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Abstract 

 

Complex and expensive downhole tools have been employed increasingly in modern 

drilling. Downhole tool failures include motor failures, bit failures, and MWD failures.  

Any of these failures may result in reduction of rate of penetration (ROP), repair or 

replacement of the damaged tools, wasted trips, and rig downtime, and thus add 

substantially to the drilling cost. The causes of downhole tool failures are compound, 

embracing material, quality, design, and operating conditions. It is possible to monitor 

operating conditions and adjust operating parameters to avoid downhole tool failures and 

mitigate damages to downhole tools. In this thesis, game theory is considered for the 

prediction of downhole tool failures.   

Game theory is a branch of mathematics for decision making in the conflict of 

interests. A game theory model has four important components: players, information, 

actions, and payoff. An appropriate approach, i.e., a two-player non-zero-sum game, has 

been established for downhole tool failure. Namely, one player holds interest of the 

drilling time free of tool failures while the other cares the probability of tool failure. The 

information includes all pertinent data to calculate the drilling time and the probability of 

tool failure. The first player may take actions such as drilling operations to maximize his 

payoff, e.g., minimal drilling time, while the second player tries to reduce the probability 

of tool failures as much as possible. 

We utilized Game Theory Explorer to solve the two-player non-zero-sum game.  

Based on the game theory model, two payoff tables in terms of ROP and tool reliability, 

respectively, have been constructed and the optimal strategies have been found.    
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Chapter 1  Introduction 

 

1.1 DRILLING COST AND DOWNHOLE TOOL FAILURE 

     The recent downturn in oil and gas industry accompanies a severe decline in drilling 

activities. For example, active drill rigs in U.S. and Canada have dropped to about 1/5 in 

May 2016 as compared to the peak in 2014 ( Figure 1-1). The cost reduction becomes 

vital for drilling companies to survive. Current oversupply of crude oil and natural gas 

does not change the general trend that hydrocarbon reservoirs are depleting fast, and the 

remaining reservoirs become more and more difficult to access. As a result, well drilling 

demands increasingly complicated technologies for current and future hydrocarbon 

extraction. Horizontal drilling replaces vertical drilling as the dominant well trajectory in 

North America. Directional drilling and multilateral wells are more commonly used than 

ever. Along with the advance in drilling technologies, many complex and expensive 

downhole tools become necessary for a successful drill job. Innovative technologies such 

as rig automation, advanced downhole tools, real-time monitoring, and managed 

pressures emerge and become more and more prevalent. Meanwhile, downhole 

conditions can be much harsher than before. Higher pressure, higher temperature, 

potentially more excessive vibration and shock require more reliable downhole tools. 

Downhole tools and drilling operations should be optimized in a synergic way to 

minimize downhole tool failure without incurring much additional nonproductive time 

cost.  
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 Figure 1-1 The historical chart for US rig counts by Baker Hughes (taken from 

http://www.investing.com/economic-calendar/baker-hughes-u.s.-rig-count-1652 on 

9/11/2016). 

 

 Figure 1-2 Average drilling and completion cost per well by IHS Oil and Gas Upstream Cost Study 

commissioned by U.S. Energy Information Administration (EIA).  

     The aim of this thesis is to find the optimal strategy for both drilling cost reduction 

and minimization of downhole tool failure. In general, the best strategy should weigh the 

risks of all possible downhole problems, which may not be attainable in practice. For 

example, the top sources of downhole problems include downhole equipment failure, 

Number of Rigs 
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downhole cement problems, stuck pipe, lost circulation, wellbore instability, well control 

failure. A comprehensive survey of only top downhole problems is beyond the scope of 

this thesis. Consequently, we focus on only a few representative downhole tool failures to 

find a viable methodology, which can be potentially extended to a broad use for general 

downhole tool failure as well as other drilling problems.  

     There are many available measures to minimize the probability of downhole tool 

failure by using advanced tools, control devices, and measures to tamper torsional 

vibrations (Rajnauth and Jagai, 2012). While some of the measures could be cost-

effective, others may be too prohibitive for all but exploratory wells. A compromise must 

be made between minimizing the probability of downhole tool failure and reducing 

overall drilling cost. When there are multiple strategic choices, each with advantages and 

disadvantages, it could be difficult to weigh all factors and find the best strategy. 

However, with the aid of computer technologies and data management, it is possible to 

resolve this issue in a systematic and reliable manner. Herein it is proposed to evaluate 

the drilling cost together with the reliability of downhole tools. For simple cases, the best 

strategy may be found straightforwardly and intuitively, particularly when the actions 

taken to minimize drilling time do not adversely affect the probability of tool failures. 

But in real and complex situations, the optimal choice may not be obvious and game 

theory is used to find the optimal strategies.  
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1.2 GAME THEORY 

     Generally, game theory is viewed as the establishment of mathematical models for 

rational decision makers to maximize their own awards against competitors with 

conflicting interests (Myerson, 1991). A game model includes four critical components: 

 Players 

 Information 

 Actions 

 payoff 

 Each rational player is trying to take the action that maximizes his payoff. When there is 

only one player, the game theory is equivalent to a decision or an optimization problem. 

For example, it is an optimization problem when the target is to minimize only the 

drilling time, or only the probability of downhole tool failure.  When both the drilling 

time and downhole tool failure are considered, a game theory model is appropriate as 

there are conflicting interests, particularly when a saving in drilling time increases the 

probability of downhole tool failure. The net payoff to all players could be zero or non-

zero, and the corresponding games are called zero-sum and non-zero-sum respectively. 

Since the payoff in terms of drilling time is different from the payoff in terms of 

downhole tool failure probability, a non-zero-sum game model would be an ideal tool. If 

a strategy exists for a player to maximize his payoff no matter what actions other players 

would take, this strategy is dominating. When there is a dominating strategy for each 

player, these dominating strategies form a pure (or deterministic) strategy solution to the 

game problem. It is also possible that each player may take multiple strategies each with 

a given probability to maximize his payoff. And such a solution is called a mixed 

https://en.wikipedia.org/wiki/Roger_B._Myerson
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strategy. Nash proved that in a finite game, there exists at least one mixed strategy 

solution that each player cannot increase his payoff by unilaterally changing his strategy. 

Such solution is called Nash equilibrium (NE). Our goal of this study is to construct a 

game theory model for downhole tool failure. By solving the game theory model, the 

obtained NE will indicate the best possible strategy to minimize downhole tool failure.  

 

1.3 GAME THEORY APPLICATIONS 

     Initially game theory was developed for card games (e.g., the Waldegrave problem, 

Bellhouse, 2007) and then applied to economics (Cournot, 1838). Game theory has later 

been extended to a great variety of problems where competition and conflicts of interest 

among different entities exist, such as war, politics, sociology, psychology, evolution, 

and biology. 

     Oil and gas industries are no exception to the use of game theory in terms of 

economics (Bratvold and Begg, 2009; Schitka, 2014). Oil price as driven by demand and 

supply, as well as other factors, has been extensively studied by game theory (Bratvold 

and Koch, 2011). The strategy of Organization of the Petroleum Exporting Countries 

(OPEC) has been modeled and predicted by game theory (see section 4.1.3 for detailed 

discussion). For individual oil and gas companies, game theory can be used for decision 

making in drilling activities (Frederick and Lieberman, 2001). Recently, game theory has 

also been applied to consider cost reduction in drilling (Ajimoko, 2016). Players in the 

game can be non-cooperative, e.g., OPEC versus non-OPEC oil-exporting countries, or 

cooperative, such as the allocation of profit among land-owners as discussed by Schitka 

(2014), and the joint-venture strategies in drilling (Ajimoko, 2016).  
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1.4 GAME THEORY FOR DOWNHOLE TOOL FAILURE  

     Prediction of downhole tool failure has been challenging. Tool-life is not only 

dependent on drilling conditions at the current drill run, but also on cumulative usage. By 

tracking the tool’s history and simulating the cumulative damage, a probabilistic method 

was proposed recently to predict the lifetime for downhole electronics (Kale et al., 2014; 

Carter-Journet et al., 2014). Since one of the major causes of downhole tool failure is 

excessive vibrations, the magnitude and duration of excessive vibrations, along with 

other critical parameters such as the temperature, are evaluated in the tool-life prediction 

models. To reduce the probability of tool failure, vibration suppression has been 

extensively studied and widely used (e.g. Sotomayor et al., 1997; Kriesels, 1999; 

Karkoub et al., 2009; Rajnauth and Jagai, 2012; Shor et al., 2015). While it is of 

paramount importance to establish a reliable approach for the tool-life prediction, further 

use of the predicted results may require a game theory model to simulate the outcomes 

and find the best strategies. For example, Carter–Journet et al. (2014) proposed tool 

assessment and sparing optimization based on their probabilistic tool-life model. The 

study gave risk criteria without justification. A decision analysis based on game theory  

would be promising for finding the optimal risk criteria for downhole tool failure. 

Examples for drilling activity can be found in the book Introduction to Operations 

Research by Frederick and Lieberman (2001). In the sparing optimization algorithm, the 

swapping of tool component between two tool assets did not improve the combined 

reliability defined as the probability that none of the assets would fail. The optimization 

algorithm may be useful with an additional objective function of drilling cost. In all, 

game theory could be considered to bridge the gap between the probabilistic prediction of 
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downhole tool reliability and the optimal reduction of tool failure as well as reduction of 

total drilling cost.  

     This thesis is organized as follows. Chapter 2 gives a survey on downhole tool failure 

with an emphasis on the leading causes. The drilling cost is described in Chapter 3. 

Details are given in Chapter 4 for game theory and algorithms. In Chapter 5, game theory 

models for downhole tool failure and results of case studies are given. Chapter 6 

concludes the study.  
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Chapter 2   Downhole Tool Failure 

 

     A comprehensive evaluation of all downhole problems should be considered for 

drilling.  However, due to the limited scope of this study, only a few downhole tools are 

selectively considered. Downhole problems, such as stuck pipe, lost circulation, wellbore 

instability, or well control failure, will not be discussed. Problems related to casing, 

cementing, or coiled-tubing drilling tools are excluded. We refer to the book Downhole 

Drilling Tool–Theory and Practice for Engineers and Students (Samuel, 2007) for an 

exhaustive introduction to downhole drilling tools which also encompass discussion of 

common problems, causes, and preventive measures.   

 

2.1 DOWNHOLE TOOLS 

     Some of the downhole tools are generic, but others may only be used for specific 

drilling conditions (Samuel, 2007). Important and common downhole tools are briefly 

listed in the following section, and their possible wears and failures are concisely 

mentioned. Tools used to reduce vibration and improve performance are given in section 

2.2. A diagram of a typical drilling rig is provided in  Figure 2-1. Downhole tools may be 

assembled together to a bottomhole assembly (BHA) ( Figure 2-2).  
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 Figure 2-1 Drilling rig (taken from http://www.abdn.ac.uk/engineering/research/modeling-and-

analysis-of-bha-and-drillstring-vibrations-149.php accessed Sep. 18, 2016). 
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 Figure 2-2 An example of bottomhole assembly (taken from http://www.drillingcontractor.org/wp-

content/uploads/2010/07/cwd-web08.jpg accessed September 18, 2016). 
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2.1.1 Downhole drilling tools 

     Downhole drilling tools are a collection of tools including drill bits, hole-enlarging 

tools, retractable rock cutting tools, and drill pipes. Different types and configurations for 

these tools are available.  

Drill bits 

     Rotary drill bits include roller cone bits, polycrystalline diamond compact (PDC) bits, 

thermally stable polycrystalline (TSP) bits, diamond bits, and roller cone rock bits (milled 

tooth bits and insert bits). There are also fixed cutter bits and drillable bits. 

     A number of problems may occur to drill bits during a drilling run. The dull bit 

grading can be an excellent indication of the remaining life of the drill bits, except for the 

drillable bits which may not be pulled out. Usually the grading will give the amount of 

teeth wear and bearing, as well as the status of the seal. The dull characteristics give 

additional information on the wear or failure.  

Hole-enlarging tools 

     These tools include hole-openers, underreamers, bicenter bits, ream-while-drilling 

(RWD) tools and enlarge-while-drilling (EWD) tools. Hole-enlarging tools may cause 

severe vibrations due to mass imbalance. As a result, the tool cutters may be worn 

unevenly and the reamers’ arm may fail.  Proper stabilization and other measures can be 

used to reduce the vibration.  

Retractable rock cutting tools 

     In this category we have retractable/expandable drillbits, retractable RVA-type 

diamond reamer, and expandable RRB-type underreamer. Retractable rock cutting tools 
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save the trips for the replacement of worn-out drill bits, which can take a lot of time for 

deep wells. 

Drill pipes and drill collars 

     Drill pipes are usually heavy weight drill pipes (HWDP), which include aluminum and 

titanium drill pipes. Drill collars can be spiral or square based on the shape. Pipes are 

connected by tool joints.  Drill collars are the major source of vibrations, which if severe 

may lead to the failure of downhole tools. Other sources of drill pipe failures include 

buckling, fatigue, and corrosion. 

 

2.1.2 Downhole motors 

     There are a number of representative downhole motor types: positive displacement 

motors (PDM), downhole turbines, and electrodrill motor (EDM). PDM is commonly 

used. One possible failure for PDM and downhole turbines is bypass valve clogging. 

Downhole turbines may also fail on bearing.  

 

2.1.3 Deflecting tools 

     Deflecting tools are used to correct undesired wellbore deviation. In directional 

drilling, horizontal drilling, and extended-reach drilling, deflecting tools are used to 

achieve desirable wellbore deviation. Downhole deviation tools include bent subs, 

double-bend assembly, stabilizers and stabilizer gauge, whipsticks, kick pad (offset pad), 

eccentric stabilizer, offset stabilizer.  
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2.1.4 Drill stem testing tools 

     Drill stem testing tools are used to obtain formation and reservoir parameters. A series 

of  drill stem testing tools are available, including downhole test tools, reciprocating test 

tools, slip-joint safety valve, volume-pressure balanced slip joints, reverse-circulating 

subs, space-out, full-opening drill stem testing, and special tools for deep wells.  

 

2.1.5 Downhole measurement tools 

Measuring While Drilling (MWD) 

     MWD means measurements made downhole with electronmechanical devices. For 

example, as shown in  Figure 2-2, item 6 is a gyro sensor, item 7 is a conventional MWD 

device for azimuth and inclination, and item 8 is a resistivity measuring tool. An MWD 

system includes a battery (or a turbine) as power source, mud-pulse telemetry (or low-

frequency electromagnetic transmission), and directional sensors. 

Logging While Drilling (LWD) 

     LWD refers to wireline-quality formation measurements made while drilling. There 

are mainly five different types, namely electromagnetic logging, logging while drilling 

induction tools, acoustic logging, nuclear magnetic resonance (NMR) logging, and 

nuclear logging.  

 

2.1.6 Downhole tools for specific purposes 

     Stand-off devices are used to reduce the eccentricity ratio. Rotary subs refer to a short 

piece of pipe used for connections between parts of drilling assembly. Circulating 

subs/pot collars are used to achieve optimum annular velocity throughout the wellbore. 

http://petrowiki.org/Electromagnetic_logging_while_drilling
http://petrowiki.org/LWD_induction_tools
http://petrowiki.org/LWD_induction_tools
http://petrowiki.org/Acoustic_logging_while_drilling
http://petrowiki.org/NMR_logging_while_drilling
http://petrowiki.org/Nuclear_logging_while_drilling
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Downhole blowout preventer is a wellbore pressure control device that prevent the 

formation pressure to go above a packer in the device. Coring tools are used to obtain 

core samples.  

 

2.2 TOOL FAILURE CAUSES AND PREVENTION 

2.2.1 Causes of tool failure 

     One primary cause of tool failure is the normal wear of tools (Figure 2-3). For 

example, the drill bits will be worn out after being used for a certain period of time. 

Excessive vibration may cause failures of drill pipe and downhole tools.  Fatigue and 

corrosion are also important factors to tool failures. Other factors include electrical 

overstress, mechanic stress, manufacture defects. Improper drilling operational 

parameters or poor equipment design may result in pre-mature failures.  

 

Figure 2-3 Failures over time (King 2010).  
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2.2.2 Vibration 

     Excessive vibration is one of the most hazardous factors to downhole tools. There are 

three principal vibration modes: axial, lateral, and stick-slip. Axial vibration is the 

vibration along drill string due to the bouncing of drill bit. Axial vibration may cause 

damages to drill bit and downhole assembly components. Lateral vibration refers to the 

vibration occurring transversely to the axis of drill string. It is probably the most common 

reason for downhole tool failure. Stick-slip is the torsional vibration, which is regarded as 

the most damaging mode of vibrations.  

 

 Figure 2-4 Modes of vibration: axial (bit bounce, axial acceleration), torsional (stick-slip, tangential 

acceleration), and lateral (taken from 

http://www.slb.com/resources/case_studies/drilling_system/eliminate_drillstring_vibratio

n_underreaming_ops_sakhalin.aspx accessed September 25, 2016). 

 

2.2.3 Reduction of vibration and drag 

     As mentioned above, excessive vibrations may cause severe problems and pre-mature 

tool failures. Control devices are used to mitigate vibrations. These devices include 

conventional stabilizers, stabilizers in BHA, reamers, key seat wipers, bumper subs in 

drill string, shock subs, hydraulic thrusters, harmonic isolation tools, vibration isolation 

barriers, steady scouts. Excess drag force may be reduced by using mechanical friction-

reduction tools and tractors/crawlers.   
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2.2.4 Hole-cleaning 

     Hole-cleaning refers to the removal of drilled cuttings. Inadequate hole-cleaning may 

cause a series of drilling problems. Hole-cleaning tools include mechanical hole-cleaning 

device (MHCD), cuttings bed impeller, and circulating subs/port collars.  

 

2.2.4 Electronic failure indicators 

     For electronic tools, failure precursors, such as shifts and variation in temperature, 

voltage, current, resistance, and impedance, can be detected (Pecht et al., 1997； Pecht et 

al., 1999). Another approach is the use of sacrificial circuits such as fuses, canaries, 

circuit breakers, and self-diagnostics sensors (Mishra and Pecht, 2002).  

 

2.3 PROBABILITY OF FAILURE  

2.3.1 Mean time between failures (MTBF) 

     Mean time between failures (MTBF) is the average time elapsed between two 

consecutive failures of a tool. The tool is assumed to be repaired after a failure. MTBF is 

calculated as 

𝑀𝑇𝐵𝐹 =  
∑ (𝑡𝑓𝑖−𝑡𝑢𝑖)

𝑁𝑓𝑎𝑖𝑙𝑢𝑟𝑒
𝑖=1

𝑁𝑓𝑎𝑖𝑙𝑢𝑟𝑒
,                                                           (2-1) 

where 𝑁𝑓𝑎𝑖𝑙𝑢𝑟𝑒 is the number of failures, 𝑡𝑓𝑖 is the start time of ith failure, and 𝑡𝑢𝑖 is the 

start time before ith failure.  

 

2.3.2 Mean time to failure (MTTF) 

     MTTF is similar to MTBF except that failed system is replaced instead of being 

repaired. A few examples are given in the following table. There are two types of failures 
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based on severity. Critical failures are those in which the drilling operation has to be 

stopped and the tool must be replaced. Non-critical failures are those in which the drilling 

operation can be continued with undesirable performance or loss of data.  

 

Table 2-1. MTTF for a few examples of well equipment (King, 2010).  

item 
MTTF (years)  

(critical failure) 

MTTF/years  

(non-critical failure) 

Christmas tree 250  50  

SCSSV wireline insert 83 17 

SCSSV 111  

GLV 50 10 

Upper completion 100  

Lower completion 33  

 

2.3.3 Probability density function 

     MTTF or MTBF can be expressed in terms of probability density function (PDF) 

𝑓(𝑡), 

𝑀𝑇𝑇𝐹 =  ∫ 𝑡𝑓(𝑡)𝑑𝑡
∞

0
,                                                                                        (2-2) 

with 

∫ 𝑓(𝑡)𝑑𝑡
∞

0
= 1.                                                                                                   (2-3) 

     The expected lifetime or probability of failure for a given time period of usage can be 

obtained by the respective PDF for the downhole tool of interest.  Numerical models are 

used to evaluate PDF for specific tools.  
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2.4 TOOL-LIFE PREDICTION MODEL 

     The tool-life prediction model can be based on the underlying physical mechanism. 

Modeling process can be done with highly accelerated life tests and highly accelerated 

stress tests. Due to difference in failure model of tests as compared to field and 

insufficiency in the governing equation, the predicted life may be off in orders of 

magnitude from the actual one.  

     Alternatively, models can be established on field data. Three different models are 

introduced to evaluate the relationship between expected tool-life and stress variables: 

generalized log-linear (GLL), proportional hazard (PH), and cumulative damage (CD) 

(Kale et al., 2014). Stress variables include temperature, vibrations. Kale et al. (2014) 

have developed lifetime prediction models for downhole electronic tools by an iteratively 

reweighted maximum likelihood algorithm.  

 

2.4.1 Generalized log-linear model 

     The PDF for generalized log-linear model (GLL) with a Weibull distribution is 

calculated by 

𝑓(𝑡, �̅�) =  
𝛽

𝜂(�̅�)
(

𝑡

𝜂(�̅�)
)

𝛽−1

𝑒
−(

𝑡

𝜂(�̅�)
)

𝛽

,                                               (2-4) 

where t is time, 𝛽 is the shape parameter, and the scale parameter 𝜂(�̅�) represents the 

stress function, 

𝜂(�̅�) = 𝑒𝑎0+∑ 𝑎𝑖𝑥𝑖
𝑛
𝑖=1 +∑ ∑ 𝑎𝑖,𝑗𝑥𝑖𝑥𝑗

𝑛
𝑗=1,𝑗≠𝑖

𝑛
𝑖=1 ,                                            (2-5) 

where 𝑎𝑖  is the ith fitting parameter, and 𝑥𝑖  is the ith stress variable. The PDF for an 

exponential distribution can be obtained by setting 𝛽 = 1. For a lognormal distribution,  
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𝑓(𝑡, �̅�) =  
𝛽

𝑡𝜎√2𝜋
𝑒−

1

2
(

𝑙𝑛(𝑡)−𝜂(�̅�)

𝜎
)

𝛽

.                                                (2-6) 

The stress parameters �̅� = {𝑇, 𝐿, 𝑆, 𝑅𝑃𝑀, 𝐿 × 𝑇, 𝑆 × 𝑇, 𝐿 × 𝑆, 𝑆 × 𝑅𝑃𝑀} are 𝑇 for 

temperature, 𝐿 for lateral vibration, 𝑆 for stick-slip (torsional vibration), RPM for 

revolutions per minute. The coupling of two variables are also considered.  

 

2.4.2 Proportional hazard model 

     In a proportional hazard model, the instantaneous hazard rate of a tool is defined,  

𝜆(𝑡, �̅�) =
𝑓(𝑡,�̅�)

 𝑅(𝑡,�̅�)
= 𝜆0(𝑡)𝜂(�̅�),                                                                         (2-7) 

where 𝑓(𝑡, �̅�) is the PDF of time t and stress variable �̅�, 𝑅(𝑡, �̅�) is the reliability function, 

𝜆0(𝑡) is the hazard rate function of time only, and 𝜂(�̅�) is the stress function, 

𝜂(�̅�) = 𝑒∑ 𝑎𝑖𝑥𝑖
𝑛
𝑖=1 +∑ ∑ 𝑎𝑖,𝑗𝑥𝑖𝑥𝑗

𝑛
𝑗=1,𝑗≠𝑖

𝑛
𝑖=1 .                                                                 (2-8) 

 

2.4.3 Cumulative damage model 

     Based on Miner’s rule, the damage fraction is calculated as a linear damage sum at 

each different stress level, 

𝑝 = ∑
𝑡𝑖

𝑇𝑓𝑖

𝑛
𝑖=1 ,                                                                                                (2-9) 

where 𝑡𝑖 is the number of cycles accumulated at stress 𝜎𝑖 and 𝑇𝑓𝑖 is the time to failure at 

stress 𝜎𝑖.  
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2.4.4 Downhole tool-life prediction  

     Carter-Journet et al. (2014a, 2014b) have applied the life prediction models (Kale et 

al., 2014) to downhole tools, particularly electronic tools, for optimization and decision 

making in drilling operations. Unlike lifetime models based on underlying physics or the 

test data (e.g., accelerated tests), Carter-Journet et al. developed the models based on real 

field data. The variables in their models include drilling hours, temperature, and 

vibrations. Parameters are obtained by training with field data. Distribution types are 

compared and the one fitting the best is selected for each tool. The developed 

probabilistic models are applied to reduce maintenance costs, optimizing drilling 

operations, improve reliability, and minimize tool failure risk (Figure 2-5, Carter-Journet 

et al., 2014b).  

 

 

 

 

 

 

 

 

 

 

 Figure 2-5 Methodology for the downhole tool-life prediction and utilization. 

  

Data (field data, real-time data, test data, repair and maintenance.)  

Life prediction model  

      Variables: cumulative drilling hours, temperature, vibrations 

      Data training and model parameters fitting 

      Lifetime distribution (Weibull, lognormal.) 

      Validation of models 

      Predict probability of failure for tools 

Utilization of probability of failure for decision making  

      Reduce maintenance costs 

      Optimize performance 

      Improve reliability and reduce downhole tool failure 
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2.4.5 Tool component management 

      Carter-Journet et al. (2014a) provided an optimization approach for selecting the best 

possible sub-components to achieve the best overall reliability. The reliability of each 

tool set is calculated as 

𝑥𝑖 = ∏ (1 − 𝑝𝑓𝑖
𝑗)

𝑗=𝑛𝑖
𝑗=1 ,                                                                  (2-10) 

where 𝑛𝑖  is the total number of tools and/or tool components, 𝑝𝑓  is the probability of 

failure, and 𝑗 is the index of tool or tool component. 

     For an example with two sets, the optimization problem is to maximize the sum of 

reliabilities subject to constraints: 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒: 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑥1 + 𝑥2 = ∏ (1 − 𝑝𝑓1
𝑗)

𝑗=𝑛𝑖
𝑗=1 + ∏ (1 − 𝑝𝑓2

𝑗 )
𝑗=𝑛𝑖
𝑗=1 ,  

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠: 𝑥1 ≥  𝑏1, 𝑥2 ≥  𝑏2,  

where 𝑏1  and 𝑏2  are the reliability thresholds for each tool set respectively. This 

optimization approach is unfortunately very limited due to the objective function. Using 

this approach, the swapping of tools with identical function will always resulting the 

maximization of reliability of the tool set with a higher initial reliability. This can be 

easily found in the optimization results by Carter-Journet et al. (2014a) by comparing 

Table 2-3 to Table 2-2. Among the components that have a different risk value between 

the two assets, only those with a higher risk in asset 1 as compared to asset 2 (component 

5, 7, 8, 10, 17, 18, 19) are swapped.  
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Table 2-2 Calculated risk of tool components in two assets (Carter-Journet et al., 2014a). 
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Table 2-3 Swapping of components between two sets to maximize sum of system reliability (Carter-

Journet et al., 2014a). 
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Chapter 3  Well Drilling Cost 

 

3.1 HISTORICAL COST ANALYSIS 

     Well drilling cost has been actively studied. For example, a recent cost analysis of oil 

and gas well drilling was given by Lukawski et al. (2014). Well drilling cost depends 

many factors, among which the total measured depth is the primary one ( Figure 3-1). 

Other critical factors include geological formation, penetration rates, amount of casing 

strings, frequency of drilling string failures, and critical downhole drilling tool failures. 

Drilling is so complex that no single parameter can accurately describe the drilling cost. 

For example, an 11-parameter model was employed to construct a correlation between 

cost and field characteristics (Kaiser, 2007). As a result, the historical cost of well drilling 

and completion has been evaluated in the form of a composite index such as Cornell 

Energy Index (CEI).  

 

 Figure 3-1 Drilling and completion costs of US onshore oil and gas wells in 2009 (Lukawski et al., 

2014). Arrows indicates the respective coordinates.  
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Figure 3-2 Measured depth of oil and gas wells as reported by API JAS (Lukawski et al., 2014). 

 

Figure 3-3 Adjusted CEI well cost index for 1975 – 2010 (Lukawski et al., 2014). 

     The average drilling depth has been increasing in the past years (Figure 3-2). The 

general trend of well cost in terms of adjusted CEI has been increasing (Figure 3-3). 

Consequently, it becomes of vital importance to reduce the drilling cost with a careful 

planning and accurate well drilling cost estimation.  
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3.2 WELL DRILLING COST ESTIMATION 

     Overall well cost includes drilling cost (or hole-making cost) and other services such 

as casings, mud, cementing, logging, coring, site preparation, transportation, and well 

completions (Azar and Samuel, 2007). To obtain an accurate estimation of drilling cost, it 

is important to evaluate bit run performance. Drill bits with a better performance may 

have a higher unit price. Overall drilling cost per unit depth should be accessed to find 

the best choice. The drill time can be estimated by analyzing previous bit run 

performance.  

     Cost of other services is relatively easier to estimate prior to drilling. Similar to the 

selection of drill bits, cost of other services may also be pertinent to the probability of 

downhole tool failures.  

 

3.3 RATE OF PENETRATION 

     Drilling cost can be estimated as a function of drilling time, which can be predicted by 

estimating rate of penetration (ROP, i.e., the depth drilled per unit time). Improving ROP 

reduces drill time and thus drilling cost. Investigations have been done to optimize ROP 

by using shuffled frog leaping algorithms (Yi et al., 2014) and ant colony optimization 

(Jiang and Samuel, 2016). In these studies, ROP is either obtained by the modified 

Warren model (Warren, 1987) or by artificial neural networks. ROP is considered as a 

function of bit specifics, weight on bit (W), rotation rate (N), mud flow rate (Q), and the 

rock properties (e.g., rock abrasiveness). Bit wear is a function of drilled depth and 

drilling operations.   
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Warren model 

     The roller-cone bit model for ROP calculation was initially proposed by Warren 

(Warren 1984) and later modified by Hareland et al. (1993) (Rampersad et al., 1994). 

𝑹𝑶𝑷 = 𝑾𝒇 [𝒇𝒄(𝑷𝒆) (
𝒂𝑺𝟐𝒅𝒃𝒊𝒕

𝟑

𝑵 𝑾𝟐 +
𝒃

𝑵 𝒅𝒃𝒊𝒕
) +

𝒄𝜸𝝁 𝒅𝒃𝒊𝒕

𝑭𝒋𝒎
]

−𝟏

,                                            (3-1) 

where a, b, c are bit coefficients specific to the drill bit of selection, S is rock compressive 

strength, N is rotation rate, W is weight on bit, γ is mud specific density,  μ is viscosity of 

mud,  𝑑𝑏𝑖𝑡 is the diameter of drill bit, other parameters are defined as 

𝑊𝑓 = 1 −
𝛥BG

8
,                                                                                                     (3-2) 

and 𝛥BG is the change in the bit tooth wear, 

𝛥BG = 𝑊c ∑ 𝑊𝑖𝑁𝑖𝐴𝑎𝑏𝑟,𝑖𝑆𝑖
n
𝑖=1 ,                                                                             (3-3) 

where 𝐴𝑎𝑏𝑟,𝑖  is the relative abrasiveness for rock and it is a dimensionless number 

ranging from 0 to 1. 

     Confined rock compressive strength is correlated to unconfined one by 

𝑆 = 𝑆0(1 + 𝑎𝑠𝑃𝑒
𝑏𝑠),                                                                                           (3-4) 

where 𝑎𝑠 and 𝑏𝑠 are correlated parameters obtained by training data set. 

     The chip hold down function is given by 

𝑓𝑐(𝑃𝑒) = 𝑐𝑐 + 𝑎𝑐(𝑃𝑒 − 120)𝑏𝑐,                                                                           (3-5) 

where 𝑎𝑐 , 𝑏𝑐 , and 𝑐𝑐  are lithology-dependent constant, 𝑃𝑒  is approximated by mud 

hydraulic static pressure for impermeable formation, 𝐹𝑗𝑚 is modified jet impact force and  

𝐹𝑗𝑚 = (1 − 𝐴𝑣
−0.22)𝐹𝑗,                                                                                      (3-6) 

where jet impact force 

𝐹𝑗 = 0.000516 𝜌𝑄�̅�𝑒𝑥𝑖𝑡 ,                                                                                    (3-7) 
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and 

𝐴𝑣 =
𝑉𝑛

𝑉𝑓
=

0.15𝑑𝑏𝑖𝑡
2

3𝑑𝑛
2 .                                                                                         (3-8) 

 

     Artificial neural network 

     Artificial neural network (ANN) is an intelligent algorithm for the regression fitting to 

non-linear function. A distinct feature of ANN is that no explicit mathematical form is 

required. However, a training set of data is needed. Backpropagation neural network with 

Bayesian regularization (BR) has been successfully applied to predict oil-gas drilling cost 

by virtue of the powerful ability of self-learning, self-adaptive, and nonlinear mapping 

(Liu, et al., 2010; Zhao, et al 2011). Jiang and Samuel (2016) applied BR-NN as 

implemented in MATLAB® to the prediction of ROP.  The input parameters are W, N, 

Q, depth, and gamma ray, and the output is ROP (Figure 3-4).  

 

Figure 3-4. Illustration of ANN with three hidden layers (Jiang and Samuel, 2016).  
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Chapter 4  Game Theory 

 

4.1 INTRODUCTION TO GAME THEORY 

4.1.1 History of game theory 

     The earliest record of mathematical game theory dated back in 1713. Waldegrave gave 

a solution now called minimax mixed strategy to the two-player version of card game le 

Her (the Waldegrave problem) (Bellhouse, 2007).  Later, more notably, Cournot provided 

the strategy solution for pricing and production in the analysis of duopoly, i.e., only two 

producers in one market (Cournot, 1838). In Cournot’s theory, each producer chooses the 

amount to produce in order to maximize their own profit. However, the best production 

output for one producer relies also on the output of the other. A Cournot equilibrium is 

achieved when each producer maximizes its profits given the other producer choosing 

rationally a production output to maximize its profits too.  

     In 1913, Zermelo proved that the optimal chess strategy is strictly determined 

(Screpanti and Zamagni, 2005). Borel suggested a formal theory of games in 1921. Seven 

years later, Neumann published “On the Theory of Games of Strategy”, which has been 

viewed as the onset of game theory as a unique field (Neumann, 1928). In 1938, Borel 

proved a minimax theorem for two-person zero-sum matrix games with symmetric pay-

off matrix. In 1944 Neumann and Morgenstern laid the fundamentals for modern game 

theory in the monumental book Theory of Games and Economic Behavior, in which the 

basis terminology and exemplary problems are still used now (Neumann and 

Morgenstern, 1944). They analyzed the special case of zero-sum games and showed that 

a mixed-strategy equilibrium will exist for any zero-sum game with a finite set of actions.  

https://en.wikipedia.org/wiki/Minimax
https://en.wikipedia.org/wiki/Mixed_strategy
https://en.wikipedia.org/wiki/Duopoly
https://en.wikipedia.org/wiki/Cournot_equilibrium
https://en.wikipedia.org/wiki/Strictly_determined_game
https://en.wikipedia.org/wiki/John_von_Neumann
https://en.wikipedia.org/wiki/%C3%89mile_Borel
https://en.wikipedia.org/wiki/Oskar_Morgenstern
https://en.wikipedia.org/wiki/Oskar_Morgenstern
https://en.wikipedia.org/wiki/Oskar_Morgenstern
https://en.wikipedia.org/wiki/Zero-sum
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    In 1951, Nash extended the proof to non-zero-sum non-cooperative games. He defined 

a mixed-strategy equilibrium for any game with a finite set of actions and proved that at 

least one mixed-strategy equilibrium must exist in such a game. In 1994, the Nobel Prize 

for economics was awarded to Harsanyi, Nash, and Selten for “for their pioneering 

analysis of equilibria in the theory of non-cooperative games”. 

     In the 1950’s and 1960’s, game theory has been found in extensive studies and 

applications for war and politics. The first mathematical discussion of prisoner's dilemma 

appeared, and further studies were pursued for possible applications to global nuclear 

strategy. Since the 1970’s, game theory has been widely applied in economics, sociology, 

psychology, evolution, and biology.   

 

Table 4-1. History of game theory. 

1713 
Waldegrave:  the minimax mixed strategy to the two-player version of card 

game le Her (the Waldegrave problem). 

1838 Cournot: analysis of duopoly. 

1913 Zermelo: the optimal chess strategy is strictly determined. 

1921 Borel: formal game theory. 

1928 Neumann: theory of Parlor games. 

1938 
Borel: minimax theorem for two-person zero-sum matrix games with 

symmetric pay-off matrix. 

1944 
Neumann and Morgenstern: Theory of Games and Economic Behavior 

strategy equilibrium for zero sum game. 

1951 Nash: strategy equilibrium (Nash Equilibrium) for non-zero sum game. 

1994 Harsanyi, Nash, and Selten: Nobel prize. 

 

https://en.wikipedia.org/wiki/Prisoner%27s_dilemma
https://en.wikipedia.org/wiki/Nuclear_strategy
https://en.wikipedia.org/wiki/Nuclear_strategy
https://en.wikipedia.org/wiki/Minimax
https://en.wikipedia.org/wiki/Mixed_strategy
https://en.wikipedia.org/wiki/Strictly_determined_game


 31 

4.1.2 Terminology and definition 

Player, Information, Action, and Payoff 

     A game model consists of four critical components: players, the information each 

player knows at each decision point, actions each player can take, and payoffs to each 

player for each outcome (Rasmusen, 2007). A game typically involves more than one 

player. When there is only one player, the game problem turns into a decision problem, or 

frequently, an optimization problem, i.e., maximization or minimization of the target 

value of the object function. When there are more than two players, the complexity of 

game theory increases substantially. In this study, we focuses on games with two players 

and investigate the use of a two-player game model for downhole tool problems. Action 

is also called strategy and these two terms are exchangeable in this thesis. 

Cooperative vs Non-cooperative Games 

     Players may form coalition or work cooperatively with each other and the study of 

these games are called cooperative game theory.  In contrast, non-cooperative games are 

those where each player take actions to their best interest independently.   

Rational Player 

     One key assumption of game theory is that players are all rational, i.e., they will 

always choose an action that gives the maximal payoff. Non-cooperative games with 

rational players are to be considered in this study. 

Zero-sum vs Non Zero-sum Games 

     Zero-sum games are those where one player’s payoff is at the expense of other players 

and the net sum of payoffs to all players is zero. When the payoffs do not add up to zero, 

the game is called non-zero-sum or general-sum games.   

https://en.wikipedia.org/wiki/Player_(game)
https://en.wikipedia.org/wiki/Utility
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Strategic vs Extensive Forms 

     There are two typical representations of games. Strategic form lists each player’s 

strategies (actions) and payoffs resulting from their actions. Strategic form is often used 

for simultaneous actions. In the case of two-player games, strategic form can be written 

as a bi-matrix. Each matrix contains the values of payoff (also called utility) for each 

player respectively. Matrix rows corresponds to different actions by player one and 

columns are for different actions of player two. Extensive form is a game tree, where 

each node represents a state of the game and each edge corresponds to one player’s 

action.  Extensive form is appropriate for games where players are take a series of actions 

one after another.   

Dominating, Pure and Mixed Strategy 

     A strategy dominates other strategies of a player if it always provides a better payoff 

to that player, regardless what strategies other players choose. It is called weakly 

dominating strategies if the strategy is always at least as good. If each player has a 

dominating strategy, the dominating strategies form a pure strategy equilibrium for the 

game. However, a pure strategy equilibrium may not exist for many games. A mixed 

strategy is that a player takes a random strategy with a given probability. A pure strategy 

can be viewed as a mixed strategy with a probability of one.  

Nash Equilibrium 

     A Nash equilibrium is a combination of strategies that each player cannot increase his 

payoff by unilaterally changing his strategy. Nash (1951) proved that at least one mixed-

strategy equilibrium must exist in a game with a finite set of actions. Numerous 
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algorithms have been developed to find Nash equilibrium for games (Savani and Stengel, 

2014).   

 

4.1.3 Examples 

The Oil Producer’s Dilemma 

     One of the most known game examples is the prisoner’s dilemma. We start with an 

analogous one regarding oil producers (Bratvold and Koch, 2011) and will discuss the 

original prisoner’s dilemma in the next section. Let us suppose there are two oil 

producing countries that dominate the oil production in the world. This is a simplified but 

reasonable assumption since the oil producing countries can be divided into OPEC and 

non-OPEC countries. The oil price is dependent on the total production of the two 

countries (Table 4-2). Each country will produce to maximize oil revenues. Table 4-3 

shows the outcomes with different production strategies. In the parenthesis, the first value 

is the payoff to Country A and the second is the payoff to Country B. When the two 

countries produce only 10 MMbbl per day each, there are only 20 MMbbl oil supply per 

day on market and due to the high demand, the oil price would be $120 per bbl, and each 

will receive $1.2 billion as revenue. However, if one maintains a production of 10 

MMbbl per day while the other increases its production to 20 MMbbl per day, the total 

supply is now 30 MMbbl per day, which drives down the oil price to $75 per bbl. The 

one with increased production will get $1.5 billion as revenue, a boost from $1.2 billion; 

while the one maintaining production gets a less amount of only $750 million. If both 

countries produce 20 MMbbl per day each, the oil is so over-supplied that the price drops 

to $40, and each will receive only $800 million as revenue.  
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Table 4-2 The correlation of oil supply and oil price.  

Oil supply (per day) 20 MMbbl 30 MMbbl 40 MMbbl 

Oil price (per bbl) $120 $75 $40 

 

Table 4-3 Payoff table for two oil producing countries. 

US$ in millions, 

 production per day 

Country B 

10 MMbbl 20 MMbbl 

Country A 
10 MMbbl ($1200, $1200) ($750, $1500) 

20 MMbbl ($1500, $750) ($800, $800) 

 

     Intuitively, it seems that both countries would like to enter an agreement to produce 10 

MMbbl per day, to maintain a relatively revenue. This may happen in cooperative games, 

and it was the aim of OPEC to maintain oil price at a high level by setting a production 

limit to each member country. However, the reality is that each country would like to 

produce to maximize its revenue and act in a non-cooperative manner. Which production 

is better for Country A depends on how much Country B produce. If Country B produces 

10 MMbbl per day, Country A will choose to produce 20 MMbbl per day as the revenue 

would be $500 million more than a production of 10 MMbbl per day. If Country B 

produces 20 MMbbl per day, Country A will also choose to produce 20 MMbbl per day 

as the revenue would be $50 million more than a production of 10 MMbbl per day.  

Similarly, Country B will also choose to produce 20 MMbbl as the dominating strategy.  

     In history, Saudi Arabia, the largest producer in OPEC, had followed the agreement 

and cut the production. However, other members in OPEC broke the agreement and 

increased the production, and Saudi Arabia lose its market share. This explained why, in 
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2014, when oil price started to crash, Saudi Arabia, along with all other oil producers, 

tried to increase productions to defend their market shares.  

Prisoner’s Dilemma 

     Two prisoners are held suspect of a certain crime. However, there is no judicial 

evidence for this crime unless one of the prisoners would testify against the other. If only 

one prisoner testifies, the one who testifies will be rewarded with immunity of 

prosecution, which is indicated as payoff 3. At the same time, the other prisoner will 

serve a long prison sentence (payoff 0). When both testify, each will receive a less severe 

sentence (payoff 1). When none testifies, each will be prosecuted with a minor charge 

(payoff 2). Table 4-4 gives payoffs to each prisoner depending on if they would “keep 

silent” or “testify”. In the Prisoner’s Dilemma game, “testify” is the dominating strategy. 

The analysis is similar to the above one for Oil Producer’s Dilemma. If Prisoner B keeps 

silent, Prisoner A will choose to testify to go off without prosecution (payoff 3) instead of 

a minor charge. If Prisoner B testify, Prisoner A will choose to testify too as punishment 

is less (payoff 1) comparing to the long prison sentence by keeping silent (payoff 0).  

Similarly, Country B will also choose to testify as the dominating strategy. 

 

Table 4-4 Payoff table for two prisoners. 

 Prisoner B 

keep silent testify 

Prisoner A 
keep silent (2, 2) (0, 3) 

testify (3, 0) (1, 1) 
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Coin Flipping: Head or Tail? 

     During a coil flipping game, one player will flip a coin while the other player guess 

which side is face up. In this case, the player flipping the coin does not have a choice of 

strategy, and the probability of head up is the same as tail up, each 50%. We may modify 

the game and suppose that Player A will put a coin on the table and cover it, Player B, 

who does not see the coin, guesses which side is up. The payoff is given in Table 4-5. If 

Player B makes a right guess, Player A loses (payoff -1) while Player B is rewarded by 1. 

Otherwise, if Player B makes a wrong guess, Player B’s payoff is -1 and Player A is 

rewarded by 1.  This is an example of zero-sum game since one player’s gain is at the 

expense of the other player. Consequently, it is sufficient to have only Player A’s payoff 

in the strategy form table ( 
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Table 4-6). There is no dominating strategy for either player in a coin flipping game. The 

Nash equilibrium is a mixed strategy, 50% head up and 50% tail up for each player. More 

details about Nash equilibrium will be provided in following sections. 

 

Table 4-5 Payoff table for the flipping coin game with two players. 

 Player B 

head tail 

Player A 
head (-1, 1) (1, -1) 

tail (1, -1) (-1, 1) 
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Table 4-6 Payoff table for zero-sum flipping coin game. 

 Player B 

head tail 

Player A 
head -1 1 

tail 1 -1 

 

Rock Paper Scissors 

     The payoff table for a Rock Paper Scissors game is given in Table 4-7. Since it is a 

zero-sum game, only payoff to Player A is given. Again, there is no dominating strategy 

for either player. The Nash Equilibrium is a mixed strategy, 1/3 Rock, 1/3 Paper and 1/3 

Scissors for each player. 

 

Table 4-7 Payoff for rock paper scissors game. 

 Player B 

Rock Paper Scissors 

Player A 

Rock 0 -1 1 

Paper 1 0 -1 

Scissors -1 1 0 

 

4.2 NASH EQUILIBRIA CALCULATIONS 

4.2.1 Minimax Theorem 

     The minimax theorem was first formally proposed by Neumann (1928). The name 

minimax arises because each player minimizes the maximum payoff possible for the 

other in zero-sum games. This is equivalent to each player maximize his/her own 
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minimum payoff (i.e., minimize his/her maximum loss). In game theory, more precisely, 

zero-sum game theory, the minimax theorem indicates that the minimax solution of a 

zero-sum game is the strategy equilibrium (i.e., Nash equilibrium) when the minimal gain 

for player one is the same as the maximum loss for player two in the case of a two-player 

game. Neumann’s minimax theorem is stated as below. 

     Let 𝑿 ⊂ ℝ𝑛  and 𝒀 ⊂ ℝ𝑚  be compact convex sets. If 𝑓: 𝑿 × 𝒀 → ℝ is a continuous 

function that is convex-concave, i.e., 

𝑓(∙, 𝑦): 𝑿 → ℝ is convex for fixed y, and 

𝑓(𝑥,∙): 𝒀 → ℝ is concave for fixed x. 

Then we have that 

min
𝑥∈𝑿

max
𝑦∈𝒀

𝑓(𝑥, 𝑦) =  max
𝑦∈𝒀

min
𝑥∈𝑿

𝑓(𝑥, 𝑦).                                                               (4-1) 

 

4.2.2 Pure Strategy Equilibrium 

     When the Nash Equilibrium is a pure strategy, the equilibrium can be obtained by the 

minimax theorem. The solution is illustrated by one following example of two-player 

zero sum game. The strategy form is given in Table 4-8. 

 
Table 4-8 Payoff for a two-player zero sum game. 

 Player B 

B1 B2 B3 B4 

Player A 

A1 7 2 5 1 

A2 2 2 3 4 

A3 5 3 4 4 

A4 3 2 1 6 
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     As we can find from Table 4-8, the minimum payoffs for Player A are 1, 2, 3 and 1 

when Player A plays A1, A2, A3 and A4 respectively. Among the three possible payoff, 

Player A would choose action A3 to maximize the payoff.  

 

Table 4-9 Payoff for a two-player zero sum game. 

 Player B 

B1 B2 B3 B4 

Player A A1 7 2 5 1 

 A2 2 2 3 4 

A3 5 3 4 4 

A4 3 2 1 6 

     As we can find from Table 4-9, the minimum payoffs for Player B are -7, -3, -5 and -6 

when Player B plays B1, B2, B3 and B4 respectively. Among the three possible payoff, 

Player B would choose action B2 to maximize the payoff.  

 

Table 4-10 Payoff for a two-player zero sum game. 

 Player B 

B1 B2 B3 B4 

Player A 

A1 7 2 5 1 

A2 2 2 3 4 

A3 5 3 4 4 

A4 3 2 1 6 
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     Finally, the minimax solution to this game is A3 and B2. And since the payoff 3 is the 

maximum payoff to player A given B2, and maximum payoff to player B given A3, in 

other words, either player does not gain more by changing his/her own strategy 

unilaterally. This minimax solution is a Nash equilibrium. 

 

4.2.3 Mixed Strategy Equilibria 

     Here is another example that shows that minimax solution of a pure strategy is not a 

Nash equilibrium.  

 

Table 4-11 Payoff for a two-player zero sum game. 

 Player B 

B1 B2 B3 

Player A 

A1 3 -2 2 

A2 -1 0 4 

A3 -4 -3 1 

 

     As we can find from Table 4-11, the minimum payoffs for Player A are -2, -1, and -4 

when Player A plays A1, A2, A3 respectively. Among the three possible payoffs, Player 

A would choose action A2 to maximize its payoff.  
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Table 4-12 Payoff for a two-player zero sum game. 

 Player B 

B1 B2 B3 

Player A 

A1 3 -2 2 

A2 -1 0 4 

A3 -4 -3 1 

 

     As we can find from   
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Table 4-12, the minimum payoffs for Player B are -3, 0, and -4 when Player B 

plays B1, B2, B3 respectively. Among the three possible payoffs, Player B would choose 

action B2 to maximize its payoff.  

 

Table 4-13 Payoff for a two-player zero sum game. 

 Player B 

B1 B2 B3 

Player A 

A1 3 -2 2 

A2 -1 0 4 

A3 -4 -3 1 

 

     The minimax solution is A2 and B2. However, this is not a stable solution. For 

example, if Player B knows Player A will choose A2, then Player B will change to B1 to 

gain 1; then if Player A realizes Player B will choose B1, Player A will choose A1 to gain 

3; and then Player B will choose B2; and then Player A will choose A2. Eventually both 

players will realize the difficulty of making a choice. As a result, a pure strategy 

equilibrium does not exist for this game. 

     As discussed above, the minimax approach does not give a stable solution when a pure 

strategy equilibrium does not exist. A simple examples is presented in the following 

section to illustrate the methods to solve for a mixed strategy equilibrium.  

 

     2 × 2 Game Mixed Strategy Equilibrium 
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     Zero-sum games are relatively easier to solve as compared to non-zero sum games.  

Again two-player games are used to illustrate the algorithm to solve for Nash 

equilibrium. 

 

Table 4-14 Payoff for a two-player zero-sum 2 × 2 game. 

 Player B 

B1 B2 

Player A 
A1 a b 

A2 c d 

 

     For a zero-sum game with a 2 × 2 payoff matrix, the probability for the mixed strategy 

equilibrium (i.e., Nash equilibrium) can be obtained by: 

A1: (𝑑 − 𝑐)/(𝑎 − 𝑏 − 𝑐 + 𝑑) 

A2: (𝑎 − 𝑏)/(𝑎 − 𝑏 − 𝑐 + 𝑑) 

B1: (𝑑 − 𝑏)/(𝑎 − 𝑏 − 𝑐 + 𝑑) 

B2: (𝑎 − 𝑐)/(𝑎 − 𝑏 − 𝑐 + 𝑑) 

     Using the above formula, it can be found that for the coin flipping game as mentioned 

in section 4.1.3, the probability of head and tail is 0.5 respectively for both players. For 

games with a larger than 2 × 2 payoff matrix, many algorithms were suggested for 

solutions. One way is to reduce the payoff matrix to a 2 × 2 one by eliminating 

dominating rows and/or columns (Williams 1966). However, this approach may not work 

for an arbitrary large payoff matrix.  
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4.3 ALGORITHMS FOR TWO-PLAYER GAMES  

     A lot of numerical algorithms have been developed to solve complicated games. The 

computing complexity increases substantially with the number of players. Here our 

discussion is limited to two-player games only. First we will introduce the generally 

accept method, namely Simplex, for two-player zero-sum games, then Game Theory 

Explorer for two-player non-zero-sum games, which will be used for our case studies, is 

discussed.  

 

4.3.1 Zero-Sum Games 

     Two-player zero-sum game problem can be transformed into a linear programming 

problem and then solve it by the Simplex algorithm.  

Linear Programming 

     Consider an arbitrary finite two-player zero-sum game with m × n payoff matrix A. 

The mixed strategies of players A and B are denoted respectively by  

𝑋 = { 𝒑 =  (𝑝1, ⋯ , 𝑝𝑚)𝑇: 𝑝𝑖 ≥ 0 for 𝑖 = 1, ⋯ , 𝑚 and ∑ 𝑝𝑖
𝑚
𝑖=1 = 1}, 

𝑌 =  {𝒒 =  (𝑞1, ⋯ , 𝑞𝑚)𝑇 , 𝑞𝑗 ≥ 0 for 𝑗 = 1, ⋯ , 𝑛 and ∑ 𝑞𝑗
𝑛
𝑗=1 = 1}.  

If player A uses strategy p, and player B uses strategy q, the average payoff for Player A 

will be 

∑ ∑ 𝑝𝑖𝑎𝑖𝑗𝑞𝑗
𝑛
𝑗=1

𝑚
𝑖=1 = 𝒑𝑻𝑨𝒒.                                                                                (4-2) 

By the minimax theorem, the value of the game is defined by 

𝑉 = min
𝑞∈𝑌

max
𝑝∈𝑋

𝒑𝑻𝑨𝒒 =  max
𝑝∈𝑋

min
𝑞∈𝑌

𝒑𝑻𝑨𝒒.                                                              (4-3) 

     Note the invariance of the minimax strategies under change of location and scale for 

the payoff matrix, i.e., the minimax strategies are the same for the game having matrix 
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𝑨 =  (𝑎𝑖𝑗) and the game having matrix 𝑨′ =  (𝑎′𝑖𝑗) with 𝑎′𝑖𝑗 =  𝑐𝑎𝑖𝑗 + 𝑏 where 𝑐 > 0. 

The respective game value 𝑉′ =  𝑐𝑉 + 𝑏. 

Let us consider player A first. Player A wants to choose p to maximize his payoff,  

Maximize min
1≤𝑗≤𝑛

∑ 𝑝𝑖𝑎𝑖𝑗
𝑚
𝑖=1  

subject to the constraints 

𝑝𝑖 ≥ 0 for 𝑖 = 1, ⋯ , 𝑚 and ∑ 𝑝𝑖
𝑚
𝑖=1 = 1.                                                               (4-4) 

This nonlinear objective function can be transformed into a linear program by introducing 

a new variable, 

𝑣 ≤ min
1≤𝑗≤𝑛

∑ 𝑝𝑖𝑎𝑖𝑗
𝑚
𝑖=1                                                                                                         (4-5) 

And the problem now becomes: choose v and p to  

maximize v, 

subject to the constraints 

𝑣 ≤ ∑ 𝑝𝑖𝑎𝑖1
𝑚
𝑖=1   

⋮  

𝑣 ≤ ∑ 𝑝𝑖𝑎𝑖𝑛
𝑚
𝑖=1   

∑ 𝑝𝑖
𝑚
𝑖=1 = 1  

𝑝𝑖 ≥ 0 for 𝑖 = 1, ⋯ , 𝑚.                                                                                            (4-6) 
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Similarly, the linear program can be done for Player B, choose w and q to  

minimize w, 

subject to the constraints 

𝑤 ≥ ∑ 𝑎1𝑗𝑞𝑗
𝑛
𝑗=1   

⋮  

𝑤 ≥ ∑ 𝑎𝑚𝑗𝑞𝑗
𝑛
𝑗=1   

∑ 𝑞𝑗
𝑛
𝑗=1 = 1  

𝑞𝑗 ≥ 0 for 𝑗 = 1, ⋯ , 𝑛.                                                                                              (4-7) 

The duality theorem in linear programming implies the minimax theorem. The above 

linear program can be further simplified. Suppose 𝑣 > 0 and let 𝑥𝑖 = 𝑝𝑖/𝑣 (Note: in case 

𝑣 ≤ 0, the payoff matrix can be shifted by a positive number according to the invariance 

of mixed strategies as mentioned above.), then  

∑ 𝑝𝑖
𝑚
𝑖=1 = 1 can be transformed into ∑ 𝑥𝑖

𝑚
𝑖=1 = 1/𝑣.  

The original linear program for player A now becomes 

minimize ∑ 𝑥𝑖
𝑚
𝑖=1 , 

subject to the constraints 

1 ≤ ∑ 𝑥𝑖𝑎𝑖1
𝑚
𝑖=1   

⋮  

1 ≤ ∑ 𝑥𝑖𝑎𝑖𝑛
𝑚
𝑖=1   

𝑥𝑖 ≥ 0 for 𝑖 = 1, ⋯ , 𝑚.                                                                                            (4-8) 

The game value for the original problem is 𝑣 = 1/ ∑ 𝑥𝑖
𝑚
𝑖=1  and the optimal strategy for 

player A is 𝑝𝑖 = 𝑣𝑥𝑖 for 𝑖 = 1, ⋯ , 𝑚. 
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For player B, let 𝑦𝑗 = 𝑞𝑗/𝑤 and the problem becomes 

maximize ∑ 𝑦𝑗
𝑛
𝑗=1 , 

subject to the constraints 

1 ≥ ∑ 𝑎1𝑗𝑦𝑗
𝑛
𝑗=1   

⋮  

1 ≥ ∑ 𝑎𝑚𝑗𝑦𝑗
𝑛
𝑗=1   

𝑦𝑗 ≥ 0 for 𝑗 = 1, ⋯ , 𝑛.                                                                                             (4-9) 

Simplex 

     The Simplex algorithm by Williams (1966), called the pivot method, is introduced 

below.  

Step 1: Matrix A is obtained by adding a constant to the payoff matrix so that all 

elements are non-negative.  

Step 2: Augment the matrix A by appending one more row of -1, one more column of 1, 

and zero to the additional diagonal element. Add player A’s strategies on the left of the 

first column, and player B’s strategies on the top of the first row. See below for an 

example: 

Table 4-15. Augmented payoff matrix.  

 𝑦1  𝑦2 ⋯ 𝑦3  

𝑥1 𝑎11 𝑎11 ⋯ 𝑎11 1 

𝑥2 𝑎11 𝑎11 ⋯ 𝑎11 1 

⋮ ⋮ ⋮  ⋮ ⋮ 

𝑥3 𝑎11 𝑎11 ⋯ 𝑎11 1 

 -1 -1 ⋯ -1  
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Step 3: Select the pivot a(p,q) with the following properties,  

i) a(m+1,q) < 0; 

ii) a(p,q) > 0; 

iii) The pivot row p must be chosen to give the smallest of the ratios          

𝑎(𝑝, 𝑛 + 1)/𝑎(𝑝, 𝑞) among all positive pivots for that column. 

Step 4: Pivot the matrix as follows,  

i) Replace each entry, 𝑎(𝑖, 𝑗), not in the row or column of the pivot by 𝑎(𝑖, 𝑗) −

𝑎(𝑝, 𝑗) ∙ 𝑎(𝑖, 𝑞)/𝑎(𝑝, 𝑞). 

ii) Replace each entry in the pivot row, except for the pivot, by its value divided 

by the pivot value; 

iii) Replace each entry in the pivot column, except for the pivot, by the negative 

of its value divided by the pivot value 

iv) Replace the pivot value by its reciprocal. 

Symbolically, the pivot operation can be described by 

p r 

c q 

 

Step 5: Exchange the label on the left of the pivot row with the label on the top of the 

pivot column.  

Step 6: If there are any negative numbers remaining in the lower border row, go back to 

Step 3.  

  

1/p r/p 

-c/p 𝑞 − (𝑟𝑐/𝑝) 
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Step 7: Otherwise, a solution is obtained:  

i) The game value (the average payoff of player A) v is the reciprocal of the 

number in the lower right corner. If any constant has been added to the payoff 

matrix in Step 1, the same value should be subtracted here.  

ii) Player A’s optimal strategy: Those variables of player A that end up on the 

left side receive probability zero. Those that end up on the top receive the 

value of the bottom entry in the same column divided by the lower right 

corner. 

iii) Player B’s optimal strategy: Those variables of Player B that end up on the top 

receive probability zero. Those that end on the left receive the value of the 

right edge in the same row divided by the lower right corner.  

 

4.3.2 Non-zero-Sum Games 

     Many game theory algorithms for two-player non-zero-sum games have been 

developed, for example, Gambit (McKelvey, McLennan, and Turocy, 2010), GamePlan 

(Langlois, 2015) and XGame (Belhaiza, Mve, and Audet, 2010), as well as Game Theory 

Explorer (GTE) by Savani and Stengel (2015). Particularly, GTE is one robust and 

reliable algorithm with the open source code available to public. Our program is based on 

the source codes of GTE.  

Game Theory Explorer 

     GTE can be accessed via the website http://www.gamethoeryexplorer.org. Users do 

not have to download the source codes or install them on a local computer. The graphical 

user interface (GUI) makes it readily available to any users who are not familiar with 

computer techniques. Both strategic and extensive forms can be created via GUI.  
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     There are also some restriction on GTE via the web GUI. The complexity of the game 

to be solved is limited. The equilibrium computation is often intensive and the 

computation capability may be constrained as compared to a local installation. It may 

also be inconvenient if any user want to solve a series of games. Consequently, we 

adapted the source codes and implemented a local version with an Excel interface. 

 

4.4 GAME THEORY IMPLEMENTATION  

     The two-player zero-sum game can be solved by the Simplex algorithm as highlighted 

in Section 4.3.1. One example of the computer implementation in C++ can be found on 

http://marioslapseofreason.blogspot.com/2010/12/finding-nash-equilibrium-in-two-

person.html. A copy of the source code with modification is given in Appendix I.  

     However, as we explained earlier, our target problem is to find the optimal downhole 

tool failure with minimal drilling cost, and the expected payoffs for the two fictitious 

players do not sum to zero. As a result, we implemented the computer program for two-

player non-zero-sum games based on GTE. An excel interface was created for our case 

study.  

     On the master sheet “Master” (Figure 4-1), there are four buttons: 

 Click “Load Input Data” to read the input data from a text file to the excel 

sheet “Input”;  

 Click “Generate Input File” to generate input files for the game solver;  

 Click “Calculate Nash Equilibrium” to compute Nash Equilibria;  

 Click “Show Results” to extract solution to excel sheet “Output”.  
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     Note “Load Input Data” is not necessary if the payoff table is already given in the 

excel sheet “Input”.  

 

Figure 4-1 The master sheet interface for the game solver.  

 

     If the payoff table is given in a plain ACSII text file, the data should be given in the 

following format (Figure 4-2):   

First line: the number of rows and the number of columns separated by a space. 

Second line: blank 

Payoff table for player I. 

A blank line after the payoff table for player I. 

Payoff table for player II. 

All numbers must be given in the format of integer or fractions.  
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Figure 4-2 Payoff table for players I and II in plain text format.  

 

 

Figure 4-3 Payoff table for player I in sheet “Input”. 

 

 

Figure 4-4 Payoff table for player II in sheet “Input”. 
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     Once the computation is done and by clicking “Show Results”, the optimal mixed 

strategies for the two players are given in sheet “Output”. 

 

Figure 4-5 An example of the results of the payoff and optimal strategies for each player.  
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Chapter 5    Game Theory Model and Case Study   

     

5.1 GAME THEORY MODEL 

5.1.1 Decision analysis model  

     A risk model predicts the probability of tool failure. If the cost of replacing a tool with 

high risk is known and the cost of the tool failure can be estimated, the risk criteria can be 

rationally determined by decision analysis. Suppose a tool component replacement cost is 

𝐶𝑗 and the incurred cost is 𝐶 if a tool fails, the payoff table is generated (Table 5-1). The 

game model can be viewed as one player games. The replacement is economically 

practical only if the incremental payoff is non-negative.  

𝐶 (
𝑥

1−𝑝𝑓
𝑗 − 𝑥)  − 𝐶𝑗 ≥ 0 .                                                                 (5-1) 

     And thus the risk criteria to replace the tool component can be established by  

𝑝𝑓
𝑗 ≥

𝐶𝑗

𝐶𝑗+𝑥𝐶
 .                                                                                    (5-2) 

 

Table 5-1 The Payoff table for tool assets with and without tool component replacement. 

 
No failure Failure 

Payoff Probability Payoff Probability 

No replacement 0 𝑥 −𝐶 1 − 𝑥 

Replacement 

0 𝑥

1 − 𝑝𝑓
𝑗
 −𝐶 1 −

𝑥

1 − 𝑝𝑓
𝑗
 

−𝐶𝑗 
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5.1.2 Two player non-zero-sum game model  

     When minimizing the downhole tool failure is not necessarily improving drilling time, 

a two-player game theory model is an appropriate choice to simulate the outcome. When 

proper probabilistic lifetime models are available for each downhole tool, it is possible to 

the tool manufacturer (or provider) to evaluate the risk levels for different combination of 

tools by swapping tools, maintaining services, and replacing high risk tools. The risk of a 

subsequent drill run can be further evaluated with different operation parameters, and the 

risk threshold can serve as a constraint on the operation parameters. At the same time, the 

tool user estimates drilling time with these different sets of operation parameters. A 

payoff table can be constructed with manufacturer minimize risks for downhole tool 

failures while user maximize drilling distance per unit time. The payoff could also be 

equivalently expressed as overall reliability for downhole tools for manufacturer and 

average ROP for user.  

 

Table 5-2 Two-player non-zero-sum game for downhole tool failure. 

Player A Manufacturer  

Strategy Downhole tool maintenance  

Payoff Overall reliability of downhole tools 

(Based on the risk model of each tool as a function of cumulative drill 

hours, temperature, lateral and torsional vibration.) 

  

Player B User 

Strategy Drilling operations 

Payoff Drilling distance per unit time (or ROP) 

(As a function of WOB, RPM, Q, depth, and rock properties) 
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In general, the workflow chart can be summarized as follows: 

1. Identify two players, i.e., entities with conflicting interest. 

2. Find the strategies for each player.  

3. Obtain the payoff table with player A’s strategy in rows and player B’s strategy in 

columns. The payoff of player A should be listed in the first table, and that of 

Player B be listed in the second table. 

4. Use GTE to solve the two-player non-zero-sum game to find the Nash equilibrium.   

5. Analysis of the Nash equilibrium and locate the strategy that minimize downhole 

tool failure.  

 

     The payoff table can be generated for the planned next drilling run. Play A’s strategies 

are different selections of tools, different combinations of tool components, and 

maintenance. Player B’s strategies are different choices of drilling operations. For each 

combination of the two players’ strategies, the overall reliability and average ROP are 

calculated, respectively. The overall reliability is obtained from the probability of failure 

for each downhole tool (Kale et al., 2014) as a function of cumulative drilling hours, 

temperature, lateral and torsional vibrations, RPM. Average ROP can be calculated either 

as a simple function of RPM (Carter-Journet et al., 2014a) or by using a sophisticated 

model (see Section 3.3) of WOB, RPM, Q, depth, and rock properties.  With the payoff 

tables, the game theory solver GTE is used to find the Nash equilibrium, which might be 

helpful for the optimal tool risk management and drilling operations. 
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5.2 CASE STUDY 

5.2.1 Optimization constraints  

     Decision analysis can be extended to find optimization constraints. Swapping tool 

components (see section 2.4.5) can be evaluated with the consideration of cost. Suppose 

two assets will be used next for drilling and if tool failure occurs, a cost of C1 and C2 will 

be incurred respectively. The cost of swapping is CS. The payoff table is given in Table 

5-3. The incremental payoff with swapping can be obtained by,  

𝐶1(𝑥𝑠1 − 𝑥1) + 𝐶2(𝑥𝑠2 − 𝑥2) − 𝐶𝑆,  

where x is the reliability of a tool set.  

     For the example (reproduced in Table 2-2 and Table 2-3) given by Carter–Journet et al. 

(2014b), the cost of swapping tool components must meet the constraint, 

𝐶𝑆 ≤ 0.107𝐶1 − 0.089𝐶2.                                                                                        (5-3) 

 

Table 5-3 The Payoff table for tool assets with and without swapping components.  

Swapping 
No failure Failure 

Payoff Probability Payoff Probability 

No 
Asset 1 0 𝑥1 −𝐶1 1 − 𝑥1 

Asset 2 0 𝑥2 −𝐶2 1 − 𝑥2 

Yes 

Asset 1 0 𝑥𝑠1 −𝐶1 1 − 𝑥𝑠1 

Asset 2 0 𝑥𝑠2 −𝐶2 1 − 𝑥𝑠2 

Swapping −𝐶𝑆 

 

     Another strategy is the choice of vibration suppression tools, which mitigate the 

vibrations and reduce the tool failure risk. At the same time, the vibration control device 
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has a cost. Note the vibration reduction is also beneficial to ROP, but only the effects on 

downhole tool failure risk is discussed here. By adding a vibration control device with a 

cost of CR and an improvement of reliability to 𝑥𝑅, the payoff table is given in Table 5-4. 

The improvement in reliability must meet the condition, 

𝑥𝑅 ≥
𝐶𝑅

𝐶
+ 𝑥,                                                                                                           (5-4) 

or the cost of control device should be 

𝐶𝑅  ≤ (𝑥𝑅 − 𝑥)𝐶.                                                                                                    (5-5) 

 

Table 5-4 The Payoff table for tool assets with and without vibration control device. 

 
No failure Failure 

Payoff Probability Payoff Probability 

No vibration control 0 𝑥 −𝐶 1 − 𝑥 

Vibration control 
0 𝑥𝑅 −𝐶 1 − 𝑥𝑅 

−𝐶𝑅 

 

5.2.2 Game theory optimization  

     The decision analysis above helps to identify the risk criteria, optimize maintenance 

schedule, and determine the range of operation parameters. When risk criteria are met 

and there are different strategies at disposal, it can be helpful to include the drilling cost 

(e.g. in terms of drilling time or ROP) to find the best tool strategy and optimize the 

operation parameters.  

     Based on the work by Carter–Journet et al. (2014a), payoff tables for the drilling cost 

in terms of distance drilled per hour and the reliability of downhole tools are estimated in 

Table 5-5 and Table 5-6, respectively. The reliability of downhole tools is changing with 
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the drill hours. However, the distance drilled per hour (i.e., ROP) is constant at a given 

RPM.  

 

Table 5-5 Drilling distance per hour (ROP). 

 Downhole tool set selection 

B1 B2 B3 B4 B5 

RPM 

50 43 43 43 43 43 

60 51 51 51 51 51 

70 59 59 59 59 59 

80 70 70 70 70 70 

 

Table 5-6 Reliability of downhole tools. 

 Downhole tool set selection 

B1 B2 B3 B4 B5 

RPM 

50 0.73 0.70 0.65 0.58 0.49 

60 0.72 0.65 0.60 0.53 0.44 

70 0.60 0.54 0.48 0.41 0.36 

80 0.32 0.28 0.25 0.24 0.22 

 

     By using the GTE game theory solver (see Section 4.4 for details) for two-player non-

zero-sum games, two sets of solutions are found. One set of solution is that ROP is 

maximized to 70 ft/hr. The optimal reliability of downhole tools is 0.32. This reflects that 

the drilling operation team is prone to maximize ROP, regardless the downhole tool 

failure risk.  
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     In reality, ROP may not be monotonically increasing with the drilling operation 

parameters. And even though the tool failure risk is lower at a smaller RPM (or smaller 

ROP), the additional hours of operation for the same total drilled distance would be 

longer, which increase the tool failure risk as a result of a longer usage. To simulate a 

complicated case, five different downhole tool strategies were considered. The drilling 

distance per unit time or ROP is listed in Table 5-7. The overall reliability of the tool sets 

is given in Table 5-8. 

 

Table 5-7 Drilling distance per unit time, ROP.  

 Downhole tool set selection 

B1 B2 B3 B4 B5 

RPM 

50 43 50 44 45 43 

60 51 60 53 69 67 

70 59 65 58 64 62 

80 60 62 56 59 58 

 

Table 5-8 Reliability of downhole tools. 

 Downhole tool set selection 

B1 B2 B3 B4 B5 

RPM 

50 0.954 0.940 0.920 0.907 0.879 

60 0.947 0.935 0.925 0.930 0.918 

70 0.938 0.922 0.928 0.894 0.895 

80 0.906 0.912 0.866 0.871 0.866 
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     By using the GTE game theory solver (see Section 4.4 for the procedure) for two-

player non-zero-sum games, it is found that the Nash equilibrium solution is a mixed 

strategy. 

 

Table 5-9 Nash Equilibrium solution for downhole tool failure. 

RPM selection  
50 60 70 80  Payoff 

0.00% 0.00% 27.3% 72.7%  60.5 

Downhole tool set selection  
B1 B2 B3 B4 B5  

75% 25% 0% 0% 0% 0.9147 

 

     The mixed strategy suggest optimal drilling operations with 27.3% of time at 70 RPM 

and 72.7% 80 RPM. Since our simulation use discrete RPM values, this suggest an 

optimal RPM is between 70 and 80, likely around 77.  The optimal downhole tool set 

selection is to choose B1 with a probability of 75% and B2 with a probability of 25%.  

 

5.3 DISCUSSION 

     Risk of downhole tool failure can be modeled in terms of probability. Based on the 

risk model, the overall reliability of downhole tools for a drilling job can be evaluated as 

probability that no single tool or tool component fails. A risk model is helpful to identify 

high risk tool and tool component, and thus improve the efficiency in maintenance and 

reduce the risk. Risk criteria can be established based on the cost of replacement, the 

probability of failure, and the incurred extra cost if a failure occurs.  

     For a given set of downhole tools, a slower ROP normally means less vibrations, and 

thus less consumption of tool-life; but a slower ROP also means longer drill time, which 
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adds to consumption of tool-life and drilling cost. Control devices can be used to mitigate 

vibration and reduce risk of tool failure, and thus improve the reliability, but at the same 

time, the ROP may be affected and the drilling cost would be higher. Given a risk model 

for downhole tool failure, the reliability of downhole tools can be evaluated for possible 

drilling operations. Simultaneously, ROP can also be estimated. Arguably tool vendors 

expect the least consumption of tool-life, which may be evaluated as the change in 

reliability before and after a drill job. However, the drilling crew would maximize ROP 

regardless of the wear on tools. When there are multiple competitive choices for both 

parties, a non-cooperative two-player game theory model may help identify the best 

choice by looking at the Nash equilibrium solutions.   

     The suggested approach is not limited to downhole tools. As long as a risk model is 

available and the cost for different scenario can be evaluated, decision analysis and game 

theory model can be applied.  

  



 64 

Chapter 6    Conclusions and Future Work  

      

     Based on our study, conclusions were drawn as follows: 

 It is the first time, to the best of our knowledge, that game theory has been used 

for drilling operations. 

 Game theory can be an effective tool to resolve decision making problems in 

drilling operations and downhole tool management. 

 We proposed a possible use of game theory for the optimal management of 

downhole tools.  

 Decision analysis may help to identify the risk criteria for downhole tool failure.  

 As demonstrated in the example for complicated situations, game theory is 

capable of finding optimal strategies for both downhole tool management and 

drilling operations.  

     Future work includes the application of this methodology to realistic situations, the 

extension of this methodology to drilling automation and a broad spectrum of drilling 

tools and equipment, and a consideration of overall drilling cost in a cooperative manner.  
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