AN IYVESTIGAIIO: OP ENGINEERIMG SCHOOL AD\%ISSIO: KBiUIRE:ENTS, PTTU SPKCIAL BMYHASIS UPOM SBCONDARY SCHOOL MATHENATICS A:D THE PTHSICAL SCI 2 CES

A Thesis
Prosented to the Paculty of the Graduate Sohool University of Heuston

In Partial Fulfillment of the kequiraments for the Decree Nastor of gducation

ACKNOHL:DGM NI

Appreciation 1s expressed to A. N. 'Jonnor and A. L. Kerbor, hasociato Professors, Iniversity of Houston, Houston, I'exse, for their guidance and assistance in preparation of this Fhesis.

table of conlerte

CHAPIER Page
I. TE: PROBLEX aN: I't's IMFURA…ICE 1
: tatement of the Problem 1
Turposes 1
Importance of the Etudy 2
Treview of Thesis 6

- I'rリ: OF TliE PRUBLEBA 9
Iiterature Concerning the Problem Publi-shod from the Years 1920-1946 Incluaive9
tummary 46
 48
Findings From the $\mathrm{V} . \mathrm{S}$. Office of
Education Bulletin No. 6 50
uestionnaire Pindings Received from the
「tate Euperintendents of Public Instruc-
tion 65
Cummary 55

iDMIESION 66
Collere Bulletin Curvey Findines Compari- sons Retween Secondary echool offerings and Engineoring School Requirements 66
CHADPER PAGE
Sunmary 71

$\therefore U G G Z S I L O N:$ 72
iuestionnaire Findings from Enginoering
chool Deans 73
Case Study 82
Cumary 90
VI. I URA4R,RY, DONCLUEIONS, AND R COBMENDITION: 92
rumary 92
Conclusions 97
Recomendations 100
Suggested Problems for Yuture Research 102
BI SLIOGRAPHY 104
APPSNinla A 108
APPBMDIX B 110

LI:T OH PABLE:

I. The Result of Zuestionnaire Porms Returnedby etate superintendents of Public :chool1947 $\quad 31$
II. Pable of Engineoring Cojlege admission Re-quirements in Mathematics and the Physicaliciences; 75 Schools Represented 68
III. tuestionnaire Replies from the engineerinys
Colleges 74

LIET UP FIGURE GHil GRAPHE

rIGURE

PaGE

1. Tris figure 'how: the Per Cent of the Nation's Engineering Colleges Ronuiring Hore Than lwo Unite of recondary School Mathematics for Admission as Compered to the Per Cent of the Nation's iecondary Schools offering over iwo Inits of Nathomatics and lhe for Cont of the Nation's Secondary School Pupils Taking over iwo Units of Mathomatics 68
2. This Pigure Shows the Per Cent of the Nation's Engineering Colleges Requiring One Unit of Secondary School Physice for Admission as Compared to the Per Cent of the Nation's iecondary ichools Offering One Unit of Phyaics and the Per Cent of the Nation's Secondary School Pupils Taking Physica. . . . 69
3. This Pigure Shows the Por Cent of the Nation's Enginetring Colleges Requiring One Init of Secondary School Chomistry and One Unit of Fhysics for Aduission as Comparod to the Per cont of the Nation's secondary SchoolsVIIYIGURE
Offeririz cne Jnit of Chemistry and One Unit of Fhysics and the Per Cent of the Nation's econdary School Pupils Takine Chemistry and「hysics 70
4. Predictive Value of High School Mathematics Grades. 100 Caser 18
5. Predictive Value of High ichool Physics crad:0. 173 Cases 19

CHAP1'ER I

THE PROBLEM AND L'I'S IMPORI'ANCE

The great surge of rorld var II Veterans to institutions of higher learninis in this academic year 1946-1947 has been, in many cases, for the preparation of a career in engh neering. The problem of the selection of applicant for admission to the enfineering schools, and the ever existent hifh pate of failures, is indicative of the necessity of a study of these prohlems it this tine.

1. ERALEMEND ON ALS PKCBLBM

An investigation of engineering school admission requirements, with special emphasis upon secondary schooi mathematics ind the phyaical sciences.
11. PU:RPOEE

1. io dotermine the generial uduission requirement for onfineering colleges througiout the United etates with respect to mathomatics and the phyaical sciences. 2. To determine if the public secondary schools of the United 厄'tates are fully prepared, with respect to course offerings, to truin studints to meet these requirnments.
2. 'lo datermine what per cont of the secondary school
students in the United States prepare themsel ves to moot the requirements.
3. To datermine what proportion of the college atudents of the United State are enrolled in ongineering.
4. To determine what proportion of the college atudencs In ongineering wore admitted with "conditions". In those subjects.
5. 'fo determine the effect of those conditions upon the student progress und acadimic success in engineering school.
6. To determine if a correlation dae exist between lack of secondary school preparation in those subjects and fallure in ongineoring schools; if so, then wat remedial measures can be recommended.

IIL. LMPOALALCE UF TH: ATUDY
iocrates, writing on the problem of the division of
labor in his idenl atate said, "I am myself reminded that we are not all alike; there are diversities of nature among us which are adapted to different occupations".l

1 Jewett, B. "The Dialogues of Plato" (Pranslation) Vol II The Repubiic National Library Co., New York, N. Y. Quotoi from "Ablilty Patterns of Encineers and Success in Enfineering school", by Charles H. Goodman: Doctorato Dissertation, Pennsyivanin itate Iniveresty 1941.

The philosophy of theit statement can well be exemplified by the fact tict schoole of encineering in the united itates fuil to eraduate an av race of sixty per cent of all freshien enrolling for a course in engineering. ${ }^{1}$ as early as $130 j$ the seriousness of the situiction wis realized by V. F. vearborn of the university of uisconsin at which time he found that forty per cent of the canildates in eneineering school were dropping out during the freshman year. ${ }^{2}$

To quote the report of the commitee investigating engineering education from the jociety for the sromotion or ingineering liducation, littsburgh, jennsylvanie 1930, "The elimination rate in engineering schools has grown steadily higher since $1 j 00(1900-1924){ }^{\prime \prime}{ }^{3}$

The causes most frequently mentioned were lack of interest and lack of ability.

1 veurborn, V. F., "ine relative standing of supils in nigh School and the University". The university of ilsconsin Fress 1909.

2 Ibiu., 1.143
3 ieport of the vomultee for the sromotion of Eneineering, Journal of inineering ducetion, Dec. 1341 r. 202.

As chairman for the "Committce on dmissions and Selections for incineering jchools", w. i. Pimbie felt thi.t if high school seniors really understood the intellectual demands of an eryineering educution and the knowledge of what kind of a preparation is necessary to insure success in engineering school, then the sixty per cent mortality could be ereatiy reduced. The committee expressed the humanitarian point of view by saying: "It seeme there is a much more serious condition than economic reasons, and that is the effect on the boys who come to engineering schools without proper preparaiion and wio do not make good ... the loss to then is aore serious than the loss to the institution". ${ }^{1}$

A similur plea has been advanced during the last decade by the chairaan of an investi;aiine committee in which the secondary school, as well as the college, recelves a share of the responsibility for the seemingly eternal high rate of drops und fuilures in the encineering schools. Ihis chairman, R. L. Sackett pointed to ability

1 Timbie, *. i.., "Selection and Admission of Applicants for Entrance to Engineering Colleges". Journal of シingineering Education, Feb. 1932, 448-61, 482-84.
in mathematics as the basic consideration for success in a: engineering education. The fur ther expression of the committee was the fact that if the profession bilieved in raisine it's standards the selection and counseline should be made in the hifh school, and only those students who are interested and frepared should a ply for admission to un engineering college.
a portion or the report:
"Schools, colleges, and the eneineering profession should be cuncerned with reducing the chance of fallure and contributing to the certeinty of success. Joys are taking a chance by choosing an eikineerin collece course without knowing all of the facts necessary for sound judgenent."1 With respect to high school preparation as a contributing factor in the success or fallure of a student embarking on en encineering education, a study was made in 1933 by J. J. Licieins. They study, made at cornell University revealed that the scholastic averages or lin engineering students decreased with a decrease in average grades secured in mathematics classes. The correlation between grades secured in mathematics classes and engineering studies was 4.84.

1 K. L. Sackett., "Selecting ruture Eingineers in uigh School", Chairman: Committee on utudent selection and Guidance, mining and metallurgy, August 193819353.
 should be made to discover the relutionship between secondary school succese in mathematics and those erades secured in college mathematics. Lie pointed out that when a definite positive relutionship could be found between those tro then a possible way could be found for piciing applicunts that mould have the best chance of success in encineeri:ig college. ${ }^{l}$

It was tie aim of this study, in keeping with the recommendation of $11 i_{c}$ ins study and the present pressure on the enfineering schools by the great influx of veteruns into the entineering colleges in this post-war period, to attempt to derine some remedial measures with resject to the coitinuing high ratc of fuilures in the engineering colleges. Lie study will place emphasis on bigh school preparution in mathematics and natural soiences, and attempt to determine whether or not it is a primary factor for success in engineering school.

Hosearch in the past pertaining to this problear had

[^0]been objective and statistical, and due to the variables of time (1900-1945), geographic location, number of students involved in the studies, difference in institutional requirements, factors involved in the analysis, and the personel elements of the authors, a review of the literature and publications pertaining to the studies produced considerable incongruity when any attempt at integration mas made. The approach in t is instance did not concern the situation in any definite institution or locelity, any furticular group of students, nor any series of aci.ievement or aptitude tests, but endeavors to survey the field of eneineering education on a national basis. Initially, the secondary school curriculums of various states throughout the country were studied, and a representative sampling from each main division of the United States wes discussed to establish, if possible, about what percentage of the high school students of the country are offered the opportunity to prepare for un encineering education as it exists in it's present form. Next, the admission requirements of a sampling of eneineerin: schools, nation wide and joth private and public, were compiled and comeared as to the capacity of the secondary schools to produce students to meet them. The thesis will tabulate and analyze the results of a questionnaire form received from the deans of the same
engineering schools relative to the casses of fellures and drops during the freskaan year, and suggestions as to means to alleviate the situation.

By the vary nature of the survay the result were in some ways subjective, rather than one hundred per cent objective. The personalities and opinions of the engineering school deans inadvertently were injected into the final analysis. Iheir position, however, as the leading educators In the field, and the fact that their reports when cunsidered us a whole, represented the situction and the trends throughout the country for er:eineerine education, produced a conclusion worthy of considerution.

It would be well to clearly understand, at this point, that this study pertains only to the encineering and pre-engineering divisions of educational endeuvor, and all research, conclusions and sugestions, are relative exclusively to that field. It is not the intention to include the num rous areas of study of tuodern secondary and higher education in this analysis.

STaTUS UF PIE PROBLEN:

Educators, as well as the eneineering profession, have been greatly concerned over the extremely high rute of fallures among encineering students, and as a result, numberous committees and individuals made surveys and studies of the problem.

A survey of the research up to the present time will be more comprehensive if discussed in chronological order. Generally, the conclusions of each study will be Given in a short sumary, however, in a fem instances, when a siudy happens to parallel this one, a detailed abstract will be given. Sever:sl of he reports, of course, involved research utilizine an entirely different group of factors for analysis, and in each cases only the portion of the treatise that was pertinent to high school prepartion as a basic consiaration ror success in engineorine education will be examined.
1.20

> Chairman L. L. Irurstone of a disconsin Committee on Intelligence rests procured and detuiled from six
different type of tests a score from eight institutions of hither learning. The results displayed a correlation between high school mathematics and first torm engineering scholarship as follows:

1.	Algebra Test	. 41
	sagebra ho.j. Grade	. 39
2.	Geometry Test	. 41
	Geometry hi.j. Grade	. 23
3.	Shysics Test	. 40
	i'hysics h.f. Grade	. 24

This study showed evidence of the superiority of test scores over the criterion of high school work as a basis for predicting success in eneineering. 1

1924

The report of an engineering education investigation committee over a previous two year period was submitted at great length, and the aspects pertaining to this thesis are of sufficient importance to be quoted directly. It was noted that durine that period thirty

[^1]oicht out of one hundred engineering students were graduating, and only twenty eifht students campleted the work in the specified period.
"This ratio of graduations to admiseions is the lowest of any division of collegicte work for mhich figures could be obtained ... a first and obvious step in the ri ht direciion would seem to be a reduction in the numbers admitted with conditions. In 1924 elimination amone students aduitted with conditions wis 60 per cent freater than those ad:itted with clour records.

It has becn showi only too pluinly from tise rosults of the investigation that either our present proeram 18 not adajted to the needs of a large portion of those stuants whom we arift, or that students are not adapted to the requirements of the proeram.
idaission to enginecrine colleges from secordary schools on the busis of graduation is sound in principle, necessary in the use of tax supported institutions, but attended by much loss of time, moley, shi? huaun heartache on the part of students coming lmproverly prepared to pursue an eligineering chrriculum. A large portion of our lost students eco out with neediessly unsatisfactory scholastic recorde against them".

1925
in investigating committee durine that year published the fact that 94 per cent of the eneineering schools of the

[^2]United States admitted students on credentials from accredited high schools, and 65 per cent of the specified the actual required units. For example, the average specification for math was 2.8 units, or one or two units of science, and 60 per cent specified $1 /$? unit of solid Geometry.

Of 8,728 students admitted to 52 institutiors in 1924, 19 per cent were classified as "conditioned" atidonts. Of these 67 per cent were clessifind thus for deficiancy in mathamatics and ?l per cont for scianco. Only 20 per cent of the institutions refused admittance of conditioned studints to the enoineering depsertment. From thess statistics it will appear obvious in a later chapter of this thesis that entrance credits presentad from the modern hirf school vary litcle from the ones presented twenty years aro.

It was further disclcsed, that in nine institutions where engineering students were admitted with conditions in mathematica, only in one inatitution did the condilioned men garvive as woll as the non-conditioned wen.

The fundamental problem of the comittee did not appear to be one of shifting entrance requirements, but rather one of d mandine correct rrouning in the hir,
school subjecta required for entrance to the engineering college. The committee raised the unansiered question:
"how can the encinoering collegea oxert a direct and offective influence upon the preparatory schools in the wuy 0 is securing greater emphasis and better instruction in the subjects of the hirh school curriculu.: which are fundamental to collepiate study.

The averare pate of elimination in schools of encinecring tiroufhout the country is 72 per cont for the four year period!

The statistics for elimination are as follows:
(Based on 38 institutions)

1. 53.8 p cent fallure
2. lu. 5 per cent voluntary change of course
3. 9.1 per cent financial rensons
4. $\mathrm{U}^{2} 5$ per cent health
b. 2.7 per cont inproper conduct
5. 1.t per cont fawily reasons
6. 12.3 per cent unknown

The reasons for scholastic failiare of those above wore found Lo b as follows:

1. 6G.4 per cont lacl: of prepiration and ability
2. 7.? per cont health
3. 5.3 per cont financiul (self-support)
4. 2.7 per cent social activities

を. $2 \downarrow .4$ per cont wiscellaneous."1
Concerning the matter of oliminations the committee
offered the following comment;

1 Report of tho Cominttee on Admissions and Eliminations of Engineoring rtudents. Journal of Engineoring Educstion. Eopt. 192516 47-73
" The pate of elimination will coritinue to increase in direct proportion to the failure of hish schouls to zive trinin. in esseriijully proparatory work, in proportion to the increase of distractin: influences in both hirh school und co lage life outsids the classroow, and in diroct proportio:. to laci of balance ard stimulus in our engineering curricula."l

To illustrate with a itw rolated statistics ior later comparisons... in latu il was discoversd that one out of every sive ontering enjineering school was a conditioned student. The eifech upon rate of eliminalions of those admitied with wathematics deficiencies is shown In the following list. (ine lisi $28 \&$ sumation of the material from the original table, whict. in tirn, sumar12ad the reports fron nine institutions.)

1. 'lotal freshman luait 1,034
2. Percentage havinc; entrance conditions in matheratics \quad :1.2
?. Preshaen rot conditicnad in mathenatica $\quad 1,006$
3. Freskmen conditioned in antromalics 479
s. Percontage survivire the frest:man year 41.1 o. Coniltiored

1 Refort of the Cutailtue on \therefore diuissions and siminations of Engineering Shudents. Journal of Fingingarind :ducation, Eepl. 192t 1647-73
b. Non-corditioned 57.2

It was reported that 39.8 per cent of all high
school wales went to college in 1921, and 14.1 per cent of those onrolled in enjineering colleges. Although 87 per cent raduated from public high schools the quality of preparation had aparently decreased during the ton years prior to 1921.
"the wick of many of the colleges has beon serlousily hampered, and to an increasing degree, during, the first two jears of engineering courses by the necessity of segregating poorly prepared students in spacial sections in which the elementary mathemitics is reviewod."l

An illustration was furnishad by a table from wich the following facts were summarized.
of eleven institutions there were 676 failures in onfineering in one year; the reasons for failure werd classified:

1. Entrance conditions 9
2. Poor preparation and lack of ability 469
3. Bxtra curricular activities 12
4. Social activitios 18

1 Report of the Comintiee on Admissions and Eliminations of Engineering students. Journal of Enginoering Education, Sept. 192516 47-73.
5. Health 49
6. Solf Support 36
7. Unknown 83In conclusion the committee defines causes foreliminations to fall in three main categories. In orderof decreasing significance they are:

1. Poor preparation in high school in subject that form the necessary foundalions for ongineering training.
2. Lack of offective guidance in selecting a college course.
3. Fadlure on the part of the college to deul with the student after admission. 1

1927

Statistica compiled at lin university of Minnesota disclosed that 18.6 per cent of the engingering f eshmen claiu to have bean honor students in high school, and an additional 42.6 per cent claim to have been in the upeer third of the gralu.ting, class. Only 2.6 per cent admit to have been in the lower third of their class. The statistics were later confirued by hish school records.

[^3]Thus, it aprearo: thal engineoring colleges were recelvinf a considerably bettor than averafe solection of students from the standpoint of mental ability.

Fron the uppor third of fraduating classes for three gears from a city hirf school in rinneapolis it was found that ap roximatoly 30 per cent entor onfineering. Fror that it wir: apparent that hirh school rank of semiors play a minor roie in differentially selecting ther for entrance to the en-1neoring college. The uthor cominented in the summary: " $/ \mathrm{i}$ lares share of mortality c: n now be assigned to scholastic incompetency on the part of a lare number of onterinc: studnats". I

1928

An interestinf point relative to this study was brought to light by Haumond und Stoddard.
lhe results of a physics truining test used cor an ontrancs examination for 534 frealunan onterinu, an enifinoerine college, all of wion had previousif completed a high

[^4]school physics course, exposed the facts that bo per cent were unable to answer any one question correctly.

The point observed was that students learn so little in the way of physical theory in high school that the oollege physics teacher cannot assume any beginning knowiedge on the part of moal of the clase.l

1930
The peliminary report of a committee working on the coordination and preparation for an engineering education contained two considerations that are related to this study.

1. A summary on the correlation of preparatory school grades and college gradss in engineering courses.
2. The reliability of preparatory school grades in mathomatics and physics as an index of success in an engineorine curriculum.

The committee's conclusions were as follus:

1. The average high school mathematics gradas give vory good prediction for success in ongineerinz school.
2. High school physics Erades give a fair prediction.

1 Hammond, H. P. and itodiard, G. P., "i Study of Placement Examinations" Journgl ef Bagineering Education sopt. 192819 2j-83.
E. $\quad \downarrow$ hants if om the lovest tlird of the hicch school classes are very poor risirs.

Two fraphic representations as transcribei frow the report are significant. Hise eraphs show the hirh school class divided into fifths, theninfifths ly percantages of students reachinj the senior year on time. The couputations were made frou the enfiueering class of lunu ut CasA íchool of Aprilid. cience. 1. Predictive value of hirh school malhemutic erades 100 cases.

2. Predictive value of hirh school physics rrades. 173 cases.

PLKCEITTILE.

Uncolored reached senior year on time. Black - Out on scholarship inaded - Out For olher reaBOn:
1st column ropresents class percontile ranks

1932

To quote Ex-President Lowell of Farvard University:
"In the secondary school we study what shorili have been finished oarlier, in college we do what should have been done at high school."

It was in sun ort of that contention that J. Vi. Young, Professor of Pathematics at Dartmouth Univorsity, wrote that mathematics shoild be taur,ht in hirher forms, such $a s$ anslytical Goowetry and Calculus, in tle secondary schools, and thus alleviate the present situation wherein so many studants enter coller, unprepared.

Furthermore, Bulletin IIO. 2 of Lhe Committee on the

1 "Preliuinary eport of the Coumittee on Coordination of Proparatory and Enjinaering Lducation". Journal of rneineering ducation, Jun. lヨuv 20 47:-404.

Investigation of Engineering Education was quoted in which 70 per cent of the fullures in onfineering school were attributed to lack of ability, interest, and preparation. The indicatior was that high school graduation standards were too low, or college standards too hith, or possibly both.

Young outlinod a reuedicul course.

1. Bettor methods of collego selaction
2. Inproving g̣ality of hirg school instruchions
E. :ore effectivo weans of ireating bhe suad.ants after they have entered ongineering school.

Also it was indicated that the practice of permittine students to enter enfineering with conditions be abandoned. A stronf, plea wis put forth thit all colloges of enilineering make trigonometry a requir od secondary school achlevement among the college admission requirements. At that time 13 per cent required tri; onometry.

Younc. firmly contended that the primary aource was the hiph school, in which, the aver age at best was mediocre. The quality of high school inatruction was a grievious fault, and the entrance examination boards should exirt their influences to improve secondary school instructions. Mathematics teachers received par-
ticular omphasis. 1

1932
A. B. Crawford and P. S. Burham. of Yale University stated that in 1932 the grades on the college entrance board oxamination predicted average foshman year grades for over 3000 Yale students less well than did secondary school records. The investipators were disappointed in the correlation of grades on specific subject examinations with freshman year averages in the corresponding aubject. That such findings may, or may not, hold at other engineoring schools was admitted. ${ }^{2}$

1933

Dvorak and Salyer secured oight measures on each of the students in a 1928-1929 freshman engineering class for the means to a factor analysis involving entrance requirements at the University of $\because i s \operatorname{shington.~Of~these,~}$

1 Young, J. $\because .$. , "The idjustment Between Cecondary School and Collegs "ork in Mathematics". Journal of Engineering Education March 193222 486-595

2 Crawford, A. B., \& Burham, P. E., "Entrance Zxaminations and Coliege Achisvements ${ }^{2}$. School and Society 192e. 36 344-352.
two ara important in relation to this article.

1. Average scholarship in high achool mathomatics
2. Average scholarship in high school natural sciences.

The correlacion betwean inose two factors and college
freshman ability in ongineerine was found to bo t. Gと. It
1s intoresting to mote, at thas point, that high achool natural sciences records were estimated to be 10.2 times as significant as the high school social science records.l 1934

The purpose of a relatively iuportant study completed during that year was to tetermine what groups, if any, of hirh school courses contributed the wost to success in engineering in the college of ongineering at the University of binnesota. dice shady wis made using lig studnents onterine in the Fall of 1934.
idmission requirements at that time were similar to tiose of the present.

Subject
Unit:

1 Dvorak, A. \& Salyer, R. C., ": LEnificance of the Entrance Requirements for the Engineering College at the University of $\because a s h i n g i o n "$. Journal of Engineer1ne Education, ipril 193:, 23 618-623.
Engl1sh 4
Mathematics 3
Eloctives \& Lampuages 8
Total 15
Checistry and physics were excepted.
To measure the achievements in engineering und
architecture four criteris were oaployed. They were:

1. Total amount of credit earned in the college of Enginouring frow 1924 to 1939.
2. The total honor points.
3. Ratio between total honor pointa and total credits.
4. Percentage awardad dngrees by the college of ongineoring.
The following coefficients of correlation were the conclusions of the authors.
"1. Total high school credits in science, mathematics, and manual training with total on j^{1} neering credits. $R=.194 \quad f 0.036$
5. Total high achool credit in acience, mathomatics, and manusl traininf, with honor point ratio in oncineering. $k=.1904 .030$
6. Total high school credits in science, mathematics, and wanual trainire, with percentile rank on the college aptitude test $R=.030$ t.05s." 1
1 Boardman, Chas. . . ※ Finci., F. H., "iolation of Secondary School of Preparation to Success in the College of injineering". Journal of En-inecring fiucation, Jar. 193425 466-475.
"From the data it may be tentatively inferred that students who offer more extensive trainine in hied school science, mathematics, and manual treining, on the wole are souewhat better prospects for success in the college of engineering than are those studente who have had slight contacts in high school in those flelds."l

1936
a report covering a research problew conducted at the University of urei; in 1930 was ciainly for the purpose of establishing a relationship between the amount and quality of trifing in $h i_{i} h$ school mathet.utics and subsequent tarks in collete academic subjects.

Utilizing fearson froduct-ifoment $\mathcal{C o e f f i c i e n t ~ o f ~}$ Corralution between the number of semester credit in high school mathematics and the average college marks made by these students in virious college fields for the first two years are shown as follows:
\qquad

1. Boardman, Chas. W. \& rinch, F. Li., "Relation of Secondary School or l'reparation to success in the Collece of Engineering". Journul of kingineerine Education Lurch $1934 \quad 25$ 46i-475

COLIEGE UBJHCC	$\begin{aligned} & \text { ZERO ORDEK } \\ & \text { COBPFICI :NF } \end{aligned}$		
Mathomatics	4.28	\$.06	\$. 17
Physical Scionce	+. 16	\$.05	4.14

The entire correlation covered a variety of subjects as the stidy was mad, at a liberal arts college, however the maierial transcribel for this study is, to a certain extent, pertinent to the engineering curricula.

The correlation betweon the number of semester crealt in hifh school mathomatics and averafe college marks in all subjectis were found to be no rreater than. 02 , and when the factor of intelligence was held constant the partial correlation proved to be -.13. In fact, the col: ege marks of studants with two units of mathematics were found to be almost exactly the same as the marks of students with three and four units respectively.

In analysis of the percentage of stidents doirag unsatisfactory work in the various fields, in wich the students with two units of ingh school mathouatics or less were compared to students with two or wore units, revealed no significant difference. It was found, however, that the studnats witi: wore than two units of
mathematics furnish ad amaller porcentage of the unsatiafactory stud ints.

On the other hand it vias proven thet the average mark in high school mathanatics correlated aignificantly With tha avorage college mark in every fiold. Por example:

	$\begin{aligned} & \text { CORRNI. } 1 \text { IOK } \\ & \text { COEFFLCDEHL } \end{aligned}$	$\begin{gathered} \text { CORHELAAI'ION } \\ \text { R.TIC } \\ \hline \end{gathered}$
liathomntics	. $46 \$.05$. 55 \$.05
Physical scionce	. $25 \$.04$.32 \&.04

Furthermore, the study displayed evidence that in the prediction of success in college mathematics, the high sciool mark in mathematics and average mark in all other surjects were of equal uerit. Ihe corrolation beire . 47 and . 46 respoctively.
ninone the conclusions lisied in the simary of the study was one that is closely allied to engineering in that it portains to success in colloge mathmatics.
"Prediction of success of sudents in college mathomailcs cannot be made with any high defree of accuracy f om knowledge of the amount of hith school traininc mathomacics, the averafe hirh school mark in mathematics, the avorage mark in all hit! school aubjoch, rank on the resycholopical Examination ar the iunerican Council on :ducation, or uny cciubination of these variables. The best prediction
that can be made is secured from the average high school mark in all subjects."

The committee on student selection and guidance submitted a report to the E.eineors louncil for r'rofessional developuent relative to test scores and prediction for success in encineering in muthematics as follows:
"The comittee believes that the results obtained establish the value of the tests in mathematics for euterine freshman engineers -- a correlation of 4.5 with racadomic success." 2

1937
i. V. Binchum devotes a chapter of his book to engineering aptitudes, and concurrine with many authorities he centions thut 62 per cent of the engineering students fuil to complete the course for various reasons. aotably was the fact that certain subjectin the curriculum place a premium upon special aptitudes; ajtitude for mathematics, aptitude for the physical sciences,

1 Douglas, i. H. \& Michaelson, J. H., "The Relation of wieh School imethemstics to college warks and uther ractors to College Larks in kathemetics". School iciview $1 ง 3644$ 615-619

2 "rieport of -. U.1'.j. on stulent sillection and Guidance." The iblectrical Sngineer liov. 133655 1824-1825 Obtained from Ulisvik, B. N. "A Factor malysis and frognosis of the Scholastic Success of Freshman ingineers during Their first Semester at the University of ilsconsin." 1941.
and aptitude for manipulating the ideas of spatial relutions.
lhe probability of young man's success in such a course of study was said to be definitely and closely related to $1: 1 s$ aptitude for hifher mithematics. Consequently the high school marks in algebra and geometry should be curefully scrutinized. snother type of information indicative of the candidate's success or fallure in the eneineering college would be the record of the can idates achievements in high school physics und chemistry. "lhe candidutes previous school uchievements und his perforance in sciolastic aptitude tests furnish evidence regardin: his generul ability. "l

1938
A stusy producing a correl:tion between ability in physics und mathematics and capacity for engineering training was produced by the Dean of Engineering at the University of Akron, unio. H. E. Ayer presented the following table as a result of the study. It represents work done in the freshaun year for the classes

[^5]192i-1 3 3i.
$\begin{array}{ll}\text { "1. Cotal freshman in engineering } & 745 \\ \text { Graduated in engineering } & 27.8 \%\end{array}$
2. Failed neither mathematics or physics

469
Graduated in entineering
$39.5 N$
3. Failed mathematics and passed physics

116
Graduated in encineering
14.70
4. railed physics and passed ma thematics Graduated in encineering

114 $2.6 ; n 1$

Concurrently, at the University of Texas, another individuel was conduciing research relative to freshman encineering. The data involved comparisons of a class according to tiieir ruik in the high school graduating class and according to the distribution of the various hift school subjects resented for admission to the university. The aution initially apolofized for usine a sumple of stuàents too small to produce statistically valid results.

The study was viade during tho session 1935-1936 using a group of 275 fresinian engineers and the reasinder of the total of 1042 fresiman men enrolled in various

[^6]other courses.
It is interesting, in view of the purposes of this thesis, to note the proportion of the class which presented certain entrance subjects.

1. The combination of ilgebra, plane and solid geometry, and trigonometry was presented by 34.6 per cent of the class.
2. The combination of liree units in mathematics was presented by 34.6 per cent of the class.
3. Two units of mathematics plus chemistry and physics were prosented bj 29.4 per sent of the class.
4. The combination of chamistry and physics was prosentea by 30.0 per cont.
d. Physics was presentod by 5 ...l per cent of the class.

I'he survey fuither illustrated that th.s scholastic Prormance of freshmen has a very definite relation to the previous performence in high school. Nine out of ten who rank in the highest quarter of the class in high school will pass the freshman year in college, but only four of ten of those in the lowest quarter will pass.

Of the group that presentei a combination of high
school algebra, plane and solid geometry, trifonometry, chomistry and physics (represented one sixth of the class) 85 per cent passed the firsi samester in enfineerine; 62
per cent of the others passed. The former group earned "A" and "B" grades in 47 per cent of their work, while the other group earned " A " and " B " grades in but 24 per cent of their work.

Of the group presenting three units of mathomatics, 88 per cent passed the first sewester in engineering. Corresponding figures for the group not presenting this combination was 54 per cent. The former group earned honor grades in 42 per cent of their work in the first semester and 39 per cent in the second. The latter group aade honor points in 20 per cent of their work in the Pirst somester and 25 per cent in the second.

Using the combination of chemistry and physics; 75 per cent of those presenting Lhem passed ine first semester, while the group not presenting the natural aciences passed 60 per cent. The former group earned honor grades in 39 per cent of their work during the first semester while the latter totaled 23 per cent honor grades.

In sumariry, the conclusions were th:it freshman performance in college has a definite relationahip to later college achiovements, and that cortain related combinations of subjecte taken in high school, produce a
better sciolastic record the freshman year of college.

1339
wharticle ai earing at thut period reatured a problem involving the solection of the most promising candidates and oliminating the unit early in the training period.

Prif wis accomplished by a battery of tests, among which the mathematics uptitude test proved to be the best single measure. lieurly on a par with it was the Iowa nifh Jichool Content rest, and cuisined witi. two others, the four produced a coefficient of correlation betmeen prediction and scholastic success in colleqe for the rirst senester of $\$.74 \$.03$.

To quote two rather parodoxicul phrases from the concluiding statements of the article:
"ineturally, all the enterine students present the recuired hich school credits. lherefore the cocipletion of certain hich school subjects becomes a: invalid basis for selection.

Athou;h all the reasons for the high mortality cannot be ascertained, a hifh portion may be

1 Fichtenbuum, bax, "An Analysis of Freshican Ungineers at the university of Texas vurine the Session of 1335-1936". Journal of Eincineerine iducition, cpril $1938285.3-540$.
laid to inadequacy of abilities and preparation". 1

To repeat a statement of R. L. Sackett, Doan of Engineoring at Pennsylvania State College:
"It is clear that intelligent and understanding guidence by the high school is fundemental in any effective attack on the problem of selection."

Chaiman Sackett of the Committee on the Selection of Guidance supplied reliable information relative to selection by a study of histories of 3000 enginoering students in far colleges.

The committee found three types of tests valuable in a predictive sense.

1. Aptitude Tests
2. Visualization (emphasis on goometry)
3. Cooperative mathomatics test

To quote a summarizing statowent from Dean Sackett:
"Testa of cholarahip and aptitudes are available, but none of them are infallible. There still remains the question whether past high school records or present examinations are adnquate criteria for admissions. There are exceptions and the mothods of olimination should be flex-

1 Feder, D. D. \& Adier, D. L., "Predicting the Scholastic Ichiovements of Engineering studncts." Journal of Encimaering Edreation, May 193929 380-387
ible enough to provide for the adulssion of the applicants who fails to top arbitrary hurdies, but has ossential interests, aptitudes, and certain scholastic preparation which is fundemental. The method of exploring the unstandardized is no betcer than the provision for them to proceel if admitted. standardization when carried to the point th:c it ignores personal differences, tends likewise to sumerge the individuality of the institution, it's faculty, and it's curricula."I
A. i. Northby of the University of Minnesote
showel a correlation of $.69 t$ batween Iowa hath Placement Tests and first semester engineerinj grad:s for 138 freshmen in 1931. The next highest correlation with grades was with high school schoiarship. ${ }^{2}$

Another group of investigators found coofficients of correlation well above .30 for a number of measures includlng:

1. High school principals rating on intellectual performance.

1 seckett, R. L., "selection of Eingineering ztudents". Journal of Engineoring Education, March $1940 \quad 30$ 595-600

2 Northby, A. S., "Prediction of Ccholastic iuccess in the College of Engineering and Architecture", From M. E. Haggerty, Chaiman on Bducational Research situdies in Articilation. P. 42-49
uoted from: Johnsan, A. P., "The Relationshep of Test icores to Scholastic Achievement for 244 Frgineering Preshmen Entering Purdue University in Sopt. 1939". Purdue University Doctorate Dissertation 1940.
2. Average grades in the high school subjects of English, mathematics, physics, and the biological sciences.l

The ∞ nal usion of a doctorate dissertation by A. P. Johnson, of Purdue Univeraity, was relevant to successful offorts in ongineoring oducation.

Four measures were seleoted by the Wherry-Doolittle Test selection Method to give a relationship with first semester grade point averages. The measures contributed decreasing increments of relationship in an order placing high school preparation and scholastic atanding as number two. The coef:iciont of correlation between these measures and the firgt semester grades of 244 freshmen ongineors entering Purdue in 1939 was $\$ 0.791 .2$

1941

1 Dywor, P. S., Horner, C., \& Yokum, C. S.e, "A Statistical Sumiary of the Records of Students Entering the University of Michigan as Freshmen in the Decado of 1927-1936. University of Michigan Adminigtrative Studios Vol. 1. No. 4 1940.

Obtained fram: Johnson, A. P., "The Relationship of Test Scores to Scholastic Achievement for 244 kngineering Freshmen Entering Purdue University ir. Sopt. 1939" Purdue Univeraity Doctorate insaertation 2940

2 John, f. P., "The Kelationahip of Teat Scores to Scholastic Achievement for 244 Zngineering Fresimen Entering Purdue University in Sept. 1939". Purdue Iniversity Doctorate Dissortation 1940.

Abstract

An author writing on the subject of academic achievomenta in engineerinf, school made an introductory statement to the effect that no weans yet had been divised Whereby the peilction of success in engineering school could be dispatched with any degree of reliability.

Beyond that initial Prank atatement the article would not pertain to this thesis in that it involved the success in upper levels of engineering based on achievements at the Junior College level. 1 the alms of the c amitioe on Stulent selection and Guidance of the Eociety for the Promotion of Engineering Education wero prifarily ane of guidance und cooperation to be established among high school teachers, engineering teachers, and practicing onginesrs, for the advancement of encineering oducation.

The committee's report for 1941 indicated that high school scholarship, when properly ussi as a basis for admission, reduces the martality rate materially; a personal interview, in turn, is the most promising supplementary instrument. To quote:
"From the experience of engineering colleges

1 Clemens, Cornelius H., "Forecsatintr the Academic Achiovement of Enginoering Students". Journal of Enzinooring Fducation 1942 32 617-621.
rank in class in hirf school is the most reliable index of later success after assurances that the individual has takon enough sciences and mathematics to satisiy the admission requirements and to demonstrate his ability alcng these IInes."

The report notes that a high school record is unsatisfactory as a predictive measure for border line aludents. The report chiefly concerned various types of achievement tests, paychological tests, otc. of which this thesis is not primarily cancermed. It is noteworthy, however, that tests of general achlevement in hifh achool subjects, particularly mathematics and scionce, are useful in seleotion and guidance.

Tho final conclusions of the commitheo included, as a secondary corsideration, that the rank in h+fh school as a basis for selection comes first, and is particularly reliable if the high achools are rated.l
in additional study, thouith primarily conducted on a basis of mechanical ability and its relation to engineering school success, does take into considoration the beneficent factor of hifh school work.

1 Eseckett, R. L. "Report of Committee on Student Selection", Presented at the $49 t h$ Anmal Moeting of the ᄃ.P. ?.E., Journal of Enginoering Education, 1941 32 224-256

Utilizing a number of tests conducted on students of onginecring at the University of Maine the attempt was to find the coefficient of correlation between firat year grades in ongineering and the prediction of test scores.

Among the conclusions ilsuei, in offect, is that the predictive power of tests of mechanical ability are not very great. The authors suggests that same ovidincs of engineering aptituda is found in intelli;enco tests, scholastic aptitude, and eradss in cortain high school courses. 1

Rotert Millikan of the California Institute of Technolory in an address to tho Phi Reta Kappa cociety stated:
"For the firat time in humsin history the people of a nation onjoy the advantages of consdierable education since compulsory public schooling now assures almost evary young person a high achool oducation. The absence of facilities ro steor properly qualified youth into trade and induatry, has resulted in numerous high school graduates who are sediousiy deficiont in capacitios and training requisite for success at institutions of higher learning presenting thomsolves to the college and universitios for entrance."

It was Milliken's plea that hifh schools and college

1 Brush, Fdward H., "Nochanical Ability as a pactor in Engineoring Aptitude", Journal of Applied Paychology June 194125 300-311.
cooperate to secure a better selection of material for hipher education by mutual recognition of their distinctive problems. For only by cooperation can the secondary schools discharen their responsibilities and the collegea maintain their scholarly competence in research and ongineering.

The author implied that the normal group in American High Schools was non-collego froup, and that oducators realized the central objectives of hifh school training were citizanship and vocational adjustment and establishmant.

Valuable aprroaches for reorganization for college needs were shown us follows:

1. Only after carnciling has been well done can effective teaching sollow.
2. Customary pattern of hieh school subjects is not the only routs to maturity.
3. Vidn variations of secondary schooling exist emong the high school populations of various states; standardization is needed.
4. Professional training of science teachers is inadequate.
5. Kathematics should be grouped into senior high schools and open to those capable of college work.
6. Nathematica should be integratsid with shop and manufacturing plant techniques.
7. The identificalion of the capable is a joint responsibility of both high school and college.

In conclusion it was maintained that selection of stud nts for enfineering college should not bo based solely on any one patiern of hifh school subjects nor single entrance fian nations, but demands continued observation and reappraisal as the pupils are sidccessively exposed to differentiated treatment, especially in science and mathematics. 1
\therefore portion of the findings of B. R. Ullsiki in his doctorstif ifsertation at the University of Hisconsin are relative to this issue.

One of the purposes of the study was to dovelop equations to predict the scholastic success of freshmen engineers in their principal subjocta, emong tham being mathematica.

The result abstantiatal a previous sudy by dea termining the relationship butwean rank in high achool praduatins class and subsequent scholastic success at the University. The findings presented the fact that the

[^7]percentile equations developed.
Included in the thirty three measures considered were:

1. Number of semester hours of high school science.
2. Grad? points in high school science.
3. Number of semester hours of high school math.
4. Grado points in high school teste.
5. Characteristics of hirin school from which atudent graduated.

Utilizing many factors other thun those mentioned above. Ullsvik derived five mandred and twenty eight intercorrelations, all of which wern subjectad to the factor analysis of Professor L. L. thurstoue.

The final analysis, when considering the prediction of successes in freshmon en ingerinf, subjects for the first semester in a colleg4 of enfineerinj, produced a coefficient of correltition of 40.7 between predictions and the grades received. The subject matter involved included Enclish, chomistry and mathomatics.

The relationship, however, betwoen the characteristics of the hish school frou with the student graduated and the factors indentified did not seem clear.

The asthor comentel on the fact that two of his colleagues, C. R. Mannard and E. L. ithorndike used a com-
binstion of seven tests for prediction purposes, of which five were tests of mathematics.l

To quots an excerpt from a 1942 committee report fron the United States offico of Education:
"In the first place, it is important in advising students to enroll in engineering or not to take into consideration their interest and ability in mathematics, science, drawing and making things".2

1944
The curricular revisions of seconclary schools over a pariod of years proved that the trend was toward training students to fit into democratic iife and social cilture more offectively. A. H. Blaisdell of the Carnegic Institute of Technology contonded that the curicula wis besed upon the sup osition that the majority of high school students will never attend college. the engineering schools

1 Thurstone, L. I. "A New Rotational Method of Pactor Analysis", Paychological Bulletin 194037 189-236

Quoted from: Ulisvik, B. R. . A Factor inalysis and Prognosis of Scholastic Success of Preshmen Enginoors During Pheir Pirst semester at the University of ilisconsin". University of Fisconsin Doctorate Dinsertation 1941.

2 U.S. Office of Education, "Report of the Committee on student Selection and Guidance". School and society June 27, 194255717.
watched the trends with great misgivings, but nevertheless Folt that it was up to them to mako the basic und vital Changes in thoir oducational prograiss so as to conform to the ability of th? high school product.

For one thing, the ap liod science courses had to be altered to conform to the German system, wheroin labratory work enjoyed more importance than lecture, but secondary schools what too canformin order for the aystea to be offoctive.

Tize concluding remarks concerned wore humanistic social studies for engineoring students, not anly to mako them more sersitive to human valios, but because they were bettor pepared for such work.l

A study connected wilis whe war and 1 ts effect on engineering education emphasiz.is the point that ure war will brinf; about some nocessary and jusififiad adjustments in the oni ineering curricula.

To counceract the influences of edvanced scientific inventions upon encireerinf, it was considejed good judgment on the part of en-ineerinf, educators liet increased atien-

1 Blaisdell, Allen H., "Coments on the Fiature of Engineering iducation". Journal of Encineoring Education November 294: 3b 20 -211.
tion should be given to the basic sciences, humanistic, and social studies. Some of the adranced technical matter now In the undergraduate curricula shoild be trarsferred to the graduata level where the students would be more prepared to rigorously pursue the stixdy. 1

Such a trend, considered relative to this thesis, would obviously conform more readily to the present hiph school preparalion of the average stud nt.

1945
A quotation from an article by 1.0. Stewart, of the Engineering iopartment of Iowa itate College refers to the quesiion of just who should sculy ensineerire and lists th? Sol:owing, as an indispensuble individual altribute:
"ibilily to do mathematics is a prime requisite. A better than average ability to learn this subject as shown by ${ }_{n}$ ifin school isrades or test soores is essential."

1946

1 Crothers, H. M., ": ar Pressures on the Curricula", Journal of Enoineacing Education, oct. 194435 P. 81.

2 Stewart, I. O., "Advice to Young Mon Yho Soek Careors in Bņineering". Journal of Enilneering gducation November 194636 211-2́l4.

A post war ap roach to enfineerlne educators was advanced by Oecar S. Bray. It was wentioned in his study that engineering educaiion in the past had largily been based upon high school scholastic backisround, but the fact that eucha basis for selsction was not the onlire ansier is demonstrated frequentiy by the careers of men wio graduate belovi tha magic upper quarter of the class. tuch qualities as imarination, moral courage, leadorship, native intelligence, and capacity for nork, are of equal or greator importance than were ability to learn and should be given full risi;ht in a decision to accept or reject on applicant. 1
CUMASiRY

Previous research rather difinitely produced ovidence that a high degres of correiglion existef between acadomic accouplishments in hit: school and later success In engineoring college. the implication, however, was very clear that no really offective weasure had been found for peodictinc success ir engineering college.

1 Pruy, Oscur \because. " Postwar irachate Engineer Training", Journal of Engineoring Education, November 194636 ก11-214.
'lhe two most successful measures appear to have been (1) hiph school record (2) schievement tests prior to colloge admission.

An expression for greater cooperation, between the levels of aducation, also receiv od omphasis throughout the previous studies.

Chast: III.

In 1938 the cifice of Lducation of the United stutes vepurtment of Interior published Bulletin lio. 6 entitled "ufferings and Registrations in Mith School Subjects 2933-34". Unfor tunately thet publication was the most recent information compiled on a nation wide scale that tabuluted the numbers of students enrolled in the secondury school curriculum. The uffice presented, specifically, the numbers tikint, euch subject, by state, throughout the nation, and indicated by discussion the trends toward the vurious types of subject matter. 1933-34 was more than a decade removed from 1946, however, and a questionnaire forci (jce uppendix a) was mailed to the uffice of the stute juperintendent of schools for each and every state witiln the cuntinentul limits of the country for the purpose of obtaining more recent statistics as to secondary school curriculums in mathematics and the nutural sciences.

Ihough the results obtuined were of a different nature than the materiul in the bulletin, the information
when combined with en rollment statistics from the bulletin produced the recuired information for later comparisons. Trerefore, the 1938 Bulletin of the vifice of Education can be corsidered to be significant relative to this thesis. The ertinent material in the bulletin will be discussed prior to a report of the very recent findings from the ∇ irious State -ublic School Superintendents. ilgebra, geometry, trigonometry, and astronomy were one of the essentials in the 1895 public school curriculums. Lia enroliment in algebra and geometry, incluiling advanced courses showed a rise in percentages up until 1910, but since theit ilme, until lu3i at least, there was a persistent decline. In fact, the enrollments In mathematics ulone showed a marked decline in percentaces Prom 1928-1334.
fhysics und cheinistry, thouih appeiring in the curriculum at a much later date than either the classics or withoratics, proved to be in ereat contract as to popularity. Lhe percentage trend to physics pointed generally downard; chenistry displayed a tendency to rise in enrollaents for thirty years prior to the 1834 survey. To quote the 1934 statistics for enrollments in mathematios and physical sciences.
 capitals were returned in 31 instances, a totil or 64 per cent. Some were answered in full, others rather vaguely, and few admitted that their respective office did not have the required information aviallable.

Table .. O. I tabulates the questionnaire findings.

[^8]| I AI HO. I

 | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { tates } \\ & \text { oposting } \end{aligned}$ | ```Total coondary chools In : tate``` | ```Total mamoll mont in all : econdary ab001:``` | Por cont oboole not offerdn: ov or 2 unite 11 | Por Cent boo rollmont in choola. (Col. to ch left | Per Cont rec. ohool.
 riot
 cifferinz
 Fhyese | Per iont : ec cboole not ciferant Eoth Chem. ? !byelca |
| 1. Aspleona | 67 | 20,684 | -00 | - | \cdots | - |
| 2. Axicaneas | 858 | 61,000 | 60 | 26 | 80 | 90 |
| ?. Co orado | 1975 | E2.159 | 43 | 01 | 46 | 48 |
| 4. Commeoticut | 260 | 78,000 | 0 | 0 | 0 | 0 |
| 6. viaware | 3 | 10,770 | 0 | 0 | 60 | 26 |
| 6. Plorida | 788 | 162.160 | S: | \cdots | 3. | 27 |
| 7. 1dabo | 275 | 28,71\% | 80 | 75 | 80 | 86 |
| 8. 11120018 | 1,086 | 368,880 | \cdots | \cdots | \cdots | \cdots |
| 9. 1000 | 1,000 | 23,046 | 60 | 60 | 16 | 75 |
| 10. Kaneas | 693 | 88,802 | 10 | ∞ | 0 | \cdots |
| 11. Keatueky | 664 | 130,000 | 6 | 10 | 50 | 60 |
| 12. loulelano | 594 | 84,358 | 0 | 0 | 0 | 3 |
| 13. Messeotmaette | 436 | 270,000 | 0 | -- | 20 | -- |
| 14. Miesouri | 818 | 149,610 | 65 | 86 | 20 | 26 |
| 20. Eobracka | 417 | 70,000 | 80 | 70 | 60 | 85 |
| 16. Nev Hesponare | 130 | 3,000 | 10 | 6 | 8 | 2 |

TARJis L. COMILHIRN

$\begin{aligned} & \text { tates } \\ & \text { eporting } \end{aligned}$	```Total coondury ahools In tite```		rar Cent cbeole nol orfering, over two Infin Yathe	Par cont : rollmont in ohools. (: Col. to Ifer	Por Cent oroole Not crepormis phrelen	Ior rent onoole not orrerin; Totr. Cher. \& Payesian
27. New Jereey	:8:	202,003	\downarrow	2	5	20
18. Yew mex 0^{00}	140	84,410	70	60	70	7.
10. New York	13.000	780,00	8	1	10	16
20. Morth Carolinc	1,010	140,000	0	0	60	$7 t$
21. ChSo	1,386	451,046	\cdots	\cdots	-	--
22. Oklaboan	849	1:1,b89	67	38	32	00
23. 'raneylvense	1,210	06:, 117	0	0	0	2
24. routh iabote	$\therefore 08$	31,20\%	76	00	40	60
25. Pennessee	cers	12:.00	0	0	70	26
8. Iexas	2,8.52	\cdots	-	--	--	\cdots
27. Heah	83	50,000	80	\cdots	60	40
88. Vermont	106	18,348	38	20	18	17
29. Virpinis	469	116.29.	\cdots	∞	60	--
30. ost verginse	277	93.03:	bi. 6	67.:	64	63
31. : soning	87	16.870	40	-	10	26

Consultine the tuble, it is obvious, that there are varyine deerees of efficiency, with respect to records, throughout the many state departaents of public instruction. Hose sfaces where part of the statistical information 18 omitted ure examples of jtate jepartment thut returned the questionnaire with the admission that the subject information was unavailade.
sthouri 6\& per cent of tho total number of the forms were returned, only 50 per cent of ine total were filled out sufilciently to be of use. Line finul total, wis however, a ficir representative sumplifig in thet it represented states from every section of the country. ine validity of the results were definitely questionable by two measures (1) at leust 50 per cent of the officials detuiling the required informetion on the questionnaire form indicated, by footnote, that the percentages were "upproximate". (2) .. discrepancy was noticed in one instance, the state of ...assachussetts, in which the individual returaing the fora statcd that all of the scrools of ered more than two units of mathematics and all of: ered physics. a publication concerninf high school offerings publishcd by the "vomuonwealtn" of \therefore assachussetts", lowever, fave concrete statistics to the
effect that only 50 per cent of the schools offered over tivo unite of mathematics, and 20 per cent did not offer physics. It is possible that similur errors were made on otiers of the questionnaire forms.
an existent anomaly, notably the one of curriculum offerines, can readily be seen in the table. for example, the stute of liow York with 1300 schools and 750,000 pupils, has organized and centralized 1 ts schools so thit the vast majority of the pupils have an opportunity to prepare for an engineering educution. By compurison note jew äexico with but 144 schools and 244,000 pupils. In thet agrarian western state over half the pupils had no oiportunity to take courses necessury for entrance into an eneineering school. se similar comparison could be found between the heavily populuted eastern state of sennsylvania, and the western stetes of South iakota, Idiho and Uklahoma. In fact a careful study of the table clearly showed the superiority in courses (leading to engineering) of organization in the public school curriculum the outhout the eastern and Liew England states over the western and southern states. kortunately the larger enrollments were in the eastern stetes.

The results and the averages compiled from the
questionnaire form for the nation as a whole are as follows: (Usine only those states wherein the information 18 complete).

50 ber cent of the jtates Represented

1. Total secondary schools $\quad 10,943$
2. Iotal enrollment in the secondary schools 2,789,877
3. average per cent not offering over two units of mathemetios
34.40
4. average per cent enrolled in schools not offering over two units of iathematics 23.50
5. iverage per cent not offering physice 37.3%
6. Average per cent not offering both checistry and physics
42.9%

SUSM.NTY
is a sum ary it was significant to note thet over one-third of the secondary schools of the United itates did not offer over two urits of mathemetics, nor physics and chemistry, and what is more, less than 10 per cent of the high school students in the united States enrolled in those courses. Such a ract is not particularly noteworthy by itself, but when correlated with engineering school academic admission requirements the iaplications ap. ear self evident. The following chapter will comjure these facts in relation to the requirements for admission of a representative sampling of eneineering schools.

Chi.JTEZ IV.

IHE E゙.GINEARIIGG CULLKGE'S REGUIA:AUNTS FLR GMEISSIUN

In the two previous chapters the conparutive subject watter was compiled and averaged, and the sumarization of this chapter will compare those results in graphic form to the slatistics concerning engineering school aduission requirements.

In arder to determine the admission requirements for the averuge college of engineering in the United etates, a totel stuplifig of seventy five entineering schools were selected as a criteria. These institutions were located in practically every state, and one in ilaska; they include state colieges and universities, private institutions, deno:inational institutions, schools of technology, and military schools. Soth technical schools und liberal arts schools mere considered, the essential requirement being un engineering degree course included in the curriculum, in order to integrate their somemiat untitheilcal philosophies.

The purpose of determining an average set of existing admission requirements for un enfineering school is to compare those recuirecent with the average acedemic accomplishments of the secondary school product, and to further
compare them with the generul offerings of the secondury school curriculum.

The uctual requirecients for aci..ission to tne seventyiive institutions selected as represertative were abstracted from the bulletins pubiished and distributed by the individual schools. These bulletins were consulted at the Public Library of souston, dexas, w.ore they reaiain on permanent file, and the majority of them were recent editions. A few, in fact, were devoted to a future school yeur. In view of the purposes of th:is study the specific admission requirements abstracted were those 1:volving secondary school credits in mathematics und the nutural sciences. In uddition, whenever given, the information regerding entrance examinations, admissions with conditions, and whether or not the conditions can be maie up, was obtained. kiany of the bulleins, however, were either incomplete or generalized to a considerable extent concernine various requirements, wich resulted in incomplete irformation for a nuaber of ilie institutions. The waterial conceraing entrance oxemination wis sup:lemented by letters from the Jeins of the $\operatorname{lin}_{\text {iner }}$ ineering Schools in a number of cases.

In raulu . o. Ll, the udaission recuiremente for the

TABLE HO. II

In Mathimatics and this physicill scineces
75 SCHOOLS REPRESEMTED

Nem of Institution

1. Alabama Polytechnic Inetitute Auburn, Alabama
2. California Institute of Teond Pasadena, Callfornia
3. Ant100h College

Yellow Springe, Ohio
4. Case School of Appiled Sciond Cloveland, Ohio
5. Columbia University New York, Now York
6. Dartmough College Hanover, K. H.
7. Daice Oniversity Durhem, Morth Carolina
8. Pmory Oniveraity Ranory, Georgia
9. Emory in Eenpy Oniveraity Baory, Virghnia
10. Geo. Viashingt on Univerality Machington, D. C.

$\begin{aligned} & \text { Ro. of } \\ & \text { ragr. Do } \\ & \text { greea } \\ & \text { orfered } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Jnits of } \\ & \text { yath } \\ & \text { Requised } \\ & \hline \end{aligned}$	Inits of Phyalica Required	Onits of Ohom. Roquiped	Adnit l.ith Conditior	Roquire Condition Made up	Required Entrance Exam. 01 Soreoniry Rxma.
5	3	0	0	Ye:	Yes	Yee
5	4	1	1	No	Ho	Yea
3	2	0	0	Yes	No	No
5	3	1	1	Ho	Yoe	Yes
7	4	1	1	Yea	Yes	Yea
3	3	0	0	Yes	No	Yee
1	0	0	0	Yes	No	Yea
1	2	0	0	Yes	Ho	Yes
4	4	1	0	Yes	Ho.	150

Name of Institution	No. of Engr. De grees offored	Units of inath Reguired	Units of Physics Required	Units of Chem. Roguired		Require Condition Made up	Requiped Entrance Exam. or Soreonins Exam.
11. Feorgia ichool of Tech. itlenta, Georgia	10	3	1	0	Yes	No	Yes
12. Haverford Coliege Heverford, Pennsylvania	1	2k	0	0	Yes	Yes	No
13. Iowa state College Ames, Iowa	6	2^{1}	0	0	Yes	No	Yes
14. Kansas State College Manhattan, Kansas	4	3	0	0	Yes	Yes	Yes
15. Lafayette Coiloge Easton, Pennsylvania	7	4	1	1	NO	Yes	No
16. Lawrence Insititute of Tech. Detroit, Michigan.	4	23	1	0	Yes	Yes	No
17. Lehigh Univeraity Bethlehem, Pennaylvanda	6	3녈	0	0	Yes	No	Yes
18. Massachusetts Inst. of Poch. Boston, Mass.	7	4	1	0	No	---	Yes
19. Michigan College of Min. \& Technology Houghton, Michigan	4	3	1	0	Yes	No	Yes
20. Ho. Sichool of Mines \& Mota. Kolla, Missouri	6	3	1	0	Yes	No	Yes

Mene of Inotitution	No. of Engr. Do grees offored	Units af Math Regulred	Units of Phycion Roquired	Units of Chem. Requi red			
21. Dew York University Hew York, Now York	7	3	1	0			
28. Ohio state University Columbus, Ohio	1	3	1	0	Ho	Ye8	Yes
23. Oklahoma A \& N Colloge stillwator, Oclahoma	10	3	0	0	Yes	Yes	No
24. Orefon State College Corvallis, Oregon	7	2	0	0	Yos	H0	Ye:
25. Polyteohnic Inst. of Brook. Brooklyn, Hew York	6	3	1	0	Yes		
26. Pratt Institute Brooklyn, Few York	3	3	0	0	Yos	H0	Yes
27. Princeton Inlversity Princeton, N. J.	6	32	1	0	Yes	Yea	. No
28. Purdue University Lafayette. Indiana	7	3	0	0	Yes	Yo:	Ye:
29. Roneseeleor Polytechnic Ins Troy, New York	4	32	0	0	No	Yes	Yes
30. Rutgere Oniverasty New Brunewick, New Jorsey	4	4	1	0	Yes	Yos	Yes

TABLE NO. II ONN'L! URD							
Naue of Institution	110. of Fngr. De grees offored	Unit of liath Required	Unit of Fhysics Roquifod	Units of Chem. ifoguired	$\begin{aligned} & \text { Adm1t } \\ & \because 1 t h \end{aligned}$ Condicio	Require Condition Mado up	Required Entrance Exam. or oreoning Exam.
31. outhern \because 'othodist Universi Jallas, l'exas	3	3	0	0	Yes	No	Yes
32. Couthwastern Iouisians Ins. Lailayette, Loulsiana	4	2	0	0	Yes	Yes	---
33. tanford University Palo Alto, Califormia	4	3等	1	1	No	Yes	---
34. Toxas A \& $: ~$ college Collere tation, Teas	8	3	1	0	Yes	Yes	Yes
35. Texis Tech. College lubbock, Texas	6	3	1	0	Yes	Yes	--
36. Ihe Catholic Uni. of Amer. "ashington, D. C.	6	3	0	0	Yes	No	Yes
37. The Carnerie Inst. of reoh. Pittsburgh, Pennsylvania	7	3	1	1	Yes	No	Yes
38. The Rice Institute Houston, Texas	4	4	1	1	No	No	No
39. Tricitate College Angola, Indiana	6	23	1	1	Yes	Yes	No
40. Tufts College Medford, Mase.	5	3	1	0	Yes	No	Yes

Naw of Institution	No. of Engr. Do grees offored	Onit of Math Required	Unit of Phyaios Reguired	Unit of Chem. Required	$\begin{aligned} & \text { Admit } \\ & \text { Yith } \\ & \text { Condi ti ol } \\ & \hline \end{aligned}$		Required Bntrance Exum. O Soreening 8xm.
41. Iulane University Now Oxleane, Louisiana	4	3	0	0	Yes	No	Ye:
42. Oniveralty of ilabama tuiveraity, Alabama	7	3	0	0	Yas	Yos	--
43. Oniveralty of Mlaska Fairbanka, Aleska	5	23	1	0	Yas	Yas	No
44. Oniveraitif of Arizona Tuscon, Arizona	3	3	1	0	No	Yas	Yen
45. Oniversity of Ariransas Fayetteville, Arkansas	4	2줄	0	0	Yos	No	Yes
46. Daiveraity of Cincimati Cincimati, Oh1o	6	$2 \frac{7}{2}$	0	0	Ho	Yes	1
47. Univereity of Colorado Boulder, Colcrado	6	3	1	0	Yes	No	Yes
48. University of Connecticut Storrs, Connecticut	3	3	1	0	No		
49. University of Dolaware Newark, Delaware	4	3	1	0	No		
50. University of Inenver Denver, Colorado	4	3	1	1	No		
51. Dniversity of Florida Galneaville, Florida	5				Yes	H0	Yee

Name of Institution
52. Imiversity of Hoiuston
Houston, Texas
53. Universicy of Idaho :'oacor:, Idaho
54. University of Iowa Iowa City, Iova
65. Univeraity of Kansas Lawrence, Kunstis
56. Imiversity of ilaryland College Paric, ::uryland
57. University of :issiseippi oniversity, Missiesippi
58. University of inissouri Columbia, lissouri
59. Iniversity of Nobraskn I incoln, Nobraska
60. Univeraity of Notre Dame South Bond, Indiana
61. University of Ohio Athons, Ohio

No. of Engr. De 8rees offered	Unit of :!ath Required	Unit of Physics Required	Onit of Chem. Required			\square
6	3	0	10	Yes	Yes	NO
5	3	1	0 .	Yer	Yos	-
4	2	0	0	No	--	∞
9	3	1	0	Ye:	Yes	
4	$3 \frac{1}{2}$	0	0	You	Yes	-
3	3	0	1	Yes	Yes	
5	3	1	0	Yes	Yos	
4	3	1	1	$Y o s$	Yes	
3	3	1	1	Yes	Yes	Yes
1	2	0	10	Yes	Yes	

Name of Institution	No. of Engr. De igrees offered	Unit of irath Rogul 1 red	Unit of Physics Required	Onit of Chem. Requiryd		Require Condition Made Up	Required Ent rance Exam. or Screening Exame
62. Univorsity of Oklahoua rorman, Oklahoma	10	3	1	0	Yes	Yes	
63. University of Penn. Philadelphia, Ponn.	5	2	0	0	No		Yos
64. University of outh. Calif. Los Angeles, $C_{\text {al }}$ if.	6	37	1	1	Yes	Yos	
65. Iniversity of Texas Austin, iexas	7	3	1	1	Yes	Yes	
66. Univeralty of fulsa 'Tulsa, Oxlathoma	1	$2 \frac{1}{2}$	0	0	Yeв	Yea	
67. University of Dtsh salt Iake City, Jtah	7	3	1	0	No		
68. Iniversity of Vermont Burlington, Vermont	3	3	0	0	No		
69. Univarsity of Virginia Charlottesville, Va.	4	4	1	0	Yes	Yes	
70. University of inashington Seattle, "ashington	6	3	1	1	Y \mathbf{s}	Yes	
71. University of riyoming Laramie, yoming	6	$2 \frac{1}{2}$	1	0	Yes	No	Yea
72. Vanderbilt University Nashville, Tennossee	4	23	0	0	Yes	No	Yes

TABLE NO. II CON'IINUBD

various engineering schools are listed, and the following
tabulation details the totals and averages derived thereof.
TOMsi (Units refer to secondary schools units of study presented for college admission)
2. lotal requiring
a. c.ore than two units of mathematics 66
b. 'Iotal requirint only two units of mathematics 9
2. a. Total requiring physics 39
b. Total not requírine physics 36
3. a. lotal requiring both cheaistry and physics 13
b. Total not requiring ioth chemistry and physics 62
4. a. Total will adilt with conditions 58
b. 'Totul thet will not adilith with conditions 17
5. a. Total requirine make-up 33
b. Totel not roguirine make-up 42
6. a. Total offering entrance examinutions 32
b. lotul not offering entrunce examinutions 43
PERCENTAGES

1. ser cent of engineering schools requiring over two units of mathematics 88
2. jer cent of engineering schools requiring one unit of physics 52
3. Yer cent of engineering schools requiring one unit of each physics and cheinistry 17
4. Yer cent of eneineerifig schools thet re- ruse adaittance with "conditions" 22.5
5. Fer cent of engineering schools requiring "conditions" made-up 57
6. ser cent of erfineering schools offeriag entrance examination

$$
42.6
$$

The significance of the percentages cun best be illustrated Graphically in a caparison with the information regeriing secondary school enrollments and curriculum offerings as compiled in the two previous chapters.

The eraphs (Figs. $1,2 \otimes 3$) indicate severcl noteworthy considerations:

1. That although 88 per cent of the engineering colleges required over two units of high school mathematics for admission only 65 per cent of the hieh schools offered over two units, and only 7 per cent of the students enrollod for u ore than two units.
2. That 52 per cent of the engineering colleges required one unit of high school physics for admission, however, 63 per cent of the secondary schools offered physics In tise curriculum, yet only 6.27 per cent of the students enrolled in the course.
3. That 57 per cent of the secondary schools offer both chemistry and pliysics, but only 17 per cent of the eneineering schools require both.
'ibls rigure chow: the per cont of thenation's eniflneariniz colleges

 tro undte of whthemacies and tho par cmil of thenation's ancondury achool puplle taking oves tivo ulte of winhecelles.

This figure show the per cent of the nation's ongineoring oolleges requiring one unit of secondary school phyaics for admiasion as compared to the per cent of the nation's secondary schools offerine one unit. of phyaics and the per cent of the nation's secondury school pupils taking physica.

 reculrin ore undt of secondiry wo.00. chemetry and one unsi of priyesos
 offorln: one undt of chersietry unil one unit of playsics and t per c.s.i

The comparisons of this chapter between engineorine school requirements, secondary school curiculums, and student enrollments in relation to secondary school mathematics und nuturel sciences, were evidence pointing to a luck of coordination between kigh schools and rigineering colleges.
where student erirollment was concerned the fact that ongineering attracts a relatively small number of the totil high sclool students is a factor thet possibly accounted for the saull enrollments in mathenatics and the physical sciences. Wiether any of the majority, that did not take chemistry, physics, or over two units of high acliool mathematics, later applied for admission to engineer1:\& achools will be discussed in the followine chapter.

CHAPTER V.

THE ZNGINEERI,G LDUCATURS STaIMAEHTS mid SUGGESIIONS

In order to ascortain, as nearly as possible, (1) the approximate relationsilip of total college enrollments to encineering college enrollments (2) the relationship as to acadeaic success between students entering with conditions in mathemetics and the physical sciences, and those that met the existinif requirements and (3) to obtain sowe concensus of ouinion regardint means to decrease the high percentage of fuilures in engineerine schools, a questionnuire form (See apuendix B) wis milled to the deans of the school of enfineering of each of the seventy-five colleges used as a representative sampling in the previous chapter.
sbsolute, concrete, informution and statistics was nelther the purpose nor the result by the utilization of such a questionnaire but rather the accumulation of a sampling of trends, opinions, and succestions relative to entineering education. Such information was received from various types of institutions of hicher learniaf all over the United States, and not only represented the prevailine policies and conditions at each institution, but set forth remedial suecestions by leadine professional
educators in the encineoring field.
The reactions to the questionnaire form wore surpising indeed, for 61 por cont of the deans replied almost inmeilately, and with ancie drgree of enthusiasm. Many, in fact, onclosat personal letters on the subject; of which aboist one third were constructive, and the other two thirds sowewhat venemenent and critical in regard to the high school standards of officiency. In view of the infinite variety of requirements, standards, and policies, among the many different institutions at least fifty per cent of the questionnaire forms wert not filled out in full, in fact a number substituted a lettar for tine form. Sufficient information was obtained, however, to form the desired overall picture.

Por the findings of the questionnaire forms refer to Table No. III.

The totala of the information received on the questionnalre forms were as Poll:ws. (Received from 46 institutions).

1. Total student onrollment
329,146
2. Total student enrollment in engineering 73,100
3. Of the 29 per cont ansrering as to what per cent of the ongineering students were

table no. III Cartinted

	1	2	3	4	5	6	7	8	9
Stenford University	7,000	1,075	15	5	cilightl Handi capped	Bolow Averabe	somain inee	$1-a$ $2=d$ $3=1$	Both
Texas 今 \& M College	8,523	4.700	5	30	Grontly Retarded	Below Average	Remain Seme	$1-a$ $2=b$ $3-d$	H.S.
Texas Technological College	5,386	1,766	30	-	silghtiy Eandicapped	Below Averaga	Romain Smo	$1=b$ $2=d$ $3=1$	H.S.
The Catholic University of America	3,700	824	0	0	\cdots	-	Increase	$1-a$ $2=b$ $3=1$	H.S.
The Carnegie Institute of Tochnology	3.427	2,133	0	0	Normally	Average	\cdots	$1-b$ $2=a$ $3-1$	Both
Oniversity of Alabana	8,624	1,573	30	80	Slightly Handicapped	Average	Rersain Same	$\begin{aligned} & 1=a \\ & 2=1 \\ & 3=0 \end{aligned}$	Both
```Univoralty of Alagka```	304	131	90	$1 E$	Greatly Rotarded	Below Averaize	Increas	$1=a$ $2=1$ $3=b$	Both
Onivereity of Aplecna	4,600	740	0	0	$\cdots$	-	$\cdots$	$1-b$ $2=0$ $3=0$	$\cdots$
Donfersity of Arlcanese	4.400	933	20	50	$\begin{aligned} & \text { Oreatiy } \\ & \text { Retardod } \end{aligned}$	Below Average	Increase	$1-8$ $2=0$	Both



	1	$\Sigma$	-	1	$b$	6	7	8	9
Oniperalt: 08 Colorado	7,60	$\therefore: 71$	40	10	$\begin{aligned} & 11 f_{1} c l_{j} \\ & \text { liabul } \\ & \text { cayced } \end{aligned}$	$\begin{gathered} \text { Toluo } \\ \text { repege } \end{gathered}$	zenal:	-	3ot
Disperedty of Texer	17.20	$\therefore 60$	1	$\cdots$	$\begin{aligned} & \text { :rontiy } \\ & \text { setardex } \end{aligned}$	nel ow   'verate	1ncrenes		304 !
$\begin{aligned} & \text { onsverasly } \\ & \text { of } \\ & \text { onlaboes } \end{aligned}$	4,000	-70	10	こ®		Varser	Incresod	$\begin{aligned} & 1=0 \\ & \therefore=0 \end{aligned}$	120th
Tasvers lt : 0 : Dtelt	8,638	2.104	0	$\infty$	$\cdots$	$\cdots$	ancos	$\underline{1}=1$	noth
Daiversity of eschlizion	20, 200	8.10	0	$\infty$	$\begin{aligned} & \text { igeutly } \\ & \text { iotardeas } \end{aligned}$	$\cdots$	$\cdots$	$\begin{aligned} & 1 \\ & 2\end{aligned}=0$	noth
$\begin{aligned} & \text { mindresity } \\ & \text { uyenirp } \end{aligned}$	3.000	770	10	10	$\begin{aligned} & \text { 11ntutig } \\ & \text { riends- } \\ & \text { cappei } \end{aligned}$	Averase	Incoseme	$1-0$ $?=0$ $=-5$	noth
Virginia vistary Inelstute	788	432	0	$\infty$	-	-	$\cdots$	1 2	$\cdots$
$\begin{aligned} & \text { Yalo } \\ & \text { Oinders ity } \end{aligned}$	2043	1.062		$\infty$	3sently 4etarded	Hol cm	Increas	$\begin{aligned} & 1=0 \\ & \vdots=0 \\ & y=5 \end{aligned}$	Boch

admitted with "conditions" the extremes were from. $5 \%$ to $90 \%$. The average percentage taking engineering with high school deficiencies was 25.5
4. Of the 23 per cent answering as to what per cent of the failures in engineering school can be attributed to deficiencies in secondary schools the extremes were from $5 \%$ to $50 \%$. The average percentuge of fuilures due to hifes school deficiencies mas
(Note on lable IAI Column 3 and 4 the lack of uniformity amone the institutions as to the number of failures due to lack of hich school preparation)
5. As to the effects of hich school deficiencies in mathenatics and the physicsl sciences upon protress in entideering achool, of the $33-1 / 3$ per cent of the: deans reporting the results were as follows:
A. ivormally
$16 \%$
B. Slightly handicap ed $48 \%$
C. Greatly retarded $36 \%$
6. $4 s$ to the relutionship between
academic success in engineering school and high school deficiencies in mathematics and science, 32 per cent reporting; the students admitted with "conditions" receive grades that are:
A. - bove averuce 0\%
B. iverage $37 \%$
C. Below siverage 63\%
7. As to the future for acsdenic admission recuirements for enfineering schools, of the 49 per cent that expressed an opinion the percentages were as follows:

Recuirements will is. Increase 62\%
is. Remain jame 30\%
C. Decrease 0\%
8. Ire sugeestions represented in thequestionnaire form as being the mostbeneficial to the problem were asfollows:
A. Improved guidance in high schools.
B. Increasing the mathematic requireaent for a highschool diploma
C. Lowerine adisission requirements for encineerine schools.山. Establishment of a pre-encineerine high schoolprogram.
E. Utilization of the five your college encineeringproeram modified to absorb the secondary schooladmissions.
F. A screeni..e process, bascd on eptitude teste,irior to adrifssion to the school of entineering.
G. The results based upon the opinions of the enfineer-ine school deans apperr below.
(42 replies to the question)
Per cent favored a. Improved guidance ..... 52
for lst place b. Increasine math req. ..... 28
c. Lowering adraission req. ..... 0
d. Yre-engr. proeram ..... 02
e. Hive year program ..... 5
f. jicreening process ..... 13
(3i replies)
Per cent favored a. li.proved guidance ..... 29
for 2nd place b. Increasine math req. ..... 25
c. Lowerine admission rey. ..... 0
d. l're-ener. proeram ..... 17.
e. ilve year proeram ..... 8

1. Screoning process ..... 21
(28 replies)
Fer cent favored a. Improved guidance ..... 08
for 3rd place b. Increcsiig meth req. ..... 19

c. Lowering ad..ission req.	0
d. ire-engr progrum	08
e. rive year program	10
f. joreeri: process	55

from the tabulation of the results it wis obvious the (a) was overwhelmingly favored, with (b) es second-best and ( r ) as third. Thus remedial meisures endorsed by engineering school educators in decreasine order of their iaportance were:
(1) Improved Eildunce in high schools
(2) Increasing of the ais thematics recuirements for a hig school diploma
(i) a screenify process, based upon aptitude tests, prior to aduission to the school of encineering.
8. as to weteraining the responsibility for this problem, the opinion of the engineerine college deans were as rollows: (41 replies)
a. College 07
b. jecondury s.hools 14
c. Both 79
10. As to departmental sectionalization of classes on a basis of placement tests, that information was obtained at the request of the Director of the Cehool of theineering at the University of Lous ton ly $46-47$, for his personal file in connection with the responsibilities of ils ofilce. It had no particular connection with this study, however, it wis found that 38 per cent of the eneineeing schools sectionallze classes.
11. In regard to sug estions for obtaining a higher percentage of successful candidates in encineering school without lowerine the standurds for ad:.ission, the opinions, sugeestions, criticisms and accusutions, were plentiful. 'he letters and quota, ions, however, were in a measure the personal opinions of the various educators, and to preserve the interity of the institution wilich they represented both the name of the writer atd the institution l.ust be withheld.

The following quotalions are excerpts from the letters and notes rocoived from the va.ious entineering school derns as supplewents to the questionnuire rori.i. unly a rew of the most jointed und interestine portions of so e of the letters are represented und they nill be referred to by a "cuse nubiber".

Case io. 1. "ie have increused our ertrance mathematics requirements to include trigonometry, so the student i.ust present lid years of algebra 1 yeur plane geometry - 变 yeur each of solid geometry and trigonometry. une year each of physics and charistry is blso required. de fi:d that if no exceptions sure made in these mathematics und science requirements, and with the selection we have to make because of tie nusiber of applicunts, thut the men as a whole do excejtionally well, Here are rullures, of course, but as a eroup the sections make a very excollent showine."

Case ivo. 2 "Use five year program wifch his orerated vory edtisfactorily at $\qquad$ for 75 years."

Case ivo. 3 "Some method must be devised whereby students who wish to enter engineering; may be broueht to a comion accejtable level or achievement. I think that some kind of a pre-eni ineering year, plus, possijly, some kind of an aptitude und isiterest test muld be very helprul."

Case iou. 4 "ivow th $t 80$ of our lifill school students are not interested in collece, the remaining 20 N who want to to to collece have :ecome very much "tise forgotten pupils". しur kigh schools ure no loreer providine an education for their tulented students who are able and anxious to suiject inciasclves to the severe discipline 0i honest to goodness i:tellectual effort. $11+c h$ school courses have been dilated to sutisfy the parents of the median high scbool pupil. accordingly a very neavy bur en rests on our high schools to introduce real colle e preperatory mork in the hi, $h$ school. $-i$ ny preparatory schools in order to survive are tuking ifdividuels
wo ure not able to so even the work of a mediocre hich school. a few preparutory schools are providing $u$ ihorouch education for truly able college preparatory pupils. Ir the public high schools ure no loriger goine to be willint, it tsx peyers' expense, to provide adecuate ;reparation for college work, then purents are toinc to have to provice tiat truining eleewhere. Tie college 18 not the place for this trainine. lerhaps parents wio wish. to secd cheir sons anc duughters to collego will again have to resort to the private academy. It is not the responsibility of the college to five preparntory school work.

1 sugeest that even inou is you may not be able to impose un udequate screening process at lio joint or adi.ission at tialc wine, at least yo. could recilre certein exaninations and tests to be taken by fresicen imaediately after their arrival in the university and in a fer years' time you would develop correlations between the results of such tests and success in the rirst yeer in the college of encinecring. llaving demonstrated that you had an adequate "testing" program for discovering wino would succeed, it mi,ht be possible to start seloction students for adiaission on the basis of such a teste. The ruising of entrance requirements in quality would need to be do ne erudually, if a political situation exists. It for example 50 , of the students of the coliefe of encineerine are showine themselves to be unsuccessful in their first year, then the lower $20 \%$ of the $50 \%$ could be screeded out 80 thut $60 \%$ woula be successful und $40 p$ only would be fillures. A few years luter the jercentage could we reduced to 30.0 and so on to the point wiere the precentia;e of fallures was consíered to je a reusunualo ficure within the realms of human ability to select and predict in advence."

Case No. 5 "itrict adherence to adiaissions requirements in kinglish, matheratics and physics and per-
sonal interview of every applicant with representutive of eduissions of ilce."

> Case io. 6 "Cet better cooperation from high schools in meeting; their obligations towerds preoncineering stuceuts."

Case : 0.7 "ri.is 18 a toukh problem. iendencies of modern education are more and wore awiay from the old rundani ntuls of "readinc; witince, und urithmetic". .ee must appreciate however thi. $t$ tic percentage of tich school eriduretes takine up oncincorinc is rainer amall. sersorully, I feel thet one year of hifh schiool aleebru and one year of plane geometry should be the minimum methematics recuirements for all hifls sool eruduates. .e tet some (and frou. larec city schools, tool without even the alcebra, let alone the plane eoometry."

Case ino. 8 "Procedure at this insiitution reasorably satisiuctory. 1 . -tudents aust eet entrance cecuirements of lit years algebra and one yeur ceometry, otherwise they must eurn such credit berore admission to engineering school. 2. Hegardless of hich school record a placement exacination in math 1a required. Low resking students are required to take review or refresher meth during which tine they are in the lower division of the vollege und not in the school of iner. is soon us nuth deflifencies ure completed and If a sutisfuctory G.i'... has been earned, the students cuy transier into encr. Cur of orts to influence secondary schools und provide guldance have bee: unsuccessful."

Case ivo. 9 " hus made it a policy for muny years not to udmit people with conditio.s. inis practice wis made moie rifid during the pust two years. In checking with our virectur of aduissions 1 fin? the.t out of wore then 2,000 freshmen, not one was ad..itted with a uodition. Furtherture, a out $7 / 8$ of those adi.itted ure in the upper t.iri of their secondury school graduutin $n_{\text {: }}$ class. Thus, the problem you have mentione: does not effect us very seriously."

Case Ro. 10

Case ..O. 11
"s'roper vocutionel and educetional guidance in hifh schools. iuny students entering enfineering sckools do not understanc that succoss re.jires hiph $u_{i}$ titude in mathomatics."

Case l.o. 12 "the urswer to 8 is besed on my idea of the ide..」 siluation. iowever, I loubt whether the lift schcols can be influenced to any extent ies lose than half their fruductes go on to college. I think the practical solution is a screcuilut rocess prior to undiceion to the school of ongineerinc. 'ihe difiliulty with this solution, us I sce it, lies in the developinent of a reliable screen, 1 have kn:w: enouch hithly successful encineers who are not particulury good in mathematics to feel that thet is not ine sole critorion, although it is becomin: increasingly imiortant."

Case io. l3 "Yoxclude lower half of "1, eh school graiuating class."

Case .. 0.14 ".t., we have an acute adi.iseion problem us do all oilier encineerine colleges triroughout the country at this time. For the 200 places available in the 1946 full semester in the college of encineerin $n_{i}$ and science uncer the limited enrollment system, we made selecions a... ae iove than 7,000 ap:ilicant. In so soiry, we used the results of placein nt tests, letters of recomendation, and prepurutory school records as the busis for selection."
-ase ilo. 15
"In ay o inion $\partial(a)$ (Improved quidance in hieh sctiool) is the most needed of all the
improvements suggested. In 32 years of teaching experience, deuling : 1 th students entering colleges of engineering from the various secondary schools, I am convinced thut tiere is practicully no effective guidance functioninf in the secondary schoois, since any effort on the purt of colleces of engineering either to advise or to sugeest plans wolile be inierpreted by secondary school principale anc superintondents us unwarranted interierence by the institutions of hieder education. It is a crying shume the t the eraduater of iijin schools are turned loose with neither truining nor advice to quilify the:. either for their life wori or for entrance to colleses for technicill and professionul training. Under item 1l, (requost for suceestions) all hich school stulients wioo sicnify their inteation to enter pre-priofessional or technical sci.ools sloul? be resulred to 1nclude in their fourth year work one unit of indelish $c o m, 081 i 10 n$, one unil of revief mathemutics, principally a.ithmetic and uleeora, ard one unil oi physics. iah a resiresent cannot. rove a handicip to th. se who do iot enter collede, und would materialiy jecrecse the wastage among those wi.o do."

Case ،o. LE "we are faced with the sume situciion you arc. ..e tave 474 fresimen an? ve have a very hifh percentace of riiliures in mathemalics as well as otner freshian iork. -any of these freshmen shouil not be 1 n college at all. we give three tesis, unc stuionts who are in the iourth or fifil quintiles seldom remain in college. shey eitier withdriw or ure dropied. i doubt $1 \hat{i}$ we cruduete Liore tian 15; of those entering us fresh.en. - UN recisirement for entiance should be increusel; better, we should iuve a dirferent standard tian ore and one-half units of Heebra. i.tul aeuns :utiang bectuse the Hifh schools todi.y do not rehaire real study. It woali be much better to kesp students
out of englaeering than fail them out. There seems to be no other way to convince them that they should not take engineering except to fail them and drop them out. ill alr corps men wint sechanicul Engineering or deronauticul ingineering. sot 50 of either have any business in engineering.

I recommend to mathematics teachers that they make matiematics courses stiff for enelneers and fall them early in the course. lhere is less disapiointment if they ure falled early."

Case i.o. 17 "ie need better guidance, to be sure, but 18 there any hope to getting it's as long as we let professional educators lay down the luw that methematics has no value in education, there $1 s$ oniy one thing we cen do: luke the students where we find them and do the best we can for them."

Case $\therefore$. 18 "In my opinion the student's progress or lack of it is not beceuse of the fact he cntered with insufficient ingh school mathematics, but rather because he does not have the aptitude for engineering. Liany of those who come with insufficient entrance preparation in mathematics become some of the best stuents.

I, thereiore, reel thit you cennot say catecorically that lack of training in mathematics in high school is or is not the reason for fallure."

Case ro. 13 "The $\qquad$ has had eight years experience with he use of placement or preregistration tests in the gerieral academic field in mathematics, knglish, physics and chemitry. is a result or this experience it his been possible to segregule students with defective preparation and stiart their educaitional program at different levels. For example, there are three levels at wifch a stujent may start the study of mathematics in the enfineering college. If a student starts at the lowest
levol he receives no academic credit toward a degree. If he starts at the second level he receives partial credit. If he starts at the high level he receives full credit. The experience at the university of _ indicates that tiese placemont test in mathematics are more valid evidence of jrepuration than the number of points earned in high school. Some very excellent students in mathematics are obliged to sturt at the low level because of not having had tiae opportunity of studying mathematice at the t level during their high school career. a student who has the maximum high school points and then scores low in the preregistrution tests is a very poor risk."

Cese i.O. 20

Cuse ivo. 21
"at inis University the vast majority of our entineering students had better than averaj; high school records because of stiffened enirance requirenents. mintaining stiff entrance requirements will be a treat help to you, I'm sure. Information of this kind gets around and is soon reflected in the attitude of the high schools."

Case lio. 22 "The college courses in math, cheinstry, and
physics, are used at the present time to
screen tie beginning engineering students.
inile this is an efficient screening process,
it adds to the load in the service courses
for the engineerile college, and it would
be better if much of this screening could be
done as sugested in paragraph 8 (f). (icreen-
ing based on aptitude testa.)

Case lvo. 23 "It is an old quesiion - liot improved by fads
and rancies of "professional" educationists which tend to place more emphasis upon the techniques of pedagogy then upon sound mastery of the subject matter being taught."

Case 1.0. 24

Case lo. 25 "To obt:in a higher percentage oi successful candidates in colleges of engineering, take only those who can meet adequetc recuirements for success in college. lifs weans temporarily at le:st, a reduction in the number of encineering students in any eiven collete of engineering where it hus been easy to got in bit hurd to stay. inether such a stiffening of of requirements is politically feasible or not in state and municipal colleges and universities, l do not know. The University of Nisconsin undertook to meet the political situiction by creating a "General collg ge" to which they admit those high achool graduates who: they feel to be below the necessary requirements for success in one of the regular hifh standard divisions of the institutions. Their constituents have not yet, I believe, taken to writing to state legislators protesting admissio: to the General clleqe es over against udmission to a regular high standard division of the University."

The consequeatial features of tine yuesifonnaire findings concerned the fect that nearly a quarter of college enrollmente wero in encineerink; and that of those enrolled in engineering exactly one quarter of them mere udmitted with "conditions" in mathemutics and the physical sciences. It mis furtier found thet approximately 20 per cent of the failures in engineering schools were listed as due to lack oi hich school preparation in the same subjects.

Students aduitted with conditions proeressec "slightly handicapped" and received grades below the average.

It wes the opinion of ci or cent of the engineering college deans that admission reauirements for ergineerIng schools would increase in the future, and 79 per cent of the deans expressed the opinion that it was the joint responsibility of the secondary school and collefe to make adjustments to meet the situation.

Furthermore, it s the professional lecision of the encineering educutors th the three most effective means for dotuining a higher percentace of successful candidates in enfineerins school, without lowering the standards for admission, were (1) Improved guidance for high school students; (2) saising the mathematics
requirements for a high school diploma; and (3) a screenine process, based upon aptitude tests, prior to admission to a school of eneineerine.

Letters and subscripte received in connection with the questionaire form from the $v$ rious engineering professors, though somewhit subjective and heteroceneous, generally expressed several ser:timents in common. They Derated secondary school standards of instruction, they complained of the lack of effective counselinc and guidance in the hin schools, they expressed the desire for coordination between high schools and colleges, and they felt tiat examinetions as a screen process, coupled with inflexible adission recuirements relative to high school achieverents, would be the icecl errangement.

GHATER VI.
A. SUKinhy

Since 1900 engineering educators have been concerned over the appaliing per cent of failures in encineerine schools, and studies of the situation since that time produced evinence tilat approximately 60 per cent of anterinc freshmon in encineerint fuil to eraduate. The researchers came to further conclusions us to causations and basis for measiures to cecrease the rate of fallure by displayine records thet establisled $z$ definite correlation between success in engineering sciool and previous secondary school academic achieveciente.
although trey professed to no medium, turourh which a prognosis of success in engineering school could be made, had been empirically determined, the gereral opinions, as well as statistical proof, displayed severtal measures es rairly successful. Juch Łs:

1. academic secondary school ac.ievement.
2. Achievoment tests prior to college admission.
3. 1.1ch school prepurtition 1: such subjects as mathematics, physics, chemistry, und winual training.
4. jersonal interviews.

There was so me discrepancy in the results of the studies; in fact, the coofficiont of correlation betweon success in ongineering school and high school preparation ranged overywhere from 0 to f0.84. The educators were in conformity in a general plea for greater cooperation betweon secondary schoo a and colleges.

The humanitarian philosophy of oducation, with the emphasis on a more general program, was studied by several in relation to the problem; and particularly the post war suthors (rorld :ar il) stressed individual characteristics as a proforable measure over both aptitude test scares and secondary school records as a basis far admission to engineering college.

This study, owploying the United itates Department of Interior Bulletin $\mathrm{N}_{\mathrm{o}} .6$ and a questionnaire form (see Appendix A) sent to the directors of public instruction of each of the forty-elght states, disclosed that over one third of the socondary schools in the thited states do not offor over two units of mathomatics in the curricula. The same was true with respect to chomistry and physics, and the truly unfortunate aspect of the situation involved stacistics proving that lass than 10 per cont of the high school students were onrolling in such
courses.
It was found that 88 per cont of the colleges require a student to have over two units of bigh achool mathematics, b2 per cent require one unit of secondary school physics, and 17 per cent require a unit each of secondary school physics and chemistry, for admission. In addition, $22 . t$ per cent of the ongineerlng schools refuse to admit students with "conditions" (less than three units of matheratics and usually one unit of physics), and 42.6 per cent require a studint to pass an ontrance oxamination in those subjects prior to admission. Also, 07 per cent require that conditions be made up before a student can receive full standing in the school of engineering. The facts concerning admission requirements when compered to the statistics covering high school curricula offerings and student enroliment directed attention to an anomaly between student preparation and onfineering college requirements for aduiseion.

Zhereas 88 per cent of the co.leges required over two units of secondary school education, only 7 per cent of the high echool studints vere so prepared; and, but 54 per cent of $t h$ : secondary achoo:s of the United itates offer facilities for such peparation. Nithough 6i per cent
of the nations engingoring schools require one unit of bleh school physice for admiselion only 6.27 per cent of the shudente took the couran. 63 per cent of the seconiery echools, however, dil offer the compee. In the case of both physice and chmadetry, only 17 per cent of the onjilntoririm collinga ragitred a unit of each from socondury scl.001s and 27 per cant of tie hifl. echools included both in lha ourficula. Data proving what propentaipg of the $h .1$ sh chool stul nts take both courses worg unavallsble, hovover, on basis of cnreliment in physics and mathomatics it would be safe to ostlmate that loss then $\therefore$ per cont onroll in both of the piysionl solnnce courses.

Considreing that the pridary purpose of the bigh school is not to train young people spe cifically for college entranon such iacts mis fipires would not be elgnificant, excopt that firtber invastigation brought ediltional melevent informacion to light.

The questionnaim form gont to the lesne of seventyfive enalneorint colleges revoulod componente related to the pevious reacarch in that it proiucod ovidence to the offect thit the previouely discuseed discropancy botwon hifh school proparntion and ansinearing school requireannte was of cunaldarabla importance.

Por one thing, of 329,146 college students distributed all over the nation in the fall of 1946, oxactly $2 \rho$ per cont were onrojled in an ongineering course. linat is even more significant involves the percentage which were admitted with "conditions" in mathematics and tho physical sciences - 25.2 per cont as an overall nationwide averaģ. In one institution 90 per cent of the students had been admitted with such "conditions". The sngineering deans, again as an average, estimated that ovar $2 U$ per cent of the failures in engineering school could be attributed to the lack of high school truining in those same subjects, and, due to the large number of veterans taking up enginecring, muny applicants wero beinf, turned away because of their inablilty to pass stiffened entrance oxaminations. At Carnerie Institute of Pechnoloxy, for examplo, as previarsly reported, of 7,000 applicants, only 200 were accepted for matriculation. strict adherence to admisaion requirement received much omphasis as a result.

The concensus of opinion of the engineoring educators, in relation to the problem, was that studenta adm_tted with conditions progressed under a alight handicap, and as a whole, received grades that were below the
averaga.
They felt that the problen was the responsibility of both the high school and college administrations, but thair condemnation of the quality of secondery school instruction rias alwost unanimous us reil as dorlsive.

The racominndations for obtaining a highor porcentage of sucenssfixl candidates for engineerine schools are listol in order of their decreasing popilarity.

1. Improved midance in high schools
?. Increasin tho whematice roquirements for a high school diplome.
?. A scrooning process, bused on aptitude tests, prior to indisaion to an encinearini achool.

They arreed the problem was of imealiate iaportance, and expressed thin opinion that, in the futiare, admisaion requirements for ancingering schools would become evan mora rigid and exactinp.
R. COHCLIJIONS

The national econoxy, such as it is, indirectly dictates the educational pollciss of the nation to the extent that secondary achools finction as an ontity, and thouph many offer what is know as college proparatory corrse, their mimnry responsibility is to glucgte the
average pupil to 80 out into society endowed with democratic principles and to become an economic and cultural asset to his, or her, community. Under sueh conditions it would be highly illogical to even attempt to advise that the hieh school curriculum be modified to correspond to the futurg on an occasional engineering student.

The conclusions based upon the study are as

## follows:

1. The fact that $8 \delta$ per cent of the schools of engineering in the United ctates required over two units of sacondary sctiool mathomatics for admission in camparison to the fact that only 7 per cent of the high echool students take the advanced mathematics courses, coupled rith a eimilar situacion with regard to the physical sciences, was indicative of the existence of a serious disorepany between the general admisaion requirements in ongineerinf schools and the enrollment in mathomatics and natural sciances in hirh school. This is particularly noteworthy in the light of the fact that $2 ?$ per cent of coinges students at present are onrolling in engineoring.
2. The fuct that $2 u$ per cent of those enrolled
in engineering achools are "conditionet" in mathematics and the phyaical science points to a lack of any effective counseling in the public schools. Considering the very small percentage of $h_{\text {f }} \mathrm{gh}$ school students that enter engineerinf, and with 7 per cent of the high school studenta taking advanced mathematics and 6 per cent taking physics, such percentages would amply firnish engineering schools with qualifial applicants if cooperation oxisted between the two educational levels. Cooperation to assure that those individuals enrolled in such courses were the same individuals to later enter engineering college.

In this connection it was the opinion of many of the engineering educators that the pirblic school administrators welcomed neithor advice or suggestion from the colleges.
3. The roports indicating tinat only 64 per cent of tha Nation's secondary schools offer sufficient mathomatics to meet the domand of engineering show that many students never have an opportunity to prepar. for an engineering education. All of which was further implication of the failure of the public schools in their obligation to the student that may desire an engireoring
college education. Therefore the secondary school must inevitably face the issue that college preparation is becoming an ever increasing responsibility, and take the necessary stepa to provide both guidance and facilities to prepare students for later spocialized training.
4. Information received from 64 engineering
schools ap:rorimatad that over 20 per cent of the fallures in enpineering achools are due to a lack of high school preparation in the aforementioned subjects, thut atudencs with conditions both progress and receive grades that are below avorage, and yet admission requirements for ongineering achools would progress in the future. Such a condition formulates the conclusion that ongineoring schools put their admiasion standards on a more inflexible and selective basis which will subsequently exclude the large percentage of unqualified applicants. Posaibly seeming, unjust, but obviousiy a step in the direction that nould materially decrease the present percentage of failures.

> C. RECOM SEND:IIONS

The conclusions of this study open the way to a
number of remedial suggestions pertinent to the reduction of excesaive failures among students in engineering college. It is conceded that part of the recommendations have been recognized as almost a necessity for some time by many educators, and consequently are gradurliy becoming a reality. 'two of them, however, raise a controversial isaue between engineering educators and professional public achool administrators; the former supporting specialized training, and the latter penerally adopting the broad fields philosophy. The facts brought forth by this study justify the fo lowing recomendations irregardless of whether or not they are in accordance with the views and opinions of all educators or laymen before whom they may appear. 1. The ongineering colleges put their admission requirements on standardized and strictly rigid basis, admitting only those ap, licants that have prepared themselves in secondary school to meet the requirements.
2. The high schools implement a more operative guidance program onabling students to bettor prepare themselves in the evont they wish to attend collegs. The cumulative records of students boing forwarded to the college to assist the college counseling orgeniza-
tion in it's responsibility to the student.
3. The high schools provide for courses und facilities allowinr students to specialize for preparation toward a definite college course.
4. The onginerring colleges organize a comulttee to make a study of the various aptitude and achievement tests, and select and adapt the best possible series of tests that the enpineering colleges could use for selective entrance oxaminations.
E. The engineoring school administrators maght well pause, though amidst a pariod of rapid technical and scientific development, and berin to accept the fact that they are training hunans for life in a modern democratic society, as well as professional engineers, and thus attompt to undarstand and cooperate with the humanistic philosophers and public achool administrators.
D. SUGGRSIED PIROBLEMS JOR FUIURE RESEARCH

1. A study should be made to determine if the onpineerine schools are justified relative to their standards for admisaion, particularly with respect to mathematics and the physical sciences.
2. A study should be made to dofine an offective program for liason between secondary school guidance facilities and encineoring school counseling services.
3. A stiddy should be made of specialization in the secondary school curriculum in order to determine it's offect upon the goneral knowledge and ability of tha avarage high scrool graduato.
is BOUKN
4. Bingham, i. V., aptitudes and aptitude Tosting. New York: hurper Brotiers, 1937. 390 pp.
5. Jewett, B., The Dialogues of Plato. New York: The Republic National +1 brary Company, 1921. 184 pp.

B PERIODIC،S

1. Ayer, Fred E., "Physics, iathematics, and lingineering." Journal of Engineering Education. april 1938. 23: 502 p.
2. Bluisdell, Alen H. , "Coments on the Fiuture of

3. Boardian, Charles m. \& Finch, F. H. "Relation of Secondary School of jreparation to Success in the College of ingincering". Journul of angineerIng Educution, Harch 1934 2S, 46e-475 pp.
4. Bray, Oscur i., "Yostwar Gradute Engineer Trainine," Journal of Engineering iducation, Jov. 1946 उ6 211-214 p!:。
5. Brush, Edward in., Mechanical mbility as a Factor in Engincering sptitude". Journal of ioplied s'sychology, June 194125 300-311 pp.
6. Cruwford, A. B., and Burhan, F. S., "Entrance Examinutions and Coilege achievements", Échool and Society, $193236344-352 \mathrm{pp}$.
7. Crothers, H. ...., "Fiur i'ressure on the Curricula", Journal of Engineering Education, Oct. 194435 p. 81
8. Dearborn, V. F., "The relative St:nding of rupils in High School und the University", The Univorsity of risconsin rress, 1.03.
9. Douglas, H. R. and Lichaelson, J. H., "The Relation of Hich School - thematics to College Liarks and Uther Factors to College siurks in isuthematics", School Revien, 193644 615-613 pp.
10. Dvorak, A., and Sulyer, R. C., "Significance of the Entrance Requiremente for the Encineering College at the university of washington", hpril 1333 , $2 \cdot 3$ 618-623 p:-
11. Jywer, P. S., Horner, C., and Yokum, C. S. . "a Statistical Sum ary of the Records of Students Entering the University of ichigan as Freshmen in the decade of 1327-193c", University of kichican Administrative itudies, Vol. 1, No. 4, 1940
12. Feder, $D_{0}$ D., and adler, D. L., "redictine the Scholastic achiovemente of ingincering Students", Journil of Enginearing Eduction, .ay 193929 3ej-j87
13. Fitchenbaum, a.ax., "in Analysis of Freshman Eingineers at the University of Texas Vurini the Session of 1935-1936", Journal of kincineering ducation, april 133323 533-540 pp.
14. Hummond, i. s. and Stoddard, G. P., "a Study of Placement Examinationsn, Journal of Engincering Education Sopt. 192819 25-83 pp.
15. Hiegins, J. J., "Study of Liathematics Ability in Relatien to Success in Engineering School", $\frac{\text { Journal }}{23} \frac{\text { of }}{743}$ Engincering kducation, June 132323 743-746 pi:
16. Lindsay, F. D., "Problems in Secondary Educution that Effoct Engineering Colleges ${ }^{n}$. Journal of infineering Education, isarch 194131 473-486 pp.
17. Northby, A. S., "Prediction or Scholastic Success in the College of Engineering and Architecture", From $\underline{\underline{H}}_{2} \underline{E}_{\text {c }}$ Hagegerty, Chairman on Education Research Studies in Articulation, 42-49 pp.
18. "Oiferings and Registrution in i.1, h Jchool Subjects", Bulletin No. © from the United States urfice of Education.
19. Patterson, J. G. and Chornburg, i. ...., Milyh School Scholarship Stunding of ireshian in, ineering Students", Journul of lingincering Educetion, April 192717 807-811 pp.
20. "Yreliminary Report of the Committee on Coordination of Preparation and Engineerine Fducation". Journel of Enginearing Elucation, Jan. 193020 473-484 pp.
21. "Report of the Comittee for the Promotion of Engineering". Journal of Engineering Education, Doc. 1941.
22. "Rejort of the Committee of admissions and Sliminations of Engineerine Students", Journal of kigineering .ducation, Sept. 1925 16 47-73 pp.
23. "Report of E. C. P. D. on Student Selection and Guidance", The Electrical Engineer, Nov. $103655182-1525 \mathrm{pp}$.
24. Sachett, R. L., "Selecting Future Angineers in ilich School", Chairman: Cummittee on Student Selection and Guidancen, Nining and cotaliurgy. Aug. 1938 319-353 pp.
25. Sackett, K. L., "Selection or Engineering students", $\frac{\text { Journal }}{595-600} \frac{\text { pf Engineering Education, Mir. } 194030}{}$
26. Sackett, R. L., "Report of Comittee on Student Selection", Presented at the 43 th annual inectine of the S.1.i..E. Journal of Engineering Edus:ation, 1941 32 224-256 pp.
27. Siemens, Cornelius H., "Forecasting the Academic Achievements of Engineerine Stuaients", Journul of Engineering Education, 194132 617-c21 pp.
28. Stewart, L. U., "idvice to Young ken iho Seek Careers in Engineering", Journal of Lngineering Education, Sept. 1945
29. Tnurstone, L. L., "A New Rotutional Liethod of Factor Analysis", Psychological Bulletin, 194037 183-236 pi.
30. Timbie, \#. H., "Selection and aduission of alicante for Entrance to Engineering Colleges", Journal of Engineering viucution, Feb. 1332 448-61, 482-84 pp.
31. United States Office of Education, "Report of the Committee on Student Selection and Guidance". School and Society, June 27, 134255717 p.
32. ilckendon, w. E., "Investigation of ingineerine iducation", Journel of Kingineering Education. Oct. 1924
33. Youne, J. a., "The id justment ibetwecn Secondary School and College dork in isithematics", Journal of ingineering Education, iarch 193222 586-595 pp.

## C MANUSCRIPTS

1. Goodman, Churles H., "ability Patterns of Engineers and Success in ingineering School" Doctorate Dissertation, jennsylvanig State University, 1941
2. Johnson, i. i., "The Relationship of Test Scores to Sicholarship achievement for the 244 Engineering Freshman Entering Purdue University in Soptember $1 \ni 39^{n}$, Doctorate Dissertation, Yurdue University 1940
3. Ullavik, B. J., ${ }^{n}$ in Factor Anulysis and ;rognosis of the Scholastic Success of Freshman Engineers During Their First Semester at the University of disconsin", Doctorate Dissertation, The University of ${ }^{\text {Misconsin, }}$ 1941.

107
Fingineoring Dopertmont
The Universit y of Houston
Houston, Texas Novernber 25, 1946

State Superintendont of Schools

Dear :1r:
Vith the present influx of students into engineering schools, and with the liklihood of an increase in the future, this department is faced with a protelin that directiv involves secondary school education.

We have a great many aspirants in the jchools of Engineering who are unqualified, on a basis of secondary school preparation in Mathematics and Phyaics, to Pursue a course in Eneineoring.

In this connection we are attampting to establish a criterion to test the justification of the present admission requirements of School of incineering.

Part of the necessary information involves the answers wich your office can supply on the onclosed questionnaire. Your cooperation in this matter will be appreciated and it is hoped that this inquiry $w 11$ not be too great on inconvenience.

Thank you.
Yours Very truly
E. $\because$. McMillin Encineorinf Department

Approved by:
M. I. Ray, Director

School of Engineoring

Date
STATE

## Name

1. inat 18 the total namber of secondary schools in your stats systom (inclusive of public, private, accredited and non-acoredited)?
2. That 18 ino tutal anrollu nh at preserit in these schools?
3. "hat precent of tinese schools do nol offer more than iwo units of matineautics (l unit zeometry and 1 unit al;obra)?
4. "hat per cont of the total enrolluent is represerted by thesu schools?
5. hat per cent of the toterl number of stcondury schools do not offer both chemistry and phyaics?

In the event this inform: tion is not available in the files of your office, any siEgceciuns us lo its source will be welcomed.

Dear Eir:
"ith the posent influs of stidents into the field of onrinearing, and with thn likelihood of an increase in the future, this department is faced with a problem that requires serious consideration.
"e have a rreat many aspirants in the University of Houston ichool of Enginearing who are unqualified, on a basis of secondary school preparation in mathematics and physics, to pursue a course in ongineering. ihe academic requirements of the Engineoring Cur:iculum, therefore, are forcing many candidates to drop during the fioshman year.

Presumably, your office is presented with a similar aituation, and we wish to relj upon your integrity and help relative to thie problem.

A copy of the onclosed questionaire has been mailed to the deans of numerous enineering schools throughout the country in an effort to obtain an authoritative concenaus regarding this existent anomaly between oneineering school gtandards and the mathematical backeround of so many secondary school graduates.

The discretion and cooperation of your office will be greatly appreciated in this matter, and it is hoped tinis inauipy ill not prove an inconvonience. In the event this survay yields a penificant result, a copy of the conclusions will be forwarded to you.

Yours very tiruly
E. P. McMillin

Engineering Department
Approved by:
M. I. Ray, Director

School of Encincering

## Date

## Name

## Institution

1. What is the total enrolment in your institution?
2. What is the enrollment in your School of kigineering?
3. Uhat per cent of the snrollment in your school of Engineering has bean admitted with lass than three units of secondary school mathematics?
4. Vhat per cent (approximately) fail or drop out of Four Fnginaaring Sichool as a rasult of inadequate hiph school mathematics preparation?
5. Do the individuals admitted with math deficiencias generally procress:
$\frac{\text { Normally }}{\text { Clightly Handicapped }}$
6. As a whole do these individuals mairtain a Grade Point iverage that 1s:

Below Averazo
Above Average

7. Do you foel that, in the future, acadrmic ontrance requirementa for bngineorinj rchools will:

Cingck uno

## Increase <br> Romain Samo <br> Decrease

8. Vihich of the following suggestions would you advocate as the most beneficial in regard to this proble:? (Indicate by numbers 1,2, etc.)
_ (a) Improved guidance in high schools
——(b) Increasin; of the math requirement for a high school diploma.
(c) Iowering admission remuiroment for ensinooring schools.
(d) Establistment of a preangingering, post graduate hieh school progrem.
(e) Utilization of the $f$ year College Engineering program modified to absorb the aecondary schooi deficioncies.
(f) A screening process, based on aptitude teste, prior to admiseion to the echool of Engineering.
9. Do you consider this problem a responsibility of:

Check One
College
recondary Schoole Both
10. Does your dopartment sectionalize classes on the basis of placement examinalions?

$$
\frac{\mathrm{Yes}}{\text { Ko }}
$$


11. Do jou have any suggestions lo offor with regard to obtrinirg a higher percentage of succesaful candidates in Enfingerinf, schools witholt lowering, the present academic standards and requiremonte for admission?


[^0]:    1 J. J. lifg, 1ns, "Study of methematics ibility in Relation to Success in aigineering $\dot{\text { i hool, " Journal of }}$ Brigineering cducation, June 192323 74ú-4宅.

[^1]:    1 Report of the society ior the romotion of knginecring ij20. quoted from B. J. Ullsvik "A factor inalysis and s'roenosis of the Scholastic Success of Freshman Enginecrs Jurine Their rirst Semester at the University of wisconsin". Lootorete Dissertation, 'he University of disconsin, 1941e

[^2]:    1 dickendon, a. E., "Investiguliun of Engineering Lducation", Engingering education, Junuary 132414 218-2ड2.

[^3]:    1 "Report of the Comsittee on Admissions and Iliminations of Eneineering ilud:nts." Journal of Engineering Education, Sott. 192516 47-73

[^4]:    1 Patterson, D. G., and Thorburg, P. M., "Hich School echolarghip sitanding of Freahmen Engineering Etudents". Journal of Enelnoering Educabion. April 1927 27 807-611.

[^5]:    1 Binghum, $\dot{\omega}$. V., "iptitudes and aititude Testine" s. 170-177. sublished by harper Bros., iow York, 1o37

[^6]:    1 ayer, Fred E., "A'hysics, athematics and ngineering". Journul of Engineezing Education, april 1938 28:582.

[^7]:    1 Indsay, F. B., "Problens in secondary Education that rifect Engineering Colleges". Journal oi Engineoring Education. March 1941 31 479-486.

[^8]:    1. "Offerings and Registrations in lifeh School Subjocts 1933-34", Bullotin joo. 6 of the urfice of Education of the united itates Lepartment of interior, 1938.
