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ABSTRACT

The concept of minimal cover refineable spaces was first used by 

R. Arens and J. Dugundji. This paper extends their results by showing 

both additional properties which imply minimal cover refineability and 

additional properties which are implied by minimal cover refineability.

In the course of the research for this paper, some properties of 

dense subspaces of certain minimal cover refineable spaces were noted. 

In particular, it was noted that every Nagata space contains a dense 

metric subspace.
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CHAPTER I

INTRODUCTION

This paper presents an investigation of minimal cover refineable 

spaces. Arguments used to establish properties of minimal cover 

refineable spaces are employed to determine metric properties of dense 

subspaces of a variety of topological spaces. Minimal cover 

refineability will be defined in this chapter along with other 

properties that are less frequently used. In addition, two unconven

tional definitions are provided.

Chapter II will identify spaces that were or are now known to 

possess the property of minimal cover refineability. A chart at the 

end of chapter II gives an overall view of the properties that imply 

minimal cover refineability.

Chapter III discusses the relation between compactness and 

minimal cover refineability. An uncommon definition of compactness is 

given below as well as an explanation for the substitution. Chapter III 

also notes the strength of JV^-compactness.

Chapter IV is primarily concerned with dense subspaces of certain 

minimal cover refineable spaces, and in particular with dense metric 

subspaces. Of particular interest is the result that each Nagata space 

contains a dense metric subspace. This chapter also discusses the 

density and the weight of spaces.

Chapter V gives properties that cause subsets of minimal cover 

refineable spaces to be minimal cover refineable.
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Chapter VI covers material that was not readily incorporated in 

one of the other chapters.

In this paper, "space" means "topological space," the word 

"cover" means "open cover" unless otherwise stated, and a refinement is 

assumed to be composed of the same kind of elements (i.e., open or 

closed) and cover the same set as the collection which is refined unless 

otherwise stated.

The following definition was obtained from [39]:

A point p of a space S is an M-limit point of A C S if , for every 

open set R containing p, the cardinality of R A A is not less than M.

The statement that K is a minimal cover of the point set M means 

that K is an open cover of M and if g is an element of K, then 

{h: h e K and h g) is not a cover of M,

The statement that a point set M is minimal cover refineable 

means that if K is an open cover of M, then there is a refinement of K 

which is a minimal cover of M.

If B is a basis for a space S, then the statement that the space 

S is basically minimal cover refineable with respect to B means that 

every open cover of S has a refinement composed of elements of B v/hich 

is a minimal cover of S.

The statement that a space S is basically minimal cover refineable 

means that the space is minimal cover refineable with respect to any 

basis.
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The following definition was obtained from [41]:

A space S is collectionwise Hausdorff if every discrete subset 

can be covered by a collection of disjoint open sets such that no two 

points of the discrete subset are contained in an element of the 

collection.

A space S is strongly collectionwise Hausdorff if every discrete 

subset can be covered by a discrete collection of open sets such that no 

two points of the discrete subset are contained in an element of the 

discrete collection.

The following definition is useful because the property defined

is shared by T spaces, regular spaces and spaces in which closed sets

are G :o
The statement that a space is T -like means that if p and q are

points of the space and there is an open set that contains p but not q.

then there is an open set that contains q but not p.

The statement that S' is a T representation of a T -like space

S means that there is a function f on the points of S such that (1) 

p e S if and only if f(p) e S'; (2) for p, q e S, then f(p) = f(q) if 

and only if p e q; (3) R is an open set in S' if and only if f“^(R) is 

an open set in S.

It will be noted that a theorem that is true for a T^ space is 

true for a T^-like space if the properties in the theorem do not require 

a distinction between individual points and groups of points. An 

example of a property that does not require such a distinction is
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paracompactness; a property that does require such a distinction is 

compactness as usually defined. These examples will be discussed 

further below.

The statement that a point- set M is g-discrete means that M is 

the union of countably many discrete point sets.

The following definition is from [7]:

The statement that a space S is collectionwise normal means that 

if K is a discrete collection of point sets, then there is a collection D 

of disjoint open sets covering K* such that no element of D intersects 

two elements of K,

The statement that a space S is completely normal means that if 

H and K are subsets of S and both H K = 0 and H K- = 0, then there

are disjoint open subsets C and D such that H c c and K c D.

The following definitions were obtained from [11]:

The statement that a collection K is a~closure preserving means 

that there is a sequence, say {k^}, of subcollections of K such that (1) 

K = {g: for some integer i>0,g€K^} and (2) for each integer i > 0, 

the union of the closures of anv subcolJection of K. is closed.

The statement that a space S is means that S is a T^ space 

with a o-closure preserving basis.
The statement that a collection B.is a quasi-basis for a space S 

means that if R is an open subset of S and p e R, then there is an 

element of B-, say b, such that p e b° C b .CR where b° denotes the 

interior of b.
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The statement that a space is M means that S is a T space with 
“2 3

a o-closure preserving quasi-basis.

The following definition was obtained from [8] except that the 

requirement that the space be is dropped since regular spaces are 

T -like.1
The statement that a space is stratifiable (also called M means 

that there is a function G from the product of the collection of closed 

subsets of S with the natural numbers into the collection of open sets 
in S such that (i) A c G(A, n) for each closed set A; (ii) 

Ag 
i = l 
whenever A C A .1 2

The following definition may be found in [13]:

The statement that a space S is semi-stratifiable means that 

there is a function G from the product of the collection of closed sets 

of S with the natural numbers into the collection of open sets in S such

n) = A for each closed set A; and (iii) G(A^, n) C G(A , n)

that (i) /^G(A, n) - A for each closed set A and (ii) G(A . n)cG(A , n) 
i=l 1 2

whenever A c A . 1 2
A number of papers have dealt with stratifiable spaces. Material

on stratifiable spaces may be found in [8, 11, 13, !'•, 20, 2*4, 35], 

Arkhangel/skii calls these spaces laced and discusses them in [5],

The following definitions were obtained from [10]:

The statement that a space S is semi-pseudometric means that 

there is a distance function d defined on S X S such that if x, y e S, 

then (1) d(x, y) z 0; (2) d(x, y) = d(y, x); and (3) if M is a subset of 
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S and p e S, then inf{d(p, x): x e m} = 0 if and only if x e M.

The statement that a space S is semi-metric means that S is a 

semi-pseudometric space and if d is a semi-pseudometric on S X S and 

x, y are points of S, then d(x, y) = 0 if and only if x = y.

The statement that a space S is pseudometric means that S is a 

semi-pseudometric space and there is a semi-pseudometric d on S X S such 

that if x, y, and z are points of S, then d(x, z) < d(x, y) + d(y, z).

The statement that a space S is metric means that S is both a

are T -like because closed
1

and a pseudometric spacesemi-metric

that semi-pseudometric spacesNote

in a semi-pseudometric space.sets are G
0

In [11], Ceder proves that a space is a Nagata space if and only 

if it is first countable and stratifiable. This will serve as a 

definition for a Nagata space in this paper. For another definition, 

see [11].

The following definition was obtained from [24]:

The statement that a collection C of sets in a space S is - oint- 

countable means that if p e S, then p belongs to only countably many 

elements of C.

The following definition was obtained from [1]:

ihe statement that B is a point-regular basis for a space S means 

that B is a basis for S and if p e S, then any infinite set of elements 
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of B containing p is a basis for p.

The following definition was obtained from [15]:

The statement that M is the weight of a space S means that M is 

the least cardinal which is the cardinality of a basis for the space.

The following definition was obtained from [10]:

The statement that M is the density (also called character 

density) of a space S means that .H is the least cardinal which is the 

cardinality of a dense subset of the space.

The following definition is taken from [3"]:

A cardinal M is called regular if it is not the sum of less than

M cardinals each less than M,

The statement that a cardinal M is ,V -regular means that the-0--- U----

cardinal is either regular or it is not the sum of countably many 

cardinals each less than M.

The usu definition of a compact space states that every 

infinite subset has a limit point, but this definition is not suitable 

for this paper because there is a T space in which this definition is 
0

not equivalent to the statement that no infinite subset is discrete.

Therefore, in this paper, the definition of compact shall be:

The statement that a space S is compact means that no infinite 

subset is discrete.

The statement that a space S is M-compact means that no subset of 

cardinality M is discrete.
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The following definitions were obtained from [18]:

A topological space S is (Al, M)-compact if for every open covering 

of S whose cardinality is at most N, one can select a subcovering whose 

cardinality is at most Al.

A topological space S is (Al, 00)-compact if for every open 

covering of S, one can select a subcovering whose cardinality is at 

most Al.

The following definitions were taken from [27]:

If M is a cardinal, the point set N is said to be strongly 

Al-separable provided that there exists an H such that (1) H C N C H 

and (2) either H is countable or its cardinality is less than Al.

If Al is the cardinality of a point set N and N is strongly 

'(-separable, then N is said to be semi-separable.

To the definition of paracompact which follows, some papers add 

the stipulation that the space is Hausdorff and others require that the 

space be regular. This is done because it is convenient for a para

compact space to be fully normal. There is a paracompact T space which 

is not fully normal. Stone ['■' ] established that a paracompact 

Hausdorff space s fully normal; it need only be noted that a regular 

space is T -like to establish that a paracompact regular space is fully 

normal. This paper drops both Hausdorff and regular from the definition 

of paracompact in order to make the definition more like the definitions 

for metacompact and hypocompact. The definitions which follow were
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obtained from [41]:

A collection K of sets in a space is point-finite (point-count- 

able ) if each point of the space is in at most finitely (countably) many 

members of K,

A collection K of sets in a space is locally finite (locally 

countable) if each point is contained in an open set which intersects at 

most finitely (countably) many members of K.

A collection K of sets in a space is star-finite (star-countable) 

if each member of K intersects at most finitely (countably) many members 

of K,

A space is metacompact (paracompact) (hypocompact) if every open 

cover has a point-finite (locally finite) (star-finite) refinement.

A space is metalindelof (paralindelof) (hypolindelof) if every 

open cover has a point-countable (locally countable) (star-countable) 

refinement.

If B is a basis for a s:ace S, then the statement that the space

S is basically metacompact with respect to B means that every open cover 

of S has a refinement consisting of elements of B which is point-finite.

The statement that a space is basically metacompact means that 

the space is basically metacompact with respect to any basis.

The following definition is taken from [6]:

The statement that a space S is quasi-developable means that

there is a sequence of collections of open sets such that if p e S
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and R is an open set containing p, then there is an integer I > 0 such

that some element of GI contains p and if p e g e G then g c R.

The following definitions were obtained from [7]:

The statement that a space S is screenable means that for each

open cover H of the space there is a sequence {H.J of collections of

disjoint open sets such that {g: i is a natural number and g e Hl is a 
i*

cover of S which refines H.

The statement that a space S is strongly screenable means that

for each open cover H of the space. there is a sequence {h.} of discrete

collections of open sets such that {g: i is a natural number and g e H.}

is a cover of S which refines H,

The following definition is from [28]:

The statement that a space S if F -screenable means that for each 

open cover H of the space, there is a 

collections of closed point sets such

h: i is a natural number and h e H.li' 
refines H.

sequence (H.J of discrete 

that

is a closed cover of S which

The following definition was obtained from [32]:

The statement that a collection B of closed subsets of a space S 

dominates S means that B covers S and if A C S and A has a closed 

intersection with every element of some subcollection of B which covers 

A, then A is closed.

The statement that a well-ordered collection K of closed sets 



weakly dominates a space S means that K* =S and if H is an initial 

segment of K, then H* is closed.

11

a

an uncountable

does.

The following definitions were obtained from [9]:
A space S is strong cover compact if an only if for each open

each a e A, p a
limit point in

cover G of S, there exists an open refinement H such that if {h.} is 

countably infinite subcollection of distinct elements of H, p , q, e h.i 
for each i, p^ # p_. and q_. for i j, and the point set {p^} has a 

limit point in S, then the point set {q.} does.

A space S is weak cover compact if and only if for each open 

cover G of S, there exists an open refinement H such that if (h } .is 
1 craeA

subcollection of distinct elements of H, p , q eh for a a a
# p , q # q„ for a # g. and the point set Ip ) . has a

B a B 1 ct'aeA
S. then the point set lq I

1 aJaeA

The following definition was obtained from (SB].1

A Souslin space is a linearly ordered connected space which has 

the property that every disjoint collection of open sets is countable 

but the space is not separable.

No example of a Souslin space is known.

The following note is appended for clarity. The statement that a 

definition was taken from a particular source is not meant to imply that 

the author felt constrained to copy the definition, it merely provides 

an opportunity to verify that the definitions are equivalent.



CHAPTER II

MINIMAL COVER REFINEABILITY

The concept of minimal cover refineability is due to R. Arens 

and J. Dugundji. They showed that every metacompact space is minimal 

cover refineable, and thus, every metric space is minimal cover refine

able. In this chapter, other properties that imply that a space is 

minimal cover refineable are presented. It is shown that not only are 

all metric spaces minimal cover refineable, but also semi-metric spaces 

and still weaker spaces.

The following theorem is proved in [4] (see also [15, pp. 160- 

161]):

Theorem 2,1. (Arens, Dugundji) Every metacompact space is 

minimal cover refineable.

In fact, they proved a somewhat stronger result. Namely,

Theorem 2.2. (Arens, Dugundji) Every open point-finite cover of 

a space contains a minimal subcover.

It was suggested to the author that he determine whether minimal 

cover refineability could be substituted for metacompact in well-known 

theorems concerning metacompact spaces. Before undertaking this, the 

author wished to be certain that minimal cover refineability was not 

implied by another'part of the hypothesis of such a theorem. For 

instance, would a hypothesis that stated that a space was both Moore
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and minimal cover refineable be stronger than just the hypothesis that 

the space was Moore? The author was able to prove, successively, that a 

Moore space, a developable space, a semi-metric space, and a semi- 

stratifiable space is minimal cover refineable. Finally, a property 

shared by these spaces was discovered to imply minimal cover refine

ability resulting in the following theorem:

Theorem 2,3. Every F^-screenable space is minimal cover refine

able.

Proof. Let S be an F^-screenable space and C any open cover of 

S. Let {F.£} be a countable collection of discrete collections of 

closed refinements of C such that = S. For each integer i > 0,

associate with each element f of F^ an open set c = g\(F*\f) where 

f C g e C. Let C7 be the collection of open sets associated with 

elements of F^, Let = C'. For each integer i > 1, let
r vi-1 a ... i

= |c: c' e Cf, c = c'\(_JF?, and c A F" # 0j. This forms a minimal 

cover of S and establishes the theorem.

In [13], G. D. D. Creede notes that every semi-stratifiable 

space is F^-screenable (for a proof, see [14]). Thus,

Corollary 2,4. Every semi-stratifiable space is minimal cover 

refineable.

It is well-known that a regular strongly screenable space is 

paracompact and, thus, minimal cover refineable. The following theorem 

.is readily:proved and presented'here without proof.

Theorem 2,5. Every strongly screenable T -like space is minimal
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cover refineable.

Recall (from chapter 1) that if a space is T , regular, or has 

the property that closed sets are G , then it is T -like,
6 1

Stone proves [40] without stating that fuiiy normal implies both 

paracompact and Fo-screenable, so by theorem 2,1 or 2,3$

Corollary 2,6, Every fully normal space is minimal cover refine

able.

It will now be useful to look at two spaces which are not

< minimal cover refineable.

Example 2,7, Let the space S be the countable ordinals with the 

order topology. This space is denoted by [0, Q) where fi is the first 

uncountable ordinal. This example is well-known.

The following theorem uses the previous example to indicate some 

properties that do not imply that a space is minimal cover refineable.

Theorem 2,8, There exists a collectionwise normal completely 

normal first countable Hausdorff space which is not minimal cover 

refineable.

Proof, Let S be [0, fi) as described in example 2.7.

First, it will be shown that the space S is not minimal cover 

refineable. Let C be a collection of open sets covering S such that if 

g e C, then there is a point p in S such that ifqeg, q<p. Suppose 

C' is an open refinement of C such that Cx is a minimal cover of S. Let 

P be a collection of one and only one point from each element of C'
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v/hich is in no other element of C', Then P contains uncountably many 

points since no countable subcollection of C covers S, Further, P is 

discrete. But S is compact and this is a contradiction.

It is well-known that S is first countable and Hausdorff, If 

the reader has seen arguments that S is collectionwise normal and com

pletely normal, he may wish to proceed directly to the next example.

It will now be shown that S is collectionwise normal. Let H be a 

discrete collection of closed subsets of S. For each point p e H*, let 

a be a point such that a < p and 0^ = (a, p+1) intersects only one 

element of H (for 0, use [0, 1)). Then the collection

'{0^: h c H, 0^ p e hJJ verifies that S is collectionwise normal.

Finally, it will be shown that S is completely normal. Let M and

N be two separated subsets of S. For each point p of M or N form an

open set 0^ as in the previous argument The open sets U{op

U{o : p e N} establishes that S is completely normal.

p e bf and

The following is an example of a non T^-like space which is not 

minimal cover refineable.

Example 2,9. Let S be the points of an infinite sequence {p^}. 
i

For each integer i > 0, let LV P. be a basis element for S. 
j=l 3

The following theorem uses the previous example to show some 

more properties that do not imply that a space is minimal cover refine

able. In particular, it is shown that T^-like can not be dropped from 

the hypothesis of theorem 2,5.

Theorem 2,10. There exists a quasi-developable strongly screen-
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able second countable collectionwise normal T space which is not 
0

minimal cover refineable.

Proof. Clearly, S is quasi-developable, strongly screenable, 

second countable, and T . Since S does not contain two disjoint closed 
0

sets, it is collectionwise normal. It is readily seen that a cover of 

basis elements has no refinement which is a minimal cover of S.

Chart 2.11, which follows, will help the reader to visualize the 

relation between various familiar properties and minimal cover refine

ability. The relationships shown in the chart are discussed further in 

[7, 11, 13, 14, 21, 28, 33, and 40], Note that Stone’s argument in [40] 

that every fully normal space is paracompact is sufficient to show 

that every fully normal space is strongly screenable and F^-screenable.
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metrict ■> pseudometric

^semi-pseudometric

v^semi-stratifiable

closed sets are

■> screenable

plus normal

paracompact^
paracompact

collectionwise normalplus regular

strongly screenable metacompact

F -screenable^.plus regular

^minimal cove?" refineablestrongly screenable

plus F^-screenable

plus F^-screenable

plus T -like
* 1

plus T -like

metric^-----^pseudometric plus

Moore <-----^developable plus T
3

semi-metric<---- >semi-pseudometric plus

Nagata^----- >stratifiable plus first countable

semi-pseudometric f>semi-stratifiable plus first countable

Chart 2,11



CHAPTER III

COMPACTNESS AND RELATED PROPERTIES

The concepts of "X ^-compactness and (X »“)-compactness are simi

lar indeed, so similar that one is surprised on first learning that they

are not equivalent in a T space.
4

In this chapter, it is shown that

an X -compact minimal a+1 cover refineable space is (X ,°°)-compact, but an a
(,V ,°°)-compact space may not be minimal cover refineable.

Arens and Dugundji [4] proved part (ii) of the following theorem. 

It need only be noted that the collection of the closed sets unique to 

the elements of a minimal cover is discrete to establish the theorem.

Theorem 3.1. (i) If a space is minimal cover refineable and

y^^^-compact, then the space is (00)-compact; (ii) (Arens, Dugundji) 

if a space is minimal cover refineable and compact, then the space is 

bicompact.

The following two theorems are also due to Arens and Dugundji 

[4].

Theorem 3.2. (Arens, Dugundji) In order for a space to be 

bicompact, it is necessary and sufficient that the space be compact and 

minimal cover refineable.

Theorem 3.3. (Arens, Dugundji) In order for a space to be 

compact, it is necessary and sufficient that no infinite open cover be 

minimal.

In chapter XI, section 1, problem 9, Dugundji [15, p. 251] gives 
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a sufficient hint to solve the following interesting theorem:

Theorem 3.4. (Dugundji) In order for a space to be bicompact * it 

is necessary and sufficient that every open cover have a minimal subcover.

The following theorem can be easily verified and is presented 

without proof.

Theorem 3,5.  In order for a T -like space to be LindelOf, it is ----------- T
necessary and sufficient that the space be 'X -compact and minimal cover 

refineable.

The following corollary to theorem 3.5 was proved by Creede [14]

(Jones did the same for Moore spaces [25]):

Corollary 3.6, (Creede) In order for a semi-stratifiable space 

to be Lindelbf, it is necessary and sufficient that it be ,T -compact.

It can be easily verified that if a space is (,V )-compact,

then it is X -compact in order to establish theorem 3.7, Part (ii) of 
ct+1

theorem 3.7 was proved in [4] (for a more explicit argument, see [15,

pp. 229-230]).

Theorem 3.7. In a minimal cover refineable space, (i) the

following are equivalent:

(a) X^^^-compact,

(b) (Xa,")-compact,

(c) (X .X )-compact;
a a+1

and (ii) (Arens, Dugundji) the following are also equivalent:

(a') compact,

(b') bicompact,
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(o') countably compact,

Theorem 3,8, (i) If a space is minimal cover refineable.

■^a+i-compact, and has the property that closed sets are G^, then the

space is hereditarily (JV ,«)-compact and, a thus, hereditarily X

compact; (ii) if a space is minimal cover refineable, compact, and has

the property that closed sets are G then the space is hereditarily

LindelSf and, thus, hereditarily X^-compact

Proof. Let S be a space satisfying the hypothesis of (i). Let

M be any subset of S and C any open cover of M, If C* = S, then, by

theorem 3.1, there is a subcollection of C which covers S containing at 

most many elements. Otherwise, consider S\C*. Since closed sets are 

G^, let S\C“ = /^G., For each integer i > 0, S\G. is a closed set 
i=l 1

covered by C. Since {g: g e C or g = G^} covers S, there is a sub

collection of C, say C\, covering S\G^ containing at most Xa many 

elements. Since (J C. covers M, M is (,V ,co)-compact, 
i=l

The argument for part (ii) is now obvious.

The following corollary to theorem 3.7 was proved by Creede [14]:

Corollary 3,9, (Creede) In order for a semi-stratifiable space 

to be bicompact, it is necessary and sufficient that the space be 

countably compact.

The following lemma is stated without proof:

Lemma 3.10. If C is an open cover of a space S, then the 

collection {g : p e S, g = U{h; h e C and h n p # 0}} has a minimal 

subcover.
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ness.

The following three theorems indicate the strength of X^-compact-

Theorem 3.11, In an ,V^-compact T -like space» the following are

equivalent:

(a) LindelBf,

(b) metalindeltif,

(c) paralindeldf,

(d) hypolindelCf,

(e) screenable,

(f) strongly screenable,

(g) a-(any of the above),

(h) minimal cover refineable.

Proof, By their definitions, (a) implies (b) through (g). By 

theorem 3.5, (a) and (h) are equivalent. By their definitions, (c) 

through (g) imply (b). G. Aquaro has shown that (b) implies (a) [3], 

His argument seems unduly tedious. Lemma 3.10 can be applied to 

establish the same conclusion.

Theorem 3,12. In an X^-compact regular space, the following are 

equivalents

(a) LindelBf,

(b) metalindeldf,

(c) paralindelSf,

(d) hypolindeltif,

(e) screenable,
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(f) strongly screenable,

(g) metacompact,

(h) F -screenable,
a

(i) paracompact,

(j ) hypocompact,

(k) a-(any of the above),

(l) fully normal,

(m) minimal cover refineable.

Proof, By theorem 3.11, (a) through (f) and (m) are equivalent.

By theorems 2.1 and 2.3 and corollary 2,6, (g) through (j) and (1) imply 

(m). By Morita [34], in a regular space (a) implies (j). By their def

initions, (j) implies (i) and (g). Clearly, in a regular space, (a) 

implies (h). By Stone [40], in a regular space, (i) implies (1), Noting 

that o-(F -screenable) is not distinct from F -screenable, the balance a a
of the argument is similar to the argument for theorem 3,11.

Theorem 3.13. In an X -compact space which has the property that

closed sets are G » the following are equivalent:

(a) LindelBf,

(b) metalindeltif,

(c) paralindeltSf,

(d) hypolindelof,

(e) screenable,

(f) strongly screenable,

(g) metacompact,



23

(h) F -screenable, 
a

(1) a-(any of the above),

(j) minimal cover refineable,

(k) hereditarily (any of the above).

Proof. By theorem 3,11, (a) through (f) and (j) are equivalent.

By theorems 2.1 and 2.3, (g) and (h) imply (j). Since each open set 

is F , clearly, (a) implies (h).

It will now be shown that (a) implies (g). Let S be an X~

i
be a countable open cover of S. Let {m } be a countable collection of 

oo
closed sets such that ~ 2. f°r each integer i > 0. Let C = g .

j=l i-1 1 1
For each integer i > 0, let C = g \ M . Then {c } is the point-

i 1 j,k=l 5k i
finite cover of S required.

compact space which has the that closed sets areproperty G . Let {g

The equivalence of (a) and (i) is argued as in theorem 3.12. By

theorem 3.8, (j) implies hereditarily Lindelof and hereditarily X ~ 

compact. Then since closed sets are G6 is hereditary, the other

properties in the conclusion are hereditary.

Theorem 3,14. If M is a regular cardinal and a space is heredi

tarily M-compact and hereditarily minimal cover refineable, then if M is 

a subset of the space, the cardinality of the non M-limit points of N in 

N is less than M.

Proof. This argument is similar to one given by Gal [18] (also 

see Stone [39]). Let H be the collection of all non M-limit points in

N. Cover each point of H with an open set containing less than M points
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of H. Let G be a minimal cover refinement of these open sets. Then G 

contains less than M open sets.

The following two corollaries to theorem 3.14 are stated without 

proof:

Corollary 3,15. If a space is hereditarily minimal cover refine

able and Al is a regular cardinal, then hereditarily Al-compact is equiva

lent to the statement that if N is a subset of S, the non Al-limit points 

of N in N has cardinality less than Al.

Corollary 3,16. Every hereditarily X^-compact hereditarily 

minimal cover refineable space has the property that every uncountable 

subset contains a condensation point.

The following theorem is proved by application of theorems 3,8, 

3.13, and 3.14.

Theorem 3,17. Every X^-compact minimal cover refineable space 

which has the property that closed sets are G, has the property that o 
every uncountable subset contains a condensation point.

The following corollary to theorem 3,17 was proved by Creede 

[14].

Theorem 3.18. (Creede) Every X^-compact semi-stratifiable space 

has the property that every uncountable subset contains a condensation 

point.

Creede [14] notes that a Souslin space is not semi-stratifiable.

The following is a corollary to theorems 3.13 and 3.17:
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Corollary 3.19. Every Souslin space is hereditarily fully 

normal and has the property that every uncountable subset contains a 

condensation point.

Proof. Since a Souslin space is regular, the property of here

ditary strong screenability implies the property of hereditary full nor

mality. It need only be shown that every Souslin space is ,X’-compact",, 

minimal cover refineable, and has the Property that closed" sets are G , 
6 

Since the space is linearly ordered, connected, has the order topology, 

and every disioint collection °f segments is countable , it can not con

tain an uncountable discrete collection.

It will now be shown that a Souslin space is minimal cover 

refineable. Let S be a Souslin space and C an open cover of S. Let C' 

be segments of S refining C and covering S. Let p be any point of 

S and consider =U{g! P c 5 e C'}. Either there is a least point 

such that p < and q^ t g^ or g^ covers all points greater than p, 

In the latter case, there is a countable subcollection of {gi p e g € C'} 

that covers these points which can be used to construct a refinement 

which is a minimal cover of these points. In the former case, the same 

procedure is repeated for q^. Either the process stops because^ for 

some integer I > 0, covers all points greater than q^ or a countable 
sequence {q^} is found\cf. [42]). In the latter case, there can be no 

point r of 3 such that q^ < r for all integers i > 0 because of the 

construction. The same process can be used to traverse S in the opposite 

direction. It should now be apparent that this:construction can now be 

used to form a refinement of C which is a minimal cover of S.
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It will now be shown that closed sets are G 6 in S. If the reader

is aware of an argument for this, he may wish to proceed to example 3.20.

Let M be any closed subset of S, The complement consists of an at most 

countably infinite collection of maximal open connected sets. It is 

well-known that a Souslin space is first countable, so every open 

connected set is F . This is sufficient to form a countable collection 
a

of open sets whose intersection is M.

Example 3,20. For any regular cardinal M, let S consist of all 

the ordinals with cardinality less than M. Let S have the order 

topology. Denote S by [0, M). This example is well-known.

The following theorem is a well-known reference to example 3.20 

and shows that the property of minimal cover refineabilit'y can not be 

dropped from theorem 3.1.

Theorem 3,21. For any cardinal M, a space may be constructed 

which is compact but not (W,“)-compact.

Proof. Let S be the space [0, N) described in example 3.20, 

where N is a regular cardinal greater than M. Because S is well-ordered 

and has the order topology, S is compact. Let C be a collection of open 

sets covering S such that if g e C, then there is a point p in S such 

that ifqcg, q<p. Any refinement of C must contain at least N 

elements since M is a regular cardinal.

The following theorem shows that the property of T -likeness may 

not be dropped from theorem 3.5.
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Theorem 3.22.  There exists a T Lindelof space which is not ------------ 0
minimal cover refineable.

Proof, Example 2.9 is such a space.

The following theorem shows that the property of minimal cover 

refineability can not be dropped in theorem 3.7.

Theorem 3,23. There exists a compact countably compact t00)- 

compact Hausdorff space which is neither minimal cover refineable nor 

bicompact.

Proof. Example 2.7 is such a space. It is well-known that this 

space is countably compact, but not bicompact. The remaining properties 

have either been discussed or are obvious.

Example 3,24. This example was presented in [12]. Let S be the 

collection of all countable ordinals plus the first uncountable ordinal,

0. Let each countable ordinal be a basis element. In addition, let 

[a, Q] be a basis element for each countable ordinal a.

Theorem 3,25 uses example 3.24 to show that the hypothesis of 

theorem 3.16 can not be weakened to A'^-compact and hereditarily minimal 

cover refineable. The proof is obvious.

Theorem 3,25. There exists an'A^-compact hereditarily minimal 

cover refineable space which does not have the property that every 

uncountable subset contains a condensation point.

Example 3.26. This example is a variation of an example
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suggested by D, R. Traylor. Let S be the points of the form (r 2
where r1 and r2 are rational in a simple sequence of copies of the

plane, {?.}• f°r each pair of integers i, j, i # j, let P. P. = (0,0).

For each integer i > 0, let basis elements for P^ be any open set in 

the plane that does not intersect the point (0, 0). Let basis elements 

for the point (0, 0) be the union of any open set of the plane contain

ing (0, 0) for each element of {P^}.

The following theorem shows that theorems known for semi-metric 

spaces and proved for semi-stratifiable spaces are not redundant for 

even countable semi-stratifiable spaces, since such a space does not 

need to be semi-metric.

Theorem 3,27. There exists a countable semi-stratifiable T ----- 4 
space which is not semi-metric.

Proof. Let S be the space described in example 3,26, This space 

is countable. It is readily shown to be T since the space minus an 

open set containing (0, 0) is a collection of disjoint metric spaces.

It is not semi-metric because it has no countable basis for the point 

(0, 0). (Suppose {g^} is a countable basis for (0, 0). For each 

integer i > 0, let g^ be a proper open subset with respect to P. of 
i

P. z' G. containing (0, 0). No element of (g,. J is a subset of U^g.},) 
j=l 1 1

The space is easil'y seen to be semi-stratifiable by letting G((0, 0), n) 

be the union of open disks of radius 1/n and center at (0, 0) intersected 

with each of the elements of {?.} for each integer n > 0.
i i
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Example 3.28, Let S be the collection of all countable ordinals 

plus the first uncountable ordinal, Q. Let S have the order topology. 

Denote S by [0, fi].

The following theorem uses example 3.28 to show that the prop

erty that closed sets are G
6 can not be dropped from theorem 3.8.

Theorem 3.29. There exists a minimal cover refineable compact

Lindeltif space which is not hereditarily LindelSf.

Proof. Let S be the space described in example 3.28. It is

well-known that this space is compact, Lindeldf, and T . By theorem 
•+

3.5, S is minimal cover refineable. Because [0, fi) is a subset of 

[0, fi], S is not hereditarily Lindeldf.



CHAPTER IV

SEPARABILITY AND RELATED CONCEPTS

This chapter will be concerned with dense subsets of semi- 

stratifiable spaces and, in particular, with dense metric subspaces.

Several papers of the last decade have dealt with dense metric 

subspaces of Moore spaces. In [43], J, N. Younglove established that 

each complete Moore space contains a dense metrizable subspace. B, 

Fitzpatrick showed a Moore space that has no dense metric subspace in 

[16] and gave additional conditions for dense metrizable subspaces of 

Moore spaces. In [17], B, Fitzpatrick proved that a normal Moore 

space which is not a counterexample of type D has a dense metrizable 

subspace. In [36], C, W, Proctor showed that if a normal locally 

connected Moore space has a base with the property that the space is 

collectionwise normal with respect to each discrete subset that is 

contained in the boundary of some base element, then the space contains 

a dense metrizable subspace.

The author has inquired into the conditions in which a semi- 

stratifiable space has a dense metrizable subspace at the suggestion of 

D. R. Traylor.

Two papers that have theorems dealing with dense subspaces are 

in the bibliography [2, 12],

The following theorem was proved by the author after discovering 

that semi-stratifiable spaces are minimal cover refineable. The argu
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ment used illustrates how the author built a minimal cover refinement of 

an open cover for a semi-stratifiable space.

Theorem 4.1, Every semi-stratifiable space S contains a dense 

a-discrete point set and if S is T , the complement of the o-discrete 
1

point set is G , Further, if M is the cardinality of S, then if either 6
M is an ^-regular cardinal and S is M-compact, or N < M and S is 

^-compact, then S is semi-separable and hereditarily strongly

M-separable.

point set is

function from the product of the collection of closedbe aLet G

with into the collection of open setsthe natural numberssubsets of S

n) = A for each closed set A; (ii)

will now be constructed

for each point p of S, there is

n=l
G(A , n) c G(A ,n) whenever A c A .1 2 12
each integer m > 0, do the following: 

Well-order the points of S. For

Proof. Patently, if S is T , the complement of the a-discrete

A demse a-discrete point set

an integer I > 0 such that p t G(S\G(p, m),I). Associate I with p.

For each integer 1 > 0, let W. = (p: i is associated with pl.
i 1

Since S is well-ordered, there is a first element in the sub

collection W , where K > 0 is the least integer such that W is not K K
empty, say p . Let 0 = G( p , m).

ixl KI KI

Let p be the first point of the well-ordered collection WhK2 h K
which is not a point of 0 . Let 0 = G(p , m) G(S\0 , K)KI K2 K2 KI

After each initial segment, let p be the first point of the Kot
■.■•’ell-ordered collection W which is not a point of any of the 0

K KB
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already constructed. Let 0 = G(p , m) nG(S\^/O , K).
Ka Ka p<a Kg

For each integer i > K, let p. be the first point of the well-

ordered collection W. which was not covered by any of the 0. , j < i, 
1 । 3 8

already constructed. Let 0 = G(p , m) A G(S\C/o , j).
11 11 j=K h<i hR

B

After each initial segment, let p. be the first point of the

well-ordered collection W. which
i

is not a point of any of the 0.g»

j < i, already constructed, Let 

0. = G(p. , m) a G(S\( U 0 U Uo.J, j).
ia ia j=K h<i hB B<a 16

B

Let Qn = lPKl’ PK2’ PK3..... PK=.......Pll> •"I- Mote that

Q is discrete since {0 , 0 , 0 , ..., 0 , .... 0 , ...} covers S. 
TTI i\± IXZ I\.d 1JL

Let p e S and R any open set containing p. There is an integer

I > 0 such that p / G(S\R, I). Therefore, R Q # 0. Hence, the

collection {Oj is the dense a-discrete point set required.

The collection {Q^} demonstrates that if the hypothesis is met,

S is strongly ^-separable and, thus, semi-separable. It will now be 

shown that S is hereditarily strongly M-separable. Let N be any subset 

of S. Use the construction above to generate

Q (N) = {p (N), PK9(N), PKo(n). •••» PKfi(N)’ •••» •••} for

each integer m > 0 except that the points of N are well-ordered instead 

of S and, soothe elements of (tf. j contain only points of N. Note that 

for each integer m > 0, the collection Q (N) can be decomposed into m
countably many discrete collections; i.e., {p^^N), p^^CN), pvo(N), 

K± 1x2 Ko
.... PKfiXN), ...}, {P(K+1)1<n)« P(k+1)2(N)’ ^P(K+2)l(N)f

P(K+2)2^^* •••}» •••• Thus, N is strongly M-separable.
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The author discovered after proving the following corollary to 

theorem M-.l that it had already been proved by Creede [14]. Creede did 

not use the minimal cover refineability of semi-stratifiable spaces in 

proving this corollary, though his argument can be modified by the 

author to establish the minimal cover refineability of semi-stratifiable 

spaces. Further, his argument can be modified to establish the 

previous theorem. The author preferred to show his own argument which 

is related to minimal cover refineability. A similar corollary for 

semi-metric spaces was proved by McAuley [29], Grace and Heath noted 

that a metacompact Moore space has the property that every separable 

is hereditarily separable.

set is hereditarily separable and X^-compact [19],

Corollary 4,2. (Creede) Every ,V^-compact semi-stratifiable space 

Lemma 4,3. (Lubben [27]) Every hereditarily separable space is 

hereditarily X^-compact,

The following corollary now follows from lemma 4.3, corollaries 

3.6, 3.15, and 4.2, and theorems 3.1, 3.8, 3.11, 3.12, and 3.13.

Corollary 4.4, (i) If a space is hereditarily separable and

minimal cover refineable, then the space is Lindelbf;

(ii) (Creede [14]) in order for a semi-stratifiable space to be 

LindelSf, it is necessary and sufficient that it be hereditarily 

separable;

(iii) if a space is minimal cover refineable, hereditarily

separable, and has the property that closed sets are G 6 then the space
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separable;

separable;

by hereditarily

separable;

(vii) if a space is hereditarily separable and hereditarily

the non-condensation

semi-stratifiable

space contains a dense screenable semi-stratifiable

from the product of the collection of closed subsets of S with the

natural numbers into the collection of open sets in S such that (i)

whenever

Forsuch

each

points of any subset of the space is less than

minimal cover refineable, then the cardinality of

is hereditarily Lindelbf, and thus, hereditarily ^-compact;

(iv) theorem 3.11 with ,V^-compact replaced by hereditarily

(v) theorem 3.12 with ,X^-compact replaced by hereditarily

(vi) theorem 3.13 with /^-compact replaced

Theorem U.S, Every collectionwise Hausdorff

be a T representation of a 

space. Let G be a function

/*) G(A, n) = A for each closed set A; (ii) G(A 
n=l 
A1 <

integer i > 0, let 0^ be a collection of disjoint open sets which 

covers Q^, and refines C, an arbitrary open cover of This

demonstrates that {Q^}* is screenable. Creede [14] has noted that a 

semi-stratifiable space is hereditarily semi-stratifiable.

T subspace.

a semi-stratifiable space, a

. , n) c G(A2, n)

Let {q^} be a countable collection of discrete point sets 

that = S whose existence was proved in theorem 4.1

Proof, Since closed sets are G, in 6
semi-stratifiable space is T -like. Let S

collectionwise Hausdorff semi-stratifiable
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Theorem 4,6. Every collectionwise Hausdorff normal semi- 

stratifiable space contains a dense fully normal semi-stratifiable T 

subspace.

Proof. Let S be a T representation of a collectionwise

Hausdorff normal semi-stratifiable space. Let {Qj,} and {o^} be

constructed for S in the same manner as the collections of the same

name were constructed in the proof of theorem 4.5 (with C, an arbitrary 

cover of Let and 1G be disjoint open sets containing and

S\0\‘, respectively. Let Of = {g: g' e 0^ and g = g' H^}. The 

collection (of) contains countably many discrete collections of open 

sets. This demonstrates that {q^}" is strongly screenable, A normal 

T space is regular. As noted in chart 2.11, a strongly screenable 

regular space is fully normal..

The hypothesis of the following theorem is almost strong enough 

to give a dense metric subspace.

Theorem 4,7. Every metacompact semi-pseudometric space contains 

a dense basically metacompact (and, thus, basically minimal cover

refineable) developable T subspace with a point-regular basis.

Proof. Let S be a T 1 representation of a metacompact semi

pseudometric space, A T semi-pseudometric space is semi-metric and, 

thus, semi-stratifiable. Let {Q.} be a countable collection of discrete 

point sets such that .]* = S whose existence was proved in theorem 

4.1, For each integer i > 0, let 0, be a point-finite open cover of Q, 

which refines the collection (g : p e Q. and g = S\(Q \p)}« bet 
p i p i
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pep:

0* = 0^. For each integer i > 1, let 0; = (g: g' £ 

Clearly, {g: i > 0, g e 0;| is a point-finite cover 

collection ’of [g: i > 0, g;

contains a point-finite cover of 

compact. By theorem 2.2, [ Q j. } •”

i-1
0. and g = g'\LjQ.}.
1 3=11

of Every sub-

cp') covering {0^}“

is basically meta-

is basically minimal cover refineable.

e O', p e Qp and

{Q.}".. Then {Qi|

It will now be shown that {QJ" is developable and has a point

regular basis. Since S is first countable, let {h .} be a countable

basis for each point p of S. Let 

or. = 
13

G = (g: i, j > 0, g e Or.} is a point-countable basis for

Therefore, by Heath [24], {Q.}‘“ is developable. Further, for each point 

p of {0^}*, there is an integer J > 0 such that if j > J, only one 

element of the collection {g: i > 0, g e 0' } contains p. Therefore, 

the collection G is a point-regular basis for {Q^}*.

{g: g" e The collection
3

k = l Pkor, p e g'n q.

The proof of the following theorem is a combination of the 

techniques developed to prove theorems 4.5 and 4.7.and is not shown 

since the argument' is so similar to that used for those two theorems.

Theorem 4.8, Every collectionwise Hausdorff semi-pseudometric 

space contains a dense basically metacompact (and, thus, basically 

minimal cover refineable) developable T subspace with a point-regular 

basis.

The following theorem is true simply because a T represen- 
1

tation of a pseudometric space is a dense metric subspace.
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Theorem U.9. Every pseudometric space contains a dense metric 

subspace.

The following theorem has been argued in the proof for theorems 

4.7 and 4.8.

Theorem 4,10. If a semi-stratifiable space is either collection

wise Hausdorff or metacompact, it contains a dense basically metacompact 

(and, thus, basically minimal cover refineable) subspace.

Theorem 4,11. Every collectionwise Hausdorff normal semi

pseudometric space contains a dense metric subspace.

Proof. By the arguments used to establish theorems 4.6 and 4,8, 

the space contains a dense paracompact Hausdorff subspace with a point

regular basis. By Alexandroff [1], this dense subspace is metric.

Since a stratifiable T^ space is a paracompact Hausdorff space 

[11] and, thus, collectionwise normal, the following theorem is true by 

theorem 4.6 since, by Ceder [11], stratiflability is hereditary.

Theorem 4.12. Every stratifiable space contains a dense fully 

normal stratifiable T^ subspace.

Since a Nagata space is a first countable stratifiable space [11], 

the following theorem is true:

Theorem 4.13. Every Nagata space contains a dense metric 

subspace.

The following corollary is easily verified after noting 
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[7]:
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Corollary 4.1U. (i) Theorem 4.5 with collectionwise Hausdorff

either screenable or X^-compact;

theorem 4.6 with collectionwise Hausdorff plus normal 

any of the following: strongly collectionwise Hausdorff 

plus regular, strongly screenable plus regular, screenable plus normal.

replaced by

(ii)

replaced by

or X'^-compact plus regular;

(iii) theorem 4.7 with metacompact replaced by screenable or

'll-compact;

(iv) theorem 4.10 with collectionwise Hausdorff or metacompact 

replaced by screenable or X^-compact;

(v) theorem 4.11 with collectionwise Hausdorff plus normal 

replaced by any of the following: strongly collectionwise Hausdorff 

plus regular, strongly screenable plus regular, screenable plus normal, 

or X^-compact plus regular.

The following corollary is only stated to note that theorem 4,11 

might be useful in investigating the existence of a dense metric sub

space of a space which is not semi-pseudometric. The corollary follows 

from the well-known fact that if M is dense in N, then M is dense in N.

Corollary 4.15. If a space S contains a dense subspace M with 

the properties of the hypothesis of one of the theorems 4.5 through 4,14, 

then M contains a subspace N dense in S which has the properties of the 

conclusion of the respective theorem.
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The following theorem was effectively argued in proving theorem 

4.1s
Theorem 4.16. Any dense subset of a semi-stratifiable apace S 

contains a subset dense in the space which is the union of countably 

many discrete (in S) point sets.

The following theorem may prove useful in investigating the 

weight of a space. The theorem is an application of theorem 4.1.

Theorem 4.17. If M is an A^-regular cardinal greater than X and 

M is the density of a semi-stratifiable space S, then there is a 

discrete point set in S with cardinality M.

Theorem 4.18. Every hereditarily separable hereditarily minimal 

cover refineable regular space has the property that closed sets are G .6 
Proof. Let M be any closed subset of S, a space with the 

properties of the hypothesis. Associate an open set C with each point 
P

p e S\M such that C- c S\M. Let C be a minimal cover which is a 
P

refinement of the collection lc : p e S\M1. Then C must be a countable 
P J

collection and can be placed in a simple sequence, say {c.}. Then 

M = H S\c7. 
i=l 1

Corollary 4.19. A necessary and sufficient condition that a 

hereditarily separable minimal cover refineable space be regular and 

hereditarily minimal cover refineable is that the space be perfectly 

normal.

Proof. By theorem 4.18, if a space is hereditarily separable, 
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hereditarily minimal cover refineable, and regular, then it has the

property that closed sets are G ; by corollary 4,4 (v) the space is

fully normal and, therefore, normal. By corollary 4,4 (vi), if a space 

is hereditarily separable, minimal cover refineable, and has the

property that closed sets are G , then the space is hereditarily o
minimal cover refineable; finally, a normal T -like space is regular. 

1

Grace and Heath [19] showed that a separable metacompact Moore 

space is hereditarily separable; McAuley [28] did the same for semi- 

stratifiable spaces.

Theorem 4,20, Every separable metacompact semi-stratifiable 

space is hereditarily separable.

Proof. A separable metacompact space is LindelBf. By Creede 

[14], a LindelBf semi-stratifiable space is hereditarily separable.

Theorem 4,21. There exists a bicompact fully normal Hausdorff 

space which is not separable.

Proof. Example 3,28 is such a space. This example and its 

properties are well-known.

Example 4.22, This example is due to McAuley [31]. The space S 

consists of the points of the plane. Let the function d be a semi

metric on S X S defined as follows: if p or q lies on the x-axis, let 

d(p, q) = |p - q| + ot where |p - q| is the ordinary Euclidean distance 

and a is the angle measured in radians between a line through p and q
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and the y-axis such that 0 £ a i tt/2. Otherwise, let d(p, q) be the 

ordinary Euclidean distance.
The following theorem shows that the property of separability does 

not imply the properties of hereditary separability nor -compactness 

even in a Moore space. The theorem is well-known.

Theorem 4,23. There exists a separable Moore space which is not 

X -compact, metacompact, nor normal.

Proof, Example 4.22 is such a space. McAuley showed that this 

example was a Moore space. It is well-known that this space possesses 

the other properties claimed.

The following theorem shows that minimal cover refineability is 

not necessary in order for a space to contain a dense metric subspace.

Theorem 4.24. There exists a first countable compact T space ————————
which contains a dense metric subspace but is not minimal cover refine

able.

Proof. Example 2,7, [0, Q), is such a space. Since the other 

properties have already been dealt with, it will only be shown that the 

space contains a dense metric subspace. Let H consist of all the non
limit points of [0, fi). This is a discrete subspace which is dense in S. 

Since H is discrete, it is metric.

Example 4.25. Let S consist of the points of example 2.7 plus 

the points x of the real line such that 0 < x S 1. Let basis elements 

for the points of the real line in S be any open subset of the real 

line. Let a basis element for the points of [0, (2) be the union of a
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segment of the form (0, x) of the real line where 0 < x i 1 with a basis 

element of example 2.7. Thus, every open set in S contains a point of 

the real line.

The following theorem shows that the properties of separability 

and T -ness do not imply the property of minimal cover refineability.

Theorem 4.26. There exists a first countable compact T^ space 

which contains a dense separable metric subspace but is not minimal 

cover refineable.

Proof. Clearly, example 4.25 is first countable, compact, and

T . Further, the rationals on the real line between 0 and 1 are dense 1
in the space. The space is not minimal cover refineable for the same 

reason that example 2.7 is not since the real line is hereditarily 

Lindeldf,

An example of a semi-stratifiable space which is not semi-metric 

was given in example 3.26. Two more follow.

Example 4,27. Let S consist of one copy of the plane for each 

countable ordinal. If and P$ are two of these planes in S, let

n Pg = (0, 0). Let basis elements for a point p of S distinct from 

(0, 0) be any open set in the plane containing p which does not inter

sect (0, 0). For each countable ordinal a and each integer i > 0, let a 

basis element for the point (0, 0) consist of the point (0, 0) plus the 

points in open disks of radius 1/i with center at (0, 0) in each plane 

associated with an ordinal greater than a.

Example 4,28. This example was suggested by D. R. Traylor. A
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variation of the example was given in 

of a simple sequence of copies of the 

integers i,j>Oti#j, let P. A P. 

let basis elements for P. be any open 

intersect the point (0, 0). Let each

example 3,26. Let S be the points 

plane, For each pair of

= (0, 0). For each integer i > 0, 

set in the plane that does not 

basis element for the point (0, 0)

be the union of an open disk of the plane P. with radius 1/J and center i i
at (0, 0) for each integer i > 0 where J. is a positive integer.

The following theorem shows that the hypotheses for theorems 4,5, 

4,6, 4,10, and 4.12 are not sufficient to imply semi-metricity,

Theorem 4,29. There exists an X-compact fully normal connected 

M T space which is not semi-metric. 1 it

Example 4.28 is such a space. In theorem 3.27, an argument was 

given which shows that this space is T and not semi-metric. Clearly, 

the space is ZY -compact and connected. By theorem 3.12, it is fully 

normal,

It will now be shown that this space is M . Let

Gj_ = {g! g is a basis element for (0, 0)}. Then is a closure 

preserving basis for (0, 0), For each pair of integers i, j > 0, let

1/i and

center at (0 0). covers

is a

Then G„ is a collection of open sets which

locally finite refinement, say Gf, which also covers

Gfj is closure preserving. For each integer i > 1, let 

, g e GT}. Then {g^} is a a-closure preserving basis for

= (gi g' is an open disk in P_. with radius less than 1/i,

g = g'\(0, 0)}. Let 0.. be an open disk with radius less than

P.\0..; there
J i]

P.\0... Then

Gi = {g: j > 0
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Example U.30. This example is due to McAuley [31]. The sT.ice S 

consists of the points of the plane. Let the function d be a semi

metric on S X S defined as follows: if p or q lies on the x-axis, let 

d(p, q) = |p - q| t a where |p - q| is the ordinary Euclidean distance 

and a is the angle measured in radians between the line through p and q 

and the x-axis such that 0 i a < ir/2. Otherwise, let d(p, q) be the 

ordinary Euclidean distance.

The following theorem shows that the hypotheses for theorems 4.7

4.8, 4.11, and 4.13 are not sufficient to imply that a space be metric.

Theorem 4,31. There exists an ,V -compact fully normal connected 

semi-metric T space which is not developable.

Proof. McAuley [31] and Heath [20] noted that example 4i.3O is 

hereditarily separable, fully normal, connected, M , and semi-metric.
1 *

but not developable. Since the space is T , it is T . A iiereditarilv
1 4

separable snace is ,V -compact.



CHAPTER V

MINIMAL COVER REFINEABLE SUBSETS

This chapter will be concerned with subsets of minimal cover 

refineable spaces. The chapter begins with the following obvious 

theorem:

Theorem 5.1, Every closed subset of the following spaces is 

minimal cover refineable:

(i) metacompact,

(ii) F -screenable.a
(iii) strongly screenable plus T -like.

The concept of a dominating collection is due to Michael [32], 

Michael showed that a Hausdorff space is paracompact if and only if it 

is dominated by a collection of paracompact subsets. Borges [8] and 

Creede [14] have shown the same can be said for stratifiable and semi- 

stratifiable spaces. The followinr, theorem uses a slightly weaker 

concept than a dominating collection.

Theorem 5,2. In order for every closed subset of a space to be 

minimal cover refineable, it is necessary and sufficient that the space 

be weakly dominated by a collection of subsets such that every proper 

closed subset of an element of the collection is minimal cover refine

able.

Proof. For the reason noted by Michael [32], necessity is 

obvious. Let G be a collection of subsets which weakly dominates a 



46
space S such that every proper closed subset of an element of the 

collection is minimal cover refineable. Let C' be any open cover of S. 

Let g be an element of G and c an element of C' which covers a point of 

g. Then g\c is minimal cover refineable, so g is minimal cover 

refineable. Let M be any closed subset of S (not excluding S). Let

G' = {g^: a > 0, g' e G and g^ = g' n M}. Let C be any open cover of M,

Let be a refinement of C which is a minimal cover of g , the first

element of G'. Let C„ be a 2 refinement of {c; c' e 0 and c = c'\g^}

which is a minimal cover of where is the first element of G'

not covered by 0*. After each initial segment, let be the first

element of

refinement

Then {c: a > 0 and c e
° B«x 6

G' not covered by VJ C” already constructed. Let C be a 
B<a p “

of {c: c' e C and c = c'\(^7g } which is a minimal cover of 
g<a 6

C } is a minimal cover of M. or

Corollary 5.3, Every open subset of a space which has the 

property that every closed subset is G^ and minimal cover refineable is 

minimal cover refineable.

Proof. Let S be a space which has the property that every closed

subset is G and minimal cover refineable and let C be any cover of S.

Clearly, S is minimal cover refineable. Let R be a proper open subset 

of S. Since S\R is closed, there is a sequence of open sets {G.} such

that S\R = Then {s\G.} weakly dominates R, though it may not
i=l 1 i

dominate p.

Theorem 5, 'i, Every open subset of a perfectly normal minimal 
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cover refineable space is minimal cover refineable.

Proof. The following argument seems unnecessarily complicated.

However, the author has been unable to simplify the argument. Let S be 

a perfectly normal minimal cover refineable space. Let R be a proper

open subset of S and C any cover of R. Since S is perfectly normal.
00 00 

let {G } be a sequence of open sets such that S\R = /*|G. = /^G . Let 
1 i=l 1 i=l 1

C' = {g: g" e C and g = g'R}.

Let C = {g: g e C" or g = G^}. Let C" be a refinement of C 
1 1

which is a minimal cover of S Let C'' = {g: g e 0' and g G^}. Let

M be the collection of all points of (C>x)* which are not in two 

elements of C'

Let C2 = {g: g' e C' and g = (g' n G^XM^ g = G^ or g = (C'')*}.

Let C' be a refinement of C which is a minimal cover of S. Let 
2 2

C'' = {g; g e C' and g </- (G2 u (C'^)A)}. Let be the collection of

all points of which are not

For each integer i > 2, let 
i-1 i-1

g = (g' DG )\ L/M , g = G , or 
j=l 3 j=l 1

in two elements of C'.2
Cj, = (g: g' e C' and

i-1
g = U (C;'),'e}. Let C". be a

• T 1 1J=1 J

refinement of C. which is a minimal cover of S. Let
1 i-1

CT' = {gs g e CT and g (G. u ?')*}• Let M be the collection of
1 1 1 1 jYi j 1

all points of (Cf')* which are not in two elements of C'. 
1 00 1

Let C = {g: i > 0, g" e CT' and g = g'\ O M.}. By its 
1 j=i+l 3

construction is a minimal cover of R.

Theorem 5.5. In a space which has the property that closed sets 
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are G^, any of the following conditions imply that the space is 

hereditarily minimal cover refineable:

(i) metacompact,

(ii) F^-screenable,

(iii) screenable.

Proof. Heath [23] notes that if a space has the property that 

closed sets are and is screenable, then the space is metacompact.

Let S be a metacompact space in which closed sets are Gr. Let M be any 0
subset of S and C any cover of M. If C" = S, there is a point-finite

refinement of it, and thus, by the argument in [4], there is a minimal

cover of M which refines C. 

sequence of open sets. Let 0 which

/0 G. where {G.} is aOtherwise, let S\C* = <
i=l 1

be a point-finite refinement of

refines S\G^, Once again, there must be a minimal cover, say C', of 

M\G^ which refines C. Let be the collection of all points of M\G^ 

not in two elements of C'. For each integer i > 1, let C' be a minimal 
1 i

cover of m\(G. U 
i

of all points of 

collection {c: i 

cover of M which

i-1
U(c:)*) 

j=l J 

m\(g. ■ 
1

> 1, c

which refines C and let M. be the collection . ii-! 
IJ(C')“) not in two elements of C'. Then the 
i=1 i1"1— 1
e C1. c = c'WJM., or c e C'l is a minimal1 & ’ 1

refines C.

Let S be an F -screenable space which has the property that 
o

closed sets are G Let M be any subset of S and 0 any cover of M. If

0* = S, there is a countable collection, say {H.}, of collections of

discrete closed sets which refines C. Use the collection 

{h: i > 0, h' e H^, and h = h ' M } and the method used to prove theorem

2.3 to show a minimal cover of M which refines 0. (Note the necessity
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of restricting ones attention to M since the cover must be a minimal 

cover of M and not just a minimal cover of the star of the cover.) 

Otherwise, proceed in a fashion analogous to that used above to show 

hereditary minimal cover refineability for the case that the space was 

metacompact.

Since closed sets are G 6 in a semi-stratifiable space and Creede

[14] showed that a semi-stratifiable space is F^-screenable, the 

following is a corollary to theorem 5.'5,

Corollary 5.6, Every semi-stratifiable space is hereditarily 

minimal cover refineable.

The following theorem shows that neither metacompact nor perfectly 

normal are necessary for a space to be here-iitarily minimal cover 

refineable.

Theorem 5.7, There exists a hereditarily minimal cover refine

able space which is neither metacompact nor normal.

Proof, Example 4.22 is such a space. The properties of the 

space have been adequately discussed in the proof of theorem 4.23.

The following theorem shows that full normality is not sufficient 

to guarantee hereditary minimal cover refineability.

Theorem 5,8, There exists a hypocompact fully normal space which 

does not have the property that the space is hereditarily minimal cover 

refineable.

Proof, Example 3,28, [0, fi], is such a space since it contains 
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example 2.7, [0, fi). The space is easily shown to be hypocompact, T , 

and thus, fully normal.

Example 5,9. C. W, Proctor suggested inserting example 2.7 into 

another space to obtain an example of a minimal cover refineable space 

which contains a closed subset that is not minimal cover refineable. 

This led the author to construct the following space. Let T be the 

points of [0, fl). For each point p of [0, fi), let T be an independent 
P

copy of [0, fi) and let T have the order topology. For each point p of 
P

of all the points between 

use [0,r)) plus the union 

T for each s e T such that 

e T }.qJ

T, let an open set containing p be the union 

q and r where q, r e T and q < p < r (for 0, 

of all the points greater than some point of

< s < r. Let S=lD:DeToracT and

The following theorem shows that minimal cover refineabi.li.tv does 

not imply that every open or closed set is minimal cover refineable.

Theorem 5,10. There exists a minimal cover refineable space 

which contains a closed and an open set which are not minimal cover 

refineable.

Proof. Example 5.'* is such a space. First note that T of the 

example is not minimal cover refineable and is a closed subset of the

space. Then note that for each point p of T, T is an open set which is 
P

not minimal cover refineable. It need only be shown that S is minimal

cover refineable. Let C be any cover of S. Let g be an open set in C

containing the point 0 of T. Let po be a point of Tq a and associ
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ate it with 0. Let a be the first point of T not covered by gQ. Let 

g contain a and be an open subset of some element of C such that

Pq £ g^. Let p^ be a point of After each initial segment, let

B be the first point of T not covered by the g already constructed.

Let 8B contain B and be an open subset of some element of C such that

p^ t gg for all p^ already constructed. The points of S not covered by 

this construction may now be readily covered to form a minimal cover of

S which refines C.



CHAPTER VI

MISCELLANEOUS

This chapter contains material that did not readily fit into one

of the previous chapters.

Theorem 6.1, If M is an "^-regular cardinal greater than and

M is the weight of a collectionwise Hausdorff developable space, then

the density of the space is also H.

Proof. Let S be a developable space, iGi) a sequence which is a

development for S and B a collection of Al many open sets which is a

basis for S. For each integer i > 0, let Gf be a refinement of G. which i i
is a minimal cover of S and let P. be i a collection containing one and

only one point from each element of G' which is in no other element of 

G7. Since {Gf} is also a development of S, the cardinality of

(g: i > 0, g e G^} is not less than Al. Then for some integer I > 0, the 

cardinality of G' is not less than Al. Let be a collection of disjoint:

open sets covering P^ such that no element of contains two points 

of P^. Then the density of S is not less than the cardinality of H nor 

more than the weight of S.

The following two obvious theorems are stated without proof:

Theorem 6,2, The cardinality of any minimal cover of a space is 

not more than the weight of the space.

Theorem 6.3. The density of any collectionwise Hausdorff space 

is not less than the cardinality of any minimal cover of the space.
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Theorem 6.4. If the collection {G,} is a development for a space

and has the property that for each integer i > 0, G. is a refinement i+l
of G, and G^ is a point-finite cover of the space, then the space is

hereditarily basically metacompact (and, thus, hereditarily basically

minimal cover refineable) with respect to the basis

{g for some integer i > 0, g = 0,).

Proof. Let {g^} be as described in the hypothesis for a space S.

Let M be any subset of S (not excluding S) and C any cover of M. Let

C. = {gs g e G , g' e C, g c g', and g n M i 0}. For each integer 
i-1

i > 1, let 0. = {g: g e G., g' e C, g c g", and g i 0}. Let
1 1 . j=l 3

p be any point of M. There is a least integer I > 0 such that p e C*.

There is an integer J > 0 such that for i > J, if p eg e G^, then

g C C*. Thus, (c: i > 0, c e C\} is a point-finite cover of M.

The following three theorems are easily proved by arguments 

presented by Briggs (91.

Theorem 6.5.  (Briggs) In a first countable T space in which the
— --- 1 ■ 3

set of isolated points is discrete, the following are equivalent:

(i) paracompact,

(ii) strong cover compact and minimal cover refineable,

(iii) weak cover compact and minimal cover refineable.

Proof. It need only be shown that (iii) implies (i) since the 

other implications needed are in Briggs' paper. It is useful to quote 

Briggs directly with the necessary changes placed in brackets:

"If S is a Lindelof space, S is paracompact. If not, there is an
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open cover G of S such that no countable subcollection of G covers S

[and such that each isolated point is itself the only open set in G

cover has a

locally finite refinement Let H denote a weak cover compact refine

collection to which an elementwell-ordered by Q and let D

first element of H such thatif andk of K belongs

collection todenote the

0 is a [minimal cover of S whichand only if 0, a c Q

refines G]

that

[Let 0 0.]cover compact refinement of G

Then there is an infinite

discrete

p with these properties would not be certain,]

in 0."Since 0

uncountable subcollection of 0uncountable an

let

°a

such that q i

which an element 0q belongs if

°B

and (3) j). }7
riJi=l

the existence of

ment of G, and let K denote

and hp e H

"Suppose 0' is not locally finite.

e 0, a # B, there exist elements h^Moreover, if

only if ha is the

0 and a
ha # hg, such

containing it]. It is sufficient to show that such a

a [minimal cover refinement] of H, Let H be

D“, D* t a* a

E g e O' and g # 0 }].
B B P

k c h . Let 0 a

°a

S, and a sequence {pl. in 
i 1=1

, for each i; (2) p + p , 0 # 0 , for i # j; 
i i 1 i j

p. [Note that if the isolated points were not

h , 0o c h„. Hence 0 is also a weak a’ B B

Let {o I denote 1 B'BeB 
for each B e B(0 17 , and1 iJi=l’

Then the subcollection {o.)“ +1 iJi=l
P = {p.17 + h 1 and Q = {q.}7 + {q | contradict the fact thatlPifi=l hBjBeB lHiJi=l 14BjBeB
0 is a weak cover compact refinement. Hence 0' is locally finite."

subcollection {0 } of O', a point p in 
i i=l

S such that (Dp e 0i

is minimal, for each i there exists a point q.i
i Cu{g! g E 0' and g i 0.}], Since 0' refines G, 0' is

* denote the a

B'^l°" ° " B
} and the point sets
BJ BeB
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Theorems 6.6 and 6,7 are proved by slight modifications to 

Briggs’ arguments similar to the above modification.

Theorem 6.6.  (Briggs) In a locally compact T space in which the 
----------- 3

set of isolated points is discrete, the following are equivalent:

(i) paracompact,

(ii) strong cover compact and minimal cover refineable,

(iii) weak cover compact and minimal cover refineable.

Theorem 6.7.  (Briggs) If a strong cover compact T space in ----------- 1
which the set of isolated points is discrete is either first countable 

or locally compact, then the space is paracompact.

The following is a corollary to theorem 6,5:

Corollary 6,8. In a semi-metric T^ space in which the set of 

isolated points is discrete, the following are equivalent:

(i) paracompact,

(ii) strong cover compact,

(iii) weak cover compact.

McAuley [28] proved that in a semi-metric Hausdorff space, the 

following are equivalent: collectionwise normal, hereditarily 

collectionwise normal, paracompact, hereditarily paracompact. The 

following theorem extends these results to more general spaces:

Theorem 6.9, In an F^-screenable Hausdorff space which has the 

property that closed sets are G^, the following are equivalent:

(i) collectionwise normal,

(ii) hereditarily collectionwise normal.
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(iii) paracompact,

(iv) hereditarily paracompact.

Proof. By McAuley [28], in an F -screenable space, (i) implies 
a

(iii). By Stone C393, in a Hausdorff space , (iii) implies full normality

and, by Bing [7], full normality implies (i). Since the Hausdorff property is 

hereditary, it need only be shown that (iii) implies (iv). Let S be a

paracompact F -screenable Hausdorff space which has the property that 
a

closed sets are G . Let M be any subset of S and C any cover of M. Let 
0 oo

sets such that S\Cs,= G. . For each integer 
i=l 1

nee of collections of discrete closed sets
which refine (g: g e C or g = G } such that U F = S. For each pair 

j=l 3
of integers i, j > 0, let F£ = {f: f' e F^_. and f = f' ^S\G^}. Let

be a

|G.] be a sequence of open 

I > 0, let {F }

{h.} = {F'.}; i.e., {h.} is a resequencing of Since S is

collectionwise normal, a collection {K.I can be constructed such that 

for each integer i > 0, Bh is a discrete collection of open sets, if

g e K^, g contains one and only one element of H^, and g is a subset of 

some element of C, This is sufficient to construct a locally-finite 

collection of open sets covering M.

Example 6,10. The following example is well-known. Let T be the

space [0, fi) of example 2.7. For each point a of T, let u be a copy of 
a

the unit segment (0, 1) of the real line such that if x s u , then

a < x < a+1; if x, y e u , they have their natural order. Let S be the

points of T plus the points of u for each point a of T. Let S have the a
order topology.
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The following theorem uses the previous example to show that 

minimal cover refineability can not be removed from the theorems 

concerning weak and strong cover compactness.

Theorem 6.11. There exists a strong cover compact weak cover 

compact locally compact first countable collectionwise normal Hausdorff 

space which has no isolated points but is neither minimal cover refine

able nor paracompact.

Proof. Example 6.10 is such a space. Clearly, the space has no 

isolated points. That S is first countable and Hausdorff are well- 

known. Collectionwise normality is shown in a manner similar to the 

argument given in theorem 2,8 for [0, Q). It is also well-known that 

the space is compact, so the space is locally compact and both 

strong and weak cover compact. The argument that this space is not 

minimal cover refineable is similar to the argument given in proving 

theorem 2.8. Since the space is not minimal cover refineable, it can 

not be paracompact.
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