

c© Copyright by Shriya Bhatnagar 2019
All Rights Reserved

SWARM ROBOTICS:

HARVESTING OF MOVING SWARMS REPRESENTED BY A

MARKOV PROCESS

A Thesis

Presented to

the Faculty of the Department of Electrical and Computer Engineering

University of Houston

in Partial Fulfillment

of the Requirements for the Degree

Master of Science

in Electrical Engineering

by

Shriya Bhatnagar

May 2019

SWARM ROBOTICS:

HARVESTING OF MOVING SWARMS REPRESENTED BY A

MARKOV PROCESS

Shriya Bhatnagar

Approved:
Chair of the Committee
Aaron T. Becker, Assistant Professor
Department of Electrical and Computer Engineering

Committee Members:
Nicolaus Radford, CTO
Houston Mechatronics Inc.

David R. Jackson, Professor
Department of Electrical and Computer Engineering

Suresh K. Khator, Associate Dean, Badrinath Roysam, Professor and Chair,
Cullen College of Engineering Electrical and Computer Engineering

Acknowledgements

I would like to thank all the amazing people who have been there for me through

this wonderful opportunity. I would like to thank Dr. Aaron Becker for giving me an

opportunity to pursue a masters and to take me under your wing. You are the sole

reason I was able to open up this exciting chapter in my life. You have been an amazing

professor and mentor and you have shown me great patience and understanding. You

definitely have set an unreachable bar for all professors.

I would also like to thank Nicolaus Radford for taking a chance on me, believeing

in me and helping me grow my confidence in the field of robotics. I am truly grateful for

the doors you have opened for me and allowing me to pursue a wonderful career path.

I want to thank my family and friends, especially my mother, Chhaya Bhatnagar,

for helping me get through this degree without having to worry about things back at

home. I would like to thank my siblings, Krish and Khushi, for being my motivation to

strive to become the best. I would like to thank all my friends who studied with me and

helped me through my classes.

Lastly, I would like to thank my significant other, Alexander Bui. Thank you for

always believing in me when no one else did. I appreciate all the support and encourage-

ment you gave me through all the difficult times that allowed me to keep moving forward.

I would not be the person I am today without you. I love you very much, thank you so

much for always being there for me.

v

SWARM ROBOTICS:

HARVESTING OF MOVING SWARMS REPRESENTED BY A

MARKOV PROCESS

An Abstract

of a

Thesis

Presented to

the Faculty of the Department of Electrical and Computer Engineering

University of Houston

in Partial Fulfillment

of the Requirements for the Degree

Master of Science

in Electrical Engineering

by

Shriya Bhatnagar

May 2019

Abstract

This project presents methods of harvesting moving swarm agents, with two differ-

ent experimental applications. We investigated motion planning for one or more robot(s).

These methods differ from traditional motion planning problems because the agents

move. This allows areas that were previously cleared to become recontaminated. The

movement of agents is represented by a Markov process that encodes the agents’ pre-

ferred regions and their speed of motion. There are two different categories of controllers

presented in this project, one for single robot applications and a second for multi-robot

applications. We conducted experiments using the single robot controllers. For the first

application we studied a destructive survey of mosquitoes. We researched behavior and

other characteristic of mosquitoes to design an electrified screen that can be carried on a

UAV. For the second application we studied the harvesting of moving swarms using an

autonomous robotic boat with an acoustic larvicide unit in a body of water.

vii

Table of Contents

Acknowledgements v

Abstract vii

Table of Contents viii

List of Figures xi

List of Tables xvi

1 Introduction 1

1.1 Harvesting of Moving Swarms . 1

1.2 Destructive Surveying of Mosquito Populations using a UAV 3

1.3 Harvesting Larvae Using Autonomous Robotic Boat 3

2 Robotic Harvesting of a Moving Swarm 7

2.1 Overview and Related Work . 7

2.2 Analytical Coverage of a Gaussian Distribution 9

2.3 Modeling . 11

2.3.1 Uncontrolled system . 13

2.3.2 Controlled system . 14

2.4 Controllers . 14

2.4.1 Controllers for single robot applications 14

viii

2.4.2 Controllers for multi-robot applications 16

2.5 Simulation . 19

2.6 Conclusions . 22

3 Destructive Survey of Mosquitoes 24

3.1 Overview and Related Work . 24

3.2 Hardware Design . 25

3.2.1 UAV . 25

3.2.2 Screen design . 26

3.2.3 Screen location . 26

3.2.4 Wind tunnel verification of net angle 29

3.2.5 Data logger . 30

3.2.6 Energy budget . 31

3.3 Path Planning . 31

3.3.1 Modelling . 31

3.3.2 Computational complexity . 34

3.3.3 Mathematical optimization . 35

3.3.4 Computational results . 38

3.4 Experiments . 40

3.5 Conclusion and Future Work . 44

4 Harvesting Larvae with an Autonomous Robotic Boat 45

4.1 Overview and Related Work . 45

4.2 Physical Prototyping . 46

ix

4.3 Conclusions . 47

5 Conclusion 49

References 50

x

List of Figures

1.1 Three successive snapshots of harvesting a moving swarm. Robots (repre-

sented as green points) pass through an agent distribution (represented by

a density plot). Although many agents are harvested, the swarm reforms

and contaminates the cleared regions. 2

1.2 A hexacopter UAV carrying a 48 cm × 61 cm rectangular bug-zapping

screen. An onboard micro controller monitors the voltage across the

screen and records the time, GPS location, humidity, and altitude for

each mosquito strike. At right are three frames recorded by the onboard

camera showing mosquito hits, during the day (top) and at twilight. See

attachment for videos of flight experiments [1]. 4

1.3 Hardware system. Top Left: The autonomous boat carries an underslung

Larvasonic c© transducer for killing mosquito larvae, twin motors, and an

array of sensors. Bottom Left: Sensors include a LIDAR for detecting the

boundaries of the water feature and precision GPS for building maps and

following trajectories. Top Right: 2D slice of the Larvasonic c© transducer

power in polar coordinates. The lines illustrates how the acoustic power

is focused in an arc in front of the transducer. Bottom Right: Image of

the boat on water. 6

xi

2.1 Plots of analytical results for covering a Gaussian distribution. Plots are

for σ = 1, a = 1, and fkill = 1/2 with the robot starting at the mean

position. (left) If the mosquitos reform the Gaussian distribution every

second, the optimal strategy is for the robot to stay at the mean location.

The stair-step plot shows the result for the first 50 time steps. If the

mosquitos are non-moving, then covering successively larger annuli is the

optimal strategy at first, however at some point the robot should start

covering smaller annuli. The red vertical line shows the point that there

are the same number of mosquitos inside the region already covered as

there are in the uncovered region. This time is illustrated in the 3D plot

at right. 10

2.2 Sequence of simulations showing the agent distribution as a density plot

and the path of the robot in red. The agents’ position evolves according to

a Markov process, but the robot harvests fkill = 1 fraction of the agents in

the cell it is covering and the agents diffuse with parameter k = 0.005. (a)

Greedy Controller (b) h-step horizen heuristic controller See simulation

video at https://youtu.be/u1OTBK5kq70 [2]. 13

2.3 Simulations using different multi-robot coverage algorithms with nr = 9

robots and N = 10, 000 agents over 1,000 simulation steps, with a d = 3

depth greedy search, k = 0.05, and nr = 10. (A) Forest coverage bous-

trophedon path. (B) Formation boustrophedon path. (C) Greedy-Depth

implementation. (D) Greedy-Depth search with initial goal destinations

assigned based on population density. 16

xii

https://youtu.be/u1OTBK5kq70

2.4 (a) Simulations comparing the controllers presented in Section 2.4 with

nr = 1 robot, N = 10, 000 agents, 1,000 simulation steps, and diffusion

parameter k = 0.05. (b) Simulations varying agent dispersion parameter

k, as described in Section 3.3, with nr = 1 robot, N = 10, 000 agents over

1,000 simulation steps, with a d = 3 depth greedy search. (c) Simula-

tions varying the controllers as described in Section 2.4, with N = 10, 000

agents, 1,000 simulation steps, a d = 3 depth greedy search, k = 0.05, and

nr = 10. See simulation video [2]. 17

2.5 Simulation parameters: N = 10, 000 agents, 1,000 simulation steps, run-

ning Heuristic with Goals DFS, k = 0.05, and nr = 10 (a) Simulation com-

paring the number of agents harvested as the kill rate parameter varies,

fkill ∈ [0.1, 1], run in World 1. (b) Simulation comparing the number of

agents harvested as the kill rate parameter varies, fkill ∈ [0.1, 1], run in

World 2. 18

2.6 Simulations varying the number of robots with N = 10, 000 agents, 1, 000

steps, d = 3 depth greedy search, and diffusion parameter k = 0.05.

Subplots show the heat map of the agents, and the robot paths (in multi-

colors) after 50, 100, and 250 steps. 22

3.1 The UAV suspends a rectangular bug-zapping screen beneath it. Prop-

wash pushes incoming mosquitoes downwards, and the UAV clears a vol-

ume hm× ds× vf each second. Circles show two mosquitoes at equal time

intervals relative to the UAV. 27

3.2 The volume cleared by a UAV is a function of screen angle θ and forward

velocity vf . Dotted line shows the optimal angle given in (3.4). 29

xiii

3.3 Frames from wind tunnel test with free-flying UAV at 3 m/s windspeed

with smoke for streaklines [1]. As shown in the frames at right, the pro-

posed screen position (in red) captures free flowing air and air entrained

by the UAV propellers. Each black square is 25.4 mm in width. 30

3.4 Current, voltage, and power traces for five Culex quinquefasciatus mosquitoes

as each contacts the bug-zapping screen at t = 0. Contact causes a brief

short that recovers in 160 ms. 32

3.5 Mosquito hunting drone . 33

3.6 Optimal cycle covers with different density scaling. The middle has twice

and the right instance has four times the density as the left. In these

instances, the cost of a 90◦ is five times that of a straight pixel transition. 37

3.7 Runtime of solving benchmark instances to optimality. Shown are the

times of ten instances for each size, with a timeout at 900 s, as well as the

percentage of solved instances. Only the number of turns is minimized in

these instances. 39

3.8 Left is an optimal penalty cycle cover. Cycles (blue) cover all areas with

high density. After three applications of the tour constraints, a single cycle

remains (right). In the intermediate solutions, the subcycles first try to

evade the new constraints by reshaping. The final tour omits two of the

small hotspots because the cost of integrating them into the single tour is

prohibitively expensive. 40

3.9 Fountain . 41

3.10 The UAV’s path for flight 3 is in red. Strikes collected along this path are

represented by yellow dots. 42

xiv

3.11 Density map showing mosquito distribution on the field, overlaid by flight

path 4 in white. 43

3.12 The UAV and screen during a flight trial near the ocean. 43

4.1 Schematic showing the kill zone for the Larvasonic c© boat (kill zone at 0 s

is orange and at 1 s is blue). In 1 s, the boat kills larvae within 3 meters

of the device in a 25◦ arc in front of the transducer. Limiting the linear

speed of the vehicle to 1 m/s and rotational speed to 25◦/s ensures that

approximately a 1×1 m2 area in front of the boat is cleared of larvae. . . 47

4.2 The boat was programmed to follow a boustrophedon path set by way

points, which is indicated by the orange line. The red line with the arrow

is the autonomous boat following the path as closely as possible. 48

xv

List of Tables

1.1 Spectrum of robotic coverage with time-varying characteristics. This the-

sis focuses on the middle column. 1

xvi

Chapter 1

Introduction

1.1 Harvesting of Moving Swarms

Canonical robotic coverage seeks to navigate a robot such that the robot’s coverage

footprint passes over every point in the workspace. Coverage tasks have received signifi-

cant attention from the robotics community with applications from search and rescue to

painting [3]. Coverage problems with dynamic workspaces, such as having moving tar-

gets, changing or unknown environments, or coverage uncertainty are more challenging

than variants with static workspaces and deterministic actions. This chapter focuses on a

form of time-varying coverage where a large population of moving agents are distributed

in the workspace, and the robot harvests a fraction of all the agents within its cover-

age footprint. Furthermore, we assume that the agents’ movements can be represented

by a spatially discretized Markov model that is specified by a stationary distribution

and a scalar diffusion coefficient. The model chosen moves the agents probabilistically,

positioning this problem between periodic coverage problems and pursuit-evasion prob-

lems, as illustrated in Table 1.1, between periodic coverage problems and pursuit-evasion

problems.

Time-Varying Coverage Problems
Item count changes but no
cell-to-cell movement

Probabilistic motion models
for many agents

Pathological cases-intelligent
agents

Lawn mowing/vacuuming
Persistent sensing
Data ferry/sensor recharge

Killing mosquitoes/larvae
Commercial fishing/hunting
Pesticides applications

Art gallery problem
Pursuit/evasion problems
Coverage and tracking

Table 1.1: Spectrum of robotic coverage with time-varying characteristics. This thesis
focuses on the middle column.

1

(a) (b)

(d) (c)

Figure 1.1: Three successive snapshots of harvesting a moving swarm. Robots (repre-
sented as green points) pass through an agent distribution (represented by a
density plot). Although many agents are harvested, the swarm reforms and
contaminates the cleared regions.

This model enables encoding preferences swarm agents might have for certain loca-

tions. The coverage goal is to maximize the number of agents harvested in a given time

budget. Areas previously covered by the robot may be recontaminated, as illustrated in

Fig. 1.1.

2

1.2 Destructive Surveying of Mosquito Populations using a UAV

Mosquito-borne diseases kill millions of humans each year [4]. Because of this

threat, governments worldwide track mosquito populations. Tracking individual mosquitoes

is difficult because of their small size, wide-ranging flight, and preference for low-light.

Tracking studies of individual mosquitos have chosen to use small (1.2 m× 2.4 m) indoor

regions [5], or mating swarms backlit against a solid background [6].

The dominant tools for tracking mosquito populations are stationary traps that are

checked at weekly intervals (e.g. Encephalitis Vector Surveillance traps and/or gravid

traps [7]). Recent research has focused on making these traps smaller, cheaper, and

capable of providing real-time data [8,9]; however, they still rely on attracting mosquitoes

to the trap. This section presents an alternate solution using an electrified bug-zapping

screen mounted on an unmanned aerial vehicle (UAV) as shown in Fig. 1.2 to seek out

the mosquitoes in their habitat. As the UAV follows a path, it sweeps out a volume of

air, temporarily removing all the mosquitoes in this volume. By monitoring the voltage

across this screen, we can track individual mosquito contacts. UAVs have strict energy

budgets, so optimized flight patterns are of crucial importance. As a consequence, putting

the UAV to good use requires methods for computing trajectories that minimize energy

consumption along the way, but maximize the total volume of mosquitoes at visited

locations.

1.3 Harvesting Larvae Using Autonomous Robotic Boat

Mosquito-borne diseases kill millions of humans every year, making them the

world’s deadliest animal [4]. As a result, there is a worldwide effort in the development

of effective control methods. This effort is primarily focused on developing countries

where the risks of contracting a disease are severe [10]. While chemical-based insecti-

cides and biological controls have been successful in the past, some mosquito species

3

Electrified	screen	

velocity	

Camera	

Hexacopter	 Camera	view	

Mosquito	kill	

Figure 1.2: A hexacopter UAV carrying a 48 cm×61 cm rectangular bug-zapping screen.
An onboard micro controller monitors the voltage across the screen and
records the time, GPS location, humidity, and altitude for each mosquito
strike. At right are three frames recorded by the onboard camera showing
mosquito hits, during the day (top) and at twilight. See attachment for
videos of flight experiments [1].

and their larvae have developed resistance to chemicals or avoid locations with natural

predators [11,12]. In this work, we examine control methods that target mosquito larvae.

Because mosquito larvae are part of the hyponeuston, organisms that live underneath the

surface of water, they are susceptible to focused acoustic energy [13].

This chapter presents an autonomous robotic boat carrying an acoustic larvicide c©

unit, as shown in Fig. 1.3. The larvicide unit is a piezoelectric transducer that emits

acoustic pulses that kill all mosquito larvae in a cone of length 3 m with a 25◦ angular arc.

The robotic boat uses GPS to follow trajectories, such as a lawnmower-type coverage

path. However, mosquito larvae are not stationary [14–17], and their movement [18]

can recontaminate zones that were previously cleared by the larvicide unit. Moreover,

4

mosquito larvae distribution is not uniform [19]. Mosquito larvae tend to prefer areas

that are near lake edges and shallow waters [20]. The robotic boat carries a camera

that is used to identify larvae concentration. This data is used to generate a stationary

distribution for the mosquito larvae.

This chapter is organized as follows: research in coverage and tracking tasks are

discussed in Section 4.1. Then, analytical elimination of a population of mosquito larvae

using a Gaussian distribution is presented in Section 2.2. Markov processes for modeling

are covered in Section 2.3, and several controllers for the robotic boat are presented in

Section 2.4. Simulation results are reported in Section 3.3. The Larvasonic c© robotic

boat and the operation of the acoustic larvicide are described in Section 4.2.

5

Li-ion Battery for

Larvasonic©

3S LiPo

Battery

X4R FrSky

Telemetry

Electronic Speed

Controllers

FPVA Radio

Telemetry
Larvasonic©

Scanse Lidar

Sensor

Pixhawk 2

Motors

Larvasonic ©

Instrumentation Box
GoPro Camera

0.63 m

0
.4

6
 m

Figure 1.3: Hardware system. Top Left: The autonomous boat carries an underslung
Larvasonic c© transducer for killing mosquito larvae, twin motors, and an ar-
ray of sensors. Bottom Left: Sensors include a LIDAR for detecting the
boundaries of the water feature and precision GPS for building maps and
following trajectories. Top Right: 2D slice of the Larvasonic c© transducer
power in polar coordinates. The lines illustrates how the acoustic power is
focused in an arc in front of the transducer. Bottom Right: Image of the
boat on water.

6

Chapter 2

Robotic Harvesting of a Moving Swarm

2.1 Overview and Related Work

This research has much in common with visibility-based coverage tasks. In these

tasks, robots clear adversaries within their coverage footprint, and attempt to construct a

series of movements that prevent adversaries from being able to enter previously cleared

regions while enlarging the cleared area [21–24]. Such problems assume that adversaries

are infinitely clever, so planners attempt to design a solution that guarantees coverage, or

returns failure. In contrast, this project assumes adversary motion is predictable in the

aggregate, and represents adversaries by a Markov motion model. This project is also

related to the work of Pimenta et al., who devised a controller that minimizes the time

required for coverage of an environment while also tracking moving targets [25]. Because

the targets are moving, their coverage solution requires constant adjustment. Similarly,

our coverage robots must continue to move due to the changing environment.

Previous work in path planning for persistent sensing resulted in algorithms that

allow a robot to modify a path by shifting a set of waypoints to focus on dynamic areas

of interest [26]. The controllers are custom designed to find a locally optimal path given

an unknown environment. While the current population of agents in each workspace cell

corresponds to the areas of interest in [26], this research compares a variety of controllers

that either follow a consistent path or plan using greedy or heuristic policies.

Other previous research on coverage under uncertainty provided a “probably ap-

proximately correct” measure of coverage. This enabled a robot to generate policies

that guarantee (to an arbitrary level of certainty) the coverage of a fraction of the free

7

space [27]. Similarly, in this work, agent populations obey dynamics with large variance

and we wish to design policies that reliably harvest the agents.

Optimization problems related to this research include the traveling salesman prob-

lem (TSP) and the art gallery problem [28]. Both problems are proven to be nondeter-

ministic polynomial-time hard (NP-hard) and typically rely on heuristics for a complete,

but not optimal solution. This project explores using heuristic-based algorithms to cover

a swarm of moving agents.

This work is inspired by motion planning challenges involved in mosquito control.

Coverage of mosquitoes is difficult because movement of both larva and adults causes

recontamination of previously cleared regions. However, mosquito motion is at least

partially predictable in the aggregate. Mosquitos exhibit preferences for certain regions.

Recent research on mosquito control methods that incorporate robotics include the use

of Unmanned Aerial Vehicles (UAV) with chemical larvicides [29], UAVs with controlled

release of sterile adult male mosquitoes [30], and experiments in trajectory-planning for

a UAV equipped with a mosquito-zapping electric screen [31]. Past work in mapping

of mosquito larvae exploit satellite imagery and vision processing techniques to locate

sections of a body of water where mosquito larvae are most likely to be found [32].

Another application for this research is environmental tracking in marine environ-

ments. Tokekar et al., designed a robotic boat capable of covering a region to look for

tagged invasive fish [33]. They introduced a coverage problem that requires a robot to

cover only specific regions of a lake by assuming that fish have preferred regions over

others. They assumed that these preferred regions were distinct and solved a TSP to

minimize the time to move between the preferred regions. In contrast, we assume that

agents can move probabilistically throughout the workspace, but have higher probabili-

ties of moving toward preferred regions.

8

2.2 Analytical Coverage of a Gaussian Distribution

A Gaussian distribution is a natural representation for a population of mosquitos.

However, if the mosquito removal process makes the distribution non-Gaussian and the

mosquitos move, finding an analytical expression for the mosquito distribution is chal-

lenging. Updating the mosquito distribution requires integration over the probability

distribution, which becomes intractable unless the distribution is discretized. There are

two notable exceptions that occur: (1) when the mosquitos do not move, and (2) when

the mosquitos re-form a Gaussian distribution every time step. A representative plot for

each limit case is shown in Fig. 2.1. Both exceptions will be modeled analytically in this

section, while the following sections will model mosquito distributions using a discretized

approach.

If the mosquitos are distributed in a symmetric Gaussian distribution with standard

deviation σ and mean [0, 0], the expected distribution is

P (x, y) =
1

2πσ2
e
−(x2+y2)

2σ2 . (2.1)

If an agent covers area a per second, the agent can cover a t area in t seconds. If the

area cleared is a disk, that disk has radius r and area πr2. To preserve symmetry, we

will assume the robot is initialized at the mean position of the distribution, (0, 0).

Covering a Gaussian Distribution with non-moving mosquitos:

If we make the gross simplification that the agent covers successively larger (and

correspondingly thinner) annuli, the area covered from time 0 to t has radius

r(t) =

√
at

π
. (2.2)

9

reforming distribution

non-moving mosquitoes

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

Time (simulation steps)

E
xp
ec
te
d
fr
ac
tio
n
of

m
os
qu
ito
es
ki
lle
d

Figure 2.1: Plots of analytical results for covering a Gaussian distribution. Plots are for
σ = 1, a = 1, and fkill = 1/2 with the robot starting at the mean position.
(left) If the mosquitos reform the Gaussian distribution every second, the
optimal strategy is for the robot to stay at the mean location. The stair-step
plot shows the result for the first 50 time steps. If the mosquitos are non-
moving, then covering successively larger annuli is the optimal strategy at
first, however at some point the robot should start covering smaller annuli.
The red vertical line shows the point that there are the same number of
mosquitos inside the region already covered as there are in the uncovered
region. This time is illustrated in the 3D plot at right.

The probability mass within a radius r of the mean position is

P (
√
x2 + y2 < r) = 2π

∫ r

0

x

(
1

2πσ2
e
−(x2)

2σ2

)
dx,

= 1− e
−(r2)

2σ2 . (2.3)

Substituting (2.2) into (2.3) gives the probability mass covered as a function of time:

sPmass covered(t) = 1− e
−at
2πσ2 . (2.4)

If we assume our robot kills a fraction fkill of the mosquitos it encounters, where fkill ∈

[0, 1], and that there are N mosquitos in the distribution, the expected number of kills is

E[killsstationary(t)] = Nfkill

(
1− e

−at
2πσ2

)
. (2.5)

In this analysis, the robot is continuously spiraling outwards to pursue more mosquitos.

However, if fkill is less than 1, at some point there are more surviving mosquitos in the

region already covered than in the uncovered region. This occurs at t = 2πσ2

a
ln[fkill−2

fkill−1
].

10

Mosquitos that reform a scaled Gaussian distribution:

In this case, assume the robot removes all the mosquitos within a disc of area

a every second. If the robot is at the mean position, the probability mass eliminated

is given by (2.3) with r = a/π. Because the highest mosquito density is located at

the center, the robot should stay at the mean position. We will assume that each sec-

ond the remaining mosquitos reform into a Gaussian distribution at the original mean

and the original standard deviation. The system then kills fkill

(
1− e

−a
2πσ2

)
fraction

of the remaining mosquitos each second. The number of surviving mosquitos is then

N
(

1− fkill
(

1− e
−a

2πσ2

))btc
. The expected number of kills is then

E[killsreformed(t)] = N −N
(

1− fkill
(

1− e
−a

2πσ2

))btc
. (2.6)

Generating analytical results for intermediate situations where the mosquitos are

moving, but do not immediately reform their stationary distribution is challenging. It

is also challenging to model robot motions that are asymmetric, or non-Gaussian dis-

tributions. For these reasons, the next section describes a technique to model mosquito

distributions as discretized 2D histograms whose time evolution is governed by a Markov

process.

2.3 Modeling

We assume that some agents prefer certain regions over others. In previous work,

we represented these preferences by a 2D histogram where each grid cell represented the

relative prevalence of agents in that cell and designed paths that maximized the number of

agents harvested while respecting an energy budget [31,34]. That model assumed agents

were immobile. Representing agent mobility requires increasing the model complexity.

One method to represent mobility is to directly model individual agents, as in [35],

11

however this approach becomes unwieldy with large numbers of agents and required

running a statistically significant number of trials to obtain representative data.

We model aggregate behavior of the agent population as a whole. This eliminates

the need for running many trials for each situation. We can then generalize the behavior

of the agents’ movement by representing it as a Markov process.

Algorithm 1 Markov Transition Matrix P (w, k)

w is the stationary distribution (wi,j ≥ 0,
∑
w = 1) and k ∈ [0, 1/4] is the dispersion

parameter (fraction of swarm that leaves a cell in any direction).

1: (`w, `h)← size(w)
2: P ← zero matrix that is (`w`h)× (`w`h)
3: for r = 1 to `h do
4: for c = 1 to `w do
5: x← `w(c− 1) + r . current cell
6: e← `wc+ r . cell to east
7: s← `w(c− 1) + r + 1 . cell to south
8: if c < `w then

9:

[
Pe,x
Px,e

]
←

[
k

k w(r,c)
w(r,c+1)

]
w(r, c) < w(r, c+ 1)[

kw(r,c+1)
w(r,c)

k

]
else

10: end if
11: if r < `h then

12:

[
Ps,x
Px,s

]
←

[
k

k w(r,c)
w(r+1,c)

]
w(r, c) < w(r + 1, c)[

kw(r+1,c)
w(r,c)

k

]
else

13: end if
14: end for
15: end for
16: for i = 1 to `w`h do
17: Pi,i = 1−

∑`w`h
j=1 Pi,j . columns sum to 1

18: end for
19: return P

12

(a)

(b)

Figure 2.2: Sequence of simulations showing the agent distribution as a density plot and
the path of the robot in red. The agents’ position evolves according to a
Markov process, but the robot harvests fkill = 1 fraction of the agents in
the cell it is covering and the agents diffuse with parameter k = 0.005. (a)
Greedy Controller (b) h-step horizen heuristic controller See simulation video
at https://youtu.be/u1OTBK5kq70 [2].

2.3.1 Uncontrolled system

We assumes agents are distributed in a 2D grid and that the system state is repre-

sented at time t by x(t). x(t) is a 1D vector of length `w × `h that represents the agent

population in each grid cell at time t. To propagate the moving swarm one time step,

we use

x(t+ 1) = Px(t). (2.7)

The system evolution matrix P assumes interaction only between grid cells that

share edges, and is parameterized by the diffusion rate k. The transition matrix P is

determined entirely by the stationary distribution w and the diffusion rate k, and is

computed once in O(w2) time by Alg. 1. If `w = `h = `, this produces a sparse `2 × `2

matrix Px,y, with only `(5` − 4) non-zero entries. If all the w values are greater than

zero and k > 0, the resulting Markov chain is aperiodic and irreducible. Distributions

13

https://youtu.be/u1OTBK5kq70

that are disturbed, heal and return to their stationary distribution after some time. The

evolution of such a system is shown in Fig. 1.1.

2.3.2 Controlled system

We assume that the robot’s coverage footprint is the size of one grid cell, that all

nr robots are in different cells, and that each robot harvests fkill ∈ [0, 1] of the agents in

its grid cell.

1: x′ ← x(t)

2: for j = 1 to nr do

3: i = position of robot j

4: x′i = (1− fkill)x′i

5: end for

6: x(t+ 1) = Px′.

2.4 Controllers

This section compares several controllers used for single and multi-robot applica-

tions.

2.4.1 Controllers for single robot applications

The boustrophedon controller steers the robot back and forth from west to east,

moving one row upwards each time it reaches a boundary. If the agents are evenly

distributed and cannot move, the boustrophedon is the optimal solution. When these

assumptions are violated, the boustrophedon performs poorly.

The random coverage controller randomly commands the robot to move one grid cell

east, south, west, or north. If this move is blocked by the boundary, a different direction

is chosen. Since the random controller does not use any sensor measurements besides

14

boundary detection, it performs poorly, but it does not get stuck in local minimums.

In contrast, a greedy controller with 1-step lookahead compares the utility of moving

one grid cell east, south, west, north, or for staying still. The movement that results in the

largest number of agents harvested is selected. This type of controller is an exploitation

strategy that does that does little exploration. Similarly, a greedy controller with d-

step lookahead computes the number of expected agents harvested by all possible 5d

movement sequences, and implements the first step of the sequence that harvests the

largest number of agents.

All these controllers have a limited ability to predict into the future. In the sim-

ulation of Fig. 2.2.A, the Gaussian peaks are at least 70 units apart. Due to the curse

of dimensionality, the brute-force greedy controller cannot predict far enough into the

future to make crossing between the Gaussian hills competitive with staying in the initial

distribution (570 ≈ 8× 1048).

To address this, our final controller is the h-step horizon heuristic, which switches

between exploration and exploitation strategies by simulating a small number of deep

searches, as shown in Fig. 2.2.B. This controller is similar to model predictive control

because each time step it simulates the expected number of agents harvested h steps into

the future by following different strategies. Each strategy is simulated, and the strategy

that harvest the most agents is selected. All strategies start by setting a goal destination.

If the simulated robot reaches the destination within h steps, the robot uses its remaining

time by obeying a d-step greedy controller. The null policy sets the current position as

the goal destination, so the robot obeys a d-step greedy policy for all h iterations. The

implementation compares the null policy and sending the robot to each of the Gaussian

peaks. If there are i peaks, i + 1 policies are compared. While moving to a destination

the robot makes locally optimal choices if the movement requires both horizontal and

vertical movements, choosing the option that harvests more agents.

15

BA C D

Figure 2.3: Simulations using different multi-robot coverage algorithms with nr = 9
robots and N = 10, 000 agents over 1,000 simulation steps, with a d = 3
depth greedy search, k = 0.05, and nr = 10. (A) Forest coverage boustro-
phedon path. (B) Formation boustrophedon path. (C) Greedy-Depth imple-
mentation. (D) Greedy-Depth search with initial goal destinations assigned
based on population density.

There is a tradeoff when choosing h because at each time step, the heuristic only

simulates one switch of goal destination. If the horizon h is too short, the robot will not

harvest many agents from a distant peak (and may not even reach the destination). If h

is too long, the simulated robot will overexploit the destination.

2.4.2 Controllers for multi-robot applications

The forest boustrophedon [36] controller moves the robots to starting positions that

evenly divide the workspace, and then robots perform boustrophedon paths. This is

shown in Fig. 2.3(A).

The formation boustrophedon controller performs coverage paths in echelon form

with the robots moving in a diagonal formation. This can be seen in Fig. 2.3(B).

Both controllers (A) and (B) do not use any sensor measurements. Adding sensing

can improve performance. The greedy depth controller in Sec. 2.4.1 can be implemented

on multiple robots to achieve higher amounts of harvesting. However, Fig. 2.3(C) shows

an instance where the robots fail to discover a distribution peak in the north. They could

be more effective if they were spread out based on the initial agent density map.

16

(a) (b) (c)

Figure 2.4: (a) Simulations comparing the controllers presented in Section 2.4 with
nr = 1 robot, N = 10, 000 agents, 1,000 simulation steps, and diffusion
parameter k = 0.05. (b) Simulations varying agent dispersion parameter k,
as described in Section 3.3, with nr = 1 robot, N = 10, 000 agents over 1,000
simulation steps, with a d = 3 depth greedy search. (c) Simulations varying
the controllers as described in Section 2.4, with N = 10, 000 agents, 1,000
simulation steps, a d = 3 depth greedy search, k = 0.05, and nr = 10. See
simulation video [2].

To implement such a controller, goal destinations are introduced to the greedy

depth controller. We build a mixture of Gaussians model that is fit to x(0) using an

expectation maximization (EM) algorithm. This expectation maximization identifies

τi, the variables that encode the relative probabilities of each Gaussian. The robots

are distributed so that τi robots are sent to each Gaussian peak. Once the robots are

positioned, they continue to perform their regular greedy algorithm. These initial goal

positions can send robots to distant peaks that the regular greedy depth controller may

be unable to reach. A resulting path is shown in Fig. 2.3(D). In this simulation, two

robots are sent to the Gaussian peak at the top of the map that was missed by the greedy

depth controller.

To combat the exponential cost of simulating nr robots d steps into the future, our

approach instead uses a priority-based system, where the (i + 1)th robot computes its

controller after simulating the harvesting performed by robots 1 to i.

17

(a)

(b)

Figure 2.5: Simulation parameters: N = 10, 000 agents, 1,000 simulation steps, running
Heuristic with Goals DFS, k = 0.05, and nr = 10 (a) Simulation comparing
the number of agents harvested as the kill rate parameter varies, fkill ∈
[0.1, 1], run in World 1. (b) Simulation comparing the number of agents
harvested as the kill rate parameter varies, fkill ∈ [0.1, 1], run in World 2.

18

2.5 Simulation

For most simulations, we used a stationary distribution of agents described as the

sum of three Gaussian distributions on an ` × ` grid with ` = 100 and used World 1,

defined with

• 1/2 of the agents distributed with mean `(1/7, 1/4) and (σx, σy) = `(1/8, 1/8),

• 1/3 of the agents distributed with mean `(1/4, 7/8) and (σx, σy) = `(1/12, 1/12),

and

• 1/6 of the agents distributed with mean `(1/6, 1/2) and (σx, σy) = `(1/12, 1/12).

The robot was initialized in the southwest corner of the workspace, and the percentage

of population harvested when a robot visits a cell was set to 100% (fkill = 1). All

simulations were performed in Matlab. Code is available at [37].

Comparing controllers Our first set of simulations compare six controllers with the

same agent diffusion parameter, k = 0.05. The amount of harvested agents as a function

of simulation steps are shown in Fig. 2.4(a). As expected, the random strategy performed

the worst with 874 agents harvested. The boustrophedon pattern performed only slightly

better, with 1103 agents harvested. The greedy controller exploits local information and

kills approximately twice as many as boustrophedon. However, the greedy controller

cannot not explore further than d steps ahead. Due to local maximas, having a deeper

lookahead function did not always translate into a higher number of harvested agents.

For the d-step greedy strategy, d = {1, 3, 5} harvested {2583, 2583, 2580} agents.

In contrast, the heuristic controller balances exploration and exploitation. This

enables the heuristic controller to eventually outperform the greedy controller. However,

due to the time spent on moving toward goal destinations, the greedy controller often

19

outperforms the heuristic during the early stages of the simulation. Each time the heuris-

tic controller travels to a new maxima, the harvesting rate flattens, which shows up as

the five plateaus in Fig. 2.4(a). The heuristic with a 200-step horizon harvested 3138

agents, even though its greedy search had only a d = 1 step lookahead.

Varying k, the agent diffusion rate The second set of simulation experiments com-

pared the effect of the dispersion parameter, which is the maximum fraction of agents in a

cell moving in a cardinal direction (k ∈ [0, 1/4]). The results are shown in Fig. 2.4(b). If

k = 0 the agents are stationary and the problem is equivalent to traditional coverage. As

k increases, the distribution returns to the stationary distribution more quickly. With

one notable exception, performance was inversely proportional to k. For the largest,

k = 0.25, only 2478 agents were harvested. Diffusions of k = {0.1, 0.01, 0.005} harvested

{2495, 2689, 2801} agents. However, for k = 0 only 702 agents were harvested, even

though for the first 142 steps this strategy performed better than all others. The system

reached a configuration where all the agents in every direction had been harvested and

the limited 1-step lookahead was unable to plan a trajectory.

Comparing controllers for multiple robots The third experiment compared four

different controllers with multiple robots. For each controller the number of robots is

nr = 10, with k = 0.05. The amount of harvested agents as a function of simulation

steps are shown in Fig. 2.4(c). The forest boustrophedon coverage performed the worst,

with 5815 agents harvested. It had a spike in agents harvested at 125 steps, and briefly

outperformed formation boustrophedon coverage. The formation boustrophedon cover-

age performed better, harvesting 7266 agents. The greedy depth search without goal

destinations for nr robots captured 7914 agents. The best performance, harvesting 9157,

was earned by the d = 3 greedy depth search with robots assigned to goal destinations

based on the agent population density.

20

Varying fkill in two different worlds The fourth experiment compared two different

worlds while also varying the fkill parameter from 0.1 to 1, with an increment of 0.1

between each run. World 1 is the same world used in all the other simulations. World

2 is a stationary distribution of agents described as the sum of four Gaussians with the

following parameters: ` = 100, with

• 1/6 of the agents distributed with mean `(1, 1/2) and (σx, σy) = `(1/8, 1/8),

• 1/3 of the agents distributed with mean `(2/5, 8/9) and (σx, σy) = `(1/12, 1/12),

• 1/6 of the agents distributed with mean `(1/2, 1/2) and (σx, σy) = `(1/12, 1/12),

• 1/3 of the agents distributed with mean `(1/5, 1/10) and (σx, σy) = `(1/8, 1/8).

In this experiment, the efficacy of the robots is put the test. When fkill is set to 0 the

robots completely fail at harvesting the agents. When fkill is set to 1, the robots harvest

all agents present in their cell. In Fig. 2.5.A, increasing fkill increases the amount of agents

harvested. After increasing fkill above 0.7, the marginal utility decreases. However, in

Fig. 2.5.B, in World 2, increasing fkill did not always increase the amount of agents

harvested. This could be the effect of resource starvation, where after a certain amount

of simulation steps robots are not sent back to areas with recontaminated areas. This

could be avoided by implementing the h-step horizon heuristic controller for multi-robot

applications.

Marginal utility of additional robots The fifth experiment compared the marginal

effect of additional robots. All the robots were programmed to follow a d = 3 depth

greedy search once they had reached their assigned initial goal destination, with k = 0.05

and nr ∈ [1, 30]. After nr = 10, additional robots have low impact on the number of

agents harvested. Figure 2.6 fits this data with an exponential decay.

21

N(1-Exp[-x
3.72

])

5 10 15 20 25 30
2000

4000

6000

8000

10000

Number of Robots nr

E
xp
ec
te
d
A
ge
nt
s
H
ar
ve
st
ed

Figure 2.6: Simulations varying the number of robots with N = 10, 000 agents, 1, 000
steps, d = 3 depth greedy search, and diffusion parameter k = 0.05. Subplots
show the heat map of the agents, and the robot paths (in multi-colors) after
50, 100, and 250 steps.

2.6 Conclusions

From this research we presented an alternate coverage problem where the objects

to be covered are moving agents that obey a Markov motion model and have a stationary

distribution. We presented analytical results for a version of this problem with Gaussian

distributions, and presented heuristic and greedy controllers that outperform standard

coverage techniques. This research was motivated by current challenges in mosquito lar-

vae control, but may have applications to commercial fishing, pesticide treatments, or

steering a predator to maximize the number of prey harvested when the predator has a

limited coverage footprint and the prey obey a Markov motion model. For future work,

we plan on expanding the h-step horizon heuristic controller to multi-robot applications,

where every n number of simulations steps, it re-evaluates the expected return for re-

distributing the robots across the world. We also plan to enable the controller to avoid

overexploitation by choosing the amount of time it spends at a goal. Finally, we plan on

22

verifying the results seen in the simulations through hardware experiments.

23

Chapter 3

Destructive Survey of Mosquitoes

This chapter focuses on the research performed for the 2018 ICRA paper “Using

A UAV for Destructive Surveys of Mosquito Population”, by A. Nguyen, D. Krupke, M.

Burbage, S. Bhatnagar, S.P. Fekete, and A.T. Becker [31].

My role in this research was to construct a electrified screen that safely zapped

mosquitoes we were interested in, and not harm other insects in that particular area. I

also designed the frame, the body of the net and 3D printed attachments to connect to

the UAV. I also participated in conducting the wind tunnel experiments to test the most

effective angle for the screen, and presented the research in Brisbane Australia.

3.1 Overview and Related Work

Robotic Coverage: Robotic coverage has a long history. The basic problem is one of

designing a path for a robot that ensures the robot visits within r distance of every

point on the workspace. For an overview see [3]. This work has been extended to use

multiple coverage robots in a variety of ways, including using simple behaviors for the

robots [38, 39].

Mosquito Control Solutions : Mosquito control also has a long history of efforts associ-

ated both with monitoring mosquito populations [40] and with eliminating mosquitoes.

Mosquito control involves both draining potential breeding grounds and destroying living

mosquitoes [41]. An array of insecticidal compounds has been used with different appli-

cation methods, concentrations, and quantities, including both larvicides and compounds

directed at adult mosquitoes [42].

24

Various traps have been designed to capture and/or kill mosquitoes with increasing

sophistication in imitating human bait, as designers strive to achieve a trap that can rival

the attraction of a live human [43]. In recent history, methods have also included genet-

ically modifying mosquitoes so that they either cannot reproduce effectively or cannot

transmit diseases successfully [44], and with the recent genomic mapping of mosquito

species, new ideas for more targeted work have been formulated [45].

Popular methods to control mosquitoes such as insecticides are effective, but they

have the potential to introduce long-term environmental damage and mosquitoes have

demonstrated the ability to become resistant to pesticides [46]. Traditional electrified

screens (bug zappers) use UV light to attract pests but have a large bycatch of non-pest

insects [47].

Robotic Pest Management : As GPS technology has flourished and data processing has

become cheaper and more readily available, researchers have explored options for im-

plementing the new technologies in breeding ground removal [48] and more effective

insecticide dispersion [49]. Low-cost UAVs for residential spraying are under develop-

ment [50]. Even optical solutions have been considered, including laser containment [51]

or, by extension, exclusion and laser tracking and extermination [52].

3.2 Hardware Design

This section examines the components of the mosquito UAV system, shown in

Fig. 1.2. This includes the UAV, electrified screen, surveying electronics, and a discussion

of the energy budget.

3.2.1 UAV

The UAV is a custom-built, 177 cm wingspan hexacopter, controlled by a Pixhawk

flight controller running ArduPilot Mega flight software. The UAV has a 3DR GPS

25

module using the UBlox NEO-7 chipset.

3.2.2 Screen design

The mosquito screen is designed to eliminate high density mosquito populations.

This screen was constructed from two expanded aluminum mesh panels, spaced apart by

3 mm thick ABS grid. These mesh panels have 12 mm diamond-shaped openings, and is

held taught by nylon bolts around the perimeter. The bottom mesh panel is offset by

half a diamond (6 mm) to the right to ensure all insects greater than 6 mm cannot pass

through the net. The top mesh is held at the reference voltage and the bottom mesh is

energized to 1.8 kV above the reference voltage.

The perimeter is reinforced by two sets of 7 mm diameter fiberglass rods that are

inset into 3D printed corner fixtures. These rods protect the frame from getting damaged

from any side, and allows the UAV to land without damaging the net.

Once assembled, the net weighs 0.948 kg and has an overall area of 0.194 m2, with

the spacer occupying 0.0325 m2. This makes the effective net area 0.161 m2.

3.2.3 Screen location

The UAV carries the bug-zapping screen, which is suspended by paracord rope at

each corner. The location of this screen determines the efficacy of the mosquito UAV,

measured in mosquitoes detected per second of flight time. The following describes a

simplified analysis to optimize the screen location.

For manufacturing ease, the electrified screen is a rectangle with a width of ds.

The screen is suspended a distance hs beneath the UAV flying at height hd. We chose to

suspend the screen beneath the UAV to avoid the weight of the rigid frame that would

be required if the screen were above the UAV and because most mosquito species prefer

low flight [53]. This screen can be suspended at any desired angle θ in comparison to

26

Multicopter UAV

Screen

θ

dd

ds

hs vd

vf

hm
ms

mshd

Region to Clear
of Mosquitos

htop

hbottom

Region Cleared
of Mosquitos

Figure 3.1: The UAV suspends a rectangular bug-zapping screen beneath it. Propwash
pushes incoming mosquitoes downwards, and the UAV clears a volume hm×
ds × vf each second. Circles show two mosquitoes at equal time intervals
relative to the UAV.

horizontal, as shown in Fig. 3.1. Two key parameters are the distance hs and the optimal

angle θ. The goal is to clear the greatest volume of mosquitoes per second, a volume

defined by the UAV forward velocity vf and the cross-sectional area hm × ds cleared by

the screen, as shown in Fig. 3.2.

To hover, the UAV must push sufficient air down with velocity vd to apply a force

that cancels the pull of gravity. The UAV and screen combined have mass md and its

cross section can be approximated as a square with a side length of dd. The mass flow

of air through the UAV’s propellers is equal to the product of the change in velocity of

the air, the density of the air ρa, and the cross sectional area.

We assume that air above the UAV is quiescent, so the change in velocity of the

27

air is vd m/s.

Force gravity = (mass flow) · air velocity,

md · g = (vd · ρa · d2d) · vd. (3.1)

Then the required propwash, the velocity of air beneath the UAV, for hovering is

vd =

√
mdg

ρad2d
. (3.2)

The flight testing site in Houston, Texas is 15 m above sea level. At sea level the density

of air ρa is 1.225 kg/m3. The UAV and instrumentation combined weigh 5.1 kg with a

width of 0.75 m. The acceleration due to gravity is 9.871 m/s2. Substituting these values

gives vd = 8.5 m/s.

Due to propwash, an initially hovering mosquito will fall when under the UAV at

a rate of vd. Relative to the UAV, the mosquito moves horizontally at a rate of −vf . As

shown in Fig. 3.1, we can extend lines with slope −vd/vf from the screen’s trailing edge

to htop and from the leading edge to hbottom.

htop = hd − hs +
ds
2

sin(θ) +
dd + ds cos(θ)

2

vd
vf
,

hbottom = hd − hs −
ds
2

sin(θ) +
dd − ds cos(θ)

2

vd
vf
,

hm = htop − hbottom = ds

(
vd
vf

cos(θ) + sin(θ)

)
. (3.3)

The optimal angle is therefore a function of forward and propwash velocity:

θ = arctan

(
vf
vd

)
. (3.4)

To ensure the maximum number of mosquitoes are collected, the screen must be

sufficiently far below the UAV hs >
ds
2

sin(θ) + dd+ds cos(θ)
2

vd
vf

and the bottom of the screen

must not touch the ground, hd > hs + ds
2

sin(θ).

28

vf =1m/s

vf =2m/s

vf =4m/s

vf =8m/s

vf =16m/s

0 45 90 135 180

0

1

2

3

4

Screen Angle θ (∘)

V
ol
um
e
C
le
ar
ed

(m
3
/s
)

θ θ
θ

Figure 3.2: The volume cleared by a UAV is a function of screen angle θ and forward
velocity vf . Dotted line shows the optimal angle given in (3.4).

There are practical limits to hs as well. Tests with hs > 2 m were abandoned

because the long length caused the screen to act as a pendulum, introducing dynamics

that made the system difficult to fly.

Changing the flying height hd of the UAV will target different mosquito popula-

tions because mosquitoes are not distributed uniformly vertically. Gillies and Wilkes

demonstrated that different species of mosquitoes prefer to fly at different heights [53].

3.2.4 Wind tunnel verification of net angle

This section describes experiments run in a wind tunnel to verify the simplified net

angle analysis in the previous section. Smoke streaklines were used to visualize the flow

29

3	m/s	
0.3	m	

Figure 3.3: Frames from wind tunnel test with free-flying UAV at 3 m/s windspeed with
smoke for streaklines [1]. As shown in the frames at right, the proposed
screen position (in red) captures free flowing air and air entrained by the
UAV propellers. Each black square is 25.4 mm in width.

of air as it passed by the UAV. Due to space constraints in the wind tunnel, a free-flying

phantom 4 was used instead of the hexacopter used for carrying the zapper. The wind

tunnel was set to a 3 m/s flow speed, and the UAV manually flown in approximately

stable hovering. The solo UAV is 0.3 × 0.3 × 0.2 m. The windtunnel has a 1 m × 1 m

cross section. As seen from Fig. 3.3, the proposed screen position captures free flowing

air and air entrained by the UAV propellers. This test encouraged us to mount the

net as close to the UAV as possible, so that air, and flying mosquitos, entrained by the

propellers are pushed into the net.

3.2.5 Data logger

The electrical detection and logging system is powered by a 9 V lithium ion battery

applied directly to the controller and two AA 3 V lithium ion batteries applied to the

power circuit for the screen. The controller uses a GPS shield for monitoring the location

30

and altitude as well as a real time clock to timestamp each data point collected from

the system. A Raspberry Pi 3 is used for data logging, sensors include a GPS sensor

(NEO-6M Ublox), a capacitive humidity sensor, a thermistor (DHT22), and an INA219

high side, 12-bit DC current sensor for monitoring the supply-side current delivered to

the net. The net current draw is logged at 100 Hz, while GPS and weather sensor data

is logged at 1Hz. All data is stored on an onboard SD card.

3.2.6 Energy budget

Tests with an oscilloscope show that in the steady state, a 30.5 cm× 61 cm screen

and electronics have a power consumption of 3.6 W. During a zap, the screen voltage

monitoring circuit shorts briefly when the mosquito contacts the screen. Figure 3.4

shows the time sequences for battery and screen voltages, current, and power during five

mosquito zaps. Multiplying voltage by current to find the instantaneous power (p = iv)

and integrating the area under the power curve show a total energy consumption of

4.2 mJ for each zap. Recharging the screen requires more power and is represented in the

latter part of the curves. The overall recovery time is about 160 ms. Most of the energy

is consumed charging and maintaining the charge on the screen rather than in zapping

the mosquitoes.

3.3 Path Planning

3.3.1 Modelling

The data on the distribution of mosquitoes is given for a two-dimensional grid

environment; the grid size is induced by the size of the screen, the available data and

the desired resolution of the extracted map. For each pixel pi ∈ P , we are given a

relative value c(pi) that describes the estimated a-priori density of mosquitoes, based on

data obtained from boustrophedon (back and forth) scans of the area by the UAV; this

31

−0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

0.35

0.4

0.45

Ba
tte

ry
 C

ur
re

nt
 (A

)

−0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

2.4

2.45

2.5

Ba
tte

ry
 V

ol
ta

ge
 (V

)

−0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

1200

1400

1600

1800

2000

Sc
re

en
 V

ol
ta

ge
 (V

)

−0.05 0 0.05 0.1 0.15 0.2 0.25 0.3

0.6

0.8

1

Time (s)

C
irc

ui
t p

ow
er

 (W
)

1
2
3
4
5

Figure 3.4: Current, voltage, and power traces for five Culex quinquefasciatus
mosquitoes as each contacts the bug-zapping screen at t = 0. Contact causes
a brief short that recovers in 160 ms.

32

5 0 5 10 15 20 25 30 35
x[m]

0

5

10

15

20

25

30

35

y
[m

]

180

240

300

360

420

480

540

600

660

E
n
e
rg

y
 p

e
r

m
e
te

r
[J

/m
]

Figure 3.5: Turns are expensive. See our related video at https://youtu.be/

SFyOMDgdNao for details, and [34] for an accompanying abstract.

implies that only a subset of pixels carry a significant value. Visiting one of the pixels

corresponds to sampling and mapping the actual density distribution of mosquitoes. For

a dense distribution of mosquitoes (which is the case for the instances relevant for pest

control), multiple visits to the same pixel do not contribute additional knowledge. As a

consequence, the objective is to maximize the sampling value of the set S ⊆ P of visited

pixels, i.e., maxS⊆P
∑

pi∈S c(pi) within the available battery capacity; this may be over

the course of a single closed trajectory, or over a combination of multiple roundtrips.

Planning good trajectories for a UAV is not subject to the same curvature con-

straints of an ordinary aircraft because UAVs can turn on the spot. However, turns are

a critical aspect of path planning due to their impact on energy consumption. Battery

capacity is the limiting factor for UAV flight time. As shown in Fig. 3.5, the power

output for a desired trajectory is non-uniform. Flying along a straight path is relatively

inexpensive but turning is energy intensive.

33

https://youtu.be/SFyOMDgdNao
https://youtu.be/SFyOMDgdNao

As a consequence, we must consider the total turn costs associated with changing

direction, as measured by the turn angle. As we are not limited by trajectory curvature,

we refer to straight-line connections and a finite set of 2ω different headings for visiting

vertices. For the most natural case of orthogonal grids ω = 2. When surveying non-

isolated mosquito hotspots (whose size greatly exceeds the size of the UAV), we are not

dealing with isolated pixels and the modeling error of this restriction is small.

Now we consider different trajectory types. A cycle is a roundtrip of a subset

S ⊆ P that visits all points in S and returns to the origin, a cycle cover of P is a set

of cycles that together visit all points in P , and a tour is a single cycle that visits all

points in P . A subset cycle cover for S ⊂ P is a cycle cover that covers at least the

points in S, while a subset tour is a tour of at least the points in S. For any of these

structures, we are interested in cycle covers or tours of minimum total travel cost. The

travel/battery cost is a linear combination of the number of pixel transitions (distance)

and the weighted number of turns, corresponding to the total turn angle. In addition,

a minimum turn-cost penalty cycle cover or a minimum turn-cost penalty tour visits a

subset R ⊂ P , such that the sum of total travel cost and the sum
∑

i 6∈R c(pi) of values

of unvisited pixels is minimized.

3.3.2 Computational complexity

Finding optimal covering paths that map a given region is closely related to the

famous Traveling Salesman Problem (TSP), which asks to minimize total length of a

single tour that covers all of a given set of locations. The TSP is one of the classic

NP-hard problems, so we cannot expect a general method that finds a provably optimal

solution for any instance in polynomially bounded time. A generalization of the TSP

is the Lawnmower Problem (see Arkin et al. [54], which considers coverage by a tool of

nontrivial size. For the objective of minimizing the total cost (in particular, the turn

cost), Arkin et al. [55] showed that finding minimum-turn tours in grid graphs is NP-hard,

34

even if a minimum-turn cycle cover is given. The complexity of finding a set of multiple

cycles that cover a given set of locations at minimum total turn cost had remained elusive

for many years; Problem 53 in The Open Problems Project asks for the complexity of

finding a minimum-cost (full) cycle cover in a 2-dimensional grid graph. This is not

obvious: large parts of a solution can usually easily be deduced by local information and

2-factor techniques. Arkin et al. showed [55, 56] that the full coverage variant in thin

grid graphs (which do not contain a 2× 2 square, so every pixel is a boundary pixel) is

solvable in polynomial time. In separate work [57], two of us were able to resolve this

issue by showing that finding a cycle cover of minimum turn cost is NP-hard.

3.3.3 Mathematical optimization

A powerful approach for finding optimal solutions to instances of NP-hard problems

is the use of Integer Programming (IP). While solving an IP still requires exponential

time in the worst case, using carefully crafted mathematical models in combination with

specific algorithm engineering and available IP solvers enables solving instances of con-

siderable size to provable optimality. For our purposes, we can describe the problem as

follows.

Penalty Cycle Covers The set P of pixels corresponds to a given grid graph G(P,E)

in which each pixel pj ∈ P is adjacent to the set N(pj) of pixels in P that share an

edge with pj. Each vertex pj ∈ P has a scalar reward c(pj) for visiting (or penalty

for not visiting), and a function costj(i, k) ∈ Z
+
0 that maps the cost of traveling from

pi to pj to pk, where pi, pk ∈ N(pj) are adjacent pixels to pj. This cost is symmetric,

i.e. costj(i, k) = costj(k, i). The integer program uses two types of variables: integer

variables xijk = xkji that state how often passage pi− pj − pk or pk − pj − pi is used and

Boolean variables yj that indicate that the pixel pj ∈ V is not covered, i.e., the penalty

35

is paid. This results in the following formulation:

min
∑
pj∈P

∑
pi,pk∈N(pj)

costj(i, k) · xijk +
∑
pj∈P

c(pj) · yj. (3.5)

with constraints

1 ≤ 4 · yj +
∑

pi,pk∈N(pj)

xijk ≤ 4, ∀pj ∈ P , (3.6)

2xjij +∑xjik

pk∈N(pi),pk 6=pj

= 2xiji +∑xijk

pk∈N(pj),pk 6=pi

, ∀{pi, pj} ∈ E, (3.7)

xijk ∈ N0, yj ∈ B, ∀pj ∈ P, {pi, pk} ⊆ N(pj). (3.8)

The objective function in Eq. 3.5 minimizes the total cost of the cycles and the

uncovered pixels. Eq. 3.6 enforces a pixel to be covered or the not covered variable to

be set to true. Arkin et al. [55] showed that no pixel needs to be visited more than

four times, otherwise a simple local optimization can be performed. Eq. 3.7 enforces the

transitions between two adjacent pixels to match. Eq. 3.8 enforces that the variables are

integers or booleans.

We can solve a wide spectrum of instances with different kinds of probability distri-

butions up to a size of 1500 pixels to provable optimality. Optimal solutions for different

densities scalings of an instance with 1783 pixels are shown in Fig. 3.6. To solve larger

instances the optimality constraint can be relaxed or the grid graph can be split and the

subgraphs solved separately.

Tours Computing a minimum cycle cover may result in several subcycles that need to

be visited separately, which is appropriate for the use of several UAVs or when several

separate roundtrips by the same UAV are convenient. If we want to determine connected

roundtrips by a single UAV, we need to connect the components of a cycle cover to a

36

Figure 3.6: Optimal cycle covers with different density scaling. The middle has twice and
the right instance has four times the density as the left. In these instances,
the cost of a 90◦ is five times that of a straight pixel transition.

tour. This can be achieved via integer programming by adding additional constraints for

separating these subtours.

This separation of subtours is more complicated than for the classic TSP because

there may be tours that cross but are not connected. Instead of connecting two subtours,

one subtour can also be discarded.

We first consider a constraint (Eq. 3.9) that is able to separate any given solution

with multiple subtours. Let Q be the pixels of a selected subtour. Let p` ∈ Q be a pixel

with high density and no other subtours crossing it and p`′ 6∈ Q be another covered pixel

with high density. These two pixels are used for ‘defusing’: if one of them is no longer

covered, the constraint is automatically fulfilled. We denote by Qs the pixels that are

37

covered only by straight paths in the subtour. T (pj) describes the turn variables of a

pixel pj. x
′ refers to the variable assignment in the current solution.

1 ≤ y` + y`′ +
∑

pi,pk∈N(p`),x
′
i`k=0

xi`k +
∑

t∈T (v),v∈Qs−p`

t

+
∑

pj∈Q\(Qs+p`),pi 6=pk∈N(pj),x′ijk=0

xijk. (3.9)

While this constraint suffices for capturing the mathematical conditions, its prac-

tical performance is unsatisfactory for connecting distant subtours. A better approach

is described in the following; this is not always sufficient but more efficient in connecting

distant cycles. We use the same definitions as for the previous constraint, but consider

an additional set Q′ that is a superset of Q. Q are the pixels of a subtour and p` is a

valuable pixel. Q′ is a superset of Q (possibly equal to Q). p`′ is a valuable pixel outside

of Q′. The constraint enforces that either p` or p`′ is uncovered, or there is a path on the

margin of Q′ that connects p` and p`′ .

y` + y`′ +
∑

x∈Leaving(Q′)

x ≥ 1. (3.10)

We use two ways to choose Q′ for these subtour elimination constraints: Q′ = Q which

is similar to the classical TSP constraint or Q′ is the Voronoi cell of the subtour.

3.3.4 Computational results

We evaluated the effectiveness of our optimization method by testing it on a suite

of benchmark instances based on random natural grid graphs with random densities;

the probability of a pixel to be added during test instance generation is correlated with

its neighborhood, resulting in smoother boundaries which are more natural than purely

random instances. The tests were carried out for 10 instances for each size in the range up

to 1.400 pixels. We used modern desktop computers equipped with an Intel(R) Core(TM)

38

 10

 100

 1000

 10000

 100000

 1x106

 0 200 400 600 800 1000 1200 1400
 0

 20

 40

 60

 80

 100

R
u
n
ti

m
e
 i
n
 m

s

%
 s

o
lv

e
d
 i
n
 t

im
e

Number of pixels

runtime
solved

Figure 3.7: Runtime of solving benchmark instances to optimality. Shown are the times
of ten instances for each size, with a timeout at 900 s, as well as the percentage
of solved instances. Only the number of turns is minimized in these instances.

i7-6700K CPU @ 4.00 GHz and 64 GB of RAM. The integer programs were computed

with CPLEX version 12.5.0.0 and the parameters EpInt=0, EpGap=0, EpOpt=1e-9,

and EpAGap=0. Fig. 3.7 shows runtimes for solving penalty cycle cover to optimality.

Instances that took longer than 15 min were aborted. As shown in the figure, even at

1400 pixels we were still able to solve half of the instances to provable optimality. Even

for the aborted instances, the computed solutions were within a few percentage points

of the provable lower bound, meaning that they were nearly optimal.

Fig. 3.8 shows an example of iteratively computing an optimal tour with the de-

scribed integer program. This example took less than a minute of total computing time.

It assumed that 90◦ turns cost five times as much as a straight pixel transition (distance).

39

Figure 3.8: Left is an optimal penalty cycle cover. Cycles (blue) cover all areas with
high density. After three applications of the tour constraints, a single cycle
remains (right). In the intermediate solutions, the subcycles first try to
evade the new constraints by reshaping. The final tour omits two of the
small hotspots because the cost of integrating them into the single tour is
prohibitively expensive.

3.4 Experiments

The results for representative flights are described below. Figure 3.9 compares the

energy consumption for three coverage schemes for a region including a large obstacle

in the center. A boustrophedon path requires 50 turns, 187 kJ, 160 s, and 181 m. A

hand-designed path requires 45 turns, 214 kJ, 155 s, and 178 m. A path computed using

the optimal penalty cycle cover requires only 33 turns, 184 kJ, 133 s, and 176 m.

A boustrophedon (back-and-forth) path with 2 m spacing was generated to cover

a region 120 m × 15 m at height 1.5 m. The path was generated using Mission Planner

software from ardupilot.org [58].

For each trial the UAV took off from a resting position on top of the screen. Flight

began manually, with a piloted takeoff of the UAV. After establishing a stable hover at

40

5 0 5 10 15 20
x[m]

0

5

10

15

20

y
[m

]

300

600

900

1200

1500

1800

2100

2400

2700

E
n
e
rg

y
 p

e
r

m
e
te

r
[J

/m
]

5 0 5 10 15 20
x[m]

0

5

10

15

y
[m

]

400

800

1200

1600

2000

2400

2800

3200

E
n
e
rg

y
 p

e
r

m
e
te

r
[J

/m
]

0 5 10 15 20
x[m]

5

0

5

10

15

20

y
[m

]

400

800

1200

1600

2000

2400

2800

3200

3600

E
n
e
rg

y
 p

e
r

m
e
te

r
[J

/m
]

Figure 3.9: Paths for an environment surrounding a fountain, which poses an obstacle
for the UAV. (Top left) The energy consumption during a real world flight
for a boustrophedon path. (Top right) The energy consumption during a
real world flight for a hand-designed loop path. (Bottom left) The optimal
penalty cycle cover path. (Bottom right) The energy consumption during a
real-world flight along the optimal path.

3 m, control was switched to the autonomous flight plan. The pilot monitored the flight

with the ability to switch to manual operation in case of potential crashes due to GPS

error or hazards in the flight plan. Mosquito strikes detected by the data logger were

verified using a GoPro Hero 4 Silver camera attached at the top of the net, as shown in

Fig. 1.2. At night and twilight, the sparks could be detected both visually and audibly

from the recorded video. During the day, the sparks were loud enough to observe over

the audio channel of the videos.

41

Figure 3.10: The UAV’s path for flight 3 is in red. Strikes collected along this path are
represented by yellow dots.

The UAV flew eight missions on this field, covering the same path. It was mainly

flown in the early morning and late afternoon, when mosquito activities are more active.

Three flights were flown at noon and early afternoon to ensure that mosquito activities

during these periods were not ignored. However, only two mosquito strikes were observed

during this period. The path covered is about 1 km long and typically takes 12 min.

Over the eight missions on this field, there were a total of 11 mosquito strikes.

Figure 3.10 shows the mission’s flight path and the map of all collected strikes. The

mosquito strikes are concentrated at the north and south ends of the field, where there

are more trees. A density map was generated from the collected strikes’ position by

representing each strike by a Gaussian distribution with the norm on the strike’s location

and a σ of 10 m. Figure 3.11 shows the density map generated by summing these Gaussian

distributions.

These results not only tell where mosquitoes were but also show where mosquitoes

were not. This is a key difference from stationary traps such as [8,9]. Figure 3.12 shows

the UAV during a dawn flight test near the ocean.

42

0 20 40 60 80 100
0

10

20

30

40

North/South [m]

E
a

st
/W

e
st

 [
m

]

M
o

sq
u

ito
 D

e
n

si
ty

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Figure 3.11: Density map showing mosquito distribution on the field, overlaid by flight
path 4 in white.

Figure 3.12: The UAV and screen during a flight trial near the ocean.

43

3.5 Conclusion and Future Work

This chapter presented an approach for finding optimal tours given turn costs and

an energy budget, inspired by a mosquito-killing UAV with limited battery life. Initial

experiments with the UAV and electrified screen track the location of a mosquito-killing

UAV as it patrols a field and maps mosquito kills.

Many refinements to the algorithm could be pursued in future work, including

changes to both the mosquito-biasing algorithm and the robot flight simulation. The

model may be expanded to continuous space, three dimensions, and to arbitrary turn

angles. These and other considerations will make a more realistic model for future work.

Further testing of the multi-copter UAV is indicated and will allow more extensive

testing of the robustness and accuracy of the hardware design. New sensors that can

identify and detect flying insects [8] may be added to the UAV and enable it to proactively

steer toward insect swarms and identify insects in realtime.

The concept may be extended to a non-destructive population survey in which the

screen could be replaced with a net and, with appropriate lighting, the camera used to

record capture events. Teams of UAVs could work together to map areas more quickly

and, by measuring gradients of the distribution, quickly find large mosquito populations.

44

Chapter 4

Harvesting Mosquito Larvae with an Autonomous

Robotic Boat

4.1 Overview and Related Work

Coverage tasks are well-suited to robot capabilities and have received commensu-

rate attention from the robotic community. This chapter focuses on a variant of time-

varying coverage where a large population of moving agents are collected whenever they

are within the coverage footprint of the robot. The model chosen moves the particles

probabilistically, positioning this problem, as illustrated in Table 1.1, between periodic

coverage problems and pursuit-evasion problems. This line of research has much in com-

mon with visibility-based coverage tasks, where teams of agents ensure no adversaries

are in a region by working to reduce the size of contaminated regions that may contain

an adversary by clearing them and placing agents to ensure the area cannot become re-

contaminated [22–24]. The major difference is that the adversary in our problem obeys

a motion model that is predictable in the aggregate.

Previous research on coverage under uncertainty provided a “probably approxi-

mately correct” measure of coverage. This enabled a robot to generate policies that guar-

antee (to an arbitrary level of certainty) the coverage of a fraction of the free space [27].

Similarly, in this work, mosquito larva populations obey dynamics with large variance

and we wish to design policies that reliably eliminate the larvae. This chapter is also

related to work in persistent coverage of changing environments [59], and simultaneous

coverage and tracking [25]. Since mosquito larvae can move towards different regions,

areas previously cleared will need to be covered again over time.

45

Recent research on alternatives to mosquito control that incorporate robotics in-

clude the use of Unmanned Aerial Vehicles (UAV) with chemical larvicides [29], UAVs

with controlled release of sterile adult male mosquitoes [30], and experiments in trajectory-

planning for a UAV equipped with a mosquito-zapping electric screen [31].

Past work in mapping of mosquito larvae exploit satellite imagery and vision pro-

cessing techniques to locate sections of a body of water where mosquito larvae are most

likely to be found [32]. Our work also seeks to map the distribution for mosquito larvae,

but directly measures this through field measurements onboard a robotic boat.

4.2 Physical Prototyping

A Larvasonic c© remotely operated vehicle (ROV) is used in this work. The acoustic

larvacide unit is placed underneath the ROV, which is manually operated. Modifications

to the vehicle include a real time kinematic (RTK) GPS unit (HERE+ RTK), and a

Pixhawk 2.1 for telemetry, control, and interfacing with the sensors. The ROV’s thrusters

are Blue Robotics T100 thrusters which provide a maximum forward thrust of 23.1 N

and a maximum reverse thrust of 17.8 N at 12 volts. The ROV has an onboard GoPro

camera that can record video from the front of the boat, to observe the effect of the

Larvasonic on the mosquito larvae.

For the experiment in this work, the ROV operated in autonomous mode to follow

preset GPS waypoints using QGroundControl software. The waypoints were set based

on the coverage paths tested in the simulation, such as the boustrophedon and greedy

policy based paths.

The Larvasonic c© uses acoustic waves to kill larvae [60]. Larvae use an air-filled

bladder called the dorsal tracheal trunk to aid in breathing and maintain buoyancy.

The size of this bladder gives it an acoustic resonance frequency between 18-30 kHz,

depending on the size and species of the mosquito larva. Because water is incompressible

46

and air is not, large acoustic pulses can rupture this bladder. The transducer produces

pulses that cycle between 18 and 30 kHz with one frequency sweep per second.

Larvae within 3 meters of the device in a 25◦ arc in front of the transducer are

instantly killed or severely damaged. As illustrated in Fig. 4.1, this places a limit of

1 m/s on the maximum speed of the boat and a rotational speed of 25◦/s to ensure a

continuous coverage region.

1 m

25° 25° 25°

Figure 4.1: Schematic showing the kill zone for the Larvasonic c© boat (kill zone at 0 s is
orange and at 1 s is blue). In 1 s, the boat kills larvae within 3 meters of the
device in a 25◦ arc in front of the transducer. Limiting the linear speed of the
vehicle to 1 m/s and rotational speed to 25◦/s ensures that approximately a
1×1 m2 area in front of the boat is cleared of larvae.

The boat is intended to be placed in any body of water suspected to contain

mosquito larvae, and follow a lawnmower-type survey path to map the undisturbed

locations of mosquito larvae, as shown in Fig. 4.2. Then the harvesting algorithms

presented in this work can be implemented to verify our simulation results.

4.3 Conclusions

This chapter presented an alternate coverage problem where the objects to be

covered are moving agents that obey a Markov motion model and have a stationary dis-

tribution. We presented analytical results for a version of this problem with Gaussian

distributions, and presented heuristics and greedy control policies that outperform stan-

dard coverage techniques. This chapter presented a technique to convert location data

into a Markov model. This research was motivated by current challenges in mosquito

47

Figure 4.2: The boat was programmed to follow a boustrophedon path set by way points,
which is indicated by the orange line. The red line with the arrow is the
autonomous boat following the path as closely as possible.

larvae control, but may have applications to commercial fishing, pesticide treatments, or

steering a predator to maximize the number of prey collected when the predator has a

limited collection footprint and the prey obey a Markov motion model.

48

Chapter 5

Conclusion

In this thesis, many different types of controllers for area coverage problems have

been described and studied. The controllers are first studied using simulations on MAT-

LAB. Where a swarm of agents are represented by a mixture of Gaussians and the

movement of these agents are represented by a Markov process. This means that as the

robot makes its way through the population of the agents and clears areas based on the

controller used, those clears can be recontaminated since the agents are able to move.

If the environment was to be left alone after a few iterations, the agents would be more

likely to reconstruct the distribution as it was before.

For future work, a better controller can be applied for multi-robot applications. In

this new controller, as the distribution of agents changes there should be a check that

looks to see if there any more peaks being created. Through this check, the robots can

be re-assigned new goals to be more efficient. To further this research, the heuristic

controller should be applied to an experiment and the performance should be studied in

the real world.

49

References

[1] S. Bhatnagar, A. Nguyen, D. Krupke, S. P. Fekete, and A. T. Becker, “Uav for

destructive surveys of mosquito population (video),” Feb. 2018. [Online]. Available:

https://youtu.be/OTQSR03Bv5g

[2] A. Becker, “Robotic harvesting of a moving swarm,” https://youtu.be/

u1OTBK5kq70, 2018.

[3] H. Choset, “Coverage for robotics – a survey of recent results,” Annals of

Mathematics and Artificial Intelligence, vol. 31, no. 1, pp. 113–126, Oct 2001.

[Online]. Available: https://doi.org/10.1023/A:1016639210559

[4] C. J. Murray, L. C. Rosenfeld, S. S. Lim, K. G. Andrews, K. J. Foreman, D. Haring,

N. Fullman, M. Naghavi, R. Lozano, and A. D. Lopez, “Global malaria mortality

between 1980 and 2010: a systematic analysis,” The Lancet, vol. 379, no. 9814, pp.

413–431, 2012.

[5] J. E. Parker, N. Angarita-Jaimes, M. Abe, C. E. Towers, D. Towers, and P. J. Mc-

Call, “Infrared video tracking of anopheles gambiae at insecticide-treated bed nets

reveals rapid decisive impact after brief localised net contact,” Scientific Reports,

vol. 5, 2015.

[6] S. Butail, N. Manoukis, M. Diallo, A. S. Yaro, A. Dao, S. F. Traoré, J. M. Ribeiro,

T. Lehmann, and D. A. Paley, “3d tracking of mating events in wild swarms of the

malaria mosquito anopheles gambiae,” in 2011 Annual International Conference of

the IEEE Engineering in Medicine and Biology Society. IEEE, 2011, pp. 720–723.

50

https://youtu.be/OTQSR03Bv5g
https://youtu.be/u1OTBK5kq70
https://youtu.be/u1OTBK5kq70
https://doi.org/10.1023/A:1016639210559

[7] G. M. Williams and J. B. Gingrich, “Comparison of light traps, gravid traps, and

resting boxes for west nile virus surveillance,” Journal of Vector Ecology, vol. 32,

no. 2, pp. 285–291, 2007.

[8] Y. Chen, A. Why, G. Batista, A. Mafra-Neto, and E. Keogh, “Flying insect clas-

sification with inexpensive sensors,” Journal of Insect Behavior, vol. 27, no. 5, pp.

657–677, 2014.

[9] A. Linn, “Building a better mosquito trap,” International Pest Control, vol. 58,

no. 4, p. 213, 2016.

[10] WHO, “A global brief on vector-borne diseases,” World Health Organization, pp.

1–56, 2014.

[11] R. J. Peter, P. Van den Bossche, B. Penzhorn, and B. Sharp, “Tick, fly, and mosquito

control - lessons from the past, solutions for the future,” Veterinary Parasitology,

vol. 132, pp. 205–215, 2005.

[12] D. Roberts, “Mosquito larvae change their feeding behavior in response to

kairomones from some predators,” Journal of Medical Entomology, vol. 51, no. 2,

pp. 368–374, 2014.

[13] A. N. Clements, The Biology of Mosquitoes. CABI Publishing, 1999.

[14] J. R. Linley, “Swimming behavior of the larva of culicoides variipennis (diptera:

Ceratopogonidae) and its relationship to temperature and viscosity,” Journal of

Medical Entomology, vol. 23, no. 5, pp. 473–483, 1986.

[15] I. Thomas, “The reactions of mosquito larvae to regular repetitions of shadows as

stimuli,” Australian Journal of Biological Sciences, vol. 3, no. 1, pp. 113–123, 1950.

51

[16] D. Roberts, “Mosquito larvae change their feeding behavior in response to

kairomones from some predators,” Journal of Medical Entomology, vol. 51, no. 2,

pp. 368–374, 2014.

[17] A. K. Awasthi, J. C. Molinero, C.-H. Wu, K.-H. Tsai, C.-C. King, and J.-S. Hwang,

“Behavioral changes in mosquito larvae induced by copepods predation,” Hydrobi-

ologia, vol. 749, no. 1, pp. 113–123, 2015.

[18] W. Nachtigall, “Locomotion: swimming (hydrodynamics) of aquatic insects,” The

physiology of Insecta, vol. 2, pp. 255–281, 1974.

[19] M. Burrows and M. Dorosenko, “Rapid swimming and escape movements in the

aquatic larvae and pupae of the phantom midge chaoborus (diptera, chaoboridae),”

Journal of Experimental Biology, pp. jeb–102 483, 2014.

[20] M. Laird, The Natural History of Larval Mosquito Habitats. Academic Press, 1988.

[21] T. H. Chung, G. A. Hollinger, and V. Isler, “Search and pursuit-evasion in mobile

robotics,” Autonomous Robots, vol. 31, no. 4, p. 299, Jul 2011. [Online]. Available:

https://doi.org/10.1007/s10514-011-9241-4

[22] A. Kolling and A. Kleiner, “Multi-UAV motion planning for guaranteed search,” in

Proceedings of the 2013 International Conference on Autonomous Agents and Multi-

Agent Systems. International Foundation for Autonomous Agents and Multiagent

Systems, 2013, pp. 79–86.

[23] A. Kleiner and A. Kolling, “Guaranteed search with large teams of unmanned aerial

vehicles,” in Robotics and Automation (ICRA), 2013 IEEE International Confer-

ence. IEEE, 2013, pp. 2977–2983.

52

https://doi.org/10.1007/s10514-011-9241-4

[24] N. M. Stiffler and J. M. O’Kane, “Complete and optimal visibility-based pursuit-

evasion,” The International Journal of Robotics Research, vol. 36, no. 8, pp. 923–946,

2017.

[25] L. C. Pimenta, M. Schwager, Q. Lindsey, V. Kumar, D. Rus, R. C. Mesquita, and

G. A. Pereira, “Simultaneous coverage and tracking (SCAT) of moving targets with

robot networks,” in Algorithmic Foundation of Robotics VIII. Springer, 2009, pp.

85–99.

[26] D. E. Soltero, M. Schwager, and D. Rus, “Generating informative paths for

persistent sensing in unknown environments,” in 2012 IEEE/RSJ International

Conference on Intelligent Robots and Systems, Oct 2012, pp. 2172–2179. [Online].

Available: https://ieeexplore.ieee.org/abstract/document/6385730/

[27] C. Das, A. Becker, and T. Bretl, “Probably approximately correct coverage for

robots with uncertainty,” in Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ

International Conference. IEEE, 2011, pp. 1160–1166.

[28] D. Lee and A. Lin, “Computational complexity of art gallery problems,” IEEE

Transactions on Information Theory, vol. 32, no. 2, pp. 276–282, March 1986.

[29] J.-T. Amenyo, D. Phelps, O. Oladipo, E. Sewovoe, S. Jadoonanan, S. Jadoonan,

T. Tabassum, S. Gnabode, T. D. Sherpa, M. Falzone, A. Hossain, and A. Kublal,

“Ultra-low cost, low-altitude, affordable and sustainable UAV multicopter drones

for mosquito vector control in malaria disease management,” in IEEE Global Hu-

manitarian Technology Conference. IEEE, 2014, pp. 590–596.

[30] E. Ackerman, “Drones distribute swarms of sterile mosquitoes

to stop zika and other diseases,” IEEE Spectrum,

2017. [Online]. Available: https://spectrum.ieee.org/robotics/drones/

drones-distribute-swarms-of-sterile-mosquitoes-to-stop-zika-and-other-diseases

53

https://ieeexplore.ieee.org/abstract/document/6385730/
https://spectrum.ieee.org/robotics/drones/drones-distribute-swarms-of-sterile-mosquitoes-to-stop-zika-and-other-diseases
https://spectrum.ieee.org/robotics/drones/drones-distribute-swarms-of-sterile-mosquitoes-to-stop-zika-and-other-diseases

[31] A. Nguyen, D. Krupke, M. Burbage, S. Bhatnagar, S. P. Fekete, and A. T. Becker,

“Using a UAV for destructive surveys of mosquito population,” in IEEE Interna-

tional Conference on Robotics and Automation (ICRA). IEEE, May 2018.

[32] L. Zou, S. N. Miller, and E. T. Schmidtmann, “Mosquito larval habitat mapping

using remote sensing and GIS: Implications of coalbed methane development and

west nile virus,” Journal of Medical Entomology, vol. 43, no. 5, pp. 1034–1041, 2006.

[33] P. Tokekar, E. Branson, J. Vander Hook, and V. Isler, “Tracking aquatic invaders:

Autonomous robots for monitoring invasive fish,” IEEE Robotics Automation Mag-

azine, vol. 20, no. 3, pp. 33–41, Sep. 2013.

[34] A. T. Becker, M. Debboun, S. P. Fekete, D. Krupke, and A. Nguyen, “Zapping zika

with a mosquito-managing drone: Computing optimal flight patterns with minimum

turn cost (multimedia contribution),” in LIPIcs-Leibniz International Proceedings in

Informatics, vol. 77. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

[35] M. Burbage, “Maximizing swarm coverage: Hunting for members of a moving

population,” Master’s thesis, University of Houston, Houston, TX, May

2017. [Online]. Available: https://github.com/MCBurbage/Mosquito drone/blob/

master/Mary Burbage Thesis.pdf

[36] X. Zheng, S. Jain, S. Koenig, and D. Kempe, “Multi-robot forest coverage,” in

Intelligent Robots and Systems, 2005.(IROS). 2005 IEEE/RSJ International Con-

ferenceF. IEEE, 2005, pp. 3852–3857.

[37] S. Bhatnagar, “Motion planning for killing mosquitoes,” https://github.com/

RoboticSwarmControl/2018mosquitoCoverage, 2018.

[38] D. Spears, W. Kerr, and W. Spears, “Physics-based robot swarms for coverage

problems,” The International Journal of Intelligent Control and Systems, vol. 11,

no. 3, 2006.

54

https://github.com/MCBurbage/Mosquito_drone/blob/master/Mary_Burbage_Thesis.pdf
https://github.com/MCBurbage/Mosquito_drone/blob/master/Mary_Burbage_Thesis.pdf
https://github.com/RoboticSwarmControl/2018mosquitoCoverage
https://github.com/RoboticSwarmControl/2018mosquitoCoverage

[39] S. Koenig, B. Szymanski, and Y. Liu, “Efficient and inefficient ant coverage meth-

ods,” Annals of Mathematics and Artificial Intelligence, vol. 31, no. 1, pp. 41–76,

Oct. 2001.

[40] J. A. Dennett, A. Bala, T. Wuithiranyagool, Y. Randle, C. B. Sargent, H. Guzman,

M. SIIRIN, H. K. Hassan, M. Reyna-Nava, T. R. Unnasch et al., “Associations

between two mosquito populations and west nile virus in harris county, texas, 2003–

06,” Journal of the American Mosquito Control Association, vol. 23, no. 3, p. 264,

2007.

[41] R. Peter, P. Van den Bossche, B. L. Penzhorn, and B. Sharp, “Tick, fly, and mosquito

control—lessons from the past, solutions for the future,” Veterinary parasitology, vol.

132, no. 3, pp. 205–215, 2005.

[42] W. H. Organization, “Guidelines for laboratory and field testing of mosquito lar-

vicides,” World Health Organization communicable disease control, prevention and

eradication WHO pesticide evaluation scheme, 2005.

[43] D. V. Maliti, N. J. Govella, G. F. Killeen, N. Mirzai, P. C. Johnson, K. Kreppel, and

H. M. Ferguson, “Development and evaluation of mosquito-electrocuting traps as

alternatives to the human landing catch technique for sampling host-seeking malaria

vectors,” Malaria Journal, vol. 14, no. 1, p. 1, 2015.

[44] J. M. Marshall and C. E. Taylor, “Malaria control with transgenic mosquitoes,”

PLoS Med, vol. 6, no. 2, p. e1000020, 2009.

[45] C. A. Hill, F. C. Kafatos, S. K. Stansfield, and F. H. Collins, “Arthropod-borne

diseases: vector control in the genomics era,” Nature Reviews Microbiology, vol. 3,

no. 3, pp. 262–268, 2005.

[46] M. O. Ndiath, S. Sougoufara, A. Gaye, C. Mazenot, L. Konate, O. Faye, C. Sokhna,

and J.-F. Trape, “Resistance to ddt and pyrethroids and increased kdr mutation

55

frequency in an. gambiae after the implementation of permethrin-treated nets in

senegal,” PLoS One, vol. 7, no. 2, p. e31943, 2012.

[47] ScienceDaily. (1997, Jul.) Snap! Crackle! Pop! Electric bug zappers are

useless for controlling mosquitoes, says UF/IFAS pest expert. [Online]. Available:

http://www.sciencedaily.com/releases/1997/07/970730060806.htm

[48] P. Anupa Elizabeth, M. Saravana Mohan, P. Philip Samuel, S. Pandian, and

B. Tyagi, “Identification and eradication of mosquito breeding sites using wireless

networking and electromechanical technologies,” in Recent Trends in Information

Technology (ICRTIT), 2014 International Conference. IEEE, 2014, pp. 1–6.

[49] B. Hur and W. Eisenstadt, “Low-power wireless climate monitoring system with rfid

security access feature for mosquito and pathogen research,” in Mobile and Secure

Services (MOBISECSERV), 2015 First Conference. IEEE, 2015, pp. 1–5.

[50] J.-T. Amenyo, D. Phelps, O. Oladipo, F. Sewovoe-Ekuoe, S. Jadoonanan, S. Jadoo-

nanan, T. Tabassum, S. Gnabode, T. D. Sherpa, M. Falzone et al., “Medizdroids

project: Ultra-low cost, low-altitude, affordable and sustainable uav multicopter

drones for mosquito vector control in malaria disease management,” in Global Hu-

manitarian Technology Conference. IEEE, 2014, pp. 590–596.

[51] C. Boonsri, S. Sumriddetchkajorn, and P. Buranasiri, “Laser-based mosquito re-

pelling module,” in Photonics Global Conference (PGC), 2012. IEEE, 2012, pp.

1–4.

[52] J. Kare and J. Buffum, “Build your own photonic fence to zap mosquitoes

midflight [backwards star wars],” IEEE Spectrum, vol. 5, no. 47, pp. 28–33,

2010. [Online]. Available: http://spectrum.ieee.org/consumer-electronics/gadgets/

backyard-star-wars

56

http://www.sciencedaily.com/releases/1997/07/970730060806.htm
http://spectrum.ieee.org/consumer-electronics/gadgets/backyard-star-wars
http://spectrum.ieee.org/consumer-electronics/gadgets/backyard-star-wars

[53] M. Gillies and T. Wilkes, “The vertical distribution of some West African mosquitoes

(Diptera, Culicidae) over open farmland in a freshwater area of The Gambia,” Bul-

letin of entomological research, vol. 66, no. 01, pp. 5–15, 1976.

[54] E. M. Arkin, S. P. Fekete, and J. S. B. Mitchell, “Approximation algorithms for

lawn mowing and milling,” Comput. Geom., vol. 17, no. 1-2, pp. 25–50, 2000.

[55] E. M. Arkin, M. A. Bender, E. D. Demaine, S. P. Fekete, J. S. B. Mitchell, and

S. Sethia, “Optimal covering tours with turn costs,” SIAM Journal on Computing,

vol. 35, no. 3, pp. 531–566, 2005.

[56] ——, “Optimal covering tours with turn costs,” in Twelfth Annual ACM-SIAM

Symposium on Discrete Algorithms (SODA01), 2001, pp. 138–147.

[57] S. P. Fekete and D. Krupke, “Computing optimal covering tours and cycle covers

with turn cost,” 2017, manuscript.

[58] ardupilot.org. (2016) Motion planner overview. [Online]. Available: http:

//ardupilot.org/planner/docs/mission-planner-overview.html

[59] S. L. Smith, M. Schwager, and D. Rus, “Persistent robotic tasks: Monitoring and

sweeping in changing environments,” IEEE Transactions on Robotics, vol. 28, no. 2,

pp. 410–426, 2012.

[60] H. Nyberg, “Fundamentals of acoustic larvicide c©,” New Mountain Innovation, 6

Hawthorne Road, Old Lyme, CT 06371, Tech. Rep., sept 2013.

57

http://ardupilot.org/planner/docs/mission-planner-overview.html
http://ardupilot.org/planner/docs/mission-planner-overview.html

	Acknowledgements
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Harvesting of Moving Swarms
	Destructive Surveying of Mosquito Populations using a UAV
	Harvesting Larvae Using Autonomous Robotic Boat

	Robotic Harvesting of a Moving Swarm
	Overview and Related Work
	Analytical Coverage of a Gaussian Distribution
	Modeling
	Uncontrolled system
	Controlled system

	Controllers
	Controllers for single robot applications
	Controllers for multi-robot applications

	Simulation
	Conclusions

	Destructive Survey of Mosquitoes
	Overview and Related Work
	Hardware Design
	UAV
	Screen design
	Screen location
	Wind tunnel verification of net angle
	Data logger
	Energy budget

	Path Planning
	Modelling
	Computational complexity
	Mathematical optimization
	Computational results

	Experiments
	Conclusion and Future Work

	Harvesting Larvae with an Autonomous Robotic Boat
	Overview and Related Work
	Physical Prototyping
	Conclusions

	Conclusion
	References

