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ABSTRACT

The multiple scattering of cosmic ray muons in
a magnetic momentum spectrometer has been investigated
both theoretically and experimentally. Theoretically,
the multiple scattering theory of Moli;re has been
modified to account for observations made with magnetic
spectrometers. Experimentally, 8000 muon events have
been analyzed in the momentum region 2.5 GeV/c to 200
GeV/c for a target thickness of one meter of iron.
Good agreement is found between the theoretical and

experimental results.
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1.1

CHAPTER 1
INTRODUCTION

This dissertation is devoted to the investigation
of the muitiple scattering of cosmic ray muons in large,
solid iron, magnetic momentum spectrometers. The motiva-
tion for this research has a dual purpose: (1) magnetic
spectrometers allow multiple scattering to be {nvestiga-
ted at far greater energies and térgét thicknesses than
those examined previously, and (2) precise, accurate
measurements of the cosmic ray muon momentum spectrum
require an understanding of multiple scattering in mag-
netic spectrometers.

We shall be interested primarily in a two-fold
problem: (1) the theoretical investigation of the be-
havior of multiple scattering in magnetic spectrometers,
and subsequently the modification of existing theories
to account for spectrometer observations, and (2) the
comparison of the theoretical result with experimental
data., We do not'imply here that multiple scattering,

a clearly defined physical phenomenon, occurs differently

in one experimental appratus as compared to another,

What we do imply is that we shall intérgret multiple
scattering in spectrometers by means of a different approach;:
‘the reason for this approach will not become clear until the

- first section of Chapter V, after discussions on the
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experimental apparatus and the theory of multiple

scattering. Our course of action will be to introduce, in
subsequent chapters, the following topics:

Chapter Il - A description of the experimental
apparatus

Chapter IIl - Data reduction and analysis
techniques required for an investigation
of multiple scattering

Chapter IV - A description of the Moliere
theory of multiple scattering

Chapter V - The modification of the Moliere
theory to account for multiple scattering
in solid iron magnetic spectrometers.

Chapter VI - Comparison of theoretical and

experimental results,

Table 1.1 gives a review of several experimental
results on multiple scattering. ¥e shall refer back to
this table at a later time,

In this work we often speak of a "probability

density" as being a function, f(x), with the properties

f(x) >0 ; I f(x)dx = 1
The function f(x) is often referred to as a "probability
distribution"; however, we shall use probability density

or "density" to refer to functions of this type.
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TABLE 1.1

MULTIPLE SCATTERiNG PAPERS



TABLE 1.1

MULTIPLE SCATTERING PAPERS

INCIDENT
INCIDENT BEAM TARGET TARGET NUMBER OF
AUTH2R(S) BEAM ENERGY MATERIAL THICKNESS EVENTS RESULTS
Hungerford] Protons 600 MeV C,AL,Cd,Pb <20 gm/cm? ~200,000 Molidre fits well except|
et al. at large angles due to
(1972 nuclear force
Bhat:a:haryya2 Cosmic Ray 1.7 GeV Copper 10.7 gm/cm? 4000 Compares to Cooper and
(1970) ' Muon : Rainwater
Ayre ct a1.3 Cosmic Ray 10-70 GeV Iron ~3000 gm/cm 10,000 Investigates only RMS
(197:3) Muon scattering displacement,
finds agreement
Torsti® Cosmic Ray | 10-100 Gev | Iron ~3000 gn/ecm® | 10,000 Investigates only RMS
(1975 Muon scattering displacement,
finds agreement
Yhitii~ore & Cosmic Ray 1-4.8 GeV Lead ~70 gm/cm? - Moliére fits well
Shut‘.s Protons &
(1952) Muons
Meysr et a1.6 Cosmic Ray <1 GeV Pb,Sn,Fe 27 gm/cm? 10,000 Agreed with Cooper and
(19%3) fuons Rainwater
%ich:§17 Protons <4.8 MeV A1,Ni,Ag,Au | ~mg/cm? - Agreed with Moli2re
195¢
Lloyc & 8 Cosmic Ray <2 GeV Pb,Fe 50 gm/cm? 2600 Agreed with Moli2re
Wolfcndale Muons
(1952)
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CHAPTER II
THE EXPERIMENTAL APPARATUS

2.1 THE MAGNETIC SPECTROMETER

The multiple scattering of cosmic ray muons has
been investigated with a magnetic momentum spectrometer,
which is the heart of a collaborative effort in cosmic
ray physics between the University of Houston and Texas
A&M University. The instrument is operated at the
Airforce annex near College Station, Texas. Bateman9
has given a detailed account of the spectrometer and the
interested reader is referred to his work. Here we only
briefly review the operation of the instrument.

A schematic of the apparatus is shown in Fig. 2.1.
The instrument consists of three basic elements: (1) solid
iron magnets, (2) plastic scintillators and (3) wide-gap
spark chambers. The magnets are constructed of 1.27 cm
laminae of low-carbon soft steel of high permeability;
the magnets weigh a total of about 8 tons. fhey are .
gapless d.c. electromagnets and their construction is
somewhat like thatvof large transformers. The magnetic
field of each magnet was measured using a Grassot fluxmeter
connected to search coils placed uniformly throughout each
magnet volume. The average measured magnetic field was
17.4 kilogauss and was uniform to within 1.5% throughout

the entire volume of the iron. A magnetizing current of
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F1G,

2.1

THE MAGNETIC SPECTROMETER TELESCOPE
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11 amps was used; however there is little dependence on
current in the highly saturated operating region. The
total thickness of all the magnets is 86.6 cm.

In order to detect the passage of a muon through
the instrument two plastic scintii]ators (of dimensions
2.54 c¢cm X 30.5 ¢cm X 61 c¢cm) are placed immediately above
and below the magnet sections. Acrylic plastic 1ight
pipes couple both ends of each scintillator to photo-
multiplier tubes which detect the passage of fast |
charged particles. The scintillator planes define a
“telescope” which is sensitive only to particles travers-
ing both scintillators (SNIR and SN2R in Fig. 2.1) and
all three magnets (MIR, M2R, M3R). A two-fold coincidence
between both scintillators in a telescope results from
the passage of a muon, the only known charged elementary
particle which can traverse a meter of iron. Thus pene-
tration of both SNIR and SN2R by a muon generates a
coincidence which triggers the voltage pulse to the spark
chambers, al]oWing the muon sparks to be subsequently
photographed,

The three spark chambers S1, S2 and S3 are
constructed of polished aluminum plates (of thickness
.318 cm and area ! m? which are separated by 10 cm
gaps.' The sides of the chambers are formed from
transparent acrylic plastic 1.27 cm thick. The com-

pleie unit forms 2 gas-tight module which is
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FIG, 2.2 SPECTROMETER CONTROL SCHEMATIC
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continuously flushed with helium-isobutane (99.05% helium
and .95% isobutane) at slightly above atmospheric pressure.
The top and bottom plates of each chamber are grohnded to
the spectrometer frame while the center plate is insula-
ted from the others. When a voltage pulse is applied to
the center plate the chambers become large capacitors
which subsequently break down along the ionized tracks

. left behind byAcharged particles. The high voltage
necessary for the operation of these spark chambers is
applied with an eight-stage Marx generator (a device con-
sfsting of high-voltage capacitors, spark gaps, and
resistors which allows the capacitors to be charged in
parallel and then to be discharged in series).

When a particle traverses either the left or right
channel of the spectrometer (labeled L and R in Fig. 2.1)
2 signal 1s generated which initiates operation of the
system, This trigger pulse (caused by a two-fold
coincidence beiween both scintillators of the channel)
nominally occurs within 200 nanoseconds of the particle
traversal (see Fig. 2.2). Subsequently the Marx .
generator is fired, the camera is advanced and the clocks
are illuminated. A 1.48 second dead-time is built into
the system so that no other trigger can occur for this
Iehgth of time; this allon time for the Marx generators

to recharge and. the cameras to advance,
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FIG. 2.3 CONFIGURATION OF SPECTROMETER OPTICAL
SYSTEM
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The spark images and clock tirie are recorded by
two 16 mm cameras, one with film plane perpendicular to
the magnetic field (which we shall call the "field
'view“). and one with film plane parallel to the magnetic
field (the "no-field view"). The cameras photograph
all three chambers simultaneously by means of an optical
system of mirrors as shown in Fig; 2.3 A roll of 16 mm
film contains about 4000 events; however, since each
event is photographed simultaneously in the field and
no-field views one obtains two rolls of film, one from

each view.
2.2 THE DIGITIZING APPARATUS

Each measured muon event is recorded on film and
must therefore be reduced to digital form for computer
ana]jsis. To this end an electronic digitizing apparatus
_was designed and built at the University of Houston. The
apparatus allows the photographed event to be projected
onto an analysis table (via an overhead mirror) where
spatial coordinates (x,y) and angle coordinate (6) can
be simultaneously measured and electronically digitized.

The analysis table is essentially a drafting .
machine with x and y degrees of freedom (see Fig. 2.4).
The linear motion of the drafting head is facilitated
by linear bearings mounted in cast aluminum blocks which
roll on two parallel steel rods. The result is a drafting

machine of extreme rigidity and accuracy. Each axis is
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FIG. 2.4 UH TRACK MEASURING APPARATUS
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connected mechanically (via rack-and pinion) to an optical
encoder, an electronic device which generates digital
pulses when its 1npu£ shaft is rotated. The encoders
used for the x and y axes have 2'? = 4096 pulses/revolﬁ-
tion. These pu1§es are summed electronically by binary
coded decimal (BCD) up-down counters. The net x or y
axis displacement is a number in "counts" where each
count is .00146 cm. In a similar way the digitizer can
measure angles via a geared-down encoder with 2'¢ =
é5;536 counts/revolution (1 count = .1 milliradian);

| Fig. 2.5 shows a simple schematic of the digitizing
apparatus. The optical encoders for x,y and 6 provide
digital waveforms to electronic circuits which sum total
coofdinate displacements in BCD up-down counters. The
disp}acements are then stored into 20 bit buffers at-a
10 kHz rate. Each coordinate can be read directly by
nixfe tube displays. Depression of x,y or 6 buttons
mounted on the main drafting head results in the initia-
tion of a sequence of logic which punches the correspon-
ding x,y or 6 coordinate onto paper tape. Addigional
information about an event may be punched onto paper
tape via a set of 20 thumb switches mounted on the main
console. The measuring procedure,which has been deve-
loped for the digitizing of muon events, is presented in
Sec. 3.3;1; operation of the apparatus is described in

that section.'
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FIG. 2.5 SCHEMATIC OF DIGITIZING APPARATUS
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CHAPTER 111
DATA REDUCTION AND ANALYSIS
3,1 INTRODUCTION
This chapter covers the data reduction and analysis
techniques which were used to analyze single muon events
from the AMH magnetic spectrometer, Spec{fically the
following topics are discussed: (1) the spectrometer

optical system, (2) the reconstruction of a muon trajec-

tory into real space, and (3) determination of the muon

momentum, charge, and scattering angle,

3.2 AN OVERVIEW OF THE RECONSTRUCTION OF A MUON TRAJEC-
TORY INTO REAL SPACE

While the reconstruction of a muon trajectory into
real space requires a thorough knowledge of the spectro-
meter optical system, we shall {gnore, for the moment, ~
the details of the optics and consider only the essentials
of the reconstruction process. —

Raw data in the form of muon spark images are
photographed in orthogonal views, one parallel, the other
. perpendicular to the magnetic fields of the solid iron
magnets. The optical reconstruction process provides a
"means of determining, in real space, the position and
angles of the muon spark,qiven the spark images on film,
and a knoh]edge of the optical parameters of the {instru-
ment, Figure 3.1 §s a simplified schematic of the
spectrometer where only the elements necessary in the

reconstruction process are shown, Here the entire
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FIG. 3.1 ~ RECONSTRUCTION OF A MUON TRAJECTORY
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optical system (i.e. lenses, cameras, mirrors, etc.) is
represented by a single lens and a film piane for both
the field !131 (film plane perpendicular to the magnetic
field) and the no-field view (film plane parallel to the
magnetic field). A1l componehts of the spectrometer hsve

well-defined positions in the spectrometer coordinate

frame which is labeled X., Y , Z . Thus accurately
measured positfons and orfientations of the magnets, spark
chambers, lenses, etc. are known in this coordinate frame
fixed relative to the spectrometer.

When a muon traverses the spectrometer, the resul-
tant spark is imaged through thé optical system (f.e.
through the fictitious "lenses” of Fig. 3.1) onto the
field-view and no-field-view film planes. The track
image on the film plane is a line which is well-defined
in the spectrometer frame. This line, together with the
point occupied by the lens, determines a vertical plane
in space contéining the muon Spark. The two vertical
planes from the field and no-field view images intersect
inside fhe spark chamber along the muon spark; thus the
intersection of these planes defines the muon trajectory
inside the chamber. '

In 11ght of the above discussion it should be
clear that,to reconstruct a muon track into real space,

one must execute the following steps:



3.2.4

(1) Measure the coordinates of the track in both ortho-
gonal views by means of the scanning table described
in the previous chapter.

(2) From a knowledge of the positions and orientations of
the components of the optical system,determine the
equations of the lines defined by the track images
on the film planes. ' ' '

(3) Use the line equations found above,together with the
lens points, to determine two vertical planes whose:
intersection is the muon spark.

(4) Determine the downward-pointing unit vector defined
by the intersection. This vector is the unit momentum
vector of the muon.

(5) Determine the'point of intersection of the muon
trajectory with the center spark chamber plate.

This point defines the position of the muon in the
" chamber.

The above procedure must be repeated for each of
the three spark chambers. One obtains finally three posi-
tion vectors and three unit momentum vectorg above,
between,and below the two solid iron magnets; thus the
muon spark images have been reconstructed into reﬁl
space.,

The next step is to determine the muon momentum
by fitting a “best" trajectory through the three muon
positions and unit momentum vectors. However, before
discussing momentum determination we shall cover, in the

following sections, the details of optical reconstruction,
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This will involve a considerable elaboratioh on the five

steps discussed only briefly above.

3.3 ANALYSIS OF THE SPECTROMETER OPTICS
3.3.1 MEASUREMENT OF MUON EVENTS |

The muon data is recorded on two rolls of film,
one for the field view, the other for the no-field view.
For every muon event there {is a frame on the field-view
roll and a corresponding frame on the no-field-view roll.
Each film roll consists of about 8 “"batches" of approxi-
mately 500 events each. The batches vary in length from
20 minutes.to 59 minutes depending upon zenith angle.
This 1is due to the fact that the cosmic ray muon inten-
sity is a decreasing function of zenith angle; thus a
longer time is required to obtain 500 events per batch.
at larger zenith angles. The beginning of each batch
is characterized by several frames of fiducial wires;
also the film roll numper. batch number, zenith angle
and azimuth angle are prbvided.

Before measuring muon data with the analyzing
table the electronic counters are "reset" so that all
measurements (x-y and 6) are positive definite. This is
accomplished by moving the drafting head as far down and
to the left as possible; additionally the angle goniometer
i{s rotated clockwise as far as possible (ébout 45° below

horizontal). The RESET button on the analyzer console
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.

is then depressed, setting all counters to zero. This
configuration of thke apparatus defines the "table
coordinate frame*, which has axes X;, Y;, and Z;. The
X; and Y, axes are defined by the analyzer X and Y
axes (see Figure 3.2). The Z; axis points out of the
table.

Another coordinate frame of interest is the
"digitizer coordinate frame" designaied by XD. Yb and ZD'
This frame is defined relative to the image of the fidu-
cial wires at the beginning of a batch; here the edges
of the spark chamber plates‘are also visible. From '
Figure 3.2 we see that the digitizer coordinate frame
has 1ts origin (and Xo0-Yp plane) in the plane of tﬁe
table at the point where the images of the center -
fiductal wire and the center spark chamber platé cross.

The Xo-axis points to the right along the center fiducial
. wire. The YD-axis points upward along the center plate
of the spark chamber.

In addition to the fiducial wires and spark
chambers, the clock is also visible at the beginning of a
batch, It is now in order to define a "clock coordinate
frame"” which is labeled X., Y., and Z (see Figure 3.2).
The clock'frame has {its xc'Yc planerin the plane of the
analyzer table. 1Its origin 1ies at the 30 second mark

on the clock., The Xc-axis points to the right through
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FIG. 3.2 TABLE, DIGITIZER, AND CLOCK
COORDINATE FRAMES
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the 0 second mark on the clock and the Yc-axis points
upward in the plane of the table, perpendicular to

Xc. The Z. axis points out of the table, At a later
time the_relative positions and orientations of the three
coordinate frames presented here will be developed, f.e.
the table frame, digitizer frame and clock frame, Add{-
tionally a detafled analysis of the spectrometer optical
system, obtained by directly measuring the fiducial
wires, will be discussed, We now describe the measuring
procedﬁre of a single event,

Figure 3.3 shows how a typical event appeafs when
projected onto the analyzing table, Arranged left to
right on the film are the bottom, middle and top spark
chambers., While the spark chambers are not visible their
center plates are easily located by the central gap in
each muon spark. Normally, a sing]g muon traﬁk appears
ifn each chamber (however up to 9 tracks per chamber have
been observed); the image of the clock is also visible,
The fiducial wires are not i{lluminated during a muoﬁ
event and are thus not visible,

The measurement of a single event consists of the
following four steps:

(1) Entering the "event definition® 1n€o
the console thumb switches, 1.,e, number
of particles present, time on the clock,

whether knock-on electrons or particle
showers are present, etc,
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FIG. 3.3  MEASUREMENT OF AN EVENT
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(2) Measuring two points and an angle
on the clock.

(3) Measuring a point and an angle for
each particle observed.

(4) Depressing the “"END" button on the
console.

. What follows is an elaboration on ;he ébove points.

The event definition of step (1) above is entered
into a 20-digit thumb switch which is on the analyzer
console. The following inputs are requifed.

(a) A two-digit identification number designa-
ting the person operating the machine.

(b) Two-digit bottom chamber particle defi-
nition, XY; X = number of particles in
the bottom chamber, Y = number of the
particle judged to be the muon (numbered
from the highest particle in the chamber),

(c) Two-digit middle chamber particle defini-
tion, defined as in (b) above.

(d) Two-digit top chamber particle definition,
defined as in (b) above.

(e) Four-digit information code. This code fis
a number from 1-6 which is used to
characterize the type of event being
analyzed. Ninety per cent of all events
were classified as "normal” (informa-
tion code 0001); these are events in which
only one muon is observed in each spark
chamber. Occasionally more than one muon
were observed and the event was then
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Judged to belong to one of the categories
of Table 3.1. These classifications '
should not be taken literally (a "shower
event” may not be discernable from a
"nuclear event"), but are used primarily
as a check on the analyzing personnel

and as rough estimates of the number and
types of events in the data.

(f) Six digit time code, XXYYYY. XX = time {n
minutes on the event clock, YYYY = time on
the clock in centi-seconds, i.e. a time

_of 231960 is 23 min. 19.6 sec.

The second step in the track measuring procedure
{s measurement of the clock coofqinates. In order to
determine the position and orientation of the “"clock
coordinate frame" we measure the X-Y coordinates of the
0 and 30 second marks on the clock (see Figure 3.3).
Also the angle that the clock diameter makes through the
0 and 30 second marks is measured,

To accomplish the third ﬁtep in the measurement
procedure, one point (X-Y) and one‘angle (6) are measured
on each particle track. This is sufficient to determine

the line associated with each track.

3.3.2 GEOMETRY OF THE OPfICAL CONFIGURATION

The magnetic spectrometer has six distinct optical
systems, one for each spark chamber for both the field
and no-field views. Each optical system contains the

following elements:
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TABLE 3.1
PARTICLE EVENT INFORMATION CODES



INFORMATION EXAMPLE OF
CODE DESCRIPTION EVENT TYPE
0001 "NORMAL EVENT" .

\ \
0002 "SPURIOUS EVENT" NO PARTICLES
0003 "NUCLEAR EVENT" )
e ——— —_—
c——'—-— —_——_—_
0004 "SHOWER EVENT" —_
\ enmmn—
0005 "KNOCK-ON EVENT" :::;, —_—
\
i P——
oo "PAIR_PRODUCTION >

EVENT"
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(1) spark chamber.

(2) mirrors to deflect the optical path
into the camera.

(3) lens and film plane of the camera.

(4) lens and light source of the film projector
used in the data analyzer.

(5) overhead mirror of the data analyzer.
(6) measuring table.

Analysis of all the above optical elements is not a
simple fask nor even a desirable one. We do nof require
knowledge of the effects of each of the optical elements;
only the total effect of all the-elements is required.
In this 1ight we point out that an optical system may
(1) translate, (2) rotate and (3) generate non-linear
effects such as “"barrel™, "astigmatic” , and "pin cushion”
distortions. Normally we do not expect an optical system .
(if adequately designed and built) to be a source of
non-linear distortions. Even though an optical system
is never completely linear, we expect the non-linearities
to be small, Thus; we may assume the optical systems of
the spectrometer to be linear to first order. This allows
the entire optical system to be replaced by a single
simple lens and a "film plane” (thch here we take to be
the pléne of the analyzing table). .we have preViously
shown this s1m§11f1ed view of the optics in Figure 3.1,

In Figure 3.4 the optical reconstruction geometry
is shown where the fictitious "lens" of our optical system

fs located by the vector X In the following

lens®
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FIG. 3.4 OPTICAL RECONSTRUCTION GEOMETRY
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development all vectors and matrices are assumed to be
relative to the "spectrometer coordinate frdme' labeled
X¢o Yo 2. This frame has its origin and xs-Ys plane
in the mjddle plate of the bottom spark chamber. All
three spectrometer axes are parallel to the edges of the
solid iron magnets. The spectrometer is contained in the
first octant of this frame (see Figure 3.1). The‘Ys-axis
is parallel (or antiparallel) to the magnetic field. The
Zs-axis points upward a]bng a magnet edge, and tﬁe xs
axis completes the right-handed triad. The 'fiddcial
coordinate frame" (XF.YF,ZF) has axes parallel to the
spectrometer-frame axes. Actually there are two sets of
fiducial axes, one for the field view, the other for the
no-field view. The field view set is obtained by trans-
lating the spectrometer axes in the direction of -Ys
through a distance sufficient to place the XF'ZF plane
in the field View fiducial plane (see Figures 3.5,3.6)
In a similar way the no-field view fiducial frame
(XFN'YFN’ZFN) fs displaced so that the Y, -Zp, plane
lies in the no-field view fiducial plane (see Figures
' 3.5,3.6). |

Next in order is the “wire coordinate frame"
(1abeled xw’Yw'Zw) which also is defined differently
in the ffeld and no-field views. This frame has its
origin in the plane of a center chamber plate with X -Y

W oW
plane in the fiducial plane as shown ifn Figure 3.5, The
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xw-axis is parallel to the Zs-axis and lies along the
center fiducial wire. ' |

Another coordinate frame of interest is the “"image
reference frame", labéied (XR.YR.ZR) in Figure 3.4. To
define this frame it is assumed that the lens position,

Ylens‘ is well known. The origin of the image reference

frame is then found by

2: 2 ( lens ~ i )
X = X + (D + d) (1)
RO
"o 'ilens - iwo'

where iwo is the position vector of the wire frame origin,
D is the distance from the wire frame origin to the lens,
and d is the distance from the lens to the origin of the
image reference frame. All of the variables on the right
of.equation (1) are measured ones except for d. This
parameter is re]ated to the optical magnification and

must be determined from a x? fitting procedure. The defi-
nition of the image reference frame is now clear.. Its
origin lies at the point défined by equation (1) and its
orientation is found by rotating the wire frame through

an angle of 180° about the Zw-axis. The motivation behind
the above definition comes from thg fact that simple lenses
(1) rotate and (2) translate images by conic projection.
This means that all points in space which lie on a line
through the lens point must map onto a single point on

some specified plane. Here the specified plane (which we
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shall call the image reference plane) is parallel to the
fiducial plane and a distance (s + dM) from 1t (see

Fig. 3.4). Here s is the perpendicular distance from

the fiducial plane to the lens, and dy is the distance
from the lens to the image reference plane. Thus the
image reference frame XR-YR plane is the conic projection
of the wire frame xw'Yw plane onto the image reference
plane. In the same way the fiducial plaﬁe maps onto the
image reference plane by copic projection. Since the
fiducial plane is parallel to the image reference plane
the fiducial wire images must be parallel and equally
spaced. If s ¢ QM then we expect the image of be magni-
fied (dy > s) or demagnified (dy < s) and thus the
spacing between the imaged wires and the wires themselves
is not the same. In any case the spacing between the
wire images leads to a geometrical derivation of the
parameter dy (or equivocally the parameter; d), (see
section 3.3.4), '

| Now consider what happens when the fiducial wires
are mapped onto a planc not parallel to the fiducial
plane., In this case the fiducial images are not

parallel or equally spaced., This fis, 1ﬁ fact, what we
see when the fiducials are projected onto the analyzing

" table. If the plane of the analyzing table were parallel
to the fiducfal plane (optically speaking, of course)
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then all fiducjal images would appear parallel and
equally spaced {n the absence of non-li{near effects.

The image reference plane and the plane of the analyzing
table would be superimposed, Likewise the digitizer
coordinate frame and the image reference frame would
coincidé. Bécause the fiducial wires are not observed
to be parallel and equally spaced the digitizer and
image frames must be related by a rotation matrix
describing their relative orientations, This leads to

the matrix equation

[s0o] = [RDI[SR] . (2)
where )
[SD] = spectrometer-to-digitizer rotation
matrix .
[RD] = image reference-to-digitizer rotation
matrix )
= spectrometer-to-image reference frame

[sR]

. rotation matrix
It §s clear that [RD] is a unit matrix when the fiducial
images are parallel and eaqually spaced. In reality we do
not expect [RD] to be much different from unity because
the fiducial images are observed to be near]y parallel
and equally spaced.

It will be shown in a later section that the

matrix [RD] may be represented by three infinitesimal
rotations about the Xﬁ, Yrs» and Zp axes through angles
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0, ey. and §,. The angles are adjustable parameters
(along with d) which must be determined by a x? fitting
technique to best describe the conic projection of the
fiducial wires onto the digitizer plane. How these four
parameters affect the fit {s easily seen. Physically
{f the paramefer d {s varied, then the magnification
(and also the distaﬂce between the imaged fiducial wires)
must change. When the angle Oy is non-zero the fiducial
{mages become nén-para]lel and when 6, is non-zero the
spacing between the fidﬁcial lines becomes unequal.
Finally if 2, is non-zero, then the fiducial images are
rotated in the digitizer plane. It will be shown in
later sections how these results may be determine&
quantitatively. First, however, expressions wiil be. )
developed for-the lens positions. Add{tionally estimates .
. of the four parameters d, 6,, ey. and 8, will be made.
Then these estimated results will be used as starting
values in a nhmerical x? fitting procedure which deter-
mines the set of (d, 65, 6,, 0,) best describing the
optical projection of the fiducial wires onto the digitizer
plane for each of the six optical systems of the spectro-
meter, If any non-linear distortions are present in the
Optics.tﬁen discrepancies (1.e., deviations in the sense
of a x2 fit) will appear in the projection of the
fiducial wires onto the digitizer plane,
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3,3,3 DETERMINATION OF THE LENS POSITION VECTOR

Previously the lens position vector was used to
determine the origin of the image reference frame. It
was assumed that this vector was known; 1.e, a measurable
quantity of the optical system. Furthermore it is now
assumed that the lens lies in the plane of the center
plate of a spark chamber and that the lens is a distance
s from the fiducial plane (see Figures 3.5 and 3.6). The
" distance s is taken to be the same as the true distance
that the real camera lens lies froﬁ the fiducial plane.
Thus the lens position can be described in terms of a two
dimensional vector, 3. fn the Y -Z_ plane of the wire
coordinate frame. This vector makes an angle & with the
Z,,-axis which was measured by means of a laser beam.

The laser was mounted so that (1) the beam was parallel
to a spark chamber center plate and as close to the plate
as poésible without intercepting or reflecting the 1ight,
(2) the beam intercepted the center fiducial wire and

(3) the beam intercepted the camera lens. Thus the laser
beam follows the "optical path".of the spectrometér for

a chosen spark chamber. Now define a new set of ortho-
gonal axes, designed "optical axes" (Xqp.,Yo:Zp), which

are parallel to the magnet edqes and intercept at the
geometrical center of the magnet (see Figures 3.5 and

3.6), The distances AX and AX' were directly measured
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FIG. 3.5 FIELD VIEW LENS
COORDINATE GEOMETRY
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F1G. 3.6 NO-?IELD-VIEH LENS
COORDINATE GEOMETRY
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where in the field view
AX = distance from the Y,-Z, olane to
the laser beam as measured along
the X,-axis
AXx'=s distance from the Yo-Z, olane. to
the laser beam as measured along
the Xf axis

The angle 8 is then found, in the field view, from

TAN § = 82X = 8X'  (£i01d view) (3)
Yo *+ Yeid .

where, from Figure 3.55
Yo = magnet half-width in the no-field view

Y¢4d = distance from the maanet face to the
fiducial plane in the field view

Correspondingly in the no-field view
TAN §= 8% = &X' -(no-field view) (4)
Xa *+ Xfid
.where. from Figure 3.6:
Xz = magnet half-width in the no-field view
Xfid = distance from the magnet fafe to the
fiducial plane in the no-field view
Finally the distance D.(lenqth of the vector 3) was
measured by stretching a string along the laser beam
path and then mecasuring the length of the string., Values
of_all of the measured optical parameters are presented
‘{n Table 3.3. _
The lens position vector in the fleld view may

" be found from (again see Figure 3.5)
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TABLE 3.2
MEASURED OPTICAL PARAMETERS



a.) FIELD VIEW DATA

AX(cmj

SPARK CHAMBER D(cm) TAN & Zsc(cm)
ToP 330 .014 2.08 | 244.039
MIDDLE 218 .0039 615 | 126.683
BOTTOM 317 .0048 -.076 0.0

NO-FIELD VIEW DATA

SPARK CHAMBER D(cm) TAN & aX(cm) | 2. (cm)
TOP 325 .0026 .160 | 244,039
MIDDLE 231 .0000 .150 | 126.683
BOTTOM 347 .0087 .524 0.0
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-+ + + A :
Xifv = Xyo * 0D . (s)

where X_ o is the position of the wire frame orfgin in the

spectrometer frame:
> i
Xyo = (Xp = 8X', = Yeiqs Zgc) (field view)  (6)
where Z.. {s the spark chamber Z-coordinate. Also

D = (DSING, - DCOSS, 0) (field view) (7)

'Thus the field-view lens vector is

(8)

Xigy = [(Xp-8X')+DSINSG,-Y 4-DCOS S, Z,.]

for the no-field view we have
Xwo = (~Xeggs Yp + 8X', Zsc) (no-field view) (9)

D = (-oco§6. -DSIN S, 0) (no-field view) (10)

Finally the no-field view lens vector is
Xiny = [-Xgqq-DCOSE, (Yp+8X')-DSING, Zg.] (M)

3.3.4 ESTIMATION OF THE MAGNIFICATION PARAMETER

In section 3.3.2 the position vector of the origin
of the image reference frame was developed (eq. 3.1). It
has subsequently been necessary to determine the lens
position vector, Y]ens, the position vector of the wire
frame origin, on. and the distance from the wire frame

origin to the lens, D. The parameter associated with
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optical magnification, d, will now be considered, From
Figure 3.2 it can be seen how d and D are related to the
distance between fiducial wires in the fiducial plane,

Wp, and the width between fiducial wires in the digitizer
plane, Wp. This figure is a view of the optical geometry
as seen from above the spectrometer; thus Figure 3.7 is a
"top" view of Figure 3.4. 1In qddition to the fiducial plane
and the image referénce,plane, the dititizer plane is also
shown in Figure 3.7. Recall that if the digitizer orien-
tation angles 6,, 6y, 6, are all zero then the digitizer
and image feference p1}nes coincide. In this event the

magnification parameter obtained is

D )
d = g; L - (1)

In actual fact the orientation angles are not zero and a
more exact relation than (12) {s nécessary. Because a
simple optical system can onlylinvert images we expect
that 0 -~ 0 (this is consistent with the results of a

x? fitting procedure to be discussed in a later section).
Additionally a rotation about ey does not change the dis-
tance between the fiducial wires along the Yp axis (f.e.
along the image of the center spark chamber platé). Hence
if we chose to measure (for the pufpose of estimating

the parameter d) the distance between fiducial wires in
the digitizer‘plane along a center Fpark chamber plate

then Wp is not affected by 8, and 8, . The only angle

y
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FIG. 3.7 GEOMETRY OF THE MARNIFICATION PARAMETER
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which affects the determination of d is 8, which is seen
from Figure 3.7, First write '

- D¥W -
d. =
i | (2)

where W is the distance between fiducial wire images in

the image reference plane. From the geometry it is seen

that

W .
TAN ¢ = —Egi "(3)

where the varjable definitions can be easily deduced from

the expanded inset of Figure 3.7. Also

. .
cos o, = L ;or ' (4)

where

HF-P

Tto= HpSIN 6, TAN 6 = Wy [ ] SIN o, (5)

Put (5) 1into (4) and solve for W to get:

M= W [cos 6, -[HFS‘_r] SIN °x] (6)
where ’
| r=0 SIN & (7)
Finally if (6) and (7) are used in (8) the
following result for the magnification'paraneter i{s obtained
d = ﬁg wD[cos 0y - [EE:leﬂ-i SIN ox] (5)

In the 1imit as 8, + 0 equation (8) becomes (2) as

expected,
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3.3.5 CHI-SQUARE FIT TO THE SPECTROMETER OPTICAL
PARAMETERS

Here.we arrive at a method for determining the

X
previously. In order to accomplish this we need to

optical parameters (d, 6_, ey.ez) which we have defined

develop the equations which describe the mapping of the
fiducial wires onto the digitizer plane. To this end
we may write the position vector, fs. of any poinf. P,

in the spectrometer frame as

T -, + [osIT | (1)
where 100 is the position vector of the digitizer frame
origin (XDO = IRO)' [0S] is the digitizer-to-spectrometer
frame matrix and in is the position vector of P in the
digitizer frame. Here iDo is given by eq. (3.3.2.1). The
- matrix [DS] is defined by

(ps] = [RS][DR]. ' (2)

The refefence-to-digitizer frame matrix 1s given by
[rol = [0R)T = [Z1(¥](X] (3)

where the matrices [X]), [Y] and [Z] are Euler angle rota-
tions about the Xp, Yp and Z axes respectively ;nd are

given by

tr

1 0 0 ~ |
[x] =[O0 COS 6, -SIN o, (4)
0 SIN 8  COS oy
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[0S 6y 0 -SIN oy
(Y1=1| o 1 0 ] (5)
SIN 8, O COS o,
oS o, SIN B, O
[z] = |-SIN o> COS o o] (6)
. |0 0 1
rut (4)-(6) into (3) and obtain
(c(e.)c(0.)  -C(8,)S(6,)S(8,) -C(8,)5(8,)C(0,)
YT aTs(B0h) ¢ - s(Bs(h)
RD] = |-S(e;)C(8y) S(6,)S(6,)S(8 S{s8,)S{6,)C(0
[ A E I IS 8 3 sfé,)s(ex) SN
LS(e,) C(ey)s(ey) Cley)C(0,).

where S( ) = SIN( )

and C( ) = COS{ )..

Inspection of Fig. (3.4) shows that the reference-to-

spectrometer frame matrix is given by (for the field view)

(0S]ypy =

1 0
0o -1
0 0

9 S(e,)S(e
) ,+é<él>é(£
) -5(08,)S(eo
x) +$ctgz§s¥

s(e,)C(e

(8)

(8,)  Clo,)5(0,)]
(0,) -Cle,)els,)
~ -s(ey)

(9)
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In the no-field view we likewise find

(C(6,)5(0y)C(0x)  -S(2)S(8y)Clex)  -Cl8y)C(ex) ]

+5(62)S(6x) +C(62)S(6x)
C(82)S S -S S S -C S

[DS]NV = -g?el)é?g’)‘)(ex) -ng;;cggi; (6x) - (ey)r (6x) (10)
| -C(82)C(ey) S(6z)C(oy) -5(ey)

Eqs. (9) and (10) give us all the information we need to
calculate the coordinates of a point in space, P, either
in the spectrometer frame (Xs) or the digitizer frame
(XD) by means of eq. (1).
We now develop a procedure by which we determine
the conic projection of the fiducial wires from the wire
frame onto the digitizer frame. In the wire frame each
fiducial wire lies in the XY, plane with a slope and
_intercept
my = 0 . . (1)
bw = Yw (12)
Hence we may select two points on some particular wire.
. to be . '
(0,yw) and (a,y,) R (13)
where "a" 1s an arbitrary distance from the origin., We -
may transform these points to the spectrometer frame for

the field view
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-’YJ
YI'I + 0 -
MO o | (FIELD
-y, VIEW) (14)
kal' on+ 0 E )
. | a
For the no-field-view we have
[ 0]
xsul = xuo + %V (NO .
: 0 : FIELD (15)
xst " xwo * Yu VIEW)
L

It is clear that fhe two points on a fiducial wire (given
by (14) for- the field view or (15) for the no-field-view)
and the lens point, Xlens. define a plane. The intersec-
tion of this plane with the digitizer x-y plane defines
the conic projection of the fiducial wires. Using eq. (1)
we have the three points which determine the plane defined

by a fiducial wire and the lens point:

XDI [SD] (YHO-XDO + [-yw,0.0])

1 :
Xy, = [sD) (X X+ [-y ,0,a]) (FIELD (16)
wo DO w 'VIEN) .
XD3 " [SD] (xlens - %DO)
or
X, = [s0) (X, -, + oy ,0]) (N0
XDZ = [sp](} -XDO + [o,y ,a]) FIELD (17)
;° v w VIEW)
X - [SD] ( lcns’ Do)

D3
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These three points in space determine a plane in the

digitizer frame

AX4BY+CZ = 1 : (18)

where A, B and C are the pTane parameters found by

-writing the three points as

oy = [xpeyy02y] :
X, - [x,05502,] (19)
o5 = [xguy ezl
Then : y -z
S I
Z.~2 X.=X
B = zi-zi xi-xi /0 | (20)

X=Xy YooY,

- v |/D
X3=%y Y37,

D = Ax1 + Byl + Cz

1
The line of intersection of (18) with the digitizer

plane is given by

AX + BY = 1 | ' (21)

so that | .
y--gttl (22)

Thus the fiducial wires mapped onto the digitizer plane

have slopes and intercepts:
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mD = '§' . . (23)
b, = ) | (24)
D A '

The preceding equations leading up to (23) and
(24) allow the fiducial wires to be conically projected
onto the digitizer plane provided we select appropriate
values of the free parameters (d,ex.ey;ez). Thus these
optical parameters can be determined by measuring the
fiducial wires in the fiducial plane and in the digitizer
plane; then a x? fitting procedure can be used to deter-
mine the "best"™ set of the parameters for a particular |
optical system. This fitting procedure is discussed in
the following paragraphs.

There are six optical systems (2 views gnd 3
T spark chamberé). The fiducial wires were photographed
for each of these systems. Then the slopés and inter-
cepts of each fiducial were measured 10 times each in
the digitizer frame with the optical scanning apparatus.
The 10 measurements were averaged for each wire and the
corresponding standard deviations calculated (see Figs.
3.8a and 3.8b for, examples of wire slopes méasured
in this way). Thus a "measured parameter" vector was

formed
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Mp1

bn
n bDZ (25)

> ¢
]

mDn
b

| Dn

-l

Here LI and bDl are the slope and intercept of the 1st
wire as measured in the digitizér frame. Thus i- con-
tains 2n entries, where n is the number of fiducial wires.

The "fit parameter® vector is given by

x
y (26)

L
"

O O D O

The fitting procedure used here.calculates the slopes
and intercepts of the wires in the digitizer frame using
the initiaIl; guessed vector a. In order to minimize x?
a "best" set of parameters a* are calculated by the well
known x2-fit technique. Shown below are the results of

fitting the 6 optical systems in the spectrometer:
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e_. ) ]

VIEW CHAMBER X%y (QL) x (RADIXNS) z
FV | BOTTOM .78 | 286.57 | -.0580 | .0606 | .0025
Fv  |MIODLE | 2.30 | 293.69 | -.om3 | .0077 |-.0002
v |Top 114 |308.37 | -.0359 | -.0357 |-.0003
NV | BOTTOM .81 | 312,38 | -.0327 | .1989 | .006)
NV |mMoDLe | 233 |303.99 | .0024 | .0123 | .0019
N | ToP 1.30 | 302.61 |-.0004 | -.0746 | .0032

x2y 1s the reduced value of x* from the fit,

It 1{ perhaps instructive to examine some of the
measured fiducial data in light of further corrections
which must be made. In Figs 3.8.a and 3.8.b we see the
slopes of fiducial wires in the bottom and top chambers.,
In both cases there is a general trend of changing slope
(from positive to negative in Fig. 3.8.a and negative
to positive in Fig. 3.8.b). Thus there is a definite
indication of a rotation about the yD-axis. If all of
the optical error were due to this rotation then all of
the slopes would fall along the straight line drawn
through the points. Deviations about the straight 1ine
indicate that non-linear optical corrections must be
made. In order to account for these non-linear effects
linear interpolation is used to correct thé slopes and

intercepts accdrding to the deviations (in the sense of
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F1G6.3.8.a FIDUCIAL WIRE SLOPES IN THE
FIELD VIEW, BOTTOM CHAMBER
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FIG. 3.8.b FIDUCIAL WIRE SLOPES IN THE
FIELD VIEW, TOP CHAMBER
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a x?-fit) between measured and calculated values after
the optical parameters (d.ex.ey.ez) have been determined.
Thus the deviation vector (between measured and calcu-
lated slqﬁes and intercepts)-is a measure of the non-
linearity of the optics.

In order to make a check on the optical model
developed above we devise the following method for
determining how “infinite momentum events® are detected.
Thus we form various combinations of ffducial wires
(which appear as "tracks™ on film and which can be
viewed as infinite momentum events) as seen in the
digitizer frame and assume that the combinaiion of any
3 fiducial wires in the.fop, middle and bottom spark
chambers is an 'event'.r We realize that such "events"®
are not consistent with real events because tﬁeir re-
constructed positions are a function only of the random
selection process. However we shall examine only the
angles between the fiducials in the various chambers.

If the optical model were perfect then the angle differences
would all be zero (since the fiducials stretch the full
length of the spectrometer and are parallel to within .01
milliradians). The fiducial events, formed in the above
way, were momentum analyzed and the resultant momenta

were histogramed as shown 1h Fig. 3.9. Xq order to see

the significance of this histogram we shall develop the
probability density which describes'it. We assume that
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FIG. 3.9 HISTOGRAM OF "INFINITE MOMENTUM
r EVENTS"™ AS VIEWED BY THE SPECTROMETER
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the measured angle difference between any two fiducial

wires, ¢ = ¢1-¢2. has uncertainty A¢ and is distributed

by 1 2
9
fle) = [2 1 ¢ [ (27)
® A¢d :

In (27) we are concerned only with the absolute value of

é. This is due to the fact that we shall calculate a

momentum by

- K
P=3 (28)

which we require to be positive, hence only the absolute
value of ¢ 1s used. If we introduce the "effective momen-

tum®, p , by
e

Pe = 25 (29)

then we see that p, corresponds to the angle uncertainty

in the reconstruction process. If we use (28) and (29) in

(27) we find Pe)?

1
-3 |
flplp,) -‘E%‘f ¢ [ o (30)

'Eq. (30) is a probability density in momentum which is
conditionally dependent on the effective momentum, We see
that (30) must describe the histogram of Fig. 3.9 for some
particular value of p,. A x2-fit of eq. (30) to this data
yields a value for the effective momentum of p, = 310 GeV/c;
the fitted curve is also shown in Fig 3.9. We conclude

that the hypothetical "infinite momentum event" will, on
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the average be distributed by eq. (30) with an effective

momentum of 310 GeV/c.

3.4. RECONSTRUCTION OF A MUON TRAJECTORY INTO REAL SPACE

In this section we derive the equations necessary
for the optical reconstruction of a muon event as defined
in Sec. 3.2. We begin this task by.determining how
variables in the clock frame are related to corresponding

variables in the digitizer frame.

3.4.1. CLOCK FRAME-TO-DIGITIZER FRAME TRANSFORMATION

The measureﬁent of a single muon event allows the
position and orientation of the track to be determined
in the clock frame. We now develop equations necessary
for transforming the positions and or{entations to the
digitizer frame. Referring to Fig. 3.10 we see that the
origins of the clock frame, X , and the digitizer frame,
-
X

-

D1° allow the relative origin vector, XCD‘ to be

calculated.

+ - +
Xeo " *p1 - *aa (M

The angle betwéen the clock frame xc-axis and the

table frame XT-axis {s seen to be

0g = TAN! (?Cz)y - (EC‘)’] (2)
(Xeady = eydy]

while the corresponding angle between the XD and XT axes

s
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FIG., 3.10 CLOCK FRAME TO DIGITIZER
FRAME TRANSFORMATION
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. . TAN-l["oz’y"’m’y] )

° (sz)x'(xnl)x

Thus the .angle of rotation from the clock frame to the

digitizer frame is' ’ -

6. =6 -8 (4)

(o)) D C
Any vector in the clock frame, ﬁc, has components
in the digitizer frame, KD' giveh by
> + » ) ‘ )

where the clock-to-digitizer rotation matrix {is

COS o, SN, O -
[cD] = [-SIN e €COS o . O (6)
0 0 1

Thus given a point cn a muon sparh as measured in the
clock frame eqs. (5) and (6) can be used to determine
this point in the digitizer frame. Likewise any measured

angle in the clock frame, 6.., can be found in the

CHM
digitizer frame by

O = % * %cu : ) (7)

In order to use (5) - (7) the vector ?CD and 6., must be
measured for all six optical systems. '

3.4,2 DETERMINATION OF THE POSITION AND ANGLE OF THE
MUON SPARK IN THE DIGITIZER FRAME

Let iPM be a measured position on the muon track



3040201

in the table frame qnd Yp be the same point as
measured in the digitizer frame. From Fig, 3.11.a we see

that
' Xp = [ro]()tPM - Xm) - XCD (1)_

where the table-to-digitizer frame matrix'is given by

COS o, SINe, O

[(TD] = [-SIN BD coS BD 0 (2)
0 0 1
and -
8 = %cn * cp (3)

-The angle of the muon track, ep. in the digitizer

frame is seen to be

Op = €pn = Ocn - Ocp . (4)

. A single muon event consists of the measurement of

XoueOpx » XeysOcy ' (5)
where all variables are measured‘in the table frame:

’PM = position vector of some point on the
track -

ePM = angle of the track with some arbitrary
. reference line .

ic1 = position vector of clock frame origin

.eCM = angle that the X -axis makes with the
same arbitrary reference line as Opye
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FIG. 3.11.a POSITION AND ANGLE OF MUON
SPARK IN DIGITIZER FRAME
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We assume that

i’Cl)’eCD . (6)
are well known constants:

iCD = position vector of digitizer

: frame origin relative to the clock
frame with components in the digi-
tizer frame.

GCD = angle between the Xc-axis and the
x 'axiso

D
Thus by measurement of the variables (5) and knowing
variables (6) one can use eqs. (1) - (6) to establish the

particle track coordinates in the digitizer frame. -

3.4.3 CORRECTIONS DUE TO NON-LINEAR OPTICS

In the digitizer frame the muon spark has some
position, fp, and angle;_ep. determined by the methods of
Sec. 3.4.2. The corresponding slope, mp. and intercept,

bp, of the line are given by

mp = TAN @ | (1)

P
' -x_T
bp T YptX, AN ep (2)

Non-1inear optical corrections are applied to (1) and
(2) using the deviation vector, &, obtained from the
x2-fit of the optical parameters as discussed in

Secl 3.3.5.

3.4.4 DETERMINATION OF TWO POINTS ON THE MUON SPARK IN
THE SPECTROMETER FRAME

From Fig. 3.11.b we see that two points on the muon
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FIG. 3.11.b DETERMINATION OF TWO POINTS
ON THE MUON SPARK
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spark in the digitizer frame, xDl' Yéz. are given by

T . =3 | (1)

D1 P
Xpy ® ip + [Xge Xo + TAN 08,] (2)
where X, is an arbitrary displacement. 1In the spectro-

meter frame these points are given by

X5y = [0s1R;, + %y (3)
X5y = [0sThy, + Xy (4)

where [DS] is the digitizer-to-spectrometer frame matrix
given by eqs. (3.3.5.9) and (3.3.5.10). The position
vector of the digitizer frame origin is given by (3.3.2.1).

3.4.5 DETERMINATION OF THE PLANE FORMED BY THE PARTICLE
LINE AND THE LENS POINT

The two points on the particle line ’Er and fsz

(given by (3.4;4.3) and (3.4.4.4)) together with a lens
point

Axss - xlens - (1)
determine a plane which contains the muon spark in real
gpace. The two particle'planes. one from the field view,
the other from the no-field view, intersect along the
muon trajectory in real space. The equation of'a plane
in three Jimensions is given by

AX + BY + CZ = D (2)

When the plane is determined by three points
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is1 = [x):7107,] .
isz = [x,07502,] (3)
Xss = [x5ey5e2y]

then the plane parameters A,B,C,D are given by

Y¥y %4,

Y37¥1 %374,
22-21 Xz

B =z, -z, x.-x (4)
37%) X37X

. X,=X Y=y
c =271 7271

X37%y Y3°Y,

D = Ax; + By, + Cz,

3.4.6 DETERMINATION OF th MUON POSITION VECTOR
The muon position vector is defined to be that
point in spaée determined by the intersection of the
field view and no-field view particle.planes with the
center plate of a spark chamber (see Fig. 3.1). Assume
that the two particle plane§ are given by
AIX + 81Y + clz = Di (1)
Azx + BZY + sz = Di . (2)
To find the point of intersection with the constant
z-plane éf a3 spark chamber middle plate, set Z = Z, in
(1) and (2) to get
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R)X + BIY =0, (3)
Azx + BZY = D2 (4)
where )
b, = D} - C,2, . (5)
D, = Dj - C,Z, ’ (6)
Now let
A D
1 1
m, = =z=; b, = == (7)
1 EI 1 B
A, D
2 2
m B e b = (8)
2 B, 2 E‘; :
Thus (3) and (4) become
Y = mlx + bl ) (9)
Y =mX+b, ‘ (10)-
The intersection of (9) and (10) is
. -
m.b, - m,b :
172 2°1
X = (11)
m,-m, _ ‘
b, - b
2 1
Y = —— (12)
m =M

Using eqs. (7) and (8) in (11) and (12) we may write the

position vector of the muon as

- [8102 - B201 AZDI - °2A1 ]
X = Zo

’ ~ ’ (]3)
AZBI - AIBZ KZBI KIBZ
3.4,7 UNIT MOMENTUM VECTOR OF THE MUON

The unit momentum vector of the muon is the downward

pointing unit vector formed by the intersection of planes
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(3.4.6.1) and (3.4.6.2). Normal vectors to these planes
are given by
No=1A .8, ,0C) o m

ﬁz = [Az N Bz ’ czl ) (2)

Then the unit momentum vector, §, is found by

- ﬂ] X ﬁz ‘
P IR, X ﬁzl (2)

To insure that p is downward pointing we inspect the
z-component, Pyo to see if it is negative; if not the

sign of §p is reversed.
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3.4.8 SAMPLE OF RECONSTRUCTED EVENTS

Fig. 3.12.a-1 show histograms resulting from the
reconstruction of a sample of 1033 muon eventﬁ.
Fig. 3.12;a'displays the cosmic ray muon spectrum as
observed by the spectrometer where the mean momentum is
15.9 GeV/c. Multiple scattering distributions in lateral
displacement and scattering angle (Fig 3.12.b-e) are
given for the middle spark chamber (after penetratf;n
of about 40 cm of iron) and the bottom spark chamber
(after penetration of 95 cm of iron). Histograms of muon
'positions in the scintillator planes are shown in'
Fig. 3.12.f-i. The vertical dotted lines fndicate the
scintillator boundaries. Particles outside the scintilla-
tor edges were presumably caused by shower particles from

muon collisions in the ceiling or spectrometer structure.
-_3.5 DETERMINATION OF THE MUON CHARGE AND MOMENTUM

Given the reconstructed muon position vector, f,
(eq. (3.4.6.13)) and the unit momentum vector, P,
(eq. (3.4.7.3)) for each of the three spark chambers we

now wish to determine the muon charge and momentum.
3.5.1 MUON CHARGE DETERMINATION

In order to find the muon charge we write the unit

momentum vector as

->

5= [pgs pys p,] ‘ (1)

El
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FIG, 3.12.a MOMENTUM HISTOGRAM FROM A
SAMPLE OF 1023 EVENTS
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F16 3.12.b MIDDLE CHAMBEP SCATTERING
POSITION DISTRIBUTION
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FIG. 3.12.c BOTTOM CHAMBER SCATTERING
POSITION DISTRIBUTION.
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Fia, 3.12.d MIDDLE CHAMBER SCATTERING
ANGLE DISTRIBUTION
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FIG. 3.12.e BOTTOM CHAMBER SCATTERING
ANGLE DISTRIBUTION
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FI6, 3.12.f DISTRIBUTION OF EVENTS IN
FIELD VIEW TOP SCINTILLATOR
PLANE
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FIG. 3.12.9 DISTRIBUTION OF EVENTS IN NO-FIELD
TOP SCINTILLATOR PLANE
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FIG. 3.12.h DISTRIBUTION OF EVENTS IN FIELD
VIEW BOTTOM SCINTILLATOR PLANE



| L 0 T

L
[ ) [¥a) [& ) : [T} (e}
™ o~ ~ o~ - bl

J SINIAZ 40 YITHN -

30 40 50 60 70 80
Xs = COORDINATE POSITION, cn

20

10

-10



3.5,1,10

FIG. 3.12.1 DISTRIBUTION OF EVENTS IN NO-FIELD
VIEW BOTTOM SCINTILLATOR PLANE
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(p is the magnitude of the momentum), and then form
al bl [pxll 0. pzzl (2)
‘JZ - [pXZ' 0, p!Z] (3)

where the indices "1" and "2" refer to tw; points along
the trajectory. From Fig. 3.13 we see that 31 and 32 are
vectors in the X -2 plane and are thus perpendicular to
the magnetic field B = 1803. U, has the direction of the
entry momentum vector of the muon and U, has the direction
of the exit momentum vector in the Xg~2g plane. From -

Fig 3.13 we may easily establish that

iT Xi? g__ﬁ__g_ ) (4)
5, X 5,1 lal [B] »

If we write the sign of the charge, lq. as

I e (5)
T |q]
so that I. = 1 or -1 then
-(iBo-j’)Iq = (pzlpxz-pxlp22)3 ’ (5)
|iB°| Ilepr-pxlpzzl
or finally 1 |
[ a ocu (7)
e Ny

where

Iu = PaiPy2 © pxlng

(8).
1P;1Px2 = PxaPsal



3,5,1.12

F1IG. 3.13 MUON CHARGE DETERMINATION
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Ng = 1, sign of the 8 field. (9)

Thus one uses the proper sign of'the magnetic field,
calculates (8) from (1) and determines the sign of the
muon by (7).

3.5.2 DETERMINATION OF THE MUON MOMENTUM

In order to calculaté the incident muon momentum
we use the x2-fit technique to discover a numerically
1nfegrated muon trajectory thch best fifs the measured
data for a single event. Tﬁus we would like to deter-
mine a muon position vector, I*, and momentum vecfor.

p*, (both in the top chamber) which generate a trajectory

best characterizing the data. Here we use the notation
N )
x* = [x*, y*, z*] . (v
..*8 * * * .
| P [p, > Py P, (2)
We prefer to transform the momentum vector to an equally

gobd triple of numbers

- * *
_(ex.ey » P*) . (3)
‘where i *1
* woran- YRzl _
ex TAN hp:“ (4)
. *l
' o* = Tan"V |22 ' (s)
Y Py '

2 2 . L2
pr = [py +p) +p3 172 (6)
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If we assume that the z-component of x* (f.e. z*) s a
constant in the center plate of the top spark chamber

then (1) and (2) may be written in terms of § paramete}s
(X*.]*.G;.O;.P*) ] (7)
which we now write
K* = (x*.y*.e*.e*.l/p*) (8)
Xy
where we have used 1/p* rather than p* because 1/p* has
errors which are gaussian distributed (a prime require-
ment of the y2-fit technique). In general we shall use

as fit parameters the 5-component vector

K= (xpa¥ps8 000 00 1/pg) (9)

where the subscript "T" denotes that all variables are

in the top chamber. Given suitable initial values for the
components of X one can approach arbitrariiy close to |
" R* by applying the x2-fit to the measured data. We

assume the measured parameter vector, f”, to be

XM = (xslySOexsleysixziyZ’exz’eyzixl’yliexlie ) (]0)

yl
where

Xg0¥; are the x and y coordinates of the muon
in the 1th chamber (1=1,2,3 for the bottom,
middle, and top chambers respectively)

oxi'eyi are the projected angles of the muon track
in the xg -z, and y. -z, planes respectively
for the {th spark chamber,
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From (10) it is seen that a suitable initial value of X
is

(1) .
K (xs'y3'ex3’ey3’]/p3) (ll)
where
«3B,S

Here By is the magnetic field in gauss, S is the path length
fn cm and ¢B is the effective bending angle of the muon

as measured h\the field view. Thus, in summafy, we are
making an initial guess for the "state" of the muon as it
enters the spettrometer. ;(1), and subsequentiy hope to
find some x2-fitted initial muon state, A*, which best
characterizes the data, eq. (10). Since there are 5 fit
parameters in R and 12 me;sured parameters in ;M there

are 7 degrees of freedom in the x2-fit.-

We have assumed that the parameterscﬁ'?M are directly
measured; however this is not strictly true. The compo- -
nents of ?M are "real space" variables found by recon-
structing other measured variables into the spectrometer
frame by the methods of Sec. 3.4. However we expect the
errors in the components of X, to be gaussian distributed.
This is because coordinate variables used in thé recon-
structior. prccess are measured in planes nearly parallel
to the spectrometer X =2 and Y2 planes. However
the errors in §M include not only measurement error but

also errors in the reconstruction process itself,
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The fitting procedure, by which we determine A*,
has been computer programmed. An outline of this pro-

gram follows:

(1) Reconstruct the muon event into real
space ’

(2) Determine the charge on the muon

(3) Make an initial guess of the muon
momentum by

. +3Bg$S
p3 ¢p

(4) Form the initial state of the muon in the
top chamber .

(1) .
R (X52¥308,500,5:1/P5)

(5) Given the initial state of the muon, K(l).
integrate the muon motion through the
spectrometer and subsequently obtain a
calculated parameter vector

->
xc (x3.y3’exsleys)xz’Y2iex2ley2lxl’yl|exl’eyl)c

Here the subscript “"c" on the brackets indi-
cates that all the included variables were
calculated via a trajectory algorithm
(discussed in the next'sectiong.
(6) Numerically calculaic cerivatives of X with
respect to (x3.y?.ex?,0y3.l/p3) by means of
gor

the trajectory a thn,

(7) Estimate a better value of A via the x2-fit
method and return to s*ep (5) if another
fteration is desired (j.e. if X is not
sufficiently close to A*),

We see that the heart of the muon momentum deter-

mination program is the trajectory algorithm by which

the muon motion is numerically inteqrated through a
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computer model of the spectrometer. This trajectory
algorithm is discussed in the following section.

3.5.2.1 NUMERICAL INTEGRATION OF THE MUON TRAJECTORY
THROUGH THE SPECTROMETER

A typical trajectory of a muon passing through _
the spectrometer is shown in Fig. 3.14. Negleéting
multiple scattering it is possible to completely generate
such a trajectory if the incoming state (fT,BT)'of the
muon is known. Given (;T’BT) the computer program
TﬁAJEC is designed to calculate the muon trajectory through
the spectrometer.- Fig. 3.15 is a flowchart of this
program which saves the muon state vector (X,p) for 5

points inside the spectrometer:

1) ?T,ET top spark chamber’
2) ?sl,igltop scintillator

3) im,ﬁm middle spark chamber
4) isz.Igzbottom scintillator
5) ;B’BB bottom spark chamber

From Fig. 3.15 we see that TRAJEC requires (a) an extra-
polator (translates the muon along the momentuﬁ vector
to a desired zs-plane in the absence of magnetic iron),
and (b) an 1ntegratdr (which integrates the relativistic
equation of motion of the muon in iron). Before examining

(a) and (b) we need to be able to transform the muon
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FIG. 3.14 TYPICAL MUON TRAJECTORY
IN THE SPECTROMETER
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FIG. 3.15 FLOWCHART OF THE PROGRAM
'TRAJEC'
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FIG., 3.15 FLOWCHART OF THE PROGRAM
'TRAJEC' (CONT.)
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state X in the top chamber into a.position vector, ;T’
and momentum vector, BT‘ For the position vector, since

R - (x.y,ex.ey.llp). we find

Xp = (xuy.2g) . (1)
where 2. is the zs-coordinate of the top spark chamber.
The momentum vector is obtained by noticing-that 3 is
the intersection of the plane ABO and BCO in Fig. 3.16.a.

The cross pEoduct of the normals to these planes is in

the direction of P:

oot

= X ' (2)
[a x nyl
where ﬁx is normal to plane ABO and ﬁy is normal to

plane BCO. From Fig. 3.16.b ‘we see that

~

A, = [-sIN e_, 0, COS 6,] (3)
ny = [0, -SIN ey. cos ey] ‘ (4)
Thus eq. (2) becomes
- 0
E . [COSexSlN y? srnexcosey. SINexSlNey]

P SIN?e  + SIN2e C0S2e 1'/°
[SIN ey exco ey]

()

Eq. (5) is the unit momentum vector of-the muon; the
momentum vector itself can be found by using the fact
that AS = 1/pt The minus sign in (5) insures that p will
always point downward into the sbectrometer. ‘

In order to extrapolate the muon position to some

desired z -coordinate, z', we write the unit momentum
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FIG. 3.16.a PROJECTED ANGLES OF THE MUON
MOMENTUM VECTOR

FIG. 3.16.b DETERMINATION OF THE NORNAL

VECTORS n AND ﬁy
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vector as o
- E ‘
v = b - [ux.uy

Now define the desired zs-axis position delta to be

ouz] - . (6)

Az = 2' - 2 (7)
where z §s the present z-axis position, and z*' {is the
desired z-axfis position. Then the extrapolated position

vector X' is Jjust
=X + A2 %— (8)

We now turn our attention to the muon motion in
magnetic iron. Since the motion is relativistic we shall

need the following

FOUR-POSITION
oy = [ det] ' (9)

FOUR-VELOCITY

u, = yl¥acl sy= 10025 el (0)

FOUR-MOMENTUM

p, = [yngi, rmacy (1)

p, = [P, 1E/c] (12)
where ‘ '

proyml | (13)

E = ymoc’- /f;TTFTET s By ® mocz (14)

Here all the usual definitions hold
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position
time

<d e+ 3¢
"

velocity

= momentum

m O

= energy
The equation of motion of a charged particle in a B-field
fs given by

%_E _qvx B (15)
t c :
. B
From (13) we can show that
v.&éﬁ ©(16)
so that (15) becomes ' A

{}{-l ~E3xl ' (17)

B

Because of collisions inside the iron we expect the

. charged particle to undergo momentum loss, hence we write

Bl - [IE - g R

where p is the density of iron. Use (16) in (18) to get

: - -o{dR]%p (19)
Finally the equation of motion of the muon in iron is

+ gl’il | . (20)

coL

&-4
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gg-ﬂgsxs-p[gg]sga (21)
where

E = plc? + mic* (21)
Thus (21) accounts for magnetic bending aﬁd momentum
loss (due to Coulomb collisions) but does not account
for multiple scattering. Since multiple scattering is
a random process we cannot predict how it will affect a
single trajectory and we will therefore not attempt to
correct for it here.

The muon relativistic equation of motion (21) is

integrated numerically by _the Adams-Mou]ton]oscheme

which we write in terms of our own notation

. At . ' Y

Xie1 "%t zz(ssxn-sgxn_l + 37»)'(“_2 - 9xn_3) (22)
.' At . - - *

Xoe1 = Xn + 21‘9*n+1 + 19xn 5xn_1 + in-z) (23)

Here the subscript "n" denotes "nth past value”; thus -

n= 1 corresponds to the first past value, n = 2 the

second, etc. We execute eqs. (22) and (23) iteratively
with sohe arbitrary time step At between iterations.

Eq. (22) s called a "predictor” while (23) is a “"corrector®.
Thus (22) may be used to estimate X el and (23) applies

a smaller final correction, However the true value of

Xnel lies somewhere between (22) and (23). .By reducing
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the step size one finds that the results of (22) and
(23) become arbitrarily close; hence if At is sufficiently
small we do not need to use (23) at all. Thus by reduc-
ing At one can use the Adams-Moulton scheme to estimate
the error in the resultant integration. Further, if At
is small enough, one can reduce the computer time by a
factor of 2 by not executing (23) since (22) is
sufficiently accurate.

A single iteration in the integration of the muon

equation of motion (21) is executed thus by:

- Igdt + B, (24)
2

Ve (25)

A TR (26)

wﬁere the integrations are performed by (22) and (23).
The iteration of (24) - (26) is repeated until the bottom
of a magnet section is reached.

In order‘to integrate eq. (21) a knowledge of the
momentum loss for muons in iron is required. Fig. 3.16
shows the dependence of the energy loss rate on energy.
Values of onergy loss were taken from Barkus and
Bergegl for E < 5 GeV/c, while values above 5 GeV/c were
found by extrapolating the above data according to the

equat!on‘2
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FIG. 3.17 MUON ENERGY LOSS RATE IN IRON
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E ' -
-%% = a+bE + ¢ 2n [ 0 ] MeV/gm-cm C (27)
m, c?
" .
where
. ) p2c? ‘
Em E +m 2c?/2m (28)
n e

The momentum loss rate is then found by

d £ dt :
e ey & (29)
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CHAPTER 1V

MOLIERE'S THEORY OF MULTIPLE
SCATTERING ‘

4.1 INTRODUCTION . 4
In this chapter we develop the small angle theory
of mu1t1p1e scattering due to Mo]iérJ}- However we first
discuss some basic assumptions of multiple scattering
theory in general.
It is as§umed that a fast charged pariicle will
undergo many small angular deflections while traversing
a target material. The deflections are due to collisions
with atoms of the material and are described by the single
scattering probability density, w(e,8,x), such that
w(6,8,x) SINededgdx = the . (1)
probability of the incident particle
being deflected by a single collision.
into a spatial angle between g and
6 + do and an azimuthal angle between

g and g + dp (see Fig. 4.1) during
traversal of a target of thickness dx.

While penetrating the target material there occur n

collisions resulting in the total angular displacements,

.eve + 0 +...+an (2)

1 2 _
8 = 8 + 82_+ cee ¥ Bn
The probability density in the total deflection angles

given by (2) i1s called the multiple scattering density,
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F(e,B,x) SINodedgdx = the probability of the
particle being multiply scattered into
(e, 6 + do) and (8,8 + dB) after n colli- (3)
sions in a target of thickness, x. '
Given the single scattering function, ¥(e,8,x),
the goal of multiple scattering theory,in general, is to
calculate the multiple scattering density, F(6,8,x), from
the following assumptions:
(1) The single scattering function is indepen-

dent of the azimuth angle, B8, (in the
absence of spin) hence w{0,8,x) = W(@,x).

(2) Successive single scatterings in the
target material are statistically indepen-
dent.

(3) The small angle approximation can be used,
f.e. SIN 0= and COS 6=1.
Moliere makes further assumptions about the physics of
single scattering which we will discuss in a later
section,

Due to the assumptions made above we write:
2nW(o, x)6dodx = the probability of only one
scattering occurring in dx at x through an
angle between 6 and 6+dg.

If, further, we suppress the dependence on X (which fis
equivalent to ignoring ionization momentum loss in the

target) then we seek the density in
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6 =6, +8, + ... %8 (8)

where the e1 are described by the density u(ei) and
also the 64 are statistically independent. This allows
the use of the limiting form of the central limit theorem

(for the special case <°12> = <ej’> for 1,§ = 1,2, ... n)

which give“
. eg ’
Flo) = J—e 2 [0 - —-—n,(e) + 7%= H,(8)
vin 3!/n
, . (5)
+ e He(0) + ...] '
. n 6 ' ® o8
where the skewness coefficient, s, is given by
’ M
g m . (6)
GH
The coefficient of excess, y, is
M
ML (7
2
Here the kth moment of the single scattering ltaw is
M, = 2 Iw(o)ok" do (8)
(o]
Finally the llermite polynomials, Hk(o). are
02 0!
H (o) = (-1)* == 7F) (9)
~ do
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H (8) = 1

H,(0) = 8

Hy(6) = o*-1 '

Hy(0) = 6%-30 A | (10)
H,(0) = 6%-60% + 3 '

Hy,1(0) = eH (8) - kH _ (6)

From eq. (5) we see that for sufficiently large n:
63

T

1im F(e) = e | (l])

N
Since the number of collisions, n, is proportional to
the target thickness, t, then (11) is the limiting
multiple scattering density for an infinitely thiék
target. Thus we have shown that, from mathematicalA
considerations, the multiple scattering &ensity is
gaussfian with correction terms, eq. (5). Moliere uses
physical arguments to develop correction terms which are

considerably simpler than those in eq. (5).

4,2 THE PROJECTED ANGLE DENSITY '
We shall ultimately be interested in the projected
angle densities f(¢x.x) and f(¢y.x) where ¢ and ¢y are

the projected angles defined in Fig. 4.1 and are given by

TAN o, = TAN 6 COS 8 (1)
TAN ¢y = TAN 6 SIN 8 (2)

In the small angle approximation these become
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¢, = 0COS B (3)
by = 8 SIN B (4)

Thus a deflection (6,8) can be described as a vector

6= [o,00] 5 0= o)+ ¢;]"2 (5)

The functions F(6,x) and f(¢x,X) are normalized

according to

2x r 0doF(6,x) = 1 _ (6)
andv °

-rfwx.x)dqpx =1 (7)

One may calculate the projected angle density by

o) = [ doflle 2+ 002 (8)

Moliére introduces the zeroth order infinite

Hankel transform of the multiple scattering density

Flesn) = 2n [ode,(co)F(e,) (9)

_and its inverse °
Flovn) = 2= [ cerateadftenn) (10)

o]

A useful property of this transform can be developed
if we consider two successive scatterings e1 and 02 such
that the total scattering angle is

o= 0, + 0,



S
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FIG. 4.1

GEOMETRY OF THE SPATIAL ANGLE -
6, AND THE PROJECTED ANGLES éy
AND ¢y
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we then find

F(Eux) = F (&) Flex) -

In fact forn co]lisiqns

Fleax) = Fl(Ex) Folex) ... F _(6x) (12)

Moli2re then proceeds to use (9) - (12) to discover the
multiple scattering density F(6,x). Cooper and Rainwate#s
have shown that the mhltip]e scattering density in pro-
Jécted angle can be derived using Fourier transforms. ﬁe
shall however, follow the method of MoliEfe,and thus
neglect the projected angle density until a later section,

There we will derive f(6_,x) directly from F(0,x).

4.3 THE WENTZEL SUMMATION METHOD -

Here we develop a general expression for the
multiple scattering density after the method of Hentzel‘.6
To this end we assume that a beam of like particles is
incident on a homogeneous target of thickness, X. We

assume that the incident beam is a delta function

| F(8,0) = 5_(0) (1)
such that '
2nde edess(e) = ] (2)

)

We now seek to find the density for the beam after n

scatterings. We write

2ndx J odeW(6) = wgdx
(0]
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which is the probability that one scattering will occur

in dx. Here we have assumed that

W(e,x) = w(e), (3)
f.e. that'there is no momentum loss in the target. The
probability that no scatterings will occur in i thickness,
Ax, {s

P,(ax) = e.mo.Ax | (4)

Now the probability that exactly n scatterings
occur of (91,81) in °1d°1d81' (82,82) in ezdezdsz. ces
(en’Bn) in endenden at depths in (xl.x1+dxl). (xz,x2+dx2).

...(xn.xn+dxn) is just the product
[”(°?°1d91d51dx1][”(ez)ezdezdszdxz]'"
x[w(en)endendsndxn] (5)
From (4) we see that the probability that po scatterings
occur in x s Just

~wo(x-8x . -8x, = ... = 8x) -wgX
LI (5

Here x-Axl-sz

thé Ax's in the 1imit of the integral over x. Finally the

- oo bx s just the total space between

probability of exactly n scatterings is given by the
product of (5) and (6)
“wyX .
e [w(6,)e,de,ds, dx,1[¥(e,)6,d6,dB,dx,]

. (7)
...x[h(on)ondo“dandxn]
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Integrating over the x's and B's we get the probability

of exactly n scatterings in x:

n -w,X ) '
gzr)e w(ej)ede Jlw(e)ede,)...[w(e )e do ]

or

n _-%X g
L&%}l ¢ ifl“(ei)eiﬁei (8)

where n! removes all the extra permutations obtained in

the integrations over the x's. If we introduce the Hankel

transform

w(€) = 2n [ xdxdgex)dl x) (9)
° i
then the transform of the density. in 8 after n scatterings

is

. . “w X
Foex) = e © [u(e)x]"
: n!

(10)

The final distribution is just the sum over all n so that

w(€ )x-wyx

i (g, x) = e (1)

Finally the multiple scattering density we seek is found
by (4.2.10) |

e (£)x-wyx
Flo,x) = 5= I gdgd (code O

)
If we had assumed the single scattering law to be a

(12)

function of target thickness then a more general result is
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had Q(.Yo )-9
F(8,x) = f%-] yaydglyole O (13)
where - e
X o X
alyox) = [ ulyaxdaxt = 2n [xax [Taxag(yamtxaxt) (1)
o * 0 o .
Also
@ X ’ ’
a,(x) = 2(0,x) = 2 [ xdx [ dx "W (x,x") (15)
o o

When W(x,x) is independent of target thickness we find
from (13) and (14) that, as we saw before:

Q(y,x) = é(y)x (16)
no(x) = wyX _ (17)

We how investigate the single scattering law, y{e,x),

in preparation for the evaluation of (13).

4.4 THE SINGLE SCATTERING LAW

The scattering of fast charged barticles by atoms

is given, for the non-relativistic case, by the Rutherford

fqrﬁula

0,,(0) = [zzzez]’ L (1)
R 2 .
R [2 SIN %]5

Relativistic scattering 1s described by a simple modifica-
tion to (1), i.e. if we use the relativistic mass, vm,

then the Rutherford formula describes the sc&ttering of
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relativistic particles. If we use the small angle

approximation then the relativistic single scattering law
becomes
N(8,x) = N(x)op (8) = aN(x)a® _ (2)
: k2o
where N(x) is the number of scattering centers/cm®. Here

"a" is the Born parameter given by

22 22e?

SR £/ Sl T - (3)
where B = v/c and |
\ h '
k"% "% (4)

is the particle wave number.
The basic single scattering law, eq. (2), is in-
acchrate for several physical reasons:

(1) The screening of the nuclear Coulomb field
by the atomic electrons.

(2) The finite size of the nuclear charge dis-
tribution.

(3) The contribution due to particle spin.
(4) Scattering by the atomic electrons.
~The single scattering law eq.(2) determines the
scattering of a fast'charged particle by a heavy point
charge., Moliere modifies (2) to take electron screening .
into account; he neglects all of the other contributiong.
A simple way to take screening into account is by use

of the Yukawa potential
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r
Y(r) = z2¢ &-Ta ' (5)
r

Here r, is the so-called screening radius or the Thomas-

Fermi radius, given by
ro = 8853273 = (468 x 107827 V3em  (6)

where a, is the Bohr radius
2
2, » *— = 5.292 x 10°% ca (7)

2
mee

Using the potential (5) and the first Born approximation
solution to the relativistic Schroedinger equation, one
gets )
2
N(8,x) = 4N(x)a (8)
k’[]/k’ro2 + 2 SIN?(8/2)]2

In the small ang]g approximation one finds

W(o,x) = —N(x)a? (9)
k?(e? + 0,?) :

where the Born screening angle, 8o is

] o X |
g = 2 ——— u (]0)
o FF; Pro Ty
From (6) and (7) we find for (10)
1.13 ,1/3 [me¢’
8y = —— 1 ——| radians (M)
137 pc

When the momentum of the particle greatly exceeds the

rest energy of the electron we see that 6, << 1 {which
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is clearly the case for the present experiment, where
pc>2.5 GeV).
Moliere writes the single scattering law (9) in

the following form

W(e,x) = 4N(x)a? a(e) ' (12)
) k2e"
where
qle) = —& (13)
(92 + 602)2

We may view (13) as being the ratio of "actual® to
Rutherford scattering; q(6) is sometimes referred to as a
screening factor. It is seen that

1im q(6) = 0

6-+0 . ‘
which corresponds to small scattering aﬁg\es that occur
for passage of the fast particle far from the nucleus, i.e.
outside the atomic electrons where screening is most

effective., Likewise

1im q(0) = 1

0+
corresponding to large scattering angles occurring for
passage near the nucleus, _

We defer, until the next section, a dis;ussion of

Moliere's derivation of q(8). .

4,5 DERIVATION OF THE MULTIPLE SCATTERING DENSITY

Here we develop the multiple scattering density,
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F(6,x) by means of eqs. 4.3.13-15. Neglecting momentum
loss and using the fact that

W(e,x)dx = N(x)o(8,x)dx . ()

we find the multiple scattering function to be

F(e,x) = Iwndnao(ne)e‘"x£°°(x)xdx[1-Jo(nx)] (2)
o

where o(x) is the differential séattering cross section
of a screened Coulomb potential. After Molidre we write
for (4.4.12) .

Nxo(x)xdx = Zxc’xdxq(x)lx' (3)

where q(x) is the ratio of actual to Rutherford scattering
and

xc’- 4ane"(zZ)z/(pv)’ (4)

The characteristic angle, xé. has a physical meaning:
the probability of single scattering through an angle:
greater than x. is exactly one. Conversely no scatter-
ing angle less than y. is possible. Using (3) we now

evaluate the exponent of (2):

ngx-aln)x = 2x2 [x dax01-0,(xmlatx) (5)

o
To evaluate this integral we use the method of BethJ]

which is simpler and more physically transparent than
that of Molikre. Bethe selects an angle, k, with the
property
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1.
Xo << K << q 7 X¢ . (f) :

Then the integral (5) is split at the angle k so that for
the part of the integral from k to infinity the function
q {x) can be replaced by 1. Further, in the integral
from 0 to k;the argument of the Bessel function is

sufficiently small so that we may write

1 - 9g(xn) = Lok o
4

Hence for (5) we get

k
X = Aln)x = ZXC’[I xSyl - Jo(xn)Ja(x) +
0

+ [ﬂ x'3dx[1-J°(xn)]q(x)]
A% -a()x = 2 2LL (kn) + 1(K]) (8)
where

' ®d 2
L = af Loag0) - 2oy .

7 /A
3.(2) (9)
142) [ it Jngt)
4
i
1,(7) =1 - tnZ + &n2 - ¢ + 0(2?) o (10)

where ¢ = ,5772.1s Euler's constant. Furthermore for
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I. we have
1 k - :

1, - 4 alx)dx/x ()
If we use (10) and (11) in (8):

2 k : : .
ax-a( nx = Leer) I q(x)dx/x + 1 - 2nk + g£n2-c (12)

2 o
Following Moli2re it is instructive to investigate the
quantity .
k ‘
I = [ alx)dx 4 1 _gnk (13)
X _
o

We shall evaluate (13) for the Yukawa potential, for which

| . '
q(x) = z;;-f-;g;; (14)

where Xo = 0o the Born screening angle. Using (14) in

(13) we find, upon evaluating the integral:

9 1 X 1.1 -
I = ~gan(k2+y2)-352n 2 D . 4+ - fnk (]5)
Using the condition (6) we get
1 = -lnxo (16)

This leads to Moliére's definition of a screening angle,
Xa+ which is used when q(x) is not given by the Yukawa

potential: k

-t x, = lim[ I alx)ax + 1 -2hk] (17)
) 0

koo X
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The limit as k+= is consistent with (6). If we use (17)
in (12) we get '

a.x - a(n)x = X2 [-2n(x,y) + 1etn2-c] (18)
o X | 2 2 ,

Now let xc“ : y to get

fgx -aln)x = ’T[b zn[ﬁ-]] (19)

zn[z‘-c]’ (20)
X'

a

where b = &n [—ﬁ] + 1-2¢
The new screening parameter, X;: is given by

-tny,' = - tnx, + % - ¢ (21)
After Molidre,we introduce a new parameter B by the
franscendental equation
B - tnB =D
We obtain, finally, for the multiple scattermq function eq (4.3.12):

y
f(e)ede-i‘:—"—jmalx dy 3, ] xl_ %znx‘-

(22)
Xe ¥ o X
If we let
. 0
§ = — (23)
X8
y. 2
y - + %5 N

f(s)sds = sdsJ "% dy Jo(sy)e %F 48 %F (24)

(]
The upper limit, y is required to prevent (22) or

max’
(23) from being divergent. In fact Ymax €N be estimated

from (6). Since the evaluation of (5) depends on the
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~

approximation (6), our derivation will fail if n ~ 1/x,

or y is of order x./x, - e®/2. since the exponent in (23)

has a minimum at y = y . = 2e1/2(b']) we shall use this

as the upper limit of (23).
Due to the fact that B is reasonably large

eq. (23) may be expanded in a series:

f(s)sds = sds[ze'sz+ £(1) () +‘f(2)(5) + ,..]. (25)
| B B2
where
2
e B e
£ln)(s) - HJ ydy 3 (sy)e [-4- tn 2';-] (26)

Where now we let the upper limit - « since the integrand
of (26) is convergent. Eqs. (25) andl(26) are the basic
Moliére formulae and show that the multiple scattering
density is a Gaussian density with correction terms.

He now emphasize the single most 1mp§rtant result
of Moliere's theory: it does not depend upon the shape
of the single scattering cross section, only on the
screening parameter, x,, calculated by eq. (17). In
ordér to see the explicit dependence on X, We use a
result from Scott‘%ho wrote an approximation for B:.

B = 11,32 + 2.48 log —
BY Xa

(27)
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where A is the target atomic weight. Because xa’ is in the
argument of a logarithm small variations in x, will not
affect the value of B to an appreciable extent. Neverthe-
1es§ Moli2re calculates his own value of q(x) for single

scattering by a Thomas-Fermi potential wﬁich he numerically
fits to the form '

vr) = 282 (e/ry)  (28)
where
wM(rlro) = 0.01 e -67/To 4 55e71:2r/T0 4 3507-37/To (29)
Using (28) a&d (29) Molidre accomplished a numerical

solution to the Schroedinger equation by the.wKB method,
for which he obtained '

-4 .
7.1 x 10 "(x/x,)
q(x) =1 - 8.85{%?]’ [l + a? gn : X% ] (30)

(a% + a2/3 + .13)
Assuming a linear relation between X§ and a? Molidre

obtained, after numerical integration of (17),

X2 = x2 (1.13 + 3.76a2) (31)

When "a" is small (as it is for 8 ~ 1 and with Z for

moderately dense elements) then Xa differs from Xo by

only a few percent; for fron x, = 1.12 x,.
Experimenta]iy,we shall be interested in the pro-

jected angle density. This may be derived directly from
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eq. (22) by the use of

p2m
Jolxy) = gz [ ¥XC0Segg (32)
e ,
If we let
gy |
g(y?) = e Y £ Ypax (33)

g(y?) =0 Y > Ypax (34)

then eq. (22) becomes

’ 1yeCOS P
o T -
f(o)oede = 9%3 I ydy[g; I e Xc'B mﬂ g(y? (35)

XcB o o |
Since the variable of integration, p, is arbitrary we let

yoc0Sp = §-8 = y.0 + y,0 (36)

where the vectors ?. 8 are given by

>
g - Le 00,1 | | (38)
which are consistent with the small angle approximation.
Also use
2n6do = d¢xd¢y : - (39)
ydydp = dy dy2 (40)
Get for 35 o
f(4,00,)d0, d¢ - dedey f I dy dy.e XC’E Xe 3 g(y’+y’) (41)
Y (2n)*xiB

Subsequent integration over ¢y and use of the delta

function,
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(42)

gives
2

y? 2 2

Y -t &n

£(¢)de = —9& J max g4y cos[—ﬂ—] e 4 T (43)
mx.’F xc/F .

We prefer a multiple scattering density in the parameter

as

¢ SR SR 9% |
X /B Gy ¢ /5 (44)

where %4 will be called the “widtH of the multiple

scattering density. Hence (43) becomes

' 2 2 A 2'
f(a)da = "7;— [y'““dy COS[%]e 14_ ' *g . x‘{_ ~ (a5)

To

A series expansion about 1/B gives

. ? _
fla) « Lo 7 4 £, f(z)gal ..

.. . (46)
V' 5 " _ (46)

where - :

gln) o 1 r dy cos[—X] 5‘ ﬁ-zn&-] (47)
VZ mnl o

Thus the dimensionless projected angle density in a is a

gaussian with correction terms.

| In order to take ionization energy loss into

account integrations over target thickness, x, must be

carried out in Xe and Xq° We now sum up the equations



of the Moliere theory (which include energy loss):

a --gi (DIMENSIONLESS SCATTERING PARAMETER)
0y = XTB/VZ (WIDTH OF SCATTERING DENSITY)

B=1.153 + 1,122 tn a,

Q, = xc’/x 2 (MEAN NUMBER OF COLLISIONS)
X;o = x; (1.13 + 3,768 (MOLIERE SCREENING ANGLE)

Xo = B/pry = Xo/ry  (BOHR SCREENING ANGLE)

ro = .468 x 1078 77 Y3 (FERMI-THOMAS RADIUS)

27 !
ad = m—a (BORN PARN"ETER)
2 _ 4N zZe’]’ . (.39622)2 1
Xeo 4“K[ pcB (pB)?
pl dn'
2 = 2 ' __L__.
| X
L (I ey
po
tn = — *[plx’ (p') tnxZ, (p') ——
foxiop e 8 (-dp*/dx)

o

4.5.10

(48)
(49)
(49')

(50)

(51)

(s2)
(53)

(54)
(s5)

(6)

(57)

Equations (48) to (57) have been used to generate

multiple scattering curves for muons in iron, (Fig. 4.2).

The parameter B = 18.45 for 95 cm (725 gm/cm?) of iron;

since B varies by less than .5%‘for momenta > 2,5 GeV/c

we take B to be a constant and assume the curves of

Fig. 4.2 are good for all momenta above 2.5 GeV/c,
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-

FIG. 4.2 MOLIERE MULTIPLE SCATTERING
DENSITY
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4.6 WIDTH OF .THE MULTIPLE SCATTERING PROBABILITY DENSITY

We have previously defined the width of the multi-
ple scattering density to be

oy = /gxc ' (1)
which we now write
oy ® ;?;%;;; (2)
so that
flp.x) = jg 3%: (3)

Motivation for introducing the function f{p,x) comes from
the well known equation for % when momentum loss is

negligible

- 15 [X
% " 8 V/x, (4)

where x g is the radiation length of the target material and

x s the target thickness in gm/cm?2. Comparing (2) with

(4) we find . :
flpx) = & f%; (5)

Thus when momentum loss is not important f(p,x) is inde-
pendent uf the particle momentum.

For linear momentum loss Eyges‘%\as shown that

15 X
c, *© = (6)
0 e e




N
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where Po and p, are the entry and exit momenta of the

particle. For this case we have

f(pgyox) = 115/1—:-—;/:3 (7)

For high momenta p = Py and (7) becomes.independent of
momentum.
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CHAPTER ¥

MODIFICATION TO THE THEORY OF
MULTIPLE SCATTERING

5.1 STATEMENT OF THE PROBLEM

Thé ideal multiple scattering experiment, nominally
conducted with a particle accelerator, consists of a
collimated beam of high energy particles of well defined
momentum, Po? traversing a target of thickness, x. "The
prbjected multiple scattgring angle, ¢s’ is experimen-

tally measured for each incident particle (see Fig. 5.1).

The relative multiple scattering parameter Ggs for each
event can then be formed by
¢ S
= ——s- - £ -3

¢

where the root-mean-square multiple scattering angle, °¢'
varies approximately as the square root of x and inversely
as p,. The parametér a, in eq. (1) has a Molidre probability .

density that is a gaussian with correction terms:

a 2
TP TR H S LLLTEF SR LLITCYS B

. (2
von B B? @

The exact expressions for Ogs B and f(")(ao) have been
derived in Chapter 1V. Typically in an experiment one
measures the scattering angle, $g and then calculates the

corresponding value of a, by eq. (1), A histogram of the
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FIG. 5.1 IDEAL MULTIPLE SCATTERING
EXPERIMENT USING A PARTICLE
ACCELERATOR
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values of a, can then be directly compared to the theory,
eq. (2).

We now turn our attention to the present cosmic ray
experiment which is considerably different from particle
accelerator experiments. Our intention is to delineate
‘how this experiment differs from a conventional multiple
scattering experiment, what the difficulties encountered
are, and what a course of action for removing these.diffi-
culties might be. Fig. 5.2 shows how multiple scattering
can be investigated with the magnetic spectrometer. Recall
that two cameras photograph orthogonal projections of
the mucn sparks. One film plane is parallel, the other is
perpendicuTqr to the magnetic field. Hence we observe the
muon trajectory as projected onto a plane perpendicular to
the magnetic field (thch we have labeled the “field view")
and also as projected onto a plane parallel to the magnetic
field (the "no-field view"). It is clear that one observes
magnetic bending of the muon in the field view. However,
(fn the absence of multiple scattﬁring) the projection of
the particle trajectory onto the no-field viewlis nearly a
straight line, i.e. the projection of a trajectory which
is approximately a helix of large radius. We reaiize of
course that the effects of multiple scattering and ioniza-
tion energy loss are observed in both views.

In Tater sections we will show the following results:
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FIG. 5.2 MEASUREMENT OF MULTIPLE SCATTERING
VARIABLES
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(1) The muon momentum can be determined from the
field view projection. However, because of
multiple scattering, the momentum determined by

~the spectrometer is a random variable, p,
statistically distributed about the real momen-
tum, p,. It will be shown that the experi-
mentally measured momentum has an uncertainty of
about 20% due to multiple scattering and that a
direct determination of the real momentum, Po?
cannot be made,

(2) The projected multiple scattering angle, $g»
can be measured from the no-field view projec-
tion of the muon trajectory.

(3) Since the momentum determined by the spectro-
meter, p, is not the real momentum, Pos We
conclude that the relative scattering angle,

a, * uo(p). calculated by eq. (1) does not
have the probability density of eq. (2). We
shall seek to derive the correct density.

The purpose of this chapter is to ultimately modify
the Molidre theory to take into account the fact that (due
to multiple scattering) the experimentally determined
momentum, p, is statistically distributed about the (un-
known) real momentum, Pos with an uncertainty of about 20%.
Hovwever, we shall firsf modify the simpler Gaussian theory
because (1) the results are necessary in the modification
of Molidra2's theory and (2) a great deal of physical
insight is obtained in the mathematically simpier deriva-

tion,



5.2.1

5.2 MODIFICATION OF THE SIMPLE GAUSSIAN THEORY
5.2.1 INTRODUCTION
In this section we'shall derive the probability

density for the relative scattering parameter, a:

’s 1 .
@ 6; ’ °¢ ) i(p,x)p (M

where p is the experimentally determined momentum (not the
real momentum, p,) and f(p,x) is a slowly varying function

of p given by eq. (4.6.3). We may write eq. (1) as

a = f(P.X)P¢s ) (2)

For high momentum we find that f(p,x) = f(x) = CONST and «
is proportional to the product of momentum and scattering
angle, ) ‘

We already know that ¢ has a probability density
given by eq. (5.1.2). The following sections will be a
devoted to: ({) discovering a probability density function
" for the experimentally determined momentum, p, and finally
(2) to deriving the probability density for the random
variable a = f(p)p¢s.

5.2.2 UNCERTAINTY IN MOMENTUM

Here we derive the uncertainty in tﬁe experimentally
determined momentum, 'If_we assume that there is no momentum
loss or mdltiple scattering then the real momentum.po. is

given by



50202“

po - .3305 s .38(% ) (])

where
Po ™ momentum in MeV/c.
¢B‘= magnetic bending angle in radians,
Bo = magnetic field in kilogauss.
S = path length in cm.
x = path length in gm/cm?
p = target density in gm/cm?
From eq. (1) we find

dpo
Po

dép
KX

(2)

If it is assumed that the uncertainty in bending angle,
A¢B, is due only to multiple scattering then we may define

the relative momentum uncertainty, Apolpo. to be

Bby
¢s

o]

sl

(3)

. 15 ,S
When momentum loss is not important % N §; » hence

using eq. (1) we get

o =[50 . (4)
8/35| B,/S .

where B is the particle velocity in units of the speed of
light and So is the radiation length of the target material

in ¢cm. For high momenta 8~1 énd the momentum uncertainty,



5.2.3.1

o; is independent of particle momeﬁtum. Additionally this
uncertainty can be seen to decrease with increasing magne-
tic field, Bo, and the square root of the path length..S.
Here we have seen that o is independent of momentum when
fonization energy loss is not important. However, we

shall later show that ¢ is nearly independent of momen;um
even when momentum loss is substantial. For the magnetic
spectrometer with an iron target of thickness 725 gm/cm?
and magnetic field 17.5 kilogauss we find o = .2, hence ;he
experimentally determined momentum is uncertain by about

20% due to multiple scattering in the {iron.

5.2.3 THE MOMENTUM AND TOTAL ANGLE PROBABILITY DENSITIES

Given a muon beam incident on an iron target with
zero magnetic field the multiple scattering probability
density in total scattering angle, 6, is approximately'

A
1 O¢ 2 .
f(e)ode = — e 6do ; <08%> = 2¢ (1)
_ 001 ¢
The projection of (1) onto the X-Z and Y-Z planes respec-
tively {sce FIG. 5.3.3) gives

] 1 42
flog) = —==— e 2 %7 ; <o2> = o,? (2)
/2n © .
¢ ¢ 2
e |
 § o . 2 - -

en T4
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FIG. 5.3.a PROJECTED MULTIPLE SCATTERING ANGLES FOR
NO MAGNETIC FIELD

FIG. 5.3.b PROJECTED ANGLES WHEN A MAGNETIC FIELD IS PRESENT
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where

<0?> = 2<¢?> (4)

The random variables ¢, and ¢y are the projected multiple
scattering angles and are statistically uncorrelated. In
the gaussian approximation used here oy and ¢y are also
statistically independent. If we now assume that a magnetic
fie]d is present in the i{iron then the ratio, o,0f rms

scattering, o,, to bending, $gs yields

¢

Gy = Otg (5)

Thus for (2) and (3) we get
f(o,) = v’ﬁ"cq\ o2 \¢g (6)
o [5‘)' -
flay) = ——e **l% (7)
™ O¢B

Here we have traded the particle momentum, po.for the bending
angle, @B.Vand written md]tip]e scattering in terms of the
“noise", o. We now have three different ways to write the

relative scattering parameter

¢ ¢
G = 35 = f(g)Pods = & 5 (8)
¢ B
from which either (6) or (7) becomes
1 _“oz _
flag) = —e 2 (9)

w
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5.2.3.1 APPROXIMATE FORMS FOR THE MOMENTUM AND TOTAL ANGLE
DENSITIES :

In this section we examine how multiple scattering
affects a muon trajectory in an iron magnet. 1In particular
we will derive the momentum probability density which is
caused by the randpmizing process of multiple scattering.
~In Fig. 5.4 we see how a fast charged particle enters a solid
iron magnet and is subjected to multiple scattering,
magnetic bending, and ionization energy loss. If no energy
loss or multiple scattering were to take place then the
muon would be bent through only }he projected magnetic bend-
ing angle ¢B. Because of multiple scattering however the
particle undergoes a total angular displacement, ¢B + o*.

If we ignore energy loss for the present results we know

that the real particle momentum is found by

Py -32 3 (REAL MOMENTUM) (1)

B
The experimentally measured momentum due to the total deflec-

tion angle, is

p = T—Léﬁﬂi—T (MEASURED MOMENTUM) (2)
¢ + ¢
B X

Eq. (2) s graphed in Fig. 5.5, Only when the scattering
angle, °x » s zero {s the momentum determination correct.
If ¢x = ¢B then p = %? i however, when ¢x = -¢B. then p+w,

Thus the determined momentum is very asymmetric in ¢ We
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FIG. 5.4,

BENDING AND SCATTERING ANGLES
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“already know that the rms scattering angle is o times the
magnetic bending angle. Hence most values of ¢, fall in
or near the range

-30¢g < ¢y < 306, 3 0=.2 (3)
We have stated that the probability density for the scatter-
ing angle, ¢,, is nearly gaussian and given by (5.2.3.6). We now
seek the corresponding probability density for the
measured momentum; p. Clearly such a density exists, for
if we randbm]y ch'oose values of ¢, from eq. (5.2.3.6) and calcu-
late corresponding values of p (for some particular value
of ¢5) using (2), then for a sufficiently large number of
values of p we could simulate the probability density of p
(this proceduré is a straightforward application of the
Monte Carlo technique). To develop an analytical expression

for the density of p, we use a result from probability'

theory20
d¢x 1
f(p) = f(d,) I—aa i ox = 9~ (p) ~(4)
where it is understood that
P = gléy) (5)

is a monotonically increasing or decreasing function in
the region of interest. From Fig. 5.5 this must be the

region centered around ¢4 = 0, namely

_ -0p < 4, < 0 | (6)
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FIG. 5.5 EXPERIMENTALLY DETERMINED MOMENTUM
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But we know that the width of the multiple scattering
density is o¢,. Hence the above range, (6 ), corfesponds»
to the 5-sigma point for a gaussian density. Notice that
we have neglected the regions less than ~¢5 and greater
than $gs we will investigate these regions in Sec.5.2.3.2.
Even though we have confined ourselves to region (6) in
order to use (4), we have not significantly affected the
normalization of the resultant probability density, f(p).
At this point it can be noted that the probability
densities used here have the usual definitions, i.e.
f(p)dp = probability that a particle of initial
momentum p, will be measured to have a momen-

tum between p and p+dp after traversing an
iron magnet of "noise® a.

f(¢x)d¢x = probability that a particle incident
at angle ¢, = 0 will be multiply scattered
into an angle between ¢y and ¢y ¢ d¢x after
traversing an iron target of “"noise” o.

Also we require f(¢x) > 0 and f(p) > 0 for all values of

éy and p. Likewise we require the normalizations

g

IECAETER | (7)
-¢B

rf(p) dp = 1 (8)
Po ' A

K
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where the limits on (7 ) and ( 8) can be taken directly

from Fig. 5.5. Notice once again that the normalizations

of (7 ) and (8) are little affected by the restrictions on

the range of ¢,. |
Eq. (2 ) can now be written without the absolute

value sign since ¢g + ¢, 2 0 in the regidn (6):

ko

P* 535 (9)
¢g * O
and
ko
Po ® N . (10) .
where we have let _
ko = +3BoS (M)

If we use (5.2.3.6), (9) and (10) in (4) we get the momentum
probability density

Po ¢
/Zn o P?
Fig. 5.6 shows the shape of the momentum density, which {s

2. 2 .
f'(plpo) - %[E"g] [% i %‘5 (12)

an asymmetric function about the real momentum, Poe The
density f(p) has a long tail in the region of high momentum
indicating a high probability of measuring momenta much -
greater than the real momentum, po.A

I1f the relative momentum {s defined byi

(-9
m

#% . (13)
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FIG. 5.6  MOMENTUM DISTRIBUTION DUE TO MULTIPLE
SCATTERING, o = ,2
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then the relative momentum density is found to be

1 (a1
a = —_— 4 €< 3 € ®»
/T7 o a? Z

The maximum value of f(a) is easily evaluated and gives

a =1 [/TTE5T - 1] (15)

max l 403

Since 802 is reasonably small we may write approximately

qnax *1 - 20f + 402 + ...~ .96 ' (16)

The ns-h moment of the relative momentum, a,.can be found

by:
. 2
b ) ® - 1 [.ia_.l]
<a> = a"2 ¢ 207 La) g4, : (17)
- Yen o ‘ : -
2
If we let
- 2-1
y* T
then (17) becomes
_ [y
n ] w e-f[o]
<a'> = I o dy (18)
2na 1 (1-y)

where we have let 1/o » « in the limits of the integral,

Without evaluating (18) directly it is intuitive that

<p> 3 p, | - Q19)
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wp>2agp 4 ( 20)

If we define the total-angle to be

o = 1o+ 0,1 (21)

then the experimentally determined momentum, p, is found

from . by where we include only the region of eq. (6):

p = 22003 (22)
°T .
Finally the total-angle probability density is easily found
to be:
- 1[
flog) * ——— e ST (23)

/1 oép '
‘Thus while the total-angle, ¢y, has a gaussian density, the
corresponding momentum, p, fis distributéd by the more
complicated equation (12).

We have developed expressions for momentum and totél-
angle probability densities f(p) and f(¢1) by assuming that
contributions from the region -« < ¢x < -¢g are negligible.

.In the next section we wjll include this region and calculate

“exact expressions for (12) and (23).
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5.2.3.2 EXACT FORMS FOR THE MOMENTUM AND TOTAL-ANGLE
DENSITIES

We may write the total-angle, eq. (5.2;3.1.21) as

¢T = gt by 3 by <Oy <= REGION 1

o (1)
¢p = -(¢p *+ ¢x) 5 -= < ¢x <-¢p REGION 2

where we have separated the ¢, domain into two regions )

(see FIG. 5.7). We see that the total-angle is monotonically

increasing in region 1 and monotonically decreasing in

region 2. This allows one to write for the total-angle

probability densitf‘

dé
f(¢-r) = f](¢x) a—&

(2)
1

Using the above we may easily find the exact total-angle

density, i.e.-we include effects in the region -w<¢, <-¢g-
The second term in ( 2) is given by (5.2.3.1.23) while the first is .
obtained by changing the sian of ¢, in (5.2.3.1.23),hence the

exact total-angle density 1s

LR B2 L3I 1 [?J*iﬁ] 2
) 20? [ ] __.L_.q 27
f(¢T|0p¢B)’ e

/21 ody YTu o¢B

(3)
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FIG: 5.7 THE MULTIPLE SCATTERING DENSITY AND '
TOTAL ANGLE AS A FUNCTION OF PROJECTED
SCATTERING ANGLE
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where 0 < ¢, <« Eq. (3) is graphed in FIG, 5.8. The
fir;t term is a gaussian of width'o¢B centered at oB,while
the second term also has width c¢B,but is centered at ~dpe
We see that f(¢T) is just the sum of the two curves in the
region 0 < °T < o3 thus no negative va]ues of ¢T are |
allowed since,experimentally, one assumes the total-angle
to be positive to insure that the corresponding momentum
js positive. If ¢ is sufficiently small we may neglect

the second term of (3 ) to obtain

-‘_2["‘1-%]
flopleadg) = —t— e 290 48 )  occl 1 0<c g < (8)

vin ody

which is the approximate result obtained before, (5.2.3.1.23).
Usihg the fact that p = ko/¢y we find directly from (3)

' 2 2
f(plo.p,) = ]W%%e-%[géq] {% --P%] &_op [ ] [] (s)

for O<p<e=,

Agaiﬁ,when c<<1 we get

[po] [l "~ Po 2; 0<<] 3 0<p<e - (6)

f(plo, =
P|° Po) /__o p2

which we obtained earlier in (5.2.3.1.12)
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FIG. 5.8 TOTAL-ANGLE DENSITY: THE SUM OF
THWO GAUSSIAN DENSITIES
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Before continuing to the next section we recall

the relationships between the following variables: ’

Po ™ real momentum of the incident particle.
¢g = bending angle of the incident
particle neglecting multiple scatter-
ing and hence corresponds to Po*
p = experimentally determined momentum.
¢ = experimentally measured deflection
angle (due to bending plus scattering)
of the incident particle and corresponds
to momentum p.
Therefore
ko Ko
p:——"p-—
O ¢ o1
While we can measure ¢ and hence calculate p, we have as
yet no knowledge about ¢ and Po Equations (3) and (5)
can only be used if particular values of $p.and P, are
assumed. Thus, ultimately,we must fold the probability _
density in ¢35 (or p,) with the density in ¢; (or p). This
will require knowledge of the momentum spectrum of the
incoming cosmic ray muon flux. However, we delay these

considerations until a later section,

'5.2.4 THE EFFECTS OF MOMENTUM LOSS

Previously we have ignored fonization energy loss.
Here we examine how the relative momentum uncertainty, o,
varies as the incident muon loses energy in the ﬁagnet

iron. To this end we first determine how the magnetic
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~

deflection angle is affected by momentum loss,

For a differential thickness of target matertal,
ds, the particle undergoes a net magnetic deflection,
dég:

If energy loss occurs then we expect p = p(s). Integra-

ting eq. (1) leads to

. 0
where A .
k(s.py) = koI{s.py) | (3)
ko = «3Bgs | ' | (4)
Po (S ds®
I(S.P ) = E— (5)
° 3 l p(sipg)
Here

¢gp = net magnetic deflection angle.
s = target thickness in cm.

Po = entry momentum of the particle, leV/c.

From eq. (5) we see that if no momentum loss occurs
I(s,py) = 1 and
. ko
LU (6)
B o . }
which is the expression that we have used before for no
momentum loss.

For constant momentum 10$s we have
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p(s) = p, - S2s ; 92 = consTanT (7)

ds ds

Thus for eq. (5) we get

Po & ds'
Hsupg) = 22 | s (8)
o Po-cs’
where we have let ¢ = dp/ds.
Integration of (8) leads to
k ' -
I(s,p,) = ~gaBol = Lgn(roe)”! (9)
where
= APo
€ 5o

is the fractional momentum loss of the particle and 8py is

the total momentum loss:

b = g8 °

()

If the fractional momentum loss is small we may expand (9)

in a Taylor series to obtain

I{(s.p,) =

k(S!pO)
EO

\ .
= 1 4 ; + ; ... (12)

For constant momentum loss we have finally for the mégnetic

bending angle

ég = —%[% 2n(1-c)"] . (13)

which, for €<<1, reduces to
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k 2 :
¢ = -2 [l+%+%+...] (14)
If the momentum loss is linear

-g%aan}bp.

(where a and b are constants) then to an excellent degree
of approximation eqs. (13) and (14) are still true if we
let '

“Ap, F (a+b%)s- (15)

Next we examine how the rms multiple scattering
angle, Ogs varies as a function of momentum loss. Recall

that Og» for constant momentum loss, was found by Eyges‘.]'| to

op = —2- /5 » (16)

T 0
ol

The momentum Po is the entry momentum and py is the exit

be:

momentum of the particle after traversing a target of

* thickness, s, and radiation length, s We may write Pi1»

ol
for constant momentum loss, as

Py = Pol1-e). (17)
Hence (16) becomes
Oy = o¢o(1-c)'],2 (18)
where ,
« 15 [s.
%0 Py VS, (19)

is the rms multiple scattering angle for no momentum loss.
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For small € we expand (19) in a series:

oy = 0goll * % + %" +...]. '(20)

Finally,we are able to determine the relative

momentum uncertainty due to multiple scattering from (13)

and (18)
(¢}

€
x — =z 0O
a(p) ¢B 0 "]_-Eln(]-e)-] (21)
where
50 ]
g T — 22
° /55 8,5 (22)

is the relative momentum uncertainty for no momentum loss. .
When the fractional momentum loss, e, is small we obtain

from (14) and (20)

olp) = oLl + 5+ 35 ¢ .U+ 5T ] (23)

Thus for small € we do not expect o(p) to be very momentum

dependent. 1In fact for the AMH magnetic spectrometer (wi;h
a target thickness of about 725 gm/cm?, sufficient to stop

a 1.2 GeV/c muon) we find for an incident momentum of

2.4 GeV/c that o/o, ~ 1.02. Thus even at this low momentum

o does not vary by more than 2%. We conclude that o(p) can

be assum.d to be constant over the momentum range of interest

2,5 GeV/c < py < =
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We now investigate how the momentum and total angle
densities (eqs. (5'2t3‘2'6 and (5.2.3.2.4 are altered by
momentum loss. First, since o(p) = constant, we see that
the total angle density remains unchanged. However we must

determine the momentum density from

T P

where now k(s,p) # constant. Taking the derivative we get

¢ k dk ' |
H%L‘pb‘ e o (25)
where
K(s,p) = kI(s.p) (26)
I(s,p) = 2 Isp—‘('—}r)— | ()
(1]

This leads to a momentum density (when g<<1) of
-%FET[l-‘J. :
. pdlipo oJ{P Po
Ihm)b ?nge (28)

This may be compared to tie previvusly derived result,

1
f =
(p) Y2n o

eq.(5.2.3.2£).wh1ch was developed for no momentum loss.
Eq. (28) may be greatly simplified if we assume

that momentum loss is constant., We find that

K(s,p) = =2 2n(1-c)"" (29)

Hs,p) 314§ - (30)
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dé k k - S
?B'El P p_(:. (]-g)-] o ;% ('l + C) (3])

The momentum density for constant momentum loss is then,

approximately

2 . 2
w o) 15E

f(plpy) =

2

vow o P

It is easy to see that eq. (32) becomes the simpler form used
previously Qhen €+0.

In order to verify the utility of (32) a Monte Carlo
investigation of multiple scattering in the AMH magnetic
spectrometer was made. A total of 1000 muon trajectories
of momentum 10 GeV/c were calculated by numerical integration
of the muon relativistic equation of motion. The computer
simulation included the effects of magnetic bending,
fonization energy loss and multiple scattering. After each
step in the numerical integration the muon direction was
randomly scattered according to eqs. (5.2.3.6-7). The
tréjectories generated in the above fashion were then
submitted to the x? momentum determination program
described in Sec. 3.5.2. Finally, the momentum histogram for
the 1000 simulated trajectories was fitted to the momen tum
probability density, eq. (32) using the x* minimization
technique. The fesult of this fit is shown in Fig. 5.9.
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FIG. 5.9 MONTE CARLO MOMENTUM DISTRIBUTION
: FOR THE MAGNETIC SPECTROMETER
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The fit parameters were taken to be the real momentum, Por
and the momentum uncertainty, o. The ;alues resulting
from the fit were Po = 10.0 ¢+ .8, 0 = ,22 ¢ ,01 with a
reduced x* of .89. The real values were Po = 10.0 and
o = 217, '

In this section we have determined that, even when
momentum loss is taken into consideration, the relative
momentum uncertainty, o, remains a constant. Furthermore

(1) the total-angle probability density remains
unchanged, while

(2) the momentum density‘becomes much more com-
plicated.

In fact the momentum probability density does not have an
analytic form for the most generalizéd expressions of
momentum loss. We shall therefore use the probabilfty
dengity in total-angle, rather than the probability density

in momentum, in all future calculations,

5.2,5 MODIFICATION OF THE GAUSSIAN THEORY

Recall that the relative scattering parameter, ao
can be written two ways

&

. %

where the first is in terms of the incident particle

= =l
a = FlPelrody = 3 (1)

momentum, Por and the second is in terms of the correspond-

1ng'bending angle, ¢p. Here we assume
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po = —l5aba ) - (2)
B

which is a transcendental equation in Poe We have dis-
cussed pfeQiously that ¢B and hence p, are not measurable
with the magnetic spectrometer. Only the "experimentally
measured total-angle”, ¢r can be determined and hence the

“experimentally measured momentum", p, can then be found

~from

p=u%;-9)- 'V (3)

We have seen that p is a random variable gi}en by a well

defined probability density, eq. (5.2.4.28). This leads to

a new definition for the relative scattering parameter:

. Y
@ f(p)pdy = 5 3k (4)

where we now use the experimentally determined value of '
momentum, p, and the total-angle, ¢, rather than the
assumed true values, p, and ¢B‘ It is clear that the proba-
bility density in @ is not a gaussian probability density,
and thus it is our goal to discover this new density. We
will assume that the new relative scattering parameter, «,
does not have the same probaBility density as that for a,,
because the experimentally determined momentum, p, 15 a
random variable distributed about the real momentum, Por

or stated differently, because the experimentally determined

total-angle, ¢7, is distributed about the real bending

-~
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N

angle, ¢5. Thus in order to discover the.new probability
density in o we may use (1) a = f(p)p¢y, so that knowledge
of the densities of p and ¢y will allow f(a)da to be dis-
covered, or (2) a= % %f. and ‘hence knowledge of the den-
sities of ¢T and ¢y allows f(a)da to be calculated. Eithgr
of these methods is sufficient for our needs and both
should yield the same resultant density in a. Since the
second of the two methods is mathematically simpler,we
shall pursue a determination of the density in terms of

1 9s :
a=L7S . 5
O'¢T' i ()

where we have let.¢sss¢y. Thus ¢ is the multiple scatter-
ing angle as measured in the spectrometer no-field view.

¢ is the total-angle (due to'mu1ti§1e scattering plus
magnetic bending) measured in the spectrometer field-view.
Henée the scattering parameter, a, is proportional to the
ratio of the no-field view angle io the field view angle.
The approximate no-field view density in scattering angle

is

A [es)?
fo]¢y) = — e??("a] (6)

/2—7‘ 0¢B

while the field view density in total angle is

ér-4p Jz

' 1
Feglop) + —— e 20 [ ¢s

— {7)
Yon odp
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The variables ¢g» ¢p and ¢g, can be seen in Fig. 5.10. Here
we have defined:

f(¢s|¢B)d¢s = probability of a muon of momentum

. po(sk(s.po)/¢3) entering the spectrometer and

being scattered into (¢, ¢g + dég) in the no-
field view.

f(¢r log)déT = probability of a muon of momentum
Po (=k(s.p°)/¢B) entering the spectrometer and
being scattere& and magnetically bent fnto total
angle (¢, ¢ *+ dop) in the field view;

We may form the jdint density in ¢g and ¢T by

(b b 1o )desde, = flolo,)f(0gl0 )do5d0 =
probability of a muon of momentum p°(=k(s,p°)/¢8)
entering the spectrometer and being scattered
into (¢_, ¢s + d#g) in the no-field view AND being
scattered and magnetically bent into (¢,% + dép)
in the field view,

Thus

| H ¢ _° 2
e ]
J(¢S.¢T|¢B) = -2—2——]———)—2- e 207 "B B (8)
| _ T odg

We now seek the density in a (eq. (5)). To this end we

write
o

j fla')da' = I] I(ogsoploy)deg dop (9)
- R
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where f(a) is the density in @, The'region R in ¢s-¢T space
corresponding to (-=,a ) in a space can be seen in FIG. 5.11.
Thus eq. (9) becomes

a ¢T °a¢'r

I f(a')dat = I max

-0 o - oo

I(dg,0p165)d0 déy (10)

Differentiation with respect to a yields

¢T.|ax
fa) = o l 6r3(0adr 00, 105040 (1)

The upper limit on the integral corresponds to the maximum
total-angle possible, or the lowest measurable momentum.
Because of momentum loss any muon which enters with

P < 1.2 GeV/c is absorbed by the magnet iron. Thus a cutoff

momentum, pe. 1S defined By
p, = Klsapc) S (12)

such that no values of ¢, > ¢, are allowed. These
max
values of ¢ correspond to values of momentum < p_ = 1.2 GeV/c.

c
If we put (8) into (11) we get:

2 2 .
1 ¢Tmax or __%__2_[% -¢R] - 'gj[’;t]
f(a) = m l -g]e o ¢~B B d¢tl. (13)

If we let x = ¢T/¢B eq. (13) becomes

Xmax _][X-]] - q’x’
f(a) = 2%3 l xe 2L 0 2 4x (14)
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where :
¢'1‘ k(s Po
Xmax —_%ix_" I%?f%g} Pc ' (15)
For 1inear momentum loss '
- o anfloee) :
xmax Apc n “€o (16)
. APC . = AP0
Cc pc N eo Po . . (]7)

ap, = (a'+ bpc)s 4
(18)

ap, = (a + bp,)s

When p, = p.s Xpax = 1 and when py >>p ., Xpax = Po/Pes

for small €c-

By completing the square in the exponent of eq. (14)

we obtain
2 ,
1 a? X ]r-x ]
-— max -= —§—Q
f(a) = 713 e ¢ L]+o’uz) ] xe 2\ ¢%1) 4, (19)
| n o .
where
X = T——}—y i o, = g (20)
0 tota® ? 1 (lwzcuz)]/2

If we assume that Xpax is sufficiently large and that o is

sufficiently smal)l eq. (19) can be integrated exactly to
obtain
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FIG. 5.10 SPECTROMETER FIELD AND NO-FIELD
VIEW SCATTERING VARIABLES.

FIG. 5.11 DOMAIN OF (¢s,¢T) INTEGRATION
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1 a?
] e-f‘l"'da ,

f =
(alo) = = = retany 372

-{(21)

If we examine momenta »2 GeV and use 0 = .2 we find that
Anumeriéa] integration of (19) gives resu]ts which compare
faQorably with (21). The error is found to increase with
G.but is found not to exceed .2%at & = 7, {,e. approximately
7 standard deviations.

Fig. 5.12 compares the gaussian density in a

()
the corrected density in a, eq. (21). We see that the

to

corrected density is lower in therregion near a = 1 but

is gfeater for a > 2. Thus the corrected density is
characterized by a "tail® at large a. Notice also that

if o is set to zero in (21) we obtain the gaussian density
in age This is equivalent to removing the momentum un-
certainty due to multiple scattering and is tantamount to
replacing the momentum density, eq. (5.2.4.28) and the
totai—angle density, eq. (7) by Dirac delta functions and
then evaluating eq. (11) as before. In fact we shall

ultimately require

lim f(alo) = f, . 4(a) | (22)
o-bo ) . .

where f'J](u) fs the Molicre density and f(alo) is the
Moliere density corrected for uncertainty in momentum

determination. The corrected Moliere density will be
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FIG. 5.12 ~MODIFICATION TO THE SIMPLE
GAUSSIAN THEORY, o = .2
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deyelopedhin a later section.

Another feature of eq. (21)‘cah be noted: it is not
‘a function of ¢ (and thus not a function of po) and is
therefore not a function of the cosmic ray muon momentum
spectrum. This is a most fortunate circumstance (because an
integration over the cosmic ray spectrum is not required)
and will be investigated further in Sec. 5.2.7.

Before proceeding to fhe next section we examine
what effect the approximation eq. (7) has caused in the
development of f(alo). Recall that the exact form of (7)
is given by (5.2.3.2.3). Thus our calculation of f(alo) has
excluded scattering in the region -w<¢x <-¢B. Use of

(5.2.3,2.3) allows f(alo) to be calculated exactly:

f(alo) = f(alo) + f (alo) _ -{23)

where

folalo) = gz e

- max
2 (Tva%a l °1 ) dx  (24)

Evaluation of the above leads to

1 a?
! e'f (T+o%a?)

' 25
7z (roranz el (29)

f_(a]o) =
}

where
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22 y&s

min max Z 22
1 2 2 - max T
gz(alo) = —p(1+ca?)(e -e ) ¥ e ¢ d (26)
ven ‘ 2 _
min
z . o=tXo (27)
min Ur
Ziax = Xnax * %o X - ®1 max (28)
9 ' "max é¢p

Notice that there is a slight dependence upon ¢, in (25)
through (28); however, this effect is small. Numerical
integration of eqs. (25) - (28) yields results consistent
with (21) to within 2% (at a=7) for different values of
¢B;- The total error in eq. (21) due to all of the sources
mentioned, does not exceed 3% for values of a>5. These
errors are considered negligible because (1) the data

in this region has errors -50%, and (2) the Moli2re
correction terms for a> 3 completely dominate the tail
region of eq. (21). These points will be congidered_in

greater detail in later sections.
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5.2.6 THE EFFECTS OF UNCERTAINTY IN ANGLE MEASUREMENT

In this section we consider the effect that angle
measurement uncertainty has on the mu]tiple scattering
density, f(a). First we shall assume that there is some

measurement error in the total-angle,¢T. say A¢. Then the

measured total angle, LI is distributed by
_%[’TM'°T]’
4 6
. ] e f
£ 107) = (1)
11 Y

Recall that the total-angle density in the spectrometer field-
view is given by |

’ 2
1[%1-%s
1 e 2| 9%

f = —_— 2
(o 10) 77 o, (2)

A1l of the variables of (1) and (2) are shown in Fig. 5.13. We
now seek the density in the measured total-angle, which is
obtained by integrating the product of (1) and (2) over the

total-angle, $ps to obtain .
2

RIS
) e 7 0n¢B

el
n's

(3)

where

n

2 ,
or = o + [%f) | . (4)
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or

o = g'c (5)

for which .- [] . [% %ilz]]lz o (6)

Thus the density in the measured total-angle, dpys 15 the
same as that for the total-angle, ¢,, except that f(¢TM) has
a new standard deviation given by eqs. (5) and (6). Notice
that Op = O only if the uncertainty in angle measurement,

Ad, is zero.

Multiple scattering in the spectrometer no-field view

is given by 1y ¢ 2
S
~ 1 '7[6 T]
fl¢) = —— e B (7)
S fZTl' O¢B -

Due to measurement error we introduce a measured scattering

angle, distributed by

¢s“’

1] %su-¢s
1. 2 ae
vZn A¢

where we have assumed the angle uncertainty, A¢, to be the

flogylog) = (8)

same for the no-field view as for the field view. We seek
the density in the measured scattering angle which we obtain
by integrating the product of (7) and (8) over the scattering

angle, ¢s:
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2
111 %sM
1

) “Z2lo, "¢ o,
f(¢ gz — n B 9
(ég)) oty (9)

where o is agaiﬂ given by (5) and (6). Fig. 5.13 shows the -
no-field view scattering variables of eqs. (7) and (8). The
probability density for dsy» €4- (9), differs from that for és
only in that the standard deviation is now given by o, rather
than o.

We now form the joint density in ¢TM and ¢SM from the
product of (4) and (9):

| I [[¢SM . [°TM'¢B] ]
= ¢
Iogysdrylog) “(onmz 8 71 (10)
B |

Comparison of this result with eq. (5.2.5.8) shows that the

following changes of variable have taken place

bg — bgy

by — éqy

Thus the exact values of g and ¢T have been replaced by
their measured values $op ¢”‘and the uncertainty o has

been replaced by o,. Hence we can rewrite eq. (5.2.5.21) with
the above changes of variable to obtain a new mulfiple

scattering density .
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an

(1 +0.%a,4)

.
1 e 2

f = n
(unlon) 2n (1 + on’an?)312 (m
wheré
c 2= g? 4 [Ai 2 ’ (12)
n o .
S BT |
n °n[¢TM] : (13)

The new scattering density eq. (11) has a characteristic
"width", Ops which is a function of multiple scattering
"noise®, o, and of measurement uncertainty, A¢. If it is
possible to.reduce measurement error to a negligible level
then the uncertainty, o,, is due only-to the noise, o.
However, for a sufficiently thick target and/or a sufficiently
great magnetic field the parameter o becomes arbitrarily

- small and o, is due only to measurement efror. When both
sources of uncertainty approach zero the probability density
f(anlon) becomes the Dirac deilta function, '

From eq. (13) we see that the new value of a, is not

n
useful since it is a function of ¢5 and hence of the real

momentum p . Since we cannot experimentally determine Poe
eq. (13) cannot be used. A more useful scattering parameter
for the evaluation of experimental results is

] bsu ’ (14)

a-—-—-‘—

o bry’
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because now « can be experimentally measured. Comparing
(13) to (14) yields

o.8, = 0o : (15)
Also let
' [ ] [ ] I,z
Oy = 00" ; o= [l + [ ] ] (16)
so that
Ay (17)

Transforming (11) by (15)-(17) we get

'% al y -4
1 e £ 031 + o%a®)
flalo,¢,) 18)
élo *s vZu o' (1 + ozm’)u2 (
wheré
: 1/2 '
' = ] .
o + ["% ] | (19)

- 1 [°SM]
¢ \oqy
From (19) it is easy to see that ¢' = 1 only when
the measurement error is zero. In this limit (18)14s equal
to eq. (5.2.5.21). Eq. (18) is the corrected gaussian
density which we originally sought to discover; unfortunately
it cannot be compared directly td experimental results be-

cause of the conditional dependence on ¢y and hence on the

real particle momentum, Po* Integration of (18) over the
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cosmic ray muon momentum spectrum allows a momentum {nde-
pendent multiple scattering density to be calculated.

This prop]em will be treated in the next section.

5.2.7 INTEGRATION OVER THE COSMIC RAY SPECTRUM

In order to see the explicit dependence of the
corrected multiple scattering density, eq. (5.2.6.18), on
the cosmic ray mudn momentum spectrum we must make a
change of variable in eq. (5.2.6,19) from anglé to

momentum coordinates. First we define

Pcom = 1(%::_%) . (1)
to be the "characteristically determined momentum® (COM) of the
spectrometer, This is the value of momentum for which the
uncertainty due to measurement error is approximately
- 100%. This relationship forPCDMis analogous to similar
relations which have been introduced, i.e. it can be

recalled that the "recal muon momentuh“ is given by

k(s,p_ ) .
Po ® -“3;—9— (2)

and that the "experimentally determined momentum™ fis

found from . .
T

In the high momentum Vimit we use eq. (5.2.4.12) to show
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that

k(s.p) = k(s,p,) . k(s = .3B_s (4)

Peom) * %o 0
~ One can then easily transform the measured total angle

density, eq. (5.2.6.3), to a momentum density which includes

measurement error:

' 2
f(plp.) = L 32 e-%[%%] {% ) g%]’ ' (5)
0 T o, p?

This is the same density which we have seen previously
except that the relative momentum uncertaint}. g, has been
replaced by One Tﬁus o, is a measure of momentum uncer-
tainty which not only includes the effects of multiple
scattering but also the effects of measurement error.

The expression for O, 4. (5.2;6.12). can be

transformed from angle to momentum variables by use of (1)

“and (2).
o v oo (Hemg ]t ©

Pcom
From eq. (4) we find that at high momentum eq. (3) becomes,
approximately,
2
2 . .2 pO] ]
oL = 0% + | - (7)
n Revm

If o? is assumed small then when p, the uncertainty is

* Pcom
nearly 100% (actually the figure is about 102% if o = ,2).

In the same way we are led to a new expression for
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o', eq. (5.2.6.19)

o 7" e
where |
' n = K(s.PcpylPo | (9)

k(s.po) pCDM

ko L I dS' N
k(Sopchr S A p(s‘lpCDM) (]0)

ds’
k
k(sapo) = 020 l ICINTY) (1)

For linear momentum Yoss we obtain

s s ‘ '
- ] ds* I _ds'__ AP0 () - ApyPeoM)_ Po (1)
PUsipcpn) J PUsipo) — Bpcp en(l - 8po/Po) ™ Ppy
o

0

-AQ:DMB (atbp.p,) (13)

8Po = (at+bpy)s | (14)

The last approximation of eq. (12) is obtained only when
momentum loss is assumed to be small, »

We are finally able to write the expressibn for the
corrected gaussian multiple scattering density

1 al
1 e 20T [T+ o%a®)

(15)
JT5 o' (1 + g?a?)3/?

f(ulo.po) =



5.2.7.4

where

) .

z :
1 |Po :

ot = 1+_3.[__]‘] (16)

A [ 6" \Pepy _
)
Q= .l_—_S_M. . (]7)
™

Here we have used only an approximate expressicn for o',

howeverlit is sufficient for the arguments which follow. -
From (16) we see that if the COM i§ finite, then

o' = o'(po), a relation which forces (15) to have a "width"

which is dependent on the real momentum, p,, of the muon.

The probability density for p, is governed by the cosmic

ray muon momentum spectrum, I(poly). Knowing the functional

form for the spectrum allows one to calculate a multiple

scattering density independent of Po?

flaloy) = [ flalo.pe)t(polv) dp (18)
, Pc '
It is this expression which must ultimately be compared

to experimental results. The form for the spectrum,

I{poly) is discussed in Appendix I.
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5.3 MODIFICATION OF THE MOLIERE THEORY
5.3.1 INTRODUCTION

In Section 5.2 the simple gaussian theory of multi-
ple scattering was modified to take into.account the
random nature of the momentum measured by-a muon magnetic
spectrometer. In this section we use the same techniques
to modify the more complete theory of Molidre. It will be
seen that all of the results of Section 5.2 are applicable
here. Only one previous assumption-will be invalidated;
in the Moliére theory the projected angles‘¢x and ¢y are
not statistically independent. The consequences of this

one change will be investigated in subsequent sections.
5.3.2 MOMENTUM UNCERTAINTY DUE TO MULTIPLE SCATTERING

Here we determine the momentum dependencé of the
mulfiple scattering noisé. o, in a rigorous way. In
particular we.ca1cu1ate o using Moliere's theory, which
includes the effect of ionization energy loss. Recall
that o is the rafio of rms multipTe scattering, Ty to
magnetic bending, $g° _

o=t . . ()
¢ :

From eqs. (5.2.4.2-5) we find an integral expres-
sion for $gt -

S ds! : '
¢, = .38 —_— (2)
B ° lp(s'.po)_
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where s is the target thickness and Po is the momentum
of the muon as it enters the solid iron magnet. Because
of the complicated behavior of ionization energy loss
eq. (2) must be integrated numerically. To this end we
rewrite eq. (2):

6. = 2380 [p‘ —dp (3)
g P p(-dp/dx)

where the rate of momentum loss (-dp/dx) is a tabularized
function and is described in Sec. 3.5; p is the density
of the iron and Py is the particle momentum as it exits
from the magnet iron. Before integrating eq. (3) the

exit momentum, Pi» must be calculated from

- . d

= | e 4)
o . .

Here p, and x are known and Py is determined numerically.

This task is easily accomplished by the Newton-Rhapsonlo

method which yields an {terative equation:

P2t = o - Le (e -x1[ -$2(pM] (5)
" where '
n
n 1 d
AHEN I C o) - @

P
th value of the exit momentum. Typically

and p? is the n
one guesses an initial value of Py (based upon constant
momentum loss) and then uses (5) and (6) to iteratively

converge on the actual value of Py No more than three
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iterations are necessary to obtain Py to an accuracy of

.1% or better.

In chapter IV we found that the root mean square

multiple scattering angle of Moliére is given by

P 3172
°.¢ . [ﬁ?—"] %2 [ lol(ps)if:p/dx) ] (7

Numerical integration of (7) is of course necessary.

A computer program was written to calculate the
momentum uncertainty using equations (1)-(7). The program
requires for input the target thickness, x, and the par-
ticle entry momentum, Po* The exit momentum, Pye is then
determined by eqs. (5) and (6). The magnetic bending
angle, s is found by numerical integration of eq. (3),
and.the rms scattering angle, o¢. is determined by
numerical integration of eq. (7). (A1l numerical inte-
grations in this program are performed by a fifth-order
Runga-KuttJoa1gor1thm.) Finally a value of o is calcula-
ted from eq. (1). Values of o, determined from the above
program, were used to plot.the curve of Fig. 5.14 for a
magnet target thickness of 95 cm. We see that ¢ = ,228
for entry momenta > 5 GeV/c but rapidly 1ncreéses to
.247 at 1.5 GeV/c., While o is not constant below 5 GeV/c¢
we see that thé deviation from constancy is only 1.7%
down to 2.5 GeV/c. The uncertainty for momenté > 2.5 GeV/¢

is considered negligible and is justification for assuming
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-

FIG. 5.14 SPECTROMETER NOISE AS A FUNCTION
OF MOMENTUM
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o to be constant above 2.5 GeV/c. Thus all data below

2.5 GeV/c are neglected in the data analysis.

5.3.3 THE TOTAL ANGLE DENSITY

We have seen that Moliére's joint density in the

projected multiple scattering angles ¢,, ¢y (see eq. (4.5.41)
is given by:

-

oo, 7 B o
2o, .0, )d¢, d5 ——L[ dy dy,e”Z %) V2 9glg(y2eyz) (1)
YUY p(2m00,)" 40 z '

where y}+y3, 4[Yi+¥2] y1+y2]

g(yity3) = e ' (2)

Eq. (1) represents the probability that a particle inci-
dent on a target will be multiply scattered into projected
angle intervals (¢;’¢x+d¢x) and (¢y.¢yfd¢y) during tra-
versal of the target.

Recalling the definition of the "total" apgle (the
muon angular deflection due to multiple scattering and
magnetic bending as observed in the spectrometer field
view), we write

¢ = ¢, * ¢ | (3)

This allows the density (1) to be transformed into:

do.do. o ] [ ] (4)
_ e T 'y vZ | 0% o¢
(o, 10p)dd do. r— ) I Y dyze © B B g(y,w2
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Thus in complete analogy to eq. (5.2.5.8) we know that
eq. (4) represents tha joint probability that a charged
pafticle of momentum p, (corresponding to a bending
angle, ¢B) enters the spectrometer and (1) is multiply
scattered iqto (¢y,¢y+d¢y) in the no-field view and (2)
is multiply scattered and magnetically bent into
(6559p¢dds) in the field view.
If we integrate eq. (4) over ¢ we immediately

obtain the density in scatterinq angle, f(¢y).

d, = oyl Tt

flo )y, = —L I dy cos[—l’—] e

(5)
1oy o lfc¢8

Using the fact that B is reasonably large (B = 18) we
may expand (5) about 1/B to obtain: '

ey (i) (2)
2{0¢ ] £ f
= 1 B Ty (4.) 2 (¢.) + ...
flo,lo.¢p) oty e gy ter Ty
where ; 2
e =
(n) ~ 1 ff’),) ~ y? 21n
f ) = —— dy COS |-—— ~ fn (7
(¢)' vZnod nl l d [/?o¢ } ¢ [4 %—] )

If we now integrate eq. (4) over ¢y we obfain the

density in total-angle, f(¢T):

2 2 2

- il

(o-0,y] T *HE I

f(¢>,r)d¢T = fmdy COS|{-———| e | (8)
Vinody o Y2od, _

Expanding about 1/B gives
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2
1{°1°%
-7[—1;—J f(1) £(2) _
f(oglo,67) = /2:°¢ e V¥ -+ (¢r) o ;%7 (er) 47, (9)
B
where |
. . :

T ﬂ'ﬂo%n! o ./2'o¢8 4 J

We shall later have need to reference the series expan-
sions above, i.e. eqs. (6) and (9).

One can easily see that the product of eqs. (5)
and (8), does not yield a joint density in ¢t and_¢y
equal to eq. (4). This implies thgt ¢ and ¢y are not
statistically independent (since J(¢y.¢1) 4 J(¢.pJ(¢y)).
Thus we are forced to use eq. (4) rather than the pro-
duct of (5) and (8) to modify the Molidre theory of
multiple scattering. How the statistical dependence of
¢

following section.

x and ¢y effects our results will be seen in the



5.3.4.1,1

5.3.4 MODIFICATION TO THE MOLIERE DENSITY
5.3.4.1 INTEGRAL FORMULATION

In order to modify Moliére's theory we use equation
(5.2.5.11) togethef with (5.3.3.4) to obtain the density
ing, fl(a):

x-1 fys) a x
It 1y1[/§b ' vZ 2 4,2
f(a) = 22T rdx X “ dy,dy, e glyj +v¥3) (1)
o ~C0 -0

Heré we have let x = ¢T/¢B in order to simplify the
equation. Notice.that eq. (1) is not a function of ¢B and
hence not a function of the cosmic ray muon momentum ‘
spectrum (this is exactly what we found in Section 5.2.5
whén the gaussian theory was modified). Notice also that
the.upper limit of eq. (5.2.5.11) has been set to infinity
in eq. (1). This has been done because numerical integra-
of (1) yields results which show that all possible values
for this upper 1imit are consistent with infinity. This |
is due to the rapid convergence of the two inner integrals
over y, and Yge | _

Now recall the arguments in Sec. 5.2.3.2 which led
to an examination of the scattering angle ¢x in the region
—o < < =4y (REGION 2 of Fig. 5.7) and which subsequently
led to a correction of the total angle density as given ‘

by eq. (5.2.3.2.2 ). We now apply eq. (5.2.3.2.2 ) to the
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Joint density J(¢T.¢y). eq. (5.3.3.4), and obtain the
exact form of the joint density:

Mopaty) = 3,08508.) + 3_(0700,) (2)
where
LT g, ot 0 R
Ioldpod)) = ———nr [I dy,dy, e’2 { %% slg(yl + ¥3) (3)

2(2«0¢B)2_°*n

We have formed eqs. (2) and (3) in exactly the same way
as we formed eq. (5.2.3.2.3 ). If we use eq. (2) (rather
than 5.3.3.4) to form the density in f(a) we obtain:

“fla) = f (a) + f_(0) | (4)
where [_" ;
. © iy X+ +_y.ﬂ. }
1 Y20 V2
f.(a) = 2(2e)0 la dx f-llufyldyze g(y; +¥3) (5)

Notice the similarity of (4) and (5) compared to egs.
(5.2.5.23) and (5.2.5.24) which were derived in analogous
fashion. Numerical integration of f:(“) shows that
f,(a) may be neglected. i.e. that f(a) = f_(a) to a
sufficient degree of accuracy. It is found that f (a)
amounts to, at most, a 5% correction to f(a) at a = 7
(7 standard deviations).

Before proceeding further we point out that a

simple change of variable in eq. (1) was made in order
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to facilitate its numerical integration. This change

of variable was accomplished by

x-1 yi ¥2
2 = P! X, = —= 3 x, =

and led to - 2
. of Ca
f(a) = L Ia dz(oz+l) I dx; COS zx, e I“hxzcos[a(oz+l)x2]e (6)

NCERCE

Here we have taken the real part of eq. {(1). This re-

sult is very well behaved (much more so than eq. (1))and

can be easifly integrated on the computer.

5;3.4.2 SEMI-ANALYTIC FORMULATION
We now proceed to the direct integration of

eq. (5.3.4.1.1). To this end we write

iyl[x 1] 1ypax

Y20 V2 . cos[_(l(fz%)_ y, g%'z] i SIN [_(__;_)_ yl GX',.;_-,] (])

. cos[i"‘/—;_-(‘,-)- ] cos [/2] sm[i’}_gl ]sm["’z] (2)

where only the real part has been rctained in eq. (2).

Now use (2) in eq. (5.3.4.1.1) to obtain

J:xx Trdyldyz cos [fo_z'? y,] cos [“—%—] gy} +y3) (3)

(4] 00

fla) =

2n%o
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where g(yi + y;) is given by (5.3.3.2).
If we expand (3) in a series about 1/B we obtaiﬁ

g i
f(a) = 2:—20 o dx xOU dy,dy, €OS [%)yl]cos [%-;,1] et ®
(4)

s rdx X ” dy,dy, C0S [%;—‘)- ] cos ["z] Glyjtyy) + ...

2
2n“oB ° 0o ]
where
yiw;] -
y y
Gly2d) = e i [Yl + 2] [Vi + 2] (5)

In eq. (4 ) we have neglected terms of order (1/8)’ and

greater., We shall designate the first integral of (4)

as fo(u) and rewrite it:

f (a) = rdx x [rdylcos[i%‘l yl]e%l][rdyzcos [-—Z] —ylz] (6)

2n g g °

(*/

The integrals in brackets are easily evaluated

- _y;l ) (x=)
r;:yl coS _%;ilyl] et avie Z [ )
° ] yz ’ uzx',z . .
rdyz cos “;;’] e f_- e ¢ | (8)
A |

Put (7) and (8) finto (6) to get
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fola) = 7%3 j xe 2L 0 2 dx (9)

]

l[x-l 2 aix?

We have integrated eq. (9) before (see eq. (5.2.5.14)) in

Sec. 5.2.5; our result was

1 _a?
1 2 T+g%a?

e

fo(a) = (10)

Thus the zeroth order term in the corrected Molidre
density is exactly the result we obtained for the
corrected gaussian density. Needless to say, this is an
expected result. Eq. (4) can now be written

a?
] 7 1+0°%a . f(l)(u) .

f s .o 1
(a) T (]+ozcz)372 B (n
where
Mgy e L (ace I ] cos [292] g y2ay?
Y% (a) _—y l dx x ii dyldy2 Cos [ s ] Ccos [ e ] G (yl+y2) (12)

For reasons which will soon become clear we prefer to

rewrfte G(yi+y;) so that

yisy3

o< [ ) )
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[y2+yz] + |

- { 2 2' 2 2
- ) y y y

e 1 m 1 2] n 2 1+ 71 ]

2
Y2

+y 7 )
'[‘1—42] ’1 H yz y; yi 3|, Y2 W
= e £n T —4— T n ]+—- T in (13)
¢ ' " ’2

Put eq. (13) into (12) and get

&

o ol i S

(1) (g - - I” dxdy dy x COS (x- 1)”l]cos[ yZ] F‘-m 141] (18)
2nlo 000 vZo /2 :

- ‘ y’w’] \ )
+ 2:0 ill dxdyldyzx €0S [f}:—;l ] C0S ,/;2} el 4. [Z} 2 _3%]
+ H{a)
where

s
! o o R uX.Yz yt ;
H{a) = —— ”I dxdyldyzx cos [%_———)- yl] cos [ y ] in{ ]

2
2n‘o 000 a
2
y? y
+ 7f-£n [] + —}]
Y2
Now integrate the first integral of (14) over y, to get

. <y .Z} _alx?
J dy €08 |°/_z_’] e - ie ¢ (16)

Q
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Integrate the second integral of (14) over y; and get

. 'y 7|55 . ’
J dy ,C0S [ﬂ‘;‘—)-yl]e =7 e (17)
° /2o .

Put (16) and (17) back into (14):

f)) - L rdy Fly,a) e [Yai 2n 341] + H(a) - Q8)
ven :
0
where
ule .
w -—z— .
Fly,a) = — ] cos il—‘l dx (19)
YZno o
1{x-1 .
1 ® ) o 1 aXx .
I os[—l] dx (20)
YZno . vZ ’ ’
Eq. (19) (which we label I;) may be written
. . ax?
1, = ! COS—LIxe 2" cos [xy] ax
YZno v2oj ¢ V20
. ax? :
e 1 sy [ Ixe 2 orn [2x]) ax (21)
/Zio 2| ) /2o

The second integral of (21) may be evaluated exactly

and hence (21) becomes:

1, -/2__" 2 [h(y) cos[—Y] + K [./Zm sm[-Y ]e—[ ]] (22)

nou

where
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: o - O'_(!_ zx*
h(y) = [{Zggf_] J xe \Y C0S xdx _ (23)
y o : )
Eq. (23) can be expressed in terms of an infinite series;

likewise h(y) may be written in terms of other integrals
of different form. However, for computational purposes,
no other formulation has proved more useful than (23).

If in eq. 0 (which we lable Iz) we let

z x> (24)
then
zz
1, = —l-I (oz+1) e 2 cos[ﬁig-%‘—)l]dz (25)
"1

]

For o sufficiently small the lower limit of (25) approaches
infinity. This allows I, to be written

22 2?2
1,= -2 | ze Z (os(azeb)dz + —— r e ¢ c0S(az+b)dz (26)
m «00 m‘ - 00
where
a= e . paSL . (27) .
Ve vZ

Expanding COS(az+b) in (26) leads directly to

'z’ 22
1,= - cosb J e 2 C0Sazdz - —22 SIND rze 7 §INazdz (28)
vZn . /2 o .

These integrals are readily evaluated to give
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e [gglkcos [2/-;-_] - o‘[%_] sm[ﬁé]] | .(29).

Finally (19) and (20) become

F(,.a).e[%][cos[ 1) [ (3] |
e ol e [ ) oo

We now return to eq. (18) which is the first order

correction term of thg modified Moliere theory. Notice
that the integral over F(y,a) in eq. (18) has exactly the
same form as the Moliere integral given by eq. (5.3.3.7),
f.e. the cosine function of (5.3.3.7) has been replaced

by.eq. (30). Thus the integral

Hy(a) = El ay Fly,ade © [ ] (an)
iooks like the Moli2re integral, where F(y,a) is given
by (30). Using (31) in (18) allows the first order

correction to be written

(1) (a) = H (a) + H(a) ‘ S (e2)

It is interesting to note the physical meanings of
Ho(a) and H{a):
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Ho(a) = Moliére correction integral which is
obtained by assuming that the pro-
Jected scattering angles ¢x and ’y
are independent

H(a) = Additional Moli2re correction
obtained when the statistical depen-
dence of ¢_ and oy 1s included.

The above meaning of Ho(a) can be shown by assuming that
the joint density J(¢y,¢T) is the product of the den-

sities of ¢, and ¢y: | A
C9legaep) = fleg)f(0)) (33)
where f(¢T) and f(@y) are given by eqs. (5.3.3.6) and
(5.3.3.9) respectively. This leads to a density in a:
' 2
a

1 4
. "2 Tvo%a?
H

+
vZn (1+oza’)3/2 .B

However when the joint density J(¢y, ¢T) includes the
statistical dependence of O and ¢y (i.e. when J(¢y.¢T)
is given by (5.3.3.4)) we obtain

] a?
-f '+0 .(;T H ( i
I I - 0 a) H{a)
f(a) = (i) + S+ 5 (35)

Thus H(a) contains the contribution due to the statis-
tical dependente of ¢ on ¢y' The direct integration

of H(a) has not proven feasible. However the numerical
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integration of H(a) has shown that
H(a) << Hé(a) ' (36)

At most H (a) amounts to a 5% correction to eq. (35) for

a >4, This correction is not important because statis--
tical errors in this region vary from 15% to 50%. Thus

we shall neglect the function H(a) in our analysis; this
is equivalent to neglecting the statistical dependence

of ¢x(or ¢T) on ¢y. Finally we have the corrected Molidre
density which we originally sought, (see Fig. 5.15 where

the Moli2re and modified Moliére densities are compared):

uz
? 1+ (l) :
1 o? (a)

f = L I A% ‘ 37

(a) Zu (1+o 02)3/2 B * (37)

where )

(1), 1 (" 'L: 2 2

o) - L ] dy F(y,a)e [%r tn %r] (38)

o)

and 2

F(y,a) = e-[g%l][cosIgé] [—X] SIN [—1]] (39)
[h(y)costé?i Jf' SIN[ ]

h(y) = [“7°°] J xe [—_—]COSxdx (40)
0

When eq. (37) is compared directly to numerical inte-

gqration of (5.3.4.1.4) the tctal ervor due to all sources
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FIG. 5.15 COMPARISON OF MOLIERE AND CORRECTED
MOLIERE DENSITIES
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of error does not exceed 6% as a + 7 (see Fig. 5.16).
As we shall see eq. (37) cannot be directly
compared to experiment when angular measurement error
is appreciable. Further modification of (37) to take
measurement error into account will be developed in

the following section.

5.3.5 THE EFFECTS OF UNCERTAINTY IN ANGLE MEASUREMENT

-In this section we modify the corrected Moliére
density to include measurement error. To this end we
first modify the joint density in projected angles,
J(¢x.¢y), to include measurement error. From'eqf (5.3.3.1)

we have the Molidre joint density'

d¢ d¢ © o
s — XY
(6,0, )d0 do, = I I dy,dy, cos[

-t o] o o o
T

v20d
We now assume measured projected angles ¢xM and ¢yM which

are described by
2

_l[¢xn'°x]
flo,,l0) = —— e 2L &9

(2)

e ]
flo,le,) = —I—e (3)

Thus the measured projected angles are assumed to be

gaussian distributed with uncertainty A¢. The mean
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FIG. 5.16 CORRECTED MOLIERE DENSITIES: .
SEMI-ANALYTIC VS. NUMERICALLY INTEGRATED
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(See.eq.(5.3.4.2.37)‘)

— — — — NUMERICALLY INTEGRATED CORRECTED
MOLIERE (See eq.(5.3.4.1.4))
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values of the measured angles ¢xM. ¢yH are taken to
be the real values of ¢ 0 ’y
If we take the product of (2) with (1) and inte-

grate over ¢, we obtain

y - o ) .
I 0 )40 do = M’%I I dy,dy_g(¢_,.y,)COS Yo & gly2+y?) (4)
M Ty" VM Ty 2(2“0¢B)-¢ J 1727 "xM7 1 '/20¢B 172
where 2
g(Qde"yl) = I . C0S 17 x e 2 a¢ ho (5)
Znay I /7003 4
Now let
é_ ¢
e TxMVx .
z Yt (6)
Thus eq. (5) becomes
¥, z
9(¢ ,o¥,) = A cos [Latam) [Teos|T2 | e 2 gz (7)
X vZn VZody) e VZady
Finally
9(¢_\o¥,) ® COS[—L-m] e 1oty (8)
/ZG¢B

Now take the product of (4) with (3), integrate over¢y
to obtain '

d¢ dd) ® o
e VXM _TyM 2
B -

where
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. y ¢ .%[¢VM-¢}:]1
6.,y.) = ]” cos|—2X| e 4| 2 J do (10)
WopeeY Vg [Jzoep 4
which leads to . 2 '
a6
= 2| yM - 4o
9(¢,y0¥) = COS {/2[°¢3]] e B (M)

We can now write the integrand 'of (9) as

9(6, 0¥ )9(0 ¥ )e(yity)) = o |
~ N R () B Ww
ofy ] sl T3

_[yiwi‘ o [viﬂ%]
Xe oy g

If we let
. . )

o'z=l+(-3—%-. (13)

we get for (9)
2 2 2492
© © ’ ~(g'Y 2 (" 2 'yl+‘y Yty

d¢xud°vn Y 1% Y P igi*ll (o4¥2) [ 48 2 an l4 : (14)
— I IdyldyZCOS ~1C0S |—= e
2(2m00,)" 3, S 2o, vZady :

Now let
Yy ‘* c:'.y1 : _y2¢ o'.vz

and hence (14) ytelds
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o4t = | | |
& ' yi*’z +-"2 2]
¢ Yy ¢ . ' 12
.___EL___E.I”f:yldyzcos[;l[ cos[ 2[ e asre 4° (15)
(2n0045)" ¢ o VZ\oo'¢ |  |/Zloa'é '

Furthermore since the measured total-angle is given by

™ Hutép

eq. (15) becomes

] (R I
™ ‘l [y;{»_yz} [ +y2] on { +y2]
w0 Yo dou 3 4Bg'2 407
dy .08 || =Bl | cos | =& =~ 16
(2noo ¢B)’ f{yl 72 { [°° Sy H [v’?\m ¢] . . el

We introduce (as we previously diﬁ for the gaussian

modification) the relative scattering parameter

¢ .
= 1 M (17)
o By

From (17) we have ¢yM = 0adrys substitution of this equation

a

into (16) and subsequent integration over 1 yields
flafa,y) = o I¢TnJ(°TM'°°°rQ)d¢iu - (8)

. o . .
Put (16)'1nto (18) and let x = ¢TM/@B to get

f(alo ’¢B) b

2(n()) K] [:X )

0

Iw[:y L C05,- f[’ .]]cos{ GX] [ 2+y2} [4;:fz]2 [ZZTT;] 9

'v".

J
U ‘LKO’
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where

0.4 . [] , %]z]]/z | (20)

Eﬁ. (19) is the integral formulation of the modified
Moli2re density corrected for uncertainty in angle mea-
surement. If the uncertainty in angle measurement, A¢,
approaches zero then o' + 1 and eq. 19 approaches

eq. (5.3.4.2.3),1n the limit.

If is easy to verify that

a
a
o

. o +g'o
transforms (5.3.4.2.3) into (19) except for the additional
factors of o' in the 1/B term of the exponent. This
allows the semi-analytic form of the modified Moliere
density, eq. (5.3.4.2.37), to be corrected for measurement
error by inspection. The final result is easily verified |
by series expansion and subsequent integration of eq. (19).
We now present the final result

-1[ ot )

L ? °"(‘*°2°‘2)J+ f“)(ﬁlc’:i’a)

JT5 o' (1 + g2q2)3/2 B

f(0|°'¢n) & (2])

where

(1) N B _y? y?
W alorey) = —1- l dy Fly.a) e [ tn ] (22)
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[sagx]’ .
Fly,a) = -;-r [cos[/—;i—.]- (oo-)’[-EL] SIN [i’-]] | (23)
4 3 _

/o'

B | o,y
+ (y) cosf—r— + Mol ¥} sy [—x—
YZroa? (v} /2aoo’ /;.h' vZaa" veao' ¢ :

Toa?
Where » -
aly) = 2["3“1]z rxe-[%g] " cos xdx (24)
5 |
and ,
o' = [1 + o‘—z [ﬁ;ﬂ]m (25)

5.3.6 INTEGRATION OVER THE COSMIC RAY SPECTRUM

Eq. (5.3.5.21) must be integrated over the cosmic
ray spectrum in order to remove the dependence'on the bend-

" ing angle, ¢ge This is accomplished by

o0

flalowy) = | flalowpg) Ipglv)dey . (1)

. c
where f(alo.po) is given by (5.3.5.21), p, is the momentum
corresponding to ¢ and I(pyly) is the cosmic ray differ-
ential intensity discussed in Appendix I, The dependence

on the mrmentum p, is due to

21172
g' = {1 + %r[ RQ] ] : (2)
PcoM '

where P~ .. is the CDM (characteristically determined momentum)
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of the spectrometer., Thus QDMplays the role of a free
parameter which may be (1) calculated by independent
means, or (2) fitted to the data. Here we determineA
Peon by fitting the exﬁerimenta] data to the theory.

Fig. 5.17 shows multiple scattering curves calcu-
lat--* by eq. (1) for Pcom * 100 GeV/c and 50 GeV/c. Also
shown in the figure is the corrected Moliere density
calculated by eq. (5.3.5.21) for o' = 1. This corres-
ponds to Peom * = Thus as Pcom * © the multiple scatter-
ing density increases its width and *flattens out" until,
in the limit, the density merges with the a-axis.

Fig. 5.18 shows most of the multiple scattering
densities which have been encountered in our development;
thus the reader can compare the various corrections which

have been accounted for in this chapter.
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FIG. 5.17 MULTIPLE SCATTERING CURVES AT
CHARACTERISTICALLY DETERMINED
MOMENTA OF 50 GeV/c, 100 GeV/c, =



PeoM ™ 100 GeV/c

50 GeV/c
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FIG. 5,18 MULTIPLE SCATTEéING CURVES



7 GAUSSIAN
X CORRECTED GAUSSIAN
\\5\\\
A\
. N\
‘
\ .
_. | CORRECTED FOR “\
0"1-FMEASURING ERROR, W\
' 100 GeV/c \.
. \
\.
1 \
\Q
\\'
\
' r, \ .\
. ‘ \ s\ M
\ %
Y
N\,
\ N\
10721 N\ <
B \\ \, CORRECTED MOLIERE
GAUSSIAN ‘\V()<::"
| S '\ CORRECTED FOR
AN MEASURING ERROR,
\ N 100 GeV/c
\ . .\
\ ‘<
NN
\\\\ N
. \ \.\
CORRECTED N -\\
GAUSSIA N ‘N,
N\ ~.
10-3-- \\ \'\.
N
N
N
-y \\
\ .
\\
]0-4 v v v v T 1
0 | 2 - 3 4 5 6

SCATICRING PAKALTER, a



6.2.‘

CHAPTER VI
EXPERIMENTAL RESULTS

6.1 INTRODUCTION

In this chapter we briefly review the physics of
multiple scatterfng and then describe fhe analysis of the
data from the AMH magnetic spectrometer. In parficular we
discuss: (1) the Molikdre theory and its basic assumptions,
(2) the modification to the Moliére theory (as presented
in Ch. V) and the corresponding assumptions made, (3) the
need for folding in the cosmic ray muon momentum spectrum
in order to accouﬁt for measurement error, (4) prepara-
tion of the data for analysis, and finally (5) comparison

of the data to the theory and interpretation of the results.

6.2. ASSUMPTIONS OF THE MOLIERE THEORY

The multiple scattering of a fast charged particle
is due to the many successive collisions of the particle
with atoms of some target material, Molidre, in the deve-
lopment of his theory, made two assumptions which were
independent of the single scattering (collision) law:

1) Successive single scatterings in the target
material are statistically independent,

2) The small angle approximation can be used,
i.e. SIN 6=0 and COS ¢=1,

Further assumptions, made by Moliére, about the single

scattering law are:



(1) The single scattering cross section is inde-
pendent of the azimuthal angle in the absence
of spin effects.

(2) The single scattering law includes scattering
due to a nuclear Coulomb field as screened by
a cloud of atomic electrons.

Using the above assumptions, Moli2re developed a multiple
scattering density which consisted of a gaussian with
correction terms (as we have seen in Ch. 1V).

Moli2re did not 1nc1ude4the following physical
processes in his results: ' |

(1)-The finite size of the nuclear charge distri-
bution.

(2) Effects due to fnelastic collisions in the
nucleus.

(3) Multiple scattering by atomic electrons.
The effects of finite nuclear size and inelastic collisions
in the nucleus have been developed by Cooper
and Rainwater".4 The scattering by atomic electrons is dis-

cussed by Scott., We have, with Molidre, ignored the above

effects in our analysis.

6.3 ASSUMPTIONS MADL IN THL MODIFICATION TO THE MOLIRRE
THEORY

Mclidre's theory has been modified in Ch, V for
use with magnetic spoctrometers, Certain approximations
were made in tho development of the vesultant semie

anslytic multiple scattering function, ey, (S.3.4.2.3f):
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1) The statistical dependence of the projected
angles ¢x and ¢y is ignored.

2) Whenever % appears in the limit of a rapidly

converging integral the limit is assumed to -
be =,

3) Field view scattering angles in the region
- < $ < -¢g are neglected, thus simplifying
the resultant multiple scattering density, f(a).

4) The spectrometer noise, o, is a constant.
We have shown (see Fig. 5.16) that the above approximations

introduce an error in the multiple scattering density of
no more than 6% in the region a>3.

We have also shown thaf the dimensionless scatter-
ing paraméter, a, of the modifigd multiple scatterfng
density, f(a), can be expressed in two ways:

(1) In terms of the expérimentaliy determined
momentum, p, the scattering angle, ¢, and
the target thickness, x,

a = f(p,x)po (1)

(2) In terms of the field-view total-angle, O
the scattering angle, &, and the “noise", o,

1 ¢
o ¢T

In the analysis of the<expefimental data we shall bin

the data according to values of a calculated for a single
event by both (1) and (2). When eq. (1) is applied the
procedure used is to y?-fit the momentum, p, by the

technique discussed in Sec. 3.5.2. Briefly, this method
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generates the best muon trajectory through the measured
muon position and unit momentum vectors in all three
spark chambers. The resultant momentum, p, and path
length in the iron, x, come from the x2-fit procedure.
Using p and x together with the scatterin§ angle, ¢,
(as measured in the no-field view) a value of fhe para-
meter a is calculated for a particu1ar event. A histo-
gram of the values of a for all of theAevents can then
be compared to the theoretical results. In a similar way
eq. (2) can be used to generate an u-histogfam‘of the

data. Here, however, the values of a are calculated much
.more simply by use of an average path length in the iron,
<x>, in order to determine an average value of o (for the
data <x> = 95 c¢m iron, o = .23). We will compare the
data for eqs. (1) and (2) in a later section.

Before proceeding to the next section we point out

that the semi-analytic multiple scattering density, f(a),
(eq. (5.3.4.2f37)) can be used for any magnetic spectro-
meter experiment (provided it obtains both field view and
no-field view data), and hence f{u) is a theoretical
result useful for interpreting multiple scattering in
magnetic spectrometers, However, each experiment has
measurement error which must be accountéd for. A
technique for taking measurement error 1ntq account has

been discussed in Sec. 5.3.5. This technique may or may
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not be applicable for other experimental apparatus; the
assumptions made about experimental error for the AﬁH
magnetic Spectrometef may not hold true for other spectro-
meters. Thus other investigators may be unable to use |
the multiple scattering density which has been developed
here to account for measurement error, i.e. eq. (5.3.5.21)
but may, in fact, have to account for measurement error in

a different way.

6.4 EXPERIMENTAL ERROR AND INSTRUMENT RESOLUTION

In Sec. 5.3.5 measurement error is taken into
- account by assuming that all measured angles have errors
that are gaussian distributed. This leads to a new den-

sity in f(a) which is dependent upon the parameter o',

2 P 1 '
o % g2 + | 2 (1)
Pcom

where

Here o is the spectrometer noise, Po is the "real” momen-
tum of the muon, and PcoM is the “"characteristically
deternined momentum”, Since f(a) is a function of P, We
‘must how-remove this dependence by integration over the
cosmic ray ﬁuon momentum spectrum by eq. (5.3.6.1). As
seen in Appendix I the cosmic ray spectrum is dependent
upon two paramecters: (1) No.which insures normalization,
and (2) % the spectral exponent. For our purposes we

require Nuto te such that
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L]

- | 1teoIngyen, =1 (2)
° .

Thus the dependence on the cosmic ray spectrum lies

entirely in the spectral exponent, £ Thg experimental
determination of y,is discussed in Appendix II.

Eq. (1) depends on the parameter Pcpye Thus,
after_integration over the cosmiq ray spectrum, the

multiple scattering density has the dependence:

flalo,pepy)
Recall that PcoM is the momentum corresponding to the
.uncertainty in an angle measurement, Ad, so that

- k
Pcon * 7%

In order to fit the multiple scattering data we shall
use p.py s fit parameter. We have assumed that Pcom
. and A¢ are constants independent of the momentum. While
we shall assume that this is the case we realize that
Pepy M2y not He constant, due to the following argument:
High momentum events traversing the spectrometer
generally pass nearly perpendicularly to the spark
chamber plates,while low momentum events may be bent
appreciably by the magnetic field and therefore may
traverse the chambers at angles as lérge as 35° from the

perpendicular, The wide gap chambers are less effi-

cient for these low energy events, {i.e. the spark has
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less of a tendency to follow the ionized path, they become
"s" shaped, Thus these events may be measured to less
precision than the high momentum events. Such a depen-

dence might be represented by

Peom = 20 * ;P * azpz + ... (3)
Assuming that all the coefficients are positive then the
characteristic momentum is greater for higher momentum,
Since we do not know 3153, <. We shall ‘assume that they

are zero and fit a If indeed p. .. is given by (3) we

0
expect an average <pEDM> over the muon momentum spectrum

_ to be dominated by low momentum events, since 70% of the
events are below 15 GeV/c. Thus the assumption that

PcoM is constant means that, when the multiple scattering
data is fitted to theory, the resulting value of Py will be
dominated by low momentum events. We shall henceforth
designate a constant value of PcoM by PapM® the "maximum
detectable momentum" of the spectrometer, Peom = Pupy
only when the measurement error, A¢, §s independent of

momentum, We see that, in general

Pcom < PupM

Now recall the definition of the "effective momentum*,
Pot that momentum which corresponds to the error due
to the optical reconstruction of a muon event and excludes

measurement error fncurred by use of the digitizing
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apparatus. We see that Pe ® PupM only when measurement
error is zero. The relationship between the above three

types of momentum is therefore

Pcom < Pupm £ Pe

We have already estimated Pe in Ch, III. Pcom will be

obtained in a fit to the multiple scattering data, and we

will have then obtained upper and lower limits on Pupu® '

6.5 PREPARATION OF THE DATA FOR ANALYSIS; THE DATA
ANALYSIS e

A certain percentage of the data is contaminated
by "bad" events of various types. For this reason
selection criteria are required in order that only the
clean events be retained for analysis. To this end the
x? momentum determination program of Ch.III classifies

bad events according to the following:

(1) CROSS OVER EVENT - an event which crosses
from one channel of the spectrometer to the
other. Such events undergo a magnetic
field reversal, and therefore are not
analyzable.

(2) INDETERMINANT CHARGE EVENT - an event

which appears to have a different charge
in the top and bottom magnets. This may
be due to a badly scattered event or due
to contamination by an accompanying particle.
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(3) EVENT OUTSIDE THE SPECTROMETER . ap event is
Judged to be "outside the spectrometer if its
position vector does not penetrate both the
top and bottom scintillators of the same
channel. Events of this type are frequently
encountered when particle showers from the
ceiling trigger the apparatus.

(4) SPURIOUS EVENT - an event is labelled“spurious"”
if one or more spark chambers do not fire
for a single event.

A11 events, which were diagnosed as belonging to one of
the above types, were not considered for multiple scatter-
ing analysis. Further, all events with a value of x? > 16
(from tﬁe momentum determination program) were considered as
candidates for remeasureﬁents. For a 7 degree-of-freedom
fit this value of x2 corresponds to a 95% probability =~
that, upon reheasurement. these events would yield a
smaller value of 2.

| After the above selection criteria were applied to
13,000 muon events approximately 8,000 remained. A x2-fit
to this remaining data was made using eq. 5.3.6.1. The
fit parameters used were

N, = normalization, used to scale the ordinate
of the multiple scattering density.

0, = 2 scale factor for a, the abscissa of ti.e

multiplé scattering density.

Peom ™ the characteristically determined momentum,
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The results of the fit are shown in Fig. 6.1, The resql-
tant fit parameters were: No = 1,01 ¢ .01, 05 = .97 2 .03
and pypy = 47.3 ¢ 6.6 GeV/c. This value of p.p, 15
unexpectedly low, perhaps indicating that the data is
siil] contaminated by some source yet to be accounted for.
Further ' investigation indicated that a number of evénts
contained knock-on electrons in one or more spark chamber.
If, in the measuring process, a particle is judged to be

a muon, but is in fact an electron, then a "bad" event
results. We conclude that knock-on electrons are a
source of contamination. An additional run was made with
all knock-on events removed. The res&lt of a fit to

this data is shown in Fig. 6.2. Again N, and oo fit
sufficiently close to 1{(as they theoretically should) and
PMDM increases to 98.9 + 23.8 GeV/c. The data of Figs. 6.1
and 6.2 were histogramed using a = % gL. However Fig. 6.3
shows the data histogramed by a = f(p):¢. The data of
Figs. 6.2 and 6.3 is the same except for the method of
ca]cu]ating a. It can be seen that there is very little
difference in the‘histograms. The curve drawn thrdugh

the data of Fig. 6.3 is the same'as that fitted to the
data of Fig, 6.2. Thus either method for calculating a
appears to be just as good, Hoﬁevcr,we point out that

the x2 momentum determination allows events to be selected

on the basis of their value of x2. Thus a = f(p)p¢
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FIG. 6.1 MULTIPLE SCATTERING FIT TO DATA CONTAMINATED BY
KHOCK-ON ELECTRONS

=
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FIG. 6.2 MULTIPLE SCATTERING FIT WITH KNOCK-ON ELECTRONS REMOVED
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FIG. 6.3 COMPARISON OF CURVE OF FIG. 6.2 WITH DATA HISTOGRAMED VIA

a = f(p)pd
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appears to bg‘the preferred method for calculating a.

In conclusion,we state that a x2 fit of the
theoretical multiple scattering density to data from the
AMH magnetic spectrometer has been accomplished. The
resultant fit parameters'were '

' No = 1.00 ¢ ,01

g = 1.03 ¢+ .03
Pcpq = 98.9 & 23.8
with a reduced x? of .87. Theoretically we expect Ny = 1
and o, = 1. The width of the experimentally determined

multiple scattering density, Oexp® ifs given by

%exp ~ %0%%
We conclude that the width of the Moliere multiple
scattering density, O4» agrees well with the experimental
result. Finally the determination of p.py sets a lower
1imit on the spectrometer MDM; taken together with the
determination of the effective momentum, p,, (see
Sec. 3.3.5) we can set an upper limit on the MDM,
resulting 1n.

98.9 GeV/ < 310 GeV/c

A ¢ X Pyou
Uncertainties in the behavior of measurement error as a
function of momentum prevent a more precise determination

of the spectrometer }MDM.
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We emphasize here the important role that measurement
error plays in our results. Fig. 5.)7 compares the corrected
Mo!izre density for no measurement error (pcnu = »), to the
corrected Mbliare density which 1nc1bdes measurement error
(pCDM = 100 GeV/c). We see that the introduction of mea-
surement error spreads out the multiple scattering distri-
bution, increasing {ts rms width. If measurement error
is not included in our analysis anomalous results are en-
countered when theory 1s compared to the data {.e. the rms
width of the data is about 10% greater than what theory
predicts. This {ncrease {n width 1s accounted for only
when measurement error {s included in our analysis. As
we have seen before, the fnclusion of measurement error
results in an excei1ent fit to the data (Fig. 6.2). We
conclude that the Moligre theory accounts for the observa-
tions made with the AMH magnetic spectrometer. .

Several observers have examined their data for

the effects of finite nuclear size2 6, 8. which 1s accounted

15 2

for theoretically by Cooper and Rainwater Bhattacharyya
and Meyer et al.s report good agreement with the theory

of Cooper and Rainwater. Physically, finite nuclear size
“cuts off" the single scattering cress section at large
angles, resulting in a reduction in the height of the
"tafl" of the multiple scattering distribution. No attempt

has been made to account for finite nuclear size in our
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analysis. The primary reasons for this omission are:
1) the relatively small number of events analyzed in
the experiment, aﬁd 2) the lack of complete understanding
of the momentum dependence in the measurement error, A4,
Thus, this uncertainty in fhe data in the region of large
a means that a search for effects due to finite nuclear
size may not be meaningful. Also, the large amount of com-
puter time required for an additional analysis (40 hours
of UNIVAC 1108 time were used for the analysis presented
in this dissertation) precludes closer investigation
of the data at this time. .

A modification to the theory of Cooper and Rainwater
(similar to the modification of the Moliere theory in
Ch. V), to account for magnetic spectrometer observations,
has been accomplishéd and will be reported on in a later

publication.
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APPENDIX 1

THE COSMIC RAY MUON MOMENTUM SPECTRUM

The maximum likelihood technique was used to fit

cosmic ray muon momentum spectrum to a two parameter

phenomenological model in N.'Fz

Y-1g
I(pIN.Y) = N p(p)(prap)”Y [W]E(p)

where

N

T ™ £ O

normalization parameter
observed muon momentum

spectral exponent

30 GeV/c

ratio of muon to pion mass, .76

jonization momentum loss of the muon in the
earth's atmosphere

spectrometer efficiency function, the ratio
of the geometrical factor at momentum p to
the geometrical factor at p = o,

muon survival probability

(m
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APPENDIX 11

CORRECTION OF THE COSMIC RAY MUON
SPECTRUM FOR MULTIPLE SCATTERING
The cosmic ray muon spectrum described in the
previous appendix must be corrected for fhe effects of
multiple scattering. Thus we introduce the "total angle
spectrum”, I(¢TM|N,Y), corresponding to the measured

momentum spectrum I(p|N,Y). Here as we have previously

seen,

P=5— (1)
®tM
Likewise we introduce the "magnetic bending angle
spectrum", I(@BINO,YO). which corresponds to the actual

momentum spectrum I(p_IN_,y ). Also we have

- K |
Po " 3, . (2)
The angular spectra are related by
o

where fTM(¢TM|¢B) i; the Noliére total angle density given
by

florylop)

| ‘ Y
1 = O qy-tgdy] T4 *43021 x_1

/2n0n¢8 ° Ve g 9g

where
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. 2172
. = [oz . {Ai]]
n . ¢B
The angle A¢ corresponds to the “characteristically deter-

mined momentum®, Pcom® of the spectrometer:

k . .
pCDM - -A—¢. (5)

Thus the measured cosmic ray muon spectrum is a function

of PcoM Just as the multiple scattering density is a
function of Pcon®
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