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This paper deals with two problems in which the rectilinear rise of a gas bubble in a liquid
undergoes a transient behavior. In the first problem, the bubble is released with a spherical, oblate,
prolate, or oval shape and its evolution to steady state is simulated numerically. Contrary to some
recently reported experiments, it is found that the terminal velocity and final shape are independent
of the initial shape. This result suggests that the experimental observations may be influenced by
uncontrolled effects rather than a genuine multivaluedness of the fluid-dynamic solution for a
steadily rising bubble. The second problem concerns the ascent of a bubble which expands, or
contracts, due to a change in the ambient pressure. The ensuing behavior of the rise velocity is
strongly influenced by added mass effects. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1592800#

I. INTRODUCTION

It has recently been reported that the terminal velocity of
a bubble rising in purified water depends on the manner in
which the bubble is generated.1,2 This unexpected experi-
mental finding is attributed by the authors to the initial shape
with which the bubble commences its ascent, which is in its
turn affected by the way the bubble is generated. A bubble
from a small-bore capillary executes violent shape oscilla-
tions upon its release, and is found to reach a higher steady-
state velocity than a bubble of equal volume released from a
wide-bore capillary, whose detachment is a much gentler
process. Similar observations have also been reported inde-
pendently by Tomiyamaet al.3,4 who, in addition to water,
also experimented with silicone oils thus greatly reducing the
possibility of surface contamination.

This behavior is in stark contrast with the common wis-
dom in the literature which, explicitly or implicitly, associ-
ates a unique rise velocity to a bubble of a given volume in
a given liquid or, more generally, a unique value of the drag
coefficient for given Weber and Morton numbers once the
flow has become steady~see, e.g., Refs. 5 and 6!.

The first case of unsteady rise studied in this paper is a
numerical exploration of the effect of the initial bubble shape
on its transient and, eventually, steady rise. We simulate by a
boundary-fitted coordinate method bubbles sufficiently small
to rise rectilinearly under normal conditions, release them
with an initial spherical, prolate, oblate, or oval shape, and
follow the motion until a steady state is reached. In all cases,
no effect of the initial shape on the terminal velocity is
found.

The second class of transient motions investigated is the

rise of bubbles undergoing a change of volume due to a
decrease or increase of the ambient liquid pressure. In addi-
tion to drag, the volume change affects the added mass of the
bubble and, therefore, the acceleration of its center of vol-
ume. In the case of an expanding bubble, the effect can be so
strong as to actually cause the bubble to temporarily slow
down before reaching the larger terminal velocity associated
with the increased volume; conversely, for a contracting
bubble, one may have a temporary acceleration.

The classic numerical simulations of the steady motion
of bubbles under the action of a constant pressure gradient
are due Ryskin and Leal who developed a method based on
the use of orthogonal boundary fitted coordinates.7–9

We adopt here a refinement of this method based on our
earlier work,10 already used to study steady bubble rise in an
axisymmetric shear flow,11 and transient rise in a quiescent
liquid.12 Although the coordinate generation scheme is simi-
lar, the need to deal with bubbles with a variable volume has
required some changes in the numerical algorithm.

II. MATHEMATICAL MODEL AND NUMERICAL
METHOD

The mathematical model consists of the incompressible
axisymmetric Navier–Stokes equations solved subject to the
condition of vanishing tangential stress at the bubble surface
and vanishing normal velocity gradient at infinity. The tran-
sients of concern in this paper are sufficiently slow that the
gas pressurep inside the bubble can be considered spatially
uniform and related to the instantaneous bubble volumeV(t)
by the isothermal relation

p~ t !V~ t !5p0V0 , ~1!

where p0 and V0 denote initial equilibrium values. At the
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bubble surface, the discontinuity in the normal stresses is
balanced by the product of the~constant! surface tension
coefficient and the local curvature.

In the numerical solution of the problem, in order to
accurately account for the deforming shape of the bubble, we
use boundary-fitted coordinates~j,h! related to cylindrical
coordinates~r,x! by

F ]

]j S f
]

]j D1
]

]h S 1

f

]

]h D G S r
xD50, ~2!

in which f 5hh /hj is the distortion function defined by the
ratio of the scale factorshj and hh in the j and h
directions.7,8 The trace of the bubble surface on the meridian
plane corresponds toh51. At each time step, the outer
boundary, corresponding toh50, is a sphere of radiusS
centered at the midpoint between the intersections of the
bubble surface with the axis of symmetry. A regular grid of
points is laid out in the computational domain and their im-
age in the physical domain is found by solving~2!. In this
work, the functionf is prescribed as

f 5~ 3
22h!M , ~3!

whereM is the conformal module~see, e.g., Refs. 10, 13 and
14!; this specification results in a refined grid near the bubble
surface. An example of a grid generated in this way is shown
in Fig. 1 and a detail near the bubble in Fig. 2.

The flow fields are calculated using theSIMPLERpro-
cedure~see, e.g., Refs. 15 and 16! on a standard staggered
finite-difference grid arrangement with second-order accu-
rate discretization except near the bubble boundary, where

the procedure is the following. Since this is a free-surface
problem, the liquid velocity at the bubble surface must be
found as part of the solution procedure. Here our procedure
differs from that of Refs. 8, 9, and 11. The tangential velocity
at the generic node~i,NJ! on the bubble surface is obtained
from the condition of vanishing tangential stress

hj

hh
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hh

hj

]
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hh
D50, ~4!

which is discretized as~Fig. 3!
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The three terms in the first square brackets are a one-sided,
second-order accurate approximation to (]/]h)(uj /hj) i ,NJ .
The mapping algorithm generates the values of the scale fac-
tors at points with integer labels; those at points with half-
integer labels are obtained by averaging. This equation is

FIG. 1. An example of the computational grid.

FIG. 2. Detail of the grid of the previous figure near the bubble.

FIG. 3. Illustration of the discretization in Eq.~5!.
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solved for (uj) i ,NJ in terms of the most recent values of the
velocities at neighboring points. After this step, a new esti-
mate of the normal velocity (uh) i 11/2,NJ is found by using
the equation of continuity

1

hjhhr F ]

]j
~hhruj!1

]

]h
~hjruh!G50, ~6!

discretized by central differences at (i 11/2,NJ21/2).
At each iteration, theSIMPLERmethod requires the so-

lution of a Poisson equation for the pressure correctionp8
and, at the next step, for the pressure itself. At the bubble
surface, the boundary condition associated with the pressure
correction is simplyp850, because there the velocity is
found from ~4! and ~6! and therefore does not need to be
updated. For the case of the pressure, on the other hand, we
use a Dirichlet condition obtained from the normal stress
condition evaluated ati 11/2,NJ
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where the term in parentheses in the left-hand side is the
~h,h! component of the rate of strain and the last term, mul-
tiplied by the surface tension coefficients, is the local cur-
vature. On the outer boundary the normal velocity gradient is
taken to vanish, while the pressure is taken to be hydrostatic.

At convergence of the iterative process, the nodes on the
bubble surface are moved by the explicit first-order Euler
method, and then interpolated by a cubic spline so as to
generate a representation of the bubble surface at the new
time level. At this point, a new boundary fitted grid is gen-
erated according to the procedure described in Ref. 10 and
the new bubble volume is calculated for use in~1!.

The generation of a new coordinate system at each time
step has the effect that the grid points in physical space move
in time. Thus, a special care is necessary in evaluating the
convective derivatives in the momentum equations~see Ref.
12!.

We have run tests with the radiusSof the outer boundary
equal to 20 and 30 times the initial bubble radius finding
differences of the order of 0.2% in the terminal velocity; for
S510 times the initial radius, the error was of the order of
2%. For all the calculations reported here we usedS520.
Convergence tests for the terminal velocity of an initially
spherical 1 mm-radius bubble were run with 16316, 32
332, and 48348-node grids. The difference between the
coarsest and the finest grid was of the order of 5%, while that
between the intermediate and the finest grid was 0.3%. Or-
thogonality of the grid can be checked by monitoring the
minimum over the nodes of the quantity

cosu5
1

hjhh
~xjxh1yjyh!, ~8!

which represents the angle between coordinate lines. With
the 32332 grid, the maximum differenceu90°2uu is about

4°, which can be reduced to 3° by increasing the number of
nodes to 50350 and, further, to 1° by going to an 80380
grid.

Some results obtained with the 32332 grid and different
bubble radii are compared in Table I with the data of
Duineveld17,18 who carried out measurements in ultrapure
water. For an additional safety margin, in view of the tran-
sient nature of the motion and of the larger curvature of the
bubble shape for some of the cases, the calculations reported
here were obtained with a 50350 ~spherical and ellipsoidal
shapes! or 60360 ~oval shapes! grid.

Since the present method is explicit, the time step has to
be sufficiently small to resolve the fastest process included in
the simulation. Because of surface tension, the shortest cap-
illary waves on the bubble surface have a wavelength of the
order of 2pR/N, whereN is the number of grid points along
the surface. The corresponding period is of the order of
2pArR3/sN3 which, with R50.6 mm, N550, r
51000 kg/m3, s50.0729 J/m2, gives 30.6ms. Numerical
tests showed that a time step of the order of 1/15 to 1/30 of
this value gave converged results.

To validate the ability of the code to resolve time-
dependent phenomena we have compared its predictions
with several oscillations problems for which exact results
exist. The first test is one in which the bubble executes iso-
thermal spherically symmetric radial oscillations, a situation
which can be described by means of the Rayleigh–Plesset

FIG. 4. Comparison between the results of the present method~dashed! and
those from the Rayleigh–Plesset equation for the radial oscillations of an
initially over-expanded spherical bubble.

TABLE I. Comparison of the present computational results with the mea-
surements of Ref. 17.

Radius
mm

Terminal velocity
m/s Aspect ratio

Experiment Calculation Experiment Calculation

0.36 0.15360.002 0.159 1.03 1.027
0.50 0.26160.002 0.253 1.15 1.116
0.60 0.30460.002 0.300 1.30 1.235
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equation. Figure 4 compares the present results with the
Rayleigh–Plesset calculation for an initial bubble radius of 1
mm, an initial internal pressure of 100 kPa, and an ambient
pressure of 200 kPa. Note that the oscillation amplitude is
relatively large and, accordingly, this represents a stringent
test of the present calculation. These results were obtained
with an 80380 grid; a smaller 50350 grid accurately repro-
duced the first period of oscillation, but gave an error of
about 5% in the second period.

As a second test, we have calculated the period of the
shape oscillations for the prolate-oblate mode for an initial
aspect ratiob/a51.1 with the linear-theory result~see, e.g.,
Ref. 19!

T2
05pArReq

3

3s
. ~9!

For R50.6 mm,s50.0729 J/m2, r51000 kg/m3 this equa-
tion gives 3.12 ms, while the numerical result with 80380
and 50350 grids is 3.23 and 3.35 ms, respectively. As a
further test, we have repeated this calculation withb/a52. It
is known that the oscillation period lengthens as the ampli-
tude increases. For the prolate-oblate mode, Ref. 20 gives the
approximate result

T2

T2
0 .H 12

44 893

61 740F b/a21

11b/2aG2J 21

, ~10!

from which, forb/a52, one finds a lengthening of 22%. Our
numerical result, again forR50.6 mm, is 3.65 ms with an
80380 grid and 3.73 ms with a 60360 grid; the difference
with ~10! is 2.5% and 4.3%, respectively.

The results of these tests suggest that the code works
correctly and the spatial and temporal discretizations used
are adequate.

III. SHAPE CHANGES

To explore the effect of the initial bubble shape on the
terminal velocity we have used several initial shapes, all with
the same equivalent radiusR0 ~Fig. 5!: A sphere of radius
R0 , prolate and oblate spheroids with major and minor axes
b and a, with b/a52, and the solid obtained by rotating
around the polar axis a Cassini oval, given by

S r 21x2

a2 11D 2

24
x2

a2 5k4. ~11!

If k,1, this curve consists of two disjointed ovals with foci
at 6a. As k approaches 1 from below, the ovals develop a
larger and larger curvature until, fork51, they join with a
cusp atx50 to form a lemniscate. This shape is chosen as

the region of high curvature near the polar axis is qualita-
tively reminiscent of the shape of a bubble which has just
pinched off from a needle.

The volume of the prolate spheroid isV5 4
3pa2b, of the

oblate spheroidV5 4
3pab2, and of the Cassini oval

V

a3 5
p

2 Fk1~11k1
2 !2k2~11k2

2 !

1
k3

2
log

2k1111k1
2

2k2111k2
2 2

2

3
k1~31k1

2 !

1
2

3
k2~31k2

2 !G , ~12!

wherek65A16k2. The maximum curvature of the Cassini
oval on the axis of symmetry is given by

aC5
22k2

k2A12k2
, ~13!

which givesaC56.79 fork50.988.
Figure 6 shows the calculated terminal shapes of bubbles

in water with an equivalent radiusR050.6 mm released with
the four initial shapes mentioned before. Bubbles of this size
were reported to rise rectilinearly in Ref. 2, and to exhibit
different terminal velocities according to the manner of gen-
eration. The terminal shapes of the sphere and Cassini oval
with k50.988 are superposed in the left picture, and those of

FIG. 5. The four initial bubble shapes considered in this work: Sphere,
prolate and oblate spheroids, and Cassini oval withk50.988; the equivalent
radius is the same in all four cases and is 0.6 mm.

FIG. 6. Left picture: Superposition of the terminal shapes for initially
spherical and oval bubbles; right picture: Superposition of the terminal
shapes for the initially ellipsoidal bubbles. In all cases the equivalent radius
is 0.6 mm.

FIG. 7. Comparison of shape and position of the four bubbles of Fig. 5 at 10
ms-intervals.
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the two spheroids in the right picture. The shapes are barely
distinguishable from each other, with any small difference
imputable to numerical error.

We define the rise velocity of the bubble as the velocity
of its center of volumexV given by

xV5
1

V E
x0

x1
xpr 2~x!dx, ~14!

where the bubble extends in the rangex0<x<x1 andr (x) is
the distance of the surface element from the axis of symme-
try ~this formula is modified in an obvious way in regions of
the bubble surface which are convex toward the liquid!. The
terminal velocities computed in the four cases are very close:
0.300 m/s for the spherical, prolate, and oblate shapes, and
0.298 m/s for the Cassini oval.

These results suggest that, contrary to observations re-
ported in Refs. 2 and 4, there is no significant difference
among the four results. Figure 7 shows side by side the four
bubbles at 10 ms-intervals. The difference in the distances
travelled at equal times are a consequence of the shape os-
cillations that take place in the different cases, as will be
further discussed below.

Figures 8–10 are a more detailed illustration of the suc-
cessive shapes of the three initially nonspherical bubbles dur-

ing the early stages of the process. The amplitude of the
surface-tension-driven shape oscillations of the spheroidal
cases are greater than for the Cassini oval in view of their
greater initial surface energy~Table II!. The period, mea-
sured from a Fourier transform of the computed aspect ratios
~defined as the ratio of the length of the bubble along the axis
of symmetry to its maximum width!, is 3.39, 3.39, and 3.77
ms, respectively, for the prolate, oblate, and Cassini oval
shapes. The presence of a second harmonic at 1.69 and 1.75
ms was clear for the prolate and oblate cases, respectively,
but was less well defined for the oval case in which many
surface modes are simultaneously present. In all cases, the
bubble volume changed by less than 0.1% with respect to the
initial value.

A comparison of the rise velocities of the spherical, pro-
late, and oblate bubbles is shown in Fig. 11. The velocity of
the ellipsoidal bubbles is not monotonic due to the strong
shape oscillations, and, as expected, the oscillations of the
prolate and oblate bubbles have opposite phases. It is inter-
esting to note that the difference between the maxima and the
spherical bubble velocity is greater than that of the minima.
This fact is due to the very strong effect of bubble deforma-
tion on its drag and added mass~see, e.g., Ref. 21!, and is
further illustrated in Fig. 12, which shows both the instanta-
neous rise velocity and aspect ratio for the initially prolate
bubble. A very similar result is found in the initially oblate
case. The distance travelled by the two spheroidal bubbles is
the same.

A comparison of the spherical case with thek50.988
Cassini oval is shown in Fig. 13. The situation is qualita-
tively very similar to that depicted in Fig. 11, except that,
due to the smaller amplitude of the shape oscillations, the

FIG. 8. Successive shapes at 0.9 ms intervals of the initially prolate-
spheroidal bubble; the equivalent radius is 0.6 mm; the arrow has a length of
1.905 mm. In each row, the bubble vertical position is relative to the shape
at the beginning of the row.

FIG. 9. Successive shapes at 0.9 ms intervals of the initially oblate-
spheroidal bubble; the equivalent radius is 0.6 mm; the arrow has a length of
1.512 mm. In each row, the bubble vertical position is relative to the shape
at the beginning of the row.

FIG. 10. Successive shapes at 0.9 ms intervals of the initially oval bubble;
the equivalent radius is 0.6 mm andk50.988; the arrow has a length of
1.447 mm. In each row, the bubble vertical position is relative to the shape
at the beginning of the row.

TABLE II. Nondimensional surface area of the shapes of Fig. 5 in excess of
that of a sphere of equal volume.

Shape Excess surf. area/4pR0
2

Prolate 0.077
Oblate 0.096
Cassini oval (k50.988) 0.012
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differences with the spherical case are smaller. The terminal
velocities are indistinguishable within the present accuracy.

IV. VOLUME CHANGES

We now turn to a different problem, in which the bubble
undergoes a volume change in the course of its ascent in
response to the time variation of the ambient pressure, which
we take to be given by

P`~ t !5P06
1

2
DpF12tanhS t2t0

t D G , ~15!

with the upper sign corresponding to a pressure decrease
from P01Dp to P0 and the lower sign to a pressure increase
from P02Dp to P0 . The interest of this situation lies in the
dependence of the bubble added mass on its volume. Further-

more, the rapid change in buoyancy leads to an accelerated
motion which is useful to illuminate the role of the memory
force.

For a spherical bubble with instantaneous radiusR(t) in
buoyant rise with a velocityU(t) in a quiescent liquid, with
the neglect of the memory force, one may write an approxi-
mate equation of motion in the form

d

dt S 2

3
prR3U D5

4

3
pR3rg2

1

2
pR2rCDuUuU, ~16!

where g is the acceleration of gravity andCD is the drag
coefficient. Equation~16! may be recast in the equivalent
form

dU

dt
52

3

R

dR

dt
U12g2

3

4

CD

R
uUuU, ~17!

from the first term in the right-hand side of which the effect
of the volume change on the rise velocity is apparent.22,23

For a small bubble, the terminal velocity scales likeU
}R2g/v, wherev is the liquid kinematic viscosity. This re-
lation can be explicitly verified when the drag force can be
estimated from either the Hadamard–Rybczynsky or Levich
relations. The velocity of larger bubbles, chiefly dependent
on form rather than viscous drag, scales instead likeAgR. In
either case, one findsDU/U;DR/R, which shows that the
left hand side and the first term in the right-hand side of~17!
are in all cases comparable in magnitude.

When the radial inertia of the bubble is small, from~1!
one has the estimateDR/R;DP` /P` . Therefore, the first
term in the right-hand side of~17! is negligible compared to
the second one whenDP` /P`!gt/U, in which t is the
time scale for the ambient pressure variation. For small
bubbles this givesDP` /P`!vt/R2. For millimeter-size
bubbles, withv;1026 m2/s, this estimate givesDP` /P`

!v (v in m2/s!. For larger bubbles, for whichU;AgR, we
find insteadDP` /P`!0.1t ~t in seconds!. Both conditions

FIG. 11. Rise velocities of the spherical~thick solid line!, prolate~thin solid
line!, and oblate~dashed line! bubbles vs time.

FIG. 12. Rise velocity~solid line! and aspect ratio vs time during the rise of
an initially prolate bubble with initial aspect ratiob/a52.

FIG. 13. Rise velocities of the spherical~thick solid line! andk50.988 oval
bubbles vs time.
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will only be verified for slow or relatively minor pressure
changes, which shows that the effect of present concern can
readily occur in practical situations.

In order to impose the ambient pressure boundary con-
dition, in the numerical computation for this case, it proves
convenient to maintain the pressure at infinity at the refer-
ence value adding~15! to the right-hand side of~7!. The
bubble shape in the cases simulated here remains essentially
spherical, so that the grid is little distorted. We have used
grids with 60360 nodes for the examples that follow.

The solid line in Fig. 14 shows results for the rise veloc-
ity of a bubble with an initial radiusR(0)50.4 mm with an
ambient initial pressure of 220 kPa when, in~15!, one takes
P05100 kPa,Dp5120 kPa,t05120 ms,t513.77 ms. The
bubble is released from rest with a spherical shape; its ve-
locity gradually increases and reaches a terminal value of
0.181 m/s. Until this point the ambient pressure, shown by
the dash–dot line, has changed very little. When the pressure
starts falling, at first the bubble slows down and then, as its
radius reaches its terminal value and the pressure stabilizes,
accelerates again reaching the terminal velocity of 0.266 m/s
corresponding to the final equilibrium radius of 0.5224 mm.
This behavior is quite clear in the light of Eqs.~16! or ~17!:
When there is a rapid time dependence, the left-hand side of
~16! dominates and shows thatR3U;constant, which corre-
sponds to a conservation of the impulse: a radius increase
forces therefore a decrease ofU. When steady conditions are
reached, the left-hand side of~16! is negligible, and the rise
velocity settles to the value appropriate for the increased vol-
ume.

The dashed line in Fig. 14 is found by integrating Eq.
~17! with CD given by24

CD5
48

Re
G~x!S 11

H~x!

ARe
D , ~18!

where

Re5
2R~ t !U

v
. ~19!

x is the aspect ratio, evaluated from Eq.~1.5! of Ref. 24,
G(x) is given by Eq.~2.12! there, andH(x) is obtained by
interpolation from the data in Table I of the same reference.
While the result found from the simplified model is qualita-
tively similar to the more accurate one, a substantial quanti-
tative difference remains which, as one reviewer remarked, is
somewhat puzzling. For example, for small times, there is
nearly a factor of 2 difference in the acceleration, in spite of
the fact that the flow is nearly potential so that buoyancy
would be expected to dominate.

In trying to address this question we have considered
whether the origin of the discrepancy could be traced to the
neglect of the memory force, with the inclusion of which Eq.
~16! would take the form

d

dt S 2

3
prR3U D5

4

3
pR3rg2

1

2
pR2rCDuUuU

2E
0

t

G~ t2t!
dU

dt
dt, ~20!

whereG is an appropriate kernel. For a spherical bubble of
constant radius at small Reynolds number, Yang and Leal25

~see also Refs. 23, 26, and 27! give

G~ t !58pmR expS 9vt

R2 DerfcS 3Avt

R2D . ~21!

In Fig. 15 we compare the fully numerical solution~solid
line! with the solution of~20! ~dotted line!; the dashed line is
the solution of~16!, already shown in Fig. 14, which does
not include the memory force. The correction is in the right
direction in that Eq.~20! better approximates the Navier–
Stokes solution. A good part of the residual difference is due

FIG. 14. Rise velocity of a bubble with an initial radiusR(0)50.4 mm
when the ambient pressure~shown by the dash–dot line, right vertical scale!
falls from 220 to 100 kPa. The dashed line is the result from the simplified
model of Eq.~17! not including the memory force.

FIG. 15. The rise velocity of the expanding bubble of the previous figure as
computed with the present numerical method~solid line! compared with the
simple model of Eq.~17!, without memory force~long dashes!, and with the
model of Eq.~20!, with memory force.
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to the fact that~18! over-estimates the drag coefficient by
about 5%. In order to investigate whether this difference is
due to an incorrect estimation of the aspect ratiox, we com-
pare in Fig. 16 the aspect ratio as computed from the present
Navier–Stokes simulation~solid line! with the theoretical re-
sults of Refs. 24 and 28~see also Ref. 29!, which essentially
coincide for the velocities encountered here. To isolate the
effect of the aspect ratio modeling, we used the instantaneous
translational velocity calculated from the full Navier–Stokes
solution. The models exhibit some difference from the nu-
merical results which, however, is able to account only for
about half of the difference in terminal velocities. The re-
mainder is likely due to higher-order Reynolds-number terms
not included in~18!.

In spite of its apparently good performance, it should be
noted that the model used for the memory force in~21! is
really applied outside its expected range of validity. Even in
the early stages of the process, when both the bubble radius
and rise velocity are small, the Reynolds number is about
50–100, rather than small. Secondly, as shown by Magnau-
det and Legendre,30 the argumentt/R2 in ~21! should be
replaced by*dt/R2 for a variable radius.

The solid line in Fig. 17 shows the rise velocity of a
bubble undergoing a contraction from a radius equal to the
terminal radius of the previous case,R(0)50.5224 mm, to
the initial radius of the previous case, 0.4 mm, under the
action of an increasing ambient pressure, given by~15! with
the lower sign and P05220 kPa, Dp5120 kPa, t0

5120 ms,t513.77 msR(0)50.5224 mm; the dashed line
is the simple model~17!. Now impulse conservation has the
effect of causing an increase of the rise velocity before it
settles down to the smaller value associated with the reduced
radius. The addition of the memory force~Fig. 18! improves
somewhat the simplified model, but not as much as in the
previous case.

A recent paper31 reports experimental observations on

the rise velocity of expanding and contracting bubbles.
Qualitatively the results are the same as found here. Unfor-
tunately, no quantitative comparison is possible as the water
used in the experiment was contaminated with surface-active
agents which had a strong impact on the terminal velocities
of the bubbles.

V. CONCLUSIONS

In the present paper we have applied an accurate bound-
ary fitted numerical method to the calculation of the rise
velocity of bubbles undergoing shape or volume oscillations.

We have found that the shape with which the bubble is
released, and the oscillations through which it relaxes to the

FIG. 16. Calculated aspect ratio vs time for the expanding bubble of the
previous two figures~solid line! compared with the results predicted for the
same instantaneous velocity by the theories of Refs. 24 and 28~dashed line!.

FIG. 17. Rise velocity of a bubble with an initial radiusR(0)
50.5224 mm when the ambient pressure~shown by the dash–dot line, right
vertical scale! rises from 100 to 220 kPa. The dashed line is the result from
the simplified model of Eq.~17! without the memory force.

FIG. 18. The rise velocity of the contracting bubble of the previous figure as
computed with the present numerical method~solid line! compared with the
simple model of Eq.~17!, without memory force~long dashes!, and with the
model of Eq.~20!, with memory force.
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final steady shape, do not affect the calculated terminal ve-
locity or shape. This finding is contrary to recently reported
experimental results. If the solution of the problem is indeed
nonunique, as suggested by these results, one might conjec-
ture that, in the parameter space of the problem, we have
chosen initial conditions all belonging to the ‘‘domain of
attraction’’ of the same terminal shape. While this explana-
tion cannot be ruled out, the ease with which the effect is
observable in experiment would seem to make it rather un-
likely. The other possibility is that, in spite of the consider-
able care taken by the experimenters, some residual surface
contamination was present, perhaps due to slightly soluble
surfactants in the fluid line where the bubble is generated. If
this is so, the observed difference in terminal velocities
might perhaps be due to the effect of the initial oscillations
on the surface impurities: a bubble released from a small-
bore needle executes strong surface oscillations which might
perhaps lead to the shedding of surface contaminants.2 The
bubble would then rise faster, as observed, and, since the
liquid is very clean, it would not pick up further contami-
nants. It is disturbing that such a fundamental issue still ap-
pears to be unresolved after so many decades of study of
such an apparently simple fluid dynamical phenomenon.

In the second part of the paper, we have studied bubbles
rising in a time-dependent ambient pressure environment.
The changing pressure affects the bubble radius and, as a
consequence, both the impulse and the buoyant force on the
bubble. While the tendency to conserve impulse tends to
cause a slowing down of an expanding bubble and an accel-
eration of a contracting bubble, buoyancy is stronger on a
bigger bubble and weaker on a smaller one so that the two
effects counter each other during the transient.
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