in the scene arises from scanning the camera over the scene (Hui et al., 1998). 

By scanning, hyperspectral cameras collect slices from adjacent lines, forming a hyperspectral 

image or "cube", with two spatial dimensions and one spectral dimension.  

This study uses two hyperspectral imaging systems, the satellite-based Hyperion, and the 

ground-based Specim cameras to detect hydrocarbon-induced surficial alterations.  

5.2.2.1 Hyperion 

Hyperion is a hyperspectral sensor mounted on the Earth Observing 1 satellite launched on 

November 21, 2000. It is the first hyperspectral sensor which has succeeded on a satellite 

platform. Hyperion provides a high resolution hyperspectral imager capable of resolving 220 

unique spectral bands (total 242 bands) from 357nm to 2576 nm, within which 198 bands are 

calibrated (Beck, 2003). The spatial resolution of Hyperion is about 30m, and the spectral 

bandwidth is 10nm.This instrument orbits the earth in the same orbit as Landsat 8, and can image 

a 7.5km by 100 km land area per image. Hyperion contains a single telescope and two 
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spectrometers, one visible/near-infrared (VNIR) spectrometer (70 bands with CCD detector array) 

and one short-wave infrared (SWIR) spectrometer (172 bands with HgCdTe detector array). 

5.2.2.2 Specim 

Specim is a suite of hyperspectral cameras developed and manufactured by Spectral Imaging 

Ltd., Finland. It consists of the Spectral Camera HS with a wavelength range of 394 – 1008 nm, 

and the Spectral Camera SWIR with a wavelength region of 896 – 2504 nm. The VNIR sensor 

has a sensitive high speed interlaced CCD detector with 1600 pixels, 840 bands, a spectral 

resolution of 2.8 nm, and band intervals of 0.7 nm 

(http://www.specim.fi/files/pdf/core/datasheets/HS_Spectral_Camera-v3-11.pdf). The SWIR 

sensor has a cooled, temperature stabilized MCT detector with 320 pixels, 256 bands, a spectral 

resolution of 10 nm, and band intervals of 6.3 nm 

(http://www.specim.fi/files/pdf/core/datasheets/SWIR_SpeCam_ver1-14.pdf). These two 

spectrometers could be mounted onto a tripod, and a motor on the tripod can rotate so the 

spectrometers could scan an outcrop with vertical relief. 

The Specim data was acquired in the field on October 18, 2013. In order to increase signal and 

reduce file size, horizontal and vertical binning of two times was applied to the VNIR images 

during data acquisition as recommended by the manufacturer. This setting doubled the band 

interval to 1.4 nm while this value is still smaller than the spectral resolution (2.8 nm), so the 

spectral differentiation ability of the VNIR sensor was not sacrificed. Pan speed of each scan was 

set so that each pixel covers identical distance in both the horizontal and vertical dimensions to 

minimize spatial distortion. Exposure time of each image was set to maximize signal while the 

brightest pixel in image did not saturate. 
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5.2.3 Data Processing Techniques 

Data processing involves the restoration, rectification, enhancement, and classification of the 

remotely sensed digital images (Lillesand et al., 2004). Image processing prepares remotely 

sensed photographs for information extraction. Restoration and rectification includes the 

rectification of geometric distortions, correction of atmospheric absorptions and topographic 

effects. Enhancement includes the color enhancement which improves visual interpretation 

through the manipulation of brightness, contrast, sharpness, etc.; as well as spectral 

transformation which removes spectral correlations between bands and redundancy in the data. 

Classification is the association of pixels in an image into several classes based on spectral 

similarity.  

In this study, band ratios, principal component analysis, minimum noise fraction, and spectral 

angle mapper are used to extract spectral information from the data. Preprocessing is performed 

priori to prepare the images for these algorithms. All images are processed with ENVI 5.0. 

5.2.3.1 Preprocessing 

Remote sensing images downloaded from the USGS website (http://earthexplorer.usgs.gov) 

have been preprocessed by the data providers. The Landsat 8 image was processed to level 1 

terrain corrected (L1T), which is radiometrically, geometrically, and topographically accurate 

(Roy et al., 2014). The ASTER data was processed to registered radiance at sensor (L1B), which 

is radiometrically corrected and geometrically co-registered (Abrams et al., 2002). The Hyperion 

data was processed to level 1Gst, which is radiometrically corrected and ortho-corrected using 

DEM (Simon, 2006). All these satellite images were subset for quicker processing. 
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Radiometric calibrations were performed on the multispectral images to convert the images 

into top of atmosphere (TOA) reflectance. For Landsat 8, the following formula was used: 

𝜌λ =
𝑀𝜌𝑄𝐶𝑎𝑙 + 𝐴𝜌

cos (𝜃𝑆𝑍)
=
𝑀𝜌𝑄𝐶𝑎𝑙 + 𝐴𝜌

sin (𝜃𝑆𝐸)
 

Where ρλ is the TOA reflectance, Mρ is the band-specific gain factor, Aρ is the band-specific 

offset factor, QCal is the quantized and calibrated standard product pixel DN value, θSZ is the sun 

zenith angle, and θSE is the sun elevation angle 

(http://landsat.usgs.gov/Landsat8_Using_Product.php).  

For ASTER, the following formula was used: 

𝜌λ =
𝜋𝐿λ𝑑2

𝐸𝑆𝑢𝑛,λcos (𝜃𝑆𝑍)
=

𝜋𝐿λ𝑑2

𝐸𝑆𝑢𝑛,λsin (𝜃𝑆𝐸)
 

Where Lλ is the spectral radiance at sensor, d is the earth-sun distance in astronomical units, 

and ESun, λ is the mean solar spectral irradiance. Lλ comes with L1B band data, d could be read 

from a second order polynomial fit of data in Table 5-3, ESun, λ could be read from Table 5-4. 

Calculation was performed using band math function. 

Day of Year Distance Day of Year Distance 

1 0.98331 305 0.99253 

15 0.98365 319 0.98916 

32 0.98536 335 0.98608 

46 0.98774 349 0.98426 

60 0.99084 365 0.98333 

Table 5-3, earth-sun distance in astronomical units, from (Irish, 2000) 
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Band Number ESun 

1 1845.99 

2 1555.74 

3 1119.47 

4 231.25 

5 79.81 

6 74.99 

7 68.66 

8 59.74 

9 56.92 

Table 5-4, ASTER solar spectral irradiances (W∙m-2∙µm-1), redrawn after 

http://www.gis.slu.edu/RS/ASTER_Reflectance_Temperature_Calculation.php 

The ASTER SWIR image has lower spatial resolution compared with the VNIR image and is 

hard to compare with the VNIR image, so it was pan-sharpened using ground control points into 

the same spatial solution with the VNIR image, and then layer stacked together with the VNIR 

image, resulting in a single image with 9 bands. 

The Hyperion scene was rotated at a certain angle so the flight route of the satellite is vertical 

in the scene, and that the area with no data was cut out. Then the scene was calibrated using 

ENVI FLASSH, a first-principles atmospheric correction tool. Calibration parameters like sensor 

height, map coordinates, acquisition time, and sun elevation were read from metadata and filled 

in by hand. Eighty-seven uncalibrated bands and noisy bands were removed from the data. 

The Specim SWIR images show a lot of stripes due to mal-function of detector arrays, they 

were processed using ENVI THOR de-striping tool, which calculates the mean of every nth line, 
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and then normalizes each line to its respective mean of all bands, to reduce the effects of striping. 

Striping was not obvious in the VNIR images, so the de-striping processing was omitted in VNIR 

images preprocessing. DN values in the images were calibrated into reflectance using a 

manufacturer provided converting utility based on the following equation: 

𝑅 =
𝑆𝑎𝑚𝑝𝑙𝑒 − 𝐷𝑎𝑟𝑘
𝑊ℎ𝑖𝑡𝑒 − 𝐷𝑎𝑟𝑘

 ×  
𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑊ℎ𝑖𝑡𝑒

𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒𝑆𝑎𝑚𝑝𝑙𝑒
 

The VNIR images were then rotated 90 degrees counter-clockwise, and the SWIR images were 

transposed, so all the images show correct orientation. Due to sensitivity differences in two half 

parts of VNIR images, the calibrated VNIR images were cut into halves, and processed separately 

in further steps. 

5.2.3.2 Band Ratios 

Band ratio is a useful technique to enhance spectral differences between bands and to reduce 

topographic and illumination effects (Gao, 2008). Calculating band ratio is simple: just specify a 

numerator band and a denominator band, then the resulting band has the spectral information we 

need.  

There are a lot of applications of band ratios. The normalized difference vegetation index 

(NDVI), is calculated as:  

𝑁𝐷𝑉𝐼 = 𝑁𝐼𝑅−𝑅𝑒𝑑
𝑁𝐼𝑅+𝑅𝑒𝑑

. 

NDVI enhances the strong difference in reflectance between near-infrared and red in spectra of 

vegetation. NDVI could be used to highlight vegetation, as NDVI close to -1 corresponds to 

water, NDVI close to 0 corresponds to rock, sand or snow, and positive NDVI corresponds to 
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vegetation. This study focuses on rock alterations and vegetation can act as interference. So 

NDVI was calculated for the ASTER and Specim datasets, and areas with NDVI higher than 0.25 

were masked to rule out the influences of vegetation. 

Band ratios could also be used to enhance rocks and minerals. Sultan et al. (1987) suggested 

the usage of following Landsat TM band ratios in mineral mapping:  

(1) Increasing opaque minerals decrease TM Band 5 / Band 1;  

(2) Band 5 / Band 7 emphasizes hydroxyl-bearing minerals content variations;  

(3) (Bands 5 / Band 4) × (Band 3 / Band 4) emphasizes ferrous minerals variations.  

Ninomiya (2003) formulated following mineral indices of ASTER data: 

(1) OH bearing altered mineral index (OHI) = (Band 7 / Band 6) × (Band 4 / Band 6); 

(2) Kaolinite index (KLI) = (Band 4 / Band 5) × (Band 8 / Band 6); 

(3) Alunite index (ALI) = (Band 7 / Band 5) × (Band 7 / Band 8); 

(4) Calcite index (CLI) = (Band 6 / Band 8) × (Band 9 / Band 8). 

These band ratios are utilized in this study to enhance the spectral differences of various 

minerals, and map the rock alterations. 

5.2.3.3 Principal Components Analysis 

Principal Components Analysis (PCA) is a linear transformation algorithm to produce 

uncorrelated bands, to segregate noise components, and to reduce the dimensionality of datasets 
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(Richards, 1999). The resulting PC bands are uncorrelated, and the bands have decreasing 

proportions of data variances.  

5.2.3.4 Minimum Noise Fraction 

Minimum Noise Fraction (MNF) is a linear transformation algorithm used to determine the 

inherent dimensionality of image data and to segregate noise in the data (Green et al., 1988; 

Boardman and Kruse, 1994). This transformation consists of two rotations: to use the principal 

components of the noise covariance matrix to decorrelate and rescale the noise, and to use the 

principal components derived from the noise-whitened image to create components that contain 

weighted information about variance across all bands (Vermillion and Sader, 1999). 

5.2.3.5 Spectral Angle Mapper 

Spectral angle mapper (SAM) is a supervised classification algorithm which takes user defined 

spectral endmembers, and classifies each pixel in image based on spectral resemblance to 

endmembers (Lillesand et al., 2004). SAM treats spectra as vectors in an n-dimensional space 

whose dimensionality equals to the number of bands, and uses n-dimensional angles between the 

pixel and reference spectra as the norm to measure the spectral similarities (Kruse et al., 1993). 

This algorithm is insensitive to illumination and topographic effects. Endmember spectra could 

be extracted from ASCII files, spectral libraries, or regions of interest (ROIs) directly in the 

image.  

5.3 Results 
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5.3.1. Landsat 8  

In order to minimize the disturbance of vegetation, images taken in winter were preferred in 

this analysis. The Landsat 8 image was acquired on January 29th, 2014.  

 

Figure 5-1, False color composite of Landsat 8 band ratios 6/2, 5/7, and 6/5 × 4/5. The red color 

represents low opaque content, the green color represents hydroxyl content, and the blue color 

represents ferrous iron content.  

52 



 

In Landsat 8 OLI data bands are assigned different numbers from Landsat TM and ETM+ data, 

so OLI band ratios 6/2, 5/7, and 6/5 × 4/5 are mostly equivalent to Sultan et al. (1987) type band 

ratios previous mentioned. False color composite (FCC) of these band ratios (Fig. 5-1) maps the 

alteration zone in greenish blue color. The alteration zone has low indices of opaque and hydroxyl 

contents, but a high index of ferrous iron.  

 

Figure 5-2, Map of Landsat 8 band ratio 5/2, highlighting materials with high reflectance in 

infrared and low reflectance in blue bands. Regions with a low band ratio value are shown in blue 

color, indicating lower content of vegetation and ferric iron. 
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Band ratio 5/2 highlights materials with high reflectance in near-infrared and low reflectance in 

blue bands; Fig. 5-2 shows regions with low band ratio 5/2 values, indicating low vegetation and 

ferric iron contents. Band ratio 4/2 highlights materials with high reflectance in red and low 

reflectance in blue bands; Fig. 5-3 shows regions with low band ratio 4/2 values, indicating low 

ferric iron content. The two images intersect mostly in the center to the southeast part of the scene. 

 

Figure 5-3, Map of Landsat 8 band ratio 4/2, highlighting materials with high reflectance in red 

and low reflectance in blue bands. Regions with a low band ratio value are shown in blue color, 

indicating lower content of ferric iron. 
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Figure 5-4, Combination of Landsat 8 band ratios 5/2 and 4/2, highlighting areas with low 5/2 and 

4/2 band ratios, hence indicating alteration sites with low ferric iron content. 
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5.3.2 ASTER 

Because of the anomalous high SWIR detector temperature, SWIR images after April 2008 are 

not available. The ASTER image used in this study was acquired on January 3rd, 2003.  

Band ratios are calculated as suggested by Ninomiya (2003). Bands 5 – 9 are averaged to 

generate a “pseudo OLI Band 7”, and then band ratios indicating ferrous iron minerals and 

hydroxyl-bearing minerals like the ones used in Landsat 8 image processing are calculated. False 

color composite (FCC) of OHI, KLI, ALI (Fig. 5-5) maps the alteration zone in dark brownish 

red color, which is a combination of relative low OHI, low KLI, and low ALI, compared with 

surrounding areas; while FCC of CLI, ferrous minerals index, hydroxyl minerals index (Fig. 5-6) 

maps the alteration zone in orange to red color, which is a combination of relatively high CLI, 

mid to high ferrous content, and low hydroxyl content. The CLI image (Fig. 5-7) maps areas with 

high carbonate content, as ASTER band 8 collects radiance in 2.295 – 2.365 µm, and cannot 

differentiate calcite versus dolomite. Previous petrographic studies show that both calcite and 

dolomite perform as inter-granular cement in the altered sandstones, thus a high CLI can be an 

indication of the alteration sites. 

As ASTER has near-hyperspectral spectral resolution in the 2.14 – 2.43 µm range, Spectral 

Angle Mapper (SAM) classification was performed on ASTER bands 5-9. Endmembers spectra 

resampled to ASTER resolution are shown in Fig. 5-8. Most pixels are not classified, because the 

spectral angles are not small enough, but the reciprocals of the rule images can show the 

similarities. Fig. 5-9 shows the reciprocal band of calcite, areas with high resemblance are shown 

in red. This area is very similar to the alteration site mapped in Fig. 5-5 and 5-6. FCC of 

reciprocal bands of calcite, dolomite, and sandstone-unaltered-1 (Fig. 5-10) maps the alteration 
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site in bright yellow; while FCC of reciprocal bands of calcite, CF1-4-14, and CF9-2-70 (Fig. 5-

11) maps the alteration site in whitish red. 

 

Figure 5-5, False color composite of ASTER band ratios OHI, KLI, and ALI. The red color 

represents OH bearing mineral contents, the green color represents kaolinite contents, and the 

blue color represents alunite contents. The alteration sites are mapped with dark brownish red. 
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Figure 5-6, False color composite of ASTER band ratios CLI, FI, and HI. The red color 

represents calcite contents, the green color represents ferrous iron contents, and the blue color 

represents hydroxyl contents. The alteration sites are mapped with orange to red color. 
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Figure 5-7, ASTER Calcite index band ratio image, areas of high carbonate content are mapped 

in red. 

 

Figure 5-8, Endmembers spectra used in SAM classification. Red shows calcite, green shows 

dolomite, blue shows sample sandstone-unaltered-1, yellow shows sample CF-1-4-14, and cyan 

shows sample CF-9-2-70. 
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Figure 5-9, SAM reciprocal of calcite rule image, areas with high value are shown in red, 

indicating high calcite contents.  
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Figure 5-10, False color composite of reciprocal bands of calcite, dolomite, and sample 

sandstone-unaltered-1, the alteration sites are mapped in bright yellow. 
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Figure 5-11, False color composite of SAM reciprocal bands of calcite, sample CF-1-4-14, and 

sample CF-9-2-70, the alteration sites are mapped in whitish red. 

5.3.3 Hyperion 

The Hyperion scene used in this study is the only image available on USGS website, and was 

acquired on October 21st, 2007. Only the eastern part of the study site is covered in the scene. Fig. 

5-12 shows the 3D cube of the data, displaying spectral information of the edge pixels. Water 

absorptions could be identified at the blue gaps on the spectral dimension. 

MNF rotation is performed on the reflectance image to segregate noise and show principal 

components in the data. Vertical stripes are obvious in the MNF image; red, magenta, green, and 

dark green colors represent different materials on the ground. 
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Figure 5-12, 3D cube of the Hyperion data. 

 

Figure 5-13, True color image (A) and the MNF result (B) of the Hyperion data. The MNF image 

shows vertical stripping, and different colors represent different materials on the ground. 
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Spectral angle mapper (SAM) technique is performed to classify the reflectance image. 

Endmembers are goethite from the USGS spectral library (Clark et al., 2007), and ASD spectra of 

field samples sandstone-unaltered-1, CF-1-4-14, and CF-9-2-70. As the spectral similarities are 

not high enough, the classification cannot classify most pixels in the image, but the rule images 

produced in the algorithm are the spectral angles between pixel spectrum and endmembers 

spectra. Thus the reciprocals of the rule images could represent the spectral similarities. Blue and 

green tones in Fig. 5-14 could represent similarities to sample CF-1-4-14, which is a 

representation of bleaching. 

 

Figure 5-14, Two false color composites of SAM classification results of the Hyperion data. Red, 

green, and blue color in A) stand for endmembers goethite, sandstone-unaltered-1, and CF-1-4-14, 

respectively; red green, and blue in B) stand for endmembers sandstone-unaltered-1, CF-1-4-14, 

and CF-9-2-70, respectively. High values in the CF-1-4-14 band show blue tone in A) and green 

tone in B), with the absence of ferric iron. The spectral signatures of endmembers are shown in 

Figure 5-15.  
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Figure 5-15, Spectral signatures of endmembers in SAM classification: A) goethite – red, 

sandstone-unaltered-1 – green, and sample CF-1-4-14 – blue; B) sandstone-unaltered-1 – red, CF-

1-4-14 – green, and CF-9-2-70 – blue.  

5.3.4 Specim 

The field Specim data was acquired on October 18th, 2013. An outcrop of about 600 meters 

long and 30 meters high was scanned in two scenes. The outline of the outcrop is shown in Fig. 5-

16. Because of a response difference between two spatial half parts of VNIR scans, the VNIR 

images are cut into two halves and processed separately. Fig. 5-17 shows the 3D cube of the 

lower part of the first scan, displaying spectral signatures of edge pixels in the VNIR range. 

Spectral angle mapper (SAM) classification was performed on the hyperspectral images. As 

the image gets noisy in longer wavelengths in VNIR range with the signal to noise ratio very low, 

only bands 6 – 215, covering 400 – 700 nm spectral range, are used in the classification. The F900 

absorption feature of ferric iron is not in this range, while F515 and F668 are. The classification 

could classify the image based mainly on these two small features of ferric iron. Endmembers are 

goethite from the USGS spectral library (Clark et al., 2007), and ASD spectra of field samples 

sandstone-unaltered-1, CF-1-4-14, and CF-9-2-70. Sample CF-1-4-14 is well bleached and the 

spectrum has no ferric iron absorption features. Fig. 5-18, 5-20, and 5-21 show false color 
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composites (FCC) of reciprocals of the rule images on the VNIR data, and the spectra of 

endmembers in these images are shown in Fig. 5-19. The sky, artificial buildings, and vegetation 

are masked in the images. Fig. 5-18 and 5-20 clearly shows that most of the scanned outcrop has 

been bleached of ferric iron, the left part and the top show more ferric iron. Fig. 5-21 shows that 

the left part of the second scan, which is the continuation on the right of the first scan, has been 

bleached of ferric iron, the right part has more ferric iron. 

 

Figure 5-16, The outline of the scanned outcrop, the locations of cameras are also shown. 
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Figure 5-17, 3D cube of the lower half part of VNIR data of the scan1 in a mining quarry.  

 

Figure 5-18, Two false color composites of SAM classification results of the upper part of the 

first VNIR scan shown in B) and C), the true color image is shown for comparison in A). Red, 

green, and blue in B) stand for endmembers goethite, sandstone-unaltered-1, and CF-1-4-14, 

respectively; red, green, and blue in C) stand for endmembers sandstone-unaltered-1, CF-1-4-14, 

and CF-9-2-70, respectively. High values in sandstone-unaltered-1, and CF-9-2-70 bands show 

yellow color in B) and red, magenta to violet in C), indicating the presence of ferric iron; high 

values of the CF-1-4-14 band show blue color in B) and green color in C), with the absence of 

ferric iron. The spectral signatures of endmembers are shown in Figure 5-19. 
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Figure 5-19, Spectral signatures of endmembers in SAM classifications: A) goethite – red, 

sandstone-unaltered-1 – green, and sample CF-1-4-14 – blue; B) sandstone-unaltered-1 – red, CF-

1-4-14 – green, and CF-9-2-70 – blue. F515 and F668 could be seen on most spectra, but not on CF-

1-4-14, indicating the presence of ferric iron in these endmembers but not in CF-1-4-14. 

 

Figure 5-20, Two false color composites of SAM classification results of the lower part of the 

first VNIR scan shown in B) and C), the true color image is shown for comparison in A). Red, 

green, and blue in B) stand for endmembers goethite, sandstone-unaltered-1, and CF-1-4-14, 

respectively; red, green, and blue in C) stand for endmembers sandstone-unaltered-1, CF-1-4-14, 

and CF-9-2-70, respectively. High values in sandstone-unaltered-1, and CF-9-2-70 bands show 

yellow color in B), and red, magenta to violet in C), indicating the presence of ferric iron; high 

values of the CF-1-4-14 band show blue color in B) and green color in C), with the absence of 

ferric iron. The spectral signatures of endmembers are shown in Figure 5-19. Note that the scale 

does not apply to objects in the front but the outcrop rocks. 
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Figure 5-21, Two false color composites of SAM classification results of the upper part of the 

second VNIR scan shown in B) and C), the true color image is shown for comparison in A). Red, 

green, and blue in B) stand for endmembers goethite, sandstone-unaltered-1, and CF-1-4-14, 

respectively; red, green, and blue in C) stand for endmembers sandstone-unaltered-1, CF-1-4-14, 

and CF-9-2-70, respectively. High values in sandstone-unaltered-1, and CF-9-2-70 bands show 

yellow color in B) and red, magenta to violet in C), indicating the presence of ferric iron; high 

values of the CF-1-4-14 band show blue color in B) and green color in C), with the absence of 

ferric iron. The spectral signatures of endmembers are shown in Figure 5-19. Note that the scale 

does not apply to objects in the front but the outcrop rocks. 

The SWIR images have some problems and are challenging to interpret. The first problem is 

noise in the data. In the first scan, bands with wavelength longer than 1800 nm are very noisy, 

only the outline of the outcrop, with a little bit of detail, could be identified. All the bands have 

some horizontal strips with lower values compared to adjacent lines; the spectral differences 

between strips are more prominent than the spectral differences between different materials. In 

the second scan, any band beyond 1800 nm is pure noise.  

Minimum noise fraction (MNF) transformation was performed on the first 45 bands covering 

896 – 1176 nm in SWIR data of the first scan. The resulting bands (Fig. 5-22, A) can successfully 

distinguish vegetation from the outcrop and the gravel wall, but the difference in ferric iron on the 
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outcrop could not be seen. SAM classification (Fig. 5-22, B) was performed on the same bands; 

the endmembers are picked from the image according to the SAM results in the VNIR images. 

Vegetation is classified well, but the outcrop is not. The classification follows mostly the strips 

but not the ferric iron content. MNF transformation (Fig. 5-23, A) on the 66 bands beyond 1800 

nm shows no spectral differences in the outcrop. SAM classification (Fig. 5-23, B)) performed on 

the 13 bands at 2303 – 2378 nm shows a similar result to MNF.  

 

Figure 5-22, MNF (A) and SAM (B) results of bands 1 – 45 in SWIR data of the first scan. MNF 

could differentiate some materials but cannot see ferric iron variation on the outcrop. SAM 

follows mostly the lines. Note that the scale does not apply to objects in the front but the outcrop 

rocks. 

 

Figure 5-23, MNF results (A) of bands 171 – 236, and SAM results (B) of bands 224 – 236 in 

SWIR data of the first scan. Both MNF and SAM only show lines. Note that the scale does not 

apply to objects in the front but the outcrop rocks. 

SAM classification is more successful in the second scan, although bands with wavelengths 

longer than 1800 nm are noisy and not used. The main reason for the success is that there are 

fewer bad lines in the second image than in the first one. Endmembers are selected from the 

image according to the classification results in the VNIR image. The results (Fig. 5-24) are also 
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similar to the classification results in the VNIR image: the left side is more bleached than the 

right side of the outcrop. 

 

Figure 5-24, SAM classification results of bands 1 – 45 of SWIR data in the second scan. The 

direct classification result is shown in B, an FCC of reciprocals of rule images is shown in C, and 

an FCC of the first 3 bands in MNF transformation is shown in A for comparison.  

Some small sections are cropped out from the images and processed separately; the reason for 

doing so is to circumvent the troubles caused by stripping. Principal components analysis (PCA) 

and MNF transformations are performed to highlight major spectral differences in these small 

sections. Fig. 5-25 and 5-26 show PCA and MNF transformations of two small sections in the 

VNIR data. Different colors in transformed images can represent changes in ferric iron contents. 

Fig. 5-27 shows PCA and MNF transformations of a small section in the SWIR data, stripping is 

prominent but some variation could be recognized in these images. Some areas in red to magenta 

colors represent higher ferric iron content compared to the surrounding rocks. Transformations on 

bands 224 – 236 cannot give more spectral information other than strips. 
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Figure 5-25, PCA (C) and MNF (D) transformations of a small section in the VNIR data of the 

first scan, true color image (A) and SAM classification image (B) are shown for comparison. Red 

to magenta color in the PCA image, as well as green color in the MNF image, represents low 

ferric iron contents; whereas yellow to cyan color in the PCA image, as well as red to magenta 

color in the MNF image, represents high ferric iron contents. 
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Figure 5-26, PCA (C) and MNF (D) transformations of a small section in the VNIR data of the 

first scan, true color image (A) and SAM classification image (B) are shown for comparison. Red 

to magenta color in the PCA and MNF images represent low ferric iron contents; whereas green 

to blue colors in both images represent high ferric iron contents. 
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Figure 5-27, PCA (B) and MNF (C) transformations of bands 1 – 45, as well as PCA (D) 

transformation of bands 224 – 236 of a small section in the SWIR data of the first scan, a section 

of true color image of about the same area (A) is shown for comparison. Magenta to red color in 

both images represents high ferric iron contents. 

Because the weather conditions during data acquisition were not optimum and the data was 

noisy, the field samples were scanned at close range with Specim cameras in the lab. The samples 

were illuminated with a tungsten light source. With lower moisture content in the air and the 

closer distance between the scanning cameras and objects, atmospheric absorption was minimized. 

Principal components analysis (PCA), minimum noise fraction (MNF) and spectral angle mapper 

(SAM) processing algorithms were performed on rotated and calibrated images, and the results 

are shown in Fig. 5-28 – 5-32. Different colors in the PCA and MNF images represent different 

mineral content, ferric iron content, as well as illumination conditions. Some pyrite grains could 

be identified on the alteration surface in Fig. 5-28. The endmembers used in SAM classification 

are identical to those used in outcrop scan classifications. As a result, the colors in classification 
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results have the same meanings to those in outcrop scan classifications. The yellow color on CF 

samples (Fig. 5-28, 29, and 30) represents high ferric iron contents, whereas blue color on CF 

samples represents low ferric iron content. 

 

Figure 5-28, True color image (A), PCA (B), MNF (C), and SAM (D) results of scan-1 of the 

samples. Different colors in PCA and MNF images represent different mineral contents as well as 

illumination conditions. The endmembers used in the classification are: red – goethite, green – 

sample sandstone-unaltered-1, and blue – sample CF-1-4-14. The blue color on the samples 

shows more similarity to the bleached endmember CF-1-4-14, and the yellow color on the 

alteration surface indicates higher ferric iron content.  
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Figure 5-29, True color image (A), PCA (B), MNF (C), and SAM (D) results of scan-2 of the 

samples. Different colors in PCA and MNF images represent different mineral contents as well as 

illumination conditions. The endmembers used in the classification are: red – goethite, green – 

sample sandstone-unaltered-1, and blue – sample CF-1-4-14. The blue color on the samples 

shows more similarity to the bleached endmember CF-1-4-14, and the yellow color on the 

alteration surface indicates higher ferric iron content.  
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Figure 5-30, True color image (A), PCA (B), MNF (C), and SAM (D) results of scan-3 of the 

samples. Different colors in PCA and MNF images represent different ferric iron contents as well 

as illumination conditions. The endmembers used in the classification are: red – goethite, green – 

sample sandstone-unaltered-1, and blue – sample CF-1-4-14. The blue color on the samples 

shows more similarity to the bleached endmember CF-1-4-14, and the yellow color on the 

samples indicates higher ferric iron content.  
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Figure 5-31, True color image (A), PCA (B), MNF (C), and SAM (D) results of scan-4 of the 

samples. Different colors in PCA and MNF images represent different ferric iron contents as well 

as illumination conditions. The endmembers used in the classification are: red – goethite, green – 

sample sandstone-unaltered-1, and blue – sample CF-1-4-14. The bluish color on the samples 

shows more similarity to the bleached endmember CF-1-4-14, and the yellowish color on the 

samples indicates higher ferric iron content.  
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Figure 5-32, True color image (A), PCA (B), MNF (C), and SAM (D) results of scan-5 of the 

samples. Different colors in PCA and MNF images represent different ferric iron contents as well 

as illumination conditions. The endmembers used in the classification are: red – goethite, green – 

sample sandstone-unaltered-1, and blue – sample CF-1-4-14. The dark color on the samples 

shows some surface alterations, and the cyan color represents some dents on the surface. 
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6. Discussion and Conclusions 

6.1 Petrography 

Petrographic analysis was performed to study the composition and texture of the samples 

collected in the field. The results show that: 1) unaltered sandstones are red, limonite / hematite 

coating is common, while altered sandstones are grey, yellow, white or a little bit of red in color, 

and coating is rare; 2) unaltered sandstones are soft, porous and easy to break, limited 

cementation of iron oxide coating and clay minerals could not fill the inter-granular space, while 

altered sandstones are hard, compact, very well cemented by carbonates; and 3) surface 

aggregation of pyrites confirmed the reduction of ferric iron, and secondary oxidation produced a 

thin rusty surface. The bleaching and cementation of the Rush Springs sandstones are significant 

alteration phenomena.  

Crystallization gradient in the altered gypsum samples shows the effects of alteration. The 

closer to the crest of the anticline, the smaller crystal size they have. It is inferred that the Cyril 

Gypsum Formation may have undergone recrystallization related to hydrocarbon alteration. The 

abundance of hydrocarbons in the near-surface provides a premium environment for 

recrystallization. Further investigation including collection of more samples at more locations 

should be performed to confirm an actual relationship between the gypsum recrystallization and 

hydrocarbons; mineralogical and geochemical study should be performed to test if a causal 

relationship exists, and rule out other possible explanations of recrystallization. 

6.2 Spectral Analysis 

Spectral analysis was performed to provide laboratory references for data processing in remote 

sensing imagery. Important bands and spectral features are resolved from spectral analysis. 
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Analyzing ASD spectra of rock samples, the loss of ferric iron content in sandstone samples is 

confirmed by the presence of the shallower or none F900 trough. In unaltered sandstones there is 

no 2320 – 2340 nm features, indicating the absence of carbonate cementation, whereas spectra of 

all sandstones collected in the alteration zone show spectral signatures of carbonate cementation. 

The cementation by carbonates is also confirmed by the petrographic analysis. Surface alterations 

of iron minerals observed on hand samples are confirmed by deep F900 and relatively small F515 

and F668 absorption troughs.  

No carbonate absorption features could be identified in altered gypsum spectra, and there’s no 

significant spectral difference between unaltered and altered gypsum samples. As a result, there is 

no way to differentiate unaltered from altered gypsum samples with remote sensing techniques. 

One possible solution is to find more gypsum samples with a higher degree of alteration, and 

identify the spectral differences between unaltered gypsum and altered gypsum samples. 

Comparing with the ASD spectra, all bands in Specim VNIR imagery, and bands 1 – 45 (896 – 

1176 nm) in Specim SWIR imagery, as well as bands 10 - 103 (447 – 1174 nm) in Hyperion 

imagery, can provide information about ferric iron in sandstones. Cementation of carbonates can 

be confirmed by absorption feature at 2320 – 2340 nm in ASD spectra, so bands 226 – 232 (2316 

– 2353 nm) in Specim SWIR imagery, as well as bands 216 – 220 (2315 – 2355 nm) in Hyperion 

imagery, could be used to identify calcite.  

6.3 Remote Sensing Imagery 

The main focus of this study is to identify surface rock alterations induced by hydrocarbons. 

Multispectral and hyperspectral remote sensing imagery are used for this purpose. The major 

alteration phenomena in the Cement field are bleaching of ferric iron and cementation of 

carbonates in Rush Springs sandstones, as shown by petrographic analysis. Spectral signatures 
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related to these alterations are the presence or absence of ferric iron absorptions: F900, F515, and 

F668, as well as the absorptions caused by carbonates at 2320 – 2340 nm. Alterations of the Cloud 

Chief Formation are not recognizable with spectral analysis. 

Landsat 8 provides a blue band, so it is useful in identifying ferric iron which has low 

reflectance in blue bands. Analysis of band ratios mapped the alteration zones with low ferric iron 

contents in the Landsat 8 scene. ASTER data has no blue bands, but a near hyperspectral 

resolution in 2.14 – 2.43 µm, so it is useful in identifying carbonates, which have an absorption 

feature at 2320 – 2340 nm. Analysis of band ratios, as well as SAM classifications successfully 

mapped the alteration zones with high carbonate content in the ASTER scene. The combination 

of Landsat 8 and ASTER data (Fig. 6-1) shows the alteration sites with low ferric iron and high 

carbonate contents. 

Hyperion data cover a very small section in the study site; SAM classifications compared 

spectral similarities between pixel spectra and endmembers, and mapped the alteration zones with 

low ferric iron contents. The bands in long wavelengths are noisy and full of strips; however, 

analysis of carbonates is not successful.  

All the satellite data mentioned before have a spatial resolution of tens of meters, while Specim 

data provide high spatial resolution in outcrop scale as well as hand-specimen scale. Although 

bands in long wavelengths are noisy, and signal-to-noise ratios are low (Fig. 6-1), Specim data 

provide great spectral information with fine detail. PCA, MNF transformations, as well as SAM 

classifications, are successful in identifying variations in ferric iron contents within an outcrop, 

and among hand samples. Although SWIR data are noisy and full of strips, transformations on 

small sections can map variations in ferric iron contents. Carbonates are not analyzed because of 
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the lack of high enough signal-to-noise ratios. Further processing should be performed to extract 

more spectral information from long wavelength spectrum, especially for SWIR images. 

 

Figure 6-1, Combination of alteration sites mapped by Landsat 8 and ASTER. The black color 

represents area that are unaltered or covered, the yellow color represents altered area with high 

carbonate contents mapped by ASTER, the green color represents the altered area with low ferric 

iron content mapped by Landsat 8, the red color represents the altered area with high carbonate 

content and low ferric iron content mapped by ASTER and Landsat combined. The magenta 

outlines show the areal extent of the Cloud Chief Formation, the rest of the map outcrops the 

Rush Springs Formation. The alteration sites mapped by Landsat 8 and ASTER are mostly 

located in the Rush Springs Formation. The blue line shows the outline of the scanned outcrop. 

Note that the northeast part is not covered by the ASTER scene. 
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Fig. 6-2 compares the image spectra with ASD spectra and the USGS spectral library. Note the 

offset among spectra for clarity. The image spectra get very noisy and wavy in long wavelengths, 

but show great spectral information in short wavelengths. The presence of ferric iron can be 

identified from image spectra CF-7 and CF-Red, as well as ASD spectra sandstone-unaltered-1 

and library spectra goethite. 

 

Figure 6-2, Comparison of image spectra, ASD spectra, and spectral library. These spectra have 

been offset for clarity. CF-7 and CF-8 are sample image spectra, CF-Grey and CF-Red are field 

image spectra, goethite is from spectral library, CF-1-4-14 and CF-8-1-60 are ASD spectra. Ferric 

iron absorption features could be identified on CF-7, CF-Red, sandstone-unaltered-1, and goethite.   
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6.4 Mechanism of Hydrocarbon Seepage 

It is inferred that the surface alterations studied in this thesis are caused by leaking 

hydrocarbons from petroleum reservoirs. The reduction of ferric iron and the presence of pyrite 

can be both explained by the influence of hydrogen sulfide: 

Fe2O3 + 2H2S = FeS2 + FeO + 2H2O 

Hydrogen sulfide can come from two sources: petroleum reservoir at depth, and surficial 

reduction from sulfates. Sulfate is very common in the study area, the Cloud Chief Formation lies 

on top of the Rush Springs Formation. It is also reported that gypsum is altered into carbonates 

(Donovan, 1974), the mechanism of this alteration can be: 

CnH2n+2 + CaSO4 = CaCO3 + H2S + H2O 

This could explain the alteration of gypsum into carbonates, the origin of hydrogen sulfide, as 

well as the cementation of the sandstones. With the presence of some clay minerals and 

magnesium ion bearing formation waters in the sandstones, the resulting cementation mineral is 

dolomite in the alteration zone.  

Isotopic studies (Fig. 6-3) show that the δ13C of the carbonate cements in sandstones is lower 

than normal carbonates at the surface and should have an organic origin. This evidence supports 

the mechanism of hydrocarbon-induced rock alterations. 

Abundant faulting (Fig. 6-4) and the anticlinal structure (Fig. 6-5) in the area provided perfect 

conduit for hydrocarbons to migrate from their reservoirs in the Pennsylvanian strata to the 

Permian-Pennsylvanian contact, an angular unconformity. A cross section on west Cement (Fig. 

6-6) shows the normal and reverse faults, as well as the anticlinal structure. The dome structures 
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also provided temporary accumulation space below the unconformity. The hydrocarbons then 

rose across the unconformity and through the porous Permian beds, and induced alterations we 

see on the surface. 

 

Figure 6-3, δ13C contour map of the Cement field. The red line shows the color change limit, and 

the magenta line shows the outline of the scanned outcrop, redrawn after Donovan (1974). 
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Figure 6-4, δ13C contour map of the Cement field shown on top of fault traces on Hoxbar Group. 

The red line shows the color change limit, the magenta line shows the outline of the scanned 

outcrop, and the black lines shows faults mapped in the Hoxbar Group, redrawn after (Herrmann, 

1961; Donovan, 1974). 

87 



 

 

Figure 6-5, Paleo-structure maps of Hoxbar, Deese, Atoka, and Morrow Groups showing the 

general anticline and the dome structures where hydrocarbons could accumulate. Data from 

Herrmann (1961). 
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Figure 6-6, A cross section illustrating the anticlinal structure and faults in Pennsylvanian strata , 

west Cement field, Oklahoma. Redrawn after Herrmann (1961). 

6.5 Conclusions 

Petrographic analysis show that unaltered sandstones are red, with hematite/limonite coatings, 

not well-cemented, while altered sandstones are bleached, with rare iron oxide coatings, and very 

well-cemented by carbonates. Aggregation of pyrite and secondary oxidation are also identified 
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on rock samples. The bleaching and cementation of the Rush Springs sandstones are the major 

and significant alteration phenomena. Alterations in the gypsum member are embodied in a 

crystallization gradient. 

Spectroscopy analyses show that variations in ferric iron content can be recognized by the 

presence or absence of ferric iron absorption features; cementation of carbonates can be 

recognized by absorption features in altered sandstones. On the other hand, gypsum alterations 

could not be identified in spectra. 

Multispectral and hyperspectral remote sensing imagery mapped the alteration sites with 

bleaching of red beds and cementation of carbonates in Rush Springs sandstones. Band ratios, 

principal components analysis (PCA), minimum noise fraction (MNF), and spectral angle mapper 

(SAM) processing algorithms provide powerful tools in identifying these alterations.  

With a mechanism of hydrocarbon seepage and surficial alterations, this study could be a 

paradigm of the application of remote sensing techniques, and a perspective tool in further 

petroleum exploration. 
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