
PHYSICIAN FRIENDLY MACHINE
LEARNING

by
Meghana Padmanabhan

A thesis submitted to the Department of Electrical and Computer Engineering,
Cullen College of Engineering

in partial fulfillment of the requirements for the degree of
Master of Science

in Computer and Systems Engineering

Chair of Committee: Dr. Hien Van Nguyen
Committee Member: Dr. Zhu Han

Committee Member: Dr. Saurabh Prasad

University of Houston
May 2020

Dedication

I dedicate my work to my family and friends. A special feeling of gratitude to my

loving parents whose encouragement and support instilled courage in me. I also dedicate

this thesis to my many friends who have supported me throughout the process. I will

always appreciate all they have done.

ii

Acknowledgements

I wish to sincerely thank my advisor Dr. Hien Van Nguyen for his continued support,

advice, encouragement and most of all patience throughout the entire process. His ex-

pertise and generosity with feedback made the completion of this research an enjoyable

experience. Thank you Dr. Zhu Han and Dr. Saurabh Prasad for agreeing to serve on my

committee. Special thanks goes to the staff of the Department of Electrical and Computer

Engineering for their continued support.

iii

Abstract

Artificial Intelligence (AI) and Machine Learning (ML) today has infiltrated almost all

fields, helping catch patterns and make interesting conclusions from data. The surge in

AI over the years can be attributed to two main facts: Increase in computation power

of newer systems and the availability of data, both of which serve as seeds for building

good prediction models. Medicine has slowly but steadily adopted AI over the years. Yet,

traditional heuristic approaches and experience of physicians and doctors is heavily relied

upon to this date. This thesis proposes two machine learning tools that can help doctors,

physicians and medical researchers with their diagnosis and treatment procedures.

Proposal 1 discusses Automatic Machine Learning (AutoML), which is a tool that helps

automate the process of ML model building and fine-tuning, taking away the onus of fine-

tuning model parameters from the programmer. The resistance towards adoption of ML

in the medical community stems from the idea that the tools and knowledge are only

accessible to highly trained ML experts. This proposal is an attempt at breaking this age-

old perception by proposing Auto-ML as a tool to build good ML models. The experiment

done to substantiate this claim is to have a graduate student with sufficient experience

in ML, manually build and fine-tune ML models on two publicly available cardiovascular

disease prediction data-sets over a month and compare the performance with that of Auto-

ML. The results prove that Auto-ML is capable of building models of similar accuracies in

a time span of 30 minutes per data-set, with just a few lines of code. This should provide

enough empirical evidence and encourage doctors to adopt ML as part of their research.

Proposal 2 discusses the power of visualization of Convolutional Neural Networks

(CNN) in performing classification tasks and how they help develop trust in doctors and

iv

medical researchers about model predictions. Gradient-weighted Class Activation Map-

ping (Grad-CAM) is used as a tool to generate localization maps indicating regions in the

image that contributed to a certain prediction from the CNN, thereby instilling trust in

medical professionals.

v

Table of Contents

Dedication ii

Acknowledgements iii

List of Tables ix

List of Figures x

Abbreviations xii

1 PROPOSAL 1 - AUTOMATIC MACHINE LEARNING 1

1.1 Introduction . 1

1.2 Taxonomy . 3

1.3 Datasets . 3

1.3.1 Heart UCI dataset . 3

1.3.2 Cardiovascular disease dataset . 4

1.4 Auto-Sklearn . 4

1.5 Literature survey . 7

1.6 Human strategy . 10

1.6.1 Human strategy outline . 10

1.6.2 Human attempt procedure . 12

1.6.3 Model descriptions . 15

1.6.3.1 Logistic Regression classifier 15

1.6.3.2 Support Vector Machines . 18

vi

1.6.3.3 Decision Trees . 20

1.6.3.4 Random Forests . 22

1.6.3.5 K Nearest Neighbors . 23

1.6.3.6 Bagging Classifiers . 25

1.6.3.7 Adaboost classifier . 25

1.6.3.8 Multi-layer perceptron (MLP) classifier 26

1.6.3.9 Gradient boosted trees . 28

1.6.3.10 Voting classifiers . 30

1.6.4 Results and discussion . 30

1.6.4.1 AutoML Benefits Complex Datasets More 30

1.6.4.2 Comparison of AutoML’s and Graduate Student’s Test-Set

Performances . 31

1.7 Conclusion . 33

2 PROPOSAL 2 - NEURAL NETWORK VISUALIZATION 35

2.1 Introduction . 35

2.2 Visualization tools for CNNs . 37

2.3 Grad-CAM visualization . 40

2.3.1 Guided Grad-CAM . 43

2.4 ABMR . 44

2.4.1 ABMR classification by pathologists 44

2.5 Machine classification . 45

2.6 Results and discussion . 47

2.6.1 Dataset . 47

2.6.2 Training . 48

2.6.2.1 Training curves . 48

2.6.2.2 Visualizations . 48

2.7 Conclusion and future work . 51

REFERENCES 54

vii

APPENDICES 65

A Daywise performance on Heart UCI and Cardiovascular Disease Dataset . . 65

B Descriptions and parameter settings of algorithms used by the student . . . 71

viii

List of Tables

1.1 13 attributes of UCI Heart dataset. 4

1.2 12 attributes of Cardiovascular Diseases dataset. 5

1.3 Accuracies reported by previous studies on Heart UCI Dataset compared to

accuracies of the graduate student and AutoML 33

1.4 Comparison of AutoML and graduate student’s classification performances

and total time on UCI test set . 33

1.5 Comparison of AutoML and graduate student’s classification performances

and total time on Cardiovascular test set . 33

2.1 Performance (Accuracy) of ResNet models on test set 48

ix

List of Figures

1.1 The Auto-Sklearn pipeline [25] contains three main building blocks: 1) Data

preprocessor, 2) Feature preprocessor, and 3) Estimator or machine learning

algorithms. 5

1.2 Python code for using Auto-Sklearn to train a classifier for any dataset. . . . 7

1.3 Process adopted by human to build good models 11

1.4 Sample distributions of the two datasets . 12

1.5 Sample cross validation curve [71] . 15

1.6 Optimal hyperplane for SVM [19] . 18

1.7 Sample Decision tree [66] . 21

1.8 Sample K nearest neighbor classification [71] 23

1.9 MLP with one hidden layer [71] . 27

1.10 Validation accuracy over 18 days by the graduate student on the Heart UCI

dataset . 31

1.11 Validation accuracy over 15 days by the graduate student on the Cardiovas-

cular Disease dataset . 32

2.1 Sample visualization map using Activation maximization [88] 38

2.2 Original image and image with occlusion map [88] 38

2.3 Original image and image with saliancy map [88] 39

2.4 Original image and image with gradient map [88] 40

2.5 Layerwise visualization of classification task from VGG16 [88] 40

2.6 Glomerulus images with varying degrees of ABMR [82] 45

x

2.7 Building bock of residual networks [36] . 46

2.8 Building block in ResNet34 and “bottleneck” building block in ResNet-50/101/152.

[36] . 47

2.9 ResNet-34 [36] . 47

2.10 Preliminary CNN solution for a classification task in transplant nephropathol-

ogy [7] . 48

2.11 Validation accuracy curves for the three ResNet networks 49

2.12 Training and validation accuracy curves ResNet50 49

2.13 True positive predictions with Grad-CAM visualization 50

2.14 True negative predictions with Grad-CAM visualization 50

2.15 False predictions with Grad-CAM visualization 51

2.16 Heatmaps from network and regions nephropathologists see [7] 51

2.17 Wrong predictions made from cropped images show that the whole image

(several features from Glomerulus) is required to make correct prediction . 52

xi

Abbreviations

AI Artificial Intelligence

AutoML Automatic Machine Learning

ML Machine Learning

RFE Recurrent Feature Elimination

SVM Support Vector Machine

RBF Radial Basis Function

ANN Artificial Neural Networks

MLP Multi-layer Perceptron

ReLU Rectified Linear Unit

DL Deep Learning

CNN Convolutional Neural Network

CAM Class Activation Mapping

Grad-CAM Gradient-weighted Class Activation Mapping

ABMR Antibody mediated rejection

VQA Visual Question Answering

LSTM Long Short Term Memory

WSI Whole Slice Image

LM Light Microscope

EM Electron Microscope

xii

Chapter 1

PROPOSAL 1 - AUTOMATIC

MACHINE LEARNING

1.1 Introduction

The process of building good machine learning (ML) models is usually long and ex-

pensive involving several steps like data cleaning, relevant feature selection, appropriate

model selection, hyper-parameter tuning and deployment [47]. Not only is the process

time-expensive, but also involves a lot of calculated guessing and trial-and-error. As stated

by the ’No free lunch’ theorem, there is no algorithm that can achieve good performance

on all problems [109]. This process thus requires expertise in machine learning as well as

computer programming, thereby discouraging others that could benefit from the power of

ML from using it. Also, given the amount of skill and competence required, the price to

build a good ML model is expensive [111]. Automatic Machine Learning (AutoML) is an

attempt at bringing the power of Machine Learning closer to those that do not possess the

skills to manually train and fine-tune models. The idea of AutoML is to allow users to sim-

ply input data and get predictions on unseen data at the click of a button. AutoML aims

to automate as many of the above steps mentioned. AutoML can help medical researchers

and doctors use ML more extensively in their work.

AutoML can be explained as the end-to-end process of searching and finding the best

1

AI model configuration for an arbitrarily given dataset. Each configuration is the result

of looking for the best pre-processing step, algorithm, optimization method, and hyper-

parameter. Given the enormity of the search space, the processing of looking for the best

configurations is computationally expensive. But with the advent of advanced technolo-

gies like the Graphics Processing Unit (GPU) and Tensor Processsing Unit (TPU) and better

search algorithms, AutoML methods have been able to scale up dramatically.

The are several AutoML libraries commonly in use today. Libraries like AutoSklearn

[25], MLBox [68], TPOT [69], H20 AutoML [34] and Auto-Keras [44] are popular in use

today. Many major technological companies, aware of the potential of AutoML have their

own Auto Machine Learning platforms like Google Cloud AutoML [30] and Microsoft Au-

toML [64]. This experiment uses AutoSklearn to perform Automatic feature preprocess-

ing, model selection and hyper-parameter tuning on data. AutoSklearn uses the built-in

software package Sklearn’s functionalities to automate the pipeline by choosing a good

algorithm, good hyper-parameters and feature preprocessing steps. It tackles the problem

using Bayesian optimization [98]. A choice is made at each stage of the pipeline from 15

Classifiers, 14 pre-processing methods and 4 data pre-processing algorithms. An ensem-

ble is created from the executed models during optimization to serve as the final model.

AutoSklearn has been the winner at the ChaLearn AutoML challenge. It has been tested

over 100 diverse datasets and substantially outperforms all of its competitors [25].

It is therefore evident that AutoML has great potential across industries. Despite this

fact, AutoML has not been well-studied in biomedical applications. This proposal aims to

make the following contributions:

• Investigate the performance of AutoML on cardiovascular disease prediction datasets.

• Compare the performance of AutoML with that of manually built solutions by a

graduate student with significant experience in ML and computer programming.

• Detailed analysis, discussion and comparison of the performance of AutoML versus

the graduate student.

2

1.2 Taxonomy

• Feature Engineering: The process of constructing a good feature set from data so

that the learning tool can obtain a good performance.

• Search Space: All candidate classifiers and their corresponding hyper-parameters.

• Optimizer: Agent that goes through search space trying to find a good model/ algo-

rithm.

• Feedback: The metric value that is used to judge a model/ algorithm’s performance.

• Evaluator: Agent that evaluates a model/algorithm for goodness-of-fit and gener-

ates feedback for optimizer to use.

1.3 Datasets

The two datasets used for this set of experiments are the Heart UCI (University of Cal-

ifornia, Irvine) dataset [43] and the Cardiovascular Disease datasets [105], both publicly

available datasets. The two datasets are described in more detail in the following sections.

1.3.1 Heart UCI dataset

The Heart UCI dataset contains data of patient records with the target field referring

to the presence or absence of heart disease. The database has 76 attributes, but only 13 are

used for our experiments to make our results comparable to previous machine learning

papers. Table 1.1 shows the selected attributes and their properties. This dataset has in

total 303 records, which is relatively small given that a typical machine learning dataset

contains several thousands to hundreds of thousands of data points. There have been

multiple works investigating the performances of different machine learning algorithms

on this dataset. The popularity of this dataset makes it easy to know how competitive the

results of the graduate student are as well as how the performance of the AutoML method

compares to human–experts’ systems. The target variable in this dataset is ‘Target’ in Table

3

1.1. Of the 303 records, 138 records are that of patients with Target 0 and 165 records with

Target 1.

Table 1.1: 13 attributes of UCI Heart dataset.

Attribute Type Description
Age Continuous Age in years
Sex Discrete 1 = male, 0 = female
Cp Discrete Chest pain type (4 values)
Trestbps Continuous Resting blood pressure

(in mm Hg on admission to the hospital)
Chol Continuous Serum cholestoral in mg/dl
Fbs Discrete Fasting blood sugar > 120 mg/dl 1 = true; 0 = false
Restecg Discrete Resting electrocardiographic results (values 0,1,2)
Thalach Continuous Maximum heart rate achieved
Exang Discrete Exercise induced angina (1 = yes; 0 = no)
Oldpeak Continuous ST depression induced by exercise relative to rest
Slope Discrete The slope of the peak Exercise ST segment (values 0,1,2)
Ca Discrete Number of major vessels (0-4) colored by flourosopy
Thal Discrete Nature of defect, values (0-3)
Target Discrete Presence or absence of heart disease, values (1,0)

1.3.2 Cardiovascular disease dataset

The cardiovascular disease dataset consists of 70,000 records of patients’ data with the

target (Cardio) describing the presence or absence of heart disease using 11 features as

described in Table 1.2 [105]. The input features are of three types: objective (containing

factual information), examination (containing the results of a medical examination) and

subjective (containing information given by the patient). The target variable in this dataset

is ‘Cardio’ in Table 1.2. Of the 70,000 records, 35,021 records are that of patients with Cardio

0 and 34,979 records are that of patients with Cardio 1.

1.4 Auto-Sklearn

Auto-Sklearn was proposed in [25]. The name was motivated by Scikit-Learn [71], a

popular generic machine learning toolbox. Auto-Sklearn automates the process of build-

ing AI model by utilizing a large number of machine learning classifiers (14 in total) and

pre-processing steps (14 feature processing methods, and 4 data preprocessing methods)

4

Table 1.2: 12 attributes of Cardiovascular Diseases dataset.

Attribute Type Description
Age Continuous Age of the patient in days
Gender Discrete 1 - women, 2 - men
Height (cm) Continuous Height of the patient in cm
Weight (kg) Continuous Weight of the patient in kg
Ap_hi Continuous Systolic blood pressure
Ap_lo Continuous Diastolic blood pressure
Cholesterol Discrete 1: normal, 2: above normal, 3: well above normal
Gluc Discrete 1: normal, 2: above normal, 3: well above normal
Smoke Discrete whether patient smokes or not
Alco Discrete Alcohol intake-Binary feature
Active Discrete Physical activity-Binary feature
Cardio Discrete Presence or absence of cardiovascular disease

in the Scikit-Learn toolbox. That includes logistic regressions, support vector machines,

random forests, bagging, boosting, and neural networks. Figure 1.1 shows the graphical

illustration of the pipeline. Given the training data, Auto-Sklearn first selects an appro-

priate set of data preprocessing steps such as rescaling or imputation of missing values. It

then passes the processed data to the feature processing block, which further normalizes

the data or reduces their dimensions using standard techniques such as principal compo-

nent analysis [46] and independent component analysis [42]. Finally, data are passed to the

estimator block, which selects and trains machine learning algorithms to predict desirable

outputs from input data samples.

Figure 1.1: The Auto-Sklearn pipeline [25] contains three main building blocks: 1) Data
preprocessor, 2) Feature preprocessor, and 3) Estimator or machine learning
algorithms.

Auto-Sklearn defines AutoML as the process of automatically producing test-set pre-

5

dictions (without any human intervention) given a fixed computational budget. Here,

computational budget means computer run time or computer memory usage. Auto-Sklearn

combines traditional machine learning techniques with a Bayesian optimization frame-

work to search for the best combination of AI models and parameters. It also introduces

several notable improvements compared to previous approaches [35]. First, it uses prior

experience on other datasets to create a good model initialization for a new dataset. The

central intuition is that domain experts derive knowledge from previous tasks. Motivated

by this observation, Auto-Sklearn employs a similar strategy. It collects a set of 38 meta-

features, or vector descriptions of dataset properties that would help to determine appro-

priate algorithms that would likely perform well on a particular dataset. Examples of

meta-features include statistics about number of data samples, data dimensions, classes,

and skewness. Based on these features, Auto-Sklearn make a rough suggestion for what

algorithms, pre-processing, and other hyper-parameters will work well on a particular

dataset. Bayesian optimization further refines and improves the model. Second, instead of

outputting one model, it use a weighted combination of multiple best-performing models.

This is similar to the ensemble method in random forests [11] that combines multiple ran-

dom trees to reduce the prediction variance. Empirical studies found that this modification

significantly improve the robustness of the final model [25].

A non-technical person will find Auto-Sklearn intuitive and easy to learn. Figure 1.2

shows the code for training a classifier for an arbitrary dataset. It essentially contains only

four lines of code. The first line loads the Auto-Sklearn library, assuming that this library

is already pre-installed in the computer. The second line of code creates an instance of the

classifier. One can think of this as a placeholder for the final classifier. The third line of

code calls the function .fit to train (aka fitting) the final classifier given the training data

X_train and the corresponding labels y_train. The last line calls the function .predict to

make the predictions on the test data X_test.

6

Figure 1.2: Python code for using Auto-Sklearn to train a classifier for any dataset.

1.5 Literature survey

Review of the AutoML problem and techniques to solve it: Q. Yao et al [111] pro-

vide an in-depth discussion of the AutoML problem setup and the techniques employed

to solve it, along with providing a detailed analysis of these techniques and the reasons for

their successful operations. The authors describe the AutoML problem as a combination

of automation and ML. The steps involved in building a good ML model include problem

definition, feature engineering, model selection, optimization, evaluation and deployment.

AutoML can help automate feature engineering, model selection, optimization (algorithm

selection) and evaluation, thereby allowing experts to focus on problems with more appli-

cations and business value. The AutoML problem is defined as a tool that maximizes per-

formance limited by minimum (or no) human assistance and computational budget. The

3 main goals of AutoML include providing a good generalization of performance across

different input data, minimal human assistance and good computational efficiency (good

performance under limited budget). The idea is to allow experts to focus on defining the

problem, collecting the data and deployment and allowing ML to become more accessible

to everyone, not just to human experts. The authors summarize all AutoML steps into

two broad components, the Evaluator, which measures the performance/ algorithm and

sends feedback to the "optimizer" and the optimizer, that goes through the search space and

updates the configurations of the learning tool with the help of the feedback provided by

the evaluator. An optimizer for the AutoML problem is based on the nature of search

space, feedback and how much of the search space needs to be covered before a good,

suitable model can be found. Several search approaches are discussed for traversing the

search space; Simple approaches and Derivate-free approaches. Simple approaches include

search techniques like grid search (which involves enumeration of every possible config-

7

uration in search space (requires discretization in continuous search space)) and random

search, where the search space is randomly sampled. Derivative free optimizers select new

configurations based on evaluation results from previous samples. Common derivative

free optimizers include Heuristic Search, an algorithm that works by reaching an optimal

configuration by selecting a suitable population. Heuristic search approaches differ in the

way the population is selected. Some popular heuristic search optimizers include Particle

Swarm Optimizers and Evolutionary algorithms. Model-Based Derivative-Free Optimizers

build models on new samples and utilizes the model performance generated by the eval-

uator to generate new models. Some common examples include Bayesian optimization,

Classification based optimization and Simultaneous Optimistic Optimization.

AutoSklearn: AutoSklearn [25] is an award winning AutoML tool [32] based on

the Scikit-learn library that automates the process of feature preprocessing (using 14 fea-

ture preprocessing methods), data preprocessing (using 4 data preprocessing methods),

classifier selection (using 15 classifiers) and hyper-parameter optimization. AutoSklearn

won the first phase of the ChaLearn challenge [48]. The AutoML problem is formulated

as a CASH (Combined algorithm selection and optimization) problem, where the prob-

lems of model selection and hyper-parameter optimization are tackled jointly. The system

is inspired by AutoWEKA [103], which combines the WEKA learning framework with

Bayesian optimization. Additional strength of AutoSklearn comes from Meta-Learning,

a technique used to initialize the Bayesian optimizer using results from previously used

similar datasets and ensamble construction from configurations previously used by the

optimizer. AutoSklearn uses Meta-Learning in the following way. It uses 140 datasets

from the OpenML repository [106], computes meta features for all these datasets (exam-

ples of meta features include number of data points, features, classes etc.) and stores ML

framework instantiations that performs well on these datasets. Now, given a new dataset,

its meta-features are computed and the L1 distance of these meta-features to meta-features

from the offline datasets are computed and the ML framework instantiations of the closest

25 datasets from the meta-feature space are used to warm start the Bayesian optimizer.

Automated ensamble construction is used as follows. The ensamble construction process

is a greedy selection process that iteratively adds models that the evaluator has travelled

8

through in the search space and weighs these models based on the performance on a hold-

out cross validation dataset. These ensambles are shown to outperform the individual

models [33][51] and prevents wasteful loss of models that are evaluated in the search space.

Performance evaluation of Auto-Sklearn: Vanilla Auto-Sklearn (without meta-learning

and ensamble construction) performed better than AutoWEKA on 85% of the presented

datasets and statistically tied with hyperopt-sklearn on 56% of the datasets. Performance

of AutoSklearn (with meta-learning and ensamble construction) is evaluated on a broad

range of binary and multiclass classification datasets from the OpenML repository, using

Balanced Classification Error Rate (BER) (average of the proportion of wrong classifica-

tions) as a metric to circumvent the problem of imbalanced classes. The performance is

studied under rigid time constraints, limiting the total CPU time to 1 hour and the run

time for a single model to 6 minutes. The results indicate that meta-learning substantially

improves performance right from the first model to the final model. Use of ensamble con-

struction improved the performance significantly early-on when meta-learning is used,

which can be attributed to the fact that meta-learning generates good models right from

the start. Nonetheless, ensamble construction is shown to improve the performance of

Vanilla AutoSklearn when run longer.

Cardiovascular disease risk prediction models: Given that cardiovascular diseases

are the leading cause of death today [63] and the availability of tremendous amount of

cardiovascular data, there have been numerous studies in the past to get machine learn-

ing models to deduce patterns in the data to allow for early detection of heart diseases.

Multiple standalone machine learning models and hybrid models have been proposed

[15]. Vembandasamy et al. [107] propose the use of Naive Bayes classifier for prediction

of heart disease on a dataset from a leading diabetic research institute in Chennai, India

containing 500 records and 10 attributes. The Naive Bayes classifier attained accuracy of

86.4%. Shouman et al. [94] propose the Decision Tree classifier on the benchmark Heart

UCI (University of California, Irvine, CA, USA) dataset by applying several tuning tech-

niques to Decision Trees like different combinations of discretization, tree types, voting,

etc. to identify a reliable, robust and accurate method of classification. The final reported

accuracy is 84.1%. Srinivas et al. [100] propose more complicated data mining algorithms.

9

The technique involves the extraction of significant patterns from the dataset, choosing

patterns with values greater than a prescribed threshold and using five different mining

goals. The reported accuracy is 83.7%. Tomar et al. [104] use Least Squares Twin Support

Vector Machines [28] for diagnosis of heart diseases using the grid-search approach for

hyper-parameter selection and F-scores as the evaluation metric on the heart UCI dataset.

Reported accuracy is 85.59%. Several ensemble classifiers, which are a weighted combina-

tion of simple classifiers have also been seen to work well with heart disease prediction.

Pouriyeh et al. [75] use the Decision Tree classifier, Naïve Bayes classifier, Multilayer Per-

ceptron, K-Nearest Neighbor classifier, Single Conjunctive Rule Learner and Radial Basis

Function with Support Vector Machines both individually and in combination on the Heart

UCI dataset. In addition, bagging, boosting and stacking techniques have been applied on

each of the above-mentioned classifiers. The best performing classifier was reported to be

a combination of the Support Vector Machine and the Multilayer Perceptron and the re-

ported accuracy is 84.81%. Bashir et al. [5] propose the use of an ensemble classifier that

uses an enhanced bagging approach with the multi-objective weighted voting scheme.

Five different base classifiers including Naïve Bayes, linear regression, quadratic discrimi-

nant analysis, instance-based learner and support vector machines are used. Five different

heart disease datasets are used. The experimental evaluation shows that the proposed

framework achieves diagnosis accuracy of 84.16%.

1.6 Human strategy

1.6.1 Human strategy outline

This section describes an outline of the strategy adopted by the human to come up with

a model that performs well on both cardiovascular disease risk prediction problems.

1. Define the problem: In this case the problem is defined as finding the best ML

model that can classify a human as having or not having cardiovascular disease. The

datasets including the independent variables and the target variable are described in

tables 1.1 and 1.2.

10

2. Preprocess the data: This includes data preprocessing and feature preprocessing.

The dataset is first checked for missing values (since both datasets do not contain

missing values, this step is ignored). As part of feature preprocessing, the nature

of features in the datasets are identified. This include identifying continuous and

categorical features. If the feature is identified as categorical, a decision is made on

whether it is cardinal (feature that describes quantity), ordinal (feature that describes

position) or nominal (feature that is used as a name, label or identifier) in nature by

studying more about the feature. Nominal features are label-encoded [101]. Contin-

uous features on the other hand are scaled so that the values are normalized into a

particular range allowing for faster convergence with certain algorithms [92]. The

dataset is then split into train and test sets [4].

3. Obtain good learning performance: This is a two step process. First is to use intu-

ition/personal experience given the data to select the model and tweak model parameters.

Second is to obtain feedback about the performance of the model and adjust the con-

figurations based on performance. These two steps are repeated until we run out of

computational time (15 days per dataset in our case) [111].

The procedure is described in figure 1.3

Figure 1.3: Process adopted by human to build good models

11

1.6.2 Human attempt procedure

1. Understanding the datasets: The total number of data samples is in the Cardiovas-

cular disease dataset is 70000 and in the Heart UCI dataset in 303. Figure 1.4 denotes

the distributions or positive and negative samples in the datasets.

Figure 1.4: Sample distributions of the two datasets

2. Dataset split: The dataset is split into a train dataset, with 80% of the samples and

test dataset, with 20% of the samples. Data split is performed in a stratified fash-

ion [3]. Stratified sampling allows to select a sub-population from the entire dataset

that best represents all the data points. k-fold cross validation [29] is performed with

models fitted on the train dataset. Training dataset is divided into k subsamples,

training is performed on exactly k-1 subsamples and the model is validated on 1

subsample. This process is repeated k times so that all subsamples serve as the val-

idation subsample once. It is extremely useful with smaller datasets like the Heart

UCI dataset where there aren’t enough samples to use for hold-out cross validation.

With some models, k-means cross validation is shown to be resource/time draining

especially when used with the Cardiovascular disease dataset. In such cases, k-fold

cross validation is replaced with hold-out cross validation.

3. Model and hyper-parameter fitting: The general strategy followed is as follows.

(a) Classifiers are used with their default hyper-parameters to obtain the baseline

12

performance of the model on the data. The following models are fitted on the

data.

• Logistic Regression [39]

• Support Vector Machines (with linear and Radial Basis Function (RBF) ker-

nels) [90]

• k-nearest neighbors [73]

• Decision trees [2]

• Random Forests [2]

• Gradient boosted trees [27]

• Adaboost classifiers [61]

• Bagging previously used classifiers [102]

• Voting classifiers [85]

(b) For Linear models, including Logistic regression and Support Vector Machines

(SVM) with linear kernels (non tree based models), feature selection techniques

including F-test, Mutual Information test and Recursive feature elimination (RFE)

are performed prior to model fitting. F-test is a statistical test and a popularly

used feature selection technique that captures linear dependencies between a

feature and the target variable. In simple terms, the F-statistic measures the ra-

tio of the variances between each feature and the target to provide an indication

of the correlation between them. Mutual Information [72] at a high level can

be thought of as reduction in the uncertainty of the target variable given the

information about any variable. A high value of mutual information is indica-

tive of high reduction in uncertainty, a low value indicates a lower reduction

in uncertainty and zero mutual information means that the two variables are

independent of each other. Recursive feature elimination [110] is a greedy ap-

proach to feature selection that recursively selects a smaller and smaller subset

of features from the whole dataset by assigning importance scores to features by

fitting the said estimators on them and pruning the less important features from

the dataset. Tree based models do not require explicit use of feature selection

13

prior to training because they implicitly perform feature selection using Gini,

entropy or Chi-Square methods to ensure that the most important features lie

closer to the tree root [93]. These algorithms will be discussed in depth in the

following section.

4. Hyper-parameter selection: A model hyper-parameter is a value that is set be-

fore training and whose value doesn’t change during training. Hyper-parameters

selection can be a tedious task and the choice of the hyper-parameter can affect the

model performance greatly. The challenges to hyper-parameter search include com-

plex high-dimensional search spaces, randomness in the search space and highly

complex objective functions [17]. Hands-off optimization algorithms like grid-search

and random search (used for manual tuning as part of this experiment) are resource

and time expensive since time is wasted in searching through unpromising areas

of the search space. A more informed search strategy like Bayesian optimization,

which minimizes a certain objective function is more popularly in use today since it

has been shown to outperform the hands-off optimization approaches on the test set

in fewer iterations [74]. This approach is used by AutoSklearn.

In this experiment, once the baseline performance is obtained using models with

their default configurations, the cross validation accuracy of the model is obtained

over range of values for a given hyper-parameter using Cross validation curves.

Cross validation curves are used to obtain optimal values of single hyper-parameters

to validate a model using a scoring metric like the accuracy. The generalization er-

ror of a model is composed of Bias, Variance and noise. Bias in an indication of the

performance of the estimator on various datasets, variance is the sensitivity of the

estimator on the training dataset and noise is the property of the data [71]. High

bias implies the estimator has underfit the training data and high variance implies

the model has overfit the training data. Cross validation curves (CV curves), like in

figure 1.5 help spot that value of the hyper-parameter at which the performance of

the evaluator on the validation set begins to drop and that of the training set begins

to rise, and at this point the estimator is devoid of bias and variance. From the CV

14

curve in fig 1.5, it can be seen that the correct choice of the hyper-parameter gamma

for SVM would be around 10−3. At this point the training score spikes while the

cross validation score begins to fall [71].

Figure 1.5: Sample cross validation curve [71]

1.6.3 Model descriptions

A description of all the classifiers fitted to the data are presented in this section.

1.6.3.1 Logistic Regression classifier

Logistic Regression is a basic statistical model that is used to classify categorical tar-

gets. Most popular applications are the categorization of tumors as malignant or not and

categorization of e-mail as spam or not. Logistic regression is of three types; Binary logis-

tic regression (used to predict between two target classes), Multinomial logistic regression

(used to predict between multiple classes) and Ordinal Logistic regression (used to predict

between three or more categories, example movie ratings) [86]. Since both the datasets in

this experiment are to predict the presence/absence of cardiovascular disease in patients,

we use binary logistic regression. The equations associated with Binary logistic regression

15

are

Output = 0 or 1

Hypothesis Z = WX + b,

where X is the input, W is the learnable feature weights and b is the bias

hθ(x) = sigmoid(Z),

where sigmoid(t) =
1

1 + e−t .

(1.1)

The Binary cross entropy loss function used with logistic regression is presented in

equation

Cost (hθ(x) , y) = −y log(hθ(x)) − (1− y) log(hθ(x)). (1.2)

Cost function J(θ) is minimized (using Gradient Descent [83]) until the optimal set of

parameters θ is obtained.

The accuracies computed using default scikit-learn hyper-parameter values serve as a

baseline performance measure.

Feature Selection: Feature selection (selecting the right set of features) can help with

improving the efficiency and accuracy of the model. Three feature selection techniques

are used with Logistic Regression; F-test, Mutual Information test and Recursive feature

elimination technique. These feature selection techniques serve as a means to the reduce

the dimensionality of the data to boost model performance on high-dimensional datasets.

F-test: The F-test provides the ANOVA F-value between the the individual features

and the target and measures the variance between the target and feature population. The

following equation

F =
Between group variance
Within Group Variance

(1.3)

describes the computation strategy for ANOVA F-test. F-test captures the linear relation-

ships between the features and the target. The k-best features selected based on the F-test

is selected using scikit-learn’s k best features module and the choice of k is made by testing

16

the model performance against these k features.

Mutual information test: Mutual information between two random variables is a mea-

sure of the correlation between two random variables. The formal definition of the mutual

information between two random processes X and Y is described in equation

I(X, Y) = ∑
x∈X

∑
y∈Y

P(x, y) log
P(x, y)

P(x) P(y)
. (1.4)

In this equation [52], P(x,y) is the joint probability distribution of X and Y and P(x) and P(y)

are the marginal distributions of X and Y. Mutual information test captures the non-linear

relationships between the features and the target. The k-best features based on the f-test

and mutual information test using scikit-learn and the choice of k is made by testing the

model performance against these k features.

Recurrent Feature Elimination: As the name suggests, recursive feature elimination

recursively removes features until the best performing model is achieved. Scikit-learn’s

’Selectbestk’ is used to select the k best features in the dataset.

Hyper-parameter selection: Two important hyper-parameters are tuned using cross

validation curves; maximum iterations (maximum number of iterations for the solvers to

converge) and C (inverse of the regularization term). The maximum number of iterations

dictates the number of steps the solver takes until convergence. Regularization is used

to improve the generalization performance of the model and reduce variance (overfitting)

so that the model does not memorize the patterns in the training data and is capable of

generalizing well to an unseen dataset. The regularization term can be thought of as the

penalty term added to the cost function to keep the model from learning too much from the

training data. Scikit-learn supports three regularization types; L1 regularization, L2 reg-

ularization and Elastic net, which is a linear combination of the L1 and L2 regularization.

L1 and L2 regularizations can be described as

L1 reg =
λ

2m

num_ f eatures

∑
j=1

|θj|. (1.5)

17

L2 reg =
λ

2m

num_ f eatures

∑
j=1

θ2
j , (1.6)

where θ is the set of parameters and m is the number of data samples. The hyper-parameter

C is the inverse of the regularization term λ. A larger value of C would therefore indicate a

smaller regularization. The optimal value for the two hyper-parameters is obtained using

cross validation curves.

1.6.3.2 Support Vector Machines

A support vector machine is a non-probabilistic binary classifier that can effectively

map the data points in space so that separate categories are divided by the widest gap.

Figure 1.6 depicts the SVM hydroplane with the largest margin. Points that are closest to

the hyperplane are selected from both classes and are called Support Vectors. The distance

between the lines and the support vector is called margin. The goal of the lagorithm is to

maximise this margin. For this reason, the SVM is also called the large margin classifier.

Figure 1.6: Optimal hyperplane for SVM [19]

SVMs can perform non-linear classifications using the kernel trick, by mapping the

data points into high dimensional feature space. There are multiple Support Vector Ma-

chine Kernels including Linear kernel, Gaussian Kernel, Gaussian Radial Basis function

(RBF), Laplace RBF kernel, Hyperbolic tangent kernel, Sigmoid kernel, Bessel function

18

of the first kind Kernel, ANOVA radial basis kernel and Linear splines kernel in one-

dimension [18]. Scikit-learn supports SVM with Linear kernel, Radial basis function kernel

and Polynomial kernel. The cost function for Linear SVM is

Hypothesis hθ(x) =

1 i f θTx >= 0

0 otherwise

SVM Cost function

Cost(hθ(x, y) =

max(0, 1− θTx) i f y = 1

max(0, 1 + θTx) i f y = 0
.

Regularized SVM Cost function

J(θ) = C [
m

∑
i=1

y(i) Cost1(θ
T(x(i))) + (1− y(i)) Cost0 (θT(x(i)))] +

1
2

n

∑
j=1

θ2
j ,

(1.7)

where θ is the learned parameters, x is the set of input features, y is the ground truth labels,

C is the regularization parameter, n is the number of input features and m is the number

of data points.

As for non-linear kernels, the cost function simply becomes equation

J(θ) = C [
m

∑
i=1

y(i) Cost1(θ
T(f (i))) + (1− y(i)) Cost0 (θT(f (i)))] +

1
2

n

∑
j=1

θ2
j , (1.8)

where x is replaced by f, a function of x.

This proposal makes use of the RBF kernel in addition to the linear kernel. The function

f in this kernel is as described in the following equation

f = Similarity(x, l) = exp
||x− l||2

2σ2 , (1.9)

where l is the landmark data points (which are manually picked randomly from the data

points), f is the set of new features and σ2 is the variance of the Gaussian function. This

goes to say that the new features f are decided based on the proximity to the landmarks l.

Feature Selection Feature selection techniques used with Linear SVM include the F-

19

test, Mutual information test and RFE. Since, scikit-learn’s RFE module does not support

SVM with RBF kernel as the base estimator, only F-test and mutual information test are

performed. With each test, the optimal number of features that maximises the model ac-

curacy is selected and SVM is fitted to the data.

Hyper-parameter selection: Validation curves are plotted to select the three impor-

tant hyper-parameters, gamma, C and maximum iterations. C serves as a regularization

parameter. A large C implies low bias and high variance. The penalty used is L2 regular-

ization. Gamma is a Gaussian kernel parameter and is used with SVM with RBF kernel.

gamma can be defined as 1
2σ2 . Intuitively, gamma can be thought of a factor that decides

the reach of influence for a single training example. A small value of gamma means a large

variance, meaning two points that are far away from each other obtain a large similarity

score. On the other hand, a large value of gamma would mean the radius of influence

would only include the data point causing the model to overfit, irrespective of the value of

C. Therefore, selection of optimal value of gamma is essential to strike a balance between

bias and variance. Maximium iterations decides the number of iterations that the algorithm

takes towards convergence.

1.6.3.3 Decision Trees

A decision tree is a simple yet powerful classification tool that organizes the data points

in a tree-like structure, where each node denotes a test in an attribute, each branch repre-

sents the test result and the leaves hold the class labels. The idea is to predict the target

variable by simple rules learned from the data features [71]. There ideas are depicted on a

sample decision tree in figure 1.7. The leaves of the tree predict a Diseased and a Healthy

case that serve as the target variable. The node at the top of the tree is called the root node

and is the best predictor. The best predictors are at the top nodes of the tree. The strongest

distinguishing feature in the decision tree represented in figure 1.7 is therefore the root

node ’Locus A’. Decision trees can work with numeric and categorical features.

Given that the best predictors serve as the top nodes of the tree, decision trees therefore

do not require explicit feature selection prior to model fitting.

20

Figure 1.7: Sample Decision tree [66]

Hyper-parameter selection: There are several important hyper-parameters that decide

the quality of decision trees. The following hyperpearmeters are carefully selected using

cross validation curves.

Maximum depth of the tree is the longest path from the root node to the leaf. The depth of

the tree decides the complexity of the tree and hence how well the tree fits the training data.

A tree too deep may overfit the data. Decision tree pruning is a technique that reduces the

depth/size of the decision tree by removing portions of the tree that have lower predictive

power for classification, thereby helping combat overfitting [62].

Split criterion (popularly known as the goodness-of-split criterion) is the function that

decides the quality of split at every node. Scikit-learn offers gini and entropy (Information

Gain) as split criteria. The Gini impurity function is defined as

φ(p) =
C

∑
j=1

pj (1− pj), (1.10)

where φ(p) is the impurity function and C is the number of classes/partitions and the

Entropy impurity function is defined in equation

φ(p) = −
C

∑
j=1

pj log(pj), (1.11)

where φ(p) is the impurity function and C is the number of classes/partitions. In other

21

words, Gini is measuring how often a random chosen data point would be labelled incor-

rectly, while Entropy (a more computationally intensive technique) measures the disorder

in the group by target variable [12].

1.6.3.4 Random Forests

A random forest, as implied by its name, is an ensemble of several decision trees. All

decision trees in the forest produce classification results of their own and the class with

most votes is the predicted class. The principle is that several uncorrelated decision trees

will outperform any of the individual trees. For this idea to work, the individual deci-

sion trees must generate diverse results and the generated results must be uncorrelated

with each other. It does so using Bagging (or Bootstrap aggregation methods) and Feature

randomness. Bagging methods take advantage of the fact that decision trees are extremely

sensitive to the data they are training on. Different trees are made to work with data points

randomly sampled from the data with replacement [54]. Feature randomness is a technique

in which the individual trees select from a random subset of the features. These two tech-

niques ensure a diverse set of trees that produce uncorrelated results on the samples.

Since random Forests are inherently feature selectors, the application of feature selec-

tion prior to model fitting is not required.

Hyper-parameter selection: Apart from the individual decision tree hyper-parameter

selection from the previous section like the the depth of the tree, an important hyper-

parameter is the the number of estimators (or trees in the forest). In general, an increase

in the number of trees should improve the performance and generalize better to unseen

data, however beyond a certain number of trees, the benefit from having increased num-

ber of trees will be lower that the additional computation cost. The rate of increase in

performance will begin to drop beyond a certain number of trees. Usually once the num-

ber of trees reach about 100, the desired accuracy is met [57]. The best number of trees is

determined using cross validation curves.

22

1.6.3.5 K Nearest Neighbors

K nearest neighbor is an instance based learning algorithm that works on the principle

that a query point most likely represents the class of it’s nearest neighbors. As part of

model training, the data points are simply represented as vectors in a multidimensional

feature space and their labels are stored. The output of a data point during test phase is

the class membership decided by majority vote of it’s K nearest neighbors. The algorithm

is therefore sensitive to the choice of K. It is also possible to decide on how much weight is

given to the vote of the neighbors. All K neighbors could be given equal weights or data

points can be weighted based on their proximity to the data point (known as ’uniform’

weights and ’distance’ weights in Scikit-learn). Figure 1.8 represents a 3 class (Orange,

teal and blue) classification of data points using the K nearest neighbor algorithm leaving

all data points within a region or nearest neighbors (represented by their corresponding

color) to belong to the same class.

Figure 1.8: Sample K nearest neighbor classification [71]

Hyper-parameter selection: As discussed above, this algorithm is highly sensitive to

the choice of several hyper-parameters. Number of neighbors, weights assigned to the neigh-

bors’ vote and distance metric (denoted by p in Scikit-learn) are all tuned using Cross validation

curves.

23

Number of neighbors (K) is a difficult hyper-parameter to tune because of the vastness

of the search space. A small value of K will cause the neighboring points to have a very

high influence on the class of a data point and can cause noisy results. Although a high

value of K will result in smoother decision boundaries, this will lead to high bias and low

variance and increased computational time [21]. The choice of K becomes harder with

larger data sizes. Thus, with larger datasets like the Cardiovascular disease dataset, the

rule of thumb is used to select K, which states that the optimal value of K is usually odd

and approximately the square root of the number of samples in the dataset [45]. For smaller

datasets like the Heart UCI Dataset, cross validation curve is used to tune the value of K.

The choice of weights can potentially impact the smoothness of the decision rule. Weighted

KNN can potentially help with cases where the distance of a data point from the nearest

neighbors is very high (can occur in cases where the size of the dataset is small) and the

closest neighbors (not all K neighbors) only indicate the true label in the class. Scikit-learn

provides two weight parameters ’uniform’ and ’weighted’, where ’uniform’ means the

votes from all K neighbors are given equal weight, while ’weighted’ means the the weight

given to neighbors’ votes vary based on their distance from the data point.

The Power parameter for the Minkowski metric (p) is the distance metric that would be

used in the computation of distances between the data points. If p=1, the distance metric

is Manhattan distance (L1 norm). Manhattan distance between two points is the distance

between points measured along the right axes. If two point in N-dimensional space are

depicted as P1: (x1,x2,x3,.....,xN) and P2:(y1,y2,y3,.....,yN), then the Manhattan distance

between the two points is depicted as

Manhattan distance(P1, P2) =
N

∑
i=1
|xi − yi|. (1.12)

If p=2, the distance metric is Euclidian distance (L2 norm). It is the length of the straight

line connecting two points. If two point in N-dimensional space are depicted as P1: (x1,x2,x3,.....,xN)

and P2:(y1,y2,y3,.....,yN), the Euclidian distance between the two points is depicted as

Euclidian distance(P1, P2) =
N

∑
i=1
|xi − yi|2. (1.13)

24

For arbitrary p, the distance metric is Minkowski distance . It is a generalization of the Eu-

clidian distance and the Manhattan distance. If two point in N-dimensional space are de-

picted as P1: (x1,x2,x3,.....,xN) and P2:(y1,y2,y3,.....,yN), the Minkowski distance between

the two points is depicted as

Minkowski distance(P1, P2) = (
N

∑
i=1
|xi − yi|p)

1
p . (1.14)

1.6.3.6 Bagging Classifiers

Bagging is a ensemble technique aimed at stabilizing and improving the accuracy of

machine learning models using model averaging techniques. Bagging classifiers are the

generic case of the random forest algorithm discussed previously. While random forests

are bagged decision trees, it is possible to bag several other classifiers using Scikit-learn’s

Bagging classifier. Bagging is the process of drawing random samples from a dataset with

replacement [9]. The idea is to aggregate the results of different estimators that are trained

with random subsets of data and features from the original dataset. The idea is to reduce

overfitting or high variance. Bagging is a combination of contributions from Pasting (ran-

dom subsets drawn from random samples) [10], Bagging (random samples drawn with re-

placement) [9], Random Subspaces (random subsets of the features) [40], Random Patches,

a combination of random samples and features [58]. In this proposal, we use bagging clas-

sifier with decision trees and K nearest neighbors as the base estimators.

Hyper-parameter selection: The base estimators, decision trees and K nearest neigh-

bors are hyper-parameter tuned using the steps mentioned previously. The hyper-parameters

specific to the bagging classifier that are tuned using cross validation curves include Maxi-

mum features and Maximum samples. Maximum samples is the maximum number of samples

that is used to train each estimator, and the maximum number of features is the maximum

number of features used to train each estimator.

1.6.3.7 Adaboost classifier

Adaboost classifier [26] sequentially fits weak learners on versions of data modified

based on the performance of previous learners. The predictions from all the weak learners

25

(classifiers with low variance) are combined using majority vote. A certain weight is ap-

plied to each data sample. Initially they are assigned uniform weights equal to 1
N , where N

is the number of data samples. As training proceeds, at each iteration, the weights are mod-

ified based on the performance of the learners on the data samples. Incorrectly predicted

data samples are assigned higher weights, and those predicted correctly are weighted less.

This forces the learners to focus on incorrectly predicted data samples. This technique is

used to increase variance. Adaboost classifiers are typically used with weak estimators as

base classifiers. In this proposal, Adaboost classifiers are used with Decision tree classifiers

and Support vector classifiers as the base estimators.

Hyper-parameter selection: Learning Rate is the only hyper-parameter tuned using

cross validation curves for two base estimators, Decision tree estimator and SVM with

RBF kernel.

Learning rate for an Adaboost algorithm is a shrinkage parameter that is responsible for

keeping variance under check by slowing down learning from the individual estimators.

1.6.3.8 Multi-layer perceptron (MLP) classifier

An MLP is a class of Artificial Neural Networks (ANN) that contain multiple layers of

perceptrons. A perceptron is a unit that performs a weighted linear combination of several

inputs and applies suitable non-linear activation on it. An MLP classifier is trained using

backpropagation (using supervised learning), in which parameters/weights are updated

based on the partial derivative of the cost function with respect to the parameter. The

classifier learns a mapping function f (.) : Rm− > Ro using the training data, where m

is the input dimension and o is the output dimension. The typical structure for MLP is

described in figure 1.9. As seen in figure 1.9, an MLP has an input layer in which each

neuron represents an input feature, one or more hidden layers that transform the input as

as

ak = G(
n

∑
i=1

(wi ∗ xi)), (1.15)

26

Figure 1.9: MLP with one hidden layer [71]

where G(.) is an activation function. Two most common activation functions are Sigmoid

represented as

sigmoid(x) =
1

1 + e−x . (1.16)

ReLU (Rectified Linear Unit) represented as

relu(x) = max(0, x). (1.17)

and tanh (which is tanh(x)). These activation functions allow the network to learn non-

linear mappings between the input and output.

Hyper-parameter selection: MLP classifiers have several hyper-parameters that can

be optimized. Number of hidden layers, the size of the hidden layers, the size or number

of neurons in the hidden layers, the solver used for backpropagation, regularization pa-

rameters and learning rate among others. Given that the hyper-parameter space is vast,

27

rule-of-thumb is resorted to when selecting the number of hidden layers and number of

units in the hidden layer. The number of hidden layers decides the nature of mapping that

the network learns from the input to output. Rule-of-thumb [37] states that with most

problems, there is no reason or need for more than one hidden layer. One hidden layer

makes the network capable of learning a continuous mapping from the finite input space

to the finite output space. So, one hidden layer is used. Number of neurons in the hidden

layer is another important hyper-parameter. While too few neurons causes underfitting

wherein the network doesn’t learn much from the data, too many neurons causes overfit-

ting wherein the network learns too much from the training data and doesn’t generalize

to a new set of data points. Besides, too many neurons can cause increase in training time

so much so that the network may not be trained enough in the budgeted time. Thus, the

right balance needs to be found and this is a challenging task. Heaton [37] state that the

optimal choice is between the input and output layer size, two-thirds the size of the input

layer plus output layer and lesser than twice the size of the input layer. Maximum iterations

decides when the algorithm stops learning. For stochastic solvers like Stochastic Gradient

Descent [81] and Adam optimizers [50], maximum iterations is also the number of epochs

(number of times each data point goes through the network), while for other optimizers,

it is the number of gradient steps that are taken by the optimizer. The algorithm is halted

when either the maximum number of iterations is hit or when the tolerance ε (when the

change in loss between two consecutive iterations is less than a value ε) is reached.

1.6.3.9 Gradient boosted trees

Gradient boosting can be seen as the boosting models discussed in section 1.6.3.7 but

with generalization that comes from optimizing an arbitrary loss function [8]. Mason et al.

[60] introduced boosting algorithms as an iteratively solved functional gradient descent

algorithm, which in other words is an algorithm that minimizes a cost function by itera-

tively choosing weak learners that point in the direction of negative gradient. Gradient

boosting is most commonly used with decision trees as the base classifier. The following

28

equations describe gradient boosted trees.

If hi(x) is the predictions f rom the ith learner and F(x) is the prediction f rom all previous learners,

F(x) =
M

∑
i=1

γihi(x)

where
M

∑
i=1

γihi(x) is the weighted sum o f all classi f iers

New classifier Fm(x) = Fm−1(x) + γmhm(x)

where γm = arg max
γ

n

∑
i=1

L(yi, Fm−1(xi) + γhm(xi))

where loss f unction L = yP log(1 + eP)

where P is the model prediction.

(1.18)

The loss function is the deviance loss for binary classification. The idea behind gradient de-

scent is to start with a weak learner h0 and make a prediction F0(x) with the weak learner,

find the residual or loss ε1 = y − F0(x). Then a new learner h1 fits the residual ε1 such

that F1(x) = F0(x) + h1(ε1). The new residual is now ε2 = y− F1(x) and new predictions

now become F2(x) = F1(x) + h2(ε2). So, in essence every new learners learns enough to

cover for residuals or what the previous learners have not learnt. And each new learner is

weighted by minimizing the loss functions over weight space.

Hyper-parameter selection: Hyper-parameters for gradient boosted trees include the

hyper-parameters for the base classifiers (decision trees) like the tree depth, split criterion

etc. and the hyper-parameters from gradient descent include the number of estimators and

learning rate. Decision trees are used with the best tree parameters selected during hyper-

parameter tuning of simple decision tree models. The most important parameters that are

tuned using cross validation curves are learning rate and number of estimators. The learning

rate, also called the shrinking parameter shrinks the weight γ as seen in equation 1.18 of

each new learner by the learning rate. The number of estimators is the number of trees

there is in the model or the number of boosting stages. So there is a subtle trade-off be-

tween these two parameters. Both these parameters are fine-tuned using cross validation

29

curves.

1.6.3.10 Voting classifiers

The voting classifier is intended to serve as a combination of equally well performing

classifiers that can balance out their individual weaknesses to produce predictions better

than the individual models themselves. The combination can use majority vote of individ-

ual classifiers (hard vote) or averaged probabilities of individual predictions (soft vote) to

make predictions.

Hyper-parameters optimized: Voting classifiers offers the choice of tuning two impor-

tant hyper-parameters; the estimators or the individual classifiers and the voting technique.

The individual estimators list is tuned using intuition by combining two well performing

classifiers that make relatively uncorrelated errors. The voting mechanism is left at default

hard voting, which takes maximum vote to make predictions.

1.6.4 Results and discussion

1.6.4.1 AutoML Benefits Complex Datasets More

In this section, we compare the classification accuracies obtained by the student with

that of AutoML. Since the student selects the final model based on the best validation

accuracy, this experiment will show how quickly the student can find a good model for

a particular dataset. Figures 3 and 4 show the classification over 15–18 day periods for

UCI Heart and Cardiovascular Disease datasets, respectively. For both datasets, AutoML

achieves competitive validation accuracies compared to that of the student. On the UCI-

Heart dataset, the student was able to find a good model from the first day. Since this

dataset only has a small number of samples (303 in total), simple classifiers such as linear

support vector machine and logistic regression tend to work well. Moreover, the small

dataset size makes it faster to run an algorithm and thus reduce the overall development

time. On the Cardiovascular Disease dataset, it took the student significantly longer time

(seven days) to find a good model. This could be because the second dataset is more

complex, demonstrated by the lower validation accuracy of linear classifiers compared

30

to the previous dataset. Moreover, the number of data points is also significantly larger

(70,000 of Cardiovascular Disease vs. 303 of UCI-Heart). Our experiment suggests that

the time-saving factor is larger for more complex datasets when using AutoML instead of

manual model search.

Figure 1.10: Validation accuracy over 18 days by the graduate student on the Heart UCI
dataset

1.6.4.2 Comparison of AutoML’s and Graduate Student’s Test-Set Performances

Once the final models are selected for the two datasets based on the best validation

accuracies, the student performed inference on the test sets to obtain the final perfor-

mance measures. Note that AutoML models were evaluated on exactly the same test sets

to make the results comparable. AutoML achieves slightly better mean accuracy for the

UCI-Heart dataset, and similar accuracy for the Cardiovascular Disease dataset compared

to the student. In addition, AutoML achieves significantly better areas under curves on

both datasets. This suggests that AutoML classifiers generalize much better than their

manual counterparts. Most importantly, AutoML only takes 30 min to build a competi-

tive classifier for each dataset, compared to long periods of time (432 h for UCI and 360 h

for Cardiovascular datasets) taken by the graduate student to develop similar classifiers.

31

Figure 1.11: Validation accuracy over 15 days by the graduate student on the Cardiovas-
cular Disease dataset

Other state-of-the-art studies 1.4 on the Heart UCI dataset have shown results comparable

with those of the graduate student and AutoML. Table ?? presents performance accuracies

from training different machine learning models on the Heart UCI dataset and table 1.5

presents performance accuracies from training different machine learning models on the

Cardiovascular disease dataset. The accuracies obtained by the student and AutoML are

on par with those reported in the recent literature. This further supports the claim that the

AutoML method is able to quickly find competitive classifiers with minimal human effort.

The Heart UCI dataset contains 76 features, but only 13 most-important features are

included since most studies and published papers utilize them to build machine learning

models on. This makes it possible to compare our results to these published papers, in

order to serve as the baseline to check if the results obtained by the Graduate student and

Auto-sklearn are competent enough. However, the potential downside to reduced feature

32

Table 1.3: Accuracies reported by previous studies on Heart UCI Dataset compared to ac-
curacies of the graduate student and AutoML

Author Reported accuracy
Shouman et al. [94] 0.841

Duch et al. [22] 0.856
Wang et al. [108] 0.8337

Srinivas et al.[100] 0.837
Tomar and Agarwal [104] 0.8559

Graduate student (this paper) 0.84
AutoML (this paper) 0.85

Table 1.4: Comparison of AutoML and graduate student’s classification performances and
total time on UCI test set

Accuracy AUC-ROC AUC-PR Total time (hours)
Graduate student 0.84 0.82 0.80 432

AutoML 0.85 0.93 0.94 0.5

Table 1.5: Comparison of AutoML and graduate student’s classification performances and
total time on Cardiovascular test set

Accuracy AUC-ROC AUC-PR Total time (hours)
Graduate student 0.74 0.73 0.68 360

AutoML 0.74 0.8 0.79 0.5

space is loss of information. The other features (not included within these 13 attributes)

include information on the subject’s response to exercise Electrocardiogram and cigarette

smoking habits among others [43].

1.7 Conclusion

This study intends to propose the use of AutoML for adoption in the clinical domain

by breaking the perception that machine learning is accessible to trained experts only. For

the first time, we evaluate the performance of an AutoML library (Auto-Sklearn) on two

cardiovascular disease datasets and compare the results to that obtained by a graduate

student after a month of effort in training multiple classifiers on the datasets. These two

cardiovascular datasets contain clinical data from trial subjects and whether or not they

33

have cardiovascular disease, so that given a new subject’s data, the model (learned pat-

terns from given data) can predict the presence or absence of cardiovascular disease with

a reasonably good accuracy. The results indicate that the graduate student and AutoML

report similar accuracies on the two datasets, on par with other state-of-the-art studies.

The area under curves for AutoML is significantly higher indicating that the model built

by AutoML generalizes better than that of the graduate student. Besides, the time taken

by AutoML to produce these results is just around 30 minutes per dataset, which is signif-

icantly less compared to about 400 hours taken by the graduate student. The number of

lines of code for AutoML is also significantly lesser compared to the several hundred code

lines used by the graduate student, hence justifying the ease of use. Thus, our experimental

results strongly suggest that AutoML is a promising approach that enables non-technical

users to quickly build competitive machine learning models that work as well as those de-

signed by humans with experience in machine learning. This finding is expected to change

the way biomedical researchers and physicians view machine learning. The development

of AutoML technology is likely to make machine learning tools more accessible to and

speed up the research discovery process in the clinical community. Although this study

focuses on cardiovascular disease datasets, we conjecture that the key findings related to

the efficiency and efficacy of AutoML will hold for other biomedical datasets. In the future,

we will investigate the effects of AutoML on other clinically relevant tasks such as tumor

detection and segmentation from medical images. Another important advantage of Au-

toML techniques is that they can incorporate additional constraints when searching for AI

models. For example, physicians might want to maximize the classification accuracy while

ensuring the classifier’s sensitivity is higher than a certain threshold. Such constraints are

hard to optimize in the traditional AI framework. Our future work will evaluate this com-

plex scenario. We expect that the advantage of AutoML will be more prominent when the

complexity of the task increases.

34

Chapter 2

PROPOSAL 2 - NEURAL NETWORK

VISUALIZATION

2.1 Introduction

The size of medical data and scan images has grown leaps and bounds due to ad-

vancements in acquisition devices. Medical image interpretations are now susceptible to

subjectivity and experience of the interpreter. With growing quantum of this data, the

scan reports seen by medical experts are also subject to human error. State-of-the-art deep

learning architectures are now being used to interpret scan images for medical image clas-

sification and segmentation tasks [79]. The combination of high-performance computing

and state-of-the-art ML techniques provides efficient diagnosis free from human errors.

Deep learning today can perform more than just diagnosis. Some common tasks include

image fusion, segmentation, high accuracy surgery guidance, scan image segmentation,

identification and labelling [53]. The idea is to extract as much meaning from the images

as possible and use them efficiently. Because of the differences in scan images from patient

to patient and the associated complexities, having traditional ML algorithms extract mean-

ing from the images was not a viable option anymore. This has given rise to more complex

deep learning networks that are able to process this convoluted medical data. Deep neural

architecture is loosely inspired by the functioning of human brain. The basic unit in a deep

35

learning architecture is a neuron, which receives several input values, linearly combines

them and passes the result through a non-linear layer to generate the output. A layered

architecture of these units form a deep learning architecture. Addition of more and more

layers helps unveil complex patterns in data. In some tasks like identifying tumors in MRI

scans and cancer in blood, deep learning algorithms are performing better than humans

[1]. With this kind of proficiency, deep learning has a major impact in computer vision

and medical imaging. Some networks that are having major impact on medical diagno-

sis today include Convolutional Neural Networks (CNN), Deep Neural Networks (DNN),

Recurrent Neural Network (RNN) [65], Deep Conventional Extreme Learning Machine

(DC-ELM) [70], Deep AutoEncoder (dA) [41], Deep Boltzmann Machine [87] etc. As the

size of input medical data increases and the nature of this data becomes more and more

complex, different network architectures are coming to the forefront. Deep learning has

mostly impacted ophthalmology, pathology, oncology and radiology among others [79].

Google’s DeepMind [76] and IBM Watson [38] are making strides in understanding and

interpreting medical images.

Despite all the strides that Deep Learning has made in medicine, it is faced with multi-

ple challenges. The performance of a machine learning model depends on the quantity of

data. In cases where the algorithm is performing supervised learning, this large quantities

of data is required to be labelled and/or annotated by human experts (physicians), which

requires a lot of time and is prone to errors. Second issue is that of unbalanced data. This

can be caused by rare diseases or disorders, which is commonplace in medicine. Third

and the most significant challenge is that of unexplainability of deep learning techniques.

Despite its breakthrough performances over the past years and its ability to open new pos-

sibilities, Deep Learning suffers from one big issue, the ’Black box’ problem, which is the

inability to understand how the network arrived at a prediction. With deeper models, the

results became more and more unexplainable, leaving medical experts unable to follow

the strategies adopted by the algorithm. In other words, the data fed into the network and

the output is inscrutable, leaving the network in between a black box, thereby raising trust

issues in medical experts. A group of physicians from BMJ Clinical Research called the ML

tools as "rendering verdicts with no accompanying justifications" [24].

36

Visualizing the deep network is one way to understanding neural networks and break

their black box perception. It enables us to ’see’ what features the network uses to classify

an image into a particular class. There are several techniques by which CNNs can be

visualized. Activation maximization, Occlusion maps, Saliancy maps, Class Activation

maps (Gradient weighted) and Layerwise output visualization are some of them. Each of

these techniques will be discussed on further detail in the following sections.

This proposal focuses on classification of Antibody mediated rejection (ABMR) in kid-

ney(/renal) transplantation patients caused by the rejection of transplanted organ by anti-

bodies from the recipient acting against donor-specific HLA molecules, blood group anti-

gen (ABO)-isoagglutinins, or endothelial cell antigens [97]. This is an impediment to the

long-term success of kidney transplantation, but is common and occurs in upto 40% of

patients after a year of transplant. A CNN is trained to classify a kidney slice image as

having/not having ABMR and the regions in the slice contributing to the said decision are

extracted (using Gradient-specific class activation maps) and verified by pathologists.

Section 2.2 discusses the general techniques adopted for visualizing deep networks

briefly, following which section 2.3 discusses Grad-CAM visualization technique adopted

in this project in detail. Section 2.4 introduces the ABMR classification problem and dis-

cusses the general guidelines that are to be followed by pathologists worldwide to arrive

at a classification decision and the associated complexities. Section 2.5 discusses the CNN

used for making this classification in detail. Section 2.6 provides a report of the results

obtained from machine classification using CNN and the corresponding heatmaps show-

ing regions "seen " by the network, along with a comparison of what a pathologist "sees"

versus what the network is "seeing" to make a decision.

2.2 Visualization tools for CNNs

There are several strategies by which visualization of CNNs can be achieved [88].

• Activation Maximization [67]: This technique leverages the idea that every layer in

a CNN looks for a certain pattern in the output from the previous layer, and the

activation from that layer is maximized when the input pattern is found. This is

37

done by computing the gradient of the activation loss with respect to the input and

updating the input as seen in the following equation.

gradient =
∂ActivationMaximizationLoss

∂input
. (2.1)

An activation maximization map to classify an image as having an elephant or not is

dhown in figure 2.1. This helps us perform a sanity check to identify if the network is

indeed using features of an elephant (like trunk and tusk) to make this classification.

Figure 2.1: Sample visualization map using Activation maximization [88]

• Occlusion Maps: Occlusion maps work by identifying important regions (/patches)

in the image. As the name suggests, occlusion maps work by occluding (or masking)

some portion of the image and use the CNN to compute the probability that the

image still belongs to the original detected class. A decrease in probability would

mean the occluded portion is pivotal to the detection of that class, else, it is not.

Figure 2.2 shows the regions which the classification network sees using occlusion

maps.

Figure 2.2: Original image and image with occlusion map [88]

38

• Saliancy Maps [96]: Saliancy maps are yet another technique that works on the prin-

ciple of gradients. It computes the impact of each input pixel value on the output.

The gradient of the output is computed with respect to each input image pixel. This

is an indication of the effect of each pixel on the output. Positive gradient values

are an indication that small increments to the pixel values increase the output. The

gradient is computed as in the following equation.

gradient =
∂output
∂input

. (2.2)

Figure 2.3 indicate the original image and the saliancy map for classifying the image

as having/not having a dog.

Figure 2.3: Original image and image with saliancy map [88]

• Class Activation Maps (Gradient Weighted): The idea of gradient weighted class ac-

tivation maps is to weight the activation maps based on the gradients or how much

they affect the output. Gradient weighting takes the feature map from the penul-

timate layer of the CNN (before the classification layer), computes the gradient of

the output with respect to this feature map and average pool all the gradients and

multiply the feature map with the pooled gradient. Fig 2.4 shows an image and the

corresponding gradient map.

• Layerwise output visualization: As the name suggests, this helps us visualize what

features each layer is learning. This helps us compare the performance of each layer

and consequently add or remove layers to improve the performance of CNNs. Figure

2.5 shows the outputs from each layer of VGG16 [96]. As the image indicates, lower

39

Figure 2.4: Original image and image with gradient map [88]

layers learn simple features like lines, but consequent layers learn more complex

objects like roof, door etc.

Figure 2.5: Layerwise visualization of classification task from VGG16 [88]

2.3 Grad-CAM visualization

The idea behind Grad-CAM (introduced in [91]) is to use the gradients for any target

class up until the final convolutional layer to produce a map that marks regions that are

pivotal to the prediction of that class. The speciality of Grad-CAM is that it works with

a wide range of CNN network types, including simple classifiers with fully-connected

layers like ResNet, DenseNet, VGG etc, structured output models like image captioning

networks, CNNs with multi-modal inputs or reinforcement learning, without the need to

alter the structure of the network. In addition to visualizing the performance of Neural

40

Networks, Grad-CAM provides insights into wrongly predicted input examples, helping

experts delve into the problem further and obtain suitable solutions. This further helps do-

main experts discern a "strong" model from a "weak" one and establish trust in the neural

network.

The authors of this paper strongly believe in having more "transparent" models that

are capable of explaining the reasons for their prediction. They believe that in all stages

of AI, model explainability comes in handy. For example, at the beginning stages when

performance of AI was poorer than its human counterpart, model explanability helped

human experts work on the models to better it, when the performance of AI is in par with

that of humans, AI is required to build trust among users and when AI performs better

than humans, model explainability can teach humans how to make better decisions.

With earlier visualizations, the complexity of a model and its explainability are in-

versely related. Several visualization techniques like Class Activation Mapping (CAM)

[113] identify regions in the image that the network sees but can be applied to CNNs that

do not contain the fully connected layers. In other words, one had to forgo model complex-

ity to perform visualization. But, Grad-CAM is capable of working with highly complex

models as discussed previously without the need to perform any architectural changes to

the model. A good visualization is one that is both highly discriminative to individual

classes and of high resolution. Grad-CAM visualizations combine the benefits of Pixel-

space gradient visualizations like Guided-back propagation [99], deconvolution [112] and

CAM [113] that generate highly class discriminative mappings.

This paper introducing Grad-CAM makes several other contributions:

• For captioning and visual question answering (VQA) tasks, Grad-CAM applied on

the network combination of CNN+LSTM models are good at pinpointing image re-

gions that contribute to a caption prediction.

• Helps uncover bias in some models that CNNs learn, helping ensure more fair and

bias-free outcomes.

• Generate textual explanations for model classification using "Neuron importance" [6]

or identifying the weight of a neuron towards making a certain prediction.

41

Several visualization strategies have been used in the past. Techniques like Pixel based

visualizations [95] that highlight important pixels using the partial derivative of class

scores versus pixel intensities and Guided Backpropagation [99] Deconvolution [112],

where the idea is to make changes to the gradient to improve quality are not class discrim-

inative, although they produce fine-grained visualizations. Techniques that Maximally

activate network units [23] and Invert latent representations [59] are not specific to the

image but generate a common map for the model.

Marco Tulio Ribeiro et al. [80] provide a standard for evaluating the model visualiza-

tions. The idea behind Weakly supervised localization [16] is to use class labels and lo-

calize corresponding objects in the image. Such techniques (including CAM), replace fully

connected layers in CNNs with convolutional layers and perform global average pooling

[55] in order to obtain feature maps for individual classes. Since the feature maps prior

to the softmax layer are tampered with, this may cause inferior performance. Grad-CAM

offers a new way of combining feature maps with gradients that doesn’t need any archi-

tectural changes to the model. There are several other methods that perform step-by-step

perturbation (or masking) of the input image, like in the case of occlusion maps discussed

earlier.

The final fully connected layer right before the softmax classification layer typically

looks for class-specific information from the whole image (regions in the image that is

associated with the label). Grad-CAM taps into the gradients coming into the layer to

identify the importance of each neuron for this particular classification. This can be used

to obtain the neuron importance from any layer, not just the last fully connected layer.

The idea is to obtain class discriminative localization map as follows.

42

Localization Map Lc
GradCAM ∈ Ru∗v

where c -> class

u, v − > width, height o f image f or class c

yc − > output at the f ully connected layer be f ore so f tmax

Compute
∂yc

∂Ak where Ak − > f eature map activations o f convolution layer.

(2.3)

The gradients flowing backwards are global average pooled over all pixels to get neuron

importance weights, αc
k as in the following equation.

αc
k =

1
Z ∑

i
∑

j

∂yc

∂Ak
ij

. (2.4)

The final map is obtained by

αc
k = ReLU (∑

k
αc

k Ak), (2.5)

where ReLU is the activation function.

As can be seen from the above equation, the result is a course heatmap of the same

shape as the input image. ReLU is applied to the linear combination of all the maps so that

only those pixels whose increase in intensity leads to an increase in yc are extracted.

2.3.1 Guided Grad-CAM

Guided Grad-CAM is the fusion of Grad-CAM’s ability to be class discriminative, iden-

tify appropriate regions in the image according to class and Guided Backpropagation’s

ability to provide fine-grained visualizations. Guided backpropagation captures those pix-

els in the image that activate neurons and not those that suppress them. To apply guided

backpropagation to Grad-CAM, the Grad-CAM map, Lc
Grad−CAM is upsampled by bilinear

interpolation to obtain an input-image sized mask and element-wise multiplication of the

two is performed. This yield the benefit of both class-discriminative and fine-grained pixel

space visualization.

43

2.4 ABMR

ABMR is the rejection of allograft caused by antibodies in the organ recipient [97]. It

usually occurs in patients over a year after transplantation but but could occur (in <40%

of the cases) in patients even within a year of desensitization [13]. Desensitization is the

process of removing antibodies that could attack foreign tissue from the blood stream of

the recipient prior to transplantation [49]. ABMR is thought to be the leading cause of

graft loss. Treatment options are limited and guided by randomized clinical trials in small

groups [89]. The level of evidence for treatment options are limited today, but there are

numerous options for classification of ABMR [82].

2.4.1 ABMR classification by pathologists

Diagnostic criteria for classification of kidney-slice as having/not-having ABMR fol-

lows the Banff classification [82]. Banff lesion score is an international consensus among

pathologists to classify a kidney whole slice image (WSI) as having/not-having ABMR. It

is intended as a guide to physicians for assessing and obtaining Banff lesion scores [82].

This proposal works on Glomerulus (a bunch of capillaries at the end of the kidney

tubule where the filtering of waste from water happens) whole slide images. In general,

deposits in the glomerular capillaries is indication of poor renal allograft survival and

ABMR [31]. Banff cg score (double contours in the glomerulus basement membrane) is an

indication of both the presence and extent of double contours or lamination in the affected

glomerulus. In general, the extent is scored from 0 to 3 based on the percentage of capillary

loops with double contours. Figure 2.6 depicts four glomerulus images affected by ABMR

to different degrees. These stains can be taken using Light microscopy (LM) or Electron

Microscopy (EM). Image A in fig 2.6 is a slice with double contours (short black arrow in-

dicates original basement membrane and short red arrows point to new formation) visible

using EM. Long black arrow is an indication of cell swelling. The swelling accompanied

by a minimum of 3 glomerular capillaries noticed using EM gives it a Banff lesion score of

cg1a. Image B has a Banff lesion score of cg1b, double contours (identified by red arrows)

affect atleast 25% of all capillary loops. Image C has a Benff lesion score of cg2, where

44

Figure 2.6: Glomerulus images with varying degrees of ABMR [82]

double cappilaries affect 26-50% of all capillaries, and image D with a Benff score of cg3

affects atleast 50% of all glomerulus capillaries [82].

Thus, the classification of glomerulus slice images into ABMR/No ABMR is clearly a

problem that requires the extraction of unique features from the glomerulus image. Given

that CNNs today are capable of performing feature extractions at superhuman level accu-

racies [56], the multiple layers in the network should be able to extract meaning from the

glomerulus images and make appropriate classifications.

This proposal performs classification of whole slide glomerulus images into ABMR/No

ABMR using Residual Networks [36], identify regions in the slice image that the network

looks at to make the classification decision and obtains pathologist review to confirm if the

regions being looked at by the CNN and the pathologist are the same.

2.5 Machine classification

Classification in this problem is achieved using Residual Networks (ResNet). The

ResNet model introduced by Kaiming He et al. [36], was conceived to solve the ’degra-

dation problem’.

Degradation problem: As more and more of layers are stacked in a network to unearth

45

more and more complex features, the network suffers from accuracy saturation beyond

which the performance begins to fall. This degradation is not a result of overfitting.

ResNets address this problem by making each stacked layer fit a residual mapping

instead of the desired underlying mapping, i.e, if a layer’s mapping is H (x), the stacked

non-linear layers are made to fit F (x) := H (x)− x. Now, the original mapping becomes

H (x) := F (x) + x. F (x) + x can be realized using a combination of the ’Feed-forward

connection’ F (x) and the ’shortcut connection’ x, which learn identity mapping. In short,

each block (may consist of several layers) and its output can be represented as in figure 2.7.

The advantage of ’shortcut connections’ is that no extra parameters need to be learned,

Figure 2.7: Building bock of residual networks [36]

thereby not adding to the computational complexity and can be solved using the same

solvers like stochastic gradient descent. O Russakovsky et al. [84] show that ResNets

enjoy increased accuracy even at high depths unlike other stacked networks that suffer

’degradation’ as depths increase. Each building block in this network is defined as in the

equation

y = F (x, Wi) + x

where x is the input vector to the block

y is the output vector f rom the block

Wi are the learned weight.

(2.6)

The function F is flexible and can cover two or three layers as in figure 2.8. ResNet-x

translates to a residual network with x layers. ResNet-34 and it’s blocks are depicted in

figure 2.9.

46

Figure 2.8: Building block in ResNet34 and “bottleneck” building block in ResNet-
50/101/152. [36]

Figure 2.9: ResNet-34 [36]

Performance: ResNet-152 (ResNet with 152 layers) performs with 6.6% lesser top-1 er-

ror rate and 3.6% lesser top-5 error rate than VGG-16 [96] on the ImageNet [20] validation

dataset, despite being less complex (with 8 times more depth) than VGG-16, showing that

deeper networks can be used to extract more complex features, circumventing the ’degra-

dation’ problem. This performance of ResNet on the ImageNet task won the first place on

the ILSVRC 2015 classification task. An ensemble of ResNets achieves an error of 3.57% on

the ImageNet test set.

2.6 Results and discussion

2.6.1 Dataset

The dataset consists of 274 total Glomerulus whole slide images, 113 images with

ABMR and 161 with no ABMR. For training purposes, the dataset is split into 196 training

images (82 images with ABMR and 114 without ABMR) and 78 testing images (31 with

ABMR and 47 without ABMR).

47

2.6.2 Training

ResNet50, ResNet101 and ResNet152 are trained on the images over 200 epochs, with

a constant learning rate of 10−3. Two sets of experiments are performed; one with using

just random rotation for data augmentation [77] and another with using random rotation

along with random crop as augmentation. The training process is illustrated in figure 2.10.

Figure 2.10: Preliminary CNN solution for a classification task in transplant nephropathol-
ogy [7]

Maximum accuracy obtained on the test results are listed in Table 2.1.

Table 2.1: Performance (Accuracy) of ResNet models on test set

Network With random rotation (no crop) With random rotation and crop
ResNet50 98.72% 91.02%
ResNet101 96.15% 93.59%
ResNet152 96.15% 91.03%

2.6.2.1 Training curves

Figure 2.11 shows the smoothed validation curves for the three ResNet training net-

works. Resnet50 displays slightly higher validation accuracy over the other two.

Figure 2.12 is the smoothed training and validation accuracy curve for ResNet50.

2.6.2.2 Visualizations

Grad-CAM is used to perform visualizations on the test images to indicate the regions

in the slide that the network sees in order to make the classification decision. As discussed

48

Figure 2.11: Validation accuracy curves for the three ResNet networks

Figure 2.12: Training and validation accuracy curves ResNet50

in section 2.3, Grad-CAM can be used to generate class discriminative visualizations. The

following images show some visualizations generated by Gad-CAM.

Fig 2.13 shows a true positive class predicted by the model and the corresponding

Grad-CAM map.

Fig 2.14 shows a true negative class predicted by the model and the corresponding

Grad-CAM map. Fig 2.16 shows wrongly predicted by the model and the corresponding

Grad-CAM map.

As discussed in section 2.4.1, a trained human nephropathologist would look for fea-

49

Figure 2.13: True positive predictions with Grad-CAM visualization

Figure 2.14: True negative predictions with Grad-CAM visualization

tures of glomerulitis before making the ABMR versus not ABMR decision. Some of these

features include glomerular basement membrane splitting, secondary focal and segmental

glomerulosclerosis [7].

It can be seen from the wrong predictions in figure 2.16 that the regions that the net-

work focuses on are largely outside of the glomerular tuft, alerting the pathologist to a

possible misclassification. In contrast, the heatmap in the example with the correct classi-

fication highlights important regions in the glomerulus that is indicative of ABMR.

50

Figure 2.15: False predictions with Grad-CAM visualization

Figure 2.16: Heatmaps from network and regions nephropathologists see [7]

It is interesting to note that cropping the image as an augmentation step lowers the

classification accuracy as seen from table 2.1, further reinforcing the fact that several fea-

tures from the glomerulus as a whole is required to make the ABMR versus no ABMR

decision as discussed in section 2.4.1. Wrong predictions made post image crop is shown

in figure 2.17.

2.7 Conclusion and future work

This proposal works on using visualization techniques to understand how CNNs are

operating on the input image ans consequently making decisions. This helps build trust in

51

Figure 2.17: Wrong predictions made from cropped images show that the whole image
(several features from Glomerulus) is required to make correct prediction

medical professionals who are skeptical about AI and hence break it’s ’black box’ percep-

tion. AI, specifically in nephropathology (dealing with diagnosis of kidney diseases) is still

at it’s infancy. Nephropathology is complicated because of the need to integrate multiple

factors before coming to a diagnosis. AI can aid nephrologists in several ways by helping

them with repetitive tasks that require high attention to detail [7].

In this proposal, Grad-CAM is used to generate visualizations of Glomerulus whole

slide images post their classification using ResNets. ResNets with several different num-

ber of layers are trained to classify the images. The generated visualizations are studied

to understand what the network ’sees’ to make correct predictions and where the network

’sees’ when failing to make the right predictions. These results are compared with what

and where a specialist is likely to see when making a similar decision. If wrong classifica-

tions are made, visualizations are used to check if wrong portions of the slide are focused

on while making that decision. This would help a specialist know exactly why the network

is failing.

Visualization tools are greatly helpful to enable medical experts to get a thorough in-

sight into the network. Today new and improved visualization tools have been proposed

like Grad-CAM ++, which build on Grad-CAM and provides human-interpretable visual

explanations for highlighted regions in the image [14]. Ablation based class activation

52

mapping [78] is shown to perform better than Grad-CAM using ablation analysis tech-

niques instead of the gradient approach to determine the weights of the feature maps

with respect to each class. Thus, the avenues for understanding a network and innards

of its functioning are plenty. Thus, future work would be to focus on integrating neural

networks with such techniques that can help medical specialists fully understand neural

architectures and their functioning better.

53

References

[1] A. S. Ahuja. “The impact of artificial intelligence in medicine on the future role of

the physician.” In: PeerJ 7 (2019), e7702.

[2] J. Ali, R. Khan, N. Ahmad, and I. Maqsood. “Random forests and decision trees.”

In: International Journal of Computer Science Issues (IJCSI) 9.5 (2012), p. 272.

[3] A. Alonso Abad. Wiley statsref: Statistics reference online. Wiley, 2015.

[4] Amitabha Dey. Data Preprocessing for Machine Learning. https : / / medium . com /

datadriveninvestor/data-preprocessing-for-machine-learning-188e9eef1d2c.

Online; accessed 20 April 2020. 2018.

[5] S. Bashir, U. Qamar, and F. H. Khan. “BagMOOV: A novel ensemble for heart dis-

ease prediction bootstrap aggregation with multi-objective optimized voting.” In:

Australasian physical & engineering sciences in medicine 38.2 (2015), pp. 305–323.

[6] D. Bau, B. Zhou, A. Khosla, A. Oliva, and A. Torralba. “Network dissection: Quan-

tifying interpretability of deep visual representations.” In: Proceedings of the IEEE

conference on computer vision and pattern recognition. 2017, pp. 6541–6549.

[7] J. U. Becker, D. Mayerich, M. Padmanabhan, J. Barratt, A. Ernst, P. Boor, P. A. Ci-

calese, C. Mohan, H. V. Nguyen, and B. Roysam. “Artificial intelligence and ma-

chine learning in nephropathology.” In: Kidney International (2020).

[8] G. Biau, B. Cadre, and L. Rouvìère. “Accelerated gradient boosting.” In: Machine

Learning 108.6 (2019), pp. 971–992.

[9] L. Breiman. “Bagging predictors.” In: Machine learning 24.2 (1996), pp. 123–140.

54

[10] L. Breiman. “Pasting small votes for classification in large databases and on-line.”

In: Machine learning 36.1-2 (1999), pp. 85–103.

[11] L. Breiman. “Random forests.” In: Machine learning 45.1 (2001), pp. 5–32.

[12] L. Breiman. “Some properties of splitting criteria.” In: Machine Learning 24.1 (1996),

pp. 41–47.

[13] K. Budde and M. Dürr. Any progress in the treatment of antibody-mediated rejection?

2018.

[14] A. Chattopadhay, A. Sarkar, P. Howlader, and V. N. Balasubramanian. “Grad-cam++:

Generalized gradient-based visual explanations for deep convolutional networks.”

In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE.

2018, pp. 839–847.

[15] R Chitra and V Seenivasagam. “Review of heart disease prediction system using

data mining and hybrid intelligent techniques.” In: ICTACT journal on soft computing

3.04 (2013), pp. 605–09.

[16] R. G. Cinbis, J. Verbeek, and C. Schmid. “Weakly supervised object localization with

multi-fold multiple instance learning.” In: IEEE transactions on pattern analysis and

machine intelligence 39.1 (2016), pp. 189–203.

[17] M. Claesen and B. De Moor. “Hyperparameter search in machine learning.” In:

arXiv preprint arXiv:1502.02127 (2015).

[18] Dataflair team. Kernel Functions-Introduction to SVM Kernel Examples. https ://

data-flair.training/blogs/svm-kernel-functions/. Online; accessed 29 March

2020. 2018.

[19] Dataflair team. Support Vector Machines(SVM) — An Overview. https://towardsdatascience.

com/https-medium-com-pupalerushikesh-svm-f4b42800e989. Online; accessed

29 March 2020. 2018.

[20] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. “Imagenet: A large-scale

hierarchical image database.” In: 2009 IEEE conference on computer vision and pattern

recognition. Ieee. 2009, pp. 248–255.

55

[21] Dhilip Subramanian. A Simple Introduction to K-Nearest Neighbors Algorithm. https:

//towardsdatascience.com/a-simple-introduction-to-k-nearest-neighbors-

algorithm-b3519ed98e. Online; accessed 29 March 2020. 2019.

[22] W. Duch, R. Adamczak, and K. Grabczewski. “A new methodology of extraction,

optimization and application of crisp and fuzzy logical rules.” In: IEEE Transactions

on Neural Networks 12.2 (2001), pp. 277–306.

[23] D. Erhan, Y. Bengio, A. Courville, and P. Vincent. “Visualizing higher-layer features

of a deep network.” In: University of Montreal 1341.3 (2009), p. 1.

[24] Eric Bender. Unpacking the Black Box in Artificial Intelligence for Medicine. https :

//undark.org/2019/12/04/black- box- artificial- intelligence/. Online;

accessed 1 May 2020. 2019.

[25] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and F. Hutter. “Ef-

ficient and robust automated machine learning.” In: Advances in neural information

processing systems. 2015, pp. 2962–2970.

[26] Y. Freund and R. E. Schapire. “A desicion-theoretic generalization of on-line learn-

ing and an application to boosting.” In: European conference on computational learning

theory. Springer. 1995, pp. 23–37.

[27] J. H. Friedman. “Stochastic gradient boosting.” In: Computational statistics & data

analysis 38.4 (2002), pp. 367–378.

[28] G. Fung and O. L. Mangasarian. “Incremental support vector machine classifica-

tion.” In: Proceedings of the 2002 SIAM International Conference on Data Mining. SIAM.

2002, pp. 247–260.

[29] T. Fushiki. “Estimation of prediction error by using K-fold cross-validation.” In:

Statistics and Computing 21.2 (2011), pp. 137–146.

[30] Google Cloud. Cloud AutoML. https://cloud.google.com/automl. Online; ac-

cessed 19 March 2020. 2017.

56

[31] V. Goutaudier, H. Perrochia, S. Mucha, M. Bonnet, S. Delmas, F. Garo, V. Garrigue,

S. Lepreux, V. Pernin, and J.-E. Serre. “C5b9 deposition in glomerular capillaries

is associated with poor allograft survival in antibody-mediated rejection of kidney

allograft.” In: Frontiers in immunology 10 (2019), p. 235.

[32] I. Guyon, K. Bennett, G. Cawley, H. J. Escalante, S. Escalera, T. K. Ho, N. Macià, B.

Ray, M. Saeed, and A. Statnikov. “Design of the 2015 chalearn automl challenge.”

In: 2015 International Joint Conference on Neural Networks (IJCNN). IEEE. 2015, pp. 1–

8.

[33] I. Guyon, A. Saffari, G. Dror, and G. Cawley. “Model selection: Beyond the bayesian/

frequentist divide.” In: Journal of Machine Learning Research 11.Jan (2010), pp. 61–87.

[34] H2O. AutoML: Automatic Machine Learning. http://docs.h2o.ai/h2o/latest-

stable/h2o-docs/automl.html. Online; accessed 19 March 2020. 2017.

[35] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. “The

WEKA data mining software: an update.” In: ACM SIGKDD explorations newsletter

11.1 (2009), pp. 10–18.

[36] K. He, X. Zhang, S. Ren, and J. Sun. “Deep residual learning for image recognition.”

In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016,

pp. 770–778.

[37] J. Heaton. Introduction to neural networks with Java. Heaton Research, Inc., 2008.

[38] R. High. “The era of cognitive systems: An inside look at IBM Watson and how it

works.” In: IBM Corporation, Redbooks (2012), pp. 1–16.

[39] J. M. Hilbe. Logistic regression models. CRC press, 2009.

[40] T. K. Ho. “The random subspace method for constructing decision forests.” In: IEEE

transactions on pattern analysis and machine intelligence 20.8 (1998), pp. 832–844.

[41] C. Hong, J. Yu, J. Wan, D. Tao, and M. Wang. “Multimodal deep autoencoder for hu-

man pose recovery.” In: IEEE Transactions on Image Processing 24.12 (2015), pp. 5659–

5670.

57

[42] A. Hyvärinen, J. Karhunen, and E. Oja. Independent component analysis. Vol. 46.

John Wiley & Sons, 2004.

[43] Janosi, A. and Steinbrunn, W. and Pfisterer, M. and Detrano. Heart Disease Data Set.

//archive.ics.uci.edu/ml/datasets/Heart+Disease(accessedon10July2019).

Online; accessed 30 April 2020. 2018.

[44] H. Jin, Q. Song, and X. Hu. “Auto-keras: An efficient neural architecture search sys-

tem.” In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining. 2019, pp. 1946–1956.

[45] M. Jirina, M. Jirina, and K Funatsu. “Classifiers based on inverted distances.” In:

New fundamental technologies in data mining. Vol. 1. InTech, 2011, pp. 369–387.

[46] I. Jolliffe. Principal component analysis. Springer, 2011.

[47] KDnuggets. Frameworks for Approaching the Machine Learning Process. https://www.

kdnuggets.com/2018/05/general- approaches- machine- learning- process.

html. Online; accessed 19 March 2020. 2018.

[48] KDNuggets. Contest Winner: Winning the AutoML Challenge with Auto-sklearn. https:

//www.kdnuggets.com/2016/08/winning-automl-challenge-auto-sklearn.

html. Online; accessed 20 April 2020. 2016.

[49] KDnuggets. Kidney Desensitization Program Frequently Asked Questions. https://

www.uwhealth.org/transplant/kidney-desensitization-program-frequently-

asked-questions/10618. Online; accessed 3 May 2020. 2015.

[50] D. P. Kingma and J. Ba. “Adam: A method for stochastic optimization.” In: arXiv

preprint arXiv:1412.6980 (2014).

[51] A. Lacoste, M. Marchand, F. Laviolette, and H. Larochelle. “Agnostic Bayesian learn-

ing of ensembles.” In: International Conference on Machine Learning. 2014, pp. 611–

619.

[52] E. G. Learned-Miller. “Entropy and mutual information.” In: Department of Com-

puter Science, University of Massachusetts, Amherst (2013).

58

[53] J.-G. Lee, S. Jun, Y.-W. Cho, H. Lee, G. B. Kim, J. B. Seo, and N. Kim. “Deep learning

in medical imaging: general overview.” In: Korean journal of radiology 18.4 (2017),

pp. 570–584.

[54] A. Liaw and M. Wiener. “Classification and regression by randomForest.” In: R

news 2.3 (2002), pp. 18–22.

[55] M. Lin, Q. Chen, and S. Yan. “Network in network.” In: arXiv preprint arXiv:1312.4400

(2013).

[56] P. Liskowski, W. Jaśkowski, and K. Krawiec. “Learning to play othello with deep

neural networks.” In: IEEE Transactions on Games 10.4 (2018), pp. 354–364.

[57] M. Liu, R. Lang, and Y. Cao. “Number of trees in random forest.” In: Computer

Engineering and Applications 51.5 (2015), pp. 126–131.

[58] G. Louppe and P. Geurts. “Ensembles on random patches.” In: Joint European Con-

ference on Machine Learning and Knowledge Discovery in Databases. Springer. 2012,

pp. 346–361.

[59] A. Mahendran and A. Vedaldi. “Visualizing deep convolutional neural networks

using natural pre-images.” In: International Journal of Computer Vision 120.3 (2016),

pp. 233–255.

[60] L. Mason, J. Baxter, P. L. Bartlett, and M. R. Frean. “Boosting algorithms as gradient

descent.” In: Advances in neural information processing systems. 2000, pp. 512–518.

[61] S. Mathanker, P. Weckler, T. Bowser, N Wang, and N. Maness. “AdaBoost classifiers

for pecan defect classification.” In: Computers and electronics in agriculture 77.1 (2011),

pp. 60–68.

[62] M. Mehta, J. Rissanen, and R. Agrawal. “MDL-Based Decision Tree Pruning.” In:

KDD. Vol. 21. 2. 1995, pp. 216–221.

[63] W. G. MEMBERS, V. L. Roger, A. S. Go, D. M. Lloyd-Jones, E. J. Benjamin, J. D.

Berry, W. B. Borden, D. M. Bravata, S. Dai, and E. S. Ford. “Heart disease and stroke

statistics—2012 update: a report from the American Heart Association.” In: Circu-

lation 125.1 (2012), e2.

59

[64] Microsoft. Microsoft AutoML. https://www.microsoft.com/en- us/research/

project/automl/. Online; accessed 19 March 2020. 2017.

[65] T. Mikolov, M. Karafiát, L. Burget, J. Černockỳ, and S. Khudanpur. “Recurrent neu-

ral network based language model.” In: Eleventh annual conference of the international

speech communication association. 2010.

[66] R. M. Nelson, M. Kierczak, and Ö. Carlborg. “Higher order interactions: detection

of epistasis using machine learning and evolutionary computation.” In: Genome-

Wide Association Studies and Genomic Prediction. Springer, 2013, pp. 499–518.

[67] A. Nguyen, J. Yosinski, and J. Clune. “Multifaceted feature visualization: Uncover-

ing the different types of features learned by each neuron in deep neural networks.”

In: arXiv preprint arXiv:1602.03616 (2016).

[68] Nicolas CHEREL,Mohamed MASKANI,Henri GERARD. Home - Welcome to ML-

Box’s official documentation. https://mlbox.readthedocs.io/en/latest/. Online;

accessed 19 March 2020. 2017.

[69] R. S. Olson and J. H. Moore. “TPOT: A Tree-Based Pipeline Optimization Tool for

Automating.” In: Automated Machine Learning: Methods, Systems, Challenges (2019),

p. 151.

[70] S. Pang and X. Yang. “Deep convolutional extreme learning machine and its appli-

cation in handwritten digit classification.” In: Computational intelligence and neuro-

science 2016 (2016).

[71] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Courna-

peau, M. Brucher, M. Perrot, and E. Duchesnay. “Scikit-learn: Machine Learning

in Python.” In: Journal of Machine Learning Research 12 (2011), pp. 2825–2830.

[72] H. Peng, F. Long, and C. Ding. “Feature selection based on mutual information

criteria of max-dependency, max-relevance, and min-redundancy.” In: IEEE Trans-

actions on pattern analysis and machine intelligence 27.8 (2005), pp. 1226–1238.

[73] L. E. Peterson. “K-nearest neighbor.” In: Scholarpedia 4.2 (2009), p. 1883.

60

[74] F. Pfisterer, J. N. van Rijn, P. Probst, A. Müller, and B. Bischl. “Learning Multiple De-

faults for Machine Learning Algorithms.” In: arXiv preprint arXiv:1811.09409 (2018).

[75] S. Pouriyeh, S. Vahid, G. Sannino, G. De Pietro, H. Arabnia, and J. Gutierrez. “A

comprehensive investigation and comparison of Machine Learning Techniques in

the domain of heart disease.” In: 2017 IEEE Symposium on Computers and Communi-

cations (ISCC). IEEE. 2017, pp. 204–207.

[76] J. Powles and H. Hodson. “Google DeepMind and healthcare in an age of algo-

rithms.” In: Health and technology 7.4 (2017), pp. 351–367.

[77] PyTorch. Tochvision.Transforms. https://pytorch.org/docs/stable/torchvision/

transforms.html. Online; accessed 2 May 2020. 2016.

[78] H. G. Ramaswamy. “Ablation-CAM: Visual Explanations for Deep Convolutional

Network via Gradient-free Localization.” In: The IEEE Winter Conference on Applica-

tions of Computer Vision. 2020, pp. 983–991.

[79] M. I. Razzak, S. Naz, and A. Zaib. “Deep learning for medical image processing:

Overview, challenges and the future.” In: Classification in BioApps. Springer, 2018,

pp. 323–350.

[80] M. T. Ribeiro, S. Singh, and C. Guestrin. “" Why should i trust you?" Explaining the

predictions of any classifier.” In: Proceedings of the 22nd ACM SIGKDD international

conference on knowledge discovery and data mining. 2016, pp. 1135–1144.

[81] H. Robbins and S. Monro. “A stochastic approximation method.” In: The annals of

mathematical statistics (1951), pp. 400–407.

[82] C. Roufosse, N. Simmonds, M. Clahsen-van Groningen, M. Haas, K. J. Henriksen, C.

Horsfield, A. Loupy, M. Mengel, A. Perkowska-Ptasinska, and M. Rabant. “A 2018

reference guide to the Banff classification of renal allograft pathology.” In: Trans-

plantation 102.11 (2018), pp. 1795–1814.

[83] S. Ruder. “An overview of gradient descent optimization algorithms.” In: arXiv

preprint arXiv:1609.04747 (2016).

61

[84] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-

thy, A. Khosla, and M. Bernstein. “Imagenet large scale visual recognition chal-

lenge.” In: International journal of computer vision 115.3 (2015), pp. 211–252.

[85] D. Ruta and B. Gabrys. “Classifier selection for majority voting.” In: Information

fusion 6.1 (2005), pp. 63–81.

[86] Saishruthi Swaminathan. Logistic Regression — Detailed Overview. https://towardsdatascience.

com/logistic-regression-detailed-overview-46c4da4303bc. Online; accessed

27 March 2020. 2018.

[87] R. Salakhutdinov and G. Hinton. “Deep boltzmann machines.” In: Artificial intelli-

gence and statistics. 2009, pp. 448–455.

[88] Saurabh Pal. A Guide to Understanding Convolutional Neural Networks (CNNs) using

Visualization. https://www.analyticsvidhya.com/blog/2019/05/understanding-

visualizing-neural-networks/. Online; accessed 2 May 2020. 2019.

[89] B. Sautenet, G. Blancho, M. Büchler, E. Morelon, O. Toupance, B. Barrou, D. Ducloux,

V. Chatelet, B. Moulin, and C. Freguin. “One-year results of the effects of ritux-

imab on acute antibody-mediated rejection in renal transplantation: RITUX ERAH,

a multicenter double-blind randomized placebo-controlled trial.” In: Transplanta-

tion 100.2 (2016), pp. 391–399.

[90] B. Schölkopf, A. J. Smola, and F. Bach. Learning with kernels: support vector machines,

regularization, optimization, and beyond. MIT press, 2002.

[91] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra. “Grad-

cam: Visual explanations from deep networks via gradient-based localization.” In:

Proceedings of the IEEE international conference on computer vision. 2017, pp. 618–626.

[92] Shaurya Uppal. Label Encoder vs. One Hot Encoder in Machine Learning. https://

www.geeksforgeeks.org/python-how-and-where-to-apply-feature-scaling/.

Online; accessed 24 April 2020. 2018.

[93] Y.-S. Shih. “A note on split selection bias in classification trees.” In: Computational

statistics & data analysis 45.3 (2004), pp. 457–466.

62

[94] M. Shouman, T. Turner, and R. Stocker. “Using decision tree for diagnosing heart

disease patients.” In: Proceedings of the Ninth Australasian Data Mining Conference-

Volume 121. 2011, pp. 23–30.

[95] K. Simonyan, A. Vedaldi, and A. Zisserman. “Deep inside convolutional networks:

Visualising image classification models and saliency maps.” In: arXiv preprint arXiv:1312.6034

(2013).

[96] K. Simonyan and A. Zisserman. “Very deep convolutional networks for large-scale

image recognition.” In: arXiv preprint arXiv:1409.1556 (2014).

[97] N. Singh, J. Pirsch, and M. Samaniego. “Antibody-mediated rejection: treatment

alternatives and outcomes.” In: Transplantation Reviews 23.1 (2009), pp. 34–46.

[98] J. Snoek, H. Larochelle, and R. P. Adams. “Practical bayesian optimization of ma-

chine learning algorithms.” In: Advances in neural information processing systems.

2012, pp. 2951–2959.

[99] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller. “Striving for simplic-

ity: The all convolutional net.” In: arXiv preprint arXiv:1412.6806 (2014).

[100] K Srinivas, B. K. Rani, and A Govrdhan. “Applications of data mining techniques

in healthcare and prediction of heart attacks.” In: International Journal on Computer

Science and Engineering (IJCSE) 2.02 (2010), pp. 250–255.

[101] Sunny Srinidhi. Label Encoder vs. One Hot Encoder in Machine Learning. https://

medium.com/@contactsunny/label-encoder-vs-one-hot-encoder-in-machine-

learning-3fc273365621. Online; accessed 24 April 2020. 2018.

[102] C. D. Sutton. “Classification and regression trees, bagging, and boosting.” In: Hand-

book of statistics 24 (2005), pp. 303–329.

[103] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown. “Auto-WEKA: Com-

bined selection and hyperparameter optimization of classification algorithms.” In:

Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery

and data mining. 2013, pp. 847–855.

63

[104] D. Tomar and S. Agarwal. “Feature selection based least square twin support vector

machine for diagnosis of heart disease.” In: International Journal of Bio-Science and

Bio-Technology 6.2 (2014), pp. 69–82.

[105] Ulianova, S. Cardiovascular Disease Dataset. https://www.kaggle.com/sulianova/

cardiovascular-disease-dataset. Online; accessed 5 May 2020. 2018.

[106] J. Vanschoren, J. N. Van Rijn, B. Bischl, and L. Torgo. “OpenML: networked science

in machine learning.” In: ACM SIGKDD Explorations Newsletter 15.2 (2014), pp. 49–

60.

[107] K Vembandasamy, R Sasipriya, and E Deepa. “Heart diseases detection using Naive

Bayes algorithm.” In: International Journal of Innovative Science, Engineering & Tech-

nology 2.9 (2015), pp. 441–444.

[108] S.-j. Wang, A. Mathew, Y. Chen, L.-f. Xi, L. Ma, and J. Lee. “Empirical analysis of

support vector machine ensemble classifiers.” In: Expert Systems with applications

36.3 (2009), pp. 6466–6476.

[109] D. H. Wolpert and W. G. Macready. “No free lunch theorems for optimization.” In:

IEEE transactions on evolutionary computation 1.1 (1997), pp. 67–82.

[110] K. Yan and D. Zhang. “Feature selection and analysis on correlated gas sensor data

with recursive feature elimination.” In: Sensors and Actuators B: Chemical 212 (2015),

pp. 353–363.

[111] Q. Yao, M. Wang, Y. Chen, W. Dai, H. Yi-Qi, L. Yu-Feng, T. Wei-Wei, Y. Qiang, and Y.

Yang. “Taking human out of learning applications: A survey on automated machine

learning.” In: arXiv preprint arXiv:1810.13306 (2018).

[112] M. D. Zeiler and R. Fergus. “Visualizing and understanding convolutional net-

works.” In: European conference on computer vision. Springer. 2014, pp. 818–833.

[113] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. “Learning deep fea-

tures for discriminative localization.” In: Proceedings of the IEEE conference on com-

puter vision and pattern recognition. 2016, pp. 2921–2929.

64

Appendices

A Daywise performance on Heart UCI and Cardiovascular Dis-

ease Dataset

65

66

67

68

69

70

B Descriptions and parameter settings of algorithms used by the

student

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

