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Abstract

A common technique hackers use to avoid being detected is to route their network

connections through a chain of stepping-stone hosts. There is no valid reason to use

a long connection chain for remote login such as SSH connection. In this disserta-

tion, we focus on protecting hosts from being attacked via stepping-stone connection

chains. Our objective is to detect intruders at a stepping-stone host in the middle

of the connection chain and at the target host at the end of the chain.

Along with the developing of correlation-based stepping-stone detection algo-

rithms, hackers also developed new techniques to evade being detected. Hackers can

add chaff packets or jitter the original packets to decrease the detection rate of these

correlation algorithms. Dealing with chaff packet-added intrusions has already been

studied, while the jittering part hasn’t been touched. Our jittering detection algo-

rithm utilizes statistical distributions to fit the inter-arrival time gaps of traffic flows,

extracting features from fitting, and separates jittered ones from normal ones by us-

ing support vector machines. The algorithm does not work well for light jittering.

Hence, we further propose a hybrid stepping-stone detection algorithm to employ

both correlation and jitter detection algorithms to detect intrusions. Experiment re-

sults show that our hybrid stepping-stone detection algorithm can successfully detect

more than 90% stepping-stone intrusions in most cases with a 0% false positive rate.

It is always important for a host to protect itself from being a victim. To de-

tect long connection chain intrusions at the target host, we propose two detection

algorithms: a nearest neighbor-based algorithm and an anomaly detection-based al-

gorithm. The first algorithm centers around analyzing the delay between the time a

user presses “enter” to finish a command and the time that the user types the next
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character, and uses an approximated upstream round-trip time to separate a long

connection chain from short ones. Experiment results show that our method can

correctly identify long chains from short ones with good accuracy. Besides, based on

the idea of anomaly behavior detection, a novel method to identify long connection

chains from short chains using a pre-defined short chain profile has been proposed.

Each new connection will be compared to the profile. Any connection that differs

significantly from the profile will be considered as a suspicious long connection. In

addition, several methods are proposed to increase the detection rate by adapting

to a user’s different typing speed. This algorithm can get better detection accuracy

compared to the first one.

With the algorithms proposed in this dissertation, we can detect stepping-stones

in the middle of the chain in a robust way, and we can further and more effectively

protect victim hosts from stepping-stone intrusions at the end of the chain.
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Chapter 1

Introduction

As far back as 50 B.C., diplomats and military commanders already understood

that it was necessary to provide some mechanism to protect the confidentiality of

messages and to have some ways of detecting message tampering [1]. Julius Caesar

was credited with the invention of the Caesar Cipher. Later, by the time of the

First World War, encoding became more sophisticated as machines were employed

to scramble and unscramble information. The end of the 20th century and early

years of the 21st century saw rapid advancements in telecommunications, computing

hardware and software, and data encryption. With the development of smaller,

more powerful, and less expensive computing equipment, electronic data processing

devices reached small business and home users. These computers quickly became

interconnected through the Internet.

Due to the rapid growth and widespread use of computers and electronic business

conducted through the Internet, as well as the numerous occurrences of international
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terrorism, we need better methods to protect the computers and the information they

store, process and transmit. The common goals of ensuring the security and reliabil-

ity of information systems become a very important research field in the context of

computer science. Information security and network security are two major branches.

In this chapter, we first introduce the definition of information and network secu-

rity. After that, we discuss the necessity of intrusion detection and briefly introduce

the classification of it. Next, we talk about stepping-stone detection which is the

major topic of this dissertation. Last, the organization of this dissertation will be

introduced.

1.1 Information and Network Security

Information security is the practice of keeping information’s confidentiality, integrity

and availability [2][3][4][5][6][7]. Applying security to information is analogous to the

application of security to any physical asset. Historically, people referred to infor-

mation security by a number of different terms, such as data security, IT security or

computer security. Confidentiality is the assurance that information is shared only

among authorized parties. Breaches of confidentiality may take place during the

transmission of the information, such as transferring unencrypted data in a public

network. Integrity assures that the information is authentic and complete. Integrity

is one of the primary indicators of information security. The integrity of data means

the data are correct, not tampered, as well as it can be trusted and relied upon.

Availability assures that the systems used to deliver, store, and process information
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are accessible. To invalidate the availability, denial of service (DOS) or distributed

denial of service (DDOS) attacks are widely used to launch the attack the systems

[8][9][10][11][12][13]. Besides these three root components of information security,

scholars added accountability and auditability as another two core attributes of in-

formation security. These two attributes emphasize on keeping someone is personally

accountable and the system is auditable.

Nowadays, most attacks against information systems are launched through net-

works. Network security became an unneglectable part of information security. Net-

work security consists of the provisions and policies adopted by a network adminis-

trator to prevent and monitor unauthorized access, misuses, modifications, or denial

of a computer network and network-accessible resources [14][15]. Network security

concerns protecting a computer network from unauthorized accesses, misuses or mod-

ifications. Authentication is the first step of network security, commonly completed

by using a username and a password as well as other further authentication methods

such as implementing security token or fingerprint. Network security is often used in-

terchangeably with information security, which focuses on protecting data resources

from unauthorized access or attacks as well as misuse by legitimate users inside an

organization.In practice, software or hardware tools used to achieve network security

or information security may overlap. These two tasks normally complement each

other in the sense that if you cannot make sure the network is secure, you can never

guarantee the information or the information system in this network is secure. The

purpose of most network attacks is to jeopardize the information security among the

systems in the network. This dissertation will mostly discuss research and methods
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to solve information and network security problems.

1.2 Intrusion Detection

Network security and intrusion detection have become important topics of active

research even in the last century [16][17][18][19]. As the use of the Internet becomes

more common and widespread, there are more network attacks and security breaches.

Because the growing number of network attacks is more costly, intrusion detection

now plays a more crucial role in ensuring the smooth operation of computer networks.

Intrusion detection has become one of the most important techniques to secure our

networks and systems. It is the process of monitoring the network and the system

activities to detect malicious activities or policy violations which are those actions

attempting to compromise the confidentiality, integrity or availability of a resource.

Intrusion detection techniques are often combined together with intrusion prevention

methods which is used to stop possible incidents detected.

Intrusion detections can be implemented on a single host or a whole network

[20][21][22][23][24]. Host-based intrusion detection (HIDS) is used to identify unau-

thorized, illicit, and anomalous behavior on a device. HIDS normally requires an

agent to be installed on the system to monitor and alert local OS and application ac-

tivities. The detection agent may combine attacking signatures, detecting rules and

heuristic methods to identify unauthorized or suspicious activities. The host-based

intrusion detection is passive only focusing on gathering, identifying, logging, and

alerting suspicious detected behavior.
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Network based intrusion detection is implemented to monitor the whole network

which attempts to identify unauthorized, illicit, and anomalous behavior based on

analyzing captured network traffic [25][26][27][28][29]. Many tools can be used to

filter and capture network traffics on a single device. A network-based intrusion

detection system mostly utilizes either a network tap, span port, or a switch to

collect packets that traverse a given network. Using the captured data, the IDS

system processes and flags any suspicious traffic. A network-based intrusion detection

system also does a passive job by gathering, identifying, logging, and alerting the

network administrator after finding a suspicious activity.

We will introduce more detailed techniques regarding intrusion detection and

intrusion detection systems in the next chapter. Besides, we will discuss active

intrusion detection techniques, such as intrusion prevention systems, as well as widely

deployed intrusion detection and prevention systems and products later.

1.3 Stepping-stone Detection

Living in the information era, most computers and mobile devices are connected

via the Internet. Keeping our electronic devices and data safe from intruders is

essential. Nowadays, hackers are smart enough to try to use various techniques to

intrude other’s system, steal data, and evade being caught at the same time. In

order for intruders to steal information from a computer host, it is necessary for the

intruders to remotely login to the host and establish a connection session. When a

person logs into one computer and uses this computer for logging into another, or
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even a number of other computers, we call this sequence of logins a connection chain

[30]. Any intermediate host on a connection chain is called a stepping stone. To

avoid being detected, most of these intruders use long connection chains of stepping

stones to reach their destination host (called the “victim” host). This process is

illustrated in Figure 1.1 below.

Attacking through stepping stones is a technique widely used by network attackers

to attain anonymity and prevent to be traced back. Attackers don’t attack others

directly from their own computer but from intermediate hosts which are already

compromised and controlled by the attackers. Intruders often collect some accounts

on compromised hosts, and before they conduct a new attack, they log in through

this series of hosts before finally carrying out an assault or intrusion on the target.

These hosts can be heterogeneous, diversely located, and even may be in many

different countries. Hence, it’s very difficult to trace an attack back through these

un-administrable and unaccountable hosts to the origin.

There are many benefits to detecting stepping stones [31]. A lot of research

regarding stepping-stone detection had been done during the last decade [32][33][34]

[35][36][37][38]. Staniford-Chen and Heberlein are forerunners who first addressed

the problem of detecting stepping stones in a ground-breaking paper [30]. With

respect to the intermediate hosts, it helps to flag suspicious activity, to maintain logs

in case a break-in is subsequently detected as having come from the local site, to

detect inside attackers laundering their connections through external hosts, to enforce

policies regarding transit traffic, and to detect insecure combinations of legitimate

connections.

6



We will discuss stepping-stone detection related issues, techniques and algorithms

in the following chapters. Details of our study will be presented in Chapter Three.

Figure 1.1: Illustration of Using Stepping Stones to Attack a Victim Host

1.4 Organization of the Dissertation

The rest of the dissertation is organized as follow. Chapter 2 will review and discuss

some research which is directly related to our study. In addition, we will introduce

some commonly used network traffic analysis tools used in our research to collect

packet data. Furthermore, we also present several network traffic manipulation tools

which are used not only by security researchers, but also hackers. As one can imag-

ine, the only way one can defeat hackers is one can perform as a “hacker” oneself.

Based on the order of our research, in the following two chapters, we will discuss

detecting stepping-stone intrusions at the end of the chain in the first place. After

7



that, in Chapter 5, we will switch back to discuss detecting stepping stones in the

middle of the chain. In Chapter 3, we present a new method to extract two different

time gaps from a linux commands constituted network traffic stream. To comple-

ment these intermediate hosts based stepping-stone detection algorithm, we propose

the idea to detect long stepping-stone connection chains at the end of the chain.

In this chapter, we also discuss the impact of a user’s typing delay for estimating

round-trip time (RTT). Chapter 4 discusses a solution to deal with intrusions from

a long connection chain. The study involves a strategy to quantitatively measure

the distance between long connection chains and short connection chains. A dis-

tance based long connection detection algorithm will be presented. Furthermore,

in Chapter 5, we introduce several evasion techniques developed by hackers. These

stepping-stone detection evasion techniques can invalidate formerly developed detec-

tion methods to a large extent. To complement previous stepping-stone detection

algorithms, we propose a new jittered traffic detection algorithm which utilizes the

characteristics of intentionally manipulated network traffic to detect smarter intru-

sions. Last, the concluding section summarizes our work and points out potential

further improvement.
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Chapter 2

Reviews and Related Work

2.1 Network Traffic Analysis Libraries and Tools

To monitor network traffic, we need a tool to capture the network packets. Packet

capturing is the process of intercepting and logging all packets going through a point

in the network. There are many packet sniffers developed to capture network packets,

either in the Ethernet or wireless networks [39][40][41][42][43]. These packet sniffers

are either implemented as a computer program or made as a piece of computer

hardware. They use a network interface controller (NIC) to monitor the traffic in

and out of an interface. Furthermore, a promiscuous mode can be turned on to

enable sniffing among the whole local network. If necessary, packet analysis tools

can decode the packet’s raw data, showing the values of various fields in the packet,

and analyze the content according to specifications [44].
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2.1.1 Libpcap/Winpcap and Tcpdump

Libpcap [45] is the most widely used C/C++ library for network traffic capture. It

was originally developed by the Tcpdump team in the Network Research Group at

Lawrence Berkeley Laboratory [46]. Libpcap consists of an application programming

interface (API) for capturing network traffic. Libpcap was a library implemented

for Unix-like systems. For Windows operating systems, there is an implementation

of libpcap known as WinPcap [47]. The core of both Libpcap and Winpcap was

originally written in C, and it has been implemented in many other languages using

a wrapper. Libpcap and WinPcap can save captured packets into a file or read

files containing saved packets. A captured file saved in Pcap format can be read by

applications, such as TCPdump, Wireshark, CA NetMaster, etc.

Built on top of Pcap, Tcpdump [48][49] is the most well known and powerful

command-line packet analyzer on Unix-like systems. It allows the user to intercept

and display TCP/IP and other packets being transmitted or received over a network

to the attatched network interface controller. The Windows version of Tcpdump is

called WinDump [50]. A user needs special privileges, such as root, on a system

to run Tcpdump. For unencrypted traffic such as Telnet and HTTP, captured with

Tcpdump, one can view login IDs, passwords, as well as other unencrypted infor-

mation easily with the optionally applied Berkeley Packet Filter (BPF)-based [51]

filter. A sample output of Tcpdump is shown in Figure 2.1. From the figure, one

can see that the captured information can be divided into several categories: time

stamp, protocol, sender’s IP, receiver’s IP, direction, sequence number, etc.
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Figure 2.1: Sample Output of Tcpdump

2.1.2 Wireshark and Tshark

Wireshark is an open-source cross-platform packet analyzer with graphic user inter-

face (GUI) [52][53][54][55]. It was originally named Ethereal. In 2006, the project was

renamed Wireshark due to trademark issues [56]. Wireshark is widely used for net-

work troubleshooting, analysis, software and communications protocol development,

and education. Our research mostly uses Wireshark to capture and analyze network

traffic. Wireshark utilizes Pcap library to capture packets. The newest version of

Wireshark re-implemented its GUI with the Qt toolkit. There is also a command-line

based version called TShark which doesn’t have a GUI. Tshark can be used flexibly

through a SSH connection chain. The basic Wireshark operation interface is shown

in Figure 2.2. One can use the capture option to choose the network interface to be

monitored. After choosing the interface, one can set up Wireshark capture options

as shown in Figure 2.3. After starting, any incoming and outgoing packets on the

chosen interface will be captured and displayed by Wireshark as shown in Figure 2.4.
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Figure 2.2: Screenshot of Capturing Packets with Wireshark

2.2 Intrusion Detection and Prevention Techniques

There are two types of intrusion detection: host based and network based. To detect

intrusions, there are two major methods: signature-based intrusion detection and

anomaly-based intrusion detection.

2.2.1 Anomaly-based Detection

Anomaly-based intrusion detection systems monitor system activity and classify it as

either normal or abnormal [57][58][59][60][61][62][63]. The classification is based on

statistical heuristics and rules, rather than signatures or patterns. This method will

detect any type of misuse that falls outside of normal system operation. Normally,
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Figure 2.3: Screenshot of Wireshark Capture Options
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Figure 2.4: Screenshot of Wireshark Packet Analyzer
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the first step is to train the system to recognize normal behavior. This requires

a lot of statistical data for training. Machine learning and artificial intelligence

techniques are widely used in anomaly based intrusion detection system. Anomaly-

based detection methods can detect unknown attacks whenever the attack doesn’t

fall into normal behavior. However, this method may suffer a major shortcoming

with a high false positive rate.

2.2.2 Signature-based Detection

Compared to anomaly based intrusion detection systems, signature-based systems

normally can have a lower false positive rate. Signature-based intrusion detection

systems (IDSs) monitor the system or network activities, and compare them with pre-

determined and pre-compiled attack signatures and patterns [64][65][66][67][68][69][70]

[71]. Whenever getting a match, the system will flag the connection as an intrusion.

However, signature based detection methods also have the drawback that they cannot

detect unknown attacks, such as Zero-Day [72] attacks.

2.2.3 Intrusion Detection and Prevention System

There are a lot of open-source or commercial intrusion detection and prevention

systems developed already [73][74][75][76], including products from major security

service companies like Cisco, IBM, McAfee, Juniper, Sourcefire, TippingPoint, etc..

A traditional IDS can only detect suspicious behavior and notify the administrator.

It doesn’t make the further move to automatically stop the attack. Compared to
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IDS, intrusion prevention systems (IPSs) can identify malicious activity, log infor-

mation about the activity and report, block, or stop the malicious activity. Intrusion

prevention systems are considered extended and enhanced intrusion detection sys-

tems.

Snort [77][78] is the most well known and widely deployed open-source intru-

sion detection and prevention system. It uses signature-based detection techniques,

though it can combine the benefits of signature, protocol, and anomaly-based in-

spection. With millions of downloads and nearly 400,000 registered users, Snort has

already become the de facto standard for IPS. Since Snort is a signature-based in-

trusion detection system, it is possible to combine our anomaly-based stepping-stone

intrusion detection methods with Snort to build a more robust detection system.

2.3 Previous Work Related to Stepping-stone De-

tection

2.3.1 Detecting Stepping Stones

During the last decade, a lot of research has been done on stepping-stone detection.

For different connections incoming to a host and outgoing from the host, these incom-

ing and outgoing connections are managed to be matched into pairs. By successfully

matching a incoming and outgoing pair, the host is detected as a stepping stone

to other machines. These previous stepping-stone detection techniques can be illus-

trated in Figure 2.5. There are several connections incoming to and outgoing from
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the selected intermediate host shown in Figure 2.5. For these incoming and outgoing

connections, algorithms can be used to match a incoming and outgoing pair based on

time gaps or other information. If this pair is successfully found as shown in Figure

2.5, this host is detected as a stepping stone. Then the connection through this host

becomes suspicious to be a stepping-stone attack connection utilized by attackers.

Figure 2.5: Previous Stepping-stone Detection Method

Staniford-Chen and Heberlein [30] are the forerunners in research that deal with

the problem of detecting stepping-stone connections. Their early work [30] is based

on the content of the traffic. They used thumbprints which are short summaries of

the content of a connection, and compared these thumbprints to determine whether

two connections contain the same text and are therefore likely to be part of the same

connection chain. This method can only deal with unencrypted connections such as

Telnet. However for encrypted connections like SSH, it is impossible to check the

content of a connection, thus the thumbprint method is not valid anymore.
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Wang and Reeves [79] used a more active way to detect intruders. Wang pro-

posed a novel intrusion response framework, the “Sleepy Watermark Tracing (SWT)”

framework which integrates a sleepy intrusion response scheme, a watermark corre-

lation technique, and an active tracing protocol. SWT is called “sleepy”, because

it does not introduce overhead when no intrusion is detected. But, it is actually

“active” in that when an intrusion is detected, the target will inject a watermark

into the backward connection of the intrusion, and wake up and collaborate with

intermediate routers along the intrusion path. Based on their experimental results,

the SWT is able to provide a highly efficient and accurate source tracing on inter-

active intrusions through chained telnet or rlogin which are not encrypted during

the transportation compared with SSH connections. For unencrypted connections,

the SWT can trace back to the farthest trustworthy security gateway to the origin

of intrusion even when there is just one keystroke entered by the intruder. Their

work was very encouraging, because they made it workable on the real-time trac-

ing of interactive intrusions that utilize connection chains to disguise their source.

This real-time solution not only can stop or detect network-based intrusion, but also

can help to detect DDoS by better protecting hosts from being compromised. This

method is efficient, robust, and scalable to detect unencrypted intrusion connections

which really can help a lot during the Telnet era.

Signal processing technology also can be used in stepping-stone intrusion detec-

tion. Zhao used correlation coefficients, such as Spearman Rank, Kendall Tau Rank,

and Pearson Product-Moment, to correlate two sessions for identifying stepping-

stone intrusions [80]. He is the first one to apply this correlation coefficient method
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to stepping-stone intrusion detection. His method does not need to monitor a ses-

sion for a long time to conclude a stepping-stone intrusion. His experimental results

showed that a stepping-stone intrusion can be detected while an intruder just inputs

the username and password.

He and Tong [81, 82, 83] proposed the Detect-Match (DM) and Detect-Maximum-

Variation (DMV) algorithms to detect stepping-stone connection pairs. In their

paper [81], they used a perspective of signal processing to formulate the problem as

a nonparametric hypothesis testing. They examined stepping-stone connection pairs

at intermediate hosts, and allowed timing perturbation, proportional chaff rate and

encrypted traffics. Their algorithms are proven to have exponentially decaying false

alarm probabilities when normal traffic can be modeled as Poisson processes.

Besides these normal detection methods, He and Tong [84] proposed a way ran-

domizing packet transmissions to defense against stepping-stone attacks. Their

method can deal with encrypted and padded packets with perturbed timing and

inserted chaff. But for time-sensitive applications, this method may not be desir-

able. To prevent such stepping-stone attacks, it is critical to detect the connection

chains.

Motivated by the Longest Similar Subsequence (LSS) algorithm, Wan and Huang

tried to detect intruders by comparing the similarity of two thumbprints [85]. A

thumbprint is a summary of a connection that characterizes the connection. The

packet gap thumbprint consists of sequences of nonnegative real numbers representing

the time gaps between “request” packets. By defining the similarity between two non-

negative real number sequences, they introduced epsilon-similarity, partial sum, and
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longest epsilon-similar subsequence. By using a property of the partial sums, they

proposed an algorithm based on the dynamic programming technique and reduced

the time complexity on the matching to O(mn(m+n)).

With the increasing requirement of privacy, unencrypted remote login techniques

are replaced by encrypted access techniques, such as SSH. Hence, the former contents-

based intrusion detection methods are not valid any more. To deal with this change,

Zhang and Paxson [31] used the timing correlation of ON/OFF periods of different

connections to detect stepping-stone attacks. By leveraging the distinct properties

of interactive network traffic, such as smaller packet sizes, longer idle periods than

machine-generated traffic, their method is able to ignore the data contents of the

connections to detect encrypted connections. By running their algorithm on a site’s

Internet access link, it not only can provide good accuracy, but also minimize the

packet capture load by only recording packet headers with the packet filter. One

shortcoming of their method was that it failed to separate legitimate stepping stones

that users routinely traverse for a variety of reasons. One possible solution to this

problem is to refine their security policies for addressing these legitimate stepping

stones.

2.3.2 Detecting Downstream Stepping Stones

Yung [86] investigated request and response pairs between a client and a downstream

server to estimate the round-trip time for outgoing connections. Yung’s method of

echo-delay comparison monitors an outgoing connection to estimate two important
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time gaps. The first monitored gap between the client request and the server delayed

acknowledgment estimates the round-trip travel time between the client and the

server. The second monitored gap between the client request and the server reply

echo estimates how far downstream the final victim is away. These two time gaps

were also used to provide information on the number of downstream hops. Compared

with other approaches, this method works in isolation which means it doesn’t match

for similar sessions on the same connection chain. This strategy also allows benign,

short connection chains common in practice. His method can be used on interactive

terminal sessions, such as Telnet and SSH. The method showed good performance in

identifying sessions with more than two downstream hops.

Yang and Huang [87] proposed an algorithm to detect the length of a downstream

connection chain by monitoring packets of outgoing and incoming connections. The

algorithm is able to compute the round trip time gap between a client’s request

packet and the server’s response packet. By monitoring the changes in these gaps,

the number of hosts in the downstream chain can be estimated. This technique

can be used to stop network intrusions when intruders are connected to the target

host. Their approach has many advantages compared with previous methods. It is

able to detect intrusions in real-time, which is significantly important in practice.

It shows better accuracy to estimate the downstream chain length. One of the

restrictions of this algorithm is the assumption that one can monitor the packets

from the beginning of the connection to the height of the connection chain which

was not needed in Yung’s [86] work. Furthermore, like some other approaches in this

area, their algorithm can only detect the length of downstream chain.
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After Yang and Huang’s work [87], they proposed two algorithms [88] to match

TCP Send and Echo packets. One is conservative and the other is heuristic. The

conservative algorithm can accurately match a smaller number of packets, while the

heuristic algorithm can match a higher number of packets, with with less accuracy.

The authors also prove that their conservative algorithm matches packets correctly.

By applying these two algorithms on the Internet to detect long connection chains,

their experiments show that the two algorithms can get the same results. If the

conservative algorithm failed to produce enough data, the heuristic one will be used

to approximate it. The combined method has the advantage of the ability to detect

intruders in real-time. In addition, it can handle encrypted sessions with accurate

chain length estimation, as well as tolerating the network traffic fluctuation and the

network load. The major disadvantage of this method is the requirement of being

able to monitor the packets throughout a connection session.

Because the previous work [88] cannot find RTT for too many send packets by

using a conservative algorithm, Yang and Huang proposed a new clustering par-

titioning algorithm [89] to find a TCP packet RTTs from timestamps of the send

and echo packets of a connection chain. The former method [88] matches send and

echo packets locally; their new method looks at all packets together to produce TCP

packets matches which is called a global approach. By capturing all the send and

echo packets of a connection chain in a certain time interval and computing the dif-

ference between each send packet and echo packets received after it, it can be sure

that the correct RTT will be among these differences. Based on this observation,
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their approach finds the subset which can truly represent the RTT. The experimen-

tal result showed that this algorithm can estimate the length of a connection more

accurately and has a largely decreased false positive error and false negative error

in detecting stepping-stone intrusion compared with the methods proposed before in

[31][86][87][88].

2.3.3 Stepping-stone Intrusion with Evasions

Donoho [90] considered evasions which may defeat normal stepping-stone detections.

These evasions include local jittering of packet arrival times and the addition of

superfluous packets like chaff. Their method makes the assumption that the intruder

can only tolerate the delay to some degree. Donoho used wavelets and similar multi-

scale methods, and the results show that they can separate the masked correlations by

jittering or chaff from long-term packet streams which have the correlation remains.

To deal with a high chaff rate, Kuo and Huang [91] [92] proposed an effective

algorithm for encrypted stepping-stone detection by using a mapping-based detection

method. The algorithm [91] is able to rule out the independent (Normal) pairs and

flag the stepping-stone pairs for examination. By using the order preserving mapping,

the algorithm can run in linear time. This algorithm DMIM [91] guarantees mapping

whenever there exists such a mapping. Their experimental results show that the

DMIM algorithm is efficient and highly accurate to detect the stepping-stone pairs.

To further increase the accuracy of detecting stepping stones when network traffic

is corrupted or injected with chaff packets, the authors improved their algorithm
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and used several factors like maximum delay, number of incoming packets, and the

acceptable mismatched rate to measure their methods. The experimental results

showed their algorithm can detect abnormal connections correctly even with a chaff

rate of up to 400% on incoming and outgoing streams.

Besides Kuo’s work [91][92] on detecting stepping stones with the chaff perturba-

tion, Yang, Lee, and Huang [93] proposed another method to detect stepping-stone

intrusions based on random walk theory. Their theoretical analysis shows that the

proposed method is more effective than Blum’s approach [94] in terms of resisting

intruders’ chaff perturbation.

Zhang [95] also proposed their method to detect stepping-stone connections with

delay and chaff perturbations introduced. Under the assumption that the connections

are long enough, their method can detect stepping-stone connections with limited

and independent delay and chaff perturbations effectively.

Most of the existing malicious stepping-stone chain detection research has been

concentrated on detecting intermediate stepping-stone hosts. A general method for

detecting stepping stones is to identify traffic characteristics which are highly corre-

lated across stepping-stone connection pairs [31]. There are some potential charac-

teristics which include connection contents of unencrypted connection, inter-packet

time gap, ON/OFF patterns of activity, and traffic volume or rate. These features

can be combined to detect stepping stones. However, these stepping-stone detection

methods do not solve the problem completely. First, most of the benefits of the

detection go to the host at the end of the chain (the victim host), an unknown third

party to the monitoring site. Secondly, the stepping stone is only able to gauge
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the maliciousness of a connection by the number of downstream hops it detects [87]

instead of the complete chain. If the stepping stone is very near the victim in the

connection chain, it may not be unable to distinguish a malicious chain from a benign

connection.

2.4 Tools Used to Tamper with Network Packets

for Evasions

We already introduced some network traffic capturing and analysis tools in the pre-

vious section. We have reviewed feasible ways to intercept network traffic and decode

it into useful formats. To invalidate stepping-stone detection algorithms, intention-

ally tampering with one part of the traffic is a feasible solution which can be used

by hackers. To modify a network packet, in addition to intercepting packets, one

needs a store and forward way to get the packet, change it, and send it out. In this

section, we will introduce some tools can be practically used to tamper with network

packets.

To tamper with network packets of client-based and server-based communication,

one often makes independent connections with the client and the server, then relays

messages between them. Furthermore, by using well developed tools, one can gain

the ability to modify the traffic stream between the client and the server on the fly.

There are some widely used network traffic proxy tools can fulfill the store-

and-forward functionality, such as Mallory, MiTM Proxy, Burp Proxy, Scapy, etc.
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[96][97][98][99][100][101]. Those proxy tools are designed to analyze the communica-

tion of client-server-based applications. This can help researchers to easily find more

bugs in all types of client-server applications. However, one can also use these tools

to tamper with a network packet for the purpose of conducting an evasion attack.

Burp Proxy [98] is an intercepting proxy server for security testing of web ap-

plications. It stands in the middle between your browser and the target application

which allows you to intercept and modify all HTTP/S traffic passing in both direc-

tions. Burp allows you to apply rules to determine which requests and responses are

intercepted for manual testing, and also let you define rules to automatically modify

requests and responses without manual intervention. However, Burp only supports

HTTP and HTTPS protocols. Besides, it is not extensible to other protocols.

Scapy [101] is a Python-based packet manipulation program for computer net-

works. It can forge, decode, capture, and send packets of most protocols. It can

also be used to scan, trace, probe, test, or even attack a targeted network. Scapy

provides a Python interface based on Libpcap or Winpcap on Windows. It can be

used as an interactive tool, or as the API for other Python programs.

Matasano’s Port Forwarding Interceptor (PFI) [99] is a proxy tool that can be

used to deal with TCP streams. It saves time from writing codes to deal with raw

TCP connections which Burp can’t help with. It intercepts TCP connections and

allows you to modify the traffic manually. Besides, you can extend it with other TCP

based protocols. However, PFI doesn’t support a pre-set rule-based mechanism to

let you modify your TCP stream in a programmatic way.
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Cain & Abel [100] was a password recovery tool for Microsoft Operating Systems.

Its main purpose was to perform the simplified recovery of passwords and credentials

from various sources; however it also supports some other utilities in recent versions.

The latest version of Cain & Abel contains new functions like man-in-the-middle

(MiTM) attacks and APR (ARP Poison Routing) attacks. Its sniffer supports HTTP,

HTTPS, and SSH protocols. However, it can only capture these traffics and perform

several authentication attacks; you can’t use it to modify the traffic, nor extend it

to support other protocols.

The Middler [102] is a standard tool to demonstrate protocol middling attacks.

It allows you to intercept and modify the traffic in a programmatic way to the HTTP

protocol, while you can’t manually modify the stream on the fly. The plugin system

of the Middler gives the flexibility and extensibility to the HTTP protocol. However,

you can’t add other protocols to it.

Ettercap [103] is a network traffic tampering tool for LAN. It can sniff live con-

nections, filter contents on the fly and support dissection of multiple protocols. It

supports most common platforms, such as Linux, Windows, Solaris, and Mac OS X.

Ettercap is well supported in extensibility, and it allows traffic streams to be modi-

fied in a programmatic way. Unfortunately, it doesn’t support manual traffic stream

modification.

Paros [104] and WebScarab [105] are two Java-based tools used to analyze and

evaluate web applications which communicate by HTTP and HTTPS protocols.

These two perform as an intercepting proxy, allowing you to intercept and mod-

ify requests and responses sending between the client and the server. They don’t
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support any protocol other than HTTP and HTTPS, but you can enrich their func-

tions by implementing plugins in a programmatic way.

There are some other tools, such as Netsed [106] and Squid [107] which either

only support the HTTP protocol or just allow the traffic stream modification in

a programmatic way. Neither of those tools introduced above supports as many

features as Mallory does in terms of extensibility, multiple protocols supporting, and

manual or programmatic traffic modification.

Mallory is a Python based tool implemented as a transparent TCP and UDP

proxy, which can perform the task of intercepting and modifying network traffic

streams between clients and servers. It integrates many features of existing tools,

and focuses on the transport and application layer aspects of MiTM. Mallory is

easy to use, it doesn’t require pre-configuration, and it has very good extensibility.

Currently, it’s capable of intercepting several application layer protocols, such as

HTTP, HTTPS, SSH, DNS and SSL, and injecting data into connections on the

fly. Mallory can be a good network stream debugging tool to analyze malware and

network-based applications.

To use Mallory implementing MiTM, one needs to make Mallory the gateway of

one’s application under testing first. All traffic from the application to the destination

server will go through Mallory in a transparent way. This procedure can be illustrated

by Figure 2.6. To illustrate how much one can tamper with the original packets

during a network connection session, we use an example which tampers HTTP traffic

on the fly by modifying requesting and responses between the web browser and the

server. In this example, we flip all figures on the web page sent from the Flickr server
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to the user. The rendered web page on the user’s browser has all figures flipped as

shown in Figure 2.7.

Figure 2.6: Using Mallory to Tamper with Network Traffic

2.5 Problems Remained to be Solved

Most research already done by others focused on intermediate host-based stepping-

stone detections. Previous stepping-stone detection methods relied upon the time

difference between the attacker sending data downstream, and a response from the

server passing back upstream (“reply echo time”), which forms a “closed loop” along

with the downstream connection chain. Yang and Huang [87] used the closed loop

to detect a downstream connection chain in real time. Their research is trying to

protect the host at the end of the connection chain, which is mostly an unknown

29



Figure 2.7: Flipping Figures of HTTP Traffic by Mallory

third party. Hence, it is meaningful to carry on research on detecting intruders and

preventing systems of being compromised based on the victim host.

Detecting a malicious connection chain is much more challenging from a victim’s

perspective than at a stepping-stone host. Victim-based detection has many difficul-

ties of its own. There is no straightforward method of estimating the full Round-Trip

Time (RTT) for the length of the connection chain. This is primarily due to the na-

ture of tunneled SSH connections, and the fact that SSH is an interactive terminal

session. This means that over the course of an SSH session, there is no point in time

at which the server sends data to the client and the client’s machine automatically

sends a reply back to the server.

For interactive terminal sessions, the client-response would come from the nearest
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Figure 2.8: Stepping-Stone Attack with a Long Connection Chain

host in the connection chain. From Figure 2.8, one can see that all visible hosts to the

victim are those directly connected to the victim machine which called the nearest

neighbors. Other hosts on the long connection are not visible from the victim’s host.

Note that information passed between each pair of hosts is enclosed in a different

packet. To find out if there is a long connection chain based on the view of the

victim’s host, clearly it needs to get a big picture of the connection chain out of the

nearest neighbors area.

To detect intruders who always intend to evade being caught, it’s reasonable

to find if there are long connection chains being used. When a long connection

chain with many stepping-stone hosts is being used, it’s very suspicious that this

chain is used by intruders. In the following two chapters, we solve this problem by

implementing intrusion detection algorithms based on the victim host, which is at the
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end of the connection chain, as shown in Figure 2.9. By separating long connection

chain from short connection chains, the suspicious intrusion connection chain can be

detected and prevented.

Figure 2.9: Detecting Intruders at the Targeted Host
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Chapter 3

Detecting Intruders at the

Targeted Host: A Nearest

Neighbor Approach

There is no valid reason for a legitimate user to use a long connection chain for

remote login to a computer host. If we can discriminate long connection chains from

short connection chains, then we can identify potential intruders from normal users.

Fortunately, the long chain will leave some trace of information for us to explore.

The work described in this chapter has been previously published: Wei Ding, M.J. Hausknecht, S.

Huang, and Z. Riggle. Detecting stepping-stone intruders with long connection chains. In Proc. of

the 5th Intl. Conference on Information Assurance and Security, pages 665-669, 2009.
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Our approach is to examine the packets at the victim host and determine whether a

connection is long or short.

3.1 Measuring Round-trip Time

A packet Round-Trip Time (RTT) for a connection is the sum of processing delay,

queuing delay, transmission delay, and propagation delay of the connection [108].

It’s not hard to detect the downstream round trip time. To measure the downstream

round trip time at the originating host, we need to measure the time lapse between

sending a request packet out to the downstream end and getting the reply packet

back. As illustrated in Figure 3.1, a packet is sent from Host 1 to Host 4, via Host

2 and Host 3. After Host 4 gets this request packet, it sends a reply packet back to

Host 1 via Host 2 and Host 3. At Host 1, the time difference between sending the

request packet and receiving the reply packet is defined as the downstream RTT.

There are various algorithms to match “echo” packets with the ”send” packets with

high confidence [87].

RTT of a connection chain may vary depending on network traffic speed and

CPU load at intermediate hosts. The measurement of RTT can be done by using

socket programming techniques in practice. The basic idea of this method is to

establish a connection between two hosts first. Then based on one host called client,

we can send a packet to another host called server through designated routes. As

soon as the server receives the packet, it sends another packet (as the response to the

packet it received) back to the client. The client needs to measure the time difference
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Figure 3.1: Round-trip Time (RTT) as Measured at Host 1 of a 4-hop Chain

between its sending and the receiving of the response packet, then the RTT can be

calculated. An example of socket programs including client and server parts is shown

in the Appendix A.

Our approach of estimating the RTT is to take an echo packet sent back and

the next packet received as a round-trip which is called upstream round-trip time

(uRTT). The difficulty of the task is to determine the upstream round-trip time with

some certainty, even though it is not as accurate as the downstream one. This time

difference usually represents the full round-trip time plus the time it takes the user

to generate the next packet (via keystroke).

Time Diff = Time to send an Echo packet + User Delay Time +

Time to send the next packet

≈ Round-trip Time + User Delay Time.

In Figure 3.2, as soon as Host 4 receives the first request packet, it sends the reply

packet back to Host 1. After an unknown delay at Host 1, it sends the second request
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packet to Host 4 via the same route. Then Host 4 sends another reply packet back

when it received this new request packet. The echo time of the first reply and the

send time of the second request combine to form an approximate round-trip time.

Clearly this is not the most accurate way to measure the RTT, but this is what

is available and we would like to see if this will lead to the identification of long

connection chains.

Figure 3.2: Estimating Upstream Round-trip Time at the End of the Chain

Therefore, if the time it takes for the user to press the next key, i.e., the user delay

time, is subtracted from the time difference, the round-trip time remains. At the

beginning, we tried to find the minimum upstream round-trip time to approximate

the real RTT. But experiments showed that the measured minimum upstream round-

trip time can be less than the actual RTT which means packet cross-over happened.

This is illustrated in Figure 3.3. Figure 3.3 illustrates two cross-overs in a connection

chain. Before the first reply packet sent from the host arrived at Host 1, Host 1
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already sent the second request packet to Host 4. At the receiving end, the time

difference of the first reply and the second request is very small indicated as “Gap

1” in the figure. These cross-over packets make it more challenging to estimate the

real round trip time. In this situation, there is no user delay to subtract from uRTT,

in order to get the left RTT.

Figure 3.3: Example of Packet Cross-overs

Our approach seeks to estimate the proper user delay time in order to find the full

round trip time. More specifically, our algorithm finds the time difference between

the client’s enter keystroke to submit a command and the client’s next keystroke to

start a new command. It then analyzes this time gap based on several other features

of the connection and attempts to determine the full round-trip time and ultimately

the length of the client’s connection chain.
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3.2 Separating Packet Gaps in SSH Connections

It is not an easy task to estimate the user delay since the time gap between typing

varies significantly even for the same user. Furthermore, if cross-over happens in the

middle, there would be no user delay to subtract. We chose to analyze not all but

some special gaps. We selected the time gap between the end of a command and

the beginning of the next command which we call “inter-command gap” as shown in

3.4(a) because of the expectation that a user will often need to see the command’s

output before starting to type the next command.

Figure 3.4: Two Types of Gaps between Packets

For example, it is often necessary to see the file listing returned by a directory

listing (“ls”) command before selecting which directory to change into (“cd”). Be-

sides, people always want to use (“ls”) command to list all contents of the directory

after using (“cd”) to get into this directory. Sometimes people don’t stop to think

when using these two commands consecutively. Other possible time gaps such as
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the gap between individual keystrokes would have been equally valid for analysis;

however, our algorithm is designed to ignore these gaps because of the possibility

that clients, when using a long connection chain, may not wait for each character to

appear on their terminal before typing the next. This would result in no user delay.

Imagine that a packet is echoed back from one end of the chain while a packet from

the originating host is already on the way toward the end of the chain. The two

packets may cross each other somewhere in the middle of the connection.

While it might seem that user delay times would be dramatically larger than

full round trip times, we found that for long connection chains, the full round trip

times can be on par with the user delay times. For example, using a ten hop chain of

reasonably fast hosts (40 milliseconds round trip time), there would be a 400 millisec-

ond delay which is approximately equal to the delay of certain pairs of commands

for many of our recorded users.

Our algorithm seeks to detect a long connection chain by finding the full round-

trip time. This is found by subtracting the estimated user delay time from the time

gap between the enter key-press and the next keystroke. Shown in Figure 3.4(b),

the user delay time is estimated to be the client’s average typing speed which can be

estimated by using keystroke gaps inside one command which we call “intra-command

gap.” While this estimation does not account for the time the user might spend

reading/thinking before resuming typing, our approach seeks to target those pairs

of commands which require minimal cognitive delay. By subtracting the estimated

user delay from the total gap time, what is left is the estimated full round-trip time.

Unavoidably, some users will wait long periods of time between certain pairs of
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commands. For this reason, estimated full round-trip times greater than a threshold

value of two seconds were discarded. In order to accurately detect measures such

as the user typing speed, and the occurrence of a new command, it was necessary

to examine certain characteristics of an SSH session. Despite the fact that all of

the data in an SSH session are encrypted, much information can still be gathered

simply by monitoring the quantity, characteristics, and timing of packets. Session

characteristics which allow the detection of keystrokes, new commands, and nearest

hop round-trip time will all be discussed. Note that all the data about user delay is

taken at the victim host, not at the source of the chain.

3.3 Estimating Keystroke Gaps

The TCP header of all packets in TCP sessions (SSH packets included) holds in-

formation about, among other things, the source port, destination port, sequence

number, and acknowledgment number of the packet among other pieces of informa-

tion. We can use these header details, especially the latter two numbers to detect

nearly all of the desired SSH session characteristics.

In a normal flow of information at the start of a TCP session, the client will

connect to the server with a SYN packet, telling the server its sequence number.

The server will then respond with a SYN ACK packet, providing its own sequence

number and setting its acknowledgment equal to the client’s next sequence number.

The client will then (a) piggyback the acknowledgment (ACK) of the received packet

within a reply packet, or (b) respond with an ACK packet if no reply is ready within
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a certain period of time. The sequence number of the request packet will be the

same as the acknowledgment number of the corresponding reply packet.

After the three way TCP handshake has been completed, the following packets

would be packets sent between the client and the server. In the context of a SSH

connection each character typed by the client generates a series of packets, each

request packet and its corresponding reply packet can be matched by request packet’s

ACK and reply packet’s sequence number which should always be the same. If

there are multiple reply packets for a single request packet, the sequence number

of those reply packets should be the same. In this way, we are able to detect each

keystroke generated request packet and its corresponding rely packets. Additionally,

by analyzing the time gaps between individual keystrokes, we can find a user’s average

typing speed.

New command detection is slightly more difficult and less reliable than keystroke

detection. The intuition behind command detection is that after the client enters a

command, the amount of data that is sent back will be large enough to exceed one

block size for the encryption algorithm being used. We observed that even an empty

enter stroke can get two response packets back in tested Linux systems. Note that

the encrypted packet length in bytes may vary among these values like 48, 64, 80,

128, etc., so all data will always be padded to take up an encrypted packed size. For

example, an individual character can be padded and encrypted to a request packet

with size of 80 bytes. Data larger than the normal block size, such as a directory

listing, will be padded to the next block size, and will thus be reported as being a

packet with a larger payload.
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Additionally, these post-command packets exhibit the characteristic that each

packet’s sequence number is the same as the last packet’s acknowledgment number.

Because of this, we are able to distinguish the series of packets denoting the return

of a command from the series of packets generated has the user continued typing

new characters. The number of packets generated in response to a new command

can be more than one. For example, “ls /usr/bin/ ” can generate 290 post command

packets in our Unix system while simply pressing enter at an empty prompt may only

generate two. Network latency and user typing speed can also cause the number of

post command packets to vary. Our approach flagged a new command after observing

two consecutive post command packets. In practice we found this to be quite accurate

and reliable. Our sample program used to analyze keystrokes is shown in Appendix

B.

3.4 Long Connection Chain Detection Algorithm

Since we can’t calculate the downstream RTT at the end of the chain, we can’t use

it to indicate how long the current chain is. Instead, we try to measure the upstream

round-trip time at the end of the chain, and use it to discriminate long connection

chains from short ones.
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3.4.1 Estimated Upstream RTT

We define a measure, called estimated upstream round-trip time, to distinguish a

long chain from a short one. We start out with the time gap between a response

packet and the next request packet received at the victim’s host. We then subtract

the average user delay (as defined earlier) from this quantity. Our objective is to

see if the “estimated upstream round-trip time” can be used to differentiate the

chain length. By choosing a representative value for each connection chain based

on estimated uRTT, we want use it to separate long chains from short chains. This

procedure is described by the algorithm shown below.

Algorithm: uRTT

Given a session of one connection from time T, calculate a representa-

tive value:

Step 1: For each inter-command gap, compute gap(i) = Ts(i)− Te(i),

where Te is the time stamp of a response packet, and Ts is the time stamp

of the following request packet.

Step 2: Estimate average user delay d by averaging keystroke gaps inside commands.

Step 3: Calculate the estimated upstream round trip time gaps for each connection

chain as uRTT = gap(i)− d.

Step 4: Calculate the representative value m = median(uRTT(i)), i=1,...,n.
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3.4.2 Nearest Hop Round-trip Time (nRTT) Detection

We already know from the previous chapter that all visible hosts to the victim are

those directly connected to the victim machine, which is shown in Figure 2.8. The

round-trip time to the nearest hop in the connection chain can be calculated due to

the nature of the TCP session or by sending a ping. After each data packet sent by

the client down to the server, the server replies with a response packet to the last

host in the connection chain very shortly after getting the request packet. The last

host then automatically sends an acknowledgment back to the server, completing the

sequence of packets.

Shown in Table 3.1, packets between client and server can be matched by the

Sequence number and the Acknowledgement number. After client sending the request

packet to server, the response packet from the server will make the ACK number of

the request packet to be its sequence number. Also, the ACK packet from client to

server will have its sequence number the same as the ACK number of the response

packet. After we match the request packet, response packet and the ACK packet by

this way, the round trip time to the nearest host can then be found by examining

the time difference between the server sending the response packet to the last host

in the chain and the nearest host replying with its own acknowledgment. Since the

nearest host upstream from the victim machine is communicating with the victim,

the IP address can be found in the packet header. Thus, this is the only host on the

chain that directly communicates with the victim host.

This nearest hop round-trip time does not necessarily reflect the actual RTT or
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Table 3.1: An Example of Matching Packets with Sequence and Acknowledgment
Numbers to Compute RTT

Time Direction Packet Type Seq. Num. Ack. Num.

9.927634 Client->Server Request 3121 4593
9.927742 Server->Client Response 4593 3201
9.956932 Client->Server ACK 3201 4641

length from the origin of the connection to the victim when there is a long connection

chain used. But it can help when we have an estimation of the RTT for the whole

chain. It’s useful to take the ratio of this nearest hop RTT and the estimated uRTT

to estimate how many intermediate hops does this connection chain have, though

it’s maybe not an accurate way to measure this length.

3.4.3 Estimating Connection Chain Length

By modifying the uRTT algorithm a little, an estimated length of the connection

chain can be calculated as shown in this algorithm following.

Algorithm: Length of the Connection Chain

Given a session of one connection:

Step 1: Use algorithm of uRTT to calculate the representative value m.

Step 2: Calculate the nRTT of the connection chain.

Step 3: Calculate the length of the connection chain L = m/nRTT .

When the RTT between each continuous host pair is close to each other, and the

estimated uRTT can closely reflect the real RTT of the whole chain, this estimation
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of the chain length can be close to the real length of the connection chain. But under

real circumstances, neither of these two conditions can be satisfied well.

3.4.4 Classifying Long Chains from Short Chains

In practice, initially we can compare the uRTT and the nRTT to see if the uRTT

is much larger than the nRTT. If the uRTT of a chain is much larger than the

nRTT, it’s very suspicious that there are many intermediate hops before the connec-

tion getting to the nearest neighbor host. Theoretically, if the uRTT is close to the

downstream RTT, and the nRTT is a good representation of the network, the ratio

between uRTT and nRTT should be a good estimator of the chain length. However,

in practice it’s not true. Normally, RTTs between each neighbor hosts are not close

to each other, and the nRTT can vary a lot. Hence, the ratio between uRTT and

nRTT is not a good indicator for the length of the whole chain. It turns out that

uRTT is a better measure to separate long connection chains from short connection

chains. Hence, based on the algorithm of uRTT, we have the classification algorithm

to determine long chains from short chains as given below:

Algorithm: Classification of Long Chains from Short Chains

Given a session of one connection from time T, find if this is a long

connection chain:

Step 1: For each inter-command gap, compute gap(i) = Ts(i)− Te(i),

where Te is the time stamp of a response packet, and Ts is the time stamp

of the following request packet.
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Step 2: Estimate average user delay d by averaging keystroke gaps inside commands.

Step 3: Calculate the estimated upstream round trip time gaps for each connection

chain as uRTT = gap(i)− d.

Step 4: Calculate m = median(uRTT(i)), i=1,...,n.

Step 5: For a predefined threshold t,

if (m > t) then classify the session as a long connection chain

else classify the session as a short connection chain.

We will discuss how to determine the threshold t in the following section.

3.5 Validation and Performance

3.5.1 Experiments Setup

Most of network traffic packets capturing programs are using the pcap (packet cap-

ture) library [109]. In the field of computer network administration, pcap consists

of an application programming interface for capturing network traffic. Unix-like

systems implement pcap in the libpcap library [109]. Libpcap provides an API to

capture packets travelling over the network, and supports saving captured packets

to a file for further analysis.

There are three major parts in our network packets capturing and analyzing

programs, including packet capturing, session analyzing, and gnuplot exporting. The

packet capturing program is written based on libpcap library with the main program

“realtime”. The “realtime” program allows for the collection and analysis of packet

data in real time. These network packets data are recorded in a human readable way
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and stored in specified log files. The log file format is shown below as:

]LOG TIME Thu Jul 24 14:29:40 2008

1216927631.371089 3790638033 0 131.215.17.73 42860 → 129.7.243.14 22 0 2

1216927631.371340 1448313446 3807415249 129.7.243.14 22 → 131.215.17.73 42860 0 18

1216927631.417100 3807415249 1465090662 131.215.17.73 42860 → 129.7.243.14 22 0 16

1216927631.424800 1465090662 3807415249 129.7.243.14 22 → 131.215.17.73 42860 20 24

1216927631.464867 3807415249 1800634982 131.215.17.73 42860 → 129.7.243.14 22 0 16

1216927631.465011 3807415249 1800634982 131.215.17.73 42860 → 129.7.243.14 22 31 24

1216927631.465590 1800634982 32607185 129.7.243.14 22 → 131.215.17.73 42860 0 16

1216927631.470028 1800634982 32607185 129.7.243.14 22 → 131.215.17.73 42860 784 24

In the recorded log file, it’s easy to check the timestamp, tcp sequence number, tcp

acknowledge number, source IP address and port, destination IP address and port,

packet size, and tcp flags. By using different program flags, we can choose which

network interface to be listened to, specify host IP address for collecting packets,

enable different packet filters, change port to be listened, and set path of log files. A

usage example of “realtime” program is “realtime -i eth0 -p 22 -f 1 -a 3 -l data.log”.

Since this program performs packet sniffing, it normally requires super-user privileges

under Unix-like systems.

The first function of the session analyzer is to calculate the time difference be-

tween the current packet and the last packet. It can update time gaps in real time

when the proper flag is set. Besides, the session analyzer can also calculate the

average of the time gaps between each analyzable packet and output the standard

deviation of them. Furthermore, there are some more complicated filters that can

be set to work in conjunction with the analyzer. The responsibility of the filter is
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to decide how the analyzer should interpret each packet. The filter indicates the ap-

propriate action by passing an integer to the analyzer which indicates different filter

types. The “nearest hop” filter is designed to provide information on the packets

which are direct communications between the host and the nearest hop machine. It

ensures that no analysis is performed on packets which are influenced by user delay.

This is useful for finding the RTT to the nearest hop. The “user delay” filter is only

interested in the packets which are subject to user delay. It only allows analysis

when the user types a character or presses the enter key. The “command” filter

passes the first packet of each new command entered by the user. It attempts to

detect new commands by listening for a long sequence of data packets which indicate

a larger amount of data being transferred than simply a character. Some commands

will generate more data transmission than others which will cause the filter to be

unable to detect new commands with perfect accuracy. The “stream” filter attempts

to identify streams of characters as when a user will hold down the backspace key for

example. It does this by passing those packets in which the current sequence number

matches the last ack number and the current ack number matches the last sequence

number. Besides these, there are filters to separate encrypted incoming and outgoing

packets.

Once we have the results from the algorithms, it often helps to be able to do some

kind of filtering/manipulation on the results (for example, smoothing, chopping off

the first half of the results, etc.). For this functionality, results filters were created.

There are two possible ways to perform results manipulation: on a single result list,

or a short/long chain comparison (useful, for example, in determining the high or

low threshold of a set of connections). Result analyzers are specified with the -r flag
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on the command-line supported by the gnuplot exporting function. The “sort in

order” filter (t) simply sorts the results in increasing order. The “smooth” filter (a)

takes a floating-point argument specifying the weight of new data. The algorithm

used for smoothing simply takes a weighted average between the last returned value,

and the newest value. The weight is determined by the floating-point argument.

Note that smaller values increase the smoothing amount. As the smoothing argu-

ment approaches zero, the returned results will be more uniform. As the smoothing

argument approaches infinity, the results will be closer to the original values. An

example is shown below:

Original Data: [100 90 120]

Smoothing argument: 0.1

First result from algorithm: 100

First result returned: 100

Second result from algorithm: 90

First and second result composite: 100 + (0.1 * 90) = 109

Second result returned: 109 / (1 + .1) = 99

Third result returned: [(99) + (0.1 * 120)] / (1 + 0.1) = 101

Filtered result with arg (0.1): [100, 99, 101]

The “Chomp” filter (c) takes a floating-point argument specifying the percentage

of the data that should be omitted. Positive values take data off the front of the

results, and negative values take data off the end of the results. These processes are

shown as:

Original Data: [1 2 3 4 5 6 7 8 9 10]

Filtered result with arg (0.1): [2 3 4 5 6 7 8 9 10]

Filtered result with arg (-0.2): [1 2 3 4 5 6 7 8]

The “Median” Filter (m) returns a list containing a single value, the median of

the original results. The “Mode” Filter (d) takes the mode of the data, where the
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floating-point argument specifies how much of the overall data must fit inside of

the band. An argument value of 0 will provide the true mode, which is not likely

the desired result, as almost all of the results will be entirely unique. Specifying an

argument (for example, 0.1) will repeatedly round all of the results up by one decimal

level until the the mode value consists of the specified percentage of the results. A

“representative value” filter (r) chops off the first half of the results, and gets the

median. The “Criss Cross” Filter (i) creates one long array with all of the results

of all of the long logs sorted in decreasing order. It also creates one short array

consisting of all of the results of all of the short logs sorted in increasing order. The

recommended use of this filter is with the representative value and gap filters. This

filter is useful for visually determining where the long logs overlap the short logs.

The “Separation Comparator” (g) is meant to find the lowest value of the long logs

and the highest value of the short logs. These values are then plotted to the graph

as horizontal lines. This functionality is useful for determining the gap between the

high and low logs.

The gnuplot-export program [110] is used to interface with the “Gnuplot” graph-

ing program. Gnuplot is a portable command-line driven graphing utility for Linux

and many other platforms which can generate 2-D and 3-D plots of functions, data,

and data fits. It’s copyrighted but can be distributed freely. Based on Gnuplot, our

gnuplot-export program is designed to review a previously recorded session log and

apply a specific filter algorithm combination to the session, ultimately producing

a data file and a script file which allow gnuplot to load and chart the data. The

gnuplot-export program prepares the required external files to graphically plot anal-

ysis results by using the gnuplot program. By giving log files, we use “gnuplot-export

[args] log1 ... logn” first. After running the program, a data file with the name
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specified by the ‘o’ flag will be created (default name “data.dat”). Additionally, a

gnuplot script file named “auto.p” will also be present. Then we can use the Gnuplot

program to interactively format the data into a figure by using the following sequence

of commands:

gnuplot

load ‘auto.p’

] View the results

exit

Besides, we can use specified arguments to filter the result and output the graph

directly. A detailed usage of our gnuplot-export program is shown below:

Usage: gnuplot-export [args] logfiles

Supported Arguments:

-a n Log analyzer to use. Default ’0’

0: No Analysis

1: Time Diff

2: Average

3: Standard Deviation

4: Uber (use Filter 0)

-d Disable key/legend

-e Export to svg file.

-f n Session filter to use. Default ’0’

0: No Filter

1: Nearest Hop Filter

2: User Delay Filter

3: Encrypted In Filter

4: Encrypted Out Filter

5: Command Filter

-r List of results filters (comma deliminated)
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c: Chomp Results

d: Mode of results

i: Criss Cross

g: Gap analysis

m: Median Result Value

r: Representative Result Value

s: Smooth Results

t: Sort Results

-o path Path to output file. Default ’data.dat’

-n Normalize xValues. Default ’100’

-p Include points in graph.

-v Verbosity. Specify twice for extra-verbose.

More than one result filter can be specified, and the same result filter can be

specified more than once. The order in which result filters are specified is the order

in which they are executed. For example, “gnuplot-export [args] -r c=0.1,t,c=0.3

[logfiles]” will chop off the first 10% of the results, then sort the remainder, and then

chop off 30% of the remaining sorted results.

A total of seven computers were used to build chains and collect data. The

computers ran various versions of Linux and all were connected to the Internet via

high speed connections. As shown in Figure 3.5, two computers located at the

University of Houston were used to listen for incoming connections (victim) and

to initiate connection chains (attacker). The other five computers were located in

various regions of the U.S. and primarily served as intermediate hosts in the building

of connection chains. To simulate long connection chains, sometimes these distant

computers may be used more than once in a chain.
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Figure 3.5: Experimental Connection Chains of 5 Hops

To increase the efficiency of our experiments, several connection establishment

programs were developed in Python which can automatically establish a connection

chain of variable length by using any number of routes and any number of hosts we

already set in a configuration file.

We use public-key authentication among all hosts. The first step is to use the

command “ssh-keygen -t rsa” to produce the public key for each host. Then the file

“ /.ssh/id rsa.pub” among all hosts is copied to one place. After that all these public

key files of all hosts are combined to one file named “authorized keys2 ”, and this file

is distributed into each host inside the directory of “ /.ssh”. By finishing these steps,

any host can be accessed by SSH without requiring the password authentication. By

using a different chain name for each connection chain from the configuration file set

before, we can use the “connect.py” program to make the SSH connection through

54



all hosts sequenced in the chain automatically. An example of using the connection

program is “python connect.py -c myRoute -n 3 ”.

SSH session data was collected on a machine running the Slackware 12.1 Linux

distribution. A total of 61 SSH sessions contributed by four different users were

recorded and analyzed. These sessions consisted of the user activities of executing a

series of commands through an SSH tunnel containing from zero to eight intermediate

hops. Five different routes or chains of hosts were used. Each route employed a

unique combination of hosts.

Gathering large amounts of data over various connection chains is very time-

consuming. If each connection session can be recorded and replayed through other

connection chains, it would be a better way to let us study the different results

of various length of chains by using the same session data. To do this, a SSH

session recording program was developed by using Python. The syntax is similar to

“connect.py” program with the addition of a file to record to and play back from.

The usage of this session recording program is shown below:

Usage: sshauto.py [options]

Options:

-h, –help show this help message and exit

-c CHAIN name of the chain (syntax: a,b,myChain)

-f FILE input/output files (syntax: file1,file2,file3)

-l LENGTH connection length

-p playback session

-r record session

When recording, the software records the exact moment that the user presses

each individual key, and records that information. It also records the exact moment
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that it receives a prompt in the form of username, where the username is defined

in the configuration file “config.py”. When playing back the session, the software

does not just play back the keystrokes with the same typing intervals. It is slightly

more intelligent than that, and knows how long after a prompt a user waited to start

typing a command.

Once a session is recorded, we can play it back through different connection chains

with different lengths. This procedure is simply done by “python sshauto.py -l 1, 3,

5-7 -c chainOne, chainTwo -f sess1,sess2 -p”. This command would play back both

recorded sessions sess1 and sess2 through connection chains chainOne and chainTwo

by using connection lengths 1, 3, 5, 6, 7 for a total number of 20 sessions in order.

After triggering the packets capturing program, we can record several traffics coming

in concurrently by playing back sessions recorded. Then these recorded log files will

be processed for analyzing.

To simulate natural typing, users were given “objectives” to accomplish rather

than a list of commands to type. Some example objectives were writing a short

program, searching for text in a group of files, and creating a “tar” archive. Sessions

generally tended to last around five minutes although some took up to fifteen. Clearly

the users were slow at the beginning since they may be unclear of the intention of

the instruction. After a few attempts, their speed stabilized. We discarded the first

few data collections since they don’t represent a true user behavior.
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3.5.2 Comparison Between Short Chains and Long Chains

The first purpose of the experiment is to see if short chains and long chains exhibit

any difference. Five length-1 short chains are used to compare with five length-8

long chains. Graphs of the uRTT of these short chains and long chains are shown in

Figure 3.6.

Each marker represents a new command. The uRTT of each chain is determined

by our algorithm described before. In each experiment, the number of packets col-

lected varies from 31 to 100. We took the last 20 packets from each experiment

since they are more stable than the beginning of the packet stream. As we expected,

normally long chains have the uRTT larger than short chains. The top five series in

the figure represent chains of length 8 and the bottom five represent chains of length

1. On average, the uRTT rating of a length-8 chain is about 200% higher than that

of length-1 chains. To quantitatively check the difference between short chains and

long chains, median and standard deviation of each chain is calculated. Results are

summarized in Table 3.2.

3.5.3 Length Estimation

It is very difficult for us to correctly determine the length of a chain, because it’s

hard to give a very close estimation of the RTT for the whole chain, as well as the

nRTT can vary a lot. By using the length estimation algorithm, we consider it’s a

success if the calculated length L is within a difference of one of the actual length of

the chain. By further considering a success of length estimation within a difference
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Table 3.2: Median and Standard Deviation of uRTTs (Short Chains vs. Long Chains)

Chain Length Median Stdev
1 1 0.0171 0.0010
2 1 0.0187 0.0007
3 1 0.0161 0.0011
4 1 0.0130 0.0013
5 1 0.0129 0.0003
6 8 0.0373 0.0016
7 8 0.0391 0.0017
8 8 0.0295 0.0018
9 8 0.0242 0.0008
10 8 0.0284 0.0023

of two of the actual length of the chain, the success rate of most hops can increase

in a certain percentage. These results are summarized in Figure 3.7.

3.5.4 Rank Checking

The length estimation of chains may not be accurate enough at most times. It is,

however, much easier to determine which one of many chains is a long chain. In a

real situation, the chance of having two intruders attacking the same host is low.

The purpose of rank checking is to see if our algorithm can correctly identify the

longer chain when given chains of various lengths. The objective of this analysis was

to compare two sessions of different lengths and correctly rank the longer chain over

the shorter. This ranking was accomplished by finding a representative value for each

of the sessions, higher values indicating more suspicious connections. The median of

the uRTT of each session is used to represent the session. By using this approach,

each of the user sessions was compared to all other sessions of all other lengths. Each
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Figure 3.7: Length Estimation Success Rate within Difference one and two

column in Table 3.3 represents the number of intermediate hosts in the connection

chain. Each cell contains the percentage of correctly ranked sessions. For example,

the cell at Row 2 and Column 5 represents the success rate (84%) when one chain

of 2 hops is compared with one chain of 5 hops. Each cell is the average of at least

5 experiments [111][112]. It might be noted that each of the zero-hop chains had a

100% success rate. This is because all of the zero chains (those with no intermediate

stepping-stone hosts) were direct connections over the local area network.

The local connection is much faster than a chain connected to a host off campus.

For this reason they are omitted from Figure 3.8 below. Also note that a chain of

i hops consists of (i+1) SSH logins. Here we average the success rate of detection

based on the difference of the chain of 1 to 7 hops. The figure indicates that the
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Table 3.3: Ranking Percentage of Sessions from Length-1 to Length-8

Length 1 2 3 4 5 6 7 8
0 100 100 100 100 100 100 100 100
1 - 84 72 92 100 100 84 100
2 - - 44 64 84 92 72 88
3 - - - 64 84 92 80 96
4 - - - - 68 88 68 88
5 - - - - - 76 56 68
6 - - - - - - 44 48
7 - - - - - - - 56

success rate for a difference of 3 is about 84%. Even if the difference is 1, the success

rate is about 67%.

Figure 3.8: Percentage Correctly Ranked by Length Difference
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3.5.5 Degree of Separation

Ranking analysis fails to indicate the degree of separation between two different

incoming SSH sessions. In order to truly determine the success of our approach, it

is necessary that the long chains are substantially separated (easily differentiable)

from the short ones.

Short chains were (somewhat arbitrarily) defined as those connections containing

from zero to two intermediate hops and long chains were defined as connections

containing from six to eight intermediate hops. Representative points for all long

chain sessions were plotted in decreasing order while representative points for all

short chains were plotted in increasing order. The result is summarized in Figure

3.9. In this figure, we collected data from 15 long chains and 15 short chains. The

data are arranged in decreasing order for the long chains and increasing order for the

short chains.

By setting an absolute threshold, chains with representative value larger than

the threshold are classified as long connection chains, and chains with representative

value less than the threshold are classified as short connection chains. Ideally, we

want to get a threshold yielding zero misclassification rate. Furthermore, if there is

any misclassification, we want the misclassification rate minimized and these mis-

classified points close to the threshold as possible. We use two criteria to measure

how good the threshold is. In practice, either we want to find an optimized threshold

with (FP+FN) minimized, or we can minimize the sum of distance
∑

P |p(i)− τ | to

find an optimized threshold. Here, P is the set of all misclassified data points. This
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Figure 3.9: Comparison of uRTT of Short vs. Long Chains
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process can be described as an optimization problem of τ subject to either the error

rate minτ{FP + FN} or the total error distance minτ{
∑

P |p(i) − τ |}. To get the

optimized τ , a search algorithm can be given as follows:

Algorithm: Threshold Calculation

Given N long connection sessions and M short connection sessions:

Step 1: For each short chain, compute the representative value r(i), 1 ≤ i ≤M .

For each long chain, compute the representative value R(j), 1 ≤ j ≤ N .

Step 2: Sort all r(i) by increasing order. Sort all R(j) by decreasing order.

Step 3: If Min(R(j)) ≥Max(r(i)), τ = (Min(R(j)) +Max(r(i)))/2.

Else if Min(R(j)) ≤Max(r(i)), pick and merge sort values into a new set

D = {R(j) and r(i) | R(j) ≤Max(r(i)), r(i) ≥Min(R(j))} where

i ∈ [1,M ], j ∈ [1, N ].

Step 4: Set d = |D|. For each k, 2 ≤ k ≤ d, τ = (D(k − 1) +D(k))/2,

calculate misclassification error rate or error distance.

Step 5: Pick the τ when there is the minimal misclassification error rate or the

minimized error distance.

Besides, we can assign false positive and false negative points different weights

for computing the error rate or error distance when we consider false positive and

false negative are unequally important. By using the algorithm above, we can get the

threshold (dotted line) as 0.0153, and our algorithm would have correctly identified

13 out of 15 long chains and 13 out of 15 short chains, yielding a false positive rate of

13% and a false negative rate of 13%. However, the consequences are higher for every
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false negative than for each false positive detected. More harm is done in preventing

one legitimate user from accessing the system than from allowing one illegitimate

user access. For this reason, if a threshold was set just above all of the short chains

( .0195), the algorithm would have correctly identified 8 of 15 long chains while

keeping all short chains safe. This would be associated with a 47% false negative

rate and a 0% false positive rate. Each host probably has to conduct experiments

to determine the best threshold value to separate long and short chains. The system

administrator may have to determine the tolerable level of false positive and false

negative.

3.6 Conclusion

Attacking through stepping stones is a widely used technique by network attackers

to attain anonymity and prevent to be traced back. To reinforce the safety of our

systems, a lot of research in stepping-stone detection has been done. However, pre-

vious research focused on intermediate host-based stepping-stone detections, which

is mostly trying to protect an unknown third party host at the end of the connection

chain. It is meaningful to carry out research on detecting intruders and prevent-

ing systems of being compromised based on the victim host. We have proposed a

new approach to detecting long SSH connection chains at the victim host. Our ap-

proach differs from previous work in that previous methods could only detect long

downstream connections from the perspective of a stepping stone. Our method of

detection centers around analyzing the delay between the time a user presses enter
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to finish a command and the time that the user types the next character. Taking

into account the user’s typing speed, it is possible to estimate if the user is connected

through a long or a short chain. Our experiment results show that 86% of long chains

can be correctly identified with a false positive rate of about 13%.

There are however several limitations to our approach. First, while 61 total

sessions were recorded and analyzed, they were contributed by only four different

users. A much broader sampling of users would have been desirable. Also, because

our algorithm hinges on the assumption that a human is ultimately typing into the

terminal, none of our chain length predictions would remain valid if a computer or

script were entering commands. Additionally, our approach assumes that the user

is typing normally. It is quite possible that an intruder, being aware of the specifics

of our detection algorithm, would be able to intentionally alter his typing speed or

command delay in order to hinder accurate detection. Lastly, our approach flags all

incoming connections from the LAN as legitimate which would present a weakness if

an attacker was able to successfully compromise another computer on the LAN and

then attack our machine.
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Chapter 4

Detecting Intruders at the

Targeted Host: An Anomaly

Detection Approach

A common technique hackers use to break into a computer host is to route their

traffic through a chain of stepping-stone hosts. There is no valid reason for a legiti-

mate user to use a very long connection chain to remotely login to a computer host.

Intruders always connect through stepping stones with a long chain. To prevent

The work described in this chapter has been previously published: Wei Ding and Stephen Huang.

Detecting intruders using a long connection chain to connect to a host. In Proc. of the 25th IEEE

Intl. Conference on Advanced Information Networking and Applications, pages 121-128, 2011.
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stepping-stone attacks, it is critical to detect the connection chains. Most of the

existing stepping-stone chain detection research has been concentrated on detecting

intermediate stepping-stone hosts. However, these stepping-stone detection methods

do not solve the problem completely. First, most of the benefits of the detection go

to the host at the end of the chain (the victim host), an unknown third party to the

monitoring site. Secondly, the stepping stone is only able to gauge the maliciousness

of a connection by the number of downstream chain instead of the complete chain.

If the stepping stone is very near the victim in the connection chain, one may not

be unable to distinguish a malicious chain from a benign connection.

Detecting a malicious connection chain is much more challenging from a victim’s

perspective than at stepping stones [113]. This is due to the fact that a stepping stone

can perform timing and correlation analysis with all of the information sent between

the attacker and victim. The packets from the intermediate host to the victim and

back form a closed loop. Previous stepping-stone detection methods relied upon the

time difference between the attacker sending data downstream, and a response from

the server passing back upstream (reply echo time).

Victim-based detection has many difficulties of its own. First, there is no straight-

forward method of estimating the full round-trip time (RTT) for the length of the

connection chain. This is primarily due to the nature of tunneled SSH connections,

and the fact that SSH is an interactive terminal session. This means that over the

course of an SSH session, there is no point in time at which the server sends data to

the client and the client’s machine automatically sends a reply back to the server.

In the following part of this chapter, we introduce our method of detecting long
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connection chains from short connection chains in a victim host based way.

4.1 Filtration of Upstream RTT

As mentioned earlier, on the victim end, for each connection, all incoming request

packets will give both inter-command time gaps and intra-command time gaps. In

order to analyze the difference between short connections and long connections, all

time gaps of each connection are sorted in increasing order. This (increasing) se-

quence of uRTTs distribution represents a characteristic of a connection. If there

is a significant difference between short and long time-gap distribution, we can use

quantitative methods to formally quantify the difference between them. A compari-

son between short and long uRTT distribution is shown in Figure 4.1.

In Figure 4.1, there are about 700 time gaps for each of the two connections.

These time gaps include both inter-command gaps and intra-command gaps intro-

duced earlier. From Figure 4.1, we cannot see a significant difference between short

connection and long connection. Because for an incoming connection with a lot of

command request packets, there will be many more intra-command time gaps than

inter-command time gaps. For intra-command time gaps, it mostly changes from

0 to actual round trip time. After hundreds of intra-command gaps been sorted in

increasing order, it will be very hard to see any statistical difference between two

difference curves. Thus, a better way is to analyze and utilize these two types of time

gaps separately. Intra-command gaps and inter-command gaps of one short and one

long connection are compared separately in Figure 4.2 and 4.3.
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Figure 4.1: Comparison between Short and Long Connection Distribution

Figure 4.2: Distribution of Intra-command Gaps only
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Figure 4.3: Distribution of Inter-command Gaps only

From Figure 4.2 and 4.3, one can see by using intra-command time gaps, the

two curves of short and long connections are very close and it is hard to tell the

difference. However, by using the inter-command time gaps, the difference between

short and long curves is evident. Thus in the rest of this chapter, we will examine

uRTT streams of inter-command gaps.

4.2 Algorithms of Measuring Distance between uRTT

Streams

To detect long-connection chains from short-connection chains, the first step of our

method is to use several collected one intermediate hop connections to build a profile

of uRTT distribution with enough (say, 100) inter-command time gaps which is
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shown as a solid line in Figure 4.4. After that any extracted curves from a new

collected connection packet stream will be compared with this profile distribution.

Figure 4.4: Using uRTT’s of Short Chains to Build a Profile

4.2.1 Absolute Difference

Based on the profile curve built before, the next step is to quantitatively calculate

the difference between the profile curve and the new connection distribution. The

first distance measure is the absolute distance between the profile distribution and

any test connection distribution based on inter-command time gaps. This is the

most straight forward way to calculate a distance between two curves which is called

absolute difference shown below. Gap gp is the distribution of uRTT gaps of the
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profile chain and g is the test connection’s distribution.

D (g, gp) =
N∑
i=1

|g [i]− gp [i]|
N

g = {g [i]| i : 1 to N}

gp = {gp [i]| i : 1 to N}

(4.1)

By using this straightforward distance measure, we can compute the difference of

a distribution from the profile as illustrated in an example in Figure 4.5. However,

there are some problems regarding this distance calculation method. Different users

may have different typing speed resulting in a change of the uRTT distribution. Thus

a short-connection chain may have a lot of small uRTT gaps, and it will get a much

lower distribution under the profile curve. The calculated distance D will be very

large, even larger than a distance between an actual long chain and the profile chain.

In Figure 4.6, the calculated distance by formula one between the short chain and

the profile chain will be larger than the distance between the long chain and the

profile chain.

4.2.2 Distance with Median of the Ratio Adjustment

To deal with the problem illustrated in Figure 4.6, an adjustment method is used

when users’ typing speeds vary. This adjustment uses a ratioR to adjust and compen-

sate for distribution with different average typing speeds. For some short connection

curves, when they are below the profile curve, the calculated absolute difference will

be large and may exceed the threshold. Hence, it will give a high false positive rate by

the absolute difference method described above. For short connection curves under
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Figure 4.5: A Successful Detection by Absolute Difference

the profile curve, the ratio R will be greater than one which will shift the distribution

up slightly. By doing this, the distance DR will be decreased a little for these short

connection chains. Besides, for long connection chains, there should be a significant

difference between time gaps with packet crossover happening as shown in Figure

4.6 before and after packets number 25. Thus, the distance calculated by DR may

not decrease a lot, even though the ration R will make the connection distribution

adjust up or down.

The distance DR is calculated by Equation (4.2). In Equation (4.2), the gap gp

is the distribution of uRTT gaps of the profile chain and g is the test connection’s

distribution. R is the median of ratios between gp and g by each gap. By using

the ratio R multiplying the gaps of g, we can get the distance Dw to deal with the
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Figure 4.6: Short uRTT Curve with Large Distance by Absolute Difference

problem when user’s typing speeds vary a lot.

DR (g, gp) =
N∑
i=1

|g [i] ·R− gp [i]|
N

whereR = Median

{
gp [i]

g [i]
|i = 1, 2, . . . , N

} (4.2)

4.2.3 Distance with the Weighted Ratio Adjustment

The previous adjustment solves some problems when a short chain is lower than the

profile chain. However, the long chain may be moved down, sometimes it will yield

a small calculated distance. In some cases, this gives a new problem of missing the

detection of some long chains. Hence, we try to use another characteristic of these

uRTT distributions to deal with this problem. When long connection distributions

have significant differences between time gaps with crossover, the linear regression

slope of this uRTT distribution will be normally larger than the short connection

75



distribution and the profile distribution. Hence, we implement the second adjustment

method by giving a higher weight to the distribution which has a larger regression

slope. Other distribution with slope less than the profile will have a weight of 0 as

shown below.

W =

 1− Sp

S
, if Sp < S

0, if Sp ≥ S

Rw = (1 +W ) ·R

Dw (g, gp) =
N∑
i=1

|g [i] · Rw − gp [i]|
N

(4.3)

This adjustment improves the previous “median of ratio” adjustment method by

keeping curves with larger slopes a larger distance Dw as shown in Equation (4.3). In

Equation (4.3), we first calculate the slope of each uRTT distribution by their linear

regressions (y = S · x + c). Then for each connection having a slope S larger than

the slope of the profile distribution Sp, we will give a weight W between 0 and 1.

Otherwise, we give it a weight equal to 0. After we have weights of all distributions,

we are going to calculate a new ratio Rw. For any distribution with a weight larger

than 0, their ratio will be increased. Then by using the ratio Rw multiplying the

gaps of g, we can get the new calculated distance Dw. Based on our experiment,

most long connection chains will get a weight larger than 0, then they will have

increased distance Dw by using this adjustment. By using this adjustment method,

most long chains will have a bigger chance to be at an increased distance from the

profile distribution which can increase the successful rate of classifying these long
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chains.

We summarize the two adjustment methods using one example in Figure 4.7.

There are four chains in this figure including the original long chain and the profile

chain. In this case, by using the ratio of the first adjustment method to adjust the

curve, the curve is moved down and is very close to the profile curve. This makes

the calculated distance between this long chain and the profile chain very small.

To further increase the correct detection rate, the slope of the curve is utilized.

By assigning a weight by the second adjustment method, the distribution curve is

moved up which gives a large enough distance to detect this long connection chain.

For most short chains with slope less than the profile chain, these short chains will not

be adjusted by the weight which keeps their distance to the profile chain unchanged.

Figure 4.7: Comparison of Three Distance Measurements
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4.3 Experiments and Validation

To demonstrate the validity of our claim and to see which one of the three distance

calculation algorithms works better, we carried out an extensive study using data

collected on the Internet. Several computers were used to build connection chains

and data were collected. The computers ran various versions of Linux and all were

connected to the Internet via high speed connections. A computer located at the

University of Houston campus was used to monitor incoming connections and serve

as a victim machine. A computer located off campus was used to initiate connection

chains (attacker). The other computers were located in various regions of the US

and primarily served as intermediate hosts in the building of connection chains.

This enables us to collect packet data of connection chains of various lengths. We

conducted twenty 1-hop sessions representing short-connection chains. To collect

data for longer connection chains, remote computers may be used more than once in

a chain because we have only a limited number of hosts off campus. These sessions

consisted of users login into an SSH tunnel containing two, four, and six intermediate

hops and executing a series of Unix commands. Twenty sessions of 2-hop, 4-hops,

and 6-hops representing long connection chains were collected.

After filtering out the inter-command gaps, we derived 20 sets of 1-hop short

connection chain distributions. We then built a profile using thirteen of these short

chains. Then we cross validated the test data (4-hop and 6-hop chains) with the

short chains. In each method, the three measures D, DR, or DW were used to

see how the test chains differ from the profile. If the difference was greater than a
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threshold, then we classified the test chain as a long one. Otherwise, the chain is

considered as a short one. In each case, we used the Leave-One-Out cross validation

technique [15] to select a threshold for separating the short chains from the long

chains. Several thresholds were used to with different level of false positive (i.e.,

short chains misidentified as long one) rate. As expected, by varying the threshold,

there is a trade-off between the false-positive rate and the false-negative rate of the

detection. The results from our experiment confirm this trade-off. We summarize

the false rate in a receiver operating characteristic (ROC) curve shown in Figure 4.8.

Figure 4.8: Successful Rate of Classifying 4-hop Chains by Three Distance Measure-
ment with Different False-positive Rate

By using three distance measurements, we calculated the successful rate (true

positive) of determining long chains by adjusting the false-positive rate. We can see

the weighted ratio distance measurement is the best one among the three measures

used. By using the weighted ratio adjustment method, we can successfully classify
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all 4-hops and 6-hops chains if we are willing to accept a FP rate of 15% as shown in

Figure 4.9. Typically, there are many fewer intruders than normal users, so we may

prefer to keep the FP rate relatively low. Figure 4.9 also confirms our belief that

longer chains (6-hop) are easier to detect than shorter ones (4-hop in the figure).

The result of comparing a 2-hop chain with the profile is not good as expected.

Fortunately, most stepping-stone intruders use more than 2 hops to connect to the

victim host, so we don’t consider this a restriction on our result.

Figure 4.9: Successful Rate of Classifying 4-hop and 6-hop Chains by Weighted Ratio
Distance with Different False-positive Rate

4.4 Conclusion

We have proposed a new approach to detect long stepping-stone connection chains

from short connection chains at the victim host. Our method of detection centers

on utilizing the packet stream of incoming connections to build an inter-command
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gaps curve. By using a new connection distribution compared with a profile of

short connection chains, it is possible to detect long connection chains with a certain

threshold. Our experiments show that by tolerating a false-positive rate of 15%,

100% of the test cases (4-hop and 6-hop) can be correctly detected with our weighted

ratio distance measurement. This is somewhat surprising because we know clearly

that the uRTTs are not a good estimate of the true RTTs. Our approach differs

from previous work in that previous methods could only detect long downstream

connections from the perspective of a stepping stone. All benefits of detecting such

suspicious connections would go to the end hosts, who are likely unaffiliated with the

implementer of the software. There are however several limitations to our approach.

First, a limited number of sessions (60 in total) were analyzed which may not reflect

all statistical characteristics correctly. A much broader sampling of users would have

been desirable. Also, because our algorithm hinges on the assumption that a human

is ultimately typing into the terminal, command streams intentionally conducted by

programming scripts may not be detected correctly.
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Chapter 5

Detecting Stepping Stones under

the Influence of Packet Jittering

Cybercrime has become a serious problem all over the world. Based on the IC3

(Internet Crime Complaint Center) Internet crime report [114] for 2013, there were

48.8% more complaint submissions in just one year from 2012 to 2013. However, this

is just the tip of the iceberg. Many more cases are undetected or unreported. Identity

theft, data loss, and privacy leaking have been a great concern to all of us. Hackers

normally use previously compromised computers as intermediate hosts to route the

The work described in this chapter has been previously published: Wei Ding, Khoa Le, and Stephen

Huang. Detecting stepping-stones under the influence of packet iittering. In Proc. of the 9th Intl.

Conference on Information Assurance and Security, pages 31-36, 2013.
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traffic rather than directly connecting from their own host as shown in Figure 5.1.

These intermediate hosts are called “stepping stones”. Connecting through stepping

stones is a widely used technique by network attackers to attain anonymity and avoid

being traced. At the target of the attack, the only visible machines are those directly

connected to it, i.e., those exchanging packets with it.

Figure 5.1: Attacking a Target through Compromised Stepping-stone Hosts

5.1 Evasion Techniques against Correlation-based

Detection

Stepping-stone attacks can be detected by applying correlation-based algorithms on

the connections in and out of an intermediate host. In other words, if one can

identify whether a host is being used as a stepping stone, then it is possible to

break the stepping-stone connection chain, in order to stop this suspicious intrusion.
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By utilizing stepping-stone correlation algorithms, based on dynamic time warping

algorithms [115][116][117][118][119][120][121][122], if an incoming stream and an out-

going stream of the chain can be matched upon similarity, we can successfully stop

the stepping-stone intrusion. The correlation of incoming and outgoing streams is

shown in Figure 5.2.

Figure 5.2: Match Incoming and Outgoing Streams

However, hackers have developed new evasion techniques by adding chaff packets

into the traffic or jittering packets of the traffic. The chaffing methods intentionally

injects bogus packets (so called chaff packets) at a stepping-stone host. These chaff

packets can be removed later manually or automatically. If a significant amount of

chaff packets are injected into a stream, the time-arrival gaps pattern between this

stream and the stream before it will be noticeably different. The chaffing evasion
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technique can cause the stepping-stone detection algorithm to fail. In addition, chaff

packets can be very hard to distinguish from normal packets, especially when traffic

is encrypted [123]. Jittering is another evasion technique against stepping-stone

correlation algorithms. By intentionally delaying some packets, the time-arrival gaps

will change compared with the original stream. This pattern change can destroy the

stepping-stone correlation between the jittered stream and the original stream before

it [124]. Those two techniques are implemented on a stepping-stone host as illustrated

in examples in Figure 5.3.

Figure 5.3: Chaffing and Jittering: (a) Green squares represent the original packets
and black squares represent extra injected chaff packets; (b) Green squares represent
the original packets, green dashed squares represent the original packets if not jittered
and black squares represent packets been jittered

The purpose of adding chaff packets or jittering original packets is to change the

pattern of an outgoing connection of a host and make it sufficiently different from the
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incoming connection. This difference may invalidate the correlation-based stepping-

stone detection algorithms. Previous work has been limited to overcoming chaffing

evasion [92][123]. It has not yet been known whether we can overcome the jittering

evasion.

We are going to give a solution to counter packet jittering evasion technique of

stepping-stone detection. Our approach is parallel to that of Huang and Kuo [123].

For chaffing, it is relatively easy to define a chaff rate which is the ratio of the number

of added packets and that of the original packets. We also have to worry about the

probability distribution of the inter-arrival time of the added packets. For jittering,

there is a similar jittering rate (ratio of delayed packet vs. total packets) and a

probability distribution of the amount of added delay. The net effect of chaffing is

relatively easy to see. Many packet intervals are split due to chaffing. So there will

be an increase of small interval gaps. For jittering, the effect is not that obvious. In

fact if two consecutive packets were delayed by the same amount of time, the net

effect on the gap is none.

This research focuses on finding a solution to counter packet jittering evasion

technique. If an attacker jitters a significant percentage of packets at one of the

stepping-stone hosts as shown in Figure 5.4, then the pattern of outgoing packet

traffic can be different from that of the incoming traffic thus causing timing-based

correlation detection algorithms to be no longer reliable. Based on our observations,

if a connection is being jittered enough, the pattern of the jittered flow will be

different from the un-jittered traffic flows. Thus we take a completely new approach

based on the above hypothesis. If one can determine that a connection flow is being
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jittered, then one will be able to conclude that the host is being attacked (i. e., being

part of the stepping-stone chain) [125].

Figure 5.4: Jittering the Traffic at a Stepping-stone Host

We assume hackers may impose extra delay on selected packets on a connection so

that the packet traffic patterns before and after the jittering may looked somewhat

different. Since the pattern of packets inter-arrival time gaps is manipulated, the

pattern correlation-based method would not be effective anymore. Thus we take a

completely new approach based on the above observation. If we can detect that a

connection’s distribution is different from non-jittered ones, it is highly likely that

this connection is being jittered. If one can determine which connection flow is being

jittered, and then one will be able to conclude that the host is most likely being

attacked (i. e., being part of the stepping-stone chain). This method can be combined

with correlation-based detection algorithms which provides a detection method with

or without jittering. This approach can complement correlation detection algorithms

directly to yield a more robust method.
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5.2 Modeling Traffic Streams

If a pair of incoming and outgoing connections of a host is strongly correlated by

pattern matching algorithms, one can reasonably conclude that the host is being

used as a stepping-stone. To counter those detection methods, intruders may try to

change the pattern of one outgoing connection stream at a host which can cause the

correlation between previous connection streams and the stream manipulated failed.

To manipulate a connection stream, one can inject chaff packets or jitter certain

amount of packets. By using those methods, the pattern correlation algorithm will

fail in certain degree, and the stepping-stone detection rate will decrease.

Our approach is to extract certain features of the jittered and non-jittered packet

traffic and look for the differences in these features. Once we have identified the

features, we then extract the distinguishing features from many test cases and use the

support vector machine (SVM) algorithm to separate the two clusters. After we find

the separating hyper-plane, we can use that to determine whether a testing case is

from the jittered or un-jittered stream. Our strategy utilizes statistical distributions

to fit the normal traffic flows based on packet-arrival time gaps and by using the

normal model, we can identify anomalous connections with intentional jittering. This

“fitness” turns out to be a feature that was able to separate a jittered traffic from

un-jittered one. The first step of the strategy is to decide the model of fitting normal

traffic packets gap flow.
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5.2.1 Modeling Normal Traffics

Network packet traffic flows have been widely studied for more than a decade. The

oldest traffic model for analyzing traffic packets arrival time gaps is the Poisson dis-

tribution [126][127][128]. Further research on packets arrival time gaps suggests the

aggregation of those measurements fit better with the General Pareto and Lognormal

distributions [129][130][131][132].

Studies of Internet traffic have found that keystroke inter-arrivals can be very well

described by those distribution models. Hence, we can use those distributions to fit

normal traffic streams. The Probability Density Function (PDF) of the General

Pareto distribution is shown in Equation (5.1), where k is the continuous shape

parameter, σ is the continuous scale parameter (σ > 0), and µ is the continuous

location parameter. The PDF of the Lognormal distributions is shown in Equation

(5.2), where σ is a continuous parameter (σ > 0), µ is a continuous parameter, and

γ is a continuous location parameter.

f (x) =


1
σ

(
1 + k (x−µ)

σ

)−1−1/k

k 6= 0

1
σ
exp

(
− (x−µ)

σ

)
k = 0

(5.1)

f (x) = exp

(
−1

2

(
ln (x− γ)− µ

σ

)2
)
/
(

(x− γ)σ
√

2π
)

(5.2)

Given the traffic model and normal traffic data, the first step is to find distribution

parameters by using Maximum Likelihood Estimation (MLE) [133]. MLE selects

values of the model parameters that maximize the probability of getting the observed
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data (i.e., parameters that maximize the log-likelihood function lnL). Given the fixed

observed inter-arrival time values {x 1, ..., xn} and a probability density function f(x)

of a testing model with k parameters, where θ is the function’s unknown variable,

and θ ={θ1, θ2, . . . , θk} is a vector defined on a k-dimensional parameter space. The

log-likelihood function evaluates the fitness of the distribution to the data set. The

goal was to find the maximum likelihood estimator θ̂MLE which is closest to the true

value θ. These two are defined as follows in Equations (5.3) and (5.4).

lnL (θ|x1, x2, ..., xn) = ln f (x1, x2, ..., xn|θ)

= ln (f (x1|θ)× f (x2|θ)× ...× f (xn|θ))

=
∑n

i=1
ln f (xi|θ)

(5.3)

ˆ

θMLE = arg max
θ∈Θ

ˆ

` (θ|x1, x2, ..., xn)
ˆ

` =
1

n
lnL (5.4)

To estimate parameters of a certain distribution model when fitting data under

that distribution, a lot of tools can give the estimation based on MLE. Matlab

functions [134] or Python library Scipy [135] can fulfill the job very well.

The procedure of determining parameters under a certain distribution model

from normal traffic data is the training process. Following that, for any incoming

connection as testing data, we can apply the same test procedure and compare the

test statistic with normal ones. The whole process should help us to detect jittered

connections from normal un-jittered ones.

For a normal traffic packets inter-arrival time gaps flow, General Pareto and

Lognormal distribution fittings are demonstrated in Figure 5.5. Both General Pareto
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(GP) and Lognormal fit the normal traffic well. We do not need to use multiple fitting

distributions to build the normal traffic model together. Based on our observation,

one single distribution is enough to be used to establish the model to distinguish

jittered flows from normal ones. For the rest of this chapter, we will use General

Pareto Distributions to fit traffic flows.

5.2.2 Modeling Jittered Traffic

Since Pareto and Lognormal distributions model Internet traffic well, researchers also

use those distribution models in their study to generate chaff packets or to jitter the

original packets. The intuition behind this is to make tampered traffic close to the

original one.

Figure 5.6 shows the histogram of jittered traffic flow together with the fitting.

Here we randomly generate jitters based on GP distribution with parameters k =0.2

and σ =0.4 when µ = 0. The histogram of jittered flow is noticeably different from

the original un-jittered one shown in Figure 5.5. A comparison between the original

normal traffic flow and a jittered traffic flow can be demonstrated by the histograms

in the two figures.

After fitting the GP distribution to the jittered traffic flow, based on Maximum

Likelihood Estimation, estimated parameters of GP distribution are calculated. We

get k = -0.028 and σ = 0.87 for the jittered flow. These estimated parameters

can be used to measure the difference between un-jittered and jittered flows in a

numerical way. By using the General Pareto Distribution, based on our observation
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Figure 5.5: Fitting Packet Gap Data with (a) General Pareto and (b) Lognormal
Distributions
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and the MLE test, it is clear that a traffic flow after being jittered by hackers can be

measurably different from normal traffic flows. Further study suggested us that the

parameters k and σ are enough to be used as features to separate un-jittered and

jittered traffics. Since µ is a location parameter, for the sequence of packets inter-

arrival time gaps, we can always set µ to 0 during our distribution fitting process.

Figure 5.6: Fitting Jittered Data with General Pareto Distribution

In order to measure how well un-jittered and jittered traffics can be separated, as

well as the successful detection rate of our methods, we can utilize Support Vector

Machine (SVM) [136] to do the separation based on estimated parameters of General

Pareto distribution which are k and σ. Our detection algorithm is about building

the SVM based on un-jittered normal traffics and jittered training cases. Then for

the new incoming traffic we will utilize the SVM to classify its category. An example

of separation with SVM, based on General Pareto’s parameter K and σ, is shown

in Figure 5.7. In the figure, we can see jittered ones are perfectly separated from

original ones using SVM. In this training case, we can separate the two clusters 100%.

We will show that this perfect detection rate may not always be possible. If there

are any misclassified ones from jittered parts, we will count those as false negative
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which will decrease the detection rate.

Figure 5.7: Separating Jittered Traffic Streams from Original Non-jittered Streams
using Support Vector Machine

However, the problem is we cannot control how hackers would apply jitter to the

traffic flow. This uncertainty issue can be divided into two unknown parts: jittering

rate, distribution and parameters used to generate jitters. For a certain jittering

rate, whether a packet will be jittered or not is under Bernoulli distribution [137].

There are too many ways, in other words many possible distributions, to generate

jitters. Based on previous research work and our study, we choose the General Pareto

distribution to demonstrate our methodology of detecting jittered abnormal traffic

flows from normal traffic flows. It turns out that when other distributions were used,

the result stated in this chapter did not change significantly.
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5.3 Jittered Traffic Flows Detection Algorithm

Based on the methodology discussed in the previous section, we propose our jittered

traffic flows detection algorithm as below:

Algorithm: Detecting Jittered Traffic Flows

Given N un-jittered traffic flows:

Step 1: For each traffic flow, based on GP distribution, use MLE to estimate k and

σ, which are two attributes to be used in the classifier.

Step 2: Based on un-jittered flows, under a certain distribution, generate jittered

flows, which are based on a combination of various jittering rate, mean, and std.

Step 3: For jittered flows, based on the GP distribution, use MLE to estimate k and

σ.

Step 4: Train the SVM by using jittered and un-jittered traffic flows with estimated

k and σ.

Step 5: For each new incoming traffic, based on the GP distribution, use MLE to

estimated k and σ, and use the trained SVM to classify the new incoming one into

jittered or un-jittered.

Step 6: If the incoming traffic flow is classified as a jittered connection, flag it as

an attack.

To further demonstrate the effectiveness of the proposed jittered traffic detection

algorithm, in the following sections, we will introduce how we set up experiments

and discuss the impact among distributions, jittering rate, mean of jittering, and

95



standard deviation of jittering.

5.3.1 Testing Jittered Traffic Flows

We set up a stepping-stone connection chain with seven intermediate hops. Every

host on the chain was installed with a SSH server under the Linux system. In order

to simulate long distance stepping-stone connection chain on the Internet, we picked

three distant hosts located in Wisconsin, Chicago and Shanghai. All other hosts are

located in our campus network, in Houston, Texas. This chain was designed to route

through distant host and local host alternatively in order to collect packets locally,

since most network packets collection tools, such as Wireshark, require root privilege.

All experimental network traffic was captured in real time at our local hosts. We had

three users, acting as three intruders, from three different local hosts, routed through

the same stepping-stone chain, and finally arrived at another three different target

hosts. This generated traffic was all captured at the local hosts. The experiment was

repeated eight times on different days, which gives us totally twenty-four successfully

captured traffic flows.

The basic idea of jittering network traffic is to store and forward the traffic

through a certain host at a given port number. A lot of Man-in-the-Middle attack

tools or TCP and UDP proxy software can be used to implement this function, such

as Mallory [96]. Stored packets will be intentionally jittered, as well as randomly de-

layed, for a short amount of time. This jittering will actually change the inter-arrival

time gaps between packets after those packets were being forwarded to the next host.
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In our experiment, whether a packet was jittered or not was based on a Bernoulli

distribution. By applying random delays generated by some probability distribution

to the original network traffic, we can jitter the traffic under that distribution model.

One of the objectives of this study is to determine the effects on the detection

by various parameters. Thus, we tried different combinations of mean, standard de-

viation, and jitter rate among different distribution models. Our experiment results

indicate that the distribution model used to generate jittering does not impact our

detection method.

Since an intruder can use any distribution models to jitter the original connec-

tion stream, one cannot pre-assume or control the way of how hackers manipulate

the traffic. We tried several different distribution models, and based on our study,

the distribution model used to jitter the traffic does not matter much. We will

demonstrate our research results by using General Pareto, Lognormal, and even the

simplest Uniform distributions to implement jittering of the original traffic in our

experiment.

Under certain distribution models, there are different parameters used in prob-

ability density function (PDF) of a distribution. Common parameters of different

distributed data are mean and standard deviation. Hence, we can transfer those

parameters of a distribution used in PDF into mean and standard deviation.

When we have 100% jittering rate, with a mean set at 0.4 (seconds), we tested

with a standard deviation from 0.2 to 1.4 to implement jittering based on General

Pareto, Lognormal, and Uniform distributions. The detection rate of our method
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based on different standard deviations is shown in Figure 5.8. In the figure, the

detection rates among different distribution jittered traffics are very close to each

other based on the change of standard deviation. The detection rate increases as

long as the standard deviation increases. We can have almost 100% detection rate

when standard deviation approaches 1 second.

Figure 5.8: Detecting 100% Jittered Traffics with Different Standard Deviation by
the Three Jittering Distributions

There are many combinations of different jittering rate, different mean, and dif-

ferent standard deviation. We tested our detection algorithm with different combi-

nations among these three parameters. The results shown in Figure 5.8 below are

based on a fixed mean of 0.4 and a fixed jittering rate of 100%. All results show

that the detection rates based on jittering rate, mean and standard deviation do not

differ much among different distribution used to generate jittering. In the following

part of this chapter, we will show our results with the Uniform distribution model.
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5.3.2 Impacts of Jittering Rate, Standard Deviation, and

Mean on the Detection Rate

For a given jitter distribution, there are three parameters (jitter rate, mean and

standard deviation of the jitter distribution) used to generate jitters. We conducted

experiments to study their relationships. Based on our experimental results, we con-

clude that the standard deviation of the jittering distribution impacts the detection

rate the most. On the other hand, the mean of the distribution doesn’t impact the

detection rate significantly. Different jittering rates do impact the detection rate but

not as much as standard deviation does.

As shown in Figure 5.9, for each standard deviation, we compute the detection

rate with mean = 0.2, 0.4, and 0.6. The detection rate for a given standard deviation

doesn’t change much for different mean values. All three curves shown in Figure 5.9

exhibit similar trends and very close detection rates for a fixed standard deviation

value. This is also true when we vary the standard deviation from 0.2 to 1.4. The

conclusion from this experiment is that the detection rate is very sensitive to the

standard deviation (changes from 30% to 100%) but not as sensitive to the mean

(0.2, 0.4 and 0.6) of the jittering distribution.

Our method can detect most jittered traffic streams under different jittering rates.

As shown in Figure 5.10, the detection rate increases as the standard deviation in-

creases for jittering rates of 25%, 50%, and 75%. In the figure, the standard deviation

increases from 0.2 to 1.6 with a fixed mean of 0.4. Our method can detect most jit-

tered cases with a detection rate mostly at 80% or above. The second conclusion
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Figure 5.9: The Impact of Mean of the Jittering Distribution on the Detection Rate

from this experiment is that the detection rate is generally higher for a higher jitter

rate even though the detection rates don’t vary too much among the three jitter

rates.

Furthermore, if we can tolerate some false positive cases, we can increase the

detection rate further. The FP rate starts at 0% and goes up. Based on the trade-off

between the true positive (TP) rate and the false positive rate, we can get the ROC

curves shown in Figure 5.11. With a 100% jittering rate and a mean of 0.4, we can

achieve a 100% detection rate with a standard deviation of 0.6, 0.8 and 1.0 if we

tolerate a FP of 30%. However, as shown in the figure, when the standard deviation

is 0.2, the detection rate is really low even after increasing the FP to 50%. Clearly,

the detection algorithm does not work well when we have a high jittering rate, and

low standard deviation. This issue will be discussed in the next section.
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Figure 5.10: The Impact of Jittering Rate on the Jittering Detection Rate

Figure 5.11: ROC Showing the Detecting Jittered Streams with Different Jittering
Standard Deviation (Mean = 0.4 and Jitter Rate = 100%)
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5.3.3 Deterioration of Jittering Detection Algorithm

When packets are closed to 100% being jittered, based on our observation, it is

really difficult to detect the jittered traffic when the standard deviation of jitters is

small. This is easy to understand. When all packets are delayed by almost the same

amount (low standard deviation), the time gaps between the packets are changed

only minimally. In Figure 5.12, we demonstrate the result on different means, 0.2,

0.4 and 0.6, over detection rate. The jittering rate is 100% which means all packets

from the original connection are jittered.

In Figure 5.12, we can see no matter what distribution model is used to generate

jitter, when we have a 100% jittering rate and a small value of standard deviation

of our randomly generated sequence of jitter, our method has a low detection rate

of below 30% when FP is 0%. This is because under the combination of 100%

jittering and very small standard deviation, the generated random jitters vary very

little among each other. When one applies almost the same amount of jitter to

every packet, the inter-arrival time gaps between the two consecutive packets are

almost not changed. Under this circumstance, the inter-arrival time gaps sequence

of jittered one will almost remain the same with the original one.

However, this difficult case will be easily detected by most of the correlation-based

detection algorithms, just because the jittered one remains almost the same with the

original one. For the case of very high jittering rate, as long as the standard deviation

is high, the detection rate will be close to 100%, which was shown in Figures 5.9 and

5.10.
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Figure 5.12: Testing Cases with Low Detection Rate (with 100% Jittering Rate and
a Small Standard Deviation)

5.4 Hybrid Stepping-stone Detection Algorithm

and its Validation

5.4.1 Detect Stepping Stones with or without Jittering

Our proposed approach can detect stepping-stone intrusions with jittering. If we

combine this approach with correlation-based stepping-stone detection algorithms,

we can come up with a much more robust detection method which can detect

stepping-stone attacks either with jittering or without jittering.

As shown in Figure 5.13, we propose a hybrid stepping-stone hosts detection algo-

rithm which combines our jittering detection module described above and a stepping-

stone correlation algorithm. Figure 5.13(a) shows a typical correlation algorithm of
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Table 5.1: The Optimal Slope Alignment (OSA) Algorithm

Algorithm OSA(R,T,n,m):
/∗ Given two sequences R and T with s i z e n and m ∗/
f o r ( q=0; q<m; q++) cos t [ 0 ] [ q ] = 0 ; // i n i t i a l i z a t i o n
f o r (p=1; p<n ; p++)

f o r ( q=0; q<m; q++)
f o r ( k=0; k q ; k++)

cur rS lope = T. get ( q)−R. get (p ) ;
prevSlope = T. get ( k)−R. get (p−1);
s lopeCorr = Math . abs ( currS lope−prevSlope ) ;
i f ( co s t [ p ] [ q]> co s t [ p−1] [ k]+ s lopeCorr )

co s t [ p ] [ q ] = co s t [ p−1] [ k]+ s lopeCorr ;
minCost= INT MAX;
f o r ( q=n−1;q<m; q++) // f i n d optimal

i f ( co s t [ n−1] [ q]<minCost )
minCost= cos t [ n−1] [ q ] ;

DisScore=minCost ;

two streams and Figure 5.13(b) shows the hybrid algorithm. We first feed a test

stream (typically an outgoing stream from a host) into our jittering detection algo-

rithm to see if it has been jittered. If it’s classified as jittered, we trigger the attack

alarm. Otherwise, we will feed it into the stepping-stone correlation algorithm. By

comparing with the reference streams (typically an incoming stream), if the testing

connection is correlated with another connection, it will be classified as an attack.

This proposed method utilizes our jittering detection approach to complement orig-

inal correlation based stepping-stone detection methods to fortify its robustness.

We implement the optimal slope alignment (OSA) correlation detection algorithm

[138] in our effort to validate the hybrid algorithm. The OSA detection algorithm,

shown in Table 5.1, is an improvement of dynamic time wrapping-based correlation
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Figure 5.13: Flow Charts of the Algorithms: (a) Stepping-stone Correlation Algo-
rithm (b) Hybrid Stepping-stone Detection with an addition path in blue
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algorithms. By given two sequences R and T , OSA tries to find the subsequence

Rs of R and Ts of T such that Rs best matches Ts. The OSA algorithm compares

the slope correlation to find the best match. Imagine a correct matching in Figure

5.13(a), the slopes of the line segments connecting the matching packets should be

very close. OSA actually finds the best such match. If we use the OSA correlation

algorithm to compare two streams of the same chain in and out of a host, we should

get a low dissimilarity score (i.e., a very good match). If we correlate one stream

from a connection with another stream from a different connection chain, we should

get a high dissimilarity score. Calculated dissimilarity scores using OSA upon our

experiment data are shown in Figure 5.14. To further illustrate the dissimilarity

among different correlations by OSA, as shown in Figure 5.15, we utilize box-plot

to demonstrate. One can clearly see the dissimilarity scores of unrelated chains are

higher than the jittered streams with standard deviation = 0.2, 0.4, 0.6 and 0.8

correlated with their original streams. For jittered streams with standard deviation

= 1.0, correlated with their original streams, the dissimilarity scores are as high as

scores from the correlation between unrelated chains.

By using the minimum dissimilarity score of correlation among unrelated streams,

we can get a threshold τ = 15.2 to detect if two streams are from the same chain or

different chains. Correlated with OSA, if two correlated streams have a dissimilarity

score less than τ , they are classified as from the same stepping-stone chain. Other-

wise, these two streams are classified as from the different chains. If two correlated

streams are from the same stepping-stone chain, we can further label this chain as

being used as a stepping-stone attacking chain.
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Figure 5.15: Dissimilarity Scores of the OSA Correlation Algorithms Increases as the
Standard Deviation Increases

By tolerating certain FP values when producing the threshold τ , we can get the

ROC curve for the OSA correlation-detection algorithm as shown in Figure 5.16.

From the figure, one can see that the detection rate of the OSA algorithm is decreas-

ing as long as the correlated stream is being jittered with higher standard deviation.

The OSA stepping-stone-detection module can detect more than 90% jittered streams

with std = 0.2 even with 0% FP. However, it cannot detect well jittered streams with

standard deviation higher than 0.2.

The jittering detection algorithm works well when there is large jittering (higher

standard deviation) but does not work well with lower jittering. When we combined

the jittering detection with the correlation-based detection of stepping stones (see

Figure 5.13), the result is much better. As shown in Table 5.2, for the same 24 traffic

streams used in Figure 5.11 and Figure 5.17, with no false positive, the number of
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Figure 5.16: ROC Curve Showing the Detection Rate of the OSA Correlation De-
tecting Algorithm with Different Standard Deviations
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Table 5.2: A Comparison of the Number of Successful Detection of the Three Al-
gorithms. This table shows the successful detection (out of 24 test cases) of the
algorithms under various standard deviations of jittering

Std Correlated Algorithm Jittering Detection Hybrid Algorithm
0.2 22 7 22
0.4 17 11 20
0.6 7 20 20
0.8 3 22 22
1.0 0 23 23

detected streams by the OSA correlation algorithm is decreasing, as the standard

deviation of the jittering increasing from 0.2 to 1.0. This coincides with our intuition

that more jittering destroys the correlation-based detection. Fortunately, the jitter-

ing detection algorithm can detect more streams as the standard deviation increase

from 0.2 to 1.0. In Table 5.2, the last column gives the number of cases successfully

detected by the hybrid algorithm.

Using our hybrid stepping-stone host detection algorithm on the same data set,

the ROC curve of the framework with a mean of 0.4 and a jittering rate of 100% is

shown in Figure 5.17. Similarly, Figure 5.18 shows that the hybrid algorithm can

detect almost 90% of the jittered streams with a FP around 5%, and all jittered

streams with a FP around 10%. The detection rate is improved significantly com-

pared to the OSA correlation detection algorithm alone. In Figure 5.18, the ROC

curve of the hybrid algorithm with mean 0.4 and jittering rate 50% is illustrated.

One can see for different standard deviations, all detection rates are higher than 90%

with 0% FP. The detection rates all get up to 95% with FP less than 5%.
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Figure 5.17: ROC Curve of Stepping-stone Detection Framework with Mean 0.4 and
Jittering Rate 100%
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Figure 5.18: ROC Curve of Stepping-stone Detection Framework with Mean 0.4 and
Jittering Rate 50%
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5.5 Conclusion

In order to evade the detection from correlation-based stepping-stone detection al-

gorithms, intruders may jitter the traffic of a stepping-stone connection chain.

Our jittering detection strategy [139] utilizes statistical distributions to fit the

inter-arrival time gaps of traffic flows, followed by measuring the difference and sepa-

rating jittered ones from normal ones by using SVM. Experimental results show that

distributions used to generate jitters do not impact the detection rate of our method.

Besides, the mean of randomly generated jitters has very little impact on our detec-

tion method. For the other two factors, standard deviation and jittering rate, the

detection rate of our method will increase as the standard deviation increases. The

more jittering there is the easier it is to detect.

When the traffic is jittered enough, the detection algorithm starts to fail. How-

ever, we have observed that the pattern of inter-arrival time gaps of the jittered

stream would be changed too. We have found a set of features of the inter-arrival

times that can be used to distinguish a jittered traffic from an un-jittered one. Our

method can detect most cases based on the combination of all three factors: mean,

standard deviation, and jittering rate. Experimental results show the detection rate

is around 90% for cases with high standard deviation. However, the jittering detec-

tion failed to work when the standard deviation of the jittering is small.

We can distinguish intrusion connections from normal connections by either using

a correlation-based algorithm (when jittering is low) or the algorithm presented here

(when the jittering is high). In practice, we don’t know whether the packet streams
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have been jittered or not. So we proposed a hybrid stepping-stone detection algo-

rithm to employ both detection algorithms (correlation-based and jitter detections)

to detect intrusions.

Thus we proposed a hybrid detection algorithm which combines the OSA cor-

relation detection algorithms and our jittering detection algorithm. This proposed

hybrid stepping-stone host detection algorithm can overcome shortages of the jitter-

ing detection algorithm and complement correlation-based stepping-stone detection

algorithm to deal with jittering evasion techniques. This hybrid algorithm has been

shown to be very effective in detecting stepping stones with or without jittering.
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Chapter 6

Conclusions

This dissertation focused on addressing the issues of detecting intrusions through

stepping-stone connection chains. The first part of our work emphasized intrusion

detection at the target server. This issue had not been studied widely. Due to the

limitation of monitoring at the end of the connection chain, our research tried to

extract useful features from the limited information that is available. Those features

had not been investigated enough or taken into considerations by other researchers

previously. To detect intrusion through long connection chains at the target server,

this dissertation proposed two long connection chain detection algorithms: a nearest-

neighbor based algorithm and an anomaly detection-based algorithm. The second

part of our work emphasized detecting stepping-stone intrusions at the intermediate

host when hackers utilize jittering evasion techniques. This dissertation proposed

an effective jittering detection algorithm to detect stepping-stone intrusions with

jittering. Besides, a hybrid stepping-stone detection algorithm was also proposed to
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detect stepping-stone intrusions with or without jittering.

Our nearest neighbor-based long-chain detection algorithm centers around an-

alyzing the delay between the time a user presses enter to finish a command and

the time that the user types the next character; it uses an approximated upstream

round-trip time to separate a long connection chain from short ones. It’s the first

time the idea of distinguishing different keystrokes was used. It’s also the first time a

reliable method was proposed to separate inter-command gaps from intra-command

gaps in a SSH connection chain. We discussed the accuracy of separation based on a

connection chain’s length difference. The experimental results show that our method

can correctly distinguish long chains from short chains with an accuracy above 90%

when the length difference is larger than 4. Overall, 86% of long chains can be cor-

rectly identified with a false positive rate of 13%, without considering the length

difference.

Our anomaly detection based long chain detection algorithm centers on utilizing

a series of short connections to build the profile inter-command gap curve. For each

new connection chain, after extracting the inter-command gap curve, we compare it

with the profile and measure the distance. We proposed three different algorithms to

quantitatively calculate the distance between the profile curve and the new extracted

curve. Our experiments show that by tolerating a false positive rate of 15%, 100%

of the test cases (4-hop and 6-hop) can be correctly detected with our weighted ratio

distance measurement algorithm which exceeds the expectation of using the uRTTs

to estimate true RTTs.
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Hackers developed new techniques to evade stepping-stone detection at the inter-

mediate hosts. Hackers can add chaff packets or jitter on original packets to evade

detection. Injecting chaffing packets into a connection was discussed and studied

in previous research. However, jittering evasion attacks were not studied yet. The

way of how to jitter a network traffic stream is totally controlled by hackers, though

it’s also limited by TCP/IP protocols. This dissertation discussed possible ways of

jittering based on different jittering distributions, jittering rates, standard deviation,

mean, and so forth. Our proposed jittering detection algorithm [139] utilizes sta-

tistical distributions to fit the inter-arrival time gaps of traffic flows. By measuring

the difference, it separates jittered ones from normal ones. We have found a set

of features of the inter-arrival time gaps that can be used to distinguish a jittered

traffic from an un-jittered one. Experimental results show that distributions used

to generate jitters do not impact the detection rate of our method. Besides, the

mean of randomly generated jitters has very little impact on our detection method.

For the other two factors, standard deviation and jittering rate, the detection rate

of our method will increase as the standard deviation increases. The more jittering

there is, the easier it is to detect. The detection rate is around 90% for cases with a

high jittering standard deviation. However, the jittering detection algorithm failed

to work when the standard deviation of the jittering is low. In practice, we don’t

know whether the packet streams have been jittered or not. Hence, we proposed a

hybrid stepping-stone detection algorithm which employs a correlation-based OSA

detection algorithm and jittering detection algorithm at the same time. This hy-

brid stepping-stone host detection algorithm can overcome shortages of the jittering
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detection algorithm and complement correlation-based stepping-stone detection al-

gorithms to deal with jittering evasion techniques. Our hybrid algorithm has been

shown to be very effective in detecting stepping stones with or without jittering. Our

hybrid detection algorithm can get a higher than 90% detection rate with 0% FP

rate in most cases.

We have proposed algorithms to detect stepping-stone intrusions at both the in-

termediate hosts and the target server. But the stepping-stone intrusion detection

problem is far from being completely solved. There are several limitations on our

work. For our detection algorithms, threshold values used to determine long or short

chains are system and network dependent, impacted by system load and network

latency. Each installation of the detection algorithm should find its own threshold

value. We provided methods to select these values based on the FP rate. By deploy-

ing our detection algorithms in a broader range, with bigger sample and data size,

we may refine our detection algorithms with a lower FP rate and a higher detection

rate.

With the development of Tor [140] like anonymous proxies, hackers have new

robust choices to do remote intrusions through intermediate hosts. Those well de-

veloped, strongly encrypted, and widely distributed public proxies can be illegally

exploited by hackers. Furthermore, those world-wide distributed proxies are more

dynamic than traditional SSH hosts. This will increase the difficulty of implementing

stepping-stone detection algorithms. To deal with intrusions from Tor like distributed

proxy networks, we need better distributed stepping-stone detection algorithms to
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be developed and deployed. The throughput and efficiency of the detection algo-

rithm will be highly emphasized. Besides, with the development of big data and

machine learning, intelligent, self-driven, and evolving intrusion detection and pre-

vention mechanisms should become a hot research area in the coming years.
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Appendix A

Server part of the Socket program for RTT measurement:

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

void error(char *msg)
{

perror(msg);
exit(1);

}
int main(int argc, char *argv[])
{

int sockfd, newsockfd, portno, clilen;
char buffer[256];
struct sockaddr_in serv_addr, cli_addr;
int n;
if (argc < 2) {

fprintf(stderr,"ERROR, no port provided\n");
exit(1);

}
sockfd = socket(AF_INET, SOCK_STREAM, 0);
if (sockfd < 0)

error("ERROR opening socket");
bzero((char *) &serv_addr, sizeof(serv_addr));
portno = atoi(argv[1]);
serv_addr.sin_family = AF_INET;
serv_addr.sin_addr.s_addr = INADDR_ANY;
serv_addr.sin_port = htons(portno);
if (bind(sockfd, (struct sockaddr *) &serv_addr,

sizeof(serv_addr)) < 0)
error("ERROR on binding");

listen(sockfd,5);
clilen = sizeof(cli_addr);
newsockfd = accept(sockfd,
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(struct sockaddr *) &cli_addr,
&clilen);

if (newsockfd < 0)
error("ERROR on accept");

bzero(buffer,256);
n = read(newsockfd,buffer,255);
if (n < 0) error("ERROR reading from socket");
printf("Test message as %s received.\n",buffer);
//n = write(newsockfd,"Message returned.",18);
n = write(newsockfd,buffer,255);
if (n < 0) error("ERROR writing to socket");
return 0;

}

Client part of the Socket program for RTT measurement:

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <sys/time.h>

void error(char *msg)
{

perror(msg);
exit(0);

}
int main(int argc, char *argv[])
{

int sockfd, portno, n;
struct sockaddr_in serv_addr;
struct hostent *server;
struct timeval tv1, tv2;
double start, finish;

char buffer[256];
if (argc < 3) {

fprintf(stderr,"usage %s hostname port\n", argv[0]);
exit(0);
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}
portno = atoi(argv[2]);
sockfd = socket(AF_INET, SOCK_STREAM, 0);
if (sockfd < 0)

error("ERROR opening socket");
server = gethostbyname(argv[1]);
if (server == NULL) {

fprintf(stderr,"ERROR, no such host\n");
exit(0);

}
bzero((char *) &serv_addr, sizeof(serv_addr));
serv_addr.sin_family = AF_INET;
bcopy((char *)server->h_addr,

(char *)&serv_addr.sin_addr.s_addr,
server->h_length);

serv_addr.sin_port = htons(portno);
if (connect(sockfd,&serv_addr,sizeof(serv_addr)) < 0)

error("ERROR connecting");
//printf("Please enter the message: ");
bzero(buffer,256);
//fgets(buffer,255,stdin);
char message[256];
memset(message, 0, sizeof(message));
strcpy(message, "1");
gettimeofday(&tv1, NULL);
n = write(sockfd, message, strlen(message));
if (n < 0)

error("ERROR writing to socket");
//bzero(buffer,256);
n = read(sockfd,buffer,255);
gettimeofday(&tv2, NULL);
if (n < 0)

error("ERROR reading from socket");

if (strcmp(message, buffer) != 0) {
printf("Send and receive does not match.");

}
start = tv1.tv_sec*1000.0 + (tv1.tv_usec/1000.0);
finish = tv2.tv_sec*1000.0 + (tv2.tv_usec/1000.0);
printf("RTT is %.9lf by milliseconds.\n", finish-start);
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//printf("%s\n",buffer);
return 0;

}
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Appendix B

Keystroke Analysis:

#include <iostream>
#include <cstdlib>
#include <string>
#include <fstream>
#include <vector>
#include <sstream>
#include <iterator>
#include <algorithm>
#include <cmath>
#include <exception>

using namespace std;

double *sort_incr(double *array, int length) {
double *sorted = new double[length];
double temp;
for(int i=0; i< length; i++) {

sorted[i] = array[i];
cout << sorted[i] << endl;

}
for( int i=0; i< length-1; i++) {

for( int j=0; j< length-1; j++) {
if(sorted[j] > sorted[j+1]) {

temp = sorted[j];
sorted[j] = sorted[j+1];
sorted[j+1] = temp;

}
}

}
return sorted;

}

vector<double> sort_incr(vector<double> a) {
vector<double> b = a;
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double temp;
for( unsigned int i=0; i< b.size()-1; i++) {

for( unsigned int j=0; j< b.size()-1; j++) {
if(b[j] > b[j+1]) {

temp = b[j];
b[j] = b[j+1];
b[j+1] = temp;

}
}

}
return b;

}

struct eRTT {
double typingspeed; // Typing speed of all keystrokes
double typingspeed_inside; // Typing speed inside

commands
double commdelay; // Average gap between commands
double nRTT; // Nearest RTT
string keystrokes; // Output file for distribution of

keystroke gaps
string commands; // Output file for distribution of

command gaps
string numbers; // Output file for NO. of the packet

line been found as a new command
string distribution; // Output file for the

distribution of comm gap from 0 to 2s by range like
[0-0.1)

string keys_inside; // Output file for the distribution
of keystrokes inside the commands

string allgaps; // Added on Nov. 12, 2009 to use the
response and request gap

};

class RTT {
public:

void pcap_trim(string& input, char delim);
vector<string> pcap_split(string input, char delim);
string pcap_timestamp(string& input);
string pcap_number(string& input);
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void keystroke_analyze(string input, int OFFSET, eRTT*
results);

};

void RTT::pcap_trim(string& input, char delim) {
// Trim the starting and ending blank spaces.
string::size_type start;
string::size_type end;
start = input.find_first_not_of(delim);
input.erase(0, start);
end = input.find_last_not_of(delim);
input.erase(end+1);

}

vector<string> RTT::pcap_split(string input, char delim) {
// Split string based on the delim you set.
vector<string> input_splitted;
string temp;
stringstream ss(input);
while(getline(ss, temp, delim)) {

input_splitted.push_back(temp);
}
return input_splitted;

}

string RTT::pcap_timestamp(string& input) {
// Split the packets line from txt format by whitespace

, and output the timestamp.
char delim = ’ ’;
RTT::pcap_trim(input, delim);
string timestamp = RTT::pcap_split(input, delim)[1];
return timestamp;

}

string RTT::pcap_number(string& input) {
// Must be used after the pcap_timestamp, because

pcap_timestamp trim the starting and ending blank
spaces.

char delim = ’ ’;
string number = RTT::pcap_split(input, delim)[0];
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return number;
}

void RTT::keystroke_analyze(string input, int OFFSET, eRTT*
results) {
ifstream in(input.c_str());
string line;
int count = 0;
int cnt = 0; // Count after OFFSET for request packet
vector<double> request;
vector<double> comm_gap;
vector<double> inside_gap;
vector<double> all_gap;
string::size_type found_send;
string::size_type found_echo;
string::size_type found_ack;
int nRTT_cnt = 0;
double nRTT_all = 0;
int nRTT_flag = 2;
string timestamp;
double gap;
double gap_inside;
double delay_all = 0; // Accumulate delay between all

commands
double time_inside = 0; // Accumulate time inside

commands
int cnt_gap = 0;
int count_echo = 0;
double t1 = 0;
double t2 = 0;
double t_echo1 = 0;
double t_echoL = 0;
double typing_all = 0;
string number;
vector<string> nums; // Used to store number of the

packet line
int gap_flag = 0;
// Calculate the gap from the 1st echo response to the

next request.
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// If set to 0, calculate the gap from the LAST echo
response to the next request.

double gap_threshold = 3.0; // If the calculated
comm_gap is larger than this threshold, it will be
discarded.

int thr_flag = 1;
// If flag set to 1, any comm_gap larger than threshold

will be discarded.

while(getline(in, line)) {
if(count >= OFFSET) {

found_send = line.find("Encrypted request
packet");

found_echo = line.find("Encrypted response
packet");

found_ack = line.find("> ssh [ACK]");
// Using t1 and t2 to store the current and

last timestamp for nRTT
t1 = t2;
t2 = atof(RTT::pcap_timestamp(line).c_str());
number = RTT::pcap_number(line);
if((int)found_send > 0) {

nRTT_flag = 0;
// Insert into request
timestamp = RTT::pcap_timestamp(line);
request.push_back(atof(timestamp.c_str()));
if(count_echo >= 2) {

// Insert into new_comm
cnt_gap ++;
//gap = request[request.size()-1] -

request[request.size()-2];
if( gap_flag == 1) {

gap = request[request.size()-1] -
t_echo1;

} else {
gap = request[request.size()-1] -

t_echoL;
}
delay_all += gap;
comm_gap.push_back(gap);
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all_gap.push_back(gap);
nums.push_back(number);

} else if(count_echo < 2) {
cnt ++;
if(cnt > 1) {

//gap_inside = request[request.size
()-1] - request[request.size()
-2];

if( gap_flag == 1) {
gap_inside = request[request.

size()-1] - t_echo1;
} else {

gap_inside = request[request.
size()-1] - t_echoL;

}
time_inside += gap_inside;
inside_gap.push_back(gap_inside);
all_gap.push_back(gap_inside);

}
}
count_echo = 0;

} else if((int)found_echo > 0) {
count_echo++;
if(count_echo == 1) {

t_echo1 = atof(RTT::pcap_timestamp(line
).c_str());

}
t_echoL = atof(RTT::pcap_timestamp(line).

c_str());
nRTT_flag++;

} else if((int)found_ack > 0) {
if(nRTT_flag == 1) {

nRTT_cnt ++;
nRTT_all += t2-t1;

}
nRTT_flag += 3;

}
}
count ++;

}
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results->typingspeed_inside = time_inside/(cnt-1);
results->commdelay = delay_all/cnt_gap;
results->nRTT = nRTT_all/nRTT_cnt;
ofstream out_k(results->keystrokes.c_str());
double temp;
for(unsigned int i=1; i < request.size(); i++) {

temp = request[i] - request[i-1];
out_k << temp << "\n";
typing_all += temp;

}
out_k.close();
ofstream out_g(results->allgaps.c_str());
for(unsigned int i=0; i < all_gap.size(); i++) {

out_g << all_gap[i] << "\n";
}
out_g.close();
results->typingspeed = typing_all/(request.size()-1);
ofstream out_c(results->commands.c_str());

// Check the thr_flag to decide if discard any comm_gap
larger than the gap_threshold set before

int cnt_over = 0;
if (thr_flag) {

for(unsigned int i=0; i < comm_gap.size(); i++) {

if (comm_gap[i] <= gap_threshold) {
out_c << comm_gap[i] << "\n";

} else {
cnt_over ++;

}
}

} else {
for(unsigned int i=0; i < comm_gap.size(); i++) {

out_c << comm_gap[i] << "\n";
}

}

out_c.close();
ofstream out_n(results->numbers.c_str());
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for(unsigned int i=0; i < nums.size(); i++) {
out_n << nums[i] << "\n";

}
out_n.close();
ofstream out_i(results->keys_inside.c_str());
for(unsigned int i=0; i < inside_gap.size(); i++) {

out_i << inside_gap[i] << "\n";
}
out_i.close();

// Sort the commands, and find the biggest increasing
vector<double> sorted_comm;
sorted_comm = sort_incr(comm_gap);

// Calculate the distribution of comm gap from 0 to 2s
by 0.1s as each range, such as [0-0.1), [0.1-0.2)

int distribute[20];
for(int i =0; i<20; i++) {

distribute[i] = 0;
}

int index = 0;
for(unsigned int i=0; i < sorted_comm.size(); i++) {

if(sorted_comm[i] < 2.0) {
index = (int)floor(sorted_comm[i]*10);
distribute[index] ++;

}
}
ofstream out_d(results->distribution.c_str());

for(unsigned int i=0; i < sizeof(distribute)/sizeof
(int); i++) {
out_d << distribute[i] << "\n";

}
out_d.close();

vector<double> comm_incr;
for(unsigned int i=0; i< sorted_comm.size()-1; i++) {

comm_incr.push_back(sorted_comm[i+1] - sorted_comm[
i]);
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//cout << comm_incr[i] << endl;
}

double max_gap = 0;
// Find the maximun gap
int checkpoint = comm_incr.size()/2;
for( unsigned int i=0; i<comm_incr.size(); i++) {

max_gap = (comm_incr[i] < max_gap) ? max_gap :
comm_incr[i];

}

cout << "Average typing speed is " << results->
typingspeed << endl;

cout << "Average command delay is " << results->
commdelay << endl;

cout << "Average speed inside commands is " << results
->typingspeed_inside << endl;

cout << "Nearest RTT is " << results->nRTT << endl;

if (thr_flag) {
cout << cnt_over << " command gaps larger than the

threshold " << gap_threshold << " are discarded.
" << endl;

}
}
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