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ABSTRACT

In the synthesis of control systems, first the design goals
are often specified. Then appropriate compensators are chosen
to achieve the design goals. In order to design a control sys-
tem more effectively, the practicing engineers are quite cften
required to construct a standard mathematical model by using
industrial specifications which are assigned. .In this thesis,

a new method is presented to construct the standard mathemati-
cal nmodel for single variable and multivariable systems.

The steps of research are listed as follows: First, a sec-
ond-order model with a phase advance factor is established to
investigate the relationship between the time domain specifiza-
tions and frequency dcomain specifications. ©Next, an criginal
synthesis method is established to construct a high order stan-
dard model by using industrial specifications. Two elegant
methods are derived to improve the convergence of the Newton-
Raphson multidimensional method. Finally, a method is presented
to formulate a multivariable control system in the freguency

domain and in the time domain by using industrial specifications.
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CHAPTER I

INTRODUCTION

In the synthesis of control systems, the design goals
are often specified first. Then, appropriate compensators
are cnosen to achieve the goals. A set of industrial specifi-
cations suggested by Gibson and Rekasiusl has been used for
the design goals of the single-input-single-output systems.
These specifications can be classified into two major groups,
one is the specifications defined in the frequency domain;
the other is the specifications defined in the time dowain.
The systematic study of the relationships between these two
kinds of specifications has been done by several researchers.
Seshadri2 has found empirical relations between them by using
analog simulation of a large number of systems. The simplest
summary and clearest presentation of these rules were con-
tributed by Axelby3 which are shown as follows

-

l. M = M = '_1'— (lnl)

M, : mnmaximum value of unit step response.

t
Mp: maximuni value of the closed loop freguency response
¢m: rhase margin
1
2. Me ey (1.2)
c

M : maximum value of the error of itlie unit ramp function



w,: Cross over frequency
3. W= (1.3)

w_: the frequency when the maximum fregquency response
P occurs

4. M_ = (1.4)
M, : maximum value of the unit impulse response

3
= (1.5)
P We

t_: the time when the maximum value of the unit step
p response occurs

6. t. = == (1.6)

t._: the time when the maximum error of the ramp function
with respect to it's input occurs

1
c o (1.7)
c

t : the time when the maximum value M, occurs

t

Concerning Axelby's rules, Park4 did a theoretical study by
using the well-known second order model. The transfer func-

tion is

c(s) _ |
R(s) 52 4 2Ew_s -+ w2 (1.8)




w

where
£€: Damping Ratio in the complex domain

w, : System natural angular frequency

£ and w are the specifications used to sprescify transient re-
sponse. Obviously the steady-state characteristic is ignored
in this second order model. So Shieh and Huang5 established
a second order model with a phase-advance factcr. 7%he trans-

fer function is

2

cis) _ Tw S+ w, (1.9)
R(S) s? + 28w S + w2
n n

In order to synthesize a ccntrol system which meetsg the
design goals, Chen and Shieh6 developed an original synthesis
technique to determine the transfer function. However their
methods deal only with a lcow order single-input-single-cutput
system. The extended research should be done for the high
order systems and themultivariable systems.

This thesis involves the following steps:

Chapter II deals mainly with Axelby's rules by using
the new second order model with a phase-advance factor. An
example will be shown to compare the specifications of a high
order system with its simplified second order mecdel.

Chapter III gives a method to construct a standard multi-
veriable model in the freguency domain. The ccrresponding
state equations can be obtained by an algebraic method which

usged matrix continued Ifraction. The preocesses of consitcuciin

3



a standard model are described as follows.

First, a multivariable system with various numbers of in-
put and output is viewed as a composite system of single-input-
single-output subsystems in the s plane, and the least com-
mon denominator of a multivariable system is constructed from
the eigenvalues assigned in the s plane.

Second, the numerator pcivnomial of each subsystem is
determined by using the basic definitions of the industrial
specifications, and the coefficients cf the common denominator
assigned. Then, the properties of the composite system, which
are formed from each subsystem, are examined.

Finally, the corresponding state-space equations which
are the minimal realizaticns of the standard multivariakle
model are constructed by means of the matrix continued frac-
tion.8 An example will be used to demonstrate these methods.

The last chapter will be the summary of this research.



CHAPTER I

THE RELATIONSEIP BETWEREEN TIME DOMAIN AND
FREQUENCY DOMAIN SPECIFICATIONS

2.1 Introduction

The primary purpose of this chapter is to derive a number
of the relationships between the time-domain specifications
and the frequency~domain specifications by using the new secocend
order model presented in Chapter I and Chapter III, which is

written 23 follows:

+ 2
Cls) Tw,.S W, )
S = . (2.1)
R(s) 2 2
5 + 26w _sS+ w
n n
where £ = damping ratio.
w, = natural angular freguency

By using the new model shown in Eq.{2.1) and followirg the basic
definition of each control specification, we derive the mathe-~
matical expression for each specification. A set of curves will
be plotted in the figures to show the relationship among the
specifications. Based on the curves plotted, we will discuss
and verify Axelby's rules.

2.2 Maximum Value of Unit Step Response, Frequency Response,
and Phase Margin

(1) Derivation of the relationship among M £, and T.

tl
Basedon the feedback system shown in Fig. 2.1.



R(s) E (s) LTS + 0f ~C(s)

2
s + (ZE-T)wns

Fig. 2.1

we derive the relationship among Mt’ €, and 1. By applving a
unit step signal to the system, or letting r{t) = 1, we can cal-
culate the output of the system cl(s), in the frequency domain

which is written as follows:

2
W S + W
c(s) = (2.2)

s(s2 + ZEwns + wi)

Using the Heaviside expansion we obtain the followinyg equation

X k x
c(s) = sl + 2 + 3 - {2.3)
St Bup m e yp? s b Bep b Jo Yy g2
where
kl=C(S) XS'S:_:O:]-
k, = cls) x (s + &o - ju Vi _ g‘)!s = - o+ Ju Vi T2
———y
_ 1- £ 4 (g
oy frm—
277 L g2
Y
K =k*= 1 - & = j4(t~&}
3 2 Y
_2/1 _ 52

The inverse Laplace transformation of c(s), Eq.(2.3), is as fol-

lows:
—tutcos w /3 E-T e
c(t) = 1 - sbontleos w v, £2 ey sin o v 2 ]
;/—- —-—-u—--—-j- td - -l s
‘L —~ l
e (2.4)



In order to find tv' we differentiate C(t), Eg.(2.4), obtaining
o .

Eqg. (2.5)
ac{t) _ ~Zw_t — 0T ey e
S = e e’n coswn6;£21:+__~rmﬂ;f_ ao%n 51nwn4_€2 t
) ¥, 2
-8 (2.5)

Setting Eq.(2.5) equal to zero and simplifying, we have

H-f-i:an'-l 1 ~E

£ = ' (2.6)

P
Ynt-g2

Substituting Eq. (2.6) into Eqg.(2.4), we finally obtain the max-

imum value of unit step response

T

S— L

- € . _—
2ty ——=sinw 2 t,] (2.7)

1-g2

- q_z&w t —
M, = 1-e”'n P[coswn‘{_g

Eg.(2.7) shows the relationship of Mt, £, and T.

(2) Derivation of the relaticnship among Mp,i , and T.
By definiticn, Mp means the maximum value of the clesed loop
fregquency response. In order to finrnd the relationship among Mp,
g, and T, we must follow Higgins and Siegel‘s18 technique
which uses complex variable differentiation. Tﬁe closed-loop
frequency response is expressed as follows:

56 (w) 36 (w)

M{jw) = | M{Zw) | e = M{w)e {2.8)

where M(w)and 9 (w) dencte the magnitude and the phase cf the
freguency response respectively. The derivative of M{jw) with

respect to « is:



. v = .
w ) e
dw
Dividing each of the terms of Eg.(2.9) by M(jw) = M(w) ej¢(w)
yields
1 adaM(Jw) _ 1 AM (w) .do (w) 3
M(30)  ds - M) w T 3aw ¢ (2.10)
From Eg.(2.10), we obtain
dM(juw)y _ 1 dM (w)
Re[M(jw) dw 1= M(w) dw (2.11)
and '
1 dM(jw)y _ d${w)
Inlgsey a3 T Tde . (2.12)

From Eqg. (2.11) we observe that if the left hand side of the
equation vanishes for a particular value of w= wp, then so dces
part of the right hand side. According to the definition of Mp

and wp, we have the equation as follows:

-0 (2.13)

Comparing Egs.(2.13) and (2.11) yields

R [J“(S) a5 s=j (2.14)

The closed-lcop transfer function M(s) is expressed by the ratio
of two pvolyncirials, which is shown as follows:

(s)

A
1 { - g
M(s) B(3) (2.15)
Taking the derivative of Eg.(2.15) we have
aM(s) _ 1  4A(s) _ A(s) dB({s) -
ds B{s) ds ds (2.16)

32 (5)



Substituting Eqg. (2.15) and Eg.(2.16) into Eq.(2.14), wes have

1 dr(s) _ 1 _aB(s)y -
A(s) ds B(s) ds s=jw

Re{j[ 0 (2.17)

If we apply Eq.(2.17) to the second-order model by making the

following substitutions

. 2
A(s) = Tw. s +w_
n n
_ 2 2
B(s) = s + ZEwns + W
@) _ o
as n
dB(s) _ -
35 = 2s + 2gwn

then Mp and wp are found as follows:

D = Vo
wp wnxl__2£2
1 } when 7 =0 (2.18)
M =
p -l
284, 2
w 1
o, = Bl + VI 72
P T when 7 # 0
2 (2.19)
P § 1/2
My = gt : )

v
(12+1) %+ 246212 - [(1%+1)-28%12)
{3) Derivation of the relationship among ¢m’ £ and T.

Since the closed-loop transfer function is

T s + 2
c(s) _ n-  “n ‘ (2.20)

R{s) sz + ZEW T + m‘
n n

By definition, we can express th:z open-loop transfer function

as follows:



10

[35]

W TS + w-
G(s) = n (2.21)
s° + (28-~1) wns

o}

The phase margin ¢m is defined as follows

where w, is called the gain crossover frequency, or

‘ ' | Tw s + wi | -3
G(s)) .= o : (2.22)
l S=10, sz+(2£-1)wns SEIu,

By squaring Eq.(2.22) and performing the multiplication, we have

4

2 ... 2 2 4
W + (4% —4£L)wn w

- wh‘ﬁ 0 (2.23)

Sclving Eqg. (2.23) vyields

w
c, 2

=97 = -(28%-281)+/

n

(262 2e1)% + 1 (2.24)

Therefore the phase margin is

6 = tan M —t [ (2E-7) ( E y1/2
1-2&t+71 {252' ng)Z +1- (252— 2£7)
+ T2 2+ 1 - (EP-2em) 2] (2.25)

(4) Summarv of the results which were obtained in sec-
tions 2.2-(1), 2.2-(2), 2.2-(3). Based on the foregoing deriva-
tion, several plots can be presented shown in Fig. 2.2, Fig.
2.3, Fig. 2.4, Fig. 2.5, and Fig. 2.6. The coordinates of these
plots are It, Mp’¢m versus the damping ratio, &, and the para-
meter T.

Axelby suggested that the relationship of ™
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can be expressed by the following equation

1

M, = Mp = = ¢£ : (2.26)

Inspecting the plots which we have, we found that Axelby's rule
holds only if the damping ratic is larger than 0.4 and for any

T'

2.3 Crossover Frequency ard Maximum Error Signal

(1) Derivation of the relationship among Me' £ and T. If
a ramp input is applied to the second-order system shown in Fig.
2.7, the Laplace transform of the output function C{s) can be

written as follows:

2
w TS + w
n n

C(s) = (2.27)
52(82 + 28w s + wi)
= é% + %} + c + D
s+£wn—jwn/zjg§_ S+€wn+jwn/1:g7_
where A' = C(s) x szl a =1
s=0
B = So(cls)x P | = T2

/1-¢

C!' = C(s) x (5‘*"5‘”n"jwn'1—gz)ls=—€w +jw Y. .2
n n 1-¢
(2£-1) (1-£4)+5 (1-262+16) T1-£%  _ Bic
= 2 2w_A
2wn(1—£ ) n
. 2 1-£2 S 2
where B = (28-1) (1-§7), A=(1-&g7), C= 2 (1-287+7¢)

D| = Cl*



time

Unit Ramp Response

ety I///;?(t)
Me
0 1 time
— 2
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Fig.
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Taking the inverse Laplace transformstion of Eg.(2.27) yields

- L 128 1 —-tw t,. . —s—
Cc(t) t + m ) + TR e n (B cosvl_EZ wnt
n n
+ C 51n¢1_€2 wnt) (2.28)

The error signal e(t) is defined as follows:
e{t) = r(t) - C(v) (2.29)

Substituting Eq. (2.28) into Eq. (2.2?9), the result is:

_ 28-t 1 =Ew_t, I e :
e(t) = o R e’ n (B coq/zlgz w t+C 51n¢l_£2 w_t)

(2.30)
The error signal e(t) is shown in Fig. 2.8.

Differentiating the error signal with respect to time, we
have

e'(t) = K%— ngnt[cos¢1_£2 wnt(gwnB~C/1_Ez mn)
n
{2.31)

- sin/l_giwmnt(cgwn+B¢l_gz wn)]

Setting e'(t) = 0, we obtain
N EB—C/l_EZ
tan -B Ctgj_ Y
£ = 1 (2.32)

where tv is the time at which the maximum value, Me>occurs.

Substituting Eg. (2.32) into Eq. (2.30), yields

2E-1 1 =En t . ——— .
= - - \ S w t +C siny
. x : e n viB c0svlag2 ntv C sin lmgz wnt 1

(2.33)
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(2) Derivation of the relationship among W £ and T.
By definition, W, is the gain crossover frequency cf the open-
loop frequency response, on other words, the fcllowing relation

holds when w= wc.

'LO Ts + 0)2
g n =1 (2.34)
s‘+(2£—r)wns s=3w

C

From Eqg. {2.34), W, is obtained as foilcws:

o, = o Iy (262 - 2e7)1 172 (2.35)

N S

(3) Surmary of the results which are cbtained from sections
2.3-(1), 2.3-(2). Based on the previous deriﬁations, we can pre-
sent the plots shown in Fig. 2.9, Fig. 2.10, Fig. 2.11, Fig. 2.12,
and Fig. 2.13. On the bazsis of the criterion #2 of Axelby's

rule, we can obtain the followiny equation

_ 1
M7 (2.36)
C

Comparing the Eqg.(2.36) with the plots, we found that Axelbyv's
criterion #2 can hold only when T is very small, in other words,
there is a factor which is affected by T which neceds to be added

when the zero of the second-order system cccurs.

2.4 Peak Frequency w_ and Gain Crossover Frequency ®
’J ~

[

(1) Reclation between wp and wc. Based on section 2.2

Wy = 6, l-£2 when 1= 0
(2.37)
(L)!: 1 o 55 )1/2
. [N SR R y ) a7
up = { "%Té+l)z-4T“£f when v # ¢
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and also from section 2.3

. — - ,.2 s 71/2 ~
w, = W [{2€2_2€T)2 + 1 (2g7-281) |} (2.38)

Plotting these two equations versus the damping ratio and the
parameter T, we found the relationship between wp and wc.
Axelby's criterion #3 gives us the following equation

W = w (2.39)

Again, we inspect the plots aqcording to Eq.(2.39) It is easy
to £ind that these two quantities are almost the same in a cer-
tain region when 1 is small. When a zero occurs in the trans-

fer function,therule in Eq. (2.19) suggested by Axelbv should

be modified. The plots of Egs.(2.37) and (2.38) are shown in

¥ig. 2.14, Fig. 2.15, Fig. 2.16, Fig. 2.17, and Fig., 2.18.

2.5 Maximum Value of Impulse Response and Crossover Frequency

Mt is the maximum value of the unit impulse response of

a system. To derive the relationship among M £, and T is

tl

a straight forward process. We start with the closed-loop trans-

fer function

2
Tw, 8 + W,
M(s) = 5 5 (2.40)
8" 4+ 280 + w
n n

It canbe considered as the Laplace transform of unit impulse
rasponse. In order to £ind the maximum value of the impulse
response, we differentiate Eqg. (2.40) bbtaining the following
equaticn

s(tw_s + mz)
n n

2

sM(s)= —
sz+2£mns%-wn

L)
N
L3
iy
[
g
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The inverse Laplace transformation of Eq.(2.41) is

PR zgwt _ 2
M " (t) [(- TEw + (1-Et)w )cosw vy _ 2t
gm (1-£1) , (2.42)
- 4 Tw, /- 2 )sin w / 2 t]
Vl 2
=&
. t
Setting Mt=0 and solving this equation, we find the time tc
at which the maximum value occurs
c ~-1(1-2E7) "1~ E
a: 2
£ = E-2T €~ + T (2.43)
w_v 2
n l1-¢

Substituting Eg.(2.43) into c'{%t), we obtain the following equa-

w egwntc[Tcos w_ v 2 t + a -gr)
" n'l-g% "o/
1-2 (2.44)

[
—y
it

sin wn“l—gz t.]

In order to inspect the result which we got from the previous
derivation, the plots of Egs.(2.44) and (2.38) are shown in Fig.
2.19, Fig. 2.20, Fig. 2.21, Fig. 2.22 and Fig. 2.23. From these
plcts we found that M, and w, are not exactly the same rule

t

as suggested by Ax2lby which is Mt = w, when & varies

2.6 Crossover Freguency and Time Domain Specifications

1. Time-domain specifications
The specifications used in the time-~domain can be summar-

ized by t_ and tp shown in the graph, Fig. 2.24.

2. The relationship between tp and W,
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Based on section 2.3, we knew that

2 1/2
= je] - T - 2r+)1
w0 wn[{ng_ng)_ + 1 (2% 2e1) 1 (2.45)
Based on section 2.2, we have
TV 2
-1 1-¢

I + tan —ﬁ—
t = ' (2.46)
p w_v 2

n 1-¢
According to Axelby's rule, the approximate criterion is

3 .
t = —— 2.47
™ (2.47)

In crder to inspect this criterion, we plot Eg.(2.45) and Eqg.

(2.4€¢) in Fig. 2.25, Fig. 2.26, Fig. 2.27, Fig. 2.28, and Figq.
W

2.29 by using tp' and ig as the vertical coordinate. From these

plots we found that the equality in Eq. (2.47) holds approximately
in a region of § < 0.7.

3. The relationships between t and Z%— .
c

From section 2.5 we find the time tc at which the maximum

value occurs is
L e
n_l‘l 2ET)/1_£2
£ - 2782 4 1
" _—
n/i—gz

ta

(2.48)

Also,we know the relationship between crossover frequency, &,
and T which is written as fcllows:

2

1/2

W, = wn[{égznng)z 41 - (287- 28m)] (2.49)
The approximate criterion of Axelby's rule is
1
tC ='—(I)"—“ (2.50)
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If we use Eqg.(2.49) and Eq.(2.50) to plot the curves shown in
Fig. 2.30, Fig. 2.31, Pig. 2.32, Fig. 2.33, and Fig. 2.34, it
is obsefved that this approximate formula suggested by Axelby
is not highly accurate.
4., The relaticnship between tv and W, .
From section 2.3 we knew that the time t, at which the maxi-

mum value of error signal occurs is:

-1 gB—c/l_Ez
-BY, ,2 - £C
t_ = 1-¢ (2.51)

ta

where B = (28-1)(1~- 52)

c = /7 (1 - 285 )

and the crosscver frequency W, is:

0, = (282 - 2e1) 172 (2.52)

/ 5 -
walag? 2y ? + 1
To compare Eqg.(2.51) and Eg.(2.52) we plot two curves which are
shown in Fig. 2.35, Fig. 2.36, Fig. 2.37, Fig. 2.38, and Fig.
2.39. It is noted that the higher the damping ratio the worse

the criterion.

2.7 Tllustrative Example

Consider a high order system

3 2
bls + bzs + b3u+ b4

o 5 4 3 2
a.=s + a.s + a,s + a,s + a.s + a_s + s+
3 3 4 5 a6 a7 3.8

T(s} =

where
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jv]
]

}—l
lop
li

1464.786701

1 1
a, = 112.04 b, = 7958
ay = 3755.92 by = 533760.7473
a, = 39736.62 b, = 617497.375

(2.53)

a; = 363650.56
ag = 759894.19
a, = 683656.25
ag = 617497.375

It is regquired to compare the specifications obtained from the
original system and the reduced model.
From the exact response curves in the time dcomain and the

frequency domain, we found a set of specifications for this

high order system which are written as follows:

M = 0.8925
e
M, = 1.497
M = 2.22
- - O
b 153
Mt = 0.84899
(2.54)

w =1

]_C;
w = 1,01

[

tp = 2.8

t = 1.05

C

t = 1.6



The simplified second-order model of this high order system is .

2 . &1
s + 0.509768s + 1.051966

From this second~order model we know that

w, = 1.02565
T = .24804 (2.56)
g = .248508

From Eg.(2.54), we obtain the relationships between time-domain
specifications and frequency domain specifications of this high
order system which are written as follows.

1

.‘ —— e pn———
MtrMp sin ¢ |’éMt
m
M,= 0.84 w
< C
M_= 0.9 2
C
w_ = 0.99 (2.57}
P C
tp= 2.8/00c
tv== 1.6/wC
t = 1//(1)
C C

By using the equivalent specifications obtained from the reduced
model in Eg. (2.56) and the curves shown in Figs. 2.3, 2.10, 2.15,
2.20, 2.26, 2.31, 2.36, we can determine the following equiva-
lent relationships between the time domain and frequency domain

specifications of the reduced second order model.
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I___l-_' # My when & < 0.4

M, # M -
t sin ¢m

p

M, = 0.75 w

t C
M = 0.88—2—

e 1w
w = 0.9 w

P c

(2.58)

tp = 3.0/wc
tv = 1.7/wc

+t =1.1/
- 1 l/wc

~
[

Comparing the results obtained in Eg.{(2.57) and Eg. {2.58)
we observe that the rules, which are used to express the relation-
ships among specifications, hold in both the original system and
the reduced system. In other words, we can determine the speci-
fications of a high order system by using the equivalent speci-
fications obtained from the reduced model and the rules devel-

oped in this research.



CHAPTER III

MODELLING CONTROL SYSTEMS

3.1 Introduction

Model reference tecnnique isg successfully used in many
control systems designs, particularly in the field of model
- PR ‘s 11
reference adaptive control systems. Wilkie and Perkins have
propcsed a simple method to minimize an algebraic function,
thus the minimization of the integral square error can be avoid-
ed when a reference model, whose corder is egual to that of the

system to be designed, can be established. In that paper,ll

they have indirectly exposed the advantages and necessity of

a high-order reference model. For example, if a high-oxder
reference model is used, no system simulations are reguired

in the desigr of a model control system. While in state-space
contrcl system design, the need of a high-order standaird model
is most urgent, particularly on the pole-zero assignment prob-
lems. In oxder to construct a high-order standard model, Shieh
and Huang5 developed another technique to construct a low-
order system based on the limited number of industrial svecifi-
cations which are available, then, expand the low-order model

into an approximate high-order one. 1In their technique, the

Newton-Raphson multidimensicnal method (see Appendix) is applied

to solve the resulting in non-linear simultaneous equations.
However, if the order of the non-linear equation is higher
than two, the initial guess gives some troubhle. Shieh and

5 . . . 15
HuangJ dealt with this problem by using Ausman's approximation



and Bode's aﬁymptotes.l5 In this chapter we first review the
single-input-single-output low order system, and develop a new
method to estimate the initial guess of the Newton-Raphson
mualtidimensional method, then we concentrate on the multivaria-
ble control system model constructicn, and finally, the corres-
ponding state-space equations which are the minimal realizations
of the multivariable standard model are constructed by means

of the matrix continued fraction.

3.2 The Second-0Order Model with Phase-Advance Factor

Consider the well-known second~order model, the transfer

function is

w2

C(s) _ n
R(s) 52 + 28w_s + wz
n n

il

where R(s) Laplace transform of the system input signal.

C(s) = Lapleace transform of the system output signal.
g = the damping ratio in complex domain.
- w, = the system natural angular frequency in the fre-

quency domain.

£ and w are the specifications used to specify transient re-
sponse. Obviously, the steady-state is ignored in the formula-
tion of equation (3.1). In a servomechanism design, or a fol-
low-up control system design, the most desirable property is
that the controlled system foilow the variaticn in the refer-
ence input rapidly and accurately. Therefore, the velocity
error constant Kv’ a specification of steady-state response,

is an important element to be prescribed. Taking the velocity
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error constant into consideration, the modified form of Eq. (3.1)

can be written as

. 2
C(s) bs + wn

= - (3.2)
R(s) sz + 2£wns + wi

where b 1is an unknown constant to be determined, we simply

fcllow the definition of Kv or

KV = lim sG(s)
s >0

where G(s) is the open-loop transfer function
bs + w2
n

€ls) = S+ 2Ea_~ B (3.3)
We have
®h
b= w (28 - 5) (3.4)
v
the modified second-order model is
w
n 2
wn(Zg - E—)s + W,
c(s) - v (3.5)
R(S) 2 .

87 + 28w _s + w2
n n

Thus the follow-up velocity in the model reference design can
be prescribed. The appearance of a zerc in Eq. (3.5) is very
significant since the transient and steady-state response of

a system are greatly affected by the zero.17 For example, the
zero in a transfer function can be used to control overshoot
and steady-state velocity error, etc.; on the other hand, the
zexro of Eq.(3.5) will contribute a leading phase angle in the
frequency response analysis. Therefore, the pole assignment is

not only the determinative factor to be considered in desian
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control systems. In other words, in ignoring the role of zeros
in a linear control system it is impossible to cbtain the satié—
factory dynamic properties.

The control system designs, often the specifications other
+han Kv and & are specified. The equivalent specification in

Eq. (3.5) can be obtained from Chapter II.

3.3 The Third-Order Control System Model

In practical problems quite often more than three specifi-
cations are given. To meet the specifications perfectly and
precisely, a high-order model is necessary. Chen and Shieh6
developed an original synthesis technique to fit a second-order
transfer function based on three industrial specifications.

The Newton-Raphson multidimensional method is applied to solve
the resulting non-linear simultaneous eguations. However, if
the order of the non-linear equation is higher than two, the
initial guess is not so easy to decide. Here the author devel-
ops a new method to estimate the initial value by means of the
continue fraction. We will illustrate this method by using an

example.

Suppose that the following specifications are given:

w, = crossover freguency = 4.7
¢m = phase margin = 45.6
Mp = peak value = 1.5 (3.6)
w_ = peak value frequency = 3.5
Wy, = bandwidth = 6.5

The first two are open~loop specifications, while the last three
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are closed-loop ones. A third-order model is necessary to
represent the specifications.

Let us assume a third-order model

b 52 + b.s + a

T(s) = —3 N | (3.7)
S + als + a_2S + a3

@]

~~~
n

St

el
n
g

Following the definitions shown in Eq. (3.6), we construct the
non-linear equations:

(i) the definition of W is

1G(Gu )| =1 (3.8)

where G(jwc) is the frequency response of the open loop

system evaluated at W+ We write the non~linear equation as:

4 2

3 2 2
¢t lug=@,-by)w 17 = (35-bju)

2
(8y-by) 7w 2

2 2

(ii) The definition of ¢m can be written as

by = 180° + £ €130} (3.10)

this means:

2, 2., 2
bzwc(al—bl) - (a3—blwc)(wc-a2+b2)

(3.11)
- n 2 - 2 -
~tan:ﬁn[(a3 blwc)(al bl)wc-+b2wc(wc—a2+b2)] =0

(iii) The definition of 0y is known as:

,
]%(jwb)l S - (3.12)
. 5 .
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The corresponding non-linear equation is:

(a 3" lwb) +b22m; —-{(a —a 0 )+(w 2wb)z] =0 (3.13)

(iv) The definition of Mp is:

c,. B ~
|gGu) | = my (3.14)

The cocrresponding non-linear equation is:

a_-b,w?) %+ b2 o2 -
L P Z

2,2 3
( 3

w )"+ (w

2
[@3419 p

2y 2
~a3wp) 1 =0 (3.15)

(v) The definition of wp is the frequency at which

aMm

p .
- = Q (3.16)
ciwp )

Following Higgins and Siegel'sl8 complex variable dif-
ferential technique

[2a.a,w —2a2w3—(a

2 3
1339 1%p 37 ) (-w

3 7p p+a2wp)]

2 - 2 3
w_) “+ (b, w) ]+L 2a3blwp+2bl p+b w ] (3.17)

)2

w

TN 'UN

_— _.3 y27
[(a3 ay +{ wp+a2mp) ] 0

Egs. (3.9), (3.11), (3.13), (3.15), and (3.17) are a set of
non-linear simultaneous equations. After substituting the
given values into these equations, we can solve for the un-
knowns a; and bi' In order to have a very good initial wvalue,
we have to choose three specifications from the given specifi-
cations, and construct a second order model first. In this
example, assume we choose: |

M =1.5
<



Using Mp and mp to find the dominate poles of the second-order

system model by referring to Fig. 3.1

16}

20 log|G]|
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1.0 2.0 10
= w/wn = Frequency ratio

IPANUUNY SUU W TN S |

I8
u

Fig. 3.1 Frequency Response Plots

the dominant poles are

A

1 = -1.3611+3 3.6429

A2

-1.3611-j 3.6429
So the second-order model can be constructed as follows:

bs + 15.12345679
s2 4+ 2.72222s + 15.12345679

solving the unknown b by using the definition Wy

b = 2.645

~

62092

Since the second-order model is
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T(s) - 2:6457620925 + 15.12345679
s® 4+ 2.722225 + 15.12345679

the continued-fraction expansion is

T(S) =
1
hl +
h2 1 (3.18)
—= +
S 1
h3 +
By
S
where
h1 = 1. 'h2 = 197.7953319
hy = -0.0003918027 h, = ~195.1495698
The quotients hl’hz’h3 and h4 are the significant quotients

of this system. We need to insert a group of insignificant
guotients into the expanded continued-fraction to obtain a
stable approximate high-order model without significantly dis-
torting the characteristic of the original system. Shieh and
Huang5 found the regularity of these insignificant quotients
which are as follows:

(1) honey " Boniger 70

(@) | hyys 1> by g |

j=1,3,5....,2m-2n-1.

In practical applications one more rule is suggested to

simplify the manipulations. That is

Ponti = Pon+g+2 _
3=1,3,5...

ﬂ'2n+j+1 = h2n+j+3
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In this example, we need to have a third-order model, so h5 and

h6 should be added to the expanded continued-fraction. Assume

h5 = 100 ’ h6 = 0.1

Using h,,h,,h,,h h5, and h_, we can construct a new third-order

17727737747 6
model which can be simplified into the original second-order
model.

The third-order model is:

2.745762182'+ 41.573328s + 151.2345679

s3 4 12.82218305s% + 42.33792928s + 151.2345679

T(S) =

From which the initial guess is easily made:

a; = 12.82218305 bl = 2.7457621
a, = 42.33792928 b2 = 41.573328 (3.19)
as = 151.2345679

We use Eqg.(3.19) as the first guess, and substituting the data
into the multidimensional Newton-Raphson formula. After seven
iterations the model is obtained to meet all the specifications.
The transfer function is as follows:

3.1883551852 + 15.56104302s + 29.80626
3

5% + 4.26715952S2 + 20.58799529s + 29.80626
(3.20)

'I(S) =

3.4 High-Order Model Control Systems

In design follow-up control systems or state-space feed-
back designs more than often a high-order model is necessary.
Shieh and Huang5 developed a method based on the continued-
fraction to establish an approximate high-~order model from a

low~order nodel which is constructed with the industrial
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specifications. Sometimes, the dominant poles and the other
poles of the system have been assigned, the only thing we have
to do is to determine the zeros of the system. Here we present
another method by using the Newton~Raphson method.

Suppose that the following specifications are given:

(i) The poles of a closed-loop system (Type 1 system) are
assigned at

Al = ~-1.36 + j3.64 A3 = =5
(3.21)
Az = -1.36 - j3.64 A4 = =10
The dominant poles are Al and Az.
(ii) W, = The bandwidth frequency = 6
(iidi) W, = The crossover frequency = 4
(iv) ¢m = The phase margin = 37

A fourth-order transfer function is required to meet those

specifications. Assuvme the transfer function is:

2 + a 83

+ a. 24

S +
22 a

23°

3
s + a13s + al4S + a

a
21
T(S) = ;—r——qls) =
o a

iy
15

(3.22)

Fellowing the basic definitions of the industrial specifications

+ a

1l 12

shown in Eqg. (3.21) vields a set of non-linear equations as fol-
lows:

(i) The pole assignment implies:

2 4
+a.s +a..5%+a s+ a..s

Aol8) = a 12 13 14 15

11
= (s»kl)(s—kz)(s~l3)(s-k4) (3.22a)

€2.5s + 105.952 + 17.72s° + s?

(8]

= 755 +
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This means

all = 755 a12 = 362.5
(3.22b)
a5 = 105.9 ay, = 17.72
=1
als Lo
{(ii) The definition of 0y, gives
T (S, ) | = (3.22¢)
b )
The non-linear eguation is
2,2 2 2.2
(@y178550p3 7 7 0 (@y,-3,,0) " -
1 4 2.2, 2 2,2, _ )
[y te-aqup) Ttug (g 5-a),0) 7] = 0 (3.224)
(1iii) The definition of W is:
[G(jwc)l =1 (3.22e)

where G(Jw ) is the frequency response of the open-loop systenm

evaluated at w, . The corresponding non-linear equation is:
2,2 2,2 4. 2 2
(ayy7a,300) 7 + wZ(ay,may,0a) *~ul (0= (a) 5=ay ) ]
(3.221)
2 2,2 _
wellagy-azy)-lag may e ™ =0
{iv) The definition of ¢m can be represented as:
o = 1 + /8U3u) (3.22¢)

m

The corresponding equation is

2 2., 2 2
w_lay,=ay,w) B ~ayy+a, gl ~(ay -a, 50 ) [(a,-a,,)
2 2., 2
— 1. 0 - { - 3
(aggmag e Jd-tand [e (a)-a,300) (w -a) 3+a, )



=0 (3.22h)

2 o 2 2
+w lagymag ) (@) y-as5-ay 4w tagy 000 ]

24

Egs. (3.22d4), (3.22f), and (3.22h) are a set of high-order non-
linear equations. Using the given values in Eq. (3.22) and Eqg.
(3.22b) and applying the Newton-Raphson multidimensional method,
we can solve ays e However, the Newton-~Raphson multidimensional
methodonly converges for a small range of starting values or
‘the initial values. The following new procedure is suggested

in this chapter to determine good starting values.

6
The matrix equation proposed by Chen and Shieh can be

applied to determine the starting values and can be written as

follows
[a2] = [H][a,] (3.23a)
where
a1t = [a a a a a., ]
2 217 722" 723" T24"°° "7 2p
T _
[al] = [ayqs a5, al3""’alp]
-1 .
1 — -
tnl = [8,] [H]
B 7 r- - - [™
hy 0 0lfr o o - o]l o o0...0
1 h2 0 0 0 hl 0 0 0 1 0 « .
{}.12] = O l h3 * 0 l h2 . . . O . 0 - . -
) . 1 . . . . . . . e e e e s
‘P 0 1 hA _? 0 0 . -hp_£ Lp 0 ¢ - .« - h
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1 0 ¢l b oo - o 11 o o o o

1,1 = h, 0 of o 1 - 0 01 0 0 0
1hy, = | oo - - o 00 1 0 0

0 1 Jedo o0 - - 0 0o - 0 - -

- . O . - . . . . . . . . . .

. « 1h 0 0 +« O nh
0 0 0 1 0 O p:% 2

el -

The asy and a5y are the coefficients of the transfer function

gl{s) in Eg.(3.22). The hi in Eq.(3.23a) are obtained by

expanding the ¢(s) into the cocntinued fraction of the second

Cauer form shown below:
. - 21

all + alZS + al3s + . . . +t a

(3.23b)

or by the process of evaluating starting values for the Newton-
Raphson multidimensional method described as follows. First a
low~order transfer function g*(S) is constructed by using some
dominant poles and specifications assigned. This g*(s) can be
considered as a reduced model of the expected function g(s).
Next, expanding the g*(s) into the continued-fraction of the

second Ceauer form yields a set of guotients hi' Finally, using



these hi's as dominant quotients in Eg. (3.23a) and constructing

the vector a; with the coefficients a in Eq. (3.22b), we can

1i

solve the vector a in Eg.{3.23a). The elements in the vector

2

a, are the required starting values. 1In this example:
The g*(s) is
b,s+ b b,s + b
g*(S) = (_,_;: )(S“i ) = 2 L 2 (3.242)
R | 2 s + 2.72s + 15.1
The system is of type 1, therefore b2 = 15.1. By using 0, = 4

and following the definition of wor We have bl = 1.68157.
The g*(s) is

g*(s) = 1681575 + 15.1 (3.24b)

s 4+ 2.72s + 15.1

Expanding Eg. (3.24b) into the continued-fraction of the second
Cauer form yields a set of guotients hi i.e.,

hl =1 h2

}

14.54127

h

3 ~0.08075 h4

-12.8596

Substituting these hi values and the a values in Eq. (3.22bh)

1i

into Eq.{3.23a), we have the required starting values [agi], i.e.

A

(&) O

a21 = 755 a22.= 310.5788
o _ - o _
ay3 = 40,323 a4 = 1.68165

Using these values as starting values for the Newton-Raphson

method, we can obtain the required values of a,, at the fourth

iteration. The required g(S) is:

_ 1.5803859S°+39.0379352+320.08482s+755
g(S) = 4 3 ”

s 4+ 17,726 + 105.95° + 362.55 + 755

{3.24c)
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3.5 Modelling Multivariable Control Systems in the Frequency
Domain

Let a multivariable system having m inputs and & outputs

be described by the following transfer functicon matrix:

[Y(s)] = [6, (s)][R(9)]

where
G ()] = —L1— [Q(5)] = —>— {g. ,(5)}
o' A (8) a_{s) "*i,J
o o
(3.25)
ol
AO(S) =i£l a,s ; al#o and an+l=l

The dimensions of [Y(s)], [G(s)] and [R(s)] are x1, &wu, and
mx 1, respectively. Let us define g = min(2,m) and rO =
rank[Go(s)], which can be obtained@ by applying Gilbert's theo-
rem12 or by checking the rank of the Hankel matrixlj obtained
from [G (s)]. Each g, .(s) and g, .(s) is the element which is
o i,j i,J
located respectively at the ith row and the 3jth column in the
matrices [Q(s)] and [Go(s)]. The transfer function 95 j(s) of
1 4

a subsystem which is the transfer function of the ith output

to the jth input is:

2 n-1
g (S) L 1 o (s) _ a21+ a225+ a23s +.....+a2,ns
1,3 = 2 (sy 9, = D
o 897 t @98 F eeeee a3y 8
(3.26)

Using the basic definition of the given industrial specifications
and considering the poles assigned, in general, we can construct
n non-linear equations. The Newton-Raphson multidimensional
method can be applied to‘find the solutions a2,j of the ncn-

linear equations. The procedures are just like those for the

single-input-single~ocutput system. The method proposed to
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construct the multivariable system model may be summarized as
focllows:

Step 1. Determine the degree of the common denominator Ao(s)
and the order of the standard multivariable model required. The
desired Ao(s) and the characteristic polynomial A(s). (i.e., the

least common denominator polvnomial of all the minors of Go(s)

are:
) » n+l 5-1
A (s) = (s~Al)(s—xz)(s—AB)...(s—An) = j£1 al,js (3.27)
al,n+1 = 1, and al,l # 0
- qg _ _ 974 9 ...(a1.19
Als) = {AO(S)} = (s ;\l) (A Az) (s An) (3.28)

The eigenvalues kj of Eg.(2.27) are assigned in the s-plane.

The choice of the kj is a design freedom and a certain amount of
experience is helpful.

Step 2. Determine the coefficients a2,j of each subsystem gi,j(s)
by using the basic definitions cf the industrial specifications
and the ap obtained in Eg. (3.27).

Step 3. Conbine each subsystem gi’j(s) to form a composite sys-
tem {gi j(s)} and examine the properties of {gi’j(s)}. If the

(s)}

characteristic pclynomial A(s) of the composite system {gi,j
has the form shown in Eqg. (3.28) or A(s) = {Ao(s)}q, then the
standard model [Go(s)] is obtained. An illustrative example
will be shown as follows.

Consider a multivariable system with three inputs and two

outputs. It is reguired to construct a standard model by using

a set of industrial specifications and some pole assignments.
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The multivariable system in the frequency domain is:

[Y(s)] = [GO(S)][U(S)]

where
(s) qlz(S) ql3(S)

1 ]
qu(s) qzz(s) q23(s)

18) (3.29)
(@

(G, ()] = {g; ()} =

The eigenvalues of the system [Go(s)] are assigned as follows

A =1+ )

A . (3.30)
2 =71 -3

For this second order system, the pole assignment implies that
1

V2~

The least common denominator Ao(s) of the [Go(s)] is

the damping ratio = and the natural angular fregquency = v2.

_ _ _ _ 2
Ao(s) = (s Xl)(s kz) = 2 + 28 + 1s

(3.31)

or all = 2 and a12 = 2

The transfer function and the specifications for each subsystem

gi’j(s) are:

S
(1) gy, = Ao(s)[aZl + a,,s] (3.322)

The final value of unit step response is unity.

KV = The velocity error constant = 20 (3.32b)

By using the basic definition of each specification, we have the

following equations

ay7 = apy ' (3.32c¢)
12 - %220 % T % _ (3.324)

(2) glz(s) =0 (3.33)



(3)

g

13

(s)

- 1
= Ao(s)[bZl + by,sl

The final value of unit step response is zero

W

b

The bandwidth frequency = 6.5 rad/sec

The eguaticns to be solved are:

and

(4)

and

b

b

21

2
21

+

c.
2 2
byouy, =

1

2

[(a

2

11

|
9y (8) = Ao(s)[CZl + cypsl

+ a

-

2 .2
12%

The final value of unit step recponse is zero

¢m

The phase margin = 45°

The corresponding equations are:

c21 = 0
(a - c 2)2
11 21 ~ Y¢
2
Cypfayy = @y = wg
tan ¢m[c21(a11 - c

+ (a1, = <y,
Jo, - Cyy(ay
2
o1 T wc) + ¢

where wc is a crossover frequency.

(5)

1
9y (8) = Ao(si[dzl

The final value of

w
C

+ dzzs]

2 T Spp)g

(a

22'%12

unit step response is unity

The crossover frequency =

5 rad/sec

The equations to be solved are:

d

21

= a

11

L

75

(3.34a)

(3.34Db)

(3.34c¢)

(3.344)

(3.35a)

(3.35b)

(3.35¢c)

{3.35d)

(3.35e)

(3.36a)

(3.36b)

(3.36¢)
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2.2 2 2
(agy = dyy —w )™+ (ay, = dyy) ug
2 2 2
(a2, + a20’) (3.36d)
and
(6) g,,(s) = 0 (3.37)

-

Substituting the coefficients ajq and ap,

fications given into Eg. (3.32) to Eq.(3.37) yields the follow-

assigned and the speci-

ing coefficients for each numerator polynomial.

a,; = 2. a,, = 1.9 | (3.38a)
b2l = 0. b22 = 4,60134 (3.38b)
€y T 0. Chy = 1.17157 (3.38¢c)
d2l = 2, d22 = 7.21 (3.384)

The standard multivariable system in the frequency domain is:

1

1.95 + 2. 0 4.601345}
s + 2s + 2

1.17157¢ 7.21s + 2. 0
(3.39)

[6 (s)] = —

3.6 Modelling Multivariable Control Systems in the Time Domain

The standard multivariable model [Go(s)] constructed in
section 3.5 can be transformed into state~space equations which
are controllable and observable. When the number of the inputs
m is equal to the outputs £, £=m, the matrix [Go(s)] in Eq. (3.25)
can be represented by a matrix continued fraction of the second

cauver form as follows:

e =[A__ - n=1, -l
“CO(S)1 [AZl*A g+e...+A_ s 1Ia 51

22 2,n +Alzs+---+A

11 1,n+l
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=[u,+[0, = +[H+0n, = +[...177 77T (3.40)

where Al,i = ai[I] and Az,i = [Qi], 1=1,2, 0 eeeeenns

The corresponding state equation of the [Go(s)] in Eg. (3.40) is:

X =A.X + B.U
1

1
(3.41)
T
Y = c1 X
where
(Hl)ﬂ2 (Hl)H4 (Hl)H6 . e (Hl)sz
N (Hl)H2 (H1+H3)H4 (H1+H3)H6 .« e . (Hl+H3)H2k
1
)
(Hl)Hz (H1+H3)H4 (H1+H3+H5)H6 (Hl+...+H2k”1,H2k
Hl 0 0 - - - -0 H, H, Hg - * * Hy
H, H 0 -0 | 0 H, H6 Tt Hgy
- - Hl H3 HS . - . - O O O H6 . . - sz
fl H3 H5 HZk—%J _0 0 0 = * - HZK;
T
B = lz, 1, . .I7 and
. ,
C}' = [HZ, H4' Y . - ? sz]

The matrices Hi’ i=1, 2,++++, 2k-and k < n in Egs.(3.40) and
(3.41) can be obtained by either of the matrix Routh algorithms

as follows:

(1)

= -1 ce
Hy = Ay ;Ai+l,l] , i=1,2**+,2k and k< n
rank [A, .1 =g g = Min(%,m) (3.42a)
il
A, . = A

i,5 7 Mie2,5+1 T HicoBioy e 7 2

w =

~ -
.

> N



78

(ii)
Hy= [Ai+l,l]-1 Bi, 1, i=1,2---,2k and k< n
rank [Ai,l] = g g = Min(%,m) |
Bi,i = Biog,j+1 " Biap,ge1 Bip 73 = L2070 (3.42b)
i=3,4,°""

It has been shown by using Gilbert'sll theorems that Eq. (3.41) is
a minimal realization of the matrix [Go(s)], if rank [Hi] = q
i=1, 2, **+, 2k and Xk < n. This can be further verified by

Rosenbrock's approach as follows. The system matrix of Eq. (3.41)
Pls) = |----~~ - .- ' (3.43)

rom Eqg. (3.41) we cobserve that if rank [Hi] = q then there is no

pole at the origin or s#0, and the dimension of A, is k x g. By

1

performing row and column operations, the matrices [sI - AIE Bl]

and [s1 -~ Af i —Cl] in Eq.(4.43) can be transformed to the smith

form 10, 1. If kxq=r  =rank [Go(s)],then Eq. (3.41)

s

g kxg « g

is a minimal realization of [Go(s)] with minimal dimension k x g.
This is necessary and sufficient condition for the existence of
the matrix continued fraction. The necessary and sufficient con-

dition for the existence of Egs, (3.40) and (3.41) is that the

ratio (k) of the rank (ro) and the dimension (g) of the matrix

r
[Go(s)] , k=-2, is an integer and rank [A, .1 in Eq. (3.42)
g i,1

is g. Eg.(3.43) can be further transformed to a strictly equiv-

alent system as follows:
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- \ -
ST A2 1 B2
= - — — _I._ — .
Pl(s) , (3.44)
T
~C 0
5 4 | |
where
- _
Hz(Hl) H2(Hl) H2(Hl) --on(Hl)
H4\H1; AH4(H1+H3) H4(H1+H3) °°'H4(H1+H3)
A2'=— H6(H1) H6(H1+H3) H6(H1+H34H5)---H6(H1+H3+H5)
-sz(Hl) H2k(H1+H3) H2k(Hl+H3+H4)- H2k(Hl+H3+"+H2k—1L
32 = H2
1
4
aﬁd
cg =z, z, 1, °-+, 11

The equivalent state equation of Eqg. (3.41l) is:

A2 z + B2U

T
2

N3
it

(3.45)

Y =C, P

An eguivalent state equation of Eqg.(3.41) in the phase-variable

coordinates is expressed as follows
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P=A,P+B,U
(3.46)
P
Y =c]p
where
B . . . 7 [ T
0 .
Ay =1 , , By =1,
| Rin TRy TRy 7T T Ry =
p
C3 = [Ryys Ryps = = =/ Ry 4]

The Ri 3 in Eg.(3.46) can be obtained by the reverse process of
[

the matrix Routh algorithma

Ropppr 1= [T

R = H

p,1 =~ Hp Ry, + P =2

k’

R, .., =R, . + H, R, . (3.47)
i-2,3+1 i,J i-27i-1,3+1

i=2 2. ,- « +,3;3=1,2, - * * k.

k+1’ "k’
From Eg. (3.46) we have the two-factored polynomial matrices for

+he matrix Go(s) as follows

6 ¢s)1 = [R,(s) 1R, (s)] -1

_ k-17 kp-1
= [R21+R223+ +R2,ks ] [R11+Rlzs+ +R1’ks ]
(3.48)

The {Rz(s)] and [Rl(s)] in Eqg.(3.48) are the relative right prime
polynomial matrices.l3 This can be verified by performing row
and column operations on Eg.(3.43). The system matrix [P (s)]

-in EBq. (3.43) is transformed to the following unimodular



equivalent matrices.lo
— ' 3 — ]
ST - A, ! By I.-4q 0 0
S S
I .
. ! and 0 Rl(s)q Iq (3.49)
1 -Cl | 0
L | 0 R, (s)q 0

From Eg. (3.49) we have the factored polynomial matrices shown
in Eg. (3.48)
In the same fashion Eg. (3.46) can be expressed by other

phase-variable form:

F=AF+ B,U

4 4
(3.50)
= ol
Y = C4z
where
0 0 0 oo _Tll Tye
I 0 0 s —T12 T22
A4 = 0 I 0 -T13 ’ B4 = T23
_O o 0 cee _Tl,k; _T2,k_
T
Cy = [0, 0,0, - - 1I]
T in Eg. (3.50) can be obtained by the reverse-matrix Routh

i,j

algorithm as follows

Toxs1,1 = LX)
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T H, : 1= 2

Ti2,5+1 7 Ti,5 " Tioa, 541 Mi2 k+1, 2k, ** 3 ;

j"—"l, 2'00.’k.

(3.51)
The factored matrix polynomial of the [Go(sﬂ is:
k-1 k-1
m~ = ] s e ® S T o s 0
[ao(s)] [T, +T, 5+ Ty kel ] [”21+T225+ Ty 1S ]
(3.52)

when £ > m, Egs. (3.41l) and (3.46) are the minimal realizations
of the [Go(s)] and Eqg. (3.48) is the factored form of the [Go(s)]

because the rank [Go(s)] =r, = the dimension of A1 = k x m and

k is an integer. The Hi can be evaluated from Eq. (3.42a) ex-

cept that the pseudo-inversiocn should be applied. In other

words, the pseudo inverse of A, ]—1 =

1+l,l] = [Ai

+1,1

T ] 1T

A1, 125411 i+1,1

] in Eqg.(3.42a) is the left inverse of

the matrix'[Ai+l’l] . Eg.(3.47) is used to determine the ma-
trix coefficients Ri,j in Eqg.(3.48). When xm, Egs.(3.45) and
(3.50) are the minimal realizations of the [Go(s)] and Eg.(3.52)
is the factored form of the [Go(s)]. The matrices Hi in Eq. (3.45)
and (3.50) and the matrices Ti,j in Eq.(3.52) can be obtained
from Egs. (3.42b) and (3.51) except that the pseudo inverse
i+1,l]—1 =[A$+l,l][A AT 171 in Eq. (3.42b)

i+l,17i+1,1
the right inverse of the matrix | ]. It is noted that

D
i+, 1
when £2£#m, the matrices Hi obtained from Egs.(3.42a) and (3.42b)
are not the same matrix quotients Hi in Eq. (3.40) because some
Hi in Eq, (3.40) are the right inverse and the others are the

left inverse of a non-square matrix lGO(s)] . While all the ma-

trices Hi in Egs. (3.42a) and (3.42b) are cobhtained by either
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straight left inverse of a non-square matrix [Go(s)] if &>m or
straight right inverse of a non-square matrix [Go(s)] if f2<m.
The example in section 3.5 will be continued as follows:

Since the standard multivariable system in the frequency

domain is:

1 1.95 + 2 0 4.60134s |
e (s)] =
° s2 + 25 + 2
1.1715s 7.21s + 2 0
(3.53)
This nmultivariable system can be transformed into state space.
The rank [Go(s)] = ro = 4 and q = min(f,m) = 2. The ratio,
To
Er = 2 = k, is an integer; therefore, we have 2k = 4 matrices
Hi as follows:
1. 0. -0.01178 -0.03007
Hl = 0. - 1. H3 = -0.14547 ~0.66365
0. 0. -0.024615 ~0.1183
(3.54)
[ 20. 0. o0. ~18.1 0.  4.60134
H2 = H4 =
~-4.,4974 -0.38388 0. | [5.66897 7.59388 0.

From Egs. (3.45) and (3.50), we have the corresponding state

equations.

—.. T —’ o -1
Zy [ 20. 0. 20. 0. 7
2, -4.4974 -0.38388 -4.4974 -0.038388
23 ~18.1 0.  -1s. 0. Z,
24 | s-66827 7.59383  4.4971  2.38388 z,




.~

20.
_4.4974
4+
-18.1
5.66897
ol [
YZJ 0
i
0. 0. -2.
0. 0. 0
1. 0. -2.
0. 1.
v, o
¥y 0.

0.
-0.38388

0. 4.6

7.59388

1.
l? 0.

0.

u
0134 u2
O.Ju3
2.
0.
1.9
1.17157

Fh +h th +Hh
= W N
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2y
Z
z2 (3.55a)
3
Z4—J
0. - -
0 "1
u
4.66134 2
0 3
(3.55b)
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CHAPTER IV

CONCLUSIONS

In this thesis, first, the relationships between the time-
domain specifications and the frequency-domain specifications
were studied. Next, a method was presented to construct a trans-
fer function for a single variable control system in which indus-
trial specifications may be used. Two methods were proposed for
estimating the initial values which will cause the Newton-Raphson
multidimensional method to converge very rapidly. Finally, a
method was presented in which industrial specifications can be
used to formulate a standard multivariable system with wvarious
numbers of inputs and outputs. Various forms of the state equa-
tion which are the minimal realizations of the standard trans-
fer function matrix, are obtéined by an algebraic method.

By using these methods proposed in this thesis, standard
specifications used in industry can be interpreted into mathe-
matical terms of single and multivariable systems. Thus, allow-
ing nore effective engineering design of electrical control

systens,



APPENDIX

.The Newton-Raphson Multidimensional Method

Non-linear simultaneous equations can be described by the
following equations:

fi(xll X2, .'., xn) = 0 ’ i = l, 2, ...’ n (1)

In vectox notation
£(X) = 0 (2)
If we make an initial guess by letting:

- >
x| = [x;,]
o 10

(3)
and find that Eq. (2) is satisfied, then Eq. (3) is the
solution. If Eq. (3) is not satisfactory, we will have:

s X "'rx)l = r, ,i=~'l, ***, n (4)

where the vector
> i T
r = [rl, r2, "" rn] ° (5)
is called the "residue vector". The Newton-Raphson formula
is: 3T, 1=
0

n—)'
where (%;)0 is the Jacobian evaluated at t = 0. In general,

(6)

-> >
X, = X

1 0 ‘5%

the Newton-Raphson formula is as follows:

-5
> > ar

= - (?—)—l+

Xn+l n 3X'n rn (7)
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