This is an authorized facsimile of the original book,
and was produced in 1975 by microfilm-xerography by Xerox University Microfilms, Ann Arbor, Michigan, U.S.A.

INFORMATION TO USERS

This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted.

The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction.

1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page (s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity.
2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame.
3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again - beginning below the first row and continuing on until complete.
4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation. Silver prints of "photographs" may be ordered at additional charge by writing the Order Department, giving the catalog number, tite, author and specific pages you wish reproduced.
5. PLEASE NOTE: Some pages may have indistinct print. Filmed as received.

75-8250

PALMER, Lucian hilliam, 1942-
AN ECONAMIC AXULYSIS OF THE GROWTH OF SFIECTED LATIN AMERICAN EDUCATIONAL SYSTEMS: :955-1965.
University of Houston, Ph.D., 1974
Economics, general

Xerox University Microfilms, Ann Abbor. Michigen 48100

AN ECONOMIC ANALYSIS OF THE GROWTH OF SELECTED LATIN AMERICAN EDUCATIONAL SYSTEMS: 1955-1965

A Dissertation
Presented to

The Faculty of the Department of Economics University of Houston

In Partial Fulfillment of the Requirements for the Degree of Doctor of Ihilosophy in Eccnomics

by
Lucian Palmex
1!ay, 1974

ACKNOWLEDGEIIFNTS

[^0]
AN ECOHOMIC ANALYSIS OF THE GROWTH OF SELECTLD LATIN NIERICAN EDUCATIONAL SYSTEMS: 1955-1965

A Dissertation
Presented to
The Faculty of the Department of Economics
University of Houston

> In Partial Fulfillment of the Requirement for the Degree of Doctor of Philosophy in Economics

$$
\begin{gathered}
\text { by } \\
\text { Lucian Palmer } \\
\text { May, } 1.971
\end{gathered}
$$

ABSTRACT

Various economists have pointed out several socioeconomic factors which are alleged to have importance in the rise in educational enrollments. These factors include the ability of the educational system to produce an increased supply of teachers, the increasing level of gross domestic product, the increased entrance of female into the educational systems, rising retention rates in the educational systems, the increasing process of urbanization in the Latin American countries, and the increasing complexity of the production process. An attempt was made to quantify these factors for selected Latin American countries.

Since these factors are at best difficult to quantify, the problem was simplificd by assuming that therc exists an optimal teacher/student ratio which each educational system is trying to achieve. This optimal ratio is hypothesised to be a function of real per capita gross domestic product. Through these assumptions it became possible to develop a supply function for teachers in an educational system. Further the model developed to provide estimates of another parameter, lamda. Lamda is the speed or the rate of response an educational system makes in attempting to achieve an optimal teacher/student ratio.

The demand for education was considered to be a function of the size of the population, the social customs of the
society, and the rate of return to the individual from investment in education. The return to education was conceived to be a function of the out of pocket expenses of the student while he was attending school, and the expected increase in earnings on the part of the student from his increased educational level. The expected increase in earnings was assumed to be a function of the economy's demand for educated individuals, which in turn is determined by the degree of complexity of the production process.

For purposes of analysis proxy variables were selected to represent the factors determining the supply and demand for educational places. The number of teachers and the level of real per capita gross domestic product and the teacher/ student ratio were chosen to represent the supply of educational places.

The rate of growth of the school age population, the rate of rural to urban migration, the sex composition of enrollments, the education retention rates, and the percentage of gross domestic product produced in the manufacturing sector were chosen to represent the factors determining the demand for education.

Time scrics data was developed for enrollments and the proxy variables in the selected countrics. This data was subjected to simple regression between enrollments and each of the proxy variables in the selected countries. Multiple regressions were run using different combinations of the proxy variables as independent variables. In addition cross
sectional regressions for a single year were run by converting the proxy variables into a per capita form wherever possible, and treating the selected countries as a single unit. Finally other statistical snalysis was performed through the comparison of ratios, anc rates of growth.

Two basic conclusion were reached in this study. Once dealt with the general aspects of the operations and problems of the educational systems under investigate, while the other dealt with the problems of making long run projections of educational emrollments.

It was established, but not conclusively, that there exist optimal teacher/student ratios which the educational systems in the selected countries try to achieve. In the short run the teacher/student ratio is the basic mechanism which the system uses to balance the supply of educational places with enrollments. In the long run the educational systeris attempt to reach the optimal teacher/student ratio by adjusting the stock of teachers to enrollments. The ability of the educational systens of the selected countries to achicve optimal teacher/student ratios has not been outstanding due to an inability to produce sufficient quantities of teachers. If these countries and other countrics in similiar situations expect to achieve optimal teacher/student ratios they must pay more attention and devote more resources to the portion of the educational system which produces their countries teachers.

It was established rather conclusively that educational planners must consider many socio-economic variables in long run projection of enrollments. Particularly important in long run projections of enrollments are the expected changes in the level of the per capita gross domestic product, possible increased proportions of females entering the educational system, the increasing complexity of the production process, changing retention rates within the educational system and possible changes in the rural/urban population distribution. In the selected countries changes in each of these factors were found to effect long run enrollment levels. Projections of enrollments which does not take into account these factors will likely prove to be quite incorrect.

TABLE OF COATLIITS

CIAPTER PAGE
I. SU:YYARY ABD CONCLUSIONS 1
Statement of the Problem 1
Hypotheses 4
Summary 5
Results of the Statistical Testing 7
Conclusions 11
II. FEVILN OF THE LITERATURE 13
Economic Theory and Education 13
Education and Economic Theory 13
The licasurement of the Contribution of Education to Grow'th 18
Education and Economic Planning 26
The Concept of a Development Plan 26
$>$ The Philosopy of an liducational Program 29
Problems in Lducational rlanning 33
The Language Problem 33
The Supply of Teachers 34
Factors Affecting the Demand For Education 36
Summary 39
III. AN ANALYTICAL FRASI:OORK 41
The Eupply of Liducutiontl Places 41
The lemand for Rducational rlaces 44
The Market for liducational Places 46
Short Run l!arket ndjustment 48
Long Run Narket Adjustment 50
Statistical Approximation of Variables Influ- encing the Supply and Derand for Education- al places 51
The Supply Function 52
Per Capita Income 52
Teachers 53
The Student/Teacher Ratio 54
The Rate of Response of the Stock of Teachers 55
The Demand Function 58
School Age Population 58
Rural/Urban Ponulation Distribution 59
Scx Distribution of Enrollments 60
Percentage of Gross Domestic Product 60
Produced in the :manufacturing sector 60
Retention Rates 61
The listimation of the [nrollment function 62
Hypotheses to he Tested 63

VARIABI.F.; 65
Introrduction 65
Salection of Countries to be Studied 65
L:duc:ational lintollments 66
ler C'ajita Incuma 68
Teachers 70
The Student/Teacher Ratio 72
School Age Population 72
Rural/Urban Population Distribution 73
Females 74
The Percentage of Gross Domestic Product Pro-duced in the Manufacturing Sector 75
Retention Rates 77
V. RESULTS OF ESTINATING EQUATIONS 79
Estimates of the Stock of Teachers 79
Estimation of $\lambda_{0} K_{0}, K_{1}$ 79
The Estimation of the Stock of Teachers 84
The Estimation of the Stock of Teachers: An
Alternative Model 86
Estimates of Educational Enrollments 87
Stage I Estimates 87
Argentina 87
Brazil 88
Chile 89
Colombia 89
Mexico 90
peru 91
Venezucla 92
Cross Sectional Regressions 93
Stage II Estimates 93
IV. TESTING OF hYPOTHESES 99
Every Country at Every Level of Education Has Optimal Teacher/Student Ratio 99
A Positive Relation Exists Between Real Per Capita Income and the Student/Teacher Ratio 102
The Principle Determinate of the Level ofEnrollments in any Given Period is theLevel of Enrollments of the Preceding TimePeriod 103
Level of Educational Enrollments are DirectlyRelated to Levels of Real Per Capita Income103
An Increase of the Percentage of Females En- rolled in the Educational System Leads to Increased Enrollments 104
As the Production Process of A Country BecomesMore Complex, as Represented by the Propor-tion of Gross Domestic Product Produced inthe Manufacturing Sector, Educational En-rollments Rise 105
As Retention Rates Within an Educational SystemRise, Levels of Enrollment Rise105
The Greater the Fer Capita Gross Domestic Pro-duct of a Country, the Higher the Proportionof Enrollments to the Legal School Age Popula-tion106
The More Urbanized a Country Eecomes, the Greater the Proportion of Enrollments to School Age Population 107
The Greater the Ratio of Teachers to SchoolAge Population in a Given Country, theGreater the Ratio of Enrollments toSchool Age Population 107
VII. CONCLUSIO:SS 108
The Hypotheses 108
The Optimal Teacher/Stucient Ratio 108
The Teacher/Student Ratio and Gross
Domestic Product 109
Enrollments and Gross Domestic Product 111
Enrollments and the Percentage of Female
Enrollments 112
Gross Domestic Product Produced in the Manufacturing Sector 114
Percentage Enrollments and Per Capita Gross Domestic Product 115
Percentage of Fnrollments and the Rural/ Urban Population Distribution 115
Enrollments and the Retention Rate 116
Enrollments and the Level of Enrollments 117
Percentage of Enrollments and the Teacher/
Scliool Age ropulation Ratio 117
CHAPTER PAGE
Policy Conclusions 118
BIBLIOGRAPIY 123
APPENDIXES
APPENDIX A. 134
Enrollment in Primary Education 135
Errollment in Secondary E.ducation 137
Enrollment in Higher Education 138
Per Capita Gross Domestic Product 139
Number of Teachers In Primary Education 140
Number of Teachers in Secondary Fducation 141
Number of Teachers in Higher Fducation 142
Student/Teacher Ratios and Pates of Growth
of Primary Fnrollments 143
Student/Teacher Ratios and Average Annual Rate of Growth of Secondary Education Enrollments 144
Student/Teacher Ritio and Average Annual Rate
of Growth in Fnrollments in lligher Education 145
Legal School Age Population and Annual
Average Rate of Growth 146
Urban/Rural Population Distribution and
Average Annual Rate of Change 147
Percentage Enrollment of Females in Primary
Education 148
Percentage Enrollment of Females in Secondary
Education 149CHAPTERPAGE
Percentage of Gross Domestic Product Produced
In the Manfacturing and Scrvice sectors 150
Retention Rates in Primary Rducation 151
APPENDIX B. 152
Estimation of Teacher Sunply Function
Primary Education 153
Estimation of Tcacher Supply Function
Secondary Education 155
Estimation of Teacher Supply Function
Higher Education 157
Estimation of Teacher Supply Function
Primary Education Estimating Equation 159
Estimation of Teacher Supply Function
Seconciary Education Estimating Equation 161
Estimation of Teacher Supply Function Univer- sity Education Lstimating Equation 163
Coefficient of Corrclation Between Selected
Variables and Enrollments Primary Education 165
Secondary Education Coefficient of Correlation
Between Enrollments and Selected Variables 166
Higher Education Cocfficients of Corrclation
Between Enrollments and Selected Variables 167
Multiple Regression Results Primary Lducation
Standardized Beta Values 168
Mulitple Regression Results in Secondary
Education Standardized Beta Valucs 169
Multiple Regression Results in Sccondary
Education Standardized Eeta Values 169
Results of Higher Lducation Rultiple Regression Standardized 5eta Values 170
Crosssectional Regression Results 171
Estimation of the Demand Function for Primary
Education Estimating Equation 172
Estimation of the Demand Function for
Secondary Education Estimating Equation 174
Estimation of the Demand Function for University
Education Estimating Equation 176

LIST OI' TABIFES

IV-1. Annual Average Growth of Educational Enrollments 67

IV-2. Annual Average Growth of Per Capita
Gross Domestic Product 68
IV-3. Average Annual Compound Rate of Growth
of Teachers 71
IV-4. Average Annual Rate of Growth of the
Percentage of Female Enrollment 75
IV-5. Average Annual Rate of Growth of Gross
Domestic Product by Scctors 76
IV-6. Average Annual Rate of Growth of
Retention Rates 77
V-1. Values of $\hat{\lambda}^{\prime} K_{0}, K_{1}$. 79
V-2. Valucs of $\hat{\lambda}, K_{0}, K_{1}$ for Primary Education . . . 81
$v-3$. Values of $\hat{\lambda}, K_{0}, K_{1}$ for secondary Education $\cdot 82$
V-4. Values of $\hat{\lambda}, K_{0}, K_{1}$ for lligher Education . . . 83
V-5. R^{2}, Standard Error Around the Regression
Line and " $F^{\prime \prime}$ Statistic for Teacher Supply
Estimates in Primary Education 85
V-6. R^{2}. Standard Error Nround the Regression Line
and " $F^{\prime \prime}$ Statistic for Teacher Supply
Estimates in secondary Education 85
v-7. R^{2}, Standard Krror Around the Regression Line and "F" Statistic for Teacher Supply

$$
\text { Estimation in Higher Education } 86
$$

V- 8. R^{2} and "F" Statistics for Estimates of
Enrollments* 94
V- 9. Sign of Regression Coefficients for
Primary Education 95
V-10. Sign of Regression Coefficients for
Sccondary Education 96
V-ll. Sign of Regression Cocfficients for
Higher Education 97
VI- 1. Test of $H_{0}: \lambda=0, \lambda \geq 0:$ Primary Education 100
VI- 2. Test of $H_{0}: \lambda \leq 0, \lambda \geq 0$: Secondary Education 101
VI- 3. Test of $H_{0}: \lambda \leq 0, \lambda \geq 0: ~ H i g h e r ~ E d u c a t i o n ~$ 101
VI- 4. Cocfficient of Correlation Between.Student/Teacher Ratio and G.D.P.102
VI- 5. Coefficiert of Correlation Between
Enrollment and G.D.P. 103
VI- 6. Coefficient of Correlation Between
Enrollment and the Percentage of Female Enrollments 104
VI- 7. Cocfficient of Correlation Between the
Percentage of G.D.P. Produced in the Manu- facturing Sector and Enrollments 105
VI- 8. Correlation Cocfficient Between Retention
Rates and Enrollments 106

LIST OF FIGURES

FIGURE PRGE
III-1. Supply of Educational Places 47
III-2. Demand for Education 48
III-3. The Market for Educational Places 48
III-4. The Market Short Run Adjustment 49
III-5. The Market Short Run Adjustment 50
III-6. The Market Long Run Adjustment 50
III-7. The Market Long Run Adjustment 51
III-8. The Market Long Run Adjustment 51

Chapter I

Summary and Conclusions

I. Statement of the Problem

Since the mid 1950's economic growth has been an important social goal for virtually every nation in the world. In the countrics of Latin America, the concept of economic growth is intertwined with national honor and glory. Latin American countrics have been and are today actively seeking ways in which economic growth can be continued or stimulated.

It has become increasingly clear in the last twenty years, not only in Latin America but throughout the world, that the education of the labor force and the entire population of a country is an important factor in the process of economic devclopment. The experience of the United States, the Soviet Union, and Western Europe has in effect scrved notice that rapid long run economic growth is simply not possible if there is not adequate investment in the process of education. Hations simply cannot develop an industrial economy if there does not exist a labor force with a skill level sufficient to operate in such an environment.

Most Latin American countries are persuing the goal of economic growth through the use of governmental planning and control of the areas which they deem to be critical to the process of economic development. In nearly every instance, the process of education is considered to be of great importance to the process of economic growth and the
national government is a major factor in the allocation of resources to education. By controlling the allocation of resources to education, econonic planners attempt to control the output of the educational system. Control of educational output is attompted in two phascs, by influcncing the number of individuals entering the educational system, and then by influencing the students to follow particular lines of study.

If the process of cducation is to be carricd out under the umurella of a democratic or semi-democratic political process, educational planners and cconomic planners must work within certain social constraints. They cannot force individuals above the legal school age to attend school (and in some cases cannot even enforce coripulsatory school attendance laus) nor can they restrict school enrollments to the point where there are large nurbers of individuals who want accens to education but cannot have it. The educational planner must tread a fine linc. He must allocate a sufficient quantity of resources to education to assure the potential of economic development without overinvesting in education. At the same time he must recognize the desires of the peoplo of his country for education.

While one is tenpled to discuss the "latin Amorican" cducational experience, there aro in fact as many "Latin American" educational experiences as thoro are countries in datin America. liach country is in a different stago of
economic/demographic development and the expansion or lack of expansion of the educational system at least in some way relates to this development. From the period 1955-1965, various Latin American Countries experienced a wide rante of rates of growth in their educational systems. One of the purposes of this paper is to examine this period of growth and to determine what conomic/demogranhic factors were factors in the growth of educational systems in Latin America. Various economists have pointed to several socio-economic factors which are alleged to have importance in the rise in educational enrollments. These factors include the ability of the cducational system to produce an increase in the supply of teachers, the increase in the level of gross domestic product, increased in the entrance of females into the educational systems, rising retention rates in the educational systems, increase in urbanization in the Latin Anerican countries, and the increase in the complexity of the production process. If the effects of these factors can be determined and, quantified, the cducational planner will be in a much better situafion with regard to the long run planning aspects of the growth of the educational system.
II. Hypotheses

In order to measure the effect of the various social and economic factors effecting cducational enrollments in Latin Ancrica the following hypothescs will be tested..
I. Each country has, for each level of education optimal teacher/student ratio it is trying to achieve. II. The teacher/student ratio is a positive function of per capital gross domestic product.
III. The chief determinent of the level of education enrollments in any given time period is the level of enrollments of the previous period.
IV. Levels of educational enrollments are directly related to real per capita gross domestic product.
V. The increasing percentage of fomale enrollment in an educational system leads to increased educational enrollments.
VI. As the production process of a country becomes more complex as repre:;ented by the percentage of gross domestic product produced in the manufacturing sector. educalional enrollments riso.
VII. As retention rates within the educational system rise, educat, onal enrollments rise.
VIII. The greater tho fur capita income of a country. the greater the: propurtion of enrollmenta to school age population.

1X. Jhe mere urhanizod a comotry becomes, tho greater the proprition of t:ntollments to school ago population.
X. The greater the ratio of teachers to school age population, the greater the proportion of enrollments to school age population.

III. Summary

To test these gypotheses seven countries representatives of Latin $A n e r i c a$ were chosen. The countries were Argentina, Brazil, Chile, Colomia, texico, Peru, and Venezuela. They were selected for several reasons. These countries made up the bulk of the population of Latin America. They were the relatively most developed countries but were certainly in different stages of economic develoment. In addition they had developed fairly compreliensive data series concerning their educational systems.

Initially the relationship between economic theory and cducational and conomic development was investigated. Particular emphasis was placed upon the relationship between cducalional planning and planning for economic devilopenent.

A conceptional framework was developed as a basis for discusaing the supply and denand for educationil places. The supply of educational places was considered to be a function of the guantity of goosizi and sorvicers a country could produce or horrow and tha willingliass of the socivet tos invast in education. Thla la aftected by the customs and the goala of the acolety, and the rato of teturn on invasthamitin aduration.

Since these factors are at best difficult to quantify, the problem was simplified by assuming that there exists an optimal teacher/student ratio which each educational system is trying to achieve. Ihis optimal ratio is lypothesized to be a function of real per capita gross dorestic product. Through these assumptions it became possible to develop a supply function for teachers in an educational system. Further the model developed to provide estimates of another parameter, landa. Lamda is the speed or the rate of response an cducational system makes in attempting to achieve an optimal teacher/student ratio.

The demand for education was considered to be a function of the size of the population, the social custons of the society, and the rate of return to the individual from investment in education. The return to education was conceived to be a function of the out of pocket expenses of the student while he was attending school, and the expected increase in carnings on the part of the student from his increased educational level. The expected increase in earnings was assumed to be a function of the economy's demand for educated individuals, which in turn is determincd by the degree of complexity of the production process.

For purposes of analysis proxy variables were selected to represent the factors determining the supply and demand for coucational places. The number of teachers and the level of real per capita gross domestic product and the
teacher/student ratio were chosen to represent the supply of educational places. The rate of growth of the school age population, the rate of rural to urban micration, the sex composition of enrollments, the education retention rates, and the percentage of gross domestic product produced in the manufacturing sector were chosen to represent the factors determining the demand for education.

Time series data was developed for enrollments and the proxy variables in the selected countries. This data was subjected to simple regression between enrollments and each of the proxy variables in the sclected countries. Nultiple regressions were run using different conilnations of the proxy variables as independent variables. In addition cross sectional regressions for a single jear were run by converting the proxy variables into a per capita form wherever possible, and treating the selected countries as a single unit. Finally other statistical analysis was performed through the comparison of ratios, and rates of growth.
IV. RLGUL'SS OF 'HM: s'TATISTICAL TESTING

Lacla of the hypothesos liated in Section ll was tested using data from the priud 1955 to 1965.

The Existence of an Ont Imal Prachur/sitwhont katio
1t Was shown that for all optimhl toacher/student ratio
to make economic sense that the rate of response, i.c., the rate at which the system moves to the optimal level, (denoted by λ) must be between zero and one. It was not possible to statistically establish that the value of λ was between zero and one for any country. It is interesting to note however, that for virtually every country the estimated valus of A fell between the values of zero and one, but these values were not significantly significant. The failure of the model to conclusively establish the existence of an optimal teacher/student ratio could lie in the quality of the data and the limited amount of data available.

The Relationshin Bet:ieen the Teacher/Student Ratio and G.D.P.
It was shown that in primary education there existed a positive and significant correlation between the teacher/ student ratio and G.D.P. in Argentina, Brazil, Colombia, and Nexico while there was a significant and negative relationship in Venezucla and no significant relationship in Peru. In secondary education brazil, peru and Venezuela had significant negative relationships while Mexico and a significnat positive relationship. In higher education there was no significant relationship for Argentina, Brazil, Peru, and Venczuela while the relationship for Colombia and Mexico was positive and significant.

The Relationship Between Enrollments and G.D.P.
It was lypothesized that there exists a positive relationship between enroliments and gross domestic product, with the exception of primary education in chile, it was found that there cxists a significant positive relationship for all of the countries tested, Argentina, Brazil, Chile, Colombia, Mexico, Peru, and Venezuela.

The Relationshio Retween Enrollments and the Percentage of Female Enrollments

It was found that there existed significant positive relationships between the two variables in primary education for Argentina, Colombia, and Peru, while the relationships were not significant in Chile and Venezucla. In secondary education the relation was significant and positive for Argentina and Venezuela, while it was not significant in Peru.

The Relationshin Between Enrollments and the Percentage of Gross Domestic Procuct Produced in the Manufacturing sector

It was hypothesized that there existed a significant positive relationship between increasing enrollments and the incrcasing complexity of the production process as represented by the percentage of gross domestic product produced in manufacturing sector. It was found that such a significant relationship existed betwen the two variables in all levels of education for Argentina, Colombia, llexico, Peru, and Venczuela. In addition, the relationship was significant
in Chile for both secondary and higher education.

The Relationship Betwoen Per Capita Enrollment and Per Capita Gross Domestic Product

It was hypothesized that the size of the absolute potential school age population in relationship to the per capita wealth of a country was a critical factor in determining the level of enrollments. Cross-scctional regression analysis confirmed that the richer a country, the greater the percentage of enrollments to potential enrollments.

The Relationshio Between the Percentage of Enrollments and the Rural/Urban Population Distribution

It was hypothesized that the rural/urban population distribution was an important factor in determining the level of enrollments. Cross-sectional regression analysis established that there is a negative relationship between the ratio of rural to urban population of a country and the ratio of enrollments to school age population.

The Relationshin Betwon Enrollments and Educational Reten-

tion Rates

Very limited information was available concerning the retention rates in the selected countries. It was however, found that there exists significant positive relationships between enrollments and the retention rate in primary and sccondary education for Argentina, Brazil and Peru.

Periods Enrollments
It was found for all countries that a very strong positive correlation exists between enrollments in any given time period and the enrollment of the previous period for all levels of education for all of the selected countries.

The Relationship Between the Percentage of Enrollments and The Teacher/School ige Population Ratio

- It was hypothesized that there existed a positive relationship between the proportion of enrollments to school age population. Cross-scctional regression analysis showed that a relationship exists betwecn the two variajles but the relationship is in fact negative.

V. Conclusions

Two basic conclusions were toachod in this stuals. One dealt with the gemeral deipects of the operations and problems of tho coducational systems undur invostigation, while the clles dealt with the foblems of making long run projections of educatiomal ebrollmants.

It was estabilibhat, bat mot conclusivoly, that there exist eftimal leachas/athatat ration which the edurational

systems attempt to reach the optinal teacher/student ratio by adjusting the stock of teachers to enrollments. The ability of the educational systems of the selected countries to achicve optimal teacher/student ratios has not been out-standing due to an inability to produce sufficient quantities of teachers. If these countries and other countries in similar situations expect to achieve optimal teacher/student ratios they must pay more attention and devote more resources to the portion of the educational system which produces their countries teachers.

It was established rather conclusively that educational planners must consider many socio-economic variables in long run projection of enrollments. Particularly important in long run projections of enrollments are the expected changes in the level of the per capita gross domostic product, possible increased proportions of fomales entering the educational system, the increasing complexity of the production process. changing retention rates within the cducational system and possible changos in the rural/urhan population distribution. In the selected countries changes in each of these factors were found to effect. long run enrollment levels. projections of enrollments which do not take into account these factors will likely prove to be guito incorrect.

CHAPTER II

REVIEW OF THE LITERATURE
This chapter lays the framework for the analysis of the causes of growth of educational enrollment in sclected Latin American and Central American countrics. It examines the place of education within economic theory, and describes attempts of conomists to measure the contribution of education to economic development. The concept of cducational planning within the overall context of development planning is investigated. Pragmatic problems of the development of educational systoms are discussed.

I. Economic Theory and Education

Education and Econcmic Theory

The process of cducation is one of the major aspects of the developnent of human resources. Economists with such diversc opinions as \AA. Emith, Thomas Ralthus, David Ricardo, Alfred Marshall, A. C. Pigou, Frank Kinight, Clarence E. Ayres. Benjamin ligggins, and f. W. Schultz agree that the quality of human resources and thus education is an important factor in economic growth. According to ddam Snith, the improvement of the skill and dexterity of the worker was a critical factor in the economic progress of a nation. In The Wrollh of Nat.fons3, Smith wrole concerning education that the "expense is no doubt Lenoficial to tho whole society and may therefore,
without injustice, be defrayed by the general contributions of the whole society". ${ }^{1}$

Within the systems of both Ricardo and Malthus, one short run solution to the improvement of the living conditions of the populace was controlling the rate of growth of population. Eoth men favored education as a method of developing habits which would lead to the development of family limitation.

Malthus firmly put education into its proper context of the causes which tend to generate prudential habits, the most essential is civil likerty, and to the maintenance of civil liberty, political liberty is generally necessary.

During the period of the writings of Alfred flarshall one of the great debates concerning education was the question of a technical education for the working class. Many individuals held that the only education necessiary for the working man was a narrow, limited technical education which prepared the worker to perform one job efficiently. ${ }^{3}$ tarshall while agreeing that a technical education was important to the increasing efficiency of production, argued that the whole of society would
${ }^{1}$ hdan Simith, Jhue Heallll nf Nationge ed. C.J. Bullook,

${ }^{2} J o l i n$ Valzay, flles rionsmicen of lilucation, (New York:

$$
\text { 3Ibid. 11. } 19 .
$$

be benefited by a more general education of the work force. Marshall argued that there existed many jobs in his present day society that required many years to learn to do adequate1y. Certainly, for a man to enter into these professions be had to spend many years in a learning apprentiship. llowever, he went further to point out that such jobs were becoming fewer. "Some kinds of manual work require long-continued practice in one set of operations, but these cases are not very common, and they are becoming rare: for machinery is constantly taking over work that requires manual skill of this kind. ${ }^{4}$

There are two types of ability, llarshall argued, specialized ability, and general ability. Special ability is the manual dextcrity nccessary to perform specific activities for specialized trades. General ability is a combination of general knowledge and intelligence which is the common property of all students. General ability is enhanced by environment and cducation. Iducation allows the individual to use his facilitics in a more eficient manner whether employed as a workman or in other pursuits. 5 Marshall emphasizes the importance of cducation and in particular general education by

[^1]> Hanual skill that is so specialized that it is quite incapable of being transferred from one occupation to another is becoming a less and less important factor in production. Futting aside for the present the faculties of artistic perception and artistic creation, we may say that what makes the workers of one town or country more efficient than those of another, is chiefly a superiority in general sagacity and energy which are not specialized to any one occupation ${ }^{6}$

Pigou argued that the developnent of human resources was an important factor in economic development. Couching his analysis in terms of marginal analysis, he concluded that the marginal net product of resources invested in education was greater than the return to investments in physical capital. This is to say that expenditures on the health and welfare of people will lead to greater increases in productivity then will an equivalent expenditure on new capital creation. ${ }^{7}$

Frank II. Knight, writing in Risk, Uncortainty and rrofit, recognized the ability of labor to inprove its productivity over time through education. Because of the uncertainty of the return to education, and the fact that education is pursucd for other reasons than profit, Knight was pessimistic concerning the alility of the competitive system to rationally allocate resources between investment in human and

[^2]physical capital. ${ }^{8}$ In commenting on the investment in education in his own time he wrote:

> The fact that so many opportunities for the profitable investront of resources in the cevelopment of hunan potertialities are neglected, and so many wasteful investyents of the same kirci made, is peristing socicty.

In The Theory of Economic Progress Ayers describes technology as the driving force of conomic development. Within Ayers franework technology is "all human activities involving the use ot tools, all sort of tools ...". ${ }^{10}$ Technology is neither tools nor human st:ill, but the activity of men operating tools. A change in technolocy is the cericination of human skills and tools in new ways. To Ayers economic progress is depencent upon the reorganization of human skills, i.e., cducation.
.....In short, capital eguipment will work anywhere.
But it will affect the lives only of those who are
in direct contact with it. It does not automatical-
ly bring conomic development to a whole people.
Only education can do thatThe incustrialiration
of Japan dates, as everyone knows from the :aciji re-
volution. fhat is not so -idely appreciated is that
the Meiji revolution not o:lly transformed the power
structure and the class system of Japanese society.
It was an educational revolution which brought lit-
eracy to the Japanese peonle and so a solid founda-
tion for the industrializition that followed. The
same was true for Russia. 11
${ }^{8}$ Frank 1:. Knight, Risk, Uncertainty, and Profit, (lew York, 1965: Harper and Row luhlisher, Inc.) pp. 158-159.
${ }^{9}$ Ibid.
${ }^{10}$ c. E. Ayers, The Theory of Lconomic Progress, (New York: Schocken Books, Inc.), pp. vii.
${ }^{11}$ Ibid., p. xxili.

Higgins, stressing the fact that education is important in economic growth, calls for treatment of education as an industry to which the principles of production theory may be applicd. The production of the education industry would consist of traincd and educated people and the input to this industry would be the intake of beginning students. These factors may be considcred as the "variable factors of production." The "fixed factors of production" would consist of the classrooms and traincd teachers. Using these factors a production function for education may be developed which could be used to determine the conceptually efficient level of operations of the educational system and in turn the optimal level of students for any stock of educational capital.

Any society may choose within linits between more education and more of other components of national income. Investment in education can always be extended beyond the point where it will add still further to productivity, measured in terms of other goods and services. But cducation is also valued as a consumers' good in its own right; an optimal education program will accordingly involve more investrkent in education than would maximize output of other goods and services. 12

The Measurement of the Contribution of lalucation to Growth
In the $1950^{\circ} \mathrm{s}$ with reemergence of the fiela of economic development and the advent of more sciphisticated statistical techniques and inyroved mothods of data handling, economists

began to try to measure the contribution of education to the growth. of gross national product in the United States. Estimates were made cither on a macro or micro-cconomic basis. The macro-cconomic approach attempts to relate direct changes in the educational level with changes in the level of gross national product. The micro-cconomic approach tries to calculate the rate of return to the individual for his investment in education and then to relate this rate of return to the growth in gross national product.

Theodore Schultz used the macro approach and based his work on the proposition that "people enchance their capabilities as producers and as consumers by investing in themselves and that schooling is the largest investment in human capital". ${ }^{13}$ To Schultz cducation is an important aspect of economic growth for several reasons. Research done in educational establishments leads to overall advances in knowledge within the society. An educational system discovers and cultivates the capabilitics of the children of society. Education increases the ability of individuals to adapt to changing economic structure and job opportunitics which are always associated with conomic progress. In addition the educational system stands as a storer of knowledges and replenishes the stock of professional educators.

[^3]In order to calculate the rate of return from investment in education, Schultz estimated the increase in gross national product from the investment in education, and also the cost of that education. For purposes of estimation and analysis, he divided the cost of education into two parts. The conventional cost of education was conceived of being composed of the direct cost of education, that is cost of tise services of teachers, librarians and administrators, and the cost of financing, building, operating and maintaining the physical facilities for education. Equally important but more difficult to estimate was the loss of income brought about by school attendance. Every individual who attends school gives up income he could have earned if he had taken a joi rather than attended school. Schultz estimated the cost of foregone incone as approximately one guarter of the total cost of education in 1900 and approximately forty percent of the total cost of education in $1956 .^{14}$

Having developed an estlmate of the stock of educational capital, Schultz offered an explathation of how education affected the labor force, and in turn the growth of gross national product. lla fomal that poars of schonding conpiteted per purson in the labor forcu thisu tron 8.1 in 1930 to 10.9

[^4]addition the days which students actually attended school rose considerably between the two periods. Adjusting the years of schooling completed by attendance, Schultz found that the years of schooling completed rose from 6.01 in 1930 to 10.43 in 1957 , a rate of growth of slightly more than two percent. Schultz then calculated the contribution of the increase in schooling of the labor force in the following manner:

> The approach that I uscd rests on the estimate of the investrent in schooling in people who are in the labor force and the rate of return earned on this investment. The first, expressed as stock of capital in 1956 dollars, came to 180 billion dollars for 1930 and to 535 billion dollars in 1957. (A simple adjuetrent for trend indicates a stock of 173 billion collars in 1929). Thus, the increase in this stock of capital between 1929 and 1957 comes to 362 billion dollars. It should be noted that this approach allocates none of the costs of schooling in the labor force cither to present or future consumption. These costs are treated as if all were solely an investment in future carnings. Threc estimates of the rate of return were attempted. The two lower rates come to 9 and 11 percent. Applying these two rates to the increase in the capital stock of schooling of 362 billion dollars, 1 obtain slightly less than $\$ 33$ billion and $\$ 40$ billion respectively as the growth in national income from schooling. If the national product increased $\$ 200$ billion, this additional schooling in the labor force accounts for $: 6.5$ percent or 20 percent of the total growth depending upon whether the 9 percent or 11 percent rate of return is employed. 15

Edward Denison has put forth another measure of the importance of education in the process of economic development. By determining what proportion of the growth in gross

[^5]national product from 1930 to 1960 could be statistically attributed to increases in the capital stock and the size of the labor force, and then subtracting this proportion from the increase in gross national product, Denison calculated a residual. This residual was the proportion of gross national product increases which could not be explained by the increased magnitudes of the labor force and the stock of capital. The changes of the inputs of labor, capital and land account for only 30 percent of the growth of real national income, while the residual accounted for 70 percent. Denison then calculates that annual average rate of growth of the real per capita income at a rate of 1.6 percent a year, which is equivalent to a 1.6 percent per year increase in the average productivity of a worker. Denison enumerated the various factors which might cause this increase in productivity. The factors were divided into two groups, the increase in total inputs, and the increases of output per unit of capital. The increases in inputs consisted of those things which directly effect the average and marginal productivity of labor such as improved education, jength of the work week, composition and size of the labor force, and increases in the stock of capital. Increase in output per unit of capital included economies of scale. advance of knowledge (synonynous with innovation) restriction of efficient methods of production, and the shift from agriculture to manufacturing. Tho portion of tho growth rate
of 1.6 percent which could be accounted by the various itens was calculated by Denison.

The major contributing factors to the rate of growth were found to be economics of scale, advance of knowledge ard education. Economies of scalc due to increasing size of national market was to account for .34 of the gercentace growth national product. This was composed of the portion of the growth rates accounted for by increases in the size of the national markct, which is .27 , and the frogortion accounted for by economies of scale due to the indepencent growth of local market, which was .07. In order to calculate the returns to education, Denison estimated wage differentials between men of different educational levels. He estimatea that 60 percent of the wage differential is accounted fer by differences in cducation. On these bases he concluded that . 67 of the 1.6 percent rate of growth was eaused ty increases In the educational level of tho labor force. The alvance of knewledge, which is a truo rebldual being the remaindor of the growth rate after all other factors hava been ansounted for is . 58. From his stuty Jenison concluites that since 1929 aphroximately 23 Lercent of the total growth of the gross notional product of tha Unitcil stalas call hu uxplaincil by increabes in lim coducaliana! luval af tha labor foriv. 16

 1964), 12. 198-204.

Selowsky notes that b.ost stucies to determine sources of economic gro:ith have been carried out in the more developed countries. He attempts to analyze the contribution of education to economic growth in lesser developed countries.. specifically, Ciile, Zexico and India. Further he notes that studies have attempted to measure the contribution of education to economic growth in terms of cffects of increases in the education of labor force and have neglected that part of the contribution of education that stems from maintaining the overall levels of schooling of the labor force. Selowsky feels that the neglect of this factor is a significant bias and causes substantial underestimation of the magnitude of the contribution of ecucation to economic growth. 17

A group of economists have atter:pted to measure the return to education on an individual basis. Working with a sample of individuals such people as Recker, ${ }^{18}$ Hansen, ${ }^{19}$ and

17Marcelo Selowsky, "On the Measurement of Education's Contribution to Growth", Quarterly Journal of recononics. Vol. 3, No. 3, (August, 196す). pp. 4मУ-463.
${ }^{18}$ Gary S . Becker, "Under-investrent in College Education". American Ficonomic Review, (rapers and rrocecdings). Vol. 50. 10. 2, (May. 1960), Pp. 340-348.
${ }^{19} \mathrm{w}$. Lee llansen, "Rate of Return to Investment in Schooling", Journal of political liconony, Vol. LXXI, No. 2 (April. 1963). pp. 130-142.

Houthakker, ${ }^{20}$ and Mincer ${ }^{21}$ have attempted to relate years of schooling with income. These cfforts have been muddled by the inability to differentiate between other factors which influence economic success and the effect of additional years of study. Such factors as intelligence level, motivation, quality of instruction, family background, social standing. and family wealth are extremcly difficult to isolate and hole constant during testing. While the results of all of these studics arc somerhat inconclusive, all show a rate of between 8 to 12 percent average return. on a ycar of schooling, with a mucil larger return to years of high school study than to the elementary level.
lforgan and Sirageldin ${ }^{22}$ were attom!ting to associate the amount. of mency ohich a school süsten spends on a stuant per year, and his earning: later in life. The increase in ger capita expenditure per sturlent was considured to be an investaxint in education (an incrobst in quality of education). Jusporadents wers clatsifiod as to the lovel of edusation of the head of the tamily, whether the family grew un ain a farm,

 114. 22-28.

the sex of the head of the family, the race and the age of the family head. The average hourly wage was computed for each group. Then the per capita expenditure per student on education of the state in which the family head grew up was regressed against the difference between the average hourly wage of the subjects group and the subjects own average hourly wage. The resulting regressions showed that differences in state expenditures per pupil accounted for approximately 7 percent of the individual residual earnings differences. The authors concluded that the margin of public investment in higher quality education pays for itself in higher individual earnings in a year or two after graduation.

The general consensus of the economics profession regarding education can be summarized. Education is en inportant aspect of economic growth. Economists have had difficulty in determining the exact rate of contribution to economic growth of investanent in education over time, but all atudias aecm to ladicate that the roturns are relatively high.
11. L:ducation and Reonomito Plaming

many different levels. The following passage is an illustrative description of how economic development planning is conceptualized as in the conomic literature.

A Project is the smallest unit of investment activity to be considered in the course of programeing. It vill, as a rule, be a technically comerent undertaking whicin has to be carried out, technically speaking indepencelitly of other projects. Examples of projects are the building of a factory, the construction of a bridge or a road, the reclaimation of a piece of land. i prórimme is a coordinated set of projects. They wil. located in the same country or in some sraller gengraphical unit (state, province, region, municipality). They will also be started in sone scecifici period, which may be a year. a five-ycar span, or some other period. The degree of coordination in other respects may vary but the projects will lave been considered by some authority with a vic: to coordinuting them. An investment glan. in this context, is sorrething arrived at "from above" through calculations referring either to the whole econory or to certain sectors in curtain areas. It is not constructed by corlbining projects, but derived frori the broad set development aims. 23

The goals of conomic development can be many and varied. One of the contral most goals of course is a rapid increase in the material wealth of the country, but to many countries develophent means more than this one goal. It means the beginning of the process of erradicating ignorance, substituting men for nachincs, eliminating hunger and illaess, and extending econcmic and political justice to all parts of the society. Heciabie the goals of economic devolopment are many and variced, lluey may comflict in thoir implumentation, 24

[^6]Once the various goals have been specified and their relative importance has been established, the country is faced with their implementation of the goals. In most plans of economic development, an increased education level of the populace generally is onc of the inportant factors. It is then necessary to determine what sort of projects and programs will achieve the increase in the educational level set by the plan without conflicting with the other goals of the plan. Formal educational planning is quite clearly a subset of a plan for the development of human resources. The overall plan of econonic development must consider the planning of the formal education systen as part of a systematic attempt to raise the productivity of the labor force of the country. The overall attempt to develop human resources includes not only the design of a program of formal cducation but also the establishment of on-the-job training, remedial education, training in the armad services, governmental sponsored training and adult cducation. Thus formal educational planning must be made in light of the overall plan of conomic development but also in view of the relationships between formal educational and the other methods of developing human resources. 25

25 Fredrick llarbinson and Charles A. Myers, Education Mannowor and Economic Growth, (New York: McGraw-llill Book Company, 1964), pp. 210-211

The Philosonhy of an Education Program

In order to engage in education planning there must be an overall philosophy of education. There are two basic plilosophies among the developed nations concerning who should be educated. The American approach (of which the Russian system is a modification) places great emphasis upon widespread education and public participation in the management of education. It aims at creating a copular mass culture, and then introducing within this culture ideas which are necessary and useful for conomic growth. The process of economic growth becomes then a socially necessary and popular good. Usual results of this type of cducation secms to include high geographic mobility, a high degree of occupational mobility and more social mobility. 26

In other English speaking and European countries, the philosophy of educations scems to be to create an clite subculture of better educated individuals. Popular culture is considered to be rather unimportant in terms of cconomic development. Most essential to cconomic development is an honest, highly competent, and stable central governmental administration generally in the form of a civil scrvice. This civil service, it is felt, stands in the best position to take advantage of opportunities for economic growth. This philosophy scems to work well providing that social change

26 Richard L. Neier, Develomnent. Planning, (New York: JfcGraw-11111 Book Company, 1965), pp. 366-367.
is gradual, but it suffers from the inability to implement massive efforts, once it is generally agreed that a given objective should be pursued. ${ }^{27}$

There are two basic approaches for the planning of the development of the system of formal education. The first, and the one which seems to have been historically favored by cducators, is the use of comparison. This approach is derived from the experience of more developed countries. Drawing from the writing of llarshall and other econonists, it argues that it is neither necessary and/nor feasible to attempt to provide specific quantities of workers trained in specific skills for the econony in the future. This method evaluates the educational systcm in light of cducational and social problems, and projects the needs of the educational system in terms of resources needed to achieve desired economic development. In order to judge the country's educational system it is conpared with the educational systems of more econonically developed countries. Such indices as expenditure per pupil, student/teacher ratio, drop-out rates, percentage of the school age population enrolled in the school, percentage of university enrollment in various areas of speciality, are used to set goals for the educational system. Under this method the developing countries attempt to
approximate the educational system of more developed countries. ${ }^{29}$

While this has been a rather popular method of educational planning for some time, unfortunately it has several flaws.

This approach has been favored traditionally by educators. It bypasses completely the difficult determination of occupational requircments. But at the same time, it overlooks essential cconomic problems. If this approach is used, there is likely to be little integration of the work of the educational planners and the conomic planners, and in the end the latter are likely to recomend that expenditures for clucation, along with other social activities, be given a lower priority than investments in projects which are clearly productive and appear to contribute more directly to economic growth. 30

The manpower approach to developmental and educational planning attempts to overcome the flaws of planning by norms. Within the development plan goals or targets are established. These goals are simply estimates of the desired and/or feasible conditions in which the country would like to find itself somewhere in the future. Future goals might include levels of percapita inconc, amount of illiteracy, the structure of industrial or the composition of industrial and agricultural output, degree of rural integration, rate of birth of population, or many others. The system of education
${ }^{29}$ Higgins, E.conomic Development. p. 434, and Harbison and Myers, Blucation, lliminem and tironomic Growth. p. 199.
${ }^{30}$ llarbifon and Myers, Education llannower and Econmic Groith, p. 199.
is then judged within the framework of the goals, and in light of the current status of the cconory and the labor force.

Studies must be made to determine the size, composition and education level of the labor forcc. Special emphasis should be given to areas in which there is a surplus of labor, chronic unemployment, or scarcity of labor. Once the structure and ability of the labor force is known, it is necessary to determine what sort of skills the cducational system is currently providing. Equipped with these two pieces of information a project of the skill and structure of the labor for the target year is made assuming that there is no change in the process of education.

Next the goals themselves are examined in terms of the paths which the country may take to reach the goals, and what the size composition and skill luvel of the labor force must be for the target goals to be maintained. This involves the study of current level structure and technology of production within the country, and how these factors will change over time as the country approaches its goals. Specifically how many poople with specific skills will be needed to support the level and composition of economic activity which is called for in the goals.

The system of formal education must then be considered in relationship to how it can help to provide the skills necessary for reaching the goals of the country. What
portion of the job can the education system do in its present form? What new areas of study should be added to achieve the goals? In what areas should studerts be discouraged or encouraged to enter? Are there other ways in which the necessary skills can be provided beside through the systems formal education? Once these questions have been thoroughly explored, the implementation becomes a question of timing, resources, and the function of the political process. ${ }^{31}$
III. Problems in Ecucational Planning

The Language Problem
The three basic problers which must be faced in implementing plans for education are the language problem, the supply of teachers, and the prediction of educational demand. In many countries of Latin imerica large sections of the population do not speak the national language. In Guatemala, peru, Ecuador, and Bolivia over half of the population does not speak the Spanish Language. In Venczuela, Portugal and
${ }^{31}$ The above description of the manpower strategy is composed from ideas presented by the following sources: Higgils, Economic Develonment, pp. 420-423; Harbison and reyers, llanpower, pp. 200-208; W. Arthur Lewis, Develormont Planning, (New York: Harper and Row, 1966). pp. 222-230; halinsky, The Planning and Exccution of Lconomic Growth. pp. 33-42; J. D. Chesswas, llethodologies of fucational planning for developing Countries, haris: viitsco. international Institute for Facational planning, 1968), pp. 7-11; R. Poignant, The Relation of Educationsl plans to foconomic and focial planining, Tera: UiLisco, International institute ior liducational planning, 1967).

Colonbia much of the Indian population docs not speak Spanish, while in Brazil half of the Indian population does not speal Portuguese. The question is of course, will the education system force tinesc individuals to learn a new language in order to be educateci, and if individuals are forced to learn a new language in order to attend school, how many pcople will choose simply not to go. 32

The Sumply of Tcachers

Efficient education planning requires an analysis of the supply of teachers and also the technology of teaching. The results of this analysis can be translated into the estimated requirements for teachers by selecting the most promising of a series of possible modes of instruction. the modes of instruction would each represent a specific combination of resources; collectively the series of modes would make possible a wide variety of qualitative and quantitative end results with varying cost and efficiency factors. Oac techniques may make far more use of teachers through heavy capital investment than another which stresses a substantial investment of human resources and a lesser use of physical capital. Real or potential human resource capital is usually far more plentiful than physical enpital in the less developed countries. There, the most nppropriate mode of
${ }^{32}$ Frank Tannelatun, Ten Krys to latin America, (New York:

instruction is likely to rely upon manpower a great deal more than physical capital particularly, the type of physical capital which can be,requires suistantial expenditures of foreign exchange.

The alternatives of the mode of production can in part determine the rate at which tice educational system must produce teaciocrs. In countries in which it is impossible to adapt capital intensive methods of tcaching, the first phase of expansion of the education systen must be devoted to increasing the supply of teachers so that the education system may be expanded later. ${ }^{33}$
. The ratio of the number of teachers to the number of students in the educational system is a second consideration when discussing the supply of teachers. An investigator argues that every cducational system has an optimal teacher/ student ratio which it either implicitly or explicity attempts to maintain. ${ }^{34}$ If the system has not achieved the optimal stock of teachers in relationship to enrollments it will attempt to adjust the stock of teachers so that an optimal
${ }^{33} \mathrm{~W}$. Lec Hansen, in Education and Economic Dovelorment. Anderson and bownan, eds. TCliticgo: iThine iujlisiang co:npany, 1963), pl. 63-71. Also lkeyer, levelogrent Planning, pp. 300-301; and also kenneth L. Neff, limention am the no velopwent of Human recinclogng (llashington: linited statey printing office, 1902), pp. 22-24.

$$
{ }^{34} \text { poignant, The Relation of Education Pling, p. } 31 .
$$

teacher/student ratio is reached.

Factors λ ffecting the Demand for Education

The educational planner must attempt to determine what proportion of the school age population will desire to attend school given the socio-economic factors of the country. If all school age children attended school, then growth in the demand for enrollments would be relatively easy to predict. In elementary school for example, the planner could take the past year's enrollment, graduates and mortality and add the number of children arriving at school age in the population. The denand for education would grou at about the rate of the school age population, assuming of course that the other factors effecting the derand for education grew at the same rate. ${ }^{35}$

Unfortunately the condition "all other factors being equal" is not generally met. Some factors which might effect the demand for education include the level and distribution of income in a given country and the level of complexity of the production process, the geographic distribution of the school age population, the composition of enrollments between male and female, and the rate of retention of students in the educational system. The level of income and its distribution must be an liportant factor in the demand for education. A person must have a mintmum level of inconve

[^7]before he is aile to forego employment and enroll in school.
Once there is a minimum subsistence level of income, the expected return to education can be expected to play a major part in the individuals decision concerning scinool attendance. The expected return to education is a function of the direct and indirect costs of attending school and the expected income which would accrue to the student because of the level of education achieved by the student. As the production precess of the economy becomes more complex, increased demand for skilled workers could be expected to increase the demand for education. It would be expected that this increase in demand of skilled workers would lead to more jobs and/or higher wages and an increase in the deriand for education. ${ }^{36}$

It has been hypothesized by investigators ${ }^{37}$ that the geographic distribution of the school age population may be an important factor in the size of cducational enrollments. That is to say that the greater the proportion of the population living in the urban areas, the greater the proportion of actual enrollments to the school age population. This increased proportion may be due to lack of interest in education by people who live in rural areas or the lack of
${ }^{36}$ Sec for example: Theodore W. Schultz, "Resources for Higher Education-An Economic View", Journal of Political Economy, Vol. 76 , (Jan./June, 1968), p. 327-348; liiggins, Economic Develonment, p. 417.
${ }^{37}$ for example: Higgins, Economic Dovelonment, p. 33; Poignat, The Relation of Educational Plans. p. 33.
educational facilities provided in these areas. Regardless, it does scem clear that in many of the countries of the world, as the percentage of urban duellers has increased, so have educational enrollnents.

Historically in most countrics of the world, the proportion of males has been considerably greater than females in educational enrollments. In the past, there was little economic need for females in Latin America to obtain a secondary or University education since wonen did not participate greatly in the production process. However, it is argucd ${ }^{38}$ that in Latin America in the past thirty years, the social tradition that a women's place is in the hork has broken down. As this tradition falls, there will be an increased demand for education on the part of females.

In the past, Latin American school systems have received much criticism because the rate of retention of students from one grade and/or one level of education was very low. ${ }^{39}$ Students many times did not complete the fourth grade in primary education, a situation which generally will lead to illiteracy. Latin American educational systems have attempted
${ }^{38}$ John P. Guillum, Social Changes in Latin America Today, (New York: Harper and low, 1960). p. 35. ${ }^{39}$ Ibid. , p. 40.
to combat this inefficiency by tactics designed to increase the retention rates. To the extent to which they are successful the demand of education will rise.

IV. Sumnary

This chapter has surveyed some of the ideas and research concerning the role of education in economic development. It has shown that in the 18 th and 19 th esntury, major economists were intercsted in the effects of education of the process of economic development. Furtier they generally concluded that it was essentially a factor to long ru: cconenic growth. Thile the sujject lay relatively dormant in the first half of the 20 th century, if was a topic of revived interest beginning in the 1950's and continuing through today, While agreeing that ciucation was important, modern day economists such as Higgins and Schultz have atterpted to fit a theory of education into a more gencral theory of resource allocation, while others such as Denison have attempted to measure the contribution of education to long run cconomic growth.

The chapter has also shown that the resource planning for an education system must precede under the general frame work of a plan for economic developinent. In the process of the development and implementation of an educational plan, problenis arise in the predication of the demand for education and the subseguent supplying of teachers and facilities to meet. the projected cducational enrollments.

It was suggested that school systems either implicitly or explicitly have an optimal teacher/student ratio which they attempt to achieve in the educational system. Can this hypothesis be substantiated, and if so, what are tire implications for the operation of cducation systems operating under such a constraint?

It would secm that it was critical for ciucational planners to be able to project future derand for education. However, exactly what are the factors winch influence the derand for education. There were suggestions that such factors as income level and distribution, rural/urban population distribution, the conplexity of the production process, and changes in social traditions are all factors which deternine the long run demand for education. Are these the factors educational planners should be evaluating in an atterpt to predict long run femand for enrollments? The remainder of this paper will devote itself to an attemet to answer these two question.

CIIAPTLR III

An Analytical Framework

This chapter presents a model of the supply and demand for education. It describes the supply and demand functions for enrollments and a market clearing mechanism for educational places. It presents and discusses the statistical approximations of the variables affecting the supply and demand for educational places. It presents relevant hypotieses to be tested and develops mocicls capable of testing these hypotheses.
I. The Supply of Educational places

Conceptually the supply of educational places is the quantity of students an educational system is willing to accomodate. The determinants of the supply of educational places are based on factors which reflect the ability and desire of a socicty to invest in education. The supply of educational places is a function of the ability of a socicty to produce or obtain resources (both physical and human). and the willingness and the ability of the society to invest these resources in tho educational system. It should be noted now that no altumits will be made to neasure the qualIty of education eithor on a intra-countiy or inter-country basis. Jhe masuroment of the guality of vilucation, expecfally inter-country differences goes far beyond the scope of this study.

The expected returns from an investment in education can be separated into two distinct forms, cconomic and social returns. Economic returns arise from the increased production and prociuctivity on the part of the labor force. brought about by an increase in the educational and skill level of the labor force. The expected economic return on educational investment will in a large part be determined iy the desired or expected future structure of the production process. The more technologically advanced a society becomes, the greater becomes the need for a more highly cducated labor force. Thus, the more complex the method of production, the greater the expected returns from education. ${ }^{1}$

The social returns to education investment are difficult to quantify, yet it is reasonably clear that they do exist. From the standpoint of an individual, education can be viewed as the process through which one's children are given the opportunity to acquire knowledge which will enable them to lead a more comfortable life. λt least one investigator argues that investments made to enable a child to attend school are made by the parents via the perception of the parent as to how the child may best improve his

[^8]future. In particular, rural fanilies sce education as the only direct route of escaping their environment. ${ }^{2}$ The pleasure of a parent in sceing inis child obtain an cducation, the possijle increase in prestige winich accrucs to the more educated individuals in Latin incrica, or the gain in national pride or purpose which may result from a better educated populace cannot be ignored in calculating the expected return in cducational investisent. ${ }^{3}$

The ability of a country to finance an cducational system depends for most part on its stage of development or its ability to oitain educational investrent funds from outside the country.

An econony operating at a subsistence level will certainly not have sufficient income to gencrate and maintain educational facilitics for much of its population. For a formal education system to be icveloped, there must be an income surplus above subsistence whicil can be used to finance education. None of the selected countries in this study, however, can be consiciered as a society at a subsistence level. There are resources available in these countries for

[^9]a range of investment projects including education. The quastion then becomes: lhat factors affect the determination of the level of investment via-a-vis other investment opportunities?

Either implicitly or explicitly, the decision to allocate a specified quantity of resources to education must be made on the basis of discounted exnccted future returns of investment in education. Whether or not tise calculation of the expccted return from education is actually made, any decision to expand, contract or maintain current levels of investment in education involves computing the net benefits (expected returns) of education as compared with the net bencfits of other worthwhile investment projects. ${ }^{4}$

II. The Demand for Educational Places

The demand for educational places for a given society is a function of the taste and preferences of the socicty. the distribution of the society's income and the expected return to the student from his investnent in education. In Latin America over the past 60 years, the concept of who should be educated has been changing. In the past, it was the cuatom in Latin America that women remaindo in the home and therefore necded little or no formal education. This
${ }^{4}$ Benjamin lliggins, Econonic Dovelomment. p. 411-12
lack of desire for an education on the part of females definitely restricted the demand for educational places. However, over the past sixty years the Latin imerican woman has begun to enter both the labor force and the educational system in ever increasing numbers. ${ }^{5}$

The distribution of income in the socicty is certainly important in determining tine cierand for cducation. Before an individual can attend scinool, he and/or his Samily must have a minimum on which he can live without the student devoting his full efforts to employment.

The expected return of education to the student is a function of the total cost of education, both out of pocket expenses, the opportunity cost of not working full time, the expected increase in income which would acerue to the student because of higher levels of education and the quality of the education. ${ }^{6}$

The advancing complexity of the production process and increasing demand for more highly skilled labor will increase the expected return to education. If the increased dumand for skilled workers increases the real wage of workers, the opportunity cost of remaining in school would rise. However,
${ }^{5}$ Guillum, Gocial changes in hatin America Today, p. 35. ${ }^{6}$ This is a very traditional approach to take. See for example, 'lheodore W. Schultz, pp. 327-347.
the increased wages night tend to raise the expected returns to education. How the ciemand for cducation will change due to increase in the demand for rore highly skilled labor force will depend upon ho'd the change affects the opportunity cost of ecucation in relations!aip to the expected income from education. ${ }^{7}$

III. The Market For Educational Places

It is possible to construct a static equalibrium model of the market for educational places. Let the quantity of educational places be a function of the physical stock of cducational capital K, the stoc: of teachers, T, the technology of educational process S. such that $Q s=f(K, T, S)$. At a given point in tise then, assuning that the stock of educational capital, the stock of teachers, and the technology of education are fixed, the cuantity of educational places available is a linear function of the number of students which are assigned to the fixed teachers. There exists then a supply function which can be drawn relating the supply of educational places to the teacher/student ratio, (Figure l). It

7lifggins, Econonic pryolomaent. p. 417. Apparently in the academic sector of the U. S., the rates of return to advanced education approaches zuro. See for example Duncan wailey and Charles schotha, "private and social Rates of Return to the Lducation of Acsdemician", Amorican !:conomic Review, Vol. LxiI, ido. 1, ilarch, 1972.

Figure 1

follows that an increasc in the rate of return to education, the stock of teachers, the stock of educational capital, or the technology of cducation would shift the supply curve down and to the right.

The demand function for cducational place is considered to be a function of student or family income, I, opportunity costs, 0 , expected returns to education for the students, R_{S}, the quality of cducation, Q, and the size of the school age population such that $q_{b}=f\left(I, O, R_{s}, Q, P\right)$. At a given point of tinc if I, O, R_{s}, P, are fixed and the quality of instruction is Q, a function of the teacher/student ratio, then the denand curve for education places sloped downard and to the right. An increase in any of the fised factors would shift the demand curve upward and to the right, (Figure 2).

Figure 2
The Demand For Education

Short Run fidjustrent

For a given time period then the market for enrollments could Le described as $q_{S}=f(E / T, K, T, S$,$) and q_{d}=f\left(E / R, I, P, K_{I}\right)$. within this marlet the teacher/student ratio would act as the market clearing variable, me equilibriun conditicn wouda of course, be where the supply of educational places is egual to the demand for colucational places as in Figure 3.

Figure 3
Ihe barket for Educational Places

Short Run Aijustment

In the short run, the state will be conmitted to hire a given number of teachers. A condition of equilibrium would be achieved through the adjustment of the student/teacher ratio. Figure 4 below depicts a discquilibrium situation of

Figure 4
The Narket Short Run Adjustment

excess class sizes. At the student/teacher ratio 1 , the quantity of educational places offered by educational authorities given intended class sizes is greater than demand: class size falls to the level of L 2 . Likewise a disequilibrium position such as depicted in Figure 5 will be altered though a changing teacher/student ratio. Figure 5 examines a situation of excess demand for educational places at the student/teacher ratio, El, the demand for educational places excecds the supply of ecucational places. The equilibrium teacher/student ratio is reached by the entrance of students Into the system thereby increasing the teacher/student ratio.

Figure 5
The larket Short : $\because \cdot \lambda$ Adjustrient

Long Run A.Ajustment

In the long run the educational authorities have the opportunity to maintain or adjust the teacher/stujent ratio to achieve an optimal ratio. Figures 7. 8, and 9 show possible long zun adjusthent pathis which the student/teacher ratio might follod over time.

Figuro 6
Long leun Mdu:stment

Figure 7

Figure 8 .
Long Run Adjustment

Figure 6 represents a situation where the educational systen in the short run has a teacher/student ratio which is lower than the desired ratio and adjustrents are rade via allowing enrollments to rise faster than the supply of teachers. causing the student/teacher ratio to rise to the desired leyel. Figure 7 depicts a situation in which the short rua student/teacher ratio is higior than optimal and the stock of teachers is increased fiore rapidly than the growth in enrollments so that the student/teacher ratio falls to the desired level. , Figure 8 represents an educational systen whose student/teacher ratio is optimal. Growth in the stock of teachers is proportional to the grouth of enrollwents such that the optimal student/teacher ratio can be maintained.

IV Statistical Approximation of Variables In¢luencing the Supply and Demand for diducational places

Thas far the posaibility that several difterent variables affect the supply and dimand for education has been developed, it its not posithite to newsure dikectly all of the varialifes which wete comblileted to affert the supgly and

The variables affecting the supply of education are the number of teachers, the level of real gross domestic product. and the student/teacher ratio. The variables representing the demand for education are separated into school age population, which represents the potential nurber of people who night enroll in school and those factors which, given the potential enrollment, determine the effective derand for education. Factors which were considered to gossibly affect demand for education werc the rural/urban distribution of the school age population, the relative number of females who attend school, the rate of retention, and the percentage of gross domestic product produced in the manufacturing sector.

THE SUPPLY FUNCIIO:I
per cunita income
Per capita incone is a measure of the amount of potential resources, which, if a society desires can be channcled into the educational system. Changes in real per capita income reflect the changing wealth of a nation. Even in a country in which there is no charge for a student attending school, a "frec" school syatem, education is not free. An educational gystem must be paid for. Resources inust be sacrificod to be used in tho aducational syatem. A country which has a relatively amall national incomo base in colaparfaon to its population will find it relatively mors difficult to build, malntain and expalad its oducational systom
than a country which has a larger per capita income base. It must be made clear that not only is the level of per capita income important, but also the percentage of that income which is channeled into the educational sjstem. It is quite possible that even though per capita incone within a country is remaining fairly constant the anount of income invested per student, and the total amount of resources invested within the school system can be changing dzamatically. Through changes in the structure or level of taxes or through changing allocation of investment expenditures, the government can change the amount of resources from a given level of per capita income going to the educational systens. ${ }^{8}$

TEACHEDS

The number of teachers employed by a scheol system is the critical factor in tho long run adjustrint process. Mifles in the whort run the number of teachers employed is fixud, educalional nuthorities are fred in the long run to adjust the serock of tuachore yo as to achiove the desired teaches /atudent intio.

Comaldas an ullatalfallil ayotull in which the numbur of

[^10]students enrolled rises. The number of teachers may rise by a greater proportion than encollments, rise by the same proportion as enrollments, rise by a proportion which is smaller than tice proportion of gro::th in enrollments, or fall. If the quantity of teachers rises nore proportionately than enrollments, that would be an indication tiat the current teacher/student was lower than desired, and the educational authoritics are taking steps to increase the ratio. An equiproportional increase in teachers and students would be an indication that the current teacher/student ratio was that which tas desired. If the nurber of teachers fell or was increased proportionately less than enrollments, it would be a sign that the teacher/student ration was larger than the desired optimal and thus being reduced.

Stucent/Teacicr Ratio
The student/teacher ratio is critical in the short run adjustrent of the educational system in cicaling with changes in enrollrients. Since the supply of teachers is relatively fixed in the short run, unexpected changes in enrollments can be absorbed through changes in the student/teacher ratio. However, the student/teacher ratio in the long run is based upon the prociuction of education. Given a state of educational technology, a quanlity of teachers, and an amount of plysical resources, the central question becomes: llow many students can be assigned to an instructor before the agyregate
quantity of knowledge gained by the student falls? It would seem that every cducational system has at least ilmplicitly a student/teacher ratio which it would like to see maintained. ${ }^{9}$

The Rate of Resnonse of the Stock of Teachers
It is hypoticsized that each country for each level of education has a desired number of teachers (T*) which is related to the level of enrollments (E). That is $T^{*}=\mathrm{KE}$. A further definition can be made so that $T^{*}=K^{*}$ which can be considered a desired teacher/student ratio. It is assumed that K is dependent upon the amount of resources which a society is willing to put into the educational system. It is assurred that K is lincarly related to $\frac{\text { GDP }}{\text { POP. (a proxy for }}$ wealth) in the form $K^{*}=K o+K_{1} \frac{G D P}{\text { Pop. Thus, the desired }}$ level of teachers at any point in time can be shown by:

$$
T^{*}=\left(K_{o}+K_{t} G D P_{t}\right) E t-1 \text { or } T^{*}=K_{0} E t-1+K_{1} G D P_{t 1} E_{t-1}
$$

For the stock of teacher to change there must be a difference between the desired stock of teachers (T^{*}) and the actual stock of teachers. So that $\Delta T_{t}=\lambda\left(T^{*}-T_{t-1}\right)$. That is to say the ΔT is a function of two factors, the absolute difference between the desired and actual stock of teachers, and the rate -1 at which the system can move in closing the gap between the desired and actual stock of teachers. Ignoring the attrition rate of teuchers from the system, an

[^11]estimating model can be'developed.
Suistituting $T_{t}-T_{t-1}=\Delta T$
we have
$$
T_{t}-T_{t-1}=\lambda\left(T^{*}-T_{t-1}\right)
$$
it follows that $\quad T_{t}=\lambda\left(T^{*}-T_{t-1}\right)+T_{t-1}$
and
$$
T_{t}=\lambda T^{*}-\lambda T_{t-1}+T_{t-1}
$$
then
$$
T_{t}=T^{*}+(1-\lambda) T_{t-1}
$$

Substituting $T^{*}=\left(K_{0}+K_{1}\right.$ GDP $\left._{t-1}\right) E_{t-1}$
the estimating equation becomes

$$
T=K_{c} E_{t-1}+K_{1} G D \Gamma_{t-1} E_{t-1}+(1-\lambda) T_{t-1}
$$

Estimation of this equation via regression analysis will provide the $\widehat{\mathrm{B}}_{1}, \widehat{B}_{2}$, and $\widehat{\mathrm{B}}_{3}$. These estimates of Beta have the follosing values.

$$
\begin{aligned}
& \hat{B}_{1}=\lambda K_{0} \\
& \hat{B}_{2}=\| K \\
& \hat{B}_{3}=1-\lambda
\end{aligned}
$$

There exists then a system with 3 unkinown and threo equallons to solve for the valuc. Jrom this systern the following valucs can be cletermination. .

$$
\begin{aligned}
& \lambda=1-\hat{ज}_{3} \\
& K 0=\hat{H}_{1} /\left(1-\hat{H}_{3}\right) \\
& \kappa_{1}=\left[\hat{H}_{2} /\left(1-\hat{\beta}_{3}\right)\right.
\end{aligned}
$$

 If takes a valus in this rambu, the procoss reviosonts a
 gap lielwecil de:sfred blork of luathuty and actust stock of tuaclure.

Several conditions can exist when λ is negative

$$
-\lambda=\frac{T_{t}-T_{t-1}}{\left(T^{\star}-T_{t-1}\right)}
$$

(1) $T^{*}-T_{t-1}>0$; and $T_{t}-T_{t-1}<0$
(2) $T_{*}^{*}-T_{-1}<0$, and $T_{t}-T_{t-1}>0$

In first instance, the desired teacher stock is greater than the actual stock of teachers. The rational response would be to reduce the deficit, but a negative incicates tiat T_{t-1} is greater than T_{t} indicating a fall in the stock of teachers. The conclusion for negative values of λ must be that the educational system acted irrationally or that the model does not correctly describe the behavior of the system.

In the second case, there exists a situation where there is a surplus of teachers. The rational response would be to reduce the stock of teachers to match the desired stock. However, there would exist a net positive increase in the stock of teachers. Again either the action is irrational or the behavior does not match a capital stock adjustrent model.

If \rightarrow assumes a value greater than one, the process adjusts the stock in the proper direction, but overconpensates for the discrejancy in making the adjustment. In the long run the Dehavior of the teacher/student ratio is explosively oscillatory.

THE DEIYND FUNCTION

School Age ponulation
The sciool age population is defined as the members of the pojulation of legal school age. A growing school age population can be a significant factor in expanding denand for cducational places. There are two methods in which population growth can be treated in the analysis of rising enrollments. It can be assuned that a rising school age population in itself is not a causative factor in increasing enrollments. This is simuly to say that regardiess of the potential school age population that enrollments are actually determined via the supply of available educational places allocated to the educational system via the cost-benefit analysis of the expected returns from cducation on the part of the government, and the level of the expected return to the student from education. ${ }^{10}$.

In alternative method of viewing the growth of the school age population is to consider the process of education to be institutionalized with respect to increasing population. It is assumed that the government will provide as a minimum effort in educutional investinent a sufficient quantity of now educatiolal places cach year so as to ausorb any increase In the demand for education resulting from increased population. Hore einyly put, as a minimuneffort tho educational
10higuins, ficonomic: mevelownint. !. 438.
planning body will not allow the student enrollnent ratio to fall. Thus inplicitly it is being assumed that the demand for cducation, ceterus paribus, with regard to per capita inconc and otiner factors, will rise at the same rate of increase as the school age population.

Rural/Urian Ponulation Distribution
An important factor whici will modify changes in tire demand for educational places is the geographic distribution of the school age population. Latin Anerica as a rihole has been experiencing a migration from rural arcas of the country to urban arcas. It is cleal that Latin inarican educational systems have concentrated in the past in providing a greater proportion of classrooms to pupils in urban areas than in rural areas. The reasons for this may be the fact that it is less expensive to provide education in terms of building costs pur student in more donsely populated areas. rficere also seens to bu an aversion on the part of elucated latins lo working in rural areas. It may therefore be easJer to attract teachers to urban rathor than rural schonls. At ally rate, as a largar parcentagu of the profulation moves
 ulation will have accubs to achost fadilitus, 11
1111.1 . 12.33.

The size of tize legal school age population does not entirely reflect the nuriser of persons socially eligible to attend school. Social custons and pressure determine to some extent social classes for which coucation is "necessary". In the past in Latin Anerica, just as in the united States, there was little need for a woman to receive much of an education. The womar's place was not in areas of econoric activity, but rather in the mone. Nomen who were cligible to enter the educational system, did not do so becausc it was not customary. ${ }^{12}$ As this social tradition breaks down, there is an effective increase in the number of people who demand educational places.

Percentage of Grois Dorestic Product Produced in the lianuracturing

The conplexity of the process of conomic activity will influence the expected returns of education to the individual. The more complex the industrisi process, i.e., the more industrialized the nation, the greater is the need for skilled individuals and thus the greater the return on a given level of education. The percentage of gross donestic product produced in the manufacturing and in tho service sectors were

[^12]chosen to represent the changing complexity of the society. ${ }^{13}$
An increase in the percentage of G.D.P. produced by the sector will influence the expected returns to education in one of two ways. If the percentage sliare of the sector expands, and the percentage of the labor force employed in the scctor expands also therc will be an increase in the demand for sixilled labor. If the percentage share of G.D.P.; increases but the percentage of the labor force employed in these sectors docs not increase then the productivity of the worker and most likely their wage will have increased. Either way, nore jobs or more incone, the expected returns from education should increase. 14

Retcntion Rates

Latin frexican educational systems have been criticizes In the past because of tho fact that a large nunber of students who enter various levels of education do not complete their ecucation. ${ }^{15}$ An approxin.ate rite of retention of studunts may be established in the following mannor. dssume thal in a pirmary education syiston of six gradus that in boo

[^13]there were 100,000 students enrolled in grades one through five. In 1961 there were 80,000 students enrolled in grades two through six. The percentage of students retained by the system would be 80 percent. This crude retention rate can only be an approximation of the rate of retention of the system for two reasons. The measure ignores the problen of students repeating grades. A student who was in the first grade in 1960 and repeated the first grade in 1961 would tend to understate the rate of retention. λ student who was in the sixth grade in 1960 and repeated the sixth grade in 1961 would tend to overstate the rate of retention. Inother possible source of error would be re-entrants into the school system. An individual who was out of school in 1960 and reentered grades two through six in 1961 would tend to inflate the rate of retention. If the rate of repeaters and re-entrants remain constant, then a change in the retention rate should be reflected in a change in the level of enrollment. A rise in retention rates would lead to rising enrollments, and a fall in retention rates to a fall in enrollments.

The Distimation of the finrollment Punction

The enrollment function will be estimated through tho use of regression analysis. The regresaion analysis will be doveloped in two stages. First the variables per capita G.D.P., the number of teachors, the percentago of nale onrollmonta, and the porcentage of gross domostic product produced in the manafacturing suctor of tho eoonomy will bo
regressed against enrollments in the various levels of education. Tire second stage will be a nultiple regression in which enrollments will be tne ciependent variables wille the independent variables will be those variables found to be relevent in the regression in Stage 1 plus enrollnents lagged one tire period and the teacier/student ratio.
V. Hypotheses to be Tested

Chapter II and III have laid the foundation for the testing of the following hypothesis for selected Latin fnerican. countries:
A. Eaci country has, for each level of education. an optiral teacher/student ratio it is trying to achicve.
B. Tise teacher/student ratio is a fositive function of G.D.G.
C. Tho chicf determinant of levels of educational enrollments in any given time period is the level of enrollmentas of the previous perind.
D. Level:s of educatlonal emrollaments are directly ralated to pur capita uross domestic prosuct.
R. Wha fincieasing furcuntags of fumato entullmestat in and callucathimal sybtem luads to increatac educational shrollments.
K. As thas indabirlal procanas af a comatiy buenams
more complex represented by the percentage of gross domestic product produced in the manufacturing sector, education enrollments rise.
G. As retention rates rise, educational enrollments rise.
H. The greater the per capita income of a country the greater the proportion of enrollments to school age population.
I. The more urbanized a country becomes, the greater the proportion of enrollments to sci:ool age populations.
J. The greater the ratio of teacher to school age population, the greater the proportion of enrollments to school age population.

CIIAPTER IV

Historical Changes In Enrollments and Other Variables

I. INTRODUCTION

In order to test the stated hypotheses concerning levels of educational enrollments. it was necessary to construct consistant estimates for the various countries over a period of time. This chapter will present and discuss the historical trend of enrollments and other data.

Selection of Representative Countries
Enrollments and other data were collected for Argentina. Brazil, Chile, Colombia, Iexico, Pcru, and Venezucla. These countries were selected as sarples for two reasons. first. while they represent only seven of the eighteen countries of Central and South America, the combined population of the seven represent more than two-thirds of the total population of Latin America. Sccondly, these are among the more conomically developed countries in Latin America, and economic development seemingly brings with it more comulete collection and processing of data. Only for these countries is there available a sufficient amount of data necessary for the analysis. Data was collected for the period 1950 to 1965 , however the period chosen for allalyeis was the years 1955-1965 because of the lack of sufficient data covering the early 1950^{18}.

II. Educational Enrollments

When the annual average rates of growth of enrollments in Table 3-1 arc examincd, some very distinct patterns emerge. Argentina stands out at first glance. In Argentina all levels of educational enrollments grew much slover than the enrollments of other countries.

Ist the other extreme, education enrollments on the average expended more rapidly in Venezucla than in any other country.

It is also clear that enrolments in higher education have grown at a faster rate than have enrollments in secendary education and those in secondary education have grown at a faster rate than in primary. It should be noted that higher education has grown from a much lower numerical base than secondary, and thus it takes a much smaller increase in the number of students in higher clucation than in secondary education to produce an erjual rate of growth.

Clearly, thougli, the perior 1950-1965 was one in which cenrollments at all levals increasod at a more rapid rate than did [ogulation. brazilian ramollmanta in primary education grew at a steady rato over the entira period, hut thete was a distinct fnczease in the rato of growth of ensollments in
 a different patitern, with primaty antollmunt: inciuasing rapfally atter 1960, becobshaty absollacint: have a lowes sate of

TABLE IV－1
Average knual fates of Growth of Educational Enrollments

	frgen：̇ina	Sra	2il	Chile	Colombia		Mexico	Peru	Vene	ela
Yez：		Ge：．	Av．						Gen．	Av．
205¢－EE	2.4	5.64	6.1	4.4	7.5^{1}		－－－	5.0	7.4	－－－
ここミラー¢5	2.3	5.5	6.0	4.1	7.2		7.2	6.2	7.9	8.92
2000－i5	2.0	5.8	7.1	5.8	7.0	1	7.2	7.4	3.6	3.5
こ゚ら「ーモう	－－	9.7	10.5	7.73	－－－		13.2	10.8	14.8	－－－
ユロミミーモミ	3.12	10.2	10.6	－－－	－－－		13.5	11.7	14.4	－－－
ご¢¢～とう	1.0	12.0	14.8	3.5	－－		16.3	13.9	10.4	－－
Mas：mp										
このラローとう	－－－	－－－	－－－	－－－	13.0		－－－	8.6	13.1	－－
ごここーモミ	5.0^{2}	8.1^{4}	7.2^{5}	$10.8{ }^{6}$	13.3		11.3	11.1	18.4	－
156こーEミ	7.1	10.5^{4}	9.25	$14.7{ }^{6}$	12.6		11.3	13.3	12.6	－－－
＝ili Coiominien cata goes to 1964．										
2：057－¢5．										
Seeta erics 2984.										

in enrollments at all levels between 1950 and 1965. Hexico experienced a substantial increase in the rate of growth of enrollments after 1960 also. Peru had much the same pattern, with rapidly growing enrollments at all levels of education during the entire period, but with a burst.in the rate of growth after 1960. The pattern of growth in Venezucla was unique. Between 1955-1965 there was a huge increase in the enrollments in all levels of education, concentrated mostly in the 1955-1965 period in secondary and university levels also.

II. Per Capita Income

The average annual rates of growth of per capita income is shown in Table 4-2. Imnediately apparent is the wide

TABLE 4-2

Country	Rate of Growith	Income in 1963 U. S. dollars
Argentina	1.88	616
Brazil	2.41	215
Chile	1.18	457
Colombia ${ }^{2}$	1.28	430
Mexico	3.18	390
Peru	2.58	247
Venezuela	2.51	881

${ }^{1}$ Computed from nata in Appondix Tabla $1-4$
21953-61
variety of rates of growlh of per capita income among the various countries. The countries can be grouped into those which have had an annual average rate of growth exceeding 3 percent a year, those exceeding 2 percent a year, and those growing at less than 2 percent a ycar.

Mexico is the only country in the sample which has managed to increase its per capita income at more than 3 percent a year. If liexico continues to grow at its present rate it would double its per capita income in 23 years. Venezuela, Peru and Brazil have all achieved a rate of growth greater than 2 percent a year over the 13 year period. These countries, if they continued their present rate of growth would double their per capita income in 30 to 40 years. Argentina, Chile and Colomia all have grown at rates of less than 2 percent a year. These countries, if they continued to grow at their present rates would double their level of income in 45 to 60 years.

The growth in income in these countries has not been a stendy process. Only brazil and thexico have managed to susLafn constantly incroasing per capita incolve, Argentina had a virtual stagnation of growth from 1955 to 1960, due at beast in part of polltical lnstability and inflation.

In Chile pur caplat income was lower in 1959 than it
 a stompagu of growth of per caplta lacoms due perhaps to the

revolution of 1957-1958. 2 In short the growth of per capita income in Latin America has not been particularly stable and scems in part to be influenced by the fluctuation in the political climate.

III. Tcachers

The number of teachers and the average annual rate of growth of teachers are presented in appendix tables $\mathrm{A}-5, \mathrm{~A}, 6$ and $A-7$ and Table 4-3. It is interesting that the rate of expansion of teachers varies greatly bcticen countries and between level of education. For the most part the number of teachers in higher education has increased more rapidly than the number in secondary education. In turn the number of teachers in secondary education has grown rore rapidly than the number of teachers in primary cducation.

In higher cducation the annual average rate of growth of teachers has been very high. Argentina has had the slowest rate of expansion, yet it supply of teachers is growing at a rate of expansion, yet its supply of teachers is grosing at a rate of more than 6 percent a year. Colnmbia has expanded its supply of teachers the fastest, at a rate of nearly 16 percent, while the number of teacher in Venezuela grew at roughly 15 percent a year.

[^14]The growth of teachers in the various countries has been somewhat disjointed. In Argentina the number of teachers in the primary system was less in 1957 than in 1956. In venezuela the number of teachers in primary education grew at a very low rate after 1962. The number of teachers in the Brazilian secondary efucational system foll by 68 teachers between 1957 and 1958. In Venezuela the number of teachers in secondary education grew from 4,922 in 1958 to 7,185 in 1959 but then increased teachers from 1959 to 1960. In the universities the number of teachers in Argentina, Brazil, and Peru fell in 1959, 1961, and 1963 respectively. At the other extreme the number of professors in Mexico universities rose from 5,335 to 11,707 from 1960 to 1962.

TABLE 4-3

Average Annual Compound Rate of Growth of Teachers

Primary			Sccond,iry	Higher
Countr X	Years	$\begin{aligned} & \text { Growth } \\ & \text { Rneto } \\ & \hline \end{aligned}$	Growth Rate	$\begin{aligned} & \text { Growith } \\ & \text { Kinte } \\ & \hline \end{aligned}$
Argentina	1953-65	3.1	6.71	6.2^{2}
Bra\%il	1953-62	7.3	$6.9{ }^{1}$	7.13
Chile	1957-61	4.3		8.34
Coloulita	1955-63	8.6		$15.8{ }^{4}$
Maxles	1955-65	5.6	10.0	9.5
loru	1955-65	6.2	12.1	$11.1{ }^{5}$
Vernciucta	1953-65	7.3		15.1

1. 1953-63, 2. 1955-65, 3. 1956-63, 4. 1957-64, 5. 1955-64.

IV. Student/Teacher Ratio

Colonbia had the highest student/teacher ration in 1953 also had the highest rate of growth of teachers over the period. Argentina, which had the lovest student/teacher ration in 1953, experienced the slowest tate of growth of teachers. However among the other countries the differences in the rates of growth are not too great, and the relationship is not pronounced Appendix Table A-8.

In secondary education, where less data is available, this relationship is completely inverted (Appendix Table A-9). The countries with the highest student/teacher ratio, Argentina and Brazil, while they have been expanding their supply of teachers rapidly, have not been expanding their supply as rapidly as the increase in their enrollments, nor as rapidly as Venezuela (Appendix Table $\boldsymbol{\lambda}-10$).

V. School Age Population

As can be secn in Appendix $A-11$, the rate of growth of school age population among the various countries has been guite rapid on the whole. For the most part, the primary school age population is growing faster than the secondary school age population and the secondary school age population is growing faster than that of higher education.

The primary school age population of Columbia and Venczucla has been growing at a ratu greater than 4 percent a year. This is a high rate of growth and could not be experted to be malntained for mulomyed puriods of time. Chile
and Argentina have been the slowest growing countries at less that 3 percent.

Only Venezuela has had a secondary school age population which is growing at a rate excecding a 3 percent a year. Chile, one of the countries with the lowest rate of growth of primary school age population has one of the higher growth rates for the school age population, and which exceeds that of its primary school age population. Only Argentina has experienced a rate of growth of less than 2 percent a year, with the other countries having rates of growth between 2 percent to 3 percent a year.

The rate of growth of higher school age population is subject to more variation than the other two groups. Rates of growth ranged from .8 percent in Chile to 2.8 percent in Mexico. Chile shows a large difference between the rate of growth of secondary and higher school age population while in Mexico and Colnonia there is virtually no difference between the rate of growth of higher and secondary school age population.
VI. Rural/Urban ropulation Distribution

Appendix table $A-12$ shows the rural/urban population of the selected countrios for the two latest census periods, and the average annual rate of chango of the rural/urban distribution betwoon the two poriods. All countrion have experienced an incruase in the porcentaju of its population which Ifves in urlian ateas, In colobia, the porcentago of urban
population rose from 36.13 percent to 52.8 percent in 1964 . an an average annual rate of growth of 5.2 percent of the countries only Chilc had a urban/population distribution of greater than 50 percent around 1950. Ey the 1960° s Chile, Colombia, Mexico and Venezuela had more urban than rural residents, and in Brazil and Peru, roughly 48 out of every 100 individuals lived in an urban area.

VII. Females

Latin America, as most of the other countries of the work, has experienced a changing pattern of female participation in the world of education. For the most part, however. the "female revolution" in primary caucation occured prior to the period under investigation. As can be seen in ippendix Tables A-13, A-14, A-15 between 1953 and 1965 Argentina, Brazil, Chilc, Colombia, and Venezuela in primary education all had more than 48 percent of their enrollmants composed of females. Consequently there was not much room for growth in the proportion of female enrollmants. Peru has a much lower proportion of females enrolled in primary education than in any otler country. Doth Mexico and Peru have substantially lower female/enrollment ratios in secondary education and the ratio scaraly changed during the period under investigation. Venceucia had a female/enrollment ratio roughly equal to that of leeru and lexico in 1953.

Howaver, the [urcentaye of females enrolled grew at a rale of 1.7 purcent a year (esea Talila $4-4$) sa that by 1965. 48. 1 porcent of the Venezaulan secomdary enrollmont was
composed of females, while females still comprised only 39.9 percent of enrollments in liexico and Peru.

TABLE 4-4

Average Annual Rate of Growth of the Percentage of Female Enrollment

Primary

Country	Year	Rate	Year	Rate	Year	Rate
Argentina	$1953-65$.1	$1953-63$.7	$1954-63$	3.5
Brazil	$1955-64$.1	N. A.		N. A.	
Chile	$1953-64$.1	N. A.		$1953-65$.5
Colombia	$1953-64$.2	N. A.		$1953-65$	2.6
Mexico	N. A.		$1954-64$.1	N. A.	
Peru	$1955-65$	1.2	$1956-65$.2	N. A.	
Venezuela	$1953-65$	0.0	$1953-65$	1.7	$1953-65$	3.2

The increase in female enrollment in universities has been quite striking. It is here that the greatest rate of growth of female enrollments has occured. Only Chile, for reasons unknown has shown a decline in the number of females enrolled.
VIII. The Percentage of Gross Domestic Product Produced in The Manufacturing

As shown in Table 4-5 and Appendix A-15 the size of the manfacturing and service sectors shares of gross domestic product vary considerable between different countrics. This is true since some countries are more industrially developed than others and thus have a larger manufacturing and service sector.

In all countries except Peru, the percentage of G.D.P. produced in the manufacturing sector excecds that generated in the service sector. Argentina has the largest proportion of G.D.P. produced in the manufacturing sector, 35.1 percent in 1965, while Venezuela had only 14.6 percent of its G.D.P. produced in the manufacturing sector in 1965. Peru has by far the largest proportion of its output produced in the service sector, 36.7 percent and Argentina being the lowest with 6.8 percent.

TABLE 4-5

Average Annual Rate of Growth of the Percentage of Gross Domestic Product, Manfacturing and Service Sectors, 1953-1965

Country
Argentina
Chile
Colombia
Mexico
Perul
Venezuela

$$
1_{1953-1964 ~}^{l}
$$

Manfacturing Rate
of Growth
2.0
0.0
1.5
.9
1.7
2.2

Manfacturing Rate
of Growth

$$
-0.9
$$

$$
-0.6
$$

$$
0.0
$$

.9
1.3
1.5

All countrics except Chile have experienced positive annual average rates of increase in the percentage of G.D.P. produced in manufacturing. The rate of growth has been highest in Venezuela, 2.2 percent and lowest in Chile were no change occured. Argentina and chile has exporienced a downward trend In the percentago of output generated by tho service sector, the rates of growth baing -.9 percent and -.6 percent
respectively. The service sectors of llexico and Peru have been increasing at .9 percent and 1.5 percent respectively.

Retention Rates

Tables 4-6 and Appendix $\lambda-17$ and A-18 present the average annual rate of growth of retention rates and the retention rates for primary and secondary education. The rate of retention has been increasing in primary education for all countries for which there is data. However is secondary education only Peru has had an increasing rate of retention. Argentina and Chile have had virtually no change in the rate of retention over the period, and both Brazil and Venezuela have experienced falls in the rate of retention.

TABLE 4-6
Annual Average Rate of Change of Retention Rates Primary

Secondary

Country	Year	Rate	Yoar	Rate
Argentina	$1953-64$.4	$1953-63$	0.0
Brazil			$1955-63$.5
Chile			$1953-60$	0.0
Mexico	$1958-63$	1.4		
Peru	$1953-65$	1.2	$1956-65$	1.0
Venczucla	$1958-65$.4	$1958-65$	-.9

TABLE IV－I
Average Annual Rates of Growth of Educational Enrollments

PRI：CRY									
Yeこr ${ }^{\text {a }}$									
1952－65	2.4	5.64	6.1	4.4	7.51	－－－	5.0	7.4	－
1955－55	2.3	5.5	6.0	4.1	7.	7.2	5.2	7.9	8.92
1950－65	2.0	5.8	7.1	5.8	7.0	7.2	7.4	3.6	3.5
Sミここ：このミワ ${ }^{\text {a }}$									
29ミ9－65	－－－2	9.7	10.5	7.73	－－－	13.2	10.8	14.8	
1355－65	3.12	10.2	10.6	7.7	－－－	13.5	11.7	14.4	
1350－65	1.0	12.0	14.8	3.5	－－	16.3	13.9	10.4	
EIG：E？									
1350－65	-0^{2}	－－－4	－－－5	－－－6	13.0	－－	8.6	13.1	
－955－65	5.0^{2}	8.14	7.25	$10.8{ }^{6}$	13.3	21.3	11.1	18.4	
2 3 E0－65	7.1	10.54	9.25	14.76	12.6	11.3	13.3	12.6	
1．All Colombian data goes to 1964									
2．1957－65									
3．Data ends 1964									
4．Data crecs 1963									
5．Data encs 1964									
Data sour	dix	les A－	，A－2	A－3					

Chapter V

Results of Estimating Equations

This chapter presents the empirical estimates of the equations described in Chapter IV. It develops estimates of λ, K_{0}, K_{1} derived from the estimates of the adjustment process of the stock of teachers and the regression results from stages I and II in the estimation of the quantity of enrollments.
I. Estimates of the Stock of Teachers

Estimation of $, K_{0}, K_{1}$
Appendix Tables $B-1, B-2$ and $B-3$ present the complete regression results from the estimating equation $T_{t}=\hat{\lambda} \hat{K}_{0} E_{t-1}$ $-\hat{\lambda}_{K_{1}}$ G.D. $P_{t-1} E_{t-1}+(1-\dot{\lambda}) T_{t-1}$. From these tables, Table $v-1$ has been developed to present the values of $\hat{\lambda}_{,} \hat{k}_{0}$, and \hat{X}_{1} for each level of education in each country. Tables V-2. $V-3$, and $V-4$ present the values of λ_{1}, K_{0}, and K_{1} by level of education.

Argentina
Table V-1

Argentina	$\hat{\lambda a l}=\frac{\hat{\lambda}}{(1-\hat{B})}$	$\begin{aligned} & \text { of } \hat{\lambda}_{1} K_{0}, k_{1} \\ & \hat{k}_{0}=\hat{B}_{1} \not \hat{A} \end{aligned}$	$\hat{K}_{1}=\frac{\hat{B}_{2}}{\hat{\lambda}}$
Primary	. 101	. 0413	. 0000019 **
Sccondary	. 010	6.390	. $0004{ }^{*}$
llighor	. 669	-. 00499	. 00714

(Continue Table v-1)

Brazil Gencral
Primary
Secondary
Higher
Brazil Average

Primary
Secondary
Higher
Columbia
Primary
Secondary

Higher	.614	$.04415 *$	$.0000206 *$
Mexico	.229	.048	
Primary	.631	. .17781	.000138
Secondary	$.00087 *$		
Higher	.733	-.2923	.001286

Peru

Primary	.449	$.02015 *$.00000167
Secondary	1.222	.10063	-.0000412
Higher	.017	7.5058	.0004529.

[^15]
(Continue Table V-l)

Venezuela General

Primary	1.501	-.02648	-.0001028
Secondary	.039	1.2397	-.0003135
Higher	-.434	-.10458	-.0000490

Venezuela Averiae
Primary
1.224
.04658
$-.0000236$

Table V-2

Valucs of $\lambda_{1}, K_{0}, K_{1}$ For Primary Education

Argentina	.101	.041300	.0000019
Brazil Average	.138	.000063	.001202
Brazil General	.139	.000057	.01084
Columbia	.564	.02180	.0000352
Mexico *			
Seru	.229	$.04812 * *$	-.0000087
Venezuela Averago *			
Veneruela General	1.501	-.026480	-.0001028

[^16]Table V-3
Values of $\lambda_{1}, K_{0}, K_{1}$ for Secondary Education

	λ	K_{0}	K_{1}
Argentina	. 010	6.938*	. 0004 *
Brazil Average	. 376	.1840	-. 0000007
Brazil General	. 898	.18005*	-. 0000084 *
Mexico	. 631	-. 17781	.000138
Peru	1.222	. 10063	-. 0000412
Venezuela	. 039	1.2397	-. 0003135

Indicates \hat{B} values associated with K_{o} or K_{1} is signif-
icantly different than zero at alpha $\equiv .10^{\circ}$
**ndicates that A values associated with K_{8} or K_{1} is significantly different than zero at alpha $=.28$

Table V-4

Values of λ, K_{0}, K_{1} for Higher Education

	λ	K_{0}	K_{1}
Argentina	.669	-.00499	.00714
Brazil	.491	.00490	.0000026
Columbia	.614	$.04415^{*}$	$.0000206 *$
Mexico	.733	-.2923	.00128
Peru	.017	$7.5058 *$	$.0004519 *$
Venczuela	-.434	-1.0458	.0000490

Indicates \hat{B} values associated with \mathbb{K}_{0} or K_{1} is significantly different than zero at alpha $=.10^{\circ}$
**Indicates that \hat{B} values associated with K_{1} or K_{1} is
significantly different than zero at alpha $=.28$

It is interesting to note that there is soine consistency in the values which $\hat{\lambda}$ takes at different levels of education. In primary education; Table $V-2$, with the exception of Venezucla, all values of $\dot{\lambda}$ fall below . 564. In secondary cducation, Table $V-3, \dot{\lambda}$ takes a wide range of valucs, from .010 in Argentina to 1.222 in Vonezuela. However in ingher education, Table V-4, with the exception of Peru and Venezuela, all other λ values are greater than . 491.

The Estimation of the Stock of Tcachers
Appendix Tables $B-1, B-2$, and $B-3$ also present the results of the estinating equation for the supply of teaciners. As an estimator of the supply of teachers employed within the educational system the model works reasonably well. For the most part tho adjusted cocfficient of multiple determination. R^{2}, is quite high, with correspondingly low standard errors around the regression line. Sumary statistics by level of education aro precented in rables $V-5, V-6, V-7$.

Table V-5
R^{2}. Standard Error Around the Regression Line, and " F " Statistics for Teacher Supply Estimates in Primary Education

	R^{2}	S_{e}^{*}	F
Argentina	.975	2574.	194.
Brazil Average	.988	4334.	297.
Brazil General	.988	4335.	324.
Columbia	.969	1736.	127.
Mexico	.994	1695.	745.
Peru	.933	2284.	64.
Venczuela	.831	2473.	18.

*Measured in units of 10 teachers

Table V-6
R^{2}, Standard Error Around the Regression Linc and " E " Statistics for Teachers Supply Estimates in Secondary Education.

	R^{2}	S^{*}	F
Argentina	. 991	2234.	389.
Brazil Averago	. 976	3082.	154.
Brazil General	. 937	4841.	60.
Mexico	. 903	1496.	32.

(continue Table V-6)

Peru	.966	951.	128.
Venezuela	.897	804.	44.

*Mcasured in Units of individual teachers

Table V-7
R^{2}. Standard Error Around the Regression Line ans " F " Statistics for Teachers Supply Estimates in Higher Education.

	R^{2}	S_{e}^{*}	F
Argentina	.920	552.	53.
Brazil	.931	1195.	41.
Columbia	.914	234.	33.
Mexico	.906	496.	32.
Peru	.953	346.	83.
Venezucla	.927	229.	45.

Mcasured in units of individual teachers.

Estimation of the Stock of Teachers: An Alternative Model.
It should be noted that there exists a great deal of multicollincarity in the regression results for the estimating function $T_{t}=\lambda K_{o} E_{t-1}+\lambda K_{1} G D P_{t-1} E_{t-1}+(1-\lambda) T_{t-1}$. An attempt to eliminate this problem of multicollincarity was made by the development of a now estimation equation.

It was hoped that this new equation would reduce the standard errors around the $\hat{B s}$ and thus produce better estimates of λ_{1}, K_{0}, and K_{1}. The original estimating equation was divided by $\mathrm{E}_{\mathrm{t}-1}$ arriving at the new estimating equation $\frac{T_{t}}{E_{t-1}}=$

$$
\lambda K_{0} \frac{E_{t-1}}{E_{t-1}}+\lambda K_{2} G D P_{t-1} \frac{E_{t-1}}{E_{t-1}}+(1-\lambda) \frac{T_{t-1}}{E_{t-1}} \text { or } \frac{T_{t}}{E_{t-1}}=\lambda K_{0}+
$$

$$
\lambda K_{1} \operatorname{GDP}_{t-1}+(1-\lambda) \frac{T_{t-1}}{E_{t-1}}
$$

The results of the regression equations are presented in Tables V-IV, V-V, V-VI. Unfortunately this new estimator did not produce significant improvements in the estimators. While the standard errors of the \hat{B} are smaller in some instances, however in many others the standard errors increased. The equation as an estimator of the stock of teachers not superior to the original estimator. Thus it will not be discussed further.

II. Estimates of Educational Enrollments

Stage I Fstinates

I. Argentina

There was found to exist a significant correlation between enrollments and tho independent variables G.D.P., teachers, purcentago femalo enrollment, and percentago manufacturing for primary education. (Appendle rable B-7) These
significant relationships also held true for both secondary and university in Argentina. (Tables $B-8$ and $B-9$) For the multiple regression these results were found. In prinary education the variables G.D.P., percentage female, teachers, and percentage of manufacturing were used as independent variables. Of the four, only teachers was significant, (Table $\mathrm{B}-10$) In secondary education, the same independent variables were used. Only G.D.P. was significantly related to enrollments, (Table B-ll) In higher education, the same variables were selected but the results were different. The variables percentage sex, and percentage manufacturing were significant, (Table V-XII).
II. Brazil

There existed a significant correlation between all the tested indeperdent variables, G.D.P., teacher and percentage sex for both average and general enrollments. (Table B-7) In secondary education G.D.P. and teachers were used as independent variables, along with the retention rate. There existed significant correlations between these variables and enrollments. (Table $1-8$) In higher education, the independent variables were G.D.P. and nunber of teachers. woth of these variables wora aignificantly correlated to enrollments (fuble $\mathrm{b}-\mathrm{g})$. In the multiple regression on primary and higher education only the number of teachers proved to
be sufficient, while in secondary education both proved to be significant (Tables $\mathrm{B}-10, \mathrm{~B}-11, \mathrm{~B}-12$).
III. Chile

Only in higher education were significant correlations found between enrollments and the variables G.D.P.. and the percentage of manufacturing, (Tables B-7, B-8, B-9). There was no significant relationship between the independent variables G.D.P., percentage female, and percentage manufacturing and the depencent variable primary enrollments (Table B-10). For both sccondary and higher education the independent variables used were G.D.P.. and percentage of manufacturing. In secondary education the coefficients of percentage of manufacturing was significant while G.D.P. was not. In higher cducation both G.D.P., and percentage of manufacturing cocfficients were significant (Tables B-10, B-11, B-12).
IV. Colonbia

All of the independent variables tested G.D.P., teachers, percentage females and percentage manufacturing had significant correlations with enrollments in primary elucation. For higher education a regression line was fitted between encollments and the independent variables G.D.p., teachers, and percentago manufacturing. All of the threo variablea
proved to be significantly correlated with enrollments (Tables $B-7, B-\varepsilon$). In the multiple regression the coefficients for teachers and percentage of manufacturing were significant in primary education, while the cocfficients for all three variables were significant in higher education (Tables $\mathrm{B}-10, \mathrm{~B}-11$).

V. Mexico

It was found that there cxisted significant correlation between primary enrollments and the independent variables G.D.P., teachers and the percentage manufacturing. In secondary education the variables G.D.P., and the percentage of manufacturing were regressed against enrollments. Both variables were significantly correlated with enrollments. It was possible to regress the variables G.D.P., teachers, and percentage of manufacturing against enrollments in higher cducation. It was found that all three variables were significantly correlated with enrollments. (Tables B-7, B-8, E-9) Like in primary cducation the cocfficients of the variables of teachers and percentage manufacturing were significant. In secondary education the cocfficients of the variables G.D.P., and the percentage manufacturing were significant, when the cocfficients for the independent variables of teachers, G.D.P., and percentage of manufacturing were
significant. (Tables $\mathrm{B}-10, \mathrm{~B}-11, \mathrm{~B}-12)$
vI. Peru

In primary education the independent variables used were G.D.P., the nunwer of teachers, the percentage of female enrollment, the percentage of manufacturing, and the retention rate. G.D.P., teachers, percentage female, percentage manufacturing, and the retention rate all had a significant correlation with enrollments. The simple regressions dealing with secondary education used the same independent variables as those in primary education. With the data in absolute form, all variables except sex proved to be significantly correlated with enrollments. In higher education the variables G.D.P., teachers, and percentage of manufacturing were used as the independent variables. All three variables were significantly correlated with enrollnents (Tables B-7, B-8, B-9). Only the coefficients of teachers and the retention rates were significant in primary education, while in secondary education the variables of teachers, the percentage of manufacturing and the retention rate was significant. In higher education the variables of teachers and percentage of manufacturing were significant. (Tables $8-7, B-8, B-9)$
VII. Venezucla

Three different regressions were run for Venezuela,

1953-1965 for general enrollments including kindergarden, 1957-1965 for general enrollments excluding kindergarden, and 1957-1965 for average enrollments. The independent variables used were G.D.P., teachers, percentage fenale, percentage manufacturing, and retention rates. For all three regressions the variables G.D.P.. teachers, and percentage manufacturing were significantly correlated with enrollments. In secondary education multiple regression were run between both average and general enrollments for 1957-1965 and the independent variables G.D.P., teachers, percentage female, percentage manufacturing, and the rate of retention. All of the variables except the retention rate were significantly correlated with average and general enrollments. For 19571962 regressions were run between enrollments in higher education and the independent variables G.D.P.. teachers, and the percentage of manulacturing. For $1953-1962$ regression were run between enrollments and the independent variables G.D.P., and percentage of manufacturing. All variables were significantly correlated with enrollments (Tables B-7, B-8, B-9). In primary education only the coofficient of the variable teachers proved to be significant. In sccondary education the coefficients for G.D.P. And teachers were significant while in higher clucation the variables teachers and percentago manufacturing proved to be significant (Tables

B-9, B-10, B-11).

Cross Sectional fegressions

Additional regressions were run treating all the selected countrics as one group. The basic procedure was as follows. Shen possible, each of the independent variables were converted into a per capita form. For the year 1963, a regression was run with the student/school age population as the dependent variable, and per capita G.D.P., teachers/ school age population, percentage of the population living in urban arcas, percentage of female enrollment, and the retention rate. There was a high degree of positive correlation between all of the independent variables and the dependent variables in primary education (Table B-13). The independent variable retention rates were excluded in secondary education. Again, all of the variables were correlated with the independent variable (Table B-13). For the cross sectional regressions in higher education, the percentage of females enrolled was not used. All other variables were correlated with enrollments. (Table B-13)

Stage II Estimates.
Using the analytic francwork developed in Chapter III the cotimating model $E_{t}=\hat{a}+\hat{B}_{1}$ (G.D.P.) $t_{-1}+\hat{B}_{2}$ (8 of manufacturing $t_{t-1}+\hat{B}_{3}$ (teacher/otudent ratio) $t_{t-1}+\hat{B}_{4}(E)_{t-1}$
was used to estimate enrollments. Tables $\mathrm{B}-14, \mathrm{~B}-15, \mathrm{~B}-16$, present the results of the regression. Table v-8 summarizes the R^{2} and " F " statistics for each country and each level of education.
Table V-8
R_{2} and " $F^{\prime \prime}$ Statistics For Estimates of Enrollments

-	Primary		Secondary		Higher	
	R^{2}	" ${ }^{\prime \prime}$	R^{2}	" ${ }^{\prime}$	R^{2}	'F'
Argentina	. 969	81.*	. 613	13.*	. 801	9.
Brazil (Average)	. 191	1.48	. 962	55.*	. 995	353.*
Brazil (General)	-. 30	. 54	. 916	45.*	. 973	297.*
Chile	. 932	48.*	. 967	71.*	. 977	117.*
Colombia	. 981	92.*			. 995	301.*
Hexico	. 993	304.*	. 982	82.*	. 967	58.*
Peru	. 985	152.*	. 953	46.*	. 992	194.*
Venczuela (Average)	. 973	91.*	. 972	79.*	. 956	35.*

*Bignificant at alpha - . 05
All of the estimating equations except for primary education In Brazil are significant. Further out of the twenty three R^{2} developad, 21 aro alove .60, 20 are above . 80, 19 are ahovo .90 and 17 are ahove .9's. Tabloe V-9, V-10, and V-11,
show which variables and the signs of the cocfficients are significantly different than zero.

> Table V-9

Sign of Regression Cocfficients for Primary Education (0 indicates not significant)

	Constant	G.D.P ${ }_{t-1}$	8 of Manuf.	(Teacher/ Student) $t-1$	$\begin{aligned} & \text { Enroll- } \\ & \text { ments } \\ & \end{aligned}$
Argentina	0	0	0	0	+*
Brazil (Average)	0	0	0	0	0
Brazil (Initial)	0	0	0	0	0
Chile	0	0	0	N.A.	+*
Colombia	0	-**	0	0	0
Ricxico	0	0	0	0	+*
Peru	-*	-	-	+*	+*
Venezuela	-**	0	0	0	+*
* significant at alpha $=.05$ ** significant at alpha $=.10$					

Table V-10
Sign of Regression Coefficients for Secondary Education (0 indicates coefficient is not significant)

	Constant	(G.D.P.) ${ }_{t-1}$	(8 of Manuf) ${ }_{t-1}$	(Teacher) Student ${ }_{t-1}$	$\begin{aligned} & \text { (Enroll- } \\ & \text { ments) } \\ & t=1 \end{aligned}$
Rrgentina	-**	0	+**	0	0
E=zzil (Initial)	-**	0	0	0	+*
Ezazil (Average)	-**	0	0	0	+*
C.ise	0	0	N.A.	N.A.	+*
1:exico	-**	0	0	0	+*
Peru	0	0	0	0	+*
Venezuela (ふuerage)	0	0	0	0	+*
Ve:ezuela (Ir.itial)	0	0	0	+**	+*

* significant at alpha $=.05$
* significant at alpha = . 10

```
Table V-11
Sign of Regression Coefficient for Higher Eaucation
(0 indicates coefficient is not significant)
```

	Constant	(G.D.P.) ${ }_{t-1}$	(8 of Manuf.) ${ }_{t-1}$	(Teacher) Student ${ }_{t-1}$	$\begin{aligned} & \text { (Enroll- } \\ & \text { ments }{ }_{t-1} \end{aligned}$
Argentina	0	0	0	0	0
Brazil (Initial)	-*	0	0	+*	+*
Brazil (Average)	-+	0	0	+*	+*
Chile	0	0	-**	N.A.	+*
Colonbia	-*	0	+*	0	+*
S:exico	0	0	0	0	+**
Peru	0	0	0	0	+*
Venezuela	0	0	0	0	+*

It is clear that the most important factor in determing enrollments in time period T is enrollments in period $T-1$. While variables such as the teacher/student ratio can be a significant factor, the current level of enrollments is by far the nost significant.

This chapter tests the hypotheses presented in Chapter III. Each hypothesis will be accepted or rejected on a country by country basis.
I. Every country at Every-Level of Education has an Optimal Teacher/Student Ratio

A Methodology: For resting

If a country has an optimal teaciner/student ratio and acts rationally it follows that $0=1$. To evaluate A it is necessary to test the hypothesis $H_{0} \lambda<00 \lambda>1$

$$
H_{1} \quad 0 \leq-\leq 1
$$

Consider the likelihood function if H_{0} is true. Maximizing $<(A, Y, X)$ subject tom, 0 or $\lambda=0$ implies setting $=:-\lambda$ which is the level squares estimate of.-ifilo or -1. Likewise if ilo or H_{1} is true, maximizing (($\left., \mathrm{Y}, \mathrm{X}\right)$ without restriction on 1 is what the regression program does so that $A \equiv$ À, whatever tho value of. . The likelihood ratio
$2 \ln \leq=\left(\frac{\hat{\lambda}-\hat{\sigma}}{\sigma}\right)^{2}$
Which is a chi square distribution with 1 degree of fruadom, Savaral examples of tiu hypothesis which could bu tasted call ha duvalogmat, siulucting a level af alpha of .05 assumes $i=.7, \hat{0}_{a}=.1$. Set tho hyputhusig

$$
\begin{aligned}
& \text { } 110 \wedge 1 \\
& 110 \therefore 1-1 \\
& (:--i)^{2} \\
& \cdots \quad \frac{(1-1-0)^{2}}{1}=9
\end{aligned}
$$

since $9>3.84$ rejects H_{o} and accepts H_{1}. Assume that $\hat{\text { a }}=.2$ and $\sigma_{\Lambda}=.01$. Then set $H_{0} \wedge-0 \quad x^{2}=\frac{(i-N)}{\sigma_{\Lambda}}=\frac{(.2-0)^{2}}{.01}=4$

Since $4>3.84$ rejects H_{0}, accpet H_{1}. Further if 0% iori-1. then $\|_{0}$ must ise accopted.

Tables V1-1, V1-2, V1-3, present the test of the hypothesis $H_{0}: 0: \cdots>1 ; \|_{1}: 0<\lambda<1$.

> rable Vl-l

Test of $H_{0},<0,1>0$: Primary Education

	$\hat{\wedge}$	$\hat{\sigma}_{\lambda}$	Chi Square	Accept/Reject
Argentina	. 101	. 127	. 621	Accept H_{0}
Brazil (Average)	.138	. 432	. 101	Accept H_{0}
Brazil (Initial)	. 139	. 329	. .178	Accept H_{0}
Colorbia	. 564	. 970	. 204	лccept H_{0}
Mexico	. 229	. 1977	1.34	Accept ${ }^{\circ}$
Peru	. 449	.284	2.49	Accept H_{0}
Venczuela (Average)	1.501	.458	-	Accept H_{0}
Venezucla (General)	1.224	. 927	-	Accept H_{0}

*For an alpha risk of 58.

Table V1-2
Test of $H_{0}: \lambda<0 ; \lambda>0$: Secondary Education

	$\hat{\lambda}$		$\begin{aligned} & \text { Chi } \\ & \text { square } \end{aligned}$	Accept/reject
Argentina	. 010	. 054	. 03	Accept
Brazil (Average)	. 376	. 468	. 82	nccept
Brazil (General)	. 898	. 293	. 34	Accept
Mexico	. 631	. 467	. 62	Accept
Peru	1.222	-	-	Accept
Venezuela	. 0.39	. 379	. 01	Accept
For Alpha $=$				

Table v1-3
Test of $H_{0}: \lambda\langle C ; \lambda\rangle=: ~ H i g h e r$ Education

.	$\hat{\lambda}$	ô入	Chi Square	nccept/Reject
Argentina	. 669	. 264	1.5	Accept
Brazil	. 491	. 783	. 37	Accept
Colombia	. 614	. 397	. 89	入ccept
Mexico	. 733	. 467	. 57	Accept
Peru	. 017	. 404	. 001	Accept
Venezuela	-. 434	-	-	Accopt
For				

As can be seen fron these tables, the standard error of $\hat{\lambda}$ is so high that it cannot be clearly established that tise rate of response. $\hat{\lambda}$, falls between zero and 1.0 at the 95 percent level of confidence. liowever, in only 4 out of 20 Cases docs the value of λ fall outside the allotted range.
II. A Positive Relation lixists Between Real Per capita Gross Dor:csitic Product and the Student/ioacner Ratio

Table VI-4 was developed from appendix tables B-4, B-5, and B-6, and show the coefficient of corrclation between the Teacher/student ratio and real G.D.P.

Table V1-4
Cocfficicnt of Correlation Detween reacher/Student Ratio and G.D.P.

Primary Secondary Higher

Argentina	.79	-.09	.16
Brazil (Intitial)	$.97 *$	$-.77 *$.55
Brazil (Average)	$.91^{*}$	$-.81^{*}$.51
Colombia	$.99 *$	-	$.96 *$
Mexico	$.99 *$	$.82 *$	$.93 *$
Peru	-.37	$-.72 *$	-.36
Venczuela	$-.87 *$	$-.56 *$	-.42

*Significant at alpha $=.05$.

The results show that 13 of the 20 correlation coefficients are significant at an alpha level of .05 . Even more important is that the sign of the significant corrolation coefficients aro positive for 9 of the 10 significant values. It
would be placed into the educational system and that the relationship between G.D.P. and the teacher/student ratio would be positive. It is interesting to note that in prifary education, where the teacher/student ratio may be most critical in the learning process the sign of the correlation coefficient is positive in all significant cases except Venczuela.
III. The Principle Determinant of the level of Enrollments in any Given Period is the Level of Enrollments of the Preceding Time Period.

Tables $B-9, B-10$, and $B-11$ confirm this hypothesis. In every regression which was made in estimating enrollments, the one factor which was almost uniformly most significant was the variable of enrollments lagged oy one tine period. This predominance of evidence tends to confirm this hypothesis.
IV. Levels of Educational Enrollments are Directly Related to Levels of Real Per Capita Income. Table VI-5 is constructed from appendix tables B-7, B-8 and B-9.

Tablc V1-5

Coefficients of Correlation Between Enrollments and G.D.P.

	Primary	Secondary	Higher
Argentina	.61*	.87*	. 72*
Brazil (Average)	. 92 *	.93*	. $91 *$
Brazil (General)	. 92 *	-94*	. 92 *
Chile	. 34	. 92 *	. $91 *$
Colorbia	.83*	H.A.	. $90 *$
lsexico	. 9 4*	. 92 *	.94*
Peru	. 83*	. 9 4*	. 9 5*
Venczuela	. 77 *	. 79 *	. 66 *

[^17]In every country, except for Chilean primary, there existed a significant positive relationship between G.D.P. and enrollments. Thile the cause and effect relationship is somewhat middled, it is clear that the hypothesis should be accepted.

V. An Increase of The Percentage of Females Enrolled in the Educational System Leads to Increased Educational Enrollments

Table Vl-6 is constructed from appendix Tables B-7, B-8, and $\mathrm{B}-9$.

Table V1-6
Correlation's Between Enrollments and the Percentage of Female Enrollment

	Prinary	Secondary	Higher
Argentina	.88*	. $76 *$.93*
Chile	. 25	N.A.	N.A.
Colombia	.72*	N.A.	N.A.
Peru	.83*	. 45	$N . A$.
Venezuela	. 31	.88*	N.A.

*Indicates value significant at alpha $=.05$.
A great deal of evidence was not available concerning this hypothesis. In primary education it is possible to accept the hypothesis for Argentina, Colonidia, and Peru, but the hypothesis must be rejected for Chlle and Venczuela. In socondary education tha hypothesis is accepted for Arguntina and Venezuela but rojected for peru. It is intoresting to note that the hypothesis is accupted for all threo levels of
education for Arsentina.
VI. As the Production Process of a Country Becones liore Conslex, as Rerresented jy the Froportic: of Grosis Danicstic Product Produced in tiv Manufacturing Sector, Educational inrolli.ents Rise.

Table Vl-7 is constructed from appendix Tables B-6, B-7, and show the correlation betveen the percentage of G.D.P. produced in the manufacturing sector and enrollments.

Table V1-7
Correlation Cocficicients Between 'The Percentage of G.D.P. Produced In The lianufacturing Sector and Enrollrents

Argentina	$.74^{*}$	$.94^{*}$	$.76 *$
Chile	.21	.15	$.92 *$
Colonbia	$.88^{*}$	N.A.	$.82 *$
Mexico	$.79 *$	$.99 *$	$.88 *$
Peru	$.83^{*}$	$.91 *$	$.99 *$
Venczuela	$.86 *$	$.95 *$	$.94 *$

*Indicates value is significant at alpha $=.05$.
At every level of education, for each country investigated, except Cnile, the relationship between the percentage of manufacturing and enrollments proved to be significant. With the exception of Chile in primary and sceondary education, the hypothesis cannot be rejected.
VII. As Retention Rates Within an Educational System Rise, the Levels of Lirollments Risc.

Although it is not possible to gather a great deal of information, concerning the rate of retention i'able Vl-8 which is developed from appendix Tajles B-6, B-7 and B-8 present the available information.

> Table V1-8
> Correlation Coefficients Between the Retention Rates and Enrollments

	Primary	Secondary
Argentina	.59*	$.69^{*}$
Brazil	N.A.	$.70^{*}$
Peru	$.74 *$	$.71^{*}$

*Incicates the significant at alpha $=.05$.
Every country test shows a significant positive relationship between retention rates and enrollment. It is not possible to reject the hypothesis that the relationship exists.
VIII. The Greater the Per Capita G.D.P. of a country, the lligiter the proportion of Enrollments to the Legal School Age Population.

Appendis Tajle B-13 presents the results of the cross sectional analysis described in Chapter V. The correlation cocfficient between (enrollments/school age population) and per capita G.D.P. are 67 for prinary education, 95 for secondary education, and .84 for higher education, each of the correlations being significant at a level of alpha risk of .10. Clearly the richer the country, the greater proportion of the senool age population attends school.
> IX. The : Aore Urianized a Country Becones, the Greater the Proportion of Enrollnents to School Age Pcpulation.

Appendix Table B-13 presents the results of a cross sectional analysis between (enrollments/school age population) and the percentage of the population living in urban areas. The correlation between the two variables for primary education is . 71, for secondary education .70 and for higher education . 80, all values significant at an alpha risk of . 10 . Given these results, the hypothesis cannot be rejected, since a clear association exists between the degree of urbanization - in a country and the percentage of legal school age population enrolled in every education level.
X. The Greater the Ratio of Teachers to School Age Population in a Given Country, The Greater the Ratio of Enrollments to School Age Population.

Appendix Table B-13 shows the correlation cocfficients between the two variables. The results show that the correlation coefficient for all three levels of education are significant, -. 87 for primary, -. 73 for secondary, and -. 77 for higher. The sign of the cocfficient is the opposite of the hypothesized sign. For this reason the hypothesis is rejected.

CIMPTER VII

Conclusions
Previous chapters have described the place of education in econonic theory and the problers of educational planning. They have developed analytical models whicil have enabled specified hypothesis to be either accepted or rejected. 'rhis chapter will discuss the acceptance or rejection of the various hypothesis in the context of cconornic theory and the possible policy conclusions which may be drawn.

I. The Hypotheses

The Optimal Feacher/Student Ratio
Higgins, Harbinson and :ieyers, Hansen, ileff and Poignant ${ }^{l}$ all alluded to the existence of a teacher/student ratio which they felt educational systems would desire to maintain. If this ratio is considered to be an optimal ratio, no matter how the ratio is considered to be an optimal ratio, no matter how the ratio is derived by the system, the supply of teachers can be treated as a stock adjustment model. That is if the teacher/student ratio is not at the optimal ratio, ad justments will be made in the stock of teachers in order to achieve the desired ratio. The existence of this optimal

Iliggins, Cconomic Development, p. 434; llarbinson and Neyers, liducation, ianno:ar, and joconomic crowth, p. 199 ;
 Eduration and bevelongent, ?pe 22-24; inc poignant, The ReTalion or bucation rians. p. 31.
ratio would be established by the statistical determination of λ such that $0<-\lambda<1$. It was however, impossible to statistically establish that the rate of response to the difference between the optimal ratio and the actual ratio was between 0 and 1.

The failure to confirm an optimal ratio may arise for several reasons. First, there may be no optimal ratio's which the systems try to achieve. Assuming however, that an optimal ratio exists, it may vell be changing over time. If, due to changing cducational practices and theory, or educational technology, the optimal ratio is changing, then estimators of the rate of response, λ, would not be valid. It is interesting to note however, that almost all of the estimates of $\lambda, \hat{\lambda}$, did fall within the range 0 to 1 . Ho::cver, the hypothesis that $0<\lambda<1$ could not be accepted since the standard deviation of was simply too large. It is possible that the process of reaching an optimal ratio may be a long run process and that there simply was not sufficient data available to establish the existence of the optimal ratio. In sumnary, while it was not established that the optimal ratio existed, the model may have failed to establish its existence because of the limited amount of data available.

Teacher/Student Ratio and G.D.F.
In their discussion of the optimal stock of teachers,

Hansen, Heyer, and Neff ${ }^{2}$ pointed out that the optinal supply of teachers and thus the teacher/student ratio should be considered in light of alternative modes of teaching and resources which could be available for the education system. 'Shis implies, that given a set of tecinology constraints, that one would expect the teacher/student ratio to vary with the resources available to the system; i.c., the more resources available, the greater the supply of teachers and the greater the teacher/student ratio.

This hypothesis was tested in the estimating model for λ and the results shown in Table Vl-4. G.D.P. may be considered as an approximation for the amount of funds available to the educational system if it is assumed that the proportion of G.D.P. going to education remains constant. In primary education the results show that for Argentina, Brazil. Columbia and lexico the relationship was positive and significant, while the relationship was not significant in Peru, and significant and negative in venezuela. In secondary education, Brazil, Peru, and Venczuela had significant negative relationships while mexico had a significant positive relationship. In higher education there was no significant
${ }^{2}$ Hansen, Education and t:conomic Develovment, pp. 438, Meycr, Educational Planning, pl. 300-301, deff, Lducation and bevelennent, p. 38-39.
relationship for Argentina, Brazil, Peru, and Venezucla while the relationship for Colomia and Nexico vas positive and significant.

Two possibilities exist for the negative relationship between the variailes in secondary education. First, the respective systems may have felt the teacher/student ratio to be too high and put resources going into sccondary education into other forms of capital. It may be possible that this negative relationsilip is reflective of a bottleneck in the education system in the supplying of teachers to secondary education. While it is possible that persons with a secondary education degree could teach in primary education, it seems unlikely that the same person would do so in secondary education. This would mean that the supply of teachers for the most part would come from the system of higher education. Thus, even though more resources were put into secondary cducation, the higher cducation system may not be able to supply teachers fast enough to prevent a falling teacher/ student ratio.

Enrollments and G.D.P.
Schultz, Denison, and Selowsky ${ }^{3}$ have pointed out the
${ }^{3}$ Schultz, "Capital Formation", pp. 327-342, Denison, "The Sources of Growth", pp. 198-203, Selowsky, "On the reasurement", p. 450 .
fact that G.D.P. and enrollments rise together. It does seem apparent that rising enrollments and increases in G.D.P. have a dual relationship. Rising enrollments lead to a more educated and wetter trained labor force thereby leading to a higher level of G.D.P. At the same tire rising levels of G.D.P. and employment provide the necessary family income for children to enroll in and remain in the cducational system for longer periods of tinc. Winile this analysis dic not proport to be able to sort out the directional relationships between enrollments and G.D.P., it did test whether this relationship held true for the Latin American countries of Argentina, Brazil, Chile, Coloribia, \&exico, Peru, and Venezucla. For every level of education in each of these countrics there was indeed a positive, significant relationship, Table Vl-5. It could be concluded that the Latin experience, at least in this instance, is similar to that of the United States and other more economically developed nations.

Enrollments and the Pereentage of Female Eniollment Guillum ${ }^{4}$ has pointed that during the last sixty years more and more females have entered the educational systems in Latin America in increasing nunbers. It was found that significant positive relationship existed in primary between the two variables for Argentina, Colonbia, and Peru, while there
${ }^{4}$ Guillum, Social Changes in Latin Arorica, p. 35.
was no relationship in Chile, and Venezuela. Given the fact that the percentage of fenale enrollinent in Chile and Venezuela approached .50, it is clear that the "female revolution" occurred before the time span of study. Since the percentage of female enrollment in Colonioia and Argentina hovered between .47 and .50 , it would seen tilat even though the relationship was significant it was not particular inportant for these countries. This is particularly pointed out by the fact that the estimated regression coefficient for the percentage of fenales was not significant in the multiple regressions in Appendix Table v-lX. Only in Peru where the percentage of female enrollments rose from .40 percent to .46 percent could it be considered that the increase in icmale enrollments was a significant factor in using enrollments.

In secondary eciucation Argentina and Venczucla showed significant correlation between the two variables. In Venezuela the percentage rose from. 38 to . 48, while in Argentina the percentage rose fro: . 52 to . 56 . In the multiple regressions Appendix Table B-7, the cocfficients of the variable, percentage of female enrollment, proved to be significant, further identifying the increasing percentage as being important. The relationship in Peru was not significant nor was the cocfficient in the multiple regression, which was expected since the percentage of females has not risen significantly in system.

G.D.P. Produced in the :!nnufacturing Sector

Pepelelais, i:ean and Ndelnan, Higgins, Becker, and Mincer ${ }^{5}$ have all associated the rate of return from cducation to the demand for education. Specially Pepelelais, Mean and Idelman point out that the more complex the production process becomes, the greater the expected return to education. The percentage of G.D.P. produced in the manufacturing sector was selected as being representative of the complexity of the production process of a country. It was found that significant correlation existed between the variable for all levels of education for Argentina, Colombia, Lexico, Peru and Venezuela. In addition, in multiple regression in Appendix Table $B-9, B-10$, and $B-11$ it was found that the regression coefficients were significant in primary cducation for Argentina, Colombia and i:exico, for Peru, Chile, and Nexico in secondary cducation. It is noteworthy that the coefficients of the simple and multiple regression for higher cducation were significant for all countries tested, Argentina, Chile, Colombia, ilexico, Peru, and Venezucla. It seoms clear, that the increasing complexity of the production process is most
${ }^{5}$ pepelelais, :!ean and Adelman, rconomic Development, pp. 70-72, Higgins, Economic Develowmint, pu. 411-412, Schultz, Economic Develnnerent. p. 5%, wecker, "Under-Investment in Collcje Lưcation". pp. 340-348, Hincer. "On the Job Training". pp. 67-84.
dramatically felt in the systems of higher education.

Percentage Enrollments and Per Capita G.D.D.
Higgins ${ }^{6}$ implies that the size of the absolute potential school age population in relations'sip to the wealth of a country is a critical factor in determining the level of enrollments. Since data of the eligible school age population is available only through a national census it was necessary to attempt to test this hypothesis with a cross sectional analysis, Table V-xiV. The results do snow that the richer the country, the greater the percentage of enrollment to potential enrollments. This result, while confirming the saggestion by Higgins, tends to reinforce the hypothesis accepted earlier, that enrollments as positively related to G.D.F.

Percentage of Enrollments and the Rural/Urban Population

Distribution

Higgins ${ }^{7}$ hypothesized that an important factor in the determination of enrollments is the rural/urban population distribution. Again, since the data for population distribution is available only from a census it was necessary to
${ }^{6}$ Higgins, Economic Development, p. 438.
${ }^{7}$ Ibid. . p. 33.
use cross sectional analysis. It was found that there was a strong, significant relationship between the ratio of enrollments/school age population and the percentage of the population that live in urian arcas for all levels of education. This result shows that more urbanized countries have a higher porportion of enrollments to school age population than do countries with a lower percentage of urbanization. While this result does not necessary confirm the fact that the more urbanized a ccuntry jecomes, the greater the level of enrollments, but does lend strong supporting evidence to such a hypothesis.

Enrollments and the Retention Rate
Guillum ${ }^{8}$ criticized Latin Arerican education because large numbers of students who enter the education system fail to complete their education. If the educational systems have been making progress in helping students stay in school for longer periods of time, this would show up in using retention rates, and therefore in increasing enrollments. In countries where information was available Argentina, Brazil and Peru, that progress was made in increasing the retention rate. This increase retention rate in prinary and seconciary education were significantly associated with increases in enrollments (Taile V1-8). From these obscrvations it can be concluded

[^18]that at least for these countries, retention rates have been rising and have helped to create an increase in enrollments.

Relation Between Current and ras: Levels of Enrollments
Ho specific mention was found in the literature that the level of enrollments in a given time period is principally determined by the level of enrollment in the previous periods. This simply inplies that the stock of enrollnents is relative to new entries into the systen so that enrollments cannot change drastically from one period to another. Table V-9, $\mathrm{V}-10, \mathrm{~V}-11$, clearly show that their hypothesis is correct. It is clear from this if one wishes to estimate enrollments for a given time period the starting point is the enrollment of the system in the previous period.

Percentage of Enrollments and the Teacher/School Noe Population Ratio
. No mention of the hypothesis was found in the literature. The author concluded that it might be expected that the proportion of enrollments to school age population might be resonably expected to be positively related to ratio of the number of teachers to the school age population. This would appear to suggest that a country with a relatively smell proportion of students enrolled in school would attempt to supply more educational places for students, increase the stock of teachers. However, the resulting correlation done on a cross sectional basis showed a negative correlation. That is
the lower the enrollment/population ratio, the higher the teacher/population ratio, or conversely the higher the enrollment/population ratio, the lower the teacher/population ratio. This implies that countrics with low enrollment/population ratio increase the ratio through decreases in the teacher/ student ratio, that is through expanding enrollnents faster than teachers. This would tend to indicate again that a linitation exists, especially in countries with relatively low enrollments, in the desire to or the ability to produce more teaciers for the industrial system.

II. POLICY CO:ICLUSIONS

The results of this study lend support for policy conclusions of two different types. First, conclusions can be reached on a general level regarding the problens and operations of the educational systers of the selected Latin Anerican countries. Secondly, a general procedure can be developed for the predication of future educational enrollments of these countries.

In short run, the educational systems uncer study have been faced with a given number of people who wish to enroll in the educational system at sone point in time. Given the emphasis placed upon economic growth and education in these countries, it would seem that it would be politically inpossible for the educational system of a country to turn away a significant number of students who wanted to enter the
system on the grounds that there were not enough teachers or space. Nor is it possible to release teachers if fewor students than expected enroll. For these reasons then, the short run adjustront factor whici balances the demand for educational places with the supply of educational places is the teacher/student ratio.

At any given time the system supplies a relatively fixed quantity of teachers. Hopefully this quantity of teachers when merged with the number of students enrolled in the system will produce the teacher/student ratio which the system feels is optimal for the education process. If the system has over estimated or underestimated the enrollments for the period then the teacher/student ratio vill not be optimal. Likewise even if the estimates of enrollments are correct but the system lacks the ability to supply the appropriate quantity of teachers the student teacher ratio will not be optimal in the short run.

In the long run, the educational system moves towards an optimal teacher/student ratio through the adjustment of the stock of teachers. While this study does not conclusively show that educational systems have ontimal teacher/student ratio which they are trying to achieve, it does present evidence which indicates that such a raiio may exist. The model developed to measure the rate which educational systems in the selected Latin American Countrics move towards an optimal teacher/student ratio show most of the countries
educational systems to have reduced the gap between the desired stock of teachers and the actual stock of teachers between 1 percent to 100 percent over the period of the study. However, for the most part the educational systems have not been able to achicve a rapia rate of change between the desired and actual stock of teachers. This is due to the systems inability to increase the stock of teachers as rapidly as the growth in enrollments to aciaieve the optinal ratio. These countries, and others in similar situations would be well advised to concentrate nore on the development of the production systen of teachers if they care to achieve optimal teacher/stucent ratios in the long run.

In addition to increase attention to the development of teaching resources, it is necessary to develop long run projection models for educational enrollments. Vhile this paper does not propose to develop a long run projection model for a specific country it docs lay the foundation for a methodology for such a model. Educational planners must concentrate on a varicty of factors in order to project enrollments in period T_{10} the obvious starting point is the number of students enrolled in period T.

As a preliminary estimate one could take the proportion of currently enrolled students to the eligible school age population. Projections of the eligible school age population in period T_{10} could be attained and the proportion of students enrolled in period T_{10} applied to the population
projections of T_{10} to achieve an estimate of enrollaents in period $\mathrm{T}_{10^{\circ}}$ Once this cstinate is achicved, it must be modified so as to reflect the effects of socio-cconomic factors upon enrollments.

This study has shown tiat there are significant relationships between growth in enrollments and gronth in gross domestic product, the entrance of females in to the educational system, the increasing coriplexity of the production process. and the rural/urban population distribution. Each of these factors must bc considcred in arriving at a final projection of enrollments. The planner should investigate effect of changes in G.D.P. on past enrollments and attempt to estimate how future changes in G.D.P. will effect enrolments.

By the same token, especially in hicher education, changes in the composition of enrollments with respect to male and female should be considered. If a higher proportion of females can be expected to enroll in the educational system in the future then the projection must be adjusted accordingly.

Tise increased industralization of the country should be consicered with respect to its influences upon enrollment. Generally speaking the more complex the production process becomes the greater the enrollinent in the cducational system and the longer the period of time a student continues his studies. Estimates of tinc effects of this upon enrollments via both increased entrance and longer periods of sciooling
should be accounted for in the enrollment projections.
Changing patterns of the rural/urian population distribution should be explored. Historically as countrics have become more urbanized a greater proportion of the eligible school age population have enrolled in the educational system. Allowances should be made in the enrollrant projections which incorporate expected changes in the rural/urban population distribution.

BIBLIOGRAPHY

BIBLIOGRAPHY

A. BOOKS

> Anderson, Charles. Politics and Fconcmic Chenge in Latin America. princeton, N. J.: D. Van lostrand Company, Inc. 1967.

Anderson, R. J.. and Bowman, l:. T., eds. Education and Economic Development. Chicago: Aldine Publishing Company. 1965.

Becker, C. S. Human Canital. New York: Nation Bureau of Economic Research, 1964.

Becby, C. E. The Quality of Education in Develoning Countries. Cambriăge: liarvard liniversity press. 1966.

Blaug, Hark. Econnmics of Education: A Selected Annotated Bibliograohy, Loncon: pergamon Press Ltd. 1966.

Denison, Eduard F. The Eources of Econcmic Growth in the United States and the hlternatives before Us. ivew York: Comittee For Economic Development. 1962.

Denison, Edward F., Robinson, E. A. G., and Vaizey, J. E., eds. The Economics of Fducation. London: St. Nartins Press. 1966

Guillum, John F. Sccial Channes in Latin America Today. New York: Harper and Now, 1960.

Hansen, W. Lee. "Returns to Education" in Fducation and Economic Develorment, eds. R. J. Anderson and M. J. Bosuman. Cilicago: Aldine Fublishing Company, 1965.
\& Marbinson, Fredrick and Myers, Charles A. Education, Manpowcr, and Economic Growth. New York: IIcGraw-lilll Dook Company. 1964.

- (eds.). Manpower and Fducation. New York: NeGrawllill, 1964.

Herrnastadt, Irwin L. . llorowitz, Morris A. and zymelman, Manuel. Manpower Requirements for Planning, An International Cominrisoll finronch, Vols. I and II. lloston. Massachussetes: Department of Economics, Northeastern Universily, 1966.

2 lliggins, Bejamin. Economic Development, Revised Edition. 5. New York: W. W. Norton, 1968.

12 llirschman, A. O. The Strategu of Econonic Develomment. New Haven: Yale University Press. 1958.

Lewis, W. Arthur. Develooment Planning, New York: Harper and Row, 1966

Liebestien, Harvey. "Returns to Higher Education" in Education and Economic Developrent, eds. R. J. Anderson and 1:. J. Bowman, Chicago: ildine Publishing Company, 1965.

Marshall, Alfred. Principles of Eccnomics. London: HcMillian and Company. 1938.

Meier, Richard L. Develormental Planning. New York: McGrawHill Eook Company. 1965.

Neff, Kenneth L. Education and the Develomeent of Human Technolocy. Washincton: The linited States Government Printing Office, 1962.

Pepelois, A., Itean, L. and Adelmen I., eds., Economic Development. Now York: Harper and Row, 1968.
$q^{\text {Schultz. Theodore }} \mathrm{f}$. The Econonic Value of Education. New York: Colombia Press, 1963.

Singer, Hans. International Develonment. New York: McGrawHill, 1964.

Smith, Ndam. The Woalth of riations. ed. C. J. Bullock, New York: F.F. Collicr and Son, 1909.

6 Tannclaum, Frank. Ten Keys to Latin America. New York: Vintage Books, 1959.

Vaizey, John λ. The Economics of Fducation. New York: The Free press of Glencoe inc. 1962.

Walinsky, Louis J. The Planning and Execution nf Fconomic
Develonment. New York:
IG6 96.
B. PUBLICATIONS OF INTERNATIONAL ORGANIZATION

Chesswees, J. D. Methocologies of Educational Planning for Developing Countries. Paris: UNESCO, 1968.

Inter-American Statistical Institute. América en Cifras 1963. Vol. IV: Situacion Social. Nashington, D. C.: Pan American Union, 1964.

- America en Cifras 1965, Situacion Social. Washington, D. C.: Pan Nrierican linion, 1966.
- America en Cifras 1965, Situacion Demorrafica.

Washington, D. C.: Pan American Union, 1967.

- La Estructura Democrafica de las Naciones Americanas. Vol. II Toino 2. Washington, D. C.: Pan Imerican Union, 1959.

International Bank for Reconstruction and Development, The Economic Develonment of Venezucla. Baltimore: Johns Hopkins Press. 1961.

Poignant, R. The Relation of Educational Plans to Economic and Social Ci:ange. Faris: UiNESCO, 1967.

United Nations. Yearbook of ỉational Account Statistics, 1966. New York: U. li., 1967. - Yearbook of National Account Statistics, 1965. New York: U. N., 1966. - The Growth of World Industry, 1938-1961. New York: U. N.

UNESCO. La Situacion Fducativa en America Latina. La fnsenanza Primaria: istado, rroblems, perspectivas. Faris: UIESCO, 1960.

- World Survey of Fiducation, III. Secondary. New York: UNLESCO, 1961.
- World Survey of Education. IV. Higher. New York, UNESCO, 1967.

Union de Universidades de America Latina, Secretaria General. Censo Universitario Latinoamericano 1962-1965. Mexico: UDUNL, 1967.

UNESCO. Norld Survey of fducation. II. Primary. New York: UNEESCO, 1959.

- Statistical Yearbook 1965. New York: UluEsCO, 1966.
- Norld Survey of Education. I. New York: UNESCO, 1954.

United Nations. 1267 Statistical Yearbook: New York: U. H.. 1968.
C. PUBLICNTIONS OF LATIM NAERICA GOVERN:ICNTS

Argentina

Consejo Nacional de Desarrollo. Plan Macional de Desarrollo. 1965-1969. Buenos Aires: Presidencia de la tacion Argentina, 1965.

Departamento de Estadistica Educativa. Ensenanza s!edia 19141963 and 1964. Buenos Nires: Kinisterio de Educacion y Justicia.

- Ensenanza Pre-Primaria 1964. Buenos Aires: Ministerio de Educacion y Justicia. 1966. - Ensenanza. Primaria, Anos 1940-1964. Buenos Aires: Secretaría de Lstado de Cultura y Educacion, 1966. - Ensenanza Primaria, Datos por Dependencias, Orcanismos Dircetivos y Divisinnes Politicas. Euenos Aires: Ministerio de Lducacio: y Justicia, 1967.
- Ensenanza Superior 1064. Buenos Nires: Ministerio de Educacion y Justicia, 1966.
- La Estadistica Educativa 1965-1967. Buenos Aires: Secretaria de Lstado de Cultura y Educacion, 1967.
- Estadistica Educativa Ano 1966. Buenos Aires: Secretaria de Estado de Cultura y Educacion, 1966.

Enrique Oteiza. La Incenioria y el Desarrollo Economico en la Argentina. Buenos dires: Instituto lorcuato Di Tella.

Centro de Investigaciones Lconomicas, Instituto Torcuato Di Tella. Los Recursos llumanos de itivel liniversitario y Tecnico on Ja limolica Argentilla, Dirte li. buenos Aires: Instituto dorcuato li 'lella, 1965.

Danicl Weinberg. La Enricnanza Tecnica Industrial on la Araentina, 1936-1965. Duenos dires: Instituto lorcuato di tella, 1967.

Brazil

Instituto Brasileiro de Geografia e Estatistica. Anuario Estatistico do Brasil, 1967. Rio de Janciro: IEGE, 1967. - O Brasil em liumeros. Rio de Janeiro: IBGE, 1960. - Censos Comercial e dos Servicos de 1960. Rio de Janeiro: IBGE, 1967.

- Censo Escolar do Brasil. Rio de Janeiro: Ministerio Je Educacao e Cultura, 1966 and 1967.

Ministerio do Planejamento e Coordenacao Economica, Escritorio de Pescuisa Economica I:plicada. Plano Decenal do Desenvolvimento Fconomico e Social, Educacto (II). Diaanos-- tico preliminar. Rio de Janeiro: ilinasterio do planejamento e Coordenacao Economica, 1966.

- Educacao (I). Diaanostico Preliminar. Rio de Janciro: ilinisterio do Planejamento e Coordenacao Economica, 1966.

Ministerio do Planejamento e Coordenacao. O Procrama-Educacao no Orcamento Federal. Rio de Janeiro: linisterio do Planejamento, 1967.

Faria Gocs and lermento Correa da Costa. O Trahalho de Encenheiros e Teonicos na Industria e a sua ormacao kio du Janciro: Fundacao cetulio Vargas. 1963/64.

Instituto Nacional de Estudos Fedagogicos. Anuario Brasileiro - de Éducacao, 1965. Rio de Janeiro: idic/inil. 1965.

Chile

Universidad de Chile. Ano pedagogico 1963. Santiagoz Universidad de Chile, 1963.

Hector Gutierrez-Rolan. Proyeccion de la Pohlacion Fscolar de Clifle, 19r7-1982 y otros listuling. Santiavos Cibude: Univereldad do Chilo. jo63.

Instituto Latinoamericano du Panificacion Economica y Social. Heegesidades dre Mann de whra. latucacion y formacion profesional. Un linfoyua Glolial. Santiagos ILnE: 1967.
guperintendancis do i:ducacion, Soccion do Estalistica, Matricula Ano 1966. Santiagot Superintundencia da Educacion, 1967.

Instituto de Organizacion y Administracion. Estudio de Pecursos llumanos de llivel Universitario en Chile, III. Santiago: Universidad ce Chile, 1965.

Universidad de Chile. La Iconomia Cliilona en el Periodo 19501963. Tono II. Santiago: Instituto de Economia, U. de Chile, 1963.

Erika Grassau añ Eqidio Orellana. Desarrollo de la Educacion Chilena de 1940 a 1957. Santiago: Instituto de Investigaciones Lstadisticas. Universidad de Chile, 1959.

Corporacion de Fomento de la produccion. Provecciones de llatriculay Gastos de Fducacion. Santiago: Coliro. 1964.

Jorge Mardones and Julio Cubillo. La Eormacion de Incenicros y Tecnicos en las Cniversidases Chilenas. ! intiraciones de liecesidades y Disronibiliciaces. Santiago: Universidad de Chile, Centro ce planeamiento, 1966.

Servicio Nacional de Istadistica y Censo. Censo de 1960. Resumen General. Santiago: Servicio liacional de Estadistica y Censo.

Colombia

Asociacion Colombiana de Universidades. Estadistica de la F.cucacion Superior, 1965. Bogota: Fonco Universitario Facional, 1965.

- Educacion Superior en Colombia-Estadisticas Basicas. 1966. Rogota: Asociacion Colomisiana de Universidaces. 1967.

Departamento Administrativo Nacional de Estadistica. Boletin Mensual de Estadistica. Bogota: DANE.

- Decimotercer Censo llacional de roblacion, Resumen General. Bogota: Imprenta Nacional, 1967.
- La Fducacion on Colominia. 1963-1964. Bogota: DANE, 1966

Instituto Colombiano de rinncializacion Tecnica en el Exterior. Recursos y Pequerimientos de Personal de Alto Nivel 1964-1975. Uogota: ICETLX, 1905.

Universidad de los Andes. llistoria, Rstado Actual y plan de Desarrollo. Bogotai Universidad du los Andes, 1965.

Mexico

Asociacion Nacional de Universidades e Institulos de Ensenanza Superior. La Educacion Superior en el Regimen del Presidente Lopez liateos. Sexico: Asociacion Nacional de Universidades e Institutos de Ensenanza Superior, 1964.

Direccion General de Lstadistica. Anuario Estacistico de los Estados Unidos Mexicanos, 1946-1950. I:exico: Secretaria de Industria y Comercio.

- Anuario Estadistico de los Estados Unidos nexicano. 1955-1956. Hexico: Secretaria de Industria y Comercio.

Direccion Gencral de Estadistica, Departamento de Censos. Septimo Censo de poblacion 1950. Resumen General. I:exico: Secretaria de Industria y Comercio. - VIII Censo General de Poblacion 1960. Resumen General. Mexico: Secretaria de Inoustria y Comercio. 1962. - VIII Censo General de roblacion 1960. Resumen General. Nexico: Secretaria de Industria y comercio, 1962.

- Anuario Estadistico de los Estacos Unidos :!exicanos. 1964-1965. Jexiso: Secretaria de Industria ' Comercio.

Nacional Financiera, S. A. Statistics on the ! !exican Economy. Mexico: Nacional Einancrera, S.A., 1966.

Secretaria de Educacion Publica. Suplemento Estadistico a in Memoria obra folucativa en cl Sexenio 1958-1964. Mexico: Secretaria de Lducacion lublica, 1964.

Peru

Consejo Inter-Univernjtario, Oficina Nacional Inter-lniversitana de Planificacion. La l'niveraidad Poruana: Su Foalidad y bu losiblo Dosarrolin, Anexo II, sisioctos financicros. Lima: ON11. 1967.

Dircccion llacional de Estadintica y Censos. VI Conso Naclonal do Pollacion, Vol. IV. Lima: Miniaterio do hacienda, I96G.

Inatiluto llacional do llonificacion. lesarrollo yconomico y socifil Retcurbos llumanos y filucacion. Limas 1Ni. I965.

- Plan Scetorial de Educacion, Calificacion de los Recursos llumanos nara cl Desarrolo. Lina: Iidy, 1967.

Ministerio de Educacion Publica. La Educacion en el Pcru. Lima: Dircccion de Plancamiento ílucativo, 1967. - Estadistica Educativa 1364-1965. Lima: Direccion de Planeamionto Educativo, 1966.

Servicio del Lmplco y Recursos Humanos. 1965 Diagnostico de la Situacion de los Recursos llurenos. Lama: Centro de Investigaciones Sociales por hluestreo, 1966.

Venczuela
Direccion General de Estadistica y Censos : iacionales. Anuario Estadistico de Venczuela, 1965. Caracas: ilinisterio de Fonento, 1966. - Octabo Censo Gencral de Poblacien 1950. Tomo XII, Parte A. Caracas: ilinistcrio de fomento, 1957. - Joveno Censo General de Poblacion 1961. Parte A. Caracas: ilinisterio de ronento, 1966 .

Ministerio de Educacion. Ifmoria y Cuenta, Anuario Estadistico, Tomn II. Caracas: Congreso IJacional de la Republica, 1967.

- Mas y :icjor Educacion. Caracas: Ministerio de Educacion, 1967.

Oficina de Planeamiento Integral de la Educacion. V Educacion v fidiestramiento, Sus.lemento del Boletin ios. 7-8. Caracas: dinisierio de Liucacion, 1963.

Universidad Central de Venezuela. : Momoria y Cuenta, 1965. Caracas: Universidad Central de Venezuela, 1966.

Universidad de Oriente. Respucsta al Formulario del Banco Interamericano de Desirrollo. Puerto La Cruz: Dircecion General de Auministracion, Universidad de Oriente, 1967.

D. JOURNAL ARTICLES

Adelman, Irma and Horris, C.T. "An Econometric hodel of Development," The American Econonic Peview, LVIII (December, 1968), 1184-1218.

Bailey, Duncan and Schotta, Charles, "Private and Social Rates of Return to the Education of Acadenicians," The Anerican Economic Revici, LXII, (Harch, 1972), 369-382.

Becker, Gary S. "Under-Investment in College Education," The $\frac{\text { American Economic Revicen, (Papors and Proccedings) }}{\text { L, (iday, } 1960 \text {), } 335-357 .}$ - "Investment in lluman Capital: A Theoretical Analysis," Journal of Political Econory, LXX, (October, 1962), 9-49.

Blitz, R. "Some Classical Economists and Their Views on The Economics of Education," Economia, XXXVII, (April,1961). 70-82.

Conroy, J. D., "Private Demand for Education in New Guinea: Consumption or Investment," Economic Record, XLVI, (December, 1970), 482-501.

Hansen, W. L. " Rate of Return to Investment in Schooling," Journal of Political Economy, LXXI, (April, 1963), 130-142.

Houthakker, H. S. "Education and Income," Revjew of Economics and Statistics, XLI, (February, 1954), 9-42.

Merrett. S.. "The Rate of Return to Education: A Critique," Oxford Fconomic Paners. XVIII, (llovember, 1966). 289-303.

Mincer, Jacob, "On the Job Training: Costs, Returns and Some Implications," Journal of Political Economy, LXX, (September, 1962), 67-84.

Morgan, James and Sirageldin, Ismail, "Rates of Return in American Education," Jou:nal of Political Economy, LXXVI, (September, 1968). 1069-1077.

Schultz. Theodore W. " "Capital Formation by Education," Journal of Political Economy, LXVII, (August, 1960). 570-594.
"Resources For lligher Lducation-An Economic Vicw," Journal of Political Sconomy, LXXVI, (June, 1968), 327-347.

Sclowsky, darcelo, "On the :"casurcment of Education's Contribution to Growth," Quarterly Journal of Economics, III, (August, 1969), 449-463.

APPCNDIX A.

EMROLLMENT IN PRI:MAPY EDUCATION

Year	Argentina	Erazil		Chile	Colombia	Pexico	Peru	Veneruela						
		verage	General					diverag	General					
1050	$2272018{ }^{1}$	3709887^{3}	4357 ¢ 3^{5}	797600^{7}	803494^{10}			515737						
1951	2359854	3891156	4545677	802700	874979		1035006^{13}	536212						
1952	2461279	4034948	4743449	848600	023133		1037523	570286						
1953	2559576	4212405	4902921	902890	1972536		1046336	596382						
1954	2654329	4433820	5255685	942600	1125350		1055619	623083						
1955	2735026	4772347	5610860	976000	1235434	3458201^{12}	1127505	646835						
1956	2723760	5183304	6094180	1007100	1311535	3588196	1201791	694193						
1957	2782524	5486470	6404486	1053800_{8}	1381290	3845260	1233937	751561	538003					
1958	2859826	5382907	6803155	1034259^{8}	1403123	4105302	1308375	916764	727837					
1959	2907516	6104393	7128 ?55	1097270	1568572	4436561	1391952	1094604	851566					
1960	2947666	6423199	7476080	1159720 9	1690531	4884988	1440009	1243948	973894					
1961	3010715	6742398	7825774	1166064^{9}	1797813	5368247	1895347	1298426	1063824					
1962	3036811	7363747	8517607	1232537	1948720	5629324	1553755	1339663	1.983118					
1363	3097240	8131422	92994416	1295146	2026408^{11}	6034850	1682365	1370665	1116443					
1964	3188491_{2}	8909362^{4}	10217324^{6}	1340873	2213423	6530751	1932614	1421959						
1965	$3251469{ }^{2}$	2061533	9223183	1516252		6916000	2054031	1481333	1224838^{15}					
${ }^{1}$ Departamento de Estadística Educativa, Ensenanza Primaria Anos 1940-1964. Suplemento														
Estadístico. (Euenos Aires: Sccretaría do Estado de Cultura y líucacion, 1966). p. 12 for 1940-1964.														
S!inisterio do Planejamento e Coordenaço Fconomica, Escritorio de Pescuisa IceromicaAplicado, Plano Decenal do Desenvolvimento Fennomico n Sncial, frucacio (II). Diannkstico														
Preliminar, (Rio ic Janciro: :Inisterio do Planejamerto e Coordnnaçao Lconomica, 1966), p. 31 for 1950-1963. This is ending school enroliment.														

Enrollment in Primary Education

${ }^{4}$ Instituto Brasileiro do Gcografía e Estatistica, Anuario Estatistico do Erasil, 19r7, (Rio de Janeiro: IBCE, 1967). p. 552 for 1964-1965.

5:inisterio do Plancjamento, Plano Decenal do.... p. 65.
${ }^{6}$ Institute Brasileiro de Geografía e Estatística, Anuario p. 564.
7Universiaad de Chile. La rconomía Chilena en el Periodo 1950-1963, Tomo II, (Santiago: Instituto de Economía, U. de Cilile, 13б3), p. 18 for 1950-1957.
${ }^{8}$ Instituto Latinoamerieano de Panificacion Economica y Social, Necesinades de Mano de Cbra. ECucacion y Formacion Profesional. Un Enforue Global, (Santiago: ILPiS, 1367), p. 58 for 1958-1960.
${ }^{9}$ Sunerintencencia de Educacion, Scecion de Estadística, (íatrícula Ano 1966. Santiago: Superintendencia de Educacion, 1967), 5. 58 for 1961-1965.
${ }^{10}$ Instituto Colomisno de Especialización TEcnica en el Exterior, Recurson v Eenuerimientos de Personal de Alto :ivel 1064-1975. (Bozota: ICrorx, 1965), p. 143 for 1050-1962.
${ }^{11}$ Inter-American Statistical Institute, America en Cifris, 1965. Siturcion Cultural: Ecucaciön y Otros Nspectos Culturales. (Washington, D.C.: Pan American Union, 1967). p. 58 for 1363-1964.

12
Inid.. p. 60.
13Instituto Nacional de Planificación, Desarrolo Económico y Social, recursos liumanos y Ecucación, (Lima: IiP, 1965). p. 51.
${ }^{14}$ Dirección Gencral de Estadística y Censos llacionales. Anuario Estadístico de Venezupla, 1965, (Caracas: Ministcrio de Fomento, 1966). P. 452 for 1950-1964.

15:!inisterio de Educación, l:emoria y Cuenta, Anuario Estadístico, Tomo II, (Caracas: Congreso iacional de la república, 1967), p. 59 for 1965.

TABLE A-2

ENROLLPINT IN SECONDARY EDUCATION

Year	Argentina	Brazil		Chile	Mexico	Peru	Venezuela			
		Average 2	General2							
1950		492446	538346^{2}		125468	81824^{6}	7			
1951		530614	579518	139449^{4}	128732	79554	40640^{7}			
1952		562882	618049	148411	144913	94312	40640			
1953		621104	681258	160575	198915	101859	48290			
1954		676730	742889	177544	203039	104579	56913			
1955	7691011	732734	806553	194344	197156	112217	66395			
1956	776910	769839	867131	211585	227336	121250	77138			
1957	947548	855566	942394	234911	274588	136347	82811			
1958	949340	934329	1032795	263618	275488	156631	111149			
1959	948044	1008482	1106504	285828	309103	178311	147510			
1960	995188	1110624	1334485	294691	376599	198359	180628			
1961	1068233	1232769	1345892	301469	539950	227827	206444			
1962	925252	1376554	1515834	315794	612701	239901	229723			
1963	946513	1563856	1710589		616285	252949	247990			
1964	1020130	18186353	1892724		707694	319351	272872			
1965	1047635	2214305^{3}	2154430^{3}		802615	379575	295872			
${ }^{1}$ Intra-American Statistical Institute, America en Cifras, p. 104. ${ }^{2}$ Ministerio do Planejamento, Plano Decenalim, pp. 103-104. ${ }^{3}$ Instituto Brasileiro do Geografia, Aruario.... p. 69. ${ }^{4}$ Instituo de Organización y Administracion. Estudio de Recursos Humanos de Nivel Universitario en Chile, III, (Santiago: Universidad de Chile, 1965), p. 109.										
5:acional Financiera, S. A. Statistics on the Mexican Economy. (Mexico: Nacional Financicra, S. A., 1966). p. 152.										
${ }^{\text {Plinisterio de }}$ Educación Publica, La Educación en el Peru, (Lima: Dirección de										
${ }^{7}$ Ministerio de Educacion, Memoria y Cuenta., p. 405.										

$7_{\text {Ministerio de Educacion, Memoria y Cuenta.. p. } 405 . ~}^{\text {M }}$.

TABLE A-3
ENROLLMENT IN HIGHER EDUCATION

Year	Argentina	Brazil		Chile	Colombia	Mexico	Peru	Venezuela
		- Average	General					
2950					70916^{5}		$16468{ }^{7}$	$6453{ }^{8}$
1951					99916		14937	1671
1953					10333		15157	4758
1954					108718		15581	7148
1955	151127^{1}			$16971{ }^{4}$	131598	46605^{6}	17867	7325
1956	145523	$73528{ }^{3}$	77604^{3}	16596	153442	---	20188	8834
1957	144270	78243	81991	---	176964	47393	23234	10270
1958	144954	82201	86365	19084	192079	63899	26120	16126
1959	146862	86527	9003	21681	222614	71524	26840	21292
1900	174508	91969	96732	24663	243226	78787	30460	26477
1961	191310	99659	104924	25613	272383	88202	34556	31570
1962	192163	105337	110493	33112	303344	100519	38876	34368
1953	2134842	119834	126405	36891	359879	110378	45428	35259
19641965	218850^{2}		144881	42709	390336	126118	50027	41372
	246477					134429	56893	46825
1965	1 Consejo Nacional de Desarrolo plan Nacional it 1065-1969 18uenos							
Aires: Presidencia de la Nacion Argentina, 1965), Table 44.								
${ }^{2}$ Inter-imerican Statistical Institute, America En Cifras, p. 160.								
3rinisterio do Planejamento, Plano Decenal pp. 132-133.								
Inter-American Statistical Institute, America en Cifras, p. 160.								
5ntituto Colombiano de Especializacion, Recusos y Requerimientos, p. 145.								
${ }^{6}$ Inter-America Statistical Institute, America en Cifras, p. 160.								
${ }^{7}$ Instituto Nacional de Planificacion, Desarrollo Economia y Social, p. 51.								
${ }^{8}$ Direccion General de Estadistica, Rncirio de Estadictico, p. 47								

TABLE A-4
Per Capita Gross Domestic Product ${ }^{2}$
(In Constant Prices)

Year	Argentina	Brazil	Chile	Colombia	Mexico	Peru	Venezuela
1953	40715	7462	674	1380	1603	4868	2881
1955	43498	8167	643	1441	1810	5024	3174
1956	43392	8048	631	1453	1870	5017	3375
1957	44935	8360	680	1439	1944	5107	3625
1958	47292	8645	689	1401	1985	5019	3538
1959	43793	8951	668	1481	1977	5079	3678
1960	46504	9216	695	1495	2061	5551	3597
1961	48951	9577	705	1520	2063	5890	3531
1962	47274	9725	733	1547	2094	6138	3631
1963	44896	9623	728	1549	2154	6174	3655
1964	47759	9682	740	1591	2293	6318	3813
1965	50702		766	1589	2333		3871

TABLE A-5
Number of Teachers In Primary Education ${ }^{1,2}$

Year	Argentina	Brazil	Chile	Colombia	Mexico	Peru	Venezuela
1950	96,274	112,499				14,697	
1951	100,430	121,919		21,713		15,924	
1952	104,746	128,456		22,690		16,726	
1953	110,535	135,875		25,208		17,436	
1954	116,495	147,955		28,939		18,278	
1955	120,185	158,789		32,197	85,797	29,753	19,222
1956	123,813	172,754		33,874	89,931	31,679	20,221
1957	121,820	183,056	25,120	35,327	94,265	32,117	20,924
1958	126,821	197,983	25,860	38,061	99,434	35,258	24,856
1959	130,153	211,517	26,600	40,157	105,883	38,369	30,889
1960	135,710	226,581	27,340	44,910	112,900	40,700	25,267
1961	144,096	254,288	30,996	48,529	119,076	43,553	36,287
1962	151,480	274,500		52,751	127,556	45,902	38,086
1963	154,312			62,158	137,308	48,405	39,629
1964	160,357				146,989	52,662	41,469
1965	164,290				151,654	57,310	43,387

${ }^{1}$ UNESCO, La, Situaccion Educativa en Latino. La Ensenanza Primaria: Estado, Problemas, Perspectivas, (Paris: UNESCO, 1960), bor 1950-1960, pp. 19-189.

[^19]TABLE A-6
Number of Teachers in Secondary Education ${ }^{1,2}$

Year	Argentina	Brazil	Peru	Venezuela
1950	87,188	50,683		1,584
1951	89,489	52,963		2,027
1952	88,896	57,053		2,410
1953	101,911	63,094		2,209
1954	114,370	69,087		2,646
1955	126,032	71,850	9,034	3,966
1956	140,270	78,311	9,629	3,995
1957	147,797	90,137	10,435	4,157
1953	156,692	90,069	12,113	4,922
1959	163,215	98,937	13,044	7,186
1960	188,335	104,430	15,848	7,201
1961	196,059	106,934	17,219	7,681
1962	207,281	120,570	17,783	8,805
1963		132,384	18,338	9,598
1964			22,133	10,091
1965				

${ }^{1}$ UNESCO, Vorld Survey of Education, III Secondary, (New York: Unesco, 1961),
pp. 19-189.
${ }^{2}$ Inter-American Statistical Institute, America en Cifras, pp. 83-100. For 1961-1965.

TABLE A-7
Number of Teachers In Higher Education ${ }^{1}$

Year	Argentina	Brazil	Chile	Colombia	Mexico	Peru	Venezuela
1955	4,918				5,981	2,534	
1956	4,757	17,022			4,873	2,560	
1957	4,761	17,665	5,824	2,913	5,410	2,667	1,448
1958	5,248	18,831		3,092	3,786	2,896	1,982
1959	4,535	20,003		3,688	4,226	2,545	2,425
1960	6,551	23,035	6,397	4,177	5,335	3,378	2,884
1961	7,325	23,878		4,079	7,324	3,708	3,129
1962	7,851	27,775		4,522	11,707	4,485	3,296
1963	8,768	29,803	10,358	5,084	11,285	5,467	3,897
1964	8,965		11,005	9,455	14,373	7,288	4,138
1965	9,750					16,185	

1unesco, horld Survey of Education IV. Higher, (New York: Unesco). 1967, pp. 19-189.

TABLE A-8
Student/Teacher Ratios and Rates of Growth of Primary Enrollments ${ }^{1}$

Year	Argentina		$\begin{aligned} & \text { Erazil } \\ & \text { Gencral } \end{aligned}$		Brazil Average		Colomia		Trexico		Peru		Tenezuela	
	$\begin{aligned} & \text { Stucent/ } \\ & \text { macher } \\ & \text { Patio } \end{aligned}$	Rate of Growth of Enrollments	S/T	Rate	E/7	Rate	S/T	Fate	S/T	Rate	S/T	Pate	S/T	Rate
1950	23.6	3.9	38.6	4.5	32.9	4.9	46.3	8.2					35.0	4.0
1951	23.4	4.3	37.2	3.7	31.1	3.7	40.2	5.5					33.6	6.4
1252	23.5	4.0	36.6	4.0	31.4	4.4	40.6	16.2					34.0	4.6
1253	23.2	3.7	36.0	7.2	31.0	6.4	42.5	4.9					34.0	4.5
1954	22.8	3.0	35.5	6.7	30.5	8.4	38.8	9.8					34.0	3.8
1955	22.7	. 4	35.5	8.6	30.0	8.6	38.3	6.2	40.3	4.6	37.8	6.8	33.6	7.3
1956	21.9	2.2	35.2	6.2	30.0	5.8	38.7	5.3	39.8	9.5	38.0	2.4	34.3	9.3
1957	22.0	2.8	34.9	4.8	29.9	3.3	39.1	8.1	40.7	17.5	38.4	6.0	35.9	22.3
1958	22.5	1.9	34.4	4.9	29.7	5.2	39.2	5.1	41.3	11.8	37.6	6.4	36.8	19.4
1959	21.3	1.4	33.7	4.7	28.8	5.0	39.0	7.8	41.9	6.6	36.7	3.5	35.4	13.6
1960	20.9	2.1	32.9	8.8	28.3	9.2	37.6	6.0	43.2	8.2	35.3	3.8	35.2	4.4
1361	20.9	0.9	34.8	9.2	29.8	10.4	36.9	8.8	45.0	7.2	34.3	3.9	35.7	3.2
1962	20.0	2.0	31.0	9.9	26.8	9.6	36.7	7.6	44.6	6.8	33.6	8.3	35.1	2.3
1963	20.0	2.9		-2.9		1.7	33.7	5.6	44.3	6.2	34.7	24.9	34.5	3.7
1964	19.8	2.0							44.4	6.1	36.6	6.3	34.2	4.2
1265	13.8													

$l_{\text {The }}$ student/teacher ratio is for a given year, n. the rate of growth of enrollments is the average annual rate of growth between year Ω and $n+1$.

TABLE A-9
Student/Teacher Ratio and Average Annual Rate of Growth of Secondary Education Enrollments

YEAR	ARGENTINA			BRAZIL			PERU		VEIEEZUELA	
	$\begin{aligned} & \mathrm{S} / \mathrm{T} \\ & \text { ratio } \end{aligned}$	growth	$\begin{gathered} \mathrm{S} / \mathrm{T} \\ \text { ratio } \end{gathered}$	growth	$\begin{gathered} S / T \\ \text { ratio } \end{gathered}$	growth	$\begin{aligned} & \mathrm{S} / \mathrm{T} \\ & \text { ratio } \\ & \hline \end{aligned}$	growth	$\begin{gathered} 5 / 7 \\ \text { ratio } \\ \hline \end{gathered}$	growth
1950			106.2	7.6	97.1	7.7			22.5	4.8
1951			109.8	6.6	100.1	6.1			21.2	2.7
1952	.		108.3	10.2	98.3	10.3			20.0	17.1
1953			107.9	9.0	98.4	9.0			16.8	13.7
1954			107.3	8.6	97.9	8.3			20.1	23.1
1955	61.2		112.2	7.5	101.9	7.8	12.4	8.0	21.5	18.5
1956	55.3	1.0	110.7	8.7	101.3	8.7	13.0	12.5	16.7	5.5
1957	64.1	22.0	104.3	9.6	94.9	8.8	12.9	14.9	19.9	35.0
1958 ;	60.3	. 2	114.6	7.1	103.7	7.9	13.5	13.8	22.5	32.4
1959	56.3	-. 1	111.8	20.7	101.9	10.1	12.5	21.2	20.5	20.4
1960	55.8	8.0	1117.2	9.9	106.3	11.0	13.2	14.9	25.0	13.2
1961	57.2	7.3	125.8	12.6	115.2	11.7	13.2	5.3	26.8	8.8
1962	47.1	-13.4	125.7	13.4	114.2	13.6	13.1	5.4	26.0	5.5
1963	45.6	2.3	129.9	20.1	118.2	16.3	13.7	26.4	25.8	7.5
1964							14.4	18.7	27.0	5.5
1965							14.6		28.1	

TALLE $\mathrm{A}-10$
Student/Teacher Patio and Average Annual Rate of Growth in Enrollments in l!igher Education

Year	irgentina		Erazil				Colombia		iexico		peru		Venezucla	
	$5 / 2$	$\begin{array}{r} \text { Petg. } \\ \text { gro:t. } \end{array}$	S/T	g. Pctg. grow'th	Sc	retg. groreth	S / T	Pctg. orowth	S/T	Pctg. growth	S/T	Petg. growth	S/T	Pctg. growth
1955	30.6	-3.7	4.5		4.3			7.8	7.8		7.1	13.0		
1956	31.3	-. 9	4.6	5.7	4.5	6.4			9.7	34.8	7.9	15.1		
1957	32.8	-4.8	4.6	5.3	4.4	5.1	5.5	17.8	11.8	11.9	8.7	12.4	7.3	5.7
1958	29.2	-1.5	4.5	5.2	4.3	5.3	64	13.7	18.9	10.2	9.0	2.8	8.6	32.0
1959	37.3	10.2	4.3	6.4	4.1	6.3	5.8	10.3	18.5	11.9	10.5	13.5	9.5	24.4
1960	27.8	-1. 52	4.2	8.5	3.9	8.4	5.7	15.8	16.5	9.8	9.1	13.4	8.4	19.2
1961	24.5	-5.6	4.3	5.3	4.2	5.7	6.6	16.0	13.7	74.7	9.3	12.5	9.3	8.9
1962	24.1	8.3	3.9	14.9	3:8	13.8	7.1	2.4	9.4	9.8	8.7	16.9	9.6	2.6
1963	23.4		4.2	14.1	4.02		6.4	13.4	11.2	14.7	8.3	10.1	9.0	17.3
1964							3.9		8.7	-. 4	7.8	13.7	9.4	13.2

TABLE $\lambda-11$
Legal School I.ge Population and Annual Average Rate of Growth ${ }^{1}$

Primary Education

Country	Legal Ace	Population 1950	Population 1960	Rate of Crowth
Argentina	$5-11$	$2,189,694$	$3,605,500$	2.6
Brazil	$7-10$	$5,530,648$	$7,875,981$	3.3
Chile	$7-12$	869,900	$1,084,146$	2.7
Colombia	$7-11$	$1,563,358$	$2,800,931$	4.3
Mexico	$6-11$	$4,123,953$	$5,946,037$	3.4
Peru	$7-11$	$1,156,125$	NA	
Venezuela	$7-12$	764,527	$1,260.462$	4.2

Secondary Education

Argentina	$12-16$	$1,546,733$	$2,105,020$	1.6
Brazil	$11-17$	$8,180.154$	$10,945,529$	2.7
Chile	$13-18$	729,500	915,470	2.6
Colombia	$12-17$	$2,993,391$	$4,035,083$	2.1
Mcxico	$12-16$	$2,953,100$	$4,028,659$	2.8

Peru 12-17

Venczucla 13-17
$498.858 \quad 730.794 \quad 3.2$
Higher Education

Argentina	$17-21$	$1,541,390$	$1,889,990$	1.1
Brazil	$18-22$	$5,343,563$	$6,641,644$	2.0
Chile	$19-23$	571,500	613,509	.8
Colombia	$18-22$	$1,082,978$	$1,417,375$	1.9
Mexico	$17-21$	$2,409,858$	$3,269,515$	2.8

Peru
Venczuela 18-22 505.112 636.780-1.9

TABLE A-12
 Urban/Rural Population Distribution And Average Annual Rate of Change ${ }^{1}$

Country	$\begin{gathered} 1950 \\ \text { Population } \end{gathered}$	Percentage Urban	$\begin{gathered} 1960 \\ \text { Population } \end{gathered}$	Percentage Urban	Average Annual Rate of Change
Argentina	15,893,527	62.5	20,003,945	n.a.	
Brazil	51,944,397	36.2	90,110,071	46.3	2.2
Chile	5,941,750	59.9	7,374,115	68.2	1.4
Colombia	11,545,372	36.3	17,484,508	52.8	5.2
Mexico	25,791,017	42.6	34,923,129	50.7	1.2
Peru	n.a.		9,906,764	47.4	
Venezuela	5,034,838	53.8	7,523,999	67.4	1.9

${ }^{1}$ Gabricl Cherin and Richard Hattwick, Manpower, Education, and Economic Development in Latin America, (National Science Foundation Grant GR 3, 1969), Table IV ClA.

TABLE A-13
Percentage Enrollment of Eemales in Primary Education

Year	Argentina	Erazil	Chile	Colombia	Peru	Venezuela
1950	$47.4{ }^{1}$		$49.0{ }^{3}$	49.0^{4}		$50.1{ }^{6}$
1951	47.7		49.0	49.3		49.6
1952	47.8		48.8	48.7		49.5
1953	47.9		48.4	48.9		49.6
1954	47.9		48.9	49.3		49.5
1955	48.0	$48.7{ }^{2}$	49.0	49.1	40.2^{5}	48.9
1956	47.9	49.1	48.0	49.1	41.1	49.2
1957	48.1	48.8	47.8	49.4	41.9	49.0
1958	48.2	49.1	---	49.5	42.2	49.4
1959	43.3	49.1	---	49.6	42.2	49.2
1960	48.4	49.1	49.3	49.9	41.5	49.2
1961	48.3	49.1	49.3	49.6	43.5	49.3
1962	48.4	49.1	49.2	49.8	43.3	49.3
1963	48.4	49.1	---	49.7	43.9	49.4
1964	48.3	49.9	48.7	49.9	44.5	49.5
1965	48.4				45.0	

${ }^{1}$ Departamento de Estatistica Educativa, Ensenanza Primaria, p. 18.
${ }^{2}$ Ministerio do Plamenjamento, Plano Decenal. p. 48.
${ }^{3}$ Instituto Latinamenicano de Panificacion Economico, Necessidalen....' P. 29 .

Instituto Colombiano de Especializacion Tecnica, Recursos Y Requerimentos, p. 148.
${ }^{5}$ Instituto Nacional de Planificacion, Desarrollo..... p. 57.
${ }^{6}$ Ministerio de Educacion, Memoria y Cuenta, p. 62.

TABLE A-14
Percentage Enrollment of Females in Secondary Education

Year	Argentina	Chile	Mexico	Peru	Venezuela
1950	52.81	$55.2{ }^{2}$			$38.4{ }^{5}$
1951	52.5	55.3			37.1
1952	52.0	54.9			38.8
1953	52.6	54.7			38.1
1954	53.4	54.7	40.5^{3}		38.9
1955	53.7	54.3	40.5	$39.0{ }^{4}$	39.8
1956	56.5	57.1	41.1	37.3	39.6
1957	54.9	53.4	41.0	36.5	44.4
1958	51.9	---	40.2	36.7	45.9
1959	55.5	---	41.4	35.8	46.0
1960	56.0	49.6	---	37.8	47.8
1961	56.0	50.3	---	38.3	48.9
1962	56.7	48.9	40.1	38.6	49.6
1963	56.5	49.2	40.7	39.9	49.1
1964			39.9	40.0	48.3
1965					47.7

${ }^{1}$ Inter-America Statistical Institute, America en Cifras, p. 106.
${ }^{2}$ Instituto de Organizacion y Administracion. Estudio de Recursos Humanos, p. 111.
${ }^{3}$ iacional Financiera, $S A$, Statistics on ilexican Economy, p. 157. ${ }^{4}$ Ministerio de Educativa Publica, La Educcacion in Peru, p. 249.
5:inisterio de Educacion, Memoriay Cuenta, p. 408.

TABLE A-15
Percentage of Gross Domestic Product Produced In the Manfacturing and Service Sectors

	1953	1955	1956	1957	1958	1959	1960	1961	1962	1963	1964	1965
Argentina												
Sanufacturing	28.1	30.1	31.0	31.8	32.6	31.8	32.2	33.3	32.1	31.8	33.9	3.5
Service	7.7	7.4	7.2	7.2	7.1	7.5	7.7	7.5	7.5	7.5	7.2	6.8
Chile												
3:anufacturing	17.5	19.3	18.9	19.0	18.8	18.4	18.4	17.3	17.0	17.2	18.4	17.6
Service	11.4	10.5	10.3	10.4	10.4	10.1	10.2	10.0	10.2	10.9	11.0	10.5
Colombia												
YanEacturing	14.4	15.1	15.6	15.9	16.2	16.4	16.7	17.2	18.4	17.4	17.4	17.7
Service	7.5.	7.4	7.6	7.6	7.7	7.5	7.6	7.8	7.5	7.6	7.4	7.6
Mexico												
Manfacturing	23.9	23.7	18.6	20.6	21.8	22.5	26.2	26.4	26.6	27.2	28.1	28.5
Service	12.8	13.6	14.2	14.2	14.5	14.2	14.7	14.8	14.8	14.9	14.6	14.6
Peru												
Hanfacturing	12.3	14.7	14.5	16.0	14.9	15.8	16.5	16.8	17.1	17.5	17.9	
Service	31.6	36.0	37.9	35.8	36.8	36.4	34.3	35.3	36.1	36.8	36.7	
Venezuela												
Sianfacturing	10.9	11.7	11.6	11.6	12.3	13.1	12.5	12.8	13.8	13.4	14.1	14.6
Service	11.3	10.9	10.7	10.4	11.1	11.3	na	na	na	12.7	12.7	13.2

TABLE A-16
Retention Rates in Primary Education

Year	Argentina	Brazil	Chile	Peru	Venezuela
1950	. 76		$.80^{3}$		
1951	. 82		. 80		
1952	1.00		. 80		
1953	. 73		. 81		
1954	. 72	. 80^{2}	. 82		
1955	. 72	. 73	. 82		
1956	. 78	. 75	. 81	$.78{ }^{4}$	
1957	. 67	. 77	. 82	. 78	
1958	. 71	. 75	. 81	. 83	. $76{ }^{5}$
1959	.71	. 75	. 81	. 84	. 73
1960	. 72	. 78	. 79	. 82	. 71
1961	. 73	. 78		. 85	. 69
1962	. 74	. 78		. 79	. 69
1963	. 74	. 77		. 81	. 66
1964				. 92	. 73
1965				. 86	. 70
${ }^{1}$ Departrento de Educativa Educativa, Ensenaza Primaria, p. 36. 2 Ministerio do Planejamento, Plano Decal, p. 87.					
3 Universidad de Chile,					Universidad de Chile, La Economia Chilena, p. 38.
${ }^{4}$ Instituto do Planificacion, Desarollo P . 82.					
$5_{\text {Ministerio }}$ de Educacion, Memoria y Cuenta, p. 89.					

APPENDIX B.

TABLE B-1
Estimation of Teacher Supply Function Primary Education

$r y \quad \hat{B}_{3}=(1-\lambda)$	$\hat{B}_{2}=\lambda K_{1}$	$\hat{B}_{1}+\hat{\lambda}^{\prime} \mathrm{K}$	Simple Correlation	
Argentina Standard	. 00000022	. 00418	$1+2$. 987
Error (.1277)	(. 00000014)	(.00582)	$1+3$. 919
T-value (7.041)*	(1.588)**	(-.718)	1+4	. 984
			2+3	. 892
			$2+4$. 973
$\begin{aligned} & \text { Standard } \\ & \text { Deviation }=2574 \quad R^{2}=.975 \end{aligned}$	F=194.22*	Duban-Watson=1.701	3+4	. 987
Brazil				
Average $=\hat{B}=.8611$. 00000087	. 000166	1+2	. 995
Enrollment SE $=(.4321)$	(.00000106)	(.007155)	$1+3$. 994
T (1.922)*	(.85)	(-.023)	$1+4$. 998
			$2+3$. 996
			$2+4$. 986
$S D=4334.4 R^{2}=.988$	F=297.7*	$D W=2.639$	3+4	. 993
Brazil				
General $+\hat{B}=.8625$. 00000089	. 001507	1+2	. 995
Enrollment SE $=(.3296)$	(. 00000083)	(.00464)	1+3	. 992
T = (2.616)*	(1.082)	(-.324)	1+4	. 983
			$2+3$. 992
$S D=4335.4 R^{2}=.988$			$2+4$. 987
	$F=324.6 *$	$D W=2.544$	3+4	. 996
	. 0000199	. 012306	1+2	. 988
SE $=(.9700)$$T=(.450)$	(.0000123)	(.016155)	1+3	. 989
	(1.619)**	(-.762)	1+4	. 987
			$2+3$. 996
$S D=1736.5 R^{2}=.969$			2+4	. 995
	F=127.5*	DW=1.918	$3+4$. 997

TABLE B-1 Continued
Estimation of Teacher Supply Function Primary Education

[^20]TABLE B-2
Estimation of Teacher Supply Function

Secondary Education

TABLE B-2 Continued
Estimation of Teacher Supply Function
Secondary rducation

TABLE R-3
Estimation of Teacher Supply Function Higher Fducation

$$
T_{t}=\hat{\lambda} K_{0} E_{t-1}+\hat{\lambda} K_{1}\left(G D P_{t-1}\right) \Sigma_{t-1}+(1-\hat{\lambda}) T_{t-1}
$$

TABLE B-3 Continued

Estimation of Teacher Supply Function Higher Education

TABLE B-4

Estimation of Teacher Supply Function Primary Education
Estimating Equation

TABLE B-4 Continucd
Estimation of Teacher Supply Primary Education
Estimating Equation

*Significant at a 958 level of confidence.
**The determinant of the estimating process approached zero. Estimates presented force the regression equation through the origin.

TABLE B-5
Estimation of Teacher Supply Function Secondary Education
Estimating Iquation

TABLE B-5 Continued
Estimation of Teacher Supply Function Secondary Education
Estimating Equation

TABLE B-6
Estimation of Teacher Supply Function University Education
Estimating Equation

$$
\frac{T_{t}}{E_{t-1}}=\hat{\lambda} \hat{K}_{0}+\hat{\lambda} \hat{K}_{2}\left(G D P_{t-1}\right)=+(1-\hat{\lambda}) \frac{T_{t-1}}{E_{t-1}}
$$


```
TAELE B-6 Continued
Estimation of Teacher Supply Function University Education
Estimating Equation
```


Table B-7
Cocfficient of Correlation
Between Selected Variables and Enrollments Primary in Education

Cous:Exy	Years	GEP	'reacizers	Scx	sianu.	Ret.
Axgcntina	1953-64	. 61	. 94	. 88	. 74	. 59
3aazil						
Gcneral	1956-62	. 92	. 98			
Average	1956-62	. 92	. 98			
Chisle	1953-64	X		X	X	
Colcmia	1953-63	. 83	.98	. 72	. 88	
: Exico	1955-64	. 94	. 98		. 79	
Pc=u	1953-65	. 83	. 96	. 83	. 83	.74
$\begin{aligned} & \text { Venezuela } \\ & \text { Gereral } \\ & \text { Average } \end{aligned}$	$1953-65$ $1957-65$ $1957-65$.77 .41 .43	.98 .98 .98	X X X	.86 .62 .66	
* $\chi^{\prime \prime}$ repzesents no significant relationships at . 95 level of confidence.						

Table B-8
Secondary Education Cocfficient of Correlation
Between Enrollments and Selected Variables

Country	Years	GDP	Teachers	Sex	Manu.	Ret.
Argentina	1956-63	. 87	. 98	. 76	. 94	. 69
$\begin{aligned} & \text { Brazil } \\ & \text { Ge:eral } \end{aligned}$	$\begin{aligned} & 1955-62 \\ & 1955-62 \end{aligned}$	$\begin{array}{r} .93 \\ .94 \end{array}$	$\begin{array}{r} .98 \\ .99 \end{array}$			$\begin{aligned} & .70 \\ & \mathrm{x} \end{aligned}$
Cinile	1955-64	. 92			x	
Mexico	1955-65	. 92			. 94	
Peru	1955-64	. 94	. 99	X	.91	. 71
Vcnezuela Gcreral	$\begin{aligned} & 1955-65 \\ & 1955-65 \end{aligned}$	$\begin{array}{r} .79 \\ .74 \end{array}$.98 .98	$\begin{array}{r} .88 \\ .98 \end{array}$	$\begin{array}{r} .95 \\ .98 \end{array}$	X

" $x^{\prime \prime}$ indicates coefficients of correlation which were not significant at the 95 g level of conficience.

```
TABLE B-9
Higher Education
Coefficients of Correlation
Eetween Enrollments and Selected Variables
```

Country	Years	GDP	Teachers	Manu.
Argentina	$\begin{aligned} & 1955-65 \\ & 1955-63 \end{aligned}$	$.72$	$\begin{array}{r} .98 \\ .92 \end{array}$	$\stackrel{76}{\mathrm{X}}$
$\begin{aligned} & \text { Erazil } \\ & \text { Gcr.eral } \\ & \text { Average } \end{aligned}$	$\begin{aligned} & 1956-63 \\ & 1956-62 \end{aligned}$	$\begin{array}{r} .91 \\ .92 \end{array}$	$\begin{array}{r} .98 \\ .96 \end{array}$	
Chile	1955-65	.91	. 98	. 92
Colombia	1955-64	. 90	. 97	. 82
Mexico	1955-64	. 94	. 83	. 88
Peru	1955-64	. 95	. 94	. 99
Venezuela	$\begin{aligned} & 1957-65 \\ & 1953-65 \end{aligned}$	$\begin{aligned} & .70 \\ & .66 \end{aligned}$. 99	$\begin{array}{r} .94 \\ .95 \end{array}$

Table B-10
Nultiple Regression Results rimary Education ${ }^{1}$
STAVDARDIZED BETA VALUES ${ }^{2}$

Covatry	Yeass	GDP	Teachers	Sex	Manu.	Ret.	$\mathrm{R}^{\mathbf{3}}$	S.E. ${ }^{4}$	D.w. ${ }^{5}$
Argentina	1953-64	X	. 64	X	. 28	. 16	. 994	10790	3.195
Erazil									
Gereral	1956-62	x	. 83				. 99	73531	2.886
Average	1956-62	-1.02	X				. 99	62072	1.621
Caile	1953-64	X	X	X	X				
Colorbia	1953-63	χ	. 47	X	. 09		. 99	12535	1.83
$\because \mathrm{Oxico}$	1955-65	x	. 93		. 07		. 99	71790	2.198
2cru	1955-64	x	. 9	x	x	. 8	. 97	40735	1.57
Verezuela	1953-65	X	. 99	X	X		. 99	26248	. 774
General	1957-64	-1.35	1.07	X	X	X	. 99	8720	2.373
siverags	1957-65	X	1.31	X	x	X	. 98	20897	2.034

1. All regression had a significant F statistic at the 958 level of confidence. Variables indicated with " x " represents variables which were used in the multiple regressions. E.cwever, these variables had T sufficiently low that the hypothesis that their regressions coefficients were cqual to zero could not be rejected.
2. Standardized beta values are a measure of relative importance of the significant variables in a miliple regression. A standardized beta value is interpreted as follows: a chenge in an incicpencent variable of one of the variables standard deviations will cause a change in the cependent variable of some percentage (the standardized beta value itself) of its standard deviation.
3. Cocfficient of multiple determination adjusted for degroe of froedom.
4. Standard crror of estimate around the regression line.
5. Durbin-iatson statistic
6. Results of the Von Neuman test for scrial correlation. 0 indicates no serial correlation. + indicates positive serial correlation, and - indicates negative serial correlation.

TABLE B-11
Multiple Regression Results in Secondary Education'

	Standardized Beta Values ${ }^{2}$						3		5
Country	Years	GDP	Teachers	Sex	Manu.	Ret.	R^{2}	S.E.	D.W.
hrgentina	1956-64	. 15	X	X	X		. 84	20846	2.563
Erazil									
General	1955-64	. 24	. 77			X	. 98	40266	2.349
Average	1953	. 25							
Ctile	1953-64	X			. 54		. 99	29042	2.55
Colombia									
Mexico	1955-65	.75			. 68		. 93	14289	2.76
Peru	1955-65	X	.7	X	. 21	. 12	.99	4289	3.295
Venezuela	1953-65	. 2	. 88	X	X	X	.99	6351	2.33

[^21]TABLE B-12
Results of ligher Education
Multiple Regression
Standardized Beta Values ${ }^{2}$

Country	Years	GDP	Teachers	Sex	Manu.	R^{2}	SE	DW
Argentina	$\begin{aligned} & 1955-65 \\ & 1955-63 \end{aligned}$	$\begin{aligned} & x \\ & x \end{aligned}$	${ }_{\mathrm{x}}^{.98}$	$\begin{array}{r} .83 \\ .83 \end{array}$	$\begin{gathered} x \\ .20 \end{gathered}$	$\begin{array}{r} .97 \\ .93 \end{array}$	$\begin{aligned} & 6258 \\ & 5992 \end{aligned}$	$\begin{aligned} & 1.87 \\ & 1.69 \end{aligned}$
$\begin{aligned} & \text { Brazil } \\ & \text { Goneral } \\ & \text { Average } \end{aligned}$	$\begin{aligned} & 1955-63 \\ & 1955-63 \end{aligned}$	x	. 98			$\begin{array}{r} .96 \\ .97 \end{array}$	$\begin{aligned} & 3119 \\ & 2917 \end{aligned}$	$\begin{aligned} & 3.07 \\ & 2.90 \end{aligned}$
Chile	1953-64	1.16			. 41	. 86	1229	2.18
Colombia	1956-64	. 41	. 26		. 39	. 96	1939	2.86
Sexico	1955-64	. 69	χ	.33	. 33	. 93	8313	1.09
Peru	1955-64	x	. 56		. 46	. 96	224	2.59
Venezuela General	1957-65	x	. 76		. 25	.99	759	2.69
$\begin{aligned} & 1_{\text {Sce }} \\ & 2^{\text {See }} \\ & { }^{3} \text { See } \\ & { }^{4} \text { see } \\ & { }^{5} \text { See } \end{aligned}$	$\begin{aligned} & \text { e } B-10 \\ & \text { e } B-10 \\ & e \end{aligned}-10$							

TABLE B-13

Crossectional Regression Results

Coefficient of Correlation between Enrollments/School Age Population and The Proxy Variables in Per Capita Form

TABLE B-14
Estimation of the Demand Function for Primary Education
Estimating Equation
$E_{t}=\hat{a}+\hat{B}_{1}(G D P)_{t-1}+\hat{B}_{2}$ (\% of manufacturing) ${ }_{t-1}+\hat{B}_{3}$ (Student/
teacher ratio) ${ }_{t-1}+\widehat{B}_{4}$ (Lagged enrollments $_{t-1}$

TABLE B-14 Continued
Estimation of the Demand Function for Primary Education
Estimating Equation

Country	$\hat{\text { a }}$	\hat{B}_{1}	$\hat{\mathrm{B}}_{2}$	\widehat{B}_{3}	\widehat{B}_{4}	$\begin{gathered} \text { Simple } \\ \text { Correlation } \end{gathered}$			
Colombia						1\&2	. 85	284	-. 90
	Value (3503.007) $S E$ (2104.945) T (1.564)	(-15.557)	$\begin{aligned} & (8.1863) \\ & (6.1443) \\ & (1.332) \end{aligned}$	$\begin{aligned} & (-5.5062) \\ & (3.9307) \\ & (-1.401) \end{aligned}$	(. 7384)	1\&3	. 83	285	. 89
		(8.244)			(.4020)	184	-. 91	384	-. 64
		(-1.887)			(1.664)	185	. 99	385	. 89
	$S D=38.9240 \quad{ }^{2}$	$=.9813$	$F=92.70 *$	$D W=2.63$		2\&3	. 76	$4 \& 5$	-. 92
Mexico	$\begin{array}{lr} \text { Value } & (-2573.685 \\ \text { SE } & (3969.0235 \\ T & -.648 \end{array}$		$(3.4674)$$(5.6789)$(.611)	$\begin{aligned} & (2.8379) \\ & (8.5352) \\ & (.332) \end{aligned}$	$\begin{aligned} & (.81406) \\ & (.15607) \\ & (5.216) \end{aligned}$	182	. 96	284	. 82
		(8.3743)				183	. 95	$2 \& 5$. 95
		(12.1484)				1\&4	. 91	384	. 96
		(.689)				$1 \& 5$. 99	385	. 92
	$S D=83.3756$ R	. 993	$\mathrm{F}=304.31 *$	$D!d=3.421$		283	. 91	4\&5	. 89
Peru			(-1.9966)	(3.3970)		182	. 90	2\&4	-. 77
		(.3496)			(1.4416)	183	. 78	285	. 94
	Value SE (-1620.275) (508.563)	(.6225)	(1.5477)	$(.9202)$$(3.69)$	(. 1731)	184	-. 54	364	-. 56
	T (-3.186)	(.56)	(-1.297)		(8.320)	185	. 98	365	. 82
	$S D=29.411 \quad R^{2}$. . 985	$F=152.59 *$	DiV $=2.423$		283	. 77	485	-. 69
Venezvela	Valco (-1709.77)			(3.6190)		182	. 78	274	. 09
		(. .4785)	(3.9515)		(. 84759)	18.3	. 91	2\&5	. 74
	Sこ (792.162)	(1.6553)	(4.6945)	(2.0640)	(. 12237)	184	-. 10	384	-. 25
	T (\quad-2.158	(.289)	(. 82)	(1.753)	(6.850)	185	. 98	385	. 91
	$S D=50.8891 \quad R^{2}$. 973	$F=91.4{ }^{*}$	$D W=1.394$		$2 \&$. 80	485	. 21

*Indicates significance at a . 95 level of alpha risk.

TABLE B-15
Estimation of the Demand Function for Secondary Education
Estimating Equation
$E_{t}=\hat{a}+\hat{B}_{1}\left\{^{(C D P}\right)_{t-1}+\hat{B}_{2}\left(8\right.$ of manufacturing ${ }_{t-1}+\hat{B}_{3}$ (Student/ teacher ratio) $t_{t-1}+\hat{B}_{4}$ (Lagged enrollments) ${ }_{t-1}$

Country	$\hat{S}^{(} \hat{B}_{1}$	\hat{r}_{2}	\widehat{B}_{3}	\widehat{B}_{4}	Simple correlation				
Argentina					1\&2	. 72	2\&4	-. 03	
	Value (-3268.338) (-.2698)	(16.585)	(.0390)	(.1189)	183	. 88	2\&5	. 67	
	SE (1561.466) (.2714)	(8.649)	(.4445)	(.4085)	184	. 11	384	. 09	
	T (-2.093) (-.994)	(1.918)	(.088)	(.29)	1\&5	. 56	3\&5	. 63	
	$S D=50.8414 \quad R^{2}=.613$	$F=13.74$		2.57	2\& 3	. 92	$4 \& 5$	-. 55	
3razil fucrage Enrollment	$\begin{array}{lrl}\text { Value } & (-480.276) & (.6950) \\ S E & (711.141) & (.9703) \\ T & (-2.082) & (.706)\end{array}$	$\begin{array}{ll} (-6.2001) & (7.8875) \\ (4.354) & (4.6318) \\ (-1.424) & (1.703) \end{array}$		$\begin{aligned} & (.8394) \\ & (4.2018) \\ & (4.158) \end{aligned}$	18.2	. 94	28.4	. 99	
				1\&3	. 90	285	. 86		
				184	. 89	384	. 85		
				185	. 97	385	. 91		
	$S D=72.949 \quad R^{2}=.962$	$F=55.77 * \quad D V=2.426$			2\&3	-	485	.94	
						182	. 92	284	. 99
Erazil	Value (-1648.132) (-8.713)			(.9348)	18.3	.95	2\&5	. 88	
Initial	SE (801.01) (5.431)	$\begin{array}{ll}11 \\ \mathrm{NA} & (9.6654) \\ (6.7153)\end{array}$			$(.2930)$	184	.91	384	. 86
Enrollment	I (2.01) (1.63)	NA	(1.43)		(3.15)*	185	.93	385	. 91
$S D=87$	$S D=87.494 \quad R^{2}=.916$	$F=45.73$	* $\quad \mathrm{DW}=2.143$		2\&3	. 87	485	. 92	
Chile	Value (5.1998) (1.1485)	Not Available			152	. 87	284	-	
				(.8397)	183	. 85	285	. 85	
	$\begin{array}{lc}\mathrm{SE} & (256.252) \\ \mathrm{T} & \left(\begin{array}{cc}\text { (20) }\end{array}\right)\end{array}$			(. 1453)	184	-	384	-	
				(5.777)*	185	. 99	385	-. 85	
	$S D=8.010 \quad R^{2}=.967$	$F=71.07 * \quad D N=1.058$			$2 \& 3$. 80	4\&5	-	

TABLE B-15 Continued
Estimation of the Demand Function for Secondary Education
Estimating Equation

TARLE B-16
Estimation of the Demand Function for Unjversity Education
Istimating Equation

TABLE B-16 Continued
Estimation of the Demand Function for University Education
Estimating Equation

[^0]: The author wishes to express appreciation to professors: Gabriel Cherin, R. William Thomas and Jack Rowe Jr. Each in his own way provided encouracement for the completion of this paper.

[^1]: AAlfrod Marshall, principles nf l:conomicos 8th ed. (London: ldacilillan and co. 1938), $\bar{\mu}_{0} 2000$
 511)1d.. [12. 207-208.

[^2]: Gshid. . p.
 206
 ${ }^{7}$ vaizey, 1. 42

[^3]: 13. Theodore W. Schultz, The Conomic Valus of Education, (New York: Colomisa Press, 1963), p. ix.
[^4]:

[^5]: 15
 Schultz, The E:conomice Value of Biducation, p. 44.

[^6]: 3lijugint, EConnomic buvalopmont, p. 375. :

 10 (3), 11.21-2G.

[^7]: 35
 lljggins, licomonic Di:vi:lophumi. !. 438.

[^8]: ${ }^{1}$ A. Pepclais, L. Nean, I. Adelman, Economic Development, (New York: Marper and Ros, 1968), p. 70-72.

[^9]: ${ }^{2}$ J. D. Conrov, "private Demand for Education in New Guinca: Consumption or Investarent", Lemomic Record, (Vol. 46, Dec., 1970), p. 490.
 $3_{\text {Harvey }}$ Licisestien, in fillucation and l:conomic Dovelopment, edited by C. Arnold Andersion and Sirry Jean Bownan (Chitago: Aldinc, 1965), p. 61.

[^10]:

[^11]: ${ }^{9}$ poignant, The relation of Education Plan3, p. 31.

[^12]: ${ }^{12}$ Guillum, "sinclal Chinges in I.atin Anxirica". !. 35.

[^13]: 131f latin hmericall congloye:ces follow tho path of U. S. emplesgees, they may wall terfuita lavila ot vilucat iomal
 luval necesosaty to jurtorill tho juh.

[^14]: $\mathcal{L}_{\text {rhe }}$ f:conomic Development of Vemezuela, Report of the Misson Organized by the International liank for lieconstruction and Development, (liadimore: John llopkins l'ress, 1961) p.122.

[^15]: Indicates $\mathrm{B}_{\text {, or }} \hat{\mathrm{B}}_{2}$ value was significantly difforent Lhan zero at alpha $=.10$.

 * * Indicatus $\hat{\beta}_{1}$ or \hat{H}_{2} value was significantly difforent than zuro al alphia $\omega .20$.

[^16]: farent than rero at aldha $=.10$

 * Indicates $\hat{A}^{\boldsymbol{A}}$ asbociatud with k_{0} or K_{1} significantly different than zerro at alphat $=.20$

[^17]: *Indicates value is siguificant at alpha*. 05 .

[^18]: ${ }^{8}$ Guillum, Social Chances in Latin America Today, p. 38.

[^19]: ${ }^{2}$ Inter-American Statistical Institute, America en Cifras, pp. 50-55.

[^20]: *Significant at risk $=.10$
 **Significant at risk $=.20$

[^21]: ${ }_{2}$ Sce Table B-10
 ${ }_{3}$ Sce Table B-10
 ${ }_{4}^{3}$ See Table B-10
 ${ }_{5}$ See Table B-10
 Sce Table B-10

