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The transient rise of a bubble subject to shape or volume changes
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This paper deals with two problems in which the rectilinear rise of a gas bubble in a liquid
undergoes a transient behavior. In the first problem, the bubble is released with a spherical, oblate,
prolate, or oval shape and its evolution to steady state is simulated numerically. Contrary to some
recently reported experiments, it is found that the terminal velocity and final shape are independent
of the initial shape. This result suggests that the experimental observations may be influenced by
uncontrolled effects rather than a genuine multivaluedness of the fluid-dynamic solution for a
steadily rising bubble. The second problem concerns the ascent of a bubble which expands, or
contracts, due to a change in the ambient pressure. The ensuing behavior of the rise velocity is
strongly influenced by added mass effects. 2@03 American Institute of Physics.
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I. INTRODUCTION rise of bubbles undergoing a change of volume due to a
decrease or increase of the ambient liquid pressure. In addi-
It has recently been reported that the terminal velocity oftion to drag, the volume change affects the added mass of the
a bubble rising in purified water depends on the manner ibubble and, therefore, the acceleration of its center of vol-
which the bubble is generatéd.This unexpected experi- ume. In the case of an expanding bubble, the effect can be so
mental finding is attributed by the authors to the initial shapestrong as to actually cause the bubble to temporarily slow
with which the bubble commences its ascent, which is in itsdown before reaching the larger terminal velocity associated
turn affected by the way the bubble is generated. A bubblevith the increased volume; conversely, for a contracting
from a small-bore capillary executes violent shape oscillabubble, one may have a temporary acceleration.
tions upon its release, and is found to reach a higher steady- The classic numerical simulations of the steady motion
state velocity than a bubble of equal volume released from af bubbles under the action of a constant pressure gradient
wide-bore capillary, whose detachment is a much gentlegre due Ryskin and Leal who developed a method based on
process. Similar observations have also been reported indéhie use of orthogonal boundary fitted coordindes.

pendently by Tomiyamat al>* who, in addition to water, We adopt here a refinement of this method based on our
also experimented with silicone oils thus greatly reducing theearlier work;° already used to study steady bubble rise in an
possibility of surface contamination. axisymmetric shear floW, and transient rise in a quiescent

This behavior is in stark contrast with the common wis- liquid.** Although the coordinate generation scheme is simi-
dom in the literature which, explicitly or implicitly, associ- lar, the need to deal with bubbles with a variable volume has
ates a unique rise velocity to a bubble of a given volume irféquired some changes in the numerical algorithm.

a given liquid or, more generally, a unigue value of the drag
coefficient for given Weber and Morton numbers once the
flow has become steadgee, e.g., Refs. 5 and.6 Il. MATHEMATICAL MODEL AND NUMERICAL

The first case of unsteady rise studied in this paper is IETHOD
numerical exploration of the effect of the initial bubble shape
on its transient and, eventually, steady rise. We simulate by a The mathematical model consists of the incompressible
boundary-fitted coordinate method bubbles sufficiently smalfXisymmetric Navier—Stokes equations solved subject to the
to rise rectilinearly under normal conditions, release thenfondition of vanishing tangential stress at the bubble surface
with an initial spherical, prolate, oblate, or oval shape, anc@nd vanishing normal velocity gradient at infinity. The tran-
follow the motion until a steady state is reached. In all casesSients of concern in this paper are sufficiently slow that the
no effect of the initial shape on the terminal velocity is 9as pressure inside the bubble can be considered spatially

found. uniform and related to the instantaneous bubble volwitig
The second class of transient motions investigated is thBY the isothermal relation
P(H)V(t)=poVo, 1)

dAlso at: Department of Applied Physics, Twente Institute of Mechanics,
and Burgerscentrum, University of Twente, AE 7500 Enschede, The Neth- o o
erlands. where p, and Vy denote initial equilibrium values. At the
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FIG. 2. Detall of the grid of the previous figure near the bubble.

the procedure is the following. Since this is a free-surface
problem, the liquid velocity at the bubble surface must be
found as part of the solution procedure. Here our procedure
differs from that of Refs. 8, 9, and 11. The tangential velocity
at the generic nodé,NJ) on the bubble surface is obtained
from the condition of vanishing tangential stress

h o (u h, d [u
S st + _n_ ’7) =0, (4
FIG. 1. An example of the computational grid. which is discretized aéFig. 3
L [g[ue] o[ Y o[l
bubble surface, the discontinuity in the normal stresses is i,NJ i,NJ—1/2 i,NJ—3/2
balanced by the product of th@onstant surface tension h\2 17/u u
coefficient and the local curvature. +(h"> Y (h” h”) =0. (5)
In the numerical solution of the problem, in order to €N 77+ 12NI MEi=12NJ

accurately account for the deforming shape of the bubble, wghe three terms in the first square brackets are a one-sided,
use boundary-fitted coordinatég,») related to cylindrical ~second-order accurate approximation &@d)(us/h); ny-

coordinateqr,x) by The mapping algorithm generates the values of the scale fac-
P P g (1 9 \ tors at points with integer labels; those at points with half-
— =+ —|=— ( ):o, 2 integer labels are obtained by averaging. This equation is
9\ a¢)  an\f an) |\

in which f=h, /h, is the distortion function defined by the
ratio of the scale factord, and h, in the & and 7 Gas
directions’® The trace of the bubble surface on the meridian
plane corresponds tey=1. At each time step, the outer
boundary, corresponding tg=0, is a sphere of radiu§
centered at the midpoint between the intersections of the
bubble surface with the axis of symmetry. A regular grid of ® °
PR . ; . o (i, NJ112)
points is laid out in the computational domain and their im- (14172, NJ1/2)
age in the physical domain is found by solvi(®). In this
work, the functionf is prescribed as

f=(G-mM, )

whereM is the conformal modulésee, e.g., Refs. 10, 13 and
14); this specification results in a refined grid near the bubble
surface. An example of a grid generated in this way is shown
in Fig. 1 and a detail near the bubble in Fig. 2.

The flow fields are calculated using tis¢MPLERpro-
cedure(see, e.g., Refs. 15 and)16n a standard staggered
finite-difference grid arrangement with second-order accu-
rate discretization except near the bubble boundary, where FIG. 3. lllustration of the discretization in E¢g).

@ULND L N) (412N
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solved for @g)i ng in terms of the most recent values of the TABLE I. Comparison of the present computational results with the mea-
velocities at neighboring points. After this step, a new estj-Surements of Ref. 17.

mate of the normal velocityl); . 1/2n; is found by using

Terminal velocity

the equation of continuity ) m/s Aspect ratio
Radius
1 J J mm Experiment Calculation Experiment Calculation
heh,r &—g(h,,rug) o (heruy)| =0, 6) 036  0.1530.002 0.159 1.03 1.027
0.50 0.261-0.002 0.253 1.15 1.116
discretized by central differences at{1/2NJ—1/2). 0.60  0.304-0.002 0.300 1.30 1235

At each iteration, th6&IMPLERmethod requires the so-
lution of a Poisson equation for the pressure correcpon
and, at the next step, for the pressure itself. At the bubble =~ S ,
surface, the boundary condition associated with the pressurAé' which can be reduced to 3 b{ Increasing the number of
correction is simplyp’=0, because there the velocity is gﬁges to 5&50 and, further, to 1% by going to an 8®0
found from (4) and (6) and therefore does not need to be : . . . .
updated. For the case of the pressure, on the other hand, we Some results obtained with the 832 grid and different

use a Dirichlet condition obtained from the normal stresg”UPPle ra?'l'g are compared in Table | with the data of
condition evaluated &t 1/2 NJ Duineveld”*® who carried out measurements in ultrapure

water. For an additional safety margin, in view of the tran-
1 9u, u; oh, sient nature of the motion and of the larger curvature of the
—p+ ZM(h— &—+ hoh a—g) bubble shape for some of the cases, the calculations reported
n o & here were obtained with a 50 (spherical and ellipsoidal
1 shapesor 60x 60 (oval shapesgrid.
h_g IE 9E2 9E2 9 ' ) Since the present method is explicit, the time step has to
be sufficiently small to resolve the fastest process included in
where the term in parentheses in the left-hand side is ththe simulation. Because of surface tension, the shortest cap-
(n,m) component of the rate of strain and the last term, mul-llary waves on the bubble surface have a wavelength of the
tiplied by the surface tension coefficient is the local cur-  order of 2rR/N, whereN is the number of grid points along
vature. On the outer boundary the normal velocity gradient ishe surface. The corresponding period is of the order of
taken to vanish, while the pressure is taken to be hydrostati®=\pR%/¢N® which, with R=0.6mm, N=50, p
At convergence of the iterative process, the nodes on the- 1000 kg/ni, ¢=0.0729 J/m, gives 30.6us. Numerical
bubble surface are moved by the explicit first-order Eulertests showed that a time step of the order of 1/15 to 1/30 of
method, and then interpolated by a cubic spline so as tthis value gave converged results.
generate a representation of the bubble surface at the new To validate the ability of the code to resolve time-
time level. At this point, a new boundary fitted grid is gen- dependent phenomena we have compared its predictions
erated according to the procedure described in Ref. 10 andith several oscillations problems for which exact results
the new bubble volume is calculated for useIn. exist. The first test is one in which the bubble executes iso-
The generation of a new coordinate system at each timehermal spherically symmetric radial oscillations, a situation
step has the effect that the grid points in physical space mowhich can be described by means of the Rayleigh—Plesset
in time. Thus, a special care is necessary in evaluating the
convective derivatives in the momentum equatitsee Ref.

=—p(Hto

ax 3°r X (?r) 1 ox
rhe 9¢

12). ‘ T T

We have run tests with the radiSof the outer boundary i ap
equal to 20 and 30 times the initial bubble radius finding === NS
differences of the order of 0.2% in the terminal velocity; for 1

S=10 times the initial radius, the error was of the order of

2%. For all the calculations reported here we used20. T
Convergence tests for the terminal velocity of an initially %
spherical 1 mm-radius bubble were run with XL86, 32 =
%X 32, and 4& 48-node grids. The difference between the S 08

coarsest and the finest grid was of the order of 5%, while that
between the intermediate and the finest grid was 0.3%. Or-
thogonality of the grid can be checked by monitoring the
minimum over the nodes of the quantity 0.6

L 1 1
0 0.0002 0.0004

1
cosf= hgh (X§X7]+y§y7])! (8) Time(s)
n
. . . . FIG. 4. Comparison between the results of the present méttashed and
which represgnts the ar!gle between Coordmat(_':‘ lines. Witfhose from the Rayleigh—Plesset equation for the radial oscillations of an
the 32x< 32 grid, the maximum differenc®0°— 6| is about initially over-expanded spherical bubble.
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FIG. 5. The four initial bubble shapes considered in this work: Sphere,
prolate and oblate spheroids, and Cassini oval Wwi#0.988; the equivalent FIG. 6. Left picture: Superposition of the terminal shapes for initially

radius is the same in all four cases and is 0.6 mm. spherical and oval bubbles; right picture: Superposition of the terminal
shapes for the initially ellipsoidal bubbles. In all cases the equivalent radius
is 0.6 mm.

equation. Figure 4 compares the present results with the

Rayleigh—Plesset calculation for an initial bubble radius of lthe region of high curvature near the polar axis is qualita-

mm, an initial internal pressure of 100 kPa, and an ambienfively reminiscent of the shape of a bubble which has just

pressure of 200 kPa. Note that the oscillation amplitude ipinched off from a needle.

relatively large and, accordingly, this represents a stringent  The volume of the prolate spheroidVs=37ab, of the

test of the present calculation. These results were obtainegblate spheroid/=2wab?, and of the Cassini oval

with an 80x 80 grid; a smaller 58 50 grid accurately repro-

duced the first period of oscillation, but gave an error of \ _r

about 5% in the second period. a> 2
As a second test, we have calculated the period of the

shape oscillations for the prolate-oblate mode for an initial

k(14 Ki)—K,(l-l— K2)

3 2
K 2k, . +1+«k 2
+ g — — ke, (3+ k2)

aspect ratido/a= 1.1 with the linear-theory resuisee, e.g., 2 Y2k _+1+k° 3
Ref. 19 )
pRS + §K_(3+K2_) , (12
=7\ 3, 9)
30

wherex . =1+ k2. The maximum curvature of the Cassini
For R=0.6 mm, c=0.0729 J/ri, p=1000 kg/ni this equa- oval on the axis of symmetry is given by
tion gives 3.12 ms, while the numerical result with>880 5

and 50<50 grids is 3.23 and 3.35 ms, respectively. As a aC= 2-k

further test, we have repeated this calculation wita= 2. It k2J1-k2'

is known that the oscillation period lengthens as the ampli- hich givesaC=6.79 fork=0.988.

tude increases. For the prolate-oblate mode, Ref. 20 gives tHE Figure 6 shows the calculated terminal shapes of bubbles

approximate result in water with an equivalent radid®,= 0.6 mm released with
T, 44893 b/a—-11?] "1 the four initial shapes mentioned before. Bubbles of this size
1722 " 61740 1+b/2a ! (10 were reported to rise rectilinearly in Ref. 2, and to exhibit
different terminal velocities according to the manner of gen-
eration. The terminal shapes of the sphere and Cassini oval
with k=0.988 are superposed in the left picture, and those of

(13

from which, forb/a=2, one finds a lengthening of 22%. Our
numerical result, again foR=0.6 mm, is 3.65 ms with an
80x 80 grid and 3.73 ms with a 6060 grid; the difference
with (10) is 2.5% and 4.3%, respectively.

The results of these tests suggest that the code works
correctly and the spatial and temporal discretizations use O
are adequate.

O

Ill. SHAPE CHANGES

To explore the effect of the initial bubble shape on the
terminal velocity we have used several initial shapes, all with
the same equivalent radil’, (Fig. 5: A sphere of radius
Ry, prolate and oblate spheroids with major and minor axes
b and a, with b/a=2, and the solid obtained by rotating
around the polar axis a Cassini oval, given by
2 2

—4 5= k*. (11)

r24x2 L
+
aZ

@O O O O O
O O O O
QOO0 O O O

If k<1, this curve consists of two disjointed ovals with foci
at *a. As k approaches 1 from below, the ovals develop a

larger and larger curvature _Unt”’ fd’:r:_l’ they jo_in with @ Fig. 7. comparison of shape and position of the four bubbles of Fig. 5 at 10
cusp atx=0 to form a lemniscate. This shape is chosen asns-intervals.

OO O O O
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FIG. 8. Successive shapes at 0.9 ms intervals of the initially prolater|G. 10. Successive shapes at 0.9 ms intervals of the initially oval bubble;
spheroidal bubble; the equivalent radius is 0.6 mm; the arrow has a length gf,¢ equivalent radius is 0.6 mm amke-=0.988; the arrow has a length of
1.905 mm. In each row, the bubble vertical position is relative to the shapg 447 mm. In each row, the bubble vertical position is relative to the shape
at the beginning of the row. at the beginning of the row.

the two spheroids in the right picture. The shapes are barely .
distinguishable from each other, with any small difference™9 the early stages of the process. The amplitude of _the
imputable to numerical error. surface-tension-driven shape oscillations of the spheroidal

We define the rise velocity of the bubble as the velocitycases are greater than for the Cassini oval in .view of their
of its center of volumex, given by greater initial surface energyable Il). The period, mea- .
sured from a Fourier transform of the computed aspect ratios
x :i lexmz(x)dx (14) (defined as the ratio of the length of the bubble along the axis
Vv Xo ' of symmetry to its maximum widdhis 3.39, 3.39, and 3.77
, , ms, respectively, for the prolate, oblate, and Cassini oval
where the bubble extends in the range=x<x, andr(x) iS  gnanes The presence of a second harmonic at 1.69 and 1.75
the dl_stance of t_he surf_a_ce _element f_rom the axis of_symmer-ns was clear for the prolate and oblate cases, respectively,
try (this formula is modified in an obvious way in regions of but was less well defined for the oval case in which many

the pubble S“Ff_ace which are convex toward the liguTthe surface modes are simultaneously present. In all cases, the
terminal velocities computed in the four cases are very closeb

bble volume changed by less than 0.1% with respect to the
0.300 m/s for the spherical, prolate, and oblate shapes, aqpr g y ’ P

- itial value.
0.298 m/s for the Cassini oval. A comparison of the rise velocities of the spherical, pro-

The.se results suggest that, ?O”trar)/ “? 'observ.amons "fate, and oblate bubbles is shown in Fig. 11. The velocity of
ported in Refs. 2 and 4’, there is no S|gn|f|cant'd|fferencethe ellipsoidal bubbles is not monotonic due to the strong
: . , ) , and, as expected, the oscillations of the
bubbles at 10 ms-l_ntervals. The difference in the d'StanceBrolate and oblate bubbles have opposite phases. It is inter-
travelled at equal times are a consequence of the shape Qgsiing to note that the difference between the maxima and the
cillations that take place in the different cases, as will begarical hubble velocity is greater than that of the minima.
furthgr discussed below. — ) This fact is due to the very strong effect of bubble deforma-

Figures 8—10 are a more detailed illustration of the SUCtion on its drag and added ma&see, e.g., Ref. 21and is
cessive shapes of the three initially nonspherical bubbles dufUrther illustrated in Fig. 12, which shows both the instanta-

neous rise velocity and aspect ratio for the initially prolate
bubble. A very similar result is found in the initially oblate

Q O case. The distance travelled by the two spheroidal bubbles is
O O O the same.

12.6ms A comparison of the spherical case with the 0.988
Cassini oval is shown in Fig. 13. The situation is qualita-

O O O tively very similar to that depicted in Fig. 11, except that,
O due to the smaller amplitude of the shape oscillations, the

4.5ms 8.1ms
TABLE II. Nondimensional surface area of the shapes of Fig. 5 in excess of
@ O O that of a sphere of equal volume.
1=0ms 3.6ms Shape Excess surf. area#R>
FIG. 9. Successive shapes at 0.9 ms intervals of the initially oblate- Prolate 0.077
spheroidal bubble; the equivalent radius is 0.6 mm; the arrow has a length of Oblate 0.096
1.512 mm. In each row, the bubble vertical position is relative to the shape Cassini oval k=0.988) 0.012

at the beginning of the row.
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0 0.05 0.1 0.15 0 0.05 0.1 0.15
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FIG. 11. Rise velocities of the spheridéhick solid line, prolate(thin solid ~ FIG. 13. Rise velocities of the spheridétick solid ling andk=0.988 oval
line), and oblate/dashed lingbubbles vs time. bubbles vs time.

differences with the spherical case are smaller. The terminal . .
o o T . more, the rapid change in buoyancy leads to an accelerated
velocities are indistinguishable within the present accuracy. . S : .
motion which is useful to illuminate the role of the memory

force.
IV. VOLUME CHANGES For a spherical bubble with instantaneous radrg) in
We now turn to a different problem, in which the bubble buoyant rise with a velocityJ(t) in a quiescent_ liquid, with _
undergoes a volume change in the course of its ascent i€ neglect of the memory force, one may write an approxi-
response to the time variation of the ambient pressure, whichiate €quation of motion in the form
we take to be given by d (2

4 1
3 wa3U) =3 mR3pg— > mR?pCp|U|U, (16)

1 t—t, dt

Pw(t)zPOtéAp 1—tanh —||, (15
T where g is the acceleration of gravity an@p is the drag
with the upper sign corresponding to a pressure decreag®efficient. Equation(16) may be recast in the equivalent
from Py+ Ap to P, and the lower sign to a pressure increaseform
from Po—Ap to Py. The interest of this situation lies in the
. du 3 dR 3Cp

dependence of the bubble added mass on its volume. Further- - RGO U+2g9- - —|U|U, (17)

from the first term in the right-hand side of which the effect
of the volume change on the rise velocity is appafént.

For a small bubble, the terminal velocity scales llde
«R?g/v, wherev is the liquid kinematic viscosity. This re-
lation can be explicitly verified when the drag force can be
estimated from either the Hadamard—Rybczynsky or Levich
relations. The velocity of larger bubbles, chiefly dependent
on form rather than viscous drag, scales insteadig&. In
either case, one findfU/U~AR/R, which shows that the
left hand side and the first term in the right-hand sidé€1a)
are in all cases comparable in magnitude.

Wy When the radial inertia of the bubble is small, fraf)
‘,"f\",‘/\,\“ NN v~ one has the estimattR/R~AP. /P, . Therefore, the first
] term in the right-hand side dfL7) is negligible compared to
the second one wheAP. /P,.<g7/U, in which 7 is the
, | ) \ 05 time scale for the ambient pressure variation. For small
0.06 008 bubbles this givesAP../P.<v7/R? For milimeter-size
Time(s) bubbles, withv ~10 8 m?/s, this estimate givedP../P..
FIG. 12. Rise velocitysolid line) and aspect ratio vs time during the rise of <V (v in m?/s). For larger bubbles, for which) ~ JgR, we
an initially prolate bubble with initial aspect rattwa= 2. find insteadAP,./P..<0.17 (7 in seconds Both conditions

Rise velocity(mm/s)
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U(t): Calculation

-— ——— U(): Model 4
———— - P()

S
S

Calculation
— — — - Model with memory force
— — — — Model without memory force

Rise velocity(mm/s)
[\v]
[=]
o

—_
[=
o

P(t)}(atm)
Rise velocity(mm/s)
S

" L 1 L 1 .
Time(s) % 0.1 0.2
FIG. 14. Rise velocity of a bubble with an initial radit®0)=0.4 mm Time(s)
when the ambient pressugghown by the dash—dot line, right vertical sgale
falls from 220 to 100 kPa. The dashed line is the result from the simplified
model of Eq.(17) not including the memory force.

FIG. 15. The rise velocity of the expanding bubble of the previous figure as
computed with the present numerical meth{sdlid line) compared with the
simple model of Eq(17), without memory forcdlong dashes and with the
model of Eq.(20), with memory force.

will only be verified for slow or relatively minor pressure

changes, which shows that the effect of present concern can 2R(1)U

readily occur in practical situations. Re= . (19)
In order to impose the ambient pressure boundary con- v

dition, in the numerical computation for this case, it provesy js the aspect ratio, evaluated from H4.5) of Ref. 24,
convenient to maintain the pressure at infinity at the referg(X) is given by Eq.(2.12 there, andH(y) is obtained by
ence value addingl5) to the right-hand side of7). The jnterpolation from the data in Table | of the same reference.
bubble shape in the cases simulated here remains essentialiyhile the result found from the simplified model is qualita-
spherical, so that the grid is little distorted. We have usedjyely similar to the more accurate one, a substantial quanti-
grids with 60 60 nodes for the examples that follow. tative difference remains which, as one reviewer remarked, is
The solid line in Fig. 14 shows results for the rise veloc-gomewhat puzzling. For example, for small times, there is
ity of a bubble with an initial radiuf(0)=0.4 mm with an  nearly a factor of 2 difference in the acceleration, in spite of
ambient initial pressure of 220 kPa when,(Ir), one takes  tne fact that the flow is nearly potential so that buoyancy
Po=100 kPa,Ap=120 kPa,t;=120 ms,7=13.77 ms. The \would be expected to dominate.
bubble is released from rest with a spherical shape; its ve- | trying to address this question we have considered
locity gradually increases and reaches a terminal value Qfhether the origin of the discrepancy could be traced to the

0.181 m/s. Until this point the ambient pressure, shown byheglect of the memory force, with the inclusion of which Eq.
the dash—dot line, has changed very little. When the pressui@e) would take the form

starts falling, at first the bubble slows down and then, as its

radius reaches its terminal value and the pressure stabilizes, E(EW R3U) _ fTrRa _ EWRZ CplU|U
accelerates again reaching the terminal velocity of 0.266 m/s dt\3 P 3 P97 3 P~
corresponding to the final equilibrium radius of 0.5224 mm. . du

This behavior is quite clear in the light of Eq4.6) or (17): _J' G(t—7) —dr, (20)
When there is a rapid time dependence, the left-hand side of 0 dr

(16) dominates and shows thBEU ~constant, which corre-  yhereG is an appropriate kernel. For a spherical bubble of

sponds to a conservation of the impulse: a radius increasgnstant radius at small Reynolds number, Yang and?Eeal
forces therefore a decreaseldfWhen steady conditions are (see also Refs. 23, 26, and)ajive

reached, the left-hand side (f6) is negligible, and the rise
i i i - 9ut t
velocity settles to the value appropriate for the increased vol G(t)=8muR ex% %) erfc( 3 /%) _ 21)

ume.
The dashed line in Fig. 14 is found by integrating Eq.

(17) with Cy, given by In Fig. 15 we compare the fully numerical solutidsolid

line) with the solution of(20) (dotted ling; the dashed line is

48 H(x) the solution of(16), already shown in Fig. 14, which does
Co=RaCX| 1+ TRe " (18)  not include the memory force. The correction is in the right

direction in that Eq.(20) better approximates the Navier—
where Stokes solution. A good part of the residual difference is due
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T T T 1 T T 1 ! 1
1.15 [ - 1
Calculation 300~
| = = = = Models |
- -
- -
g1k ," . E =
g / ] ° e
s B 4 g o
i 3l |
e ——— T 440 _; J U(Y Calculation
105 7] o — — — = U(t) Mode! 1
S | H -
I
» :
L 1 L 1 L 1
. | . | ' % 0.1 0.2 0.3
'o 0.1 02 0.3 Time(s)

Time(s
(s) FIG. 17. Rise velocity of a bubble with an initial radiuR(0)

FIG. 16. Calculated aspect ratio vs time for the expanding bubble of the= 0-5224 mm when the ambient press(seown by the dash—dot line, right
previous two figuregsolid line) compared with the results predicted for the Vertical scalgrises from 100 to 220 kPa. The dashed line is the result from

same instantaneous velocity by the theories of Refs. 24 aridez®ied ling the simplified model of Eq(17) without the memory force.

the rise velocity of expanding and contracting bubbles.
to the fact that(18) over-estimates the drag coefficient by qualitatively the results are the same as found here. Unfor-
about 5%. In order to investigate whether this difference isynately, no quantitative comparison is possible as the water
due to an incorrect estimation of the aspect ratizve com-  ysed in the experiment was contaminated with surface-active

pare in Fig. 16 the aspect ratio as computed from the preseBjgents which had a strong impact on the terminal velocities
Navier—Stokes simulatiofsolid line) with the theoretical re-  5f the bubbles.

sults of Refs. 24 and 2&ee also Ref. 29which essentially
coincide for the velocities encountered here. To isolate th§/ concCLUSIONS
effect of the aspect ratio modeling, we used the instantaneous )
translational velocity calculated from the full Navier—Stokes I the present paper we have applied an accurate bound-
solution. The models exhibit some difference from the nu-ary fitted numerical method to the calculation of the rise
merical results which, however, is able to account only forvelocity of bubbles undergoing shape or volume oscillations.
about half of the difference in terminal velocities. The re-  We have found that the shape with which the bubble is
mainder is likely due to higher-order Reynolds-number termdeleased, and the oscillations through which it relaxes to the
not included in(18).

In spite of its apparently good performance, it should be 444
noted that the model used for the memory forcg2d) is
really applied outside its expected range of validity. Even in
the early stages of the process, when both the bubble radiut
and rise velocity are small, the Reynolds number is about
50-100, rather than small. Secondly, as shown by Magnau-g
det and Legendr® the argument/R? in (21) should be
replaced byfdt/R? for a variable radius. E

200 -

The solid line in Fig. 17 shows the rise velocity of a
bubble undergoing a contraction from a radius equal to the 9
terminal radius of the previous cade(0)=0.5224 mm, to — Calculation
the initial radius of the previous case, 0.4 mm, under the g¢ 100 — — — - Model with memory force
action of an increasing ambient pressure, giver{1® with — — - Model without memory force
the lower sign and Py=220kPa, Ap=120kPa, t,
=120 ms, 7=13.77 msR(0)=0.5224 mm; the dashed line
is the simple mode{17). Now impulse conservation has the
effect of causing an increase of the rise velocity before it 0 ' 031 ' ofg ' 0.3
settles down to the smaller value associated with the reducec Time(s)
radius. The addition of the memory for¢€ig. 18 improves

somewhat the simplified model, but not as much as in thé:IG. 18. The_z rise velocity of the C(_)ntractmg bu_bb_le of the previous figure as
computed with the present numerical metttsdlid line) compared with the

previous case. _ _ simple model of Eq(17), without memory forcélong dashes and with the
A recent pape°’|1 reports experimental observations on model of Eq.(20), with memory force.
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