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Abstract

High-performance computing systems are growing toward hundreds-of-thousands to

million-node machines, utilizing the computing power of billions of cores. Running

parallel applications on such large machines efficiently will require optimized runtime

environments that are scalable and resilient. Multi- and many-core chip architectures

in large-scale supercomputers pose several new challenges to designers of operating

systems and runtime environments.

ParalleX is a general-purpose parallel-execution model aiming to overcome the

limitations imposed by the current hardware and the way we write applications today.

High-Performance ParalleX (HPX) is an experimental runtime system for ParalleX.

The majority of scientific and commercial applications in HPC are written in

MPI. In order to facilitate the transition from MPI model to ParalleX, there is a

need for a compatibility mechanism between the two. Currently, this mechanism

does not exist. This thesis provides a compatibility mechanism for MPI applications

to use the HPX runtime system. This is achieved by developing a new runtime

system for the Open MPI project, an open source implementation of MPI. This new

runtime system is called HPX-RTE.

HPX-RTE is a new, lightweight, and open-source runtime system specifically

designed for the emerging exascale computing environment. The system is designed

relying on HPX project advanced features to allow for easy extension and transparent

scalability. HPX-RTE provides full compatibility for current MPI applications to run

on HPX runtime system. HPX-RTE provides an easy and simple path for transition

from MPI to HPX. It also paves the way for future hybrid programming models such

as HPX-MPI and integration of more features from HPX into Open MPI.
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Chapter 1

Introduction

Traditionally, software is written for sequential computation. A problem is broken

down into a series of instrcutions. Those instructions are executed sequentially on

a single processor. In this scenario, only one instruction is executed at any given

moment in time [1].

Parallel computing is a type of computation in which calculations are carried out si-

multaneously to solve a computational problem [2]. In parallel computing, a problem

is broken down into discrete parts that can be solved concurrently. Each part in-

cludes a series of instructions. Instructions for each part of the problem are executed

in parallel on different processors. In this scenario, a control mechanism among all

the processors is needed.
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1.1 Parallel Architectures

Parallel computers can be classified in different ways. Flynn’s taxonomy is one

of the more widely used classification of different computer architectures proposed

by Michael J. Flynn in 1966 [3, 4]. This classification is based on the number of

concurrent instruction streams and data streams available in the architecture. There

are four categories defined:

1. Single Instruction, Single Data Stream (SISD) In this architecture, a

single processor executes a single instruction stream and only one data stream

is available as an input during any given clock cycle. This is basically a serial

computer.

2. Single Instruction, Multiple Data Streams (SIMD) This architecture

describes computers with multiple processing elements which execute the same

instruction at any given clock cycle. Each processing unit can use a different

data stream.

3. Multiple Instruction, Single Data Stream (MISD) In this architecture,

multiple processing units operate on a single data stream, each one having a

separate set of instructions. This architecture is almost non-existent.

4. Multiple Instruction, Multiple Data Streams (MIMD) In this architec-

ture, multiple independent processors execute different instructions on different

data streams at the same time. Execution can be synchronous or asynchronous.

This is the most generic category. Most current supercomputers fall under this

category.
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1.2 Parallel Computer Memory Architectures

Main memory in a parallel computer is either shared or distributed [5].

1.2.1 Shared Memory

In a shared-memory parallel computer, the memory is shared between all processing

elements as a single global address space. Multiple processors can share the same

memory resources and operate independently. Changes in a memory location by one

processor are visible to all other processors.

Furthermore, shared-memory architectures can be classified as symmetric multi-

processors with uniform memory access (UMA) or as non-uniform memory access

(NUMA) architectures based on memory access time [6, 7].

• Uniform Memory Access (UMA)

This category is most known by Symmetric Multiprocessor (SMP) machines.

SMPs have identical processors with equal access time to memory. Figure 1.1

demonstrates a typical UMA architecture.

• Non-Uniform Memory Access (NUMA)

Typically, these are made by physically connecting two or more SMPs. This

way, one SMP can access memory of another SMP directly. However, access

time to all memories is not equal to all processors.

3



Figure 1.1: Shared Memory (UMA)

1.2.2 Distributed Memory

Each processing element has its own local memory. Therefore, there is no global

address space. To connect inter-process memory units, a communication network is

needed. Each processor operates independently. Changes that a processor makes

to its local memory have no effect on the memory of other processors. If a proces-

sor needs to access data in another processor’s memory, the programmer needs to

explicitly define the communication mechanism.

1.2.3 Hybrid Distributed-Shared Memory

By combining a shared-memory and distributed-memory model, we will have a hybrid

distributed-shared memory system. An example for this category could be a cluster

of nodes with each node having multiple cores that share the same memory (Figure

1.4), or a cluster of nodes with each having multiple GPUs and cores (Figure 1.5).
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Figure 1.2: Shared Memory (NUMA)

1.3 Parallel Programming Models

The programming model is an abstraction that defines the hardware and the form of

programming language or API used for writing parallel programs. Parallel program-

ming models can be divided into two broad areas: Process interaction and problem

decomposition. [8]

• Process Interaction

Parallel processes need to communicate with each other. The mechanism that

they use for the communication is described as process interation. Two main

types of process interaction are shared memory and message passing. The

interaction could also be implicit.

– Shared Memory

In this model, parallel processes share a global address space which they

all read and write to. Since these operations are asynchronous, protection
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Figure 1.3: Distributed Memory

mechanisms like locks and semaphores are needed to control concurrent

access.

– Message Passing

In this model, parallel tasks exchange data through sending and receiv-

ing messages to and from one another. These communications can be

synchronous or asynchronus.

– Implicit

In this model, process interactions are not visible to the programmer.

Usually, the compiler or the runtime is responsible for performing the

interations.

• Problem Decomposition

Problem decomposition describes the way processes are expressed to break

down a large problem [9].

6



Figure 1.4: Hybrid Distributed-Shared Memory (Multi-core nodes)

– Task Parallelism

The main focus of a task based parallelism is on processes or threads as

individual units of execution. This is a natural way to express message

passing communication.

– Data Parallelism

In task-parallel models the data is usually structured in an array. A set

of tasks will operate independently on separate partitions of the data.

1.4 Message Passing Interface (MPI)

Message Passing Interface (MPI) [10] is a language-independent communication ap-

plication programming interface (API) used for programming in parallel environ-

ments. “MPI is a specification for a standard library for message passing that was

defined by the MPI Forum, a broadly based group of parallel computer vendors, li-

brary writers, and applications specialists.” [11] MPI has become a de-facto standard
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Figure 1.5: Hybrid Distributed-Shared Memory (Multi-core nodes with GPUs)

for communication among processes running on a distributed memory system.

Message Passing Interface aims to develop an efficient, portable, and flexible

standard that will be widely used for writing message passing applications. MPI is

the first standardized, vendor independent, message passing library. “MPI is not an

IEEE or ISO standard, but has in fact, become the “industry standard” for writing

message passing programs on HPC platforms.” [12]

Some of the main concepts of MPI include [13–16]:

• Communicators

A communicator can be thought of as a handle to a process group. A group is

an ordered set of processes. Each process is associated with a rank. Ranks are

contiguous and start from zero.

• Point-to-point Communication

MPI includes routines for communication between two specific processes. For
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instance, MPI_Send sends a message from one specified process to another spec-

ified process. MPI specifies mechanisms for both blocking and non-blocking

point-to-point communication.

• Collective Communication

All processes in a process group participate in a collective funtion. For example,

MPI_Bcast sends data from one process to all the processes in a group.

• One-sided Communication

MPI one-sided communication functions allow a process to access another pro-

cess address space without explicit participation in that communication oper-

ation by the remote process. This can reduce synchronization and therefore

improve performance in some cases.

• Derived Datatypes

MPI provides a mechanism to create derived datatypes that are built from sim-

ple datatypes. These are useful in situations that the communication involves

non-contiguous data or data that is comprised of multiple types.

• MPI-IO

MPI-IO is a set of functions to carry out parallel I/O operations. These func-

tions allow files to be easily accessed in a patterned way using the existing

derived datatype functionality.

There are several implementations of MPI, including some that are in the public

domain like MPICH [17] and Open MPI [18], and some commercial implementations

from companies like HP, Intel, and Microsoft, and Fujitsu.
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1.5 Runtime Environments and MPI Jobs

High-performance computing systems are growing toward hundreds-of-thousands to

million-node machines, utilizing the computing power of billions of cores. Running

parallel applications on such large machines efficiently will require optimized runtime

environments that are scalable and resilient.

Considering a future where MPI remains a major programming paradigm, the

MPI implementations will have to seamlessly adapt to launching and managing large

scale applications on resources considerably larger than today’s. [19]

1.6 Challenges for Runtime Environments

Multi- and many-core chip architectures in large-scale supercomputers pose several

new challenges to designers of operating systems and runtime environments.

“Operating systems and runtime environments on supercomputers have similar goals:

both seek to provide an environment for executing applications in a scalable and

high-performing way. Achieving this goal often requires minimizing the layers of

indirection between the application and the architecture.” [20]

Developing a software environment to support high-performance computing ap-

plications in today’s distributed systems poses a significant challenge. The runtime

environment (RTE) must be capable of supporting heterogeneous operations, scale

from one to large numbers of processors in an efficient manner, and provide strategies

for dealing with fault scenarios that are expected of computing systems effectively.

10



Furthermore, the runtime must be easy to use, providing users with a transparent in-

terface to the computing environment in a manner that avoids the need to customize

applications when moving between specific computing resources. [21]

1.7 The Goal of this Thesis

ParalleX [22] is a new (and still experimental) general purpose parallel execution

model aiming to overcome the limitations imposed by the current hardware and

the way we write applications today. High Performance ParalleX (HPX) [23] is an

experimental runtime system for ParalleX.

The majority of scientific and commercial applications in HPC are written in

MPI. In order to facilitate the transition from MPI model to ParalleX, there is a

need for a compatibility mechansim between the two. Currently, this mechanism

does not exist.

The goal of this thesis is to provide a compatibility mechanism for MPI applica-

tions to use the HPX runtime system. This is achieved by developing a new runtime

system for Open MPI. We call this new runtime system HPX-RTE.

1.8 Contributions

Design and implementation of HPX-RTE, the new runtime environment for Open

MPI, is the main contribution of this thesis. HPX-RTE provides a compatibility layer

for MPI applications to run on HPX runtime environment without any modification

to the applications written in MPI. HPX-RTE facilitates the transition from MPI

11



to ParalleX programming model. HPX-RTE makes it possible for new programming

paradigms such as MPI-HPX hybrid model to emerge. This thesis also presents a

set of performance comparisons between HPX-RTE and ORTE (Open MPI’s default

runtime environment).

1.9 Organization of the Document

Chapter 2 provides a background and the state-of-the-art approaches to parallel

runtime enviroment challenges. Open MPI as an implementation of choice will be

introduced. We will discuss the project features and its architecture. Open Runtime

Environment (ORTE), the current runtime environment for Open MPI project, and

its features will be discussed in detail in secion 2.2. ParalleX and High-Perfomance

ParalleX (HPX) will be presented in section 2.4. Chapter 3 covers the design prin-

ciples, architecture, and implementation of our runtime environment for Open MPI

(HPX-RTE) in sections 3.1, 3.2, and 3.4 accordingly. Chapter 4 is dedicated to eval-

uation of our developed runtime environment and its performance compared to the

current runtime environment in Open MPI (ORTE). And finally, Chapter 5 concludes

this document.
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Chapter 2

Background

2.1 Open MPI

The Open MPI Project is an open source implementation of the Message-Passing

Interface (MPI). Open MPI is developed by a consortium of academic, research,

and industry partners to combine the expertise, technologies, and resources from the

High Performance Computing community and build this MPI library.

Some of the Open MPI features are [24]:

• Open-source license

• Full conformance with MPI-3 standard

• Spawning processes dynamically

• Concurrency and thread safety

• Support for network heterogeneity

13



• Fault tolerance for network and processes

• Support for various job schedulers

• Support for all networks in a single library

• Portability and maintainability

• Run-time instrumentation

• Support for different operating systems (32 and 64 bit)

• Production-quality software

• Tunable by installers and end-users

• Modular component architecture

• Documentation for APIs

2.1.1 The Architectire of Open MPI

Open MPI is built based on a component architecture called the Modular Com-

ponent Architecture (MCA). Component based archtirecture makes large software

projects extensible and maintainable [25, 26]. It also allows users to build their own

costumized components and integrate them into Open MPI. Component based ar-

chitectures are popular in the high-performance computing community [27, 28].

Open MPI is comprised of three main functional areas (Figure 2.1) [26]:

14



Figure 2.1: MCA, component frameworks, and the components

1. MCA

The backbone modular component architecture that provides management ser-

vices for all other layers.

The MCA is responsible for management of the component frameworks and

providing them services they use. For instance, the MCA provides the ability

to accept run time parameters from higher level abstractions (e.g., mpirun) and

pass them down through the component framework to individual components.

It also finds components at build time and invokes their corresponding hooks

for configuration, building, and installation.

2. Component frameworks

Each major functional area in Open MPI has a corresponding back end com-

ponent framework, which manages modules.

15



Each component framework is a construct that is created for a single, targeted

task. For example, btl (Byte Transfer Layer) framework is used to send and

receive data on different types of networks, allocator framework is responsi-

ble for memory allocation, and coll framework is dedicated to MPI collective

algorithms. A framework uses MCA’s services to discover, load, use, and un-

load components at run time. Each framework has different policies and use

cases; some only use one component at a time while others use all available

components simultaneously.

3. Components

Components are self-contained software units that can configure, build, and

install themselves. A component is an implementation of a framework’s inter-

face. Components are also known as “plugins”. Each instance of a component

is called a “module”.

The Open MPI software has three classes of components: Open MPI (OMPI)

components, Open Runtime Environment (ORTE) components, and Open

Portable Access Layer (OPAL) components. (Figure 2.2)

Frameworks, components, and modules can be either dynamic or static. This

means, they can be available as plugins or they can be compiled statically into

libraries.

16



Figure 2.2: Open MPI Layers

2.2 Open Runtime Environment (ORTE)

Developing software environments for high-performance computing applications in

heterogenous distributed systems poses a significant challenge. The runtime envi-

ronment (RTE) must be capable of supporting heterogeneous operations, efficiently

scaling from one to large numbers of processors, and providing effective strategies

for dealing with fault scenarios that are expected as our systems continue to scale to

exaflop systems [29].

There has been a number of studies with different approaches to this challenge.

Each approach focuses on a particular aspect of the overall problem. For example,

17



LAM/MPI emphasis was on ease of portability and performance [30]. LA-MPI fo-

cused on data fault tolerance [31], and HARNESS FT-MPI focused on system fault

tolerance [32].

The major roles of every runtime are [19]:

1. Launch

This task to launch the processes for an MPI application. This is shared

between the runtime and the parallel scheduling/launching mechanism.

2. Connect

The connection information (the URI of a process) may not be known before

the MPI processes are launched. Therefore, it is necessary for the runtime

to establish the connections between the processes. It is then necessary to

distribute this information through an out of band messaging system.

3. Control

The control role is to ensure that the entire environment is gracefully cleaned in

case of a crash. Depending on the operating system and implementation, con-

trol may also forward signals to the MPI processes and ensure that completion

codes are returned to the user command: mpirun.

4. IO

The input/output commands launched do not necessarily run on the same ma-

chine as where they are issued in an MPI application. However, users usually

expect the information printed on the standard output appear on the standard

output of the command they launched. Therefore, it is necessary to forward

18



the standard input/output information to the machine users launch their ap-

plication from.

The Open Runtime Environment (ORTE) was developed as a part of the Open

MPI project to support distributed high performance computing applications oper-

ating in a heterogeneous environment. Implementation of the ORTE is based on the

Modular Component Architecture (MCA). The main design objectives of the ORTE

are ease of use, resilient operations, scalability, and extensibility. Interprocess com-

munication, resource discovery and allocation, and process launch across different

platforms in a transparent manner are main features of the ORTE[33, 34].

The ORTE consists of four major subsystems (Figure 2.3)[21, 33, 35]:

1. General Purpose Registry (GPR)

The GPR is the core subsystem in the ORTE architecture. It provides a mecha-

nism for exchanging of communication connection data, in the form of key-value

pairs, among processes. The GPR is also used to synchronize events across the

system. It asynchronously notifies subscribers of events such as data changes

in the registry or new data being entered to the registry.

2. Resource Management

The resource management subsystem consists of four smaller subsystems: Re-

source Discovery Subsytem (RDS), Resource Allocation Subsystem (RAS), Re-

source Mapping Subsystem, and Process Launch Subsystem (PLS). These four

subsystems together provide services for resource discovery, allocation, map-

ping, and process launch.

19



Figure 2.3: The ORTE architecture

3. Error Management

The State Monitoring and Reporting (SMR) subsystem and the Error Manager

subsystem are two smaller subsystems constructing the error management sub-

system. The error management subsystem brings the fault tolerance capability

to the ORTE.

4. Support Services

20



There are four subsystems comprising the support-services subsystem: The

Runtime Messaging Layer (RML) is responsible for providing administrative

communication services across all ORTE subsystems. The Name Services (NS)

subsystem assigns each application, and each process within each application,

a unique identifier. The I/O Forwarding (IOF) subsystem is responsible for

transporting standard input, output, and error messages between the remote

processes and the user. And finally, the Data Services (DS) subsystem is re-

sponsible for facilities like providing a single interface for all declared data

types, packing/unpacking network communications, and support for transpar-

ent data manipulation within the ORTE.

2.3 ParalleX

ParalleX [36] is a new computation model that attempts to address the underlying

sources of performance degradation [37]:

1. Starvation

Starvation is the phenomenon of resourses being idle performing no useful ac-

tion because the amount of concurrent work available to the resources is insuf-

ficient to utilize all of them.

2. Latency

Latency is the amount of time a message takes to traverse a system. Accessing

remote resources imposes a minimum delay equivalent to latency.

3. Overhead

21



Management of parallel resources requires extra work that is not necessary in

the case of utilizing sequential resources.

4. Waiting

In systems with shared resources, the possibility of contention exists. When

there is such a contention, it needs to be resolved. Hence, there is a delay due

to waiting for contention resolution.

ParalleX also tries to address the difficulties of programmer productivity like ex-

plicit locality management and scheduling, performance tuning, fragmented memory,

and synchronous global barriers to dramatically enhance the broad effectiveness of

parallel processing for high end computing [22]. ParalleX changes the fundamental

model of parallel computation from communicating sequential processes (e.g., MPI)

to an innovative combination of concepts using message-driven work-queue execution

in the context of a global address space. [38, 39]

Main components of ParalleX include [36, 40, 41]:

1. Active Global Address Space (AGAS)

While avoiding the overhead of cache coherence, the AGAS extends the PGAS

[42] models (GASNet [43], UPC [44]) by allowing the dynamic migration of first

class objects across the physical system without having to change the object’s

name. This facilitates load balancing by allowing work to be migrated from

heavily loaded nodes to less loaded nodes.

2. Parallel Processes

Unlike conventional models, ParalleX processes span over multiple nodes and
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share nodes as well. A ParalleX process can define a name space shared across

several localities supporting many concurrent threads and child processes.

3. Threads

ParalleX threads provide local control flow and data usage within a single node

utilized for specifying and performing most of the computational work to be

performed by an application program. ParalleX threads can migrate to remote

localities.

4. Local Control Objects (LCOs)

LCOs provide different functionalities for event driven ParalleX thread cre-

ation, protection of data structures from race conditions, and scheduling of

work automatically to let every single computation strand proceed as far as

possible.

5. Parcels

Parcels are messages that carry action and data asynchronously between differ-

ent localities. “Parcels enable message passing for distributed control flow and

dynamic resource management, implementing a split phase transaction based

execution model.” [36]

6. Percolation

Percolation is a technique for using resources by moving the work to the re-

source while both hiding the latency of such action and eliminating the overhead

of such action from the target resource.
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2.4 High-Performance ParalleX (HPX)

High-Performance ParalleX (HPX) is the first open source general purpose C++

runtime system implementation for the ParalleX execution model [45, 46].

HPX, like many recent programming models is based on lightweight tasks. Task

based parallel programming models can be divided into three major categories [46,

47]:

• Libraries

Intel TBB [48], Qthreads [49], and StarPU [50] are some known examples for

library solutions.

• Language Extensions

OpenMP [51] and Intel Cilk Plus [52] are examples of language extensions.

• Experimental Programming Languages

Chapel [53], X10 [54], and Intel ISPC [54] are notable examples in this category.

The majority of the previously mentioned task-based programming models focus

on node-level parallelism. Providing a solution for homogeneous execution of local

and remote operations is what distinguishes HPX from those models.

“HPX represents an innovative mixture of a global system-wide address space,

fine grain parallelism, and lightweight synchronization combined with implicit, work

queue based, message driven computation, full semantic equivalence of local and

remote execution, and explicit support for hardware accelerators through percola-

tion.” [46]
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2.4.1 HPX Design Principles

HPX follows a set of design principles that have been around for years. However,

HPX gathers all these principles into a unified system [46].

1. Latency Hiding instead of Latency Avoidance

It is impossible to have no latency in a system. However, to hide the latency,

some unrelated useful work can be done during that time. This is one of the

main concepts integrated into the design of HPX.

2. Fine-grained Parallelism instead of Heavyweight Threads

To hide latencies for very short operations, low overhead of context swithing

is a must. The overall system utilization improves by smaller overhead of a

context switch and finer granularity of the threading system.

3. Constrained Based Synchronization to Replace Global Barriers

Having all threads or processes wait for a particular operation to be finished

is waste of resources that could otherwise be utilized. Replacing such barri-

ers with constraint based synchronization through dataflow techniques could

improve the overall performance of a system.

4. Adaptive Locality Control instead of Static Data Distribution

MPI leaves the responsibility of data distribution to the programmer. The

easy approach for most programmers is to distribute the data statically. PGAS

systems rely on static data distribution as well. When there is an imbalance

in the workload, this becomes a problem. In such cases, migrating part of the
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application data to different localities (nodes) by the runtime system could

increase overall utilization and make programmers job easier.

5. Moving Work to the Data instead of Moving Data to the Work

It is obvious that the amount of data for a particular operation is very often

much smaller than the amount of data the operation is performed on. Although

this is possible using MPI, it is not deeply built into MPI model. Having a

system that could provide this capability would reduce overhead of unnecessary

data movement.

6. Message Driven Computation instead of Message Passing

In message passing models like MPI, the receiver of a message needs to spend

time waiting for the incoming messages. However, message driven compu-

tation allows sending messages without the receiver actively waiting for them.

Incoming message are handled asynchronously. This allows the overlap of com-

munication with useful work.

2.4.2 HPX Implementation Features

The implementation of HPX is feature complete. It supports all the main components

of ParalleX (Figure 2.4) [55].

HPX has a modular architecture. This allows simple compile-time customization

and minimizes the runtime memory footprint. Similar to the implementation of Open

MPI, HPX enables dynamically loaded modules to extend the available functionality

at runtime. Modules could be statically binded at link time as well.

The API exposed by HPX is aligned with the latest C++11 Standard [56] and
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the C++14 Standard [57] as much as possible and utilizes Boost [58] C++ libraries

to facilitate distributed operations, enable fine-grained constraint-based parallelism,

and support runtime adaptive resource management[46].

Figure 2.4: Modular Structure of HPX Implementation

Actions in HPX are special types used to describe possibly remote operations.

“Applying the action” is the process of invoking a global function (or a member

function of an object) with the help of the associated action. Actions can have

arguments, which will be supplied while the action is applied. At least one parameter

is required to apply an action: the id of the locality the associated function should

be invoked on for global functions, or the id of the component instance for member
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functions [59].

Figure 2.5 shows the function invocation syntax as defined by the C++ language

(dark blue), the additional invocation syntax as provided through C++ Standard

Library features (medium blue), and the extensions added by HPX (light blue)[46].

Figure 2.5: Overview of the main API exposed by HPX

HPX provides several ways to apply an action. Its API exposes three different

ways of executing a function, locally on the same physical locality as the invocation

site or remotely on a different locality:

• “Synchronous function execution

This is the most natural way of invoking a C++ function. The caller waits

for the function to return, possibly providing the result of the function execu-

tion. In HPX, synchronously executing an action suspends the current thread

relinquishing the processing unit for other available work. Once the function

is executed, the current thread is rescheduled.
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• Asynchronous function execution

Asynchronous invocation of a function means that it will be scheduled as a

new HPX thread (either locally or on another locality). The call to async will

return almost immediately providing a new future instance which represents

the result of the function execution. Asynchronous function execution is the

fundamental way of orchestrating asynchronous parallelism in HPX.

• Fire & Forget function execution

This is similar to asynchronous execution except that the caller has no means

of synchronizing with the result of the operation. The call to apply schedules a

local (or remote) HPX thread which runs to completion at its own pace. Any

result returned from that function (or any exception thrown) is being ignored.

This leads to less communication by not having to notify the caller.”[46]

Figure 2.6: Schematic of a Future Execution

In C++, a future encapsulates a delayed computation. A future holds the result
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of an asynchronous call because the computation of the result has not completed

yet [60]. HPX uses futures to synchronize the access to the value in a future by

suspending any HPX threads requesting the result until the value is available. When

a future is created, it spawns a new HPX thread which will execute the action

associated with the future. The new thread is spawned either remotely with a parcel

or locally by being placed into the thread queue. Utilizing futuers allows HPX to

schedule work early in a program so that when the function value is needed it will

already be calculated and available (Figure 2.6) [36].

2.4.3 HPX Hello World Example

Listing 2.1 [61] is a simple program that prints out a hello world message on every

OS-thread on every locality.

Listing 2.1: HPX Hello World

1 int main ( ) {

2 std : : vector<hpx : : naming : : id type> l o c a l i t i e s =

3 hpx : : f i n d a l l l o c a l i t i e s ( ) ;

4 std : : vector<hpx : : l c o s : : future<void> > f u t u r e s ;

5 f u tu r e s . r e s e r v e ( l o c a l i t i e s . s i z e ( ) ) ;

6 for ( hpx : : naming : : i d type const& node : l o c a l i t i e s ) {

7 typedef he l l o wo r l d f o r eman ac t i on ac t i on type ;

8 f u tu r e s . push back (hpx : : async<act ion type >(node ) ) ;

9 }

10 hpx : : w a i t a l l ( f u tu r e s ) ;

11 return 0 ;

12 }
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Using the hpx::find_all_localities() function, we get a list of all available

localities and put them into a vector. Then, we reserve storage space for futures, one

for each locality. Looping through all the localities, we asynchronously start a new

task on each locality. The task is encapsulated in a future, which can be queried

to determine if the task has completed. hpx::wait_all() returns when all of the

futures have finished.

Listing 2.2 [61] illustrates the hello_world_foreman() function which is used

to make hello_world_foreman action. hpx::get_os_thread_count() returns the

number of worker OS-threads in use by the current locality. hpx::find_here()

returns the global name of the current locality. Inside the for loop, we populate a set

with the OS-thread numbers of all OS-threads on this locality. When the hello world

is printed on a particular OS-thread, we remove it from the set. As long as there

are elements in the set, we keep scheduling HPX-threads. Note that because HPX

features work-stealing task schedulers, we have no way of enforcing which worker OS-

thread will actually execute each HPX-thread. Inside the while loop, in each iteration

we create a task for each element in the set of OS-threads that have not said “Hello

world”. Each of these tasks is encapsulated in a future. Eventually, we wait for all

of the futures to finish. The hpx::lcos::wait_each function takes two arguments:

a binary callback, and a vector of futures. The callback takes two arguments; the

first is the index of the future in the vector, and the second is the return value of

the future. hpx::lcos::wait_each doesn’t return until all the futures in the vector

have returned. The macro HPX_PLAIN_ACTION defines the boilerplate code necessary

for the function hello_world_foreman to be invoked as an HPX action.
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Listing 2.2: Hello World Foreman

1 void he l l o wor ld fo r eman ( ) {

2 std : : s i z e t const o s th r ead s = hpx : : g e t o s th r ead coun t ( ) ;

3 hpx : : naming : : i d type const here = hpx : : f i n d h e r e ( ) ;

4 std : : set<std : : s i z e t > attendance ;

5 for ( std : : s i z e t o s th read = 0 ; o s thread < o s th r ead s ; ++os thread ) {

6 attendance . i n s e r t ( o s th read ) ;

7 }

8 while ( ! attendance . empty ( ) ) {

9 std : : vector<hpx : : l c o s : : future<std : : s i z e t > > f u t u r e s ;

10 f u tu r e s . r e s e r v e ( attendance . s i z e ( ) ) ;

11 for ( std : : s i z e t worker : attendance ) {

12 typedef he l l o wo r l d wo rk e r a c t i on ac t i on type ;

13 f u tu r e s . push back (hpx : : async<act ion type >(here , worker ) ) ;

14 }

15 hpx : : l c o s : : l o c a l : : s p i n l o ck mtx ;

16 hpx : : l c o s : : wa i t each (

17 hpx : : u t i l : : unwrapped ( [& ] ( std : : s i z e t t ) {

18 i f ( std : : s i z e t (−1) != t ) {

19 boost : : lock guard<hpx : : l c o s : : l o c a l : : sp in lock> l k (mtx ) ;

20 attendance . e r a s e ( t ) ;

21 }

22 } ) ,

23 f u tu r e s ) ;

24 }

25 }

26 HPX PLAIN ACTION( he l l o wor ld fo reman , h e l l o wo r l d f o r eman ac t i on ) ;
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Listing 2.3 shows the hello_world_worker function. This function is used to cre-

ate hello_world_worker_action. The function hpx::get_worker_thread_num()

returns the OS-thread number of the worker that is running this HPX-thread. If the

HPX-thread is the one running on the desired OS-thread, we print the hello world

message and flush the output stream. Otherwise, we don’t do anything here and

foreman action reschedules the action again until it is on the desired OS-thread.

Listing 2.3: Hello World Worker

1 std : : s i z e t he l l o wor ld worke r ( std : : s i z e t d e s i r ed ) {

2 std : : s i z e t cur rent = hpx : : get worker thread num ( ) ;

3 i f ( cur r ent == de s i r ed ) {

4 char const∗ msg =

5 ‘ ‘ h e l l o world from OS−thread %1% on l o c a l i t y %2%\n ’ ’ ;

6 hpx : : cout << ( boost : : format (msg) % de s i r ed % hpx : : g e t l o c a l i t y i d ( ) )

7 << hpx : : f l u s h ;

8 return de s i r ed ;

9 }

10 return std : : s i z e t (−1);

11 }

12 HPX PLAIN ACTION( he l l o wor ld worke r , h e l l o wo r l d wo rk e r a c t i on ) ;

33



Chapter 3

HPX-RTE

ParalleX and HPX are both parts of the eXascale Programming Environment and

System Software (XPRESS) [45, 62] project funded by the Department of Energy

(DOE).

The goals of XPRESS project are [63]:

• Enable exascale performance capability for Department of Energy applications

• Develop a software stack, “OpenX”, for future Department of Energy comput-

ing systems

• Provide programming models, languages, environments, and tools for express-

ing system and application software for exascale

This project is a collaboration between Sandia National Laboratories (SNL), In-

diana University (IU), Lawrence Berkeley National Laboratory (LBNL), Louisiana

State University (LSU), Oak Ridge National Laboratory (ORNL), University of
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Houston (UH), University of North Carolina at Chapel Hill/RENCI (UNC/RENCI),

and University of Oregon (UO).

Figure 3.1 illustrates the OpenX software architecture. Support for legacy appli-

cations, and specifically support for MPI applications is this thesis’ target.

Figure 3.1: The OpenX Software Architecture
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3.1 Design Principles

The main goal of this project that led to the development of HPX-RTE was to provide

facilities for MPI applications to compile and run the exact same way in exascale

software stack environment and be compatible with HPX runtime environment. This

goal is achieved by replacing the current runtime environment (ORTE) with a new

runtime environment developed from scratch to take advantage of the API provided

by HPX. This choice was made by having a set of design principles in mind:

• Modularity

Utilizing the modular structure of the Open MPI project, there is a framework

dedicated to the runtime environment (rte) in OMPI layer. This framework is

designed to provide the interfce necessary for different runtime environments

(Figure 3.2). This allows different runtime environments to coexist indepen-

dently inside the Open MPI project and be chosen by users based on their

environment and application needs and priorities.

• Functionality

The main focus of this work is to have the MPI applications work on HPX

infrastructure. To do this, most of the effort is put on having the function-

ality in place before tackling any possible consequences such as its effect on

performance, efficiency, or power consumption. Although every possible con-

sideration has been taken into account not to introduce sources of performance

degradation, such potential side effects could still happen. Those may be the

topic for other studies after having the new runtime environment in place and
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Figure 3.2: Modular Component Architecure with rte Framework

functional.

• Simplicity

Simplicity is a key factor is the design of HPX-RTE. We have avoided intro-

ducing any unnecessary algorithm or functionality. Implementing the required

API, we have tried to keep implementation as simple and straightforward as

possible.

• Code Reuse

HPX-RTE relies on a number of advanced features and concepts provided by

the HPX API. Therefore, there was no need to reimplement what was already

done. We have tried to take those features to a new level by integrating them

tightly into the implementation of HPX-RTE.

37



3.2 Architecture

HPX-RTE is designed to replace the functionality of current Open MPI runtime

(ORTE). Figure 3.3 illustates the logical layers of Open MPI software using HPX-RTE

as its runtime environment. The modular component architecture of Open MPI fa-

cilitates the implementation of this design.

The required functinality for HPX-RTE is implemented as a component of the

runtime environment (rte) framework (Figure 3.2) in OMPI layer. This design dic-

tates a number of changes outside the rte framework. We will discuss those changes

in the implementation section.

Figure 3.3: Open MPI Layers using HPX-RTE
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3.3 Runtime Environement Requirements

The rte framework inside OMPI layer of Open MPI defines a required set of data

structures and functions that every runtime environment component needs to provide

implementation for [18]:

3.3.1 Process Name Objects and Operations

1. ompi_jobid_t and ompi_vpid_t

These two need to be defined as integer types. The jobid must be unique for

a given MPI_COMM_WORLD capable of connecting to another OMPI_COMM_WORLD

and the vpid will be the process’s rank in MPI_COMM_WORLD.

2. ompi_process_name_t

This is a struct that must contain at least two fields of type integer:

(a) ompi_jobid_t jobid

(b) ompi_vpid_t vpid

3. OMPI_NAME_PRINT

When given a pointer to ompi_process_name_t, this macro has to print a pro-

cess name. The output format has to be a single string representing the name.

This function should be thread-safe for multiple threads to call simultaneously.

4. OMPI_PROC_MY_NAME

A pointer to a global variable containing the ompi_process_name_t for this

process.
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5. OMPI_NAME_WILDCARD

A wildcard name.

6. ompi_rte_compare_name_fields

A function used to compare fields in the ompi_process_name_t struct. The

function prototype must be of the form:

int ompi r t e compare name f i e ld s (

ompi rte cmp bitmask t mask ,

ompi process name t ∗name1 ,

ompi process name t ∗name2 ) ;

The bitmask must be defined to indicate the fields to be used in the comparison.

Fields not included in the mask must be ignored. Supported bitmask values

must include:

(a) OMPI_RTE_CMP_JOBID

(b) OMPI_RTE_CMP_VPID

(c) OMPI_RTE_CMP_ALL

7. uint64_t ompi_rte_hash_name(name)

Return a string hash uniquely representing the ompi_process_name passed in.

8. OMPI_NAME

An OPAL Data Packing Subsystem(DSS) constant for a handler already reg-

istered to serialize/deserialize an ompi_process_name_t structure.

40



3.3.2 Collective Objects and Operations

1. ompi_rte_collective_t

An OPAL object used during the runtime environment collective operations

such as modex and barrier. This must be of type opal_list_item_t and

contain the following fields:

(a) int32_t id

(b) bool active: A flag that user can poll on to know when collective operation

has completed. If a user callback function is provided, this needs to be

set to false just prior to calling it.

2. ompi_rte_modex

A function that performs an exchange of endpoint information to wire up the

MPI transports. The function prototype must be of the form:

int ompi rte modex ( o m p i r t e c o l l e c t i v e t ∗ c o l l ) ;

At the completion of the modex operation, the coll->active flag must be set

to false, and the endpoint information must be stored in the modex database.

This function must have barrier semantics across the MPI_COMM_WORLD of the

calling process.

3. ompi_rte_barrier

A function that performs a barrier operation within the RTE. The function

prototype must be of the form:

int o m p i r t e b a r r i e r ( o m p i r t e c o l l e c t i v e t ∗ c o l l ) ;
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At the completion of the barrier operation, the coll->active flag must be set

to false.

3.3.3 Process Information Structure

1. ompi_process_info_t A structure containing information about the current

process. The following fields are mandatory within the struct:

(a) app_num

(b) pid

The current process’s id. This should be the same as the output of getpid()

function.

(c) num_procs

Number of processes in this job (ie, MPI_COMM_WORLD).

(d) my_node_rank

Relative rank on local node to other peers this runtime instance knows

about. In a static job this will be my_local_rank.

(e) my_local_rank

Relative rank of the process on the local node with other peers in this job

(ie, MPI_COMM_WORLD).

(f) num_local_peers

Number of local peers (peers in MPI_COMM_WORLD on the same node).

(g) my_hnp_uri
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(h) peer_modex

This is a collective id for the modex operation.

(i) peer_init_barrier

A collective id for the barrier during MPI_Init.

(j) peer_fini_barrier

A collective id for the barrier during MPI_Finalize.

(k) job_session_dir

(l) proc_session_dir

(m) nodename

A string representation for the name of the node this process is located

on.

(n) cpuset

(o) ompi_process_info

A global instance of the ompi_process_t structure.

2. ompi_rte_proc_is_bound

A global boolean that will be set to true if the runtime bound the process to a

particular core or set of cores. Otherwise, it will be false.

3.3.4 Error-Handling Objects and Operations

1. void ompi r t e abor t ( int e r r code , char ∗ fmt , . . . )

Abort the current process with the specified error code and message.
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2. int o m p i r t e a b o r t p e e r s ( ompi process name t ∗procs ,

s i z e t nprocs )

Abort the specified list of peers.

3. OMPI_ERROR_LOG(rc)

This is a macro that prints the error message regarding the given return code.

4. ompi_rte_register_errhandler

A function to register a callback function for the runtime environment to report

asynchronous errors to the caller.

3.3.5 Initializing and Finalizing Objects and Operations

1. int o m p i r t e i n i t ( int ∗argc , char ∗∗∗ argv ) ;

This function initializes the runtime environment.

2. int o m p i r t e f i n a l i z e ( void ) ;

This function finalizes the runtime environment.

3. void omp i r t e wa i t f o r d ebugge r ( void ) ;

This function is called during MPI_Init. It is used to wait for debuggers to

do their pre-MPI attachment. This function will not block if no debugger is

attached.
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3.3.6 Database Operations

1. int omp i r t e db s t o r e ( const ompi process name t ∗proc ,

const char ∗key ,

const void ∗data ,

o p a l d a t a t y p e t type ) ;

This function is used to store modex and other data in a local database. It is

primarily used for storing modex data. The implementation of this function

must store a copy of the data provided. The data is not guaranteed to be valid

after return from the call.

2. int omp i r t e db f e t ch ( const struct ompi proc t ∗proc ,

const char ∗key ,

void ∗∗data ,

o p a l d a t a t y p e t type ) ;

This function is used to fetch modex and other data from the database. Fetch

accepts an ompi_proc_t.

3. int o m p i r t e d b f e t c h p o i n t e r (

const struct ompi proc t ∗proc ,

const char ∗key ,

void ∗∗data ,

o p a l d a t a t y p e t type ) ;

4. Pre-defined database keys (with associated values after rte_init)
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(a) OMPI_DB_HOSTNAME

(b) OMPI_DB_LOCALITY

3.4 Implementation

We have explained in previous sections that Open MPI has an abstraction layer for

runtime environments. HPX-RTE provides an implementation of that abstraction

layer using HPX features and facilities.

3.4.1 HPX-RTE Requirements

Since both Open MPI and HPX project are under active development, we decided

to fix our implementation target to specific versions of these two software projects

during the development cycle. HPX-RTE was built on a fork of Open MPI version

1.8 branch. We used the released HPX version 0.9.10. HPX library is dependent on

the Boost libraries. Boost libraries version 1.55.0 were installed on the development

machines. To summerize, users will need to have Open MPI 1.8, HPX 0.9.10, and

Boost 1.55.0 as requirements to take advantage of HPX-RTE.

3.4.2 Features

Some of the main implementation features of HPX-RTE include:

1. Distributed Database

For the runtime environment, we need to store a set of key-value pairs in a

database accessible to all the localities participating in a job. Utilizing HPX
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actions, HPX-RTE stores the data on local node at the time a store operation

is issued. We have used singly linked lists to store the data. However, to

retrieve the data the processes take advantage of HPX actions (remote function

calls) to fetch the stored data from the database on the locality it is stored

on. In theory, this database scheme eliminates the bottleneck of accessing

a centralized database, or storing copies of all the database entries in every

single locality. Therefore, it distributes the database, uses less space, and

makes accessing the stored data faster. Listing 3.1 and 3.2 demononstrate

two funtions (hpx_rte_cpp_put and hpx_rte_cpp_get) that store and fetch

operations are built based on.

Listing 3.1: Put Functionality

int r te hpx cpp put (char∗ key , int keys i ze ,

char∗ val , int v a l s i z e )

{

std : : vector<char> vec t o rva l ( val , va l + v a l s i z e ) ;

r t e hpx put ( std : : s t r i n g ( key ) , v e c t o rva l ) ;

return 0 ;

}

2. Barrier Semantics

HPX strives not to have barriers that would stall all processes or threads for

a particular operation to be completed. Instead, there are fine-grained mecha-

nisms available for synchronization. However, a barrier (global synchronization

point) is a requirement for the runtime component in Open MPI. We have de-

veloped an algorithm that implements barrier semantics by making effective
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use of HPX actions and remote asynchronous function calls (Listing 3.3). We

create a vector of futures with its size equal to the number of localities. Then,

we asynchronously call an action to add one to a globally shared atomic counter

on each locality. When this counter reaches the total number of localities, the

synchronization is accomplished.

Listing 3.2: Get Functionality using HPX Asynchronous Actions

int r t e hpx cpp ge t ( int vpid , char∗ key , char∗∗ value )

{

hpx : : naming : : i d type const& node =

r t e hpx cpp g e t l o c a l i t y f r om vp i d ( vpid ) ;

s td : : s t r i n g s t r i ngkey = key ;

int counter ;

∗ value = NULL;

std : : vector<char> temp vector =

hpx : : async<r t e hpx ge t a c t i on >(node , s t r i ngkey ) . get ( ) ;

i f ( temp vector . s i z e ( ) != 0) {

char ∗ temp value = (char ∗) mal loc ( temp vector . s i z e ( ) ) ;

memcpy( temp value , temp vector . data ( ) , temp vector . s i z e ( ) ) ;

∗ value = temp value ;

}

return ( int ) temp vector . s i z e ( ) ;

}

3. Mapping Localities to Ranks

HPX uses the notion of locality. “A locality represents a set of hardware re-

sources with bounded, finite latencies.” [46] MPI uses ranks. We have provided

48



a translation table from HPX localities to mpi ranks.

4. Populating Internal Data Structures

A number of internal data structures need to be initialized within the runtime

environment before starting the MPI initialization. This is done in the runtime

initialization function.

Listing 3.3: Barrier Implementation

void r t e hpx ba r r i e r ( )

{

std : : vector<hpx : : naming : : id type> l o c a l i t i e s =

hpx : : f i n d a l l l o c a l i t i e s ( ) ;

s td : : vector<hpx : : l c o s : : future<void> > f u t u r e s ;

f u tu r e s . r e s e r v e ( l o c a l i t i e s . s i z e ( ) ) ;

BOOSTFOREACH(hpx : : naming : : i d type const& node , l o c a l i t i e s ) {

f u t u r e s . push back (hpx : : async<r t e hpx one ac t i on >(node ) ) ;

}

hpx : : w a i t a l l ( f u tu r e s ) ;

while (sum != ( int ) l o c a l i t i e s . s i z e ( ) ) {

}

sum = 0 ;

return ;

}

5. Populate Key-Value Pairs in the Database

Since the defined abstraction layer is not implemented perfectly, there was a

number of key-value pairs that were needed to be populated into the database.

In theory, this shouldn’t be the case. But this is a matter of implementation
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practices. For instance, some of these key-value pairs are set in ORTE layer

(which is supposedly an independent layer) and used in OMPI layer. Identifying

and extracting those pairs was a challenging task.

6. Intercepting C Standard Output

In order to see the output from C part of the code, we needed to intercept the

printf function in C and send its output to C++ output stream. Listing 3.4

shows our implementation of print function. This technique can be used for

any other standard output function in C.

Listing 3.4: Intercepting printf

int p r i n t f ( const char ∗ r e s t r i c t format , . . . )

{

char out [ 1 0 2 4 ] ;

v a l i s t args ;

v a s t a r t ( args , format ) ;

v snp r i n t f ( out , 1024 , format , args ) ;

va end ( args ) ;

r t e hpx cpp p r i n t f ( out ) ;

return ( s t r l e n ( out ) ) ;

}

7. Automatic Boost and HPX Detection

Since Boost and HPX are required to be installed before the installation of

Open MPI with HPX-RTE, we modified the configure logic of Open MPI to

detect the installation paths of these libraries and accordingly modify the gen-

erated make files with appropriate compilation and linkage flags.
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8. C and C++ Compatibility

The majority of the Open MPI source code is written in C language. HPX is

completely written in C++ with extensive use of recent C++14 features. This

definitely causes compatibility issues which needed to be handled in the code.

For instance, Listing 3.5 illustrates an example on how different headers are

made visible to either C or C++ compiler.

Listing 3.5: Exposing Different Headers to C and C++ Compilers

#inc lude <s t d i o . h>

#inc lude <s t d l i b . h>

#inc lude <uni s td . h>

#i f de f ined ( c p l u s p l u s )

#inc lude <hpx/hpx main . hpp>

#inc lude <hpx/ hp x f i n a l i z e . hpp>

#inc lude <hpx/ inc lude / io s t r eams . hpp>

#end i f

The same technique is applied for functions that are written in C or C++.

We also utilized extern “C” to make function names in C++ have C linkage

(compiler does not mangle the name) so that client C code can link to the

functions using a C compatible header file that contains just the declaration

of those functions. Listing 3.6 illustrates the technique. Note that this listing

does not contain all the function prototypes in the source code.

We also had to use C++ to compile a number of components that were initially

compiled by the C compiler in Open MPI.
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Listing 3.6: Exposing Different Functions to C and C++ Compilers

#i f de f ined ( c p l u s p l u s )

extern ‘ ‘C ’ ’ {

struct Node{

struct Node ∗next ;

std : : s t r i n g key ;

std : : vector<char> value ;

int o r i g i n a t o r ;

} ;

typedef struct Node Node ;

int r t e hpx vp id (void ) ;

int r t e hpx num l o c a l i t i e s (void ) ;

void r t e hpx loca l map (void ) ;

void r t e hpx ba r r i e r (void ) ;

}

#end i f

9. Communication Protocols

Current implementation of HPX-RTE supports Transmission Control Proto-

col(TCP) [64] and Infiniband [65] communication protocol.
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Chapter 4

Evaluation

4.1 Test Environment

For the purpose of evaluation, the crill cluster at the Research and Computing Center

of the University of Houston was used.

4.1.1 Crill Cluster Hardware Specification

• 16 NLE Systems nodes (crill-001 - crill-016)

Four 2.2 GHz 12-core AMD Opteron processors (48 cores total)

64 GB main memory

Two dual-port 4xDDR InfiniBand HCAs

• 2 Appro 1326G4 nodes (crill-101 - crill-102)

Two 2.2 GHz 12-core AMD Opteron processors (24 cores total)

32 GB main memory
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Four NVIDIA Tesla M2050 GPUs (448 cores each)

4xDDR InfiniBand HCA

• 4 HP DL 160 Gen 8 nodes (crill-200 - crill-203)

Two 2.4 GHz quad-core Intel Xeon E5-2665 processors (24 cores total)

8 GB main memory

4xDDR InfiniBand HCA

• Network Interconnect

144 port 4xInfiniBand DDR Voltaire Grid Director ISR 2012 switch (shared

with whale cluster)

24 port 4xInfiniBand SDR switch (I/O switch to the SSD storage)

48 port Netgear GE switch

• Storage

2 TB RamSan 620 SSD storage (/pvfs2-ssd)

20 TB Sun StorageTek 6140 array (/home shared with shark cluster)

8 TB distributed PVFS2 storage (/pvfs2)

4.1.2 Crill Cluster Nodes Software Specification

• Operating System

Linux kernel version 3.11.10-21-desktop

Distribution: openSUSE 13.1 (x86 64)

• Open MPI version 1.8

• HPX version 0.9.10 release
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• Boost version 1.55.0

• GCC and G++ version 4.8.1

4.2 Configuration, Compilation, and Execution

4.2.1 Open MPI Configuration Parameteres

For running different test cases, our evaluation is mostly focused on comparison

between Open MPI using ORTE vs. Open MPI using HPX-RTE as runtime. Listing

4.1 shows the configure line for the Open MPI installation. The only parameter that

needs to be changed is --with-orte. When this parameter is set to “yes”, Open

MPI uses ORTE as runtime. If we set this parameter to “no”, Open MPI will use

HPX-RTE.

Listing 4.1: Configure Line of Open MPI with HPX-RTE

$ . / c on f i gu r e CFLAGS=‘‘−g −O0 ’ ’ CXXFLAGS=‘‘−g −O0 ’ ’

−−p r e f i x=/home/hadi /opt/openmpi

−−with−hpx=/opt/hpx−0.9.10− r e l e a s e

−−with−boost=/opt/ boost/1−55−0

−−d i sab l e−vt −−enable−mca−no−bu i ld=co l l−ml , vpro toco l

−−enable−oshmem=no −−enable−mpi−p r o f i l e=no

−−enable−stat ic −−with−o r t e=no
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4.2.2 Compiling MPI Applications

Listing 4.2 illustrates the compile line for our Hello World example. This line could

be integrated into Open MPI software in future iterations of the development. There-

fore, users will not have to manually insert all the compile and linkage flags needed.

The same command can be used when ORTE is the installed runtime.

Listing 4.2: Compile Line for Hello World

$ mpicxx −o mpi he l l o mp i he l l o . c −rdynamic −fPIC −std=c++11

−Wall −Wno−unused−l o c a l−typede f s −Wno−s t r i c t −a l i a s i n g

−Wsign−promo −Wno−cast−a l i g n −Werror=vla −Werror=return−type

−f d i a gno s t i c s−show−opt ion −Werror=u n i n i t i a l i z e d −pthread

−DHPXDEBUG −D GNU SOURCE −I$ {HPX DIR}/ inc lude /hpx/ ex t e rna l

−I$ {HPX DIR}/ inc lude −I / usr / in c lude / goog l e

−DHPX APPLICATION EXPORTS −DHPX ENABLE ASSERT HANDLER

−DHPXDEBUG − f i n l i n e −f un c t i on s −I /opt/ boost/1−55−0/ inc lude

−L/opt/ boost/1−55−0/ l i b −Wl,− rpath , : ${HPX DIR}/ l i b /hpx

−L${HPX DIR}/ l i b /hpx −L${HPX DIR}/ l i b −lhpx − l h p x i n i t

− l h p x s e r i a l i z a t i o n − l b oo s t da t e t ime − l b o o s t f i l e s y s t em

−l boos t program opt ions − l b o o s t r e g ex − l b o o s t s e r i a l i z a t i o n

−l boo s t sy s t em −l b oo s t th r e ad −l boo s t a tomic −l boo s t ch rono

− l p r o f i l e r − l i o s t r e ams −L/ l i b 6 4 − l r t − l d l − l u t i l −g −O0

4.2.3 Running MPI Applications

For running applications using ORTE, we will use “mpirun” command, which is a soft

link to “orterun” command. This is shown in listing 4.3. ORTE also supports a direct

launch mechanism which avoids creating the ORTE daemons on individual compute
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nodes but uses the native resource manager instead for the management services,

e.g. an application can be started directly using the srun command in a SLURM

enviornment. This version has lower startup costs, but reduces the functionality of

the runtime environment.

Listing 4.3: Running MPI Applications Using ORTE

$ mpirun −np 1 −pernode . / mp i he l l o

HPX provides support for Slurm (Simple linux utility for resource management) [66].

To run applications using HPX-RTE, we use “srun” command. Listing 4.4 demon-

strates an example.

Listing 4.4: Running MPI Applications Using HPX-RTE

$ srun −N 1 −n 1 −−ntasks−per−node=1 . / mpi he l l o −−hpx : run−hpx−main

−−hpx : threads=2

4.3 Evaluation

In our evaluations, there are two ways to measure the time in the case of each appli-

cation: The total time measured by the “time” command in Linux, and measuring

the time within the application. The time reported by the application is reported

on a per process basis in some test cases. Numbers reported in this section are

averge numbers reported by the application when the application reported times are

reported. Every test was run at lesat three times. The average of all three times is

reported.

57



4.3.1 Parallel Computational Fluid Dynamics

We use an MPI implementation [67] of a computational fluid dynamics (CFD) test

case defined by Ecer, Satofuka, Periaux, and Taylor, 2006 [68]. The objective is to

solve the following partial differential equation (PDE) on a parallel computer:

df

f
= ∆f

This test case uses an explicit scheme with forward time and centered space. The

equation is solved over a cube of unit dimensions. The initial conditions everywhere

inside the cube are: f = 0. The boundary conditions are: f = x on all edges. The

implementation calculates the steady-state solution.

Figure 4.1 shows the time spent running the application using ORTE and HPX-

RTE. Figure 4.2 illustrates the times reported by the application using ORTE and

HPX-RTE. We ran the application with different number of processes (1, 2, 4, 8, and

16). The grid dimensions are 100x100x100.

Both Figure 4.1 and Figure 4.2 demonstrate that despite slight better time per-

formance using HPX-RTE in most cases, the overall times are very close. We believe

this is because the overall time is dominated by communication and computation

over the time spent by the runtime. To verify this, we decreased the problem size

and used a grid of size 80x80x80. The results shown in Figure 4.3 and Figure 4.4 sup-

port this hypothesis. As we decrease the problem size, the time difference becomes

more distinct.

To better understand the effect of the runtime, we can study an example with

minimal communication and computation.
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Figure 4.1: CFD Running Time - 100x100x100

Figure 4.2: CFD Application Reported Time - 100x100x100
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Figure 4.3: CFD Running Time - 80x80x80

Figure 4.4: CFD Application Reported Time - 80x80x80
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4.3.2 MPI Hello World

A very-good example to study the performance of the runtime would be a simple

“Hello World” example (Listing 4.5). Since this simple application includes minimum

communication and computation time, it could give us a better picture of the time

spent in the runtime. Figure 4.5 illustrates the running time measured by the “time”

command. Figure 4.6 shows the time measured starting before MPI_Init() until after

MPI_Finalize() funtion. There is an improvement of up to 53% using HPX-RTE

over ORTE.

Listing 4.5: MPI Hello World

#include <mpi . h>

#include <hpx/hpx main . hpp>

int main ( int argc , char∗∗ argv )

{

int rank , s i z e ;

double t1 , t2 ;

t1 = MPI Wtime ( ) ;

MPI Init (&argc , &argv ) ;

MPI Comm rank (MPICOMMWORLD, &rank ) ;

MPI Comm size (MPICOMMWORLD, &s i z e ) ;

p r i n t f ( ‘ ‘ He l l o world from proce s s %d o f %d\n ’ ’ , rank , s i z e ) ;

MPI Final ize ( ) ;

t2 = MPI Wtime ( ) ;

p r i n t f ( ‘ ‘%1.4 f \n ’ ’ , t2−t1 ) ;

return 0 ;

}
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Figure 4.5: Time - Hello World

Figure 4.6: Application Reported Time - Hello World
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4.3.3 Parallel Smoothing

This application performs smoothing on an input image on a pixel-by-pixel basis.

The algorithm changes the class that a pixel has been assigned to if majority of

neighboring elements have a different class. For each pixel, we consider an area of

5x5 pixels (two pixels in each direction). Input file contains the integer value of the

class that each pixel belongs to. The algorithm is performed iteratively 10 times,

and the result is written to an output file.

Figure 4.7 and 4.8 show the running time and application reported time accord-

ingly. The input image size is 1024x1024 pixels.

We can see a slight performance benefit using HPX-RTE in both cases. However,

this is more obvious in the overal reported times. In the case of application reported

time in this algorithm, the application is reporting only the smoothing part (commu-

nication and computation). The majority of the time spent in runtime (start up and

shut down), reading from the input file, and writing to the output file are not inside

the section of the code the application is reporting the time for. This shows that

the computation and communication times are very close, and the actual difference

comes from the choice of runtime. We ran the same test on an input image of size

2048x2048 pixels. The results are shown in Figure 4.9 and Figure 4.10.

The comparison between two different input sizes shows that by increasing the

problem size, the different between two runtimes becomes smaller and smaller. This

is in accordance with what we suggested previously that the HPX-RTE runtime by

itself is faster than ORTE, but the difference shows itself when the application is not

dominated by communicational and computational work load.
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Figure 4.7: Time - Parallel Smoothing - 1024x1024

Figure 4.8: Application Reported Time - Parallel Smoothing - 1024x1024
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Figure 4.9: Time - Parallel Smoothing - 2048x2048

Figure 4.10: Application Reported Time - Parallel Smoothing - 2048x2048

65



4.3.4 Code Size

Figure 4.11 shows a comparison between HPX-RTE and ORTE code size (number

of lines of code).

Figure 4.11: Code Size Comparison - HPX-RTE and ORTE

As it is shown in Figure 4.11, the source code size for HPX-RTE is less than 0.64%

of the code base for ORTE. This is partly because HPX-RTE is taking advantage

of the HPX library and HPX-RTE component does not currently provide support

for a number of features such as failure handling and dynamic process management

that are supported by ORTE. Our evaluations in previous sections showed significant

runtime performance improvement and very close overall performance using HPX-

RTE over ORTE. Achieveing this level of performance with reducing the code size

of the runtime by more than 99.36% is a significant improvement.
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Chapter 5

Conclusion

High-performance computing systems are growing toward hundreds-of-thousands to

million-node machines, utilizing the computing power of billions of cores. Running

parallel applications on such large machines efficiently will require optimized runtime

environments that are scalable and resilient. Multi and many core chip architectures

in large scale supercomputers pose several new challenges to designers of operating

systems and runtime environments.

HPX-RTE is a new, light weight, and open source runtime system specifically

designed for the emerging exascale computing environment. The system is designed

relying on HPX project advanced features such as asynchronous remote function calls

(actions) and C++ futures to allow for easy extension and transparent scalability.

HPX-RTE provides full compatibility for current MPI applications to run on HPX

runtime system.
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5.1 Performance

Even though funcionality was the main priority in the design of HPX-RTE, our

evaluations of HPX-RTE show better or equivalent performance compared to ORTE.

We demonstrated the results of three different applications with different problem

sizes: Parallel computational fluid dynamics, hello world, and parallel smoothing.

The source code size for HPX-RTE is more than 99.36% smaller than ORTE’s

source code. This is partly because of utlizing HPX external library and also not sup-

porting all the features provided by ORTE. The smaller code base makes the source

code much simpler and easier to understand. Moreover, based on our evaluations

the significant smaller size of runtime has not sacrificed the performance.

ORTE also supports a direct launch mechanism which avoids creating the ORTE

daemons on individual compute nodes but uses the native resource manager instead

for the management services, e.g., an application can be started directly using the

srun command in a SLURM enviornment. This version has lower startup costs, but

reduces the functionality of the runtime environment.

5.2 Future Extensions

HPX-RTE and the features it utilizes can be further integrated into Open MPI

project in future. Some of the ways this could be accomplished include:

• Further Evaluation and Performance Optimization

Since performance was not the main focus of the implementation of HPX-RTE,

further evaluations can provide better insight into different performance aspects
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of HPX-RTE that can be improved. Future developments of HPX-RTE can

specifically target performance and make further improvements to the source

code.

• More Than One Locality Per Node

Current version of HPX-RTE is limited to one locality per node. Adding sup-

port for more than one locality (process) per node could be an extension in

future versions.

• Hybrid Programming Models

With the tight integration of HPX into Open MPI runtime provided by HPX-

RTE, the possibility of hybrid programming models such as HPX-MPI is not

far from reach. HPX-RTE also makes the transition from MPI to HPX easy.

Application developers can replace parts of their code with HPX based im-

plementation while their entire application does not need to be replaced and

application functionality is maintained.

• Incorporating HPX Features into Open MPI Frameworks

Taking advantage of the compatibility provided by HPX-RTE, Open MPI de-

velopers could incorporate features from HPX project into the implementaion

of components in other frameworks within the Open MPI project with similar

design principles we had in mind for HPX-RTE. This could potentially improve

performance, decrease the source code size, and provide simpler code.
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