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ABSTRACT

The multiple scattering of cosmic ray muons in 

a magnetic momentum spectrometer has been investigated 

both theoretically and experimentally. Theoretically, 

the multiple scattering theory of Moliere has been 

modified to account for observations made with magnetic 

spectrometers. Experimentally, 8000 muon events have 

been analyzed in the momentum region 2.5 GeV/c to 200 

GeV/c for a target thickness of one meter of iron. 

Good agreement is found between the theoretical and 

experimental results.
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CHAPTER I 

INTRODUCTION

This dissertation is devoted to the investigation 

of the multiple scattering of cosmic ray muons In large, 

solid iron, magnetic momentum spectrometers. The motiva

tion for this research has a dual purpose: (1) magnetic 

spectrometers allow multiple scattering to be Investiga

ted at far greater energies and target thicknesses than 

those examined previously, and (2) precise, accurate 

measurements of the cosmic ray muon momentum spectrum 

require an understanding of multiple scattering in mag

netic spectrometers.

We shall be Interested primarily in a two-fold 

problem: (1) the theoretical investigation of the be

havior of multiple scattering in magnetic spectrometers, 

and subsequently the modification of existing theories 

to account for spectrometer observations, and (2) the 

comparison of the theoretical result with experimental 

data. We do not imply here that multiple scattering, 

a clearly defined physical phenomenon, occurs differently 

in one experimental appratus as compared to another. 

What we do Imply Is that we shall interpret multiple 

scattering In spectrometers by means of a different approach 

the reason for this approach will not become clear until the 

first section of Chapter V, after discussions on the
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experimental apparatus and the theory of multiple 

scattering. Our course of action will be to Introduce, tn 

subsequent chapters, the following topics:

Chapter II - A description of the experimental 
apparatus

Chapter III - Data reduction and analysis 
techniques required for an investigation 
of multiple scattering

Chapter IV - A description of the Moliere 
theory of multiple scattering

Chapter V - The modification of the Moliere 
theory to account for multiple scattering 
in solid iron magnetic spectrometers.

Chapter VI - Comparison of theoretical and 
experimental results.

Table 1.1 gives a review of several experimental 

results on multiple scattering. We shall refer back to 

this table at a later time.

In this work we often speak of a "probability 

density" as being a function, f(x), with the properties 

f(x) > 0 ; f f(x)dx ■ 1

The function f(x) is often referred to as a "probability 

distribution"; however, we shall use probability density 

or "density" to refer to functions of this type.
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TABLE 1.1 MULTIPLE SCATTERING PAPERS



TABLE 1.1
MULTIPLE SCATTERING PAPERS

AUThOR(S)
INCIDENT 

BEAK

INCIDENT 
BEAM 

ENERGY
TARGET 

MATERIAL
TARGET 

THICKNESS
NUMBER OF 

EVENTS RESULTS

Hungerford^ 
et al. 
(1972)

Protons 600 MeV C,AL,Cd,Pb <20 gm/cm2 *200,000 Mol 1 fere fits well except 
at large angles due to 
nuclear force

2 
Bhattacharyya 
(1970)

Cosmic Ray 
Muon

1.7 GeV ■ Copper 10.7 gm/cm2 4000 Compares to Cooper and 
Rainwater

3
Ayre ct al. 
(1973)

Cosmic Ray 
Muon

10-70 GeV Iron *3000 gm/cm 10,000 Investigates only RMS 
scattering displacement, 
finds agreement

4 
Torsti 
(1973)

Cosmic Ray 
Muon

10-100 GeV Iron *3000 gm/cm2 10,000 Investigates only RMS 
scattering displacement, 
finds agreement

Whitt--''.ore & 
Shut*- 
(1952)

Cosmic Ray 
Protons 4 
Muons

1-4.8 GeV Lead *70 gm/cm2 • Moliere fits well

Meye- et al.6 

(1953)
Cosmic Ray 
Muons

<1 GeV Pb,Sn,Fe 27 gm/cm2 10,000 Agreed with Cooper and 
Rainwater

Eich:el7 
(1953)

Protons <4.8 MeV Al,N1,Ag,Au *mg/cm2 • Agreed with Moll fere

Lloyc S 
Wolf:ndale° 
(1955)

Cosmic Ray 
Muons

<2 GeV Pb,Fe 50 gm/cm2 2600 Agreed with Moll fere
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CHAPTER II

THE EXPERIMENTAL APPARATUS

2.1 THE MAGNETIC SPECTROMETER

The multiple scattering of cosmic ray muons has 

been investigated with a magnetic momentum spectrometer, 

which is the heart of a collaborative effort in cosmic 

ray physics between the University of Houston and Texas 

A&M University. The Instrument is operated at the 
9 

Airforce annex near College Station, Texas. Bateman 

has given a detailed account of the spectrometer and the 

interested reader is referred to his work. Here we only 

briefly review the operation of the Instrument.

A schematic of the apparatus is shown in Fig. 2.1. 

The Instrument consists of three basic elements: (1) solid 

iron magnets, (2) plastic scintillators and (3) wide-gap 

spark chambers. The magnets are constructed of 1.27 cm 

laminae of low-carbon soft steel of high permeability; 

the magnets weigh a total of about 8 tons. They are 

gapless d.c. electromagnets and their construction is 

somewhat like that of large transformers. The magnetic 

field of each magnet was measured using a Grassot fluxmeter 

connected to search coils placed uniformly throughout each 

magnet volume. The average measured magnetic field was 

17,4 kilogauss and was uniform to within 1.5% throughout 

the entire volume of the iron. A magnetizing current of
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FIG. 2.1 THE MAGNETIC SPECTROMETER TELESCOPE



TOP SPARK 
CHAMBER

TOP 
SCINTILLATOR

FIRST
MAGNET

____________
| SN1L | SN1R 2.54cm

♦-30.5cm—» ♦

mt । MIR
♦

11.3cm

SECOND
MAGNET

MIDDLE 
SPARK 
CHAMBER

BOTTOM
SPARK 
CHAMBER

10cm

244cm



2.1.3

11 amps was used; however there is little dependence on 

current in the highly saturated operating region. The 

total thickness of all the magnets is 86.6 cm.

In order to detect the passage of a muon through 

the instrument two plastic scintillators (of dimensions 

2.54 cm X 30.5 cm X 61 cm) are placed immediately above 

and below the magnet sections. Acrylic plastic light 

pipes couple both ends of each scintillator to photo

multiplier tubes which detect the passage of fast 

charged particles. The scintillator planes define a 

"telescope" which is sensitive only to particles travers

ing both scintillators (SN1R and SN2R in Fig. 2.1) and 

all three magnets (MIR, M2R, M3R). A two-fold coincidence 

between both scintillators in a telescope results from 

the passage of a muon, the only known charged elementary 

particle which can traverse a meter of iron. Thus pene

tration of both SN1R and SN2R by a muon generates a 

coincidence which triggers the voltage pulse to the spark 

chambers, allowing the muon sparks to be subsequently 

photographed.

The three spark chambers SI, S2 and S3 are 

constructed of polished aluminum plates (of thickness 

.318 cm and area 1 m2 which are separated by 10 cm 

gaps. The sides of the chambers are formed from 

transparent acrylic plastic 1.27 cm thick. The com- 
I 

plete unit forms a gas-tight module which is
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FIG, 2.2 SPECTROMETER CONTROL SCHEMATIC
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continuously flushed with helium-isobutane (99.05% helium 

and .95% isobutane) at slightly above atmospheric pressure. 

The top and bottom plates of each chamber are grounded to 

the spectrometer frame while the center plate is Insula

ted from the others. When a voltage pulse is applied to 

the center plate the chambers become large capacitors 

which subsequently break down along the ionized tracks 

left behind by charged particles. The high voltage 

necessary for the operation of these spark chambers Is 

applied with an eight-stage Marx generator (a device con

sisting of high-voltage capacitors, spark gaps, and 

resistors which allows the capacitors to be charged In 

parallel and then to be discharged in series).

When a particle traverses either the left or right 

channel of the spectrometer (labeled L and R in Fig. 2.1) 

a signal is generated which initiates operation of the 

system. This trigger pulse (caused by a two-fold 

coincidence between both scintillators of the channel) 

nominally occurs within 200 nanoseconds of the particle 

traversal (see Fig. 2.2). Subsequently the Marx 

generator is fired, the camera is advanced and the clocks 

are illuminated. A 1.48 second dead-time is built into 

the system so that no other trigger can occur for this 

length of time; this allows time for the Marx generators 

to recharge and.the cameras to advance.
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FIG. 2.3 CONFIGURATION OF SPECTROMETER OPTICAL 
SYSTEM
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The spark images and clock time are recorded by 

two 16 mm cameras, one with film plane perpendicular to 

the magnetic field (which we shall call the "field 

view"), and one with film plane parallel to the magnetic 

field (the "no-field view"). The cameras photograph 

all three chambers simultaneously by means of an optical 

system of mirrors as shown in Fig. 2.3 A roll of 16 mm 

film contains about 4000 events; however, since each 

event is photographed simultaneously in the field and 

no-field views one obtains two rolls' of film, one from 

each view.

2.2 THE DIGITIZING APPARATUS

Each measured muon event is recorded on film and 

must therefore be reduced to digital form for computer 

analysis. To this end an electronic digitizing apparatus 

was designed and built at the University of Houston. The 

apparatus allows the photographed event to be projected 

onto an analysis table (via an overhead mirror) where 

spatial coordinates (x,y) and angle coordinate (6) can 

be simultaneously measured and electronically digitized.

The analysis table is essentially a drafting 

machine with x and y degrees of freedom (see Fig. 2.4). 

The linear motion of the drafting head is facilitated 

by linear bearings mounted in cast aluminum blocks which 

roll on two parallel steel rods. The result is a drafting 

machine of extreme rigidity and accuracy. Each axis is
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FIG. 2.4 UH TRACK MEASURING APPARATUS
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/ . X

connected mechanically (via rack and pinion) to an optical 

encoder, an electronic device which generates digital 

pulses when its input shaft is rotated. The encoders 

. used for the x and y axes have 2X2 ■ 4096 pulses/revolu- 

tion. These pulses are summed electronically by binary 

coded decimal (BCD) up-down counters. The net x or y 

axis displacement Is a number In "counts" where each 

count Is .00146 cm. In a similar way the digitizer can 

measure angles Via a geared-down encoder with 2le ■ 

65,536 counts/revolution (1 count = .1 milliradian).

Fig. 2.5 shows a simple schematic of the digitizing 

apparatus. The optical encoders for x,y and 0 provide 

digital waveforms to electronic circuits which sum total 

coordinate displacements in BCD up-down counters. The 

displacements are then stored into 20 bit buffers at a 

10 kHz rate. Each coordinate can be read directly by 

nixie tube displays. Depression of x,y or 0 buttons 

mounted on the main drafting head results in the initia

tion of a sequence of logic which punches the correspon

ding x,y or 0 coordinate onto paper tape. Additional 

information about an event may be punched onto paper 

tape via a set of 20 thumb switches mounted on the main 

console. The measuring procedure,which has been deve

loped for the digitizing of muon events,is presented in 

Sec. 3.3.1; operation of the apparatus is described in 

that section.
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FIG. 2.5 SCHEMATIC OF DIGITIZING APPARATUS
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CHAPTER III
DATA REDUCTION AND ANALYSIS

3.1 INTRODUCTION

This chapter covers the data reduction and analysis 

techniques which were used to analyze single muon events 

from the AMH magnetic spectrometer. Specifically the 

following topics are discussed: (1) the spectrometer 

optical system, (2) the reconstruction of a muon trajec

tory into real space, and (3) determination of the muon 

momentum, charge, and scattering angle,

3.2 AN OVERVIEW OF THE RECONSTRUCTION OF A MUON TRAJEC
TORY INTO REAL SPACE

While the reconstruction of a muon trajectory into 

real space requires a thorough knowledge of the spectro

meter optical system, we shall ignore, for the moment, 

the details of the optics and consider only the essentials 

of the reconstruction process.

Raw data in the form of muon spark Images are 

photographed in orthogonal views, one parallel, the other 

perpendicular to the magnetic fields of the solid iron 

magnets. The optical reconstruction process provides a 

means of determining, in real space, the position and 

angles of the muon spark,given the spark Images on film, 

and a knowledge of the optical parameters of the instru

ment. Figure 3.1 is a simplified schematic of the 

spectrometer where only the elements necessary in the 

reconstruction process are shown. Here the entire
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FIG. 3.1 RECONSTRUCTION OF A MUON TRAJECTORY
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optical system (i.e. lenses, cameras, mirrors, etc.) is 

represented by a single lens and a film plane for both 

the field view (film plane perpendicular to the magnetic 

field) and the no-field view (film plane parallel to the 

magnetic field). All components of the spectrometer have 

well-defined positions in the spectrometer coordinate 

frame which is labeled X$, ¥$, Zs. Thus accurately 

measured positions and orientations of the magnets, spark 

chambers, lenses, etc. are known In this coordinate frame 

fixed relative to the spectrometer.

When a muon traverses the spectrometer, the resul

tant spark is imaged through the optical system (I.e. 

through the fictitious "lenses" of Fig. 3.1) onto the 

field-view and no-field-view film planes. The track 

image on the film plane is a line which is well-defined 

in the spectrometer frame. This 1ine, together with the 

point occupied by the lens, determines a vertical plane 

in space containing the muon spark. The two vertical 

planes from the field and no-field view images Intersect 

inside the spark chamber along the muon spark; thus the 

intersection of these planes defines the muon trajectory 

inside the chamber.

In light of the above discussion it should be 

clear that,to reconstruct a muon track into real space, 

one must execute the following steps:
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(1) Measure the coordinates of the track In both ortho

gonal views by means of the scanning table described 

In the previous chapter.

(2) From a knowledge of the positions and orientations of 

the components of the optical system.determine the 

equations of the lines defined by the track Images
on the film planes.

(3) Use the line equations found above,together with the 

lens points, to determine two vertical planes whose 

Intersection is the muon spark.

(4) Determine the downward-pointing unit vector defined

by the intersection. This vector Is the unit momentum 

vector of the muon.

(5) Determine the point of intersection of the muon 

trajectory with the center spark chamber plate. 
This point defines the position of the muon in the 

chamber.

The above procedure must be repeated for each of 

the three spark chambers. One obtains finally three posi

tion vectors and three unit momentum vectors above, 

between,and below the two solid iron magnets; thus the 

muon spark images have been reconstructed into real 

space.

The next step is to determine the muon momentum 

by fitting a "best” trajectory through the three muon 

positions and unit momentum vectors. However, before 

discussing momentum determination we shall cover, in the 

following sections, the details of optical reconstruction.
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This will Involve a considerable elaboration on the five 

steps discussed only briefly above.

3.3 ANALYSIS OF THE SPECTROMETER OPTICS

3.3.1 MEASUREMENT OF MUON EVENTS

The muon data is recorded on two rolls of film, 

one for the field view, the other for the no-field view. 

For every muon event there is a frame on the field-view 

roll and a corresponding frame on the no-field-view roll. 

Each film roll consists of about 8 "batches" of approxi

mately 500 events each. The batches vary in length from 

20 minutes to 59 minutes depending upon zenith angle. 

This is due to the fact that the cosmic ray muon inten

sity is a decreasing function of zenith angle; thus a 

longer time is required to obtain 500 events per batch, 

at larger zenith angles. The beginning of each batch 

is characterized by several frames of fiducial wires; 

also the film roll number, batch number, zenith angle 

and azimuth angle are provided.

Before measuring muon data with the analyzing 

table the electronic counters are "reset" so that all 

measurements (x-y and 6) are positive definite. This is 

accomplished by moving the drafting head as far down and 

to the left as possible; additionally the angle goniometer 

Is rotated clockwise as far as possible (about 45° below 

horizontal). The RESET button on the analyzer console
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Is then depressed, setting all counters to zero. This 

configuration of the apparatus defines the "table 

coordinate frame", which has axes Xy, Yy, and Zy. The 

Xy and Yy axes are defined by the analyzer X and Y 

axes (see Figure 3.2). The Zy axis points out of the 

table.

Another coordinate frame of interest Is the 

"digitizer coordinate frame" designated by Xq, Yq and Zq. 

This frame is defined relative to the image of the fidu

cial wires at the beginning of a batch; here the edges 

of the spark chamber plates are also visible. From 

Figure 3.2 we see that the digitizer coordinate frame 

has its origin (and Xq-Yq plane) in the plane of the 

table at the point where the images of the center 

fiducial wire and the center spark chamber plate cross. 

The Xp-axis points to the right along the center fiducial 

wire. The YD-ax1s points upward along the center plate 

of the spark chamber.

In addition to the fiducial wires and spark 

chambers, the clock is also visible at the beginning of a 

batch. It is now in order to define a "clock coordinate 

frame" which is labeled Xc» Yc, and Zc (see Figure 3.2). 

The clock frame has its Xc-Yc plane in the plane of the 

analyzer table. Its origin lies at the 30 second mark 

on the clock. The Xc-axis points to the right through
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FIG. 3.2 TABLE, DIGITIZER, AND CLOCK 
COORDINATE FRAMES
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the 0 second mark on the clock and the Yc-axts points 

upward In the plane of the table, perpendicular to 

Xc. The Zc axis points out of the table. At a later 

time the relative positions and orientations of the three 

coordinate frames presented here will be developed, l.e. 

the table frame, digitizer frame and clock frame. Addi

tionally a detailed analysis of the spectrometer optical 

system, obtained by directly measuring the fiducial 

wires, will be discussed. We now describe the measuring 

procedure of a single event.

Figure 3.3 shows how a typical event appears when 

projected onto the analyzing table. Arranged left to 

right on the film are the bottom, middle and top spark 

chambers. While the spark chambers are not visible their 

center plates are easily located by the central gap In 

each muon spark. Normally, a single muon track appears 

In each chamber (however up to 9 tracks per chamber have 

been observed); the Image of the clock Is also visible. 

The fiducial wires are not Illuminated during a muon 

event and are thus not visible.

The measurement of a single event consists of the 

following four steps:

(1) Entering the "event definition1* Into 

the console thumb switches, l.e. number 

of particles present, time on the clock, 
whether knock-on electrons or particle 
showers are present, etc.
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FIG. 3.3 MEASUREMENT OF AN EVENT
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(2) Measuring two points and an angle

। on the clock.

(3) Measuring a point and an angle for 

each particle observed.

*! (4) Depressing the "END" button on the

console.

What follows is an elaboration on the above points.

The event definition of step (1) above is entered 

/ into a 20-digit thumb switch which is on the analyzer 

console. The following inputs are required.

(a) A two-digit identification number designa

ting the person operating the machine.

(b) Two-digit bottom chamber particle defi

nition, XY; X » number of particles in 

the bottom chamber, Y = number of the 
particle judged to be the muon (numbered 

from the highest particle in the chamber).

(c) Two-digit middle chamber particle defini
tion, defined as in (b) above.

(d) Two-digit top chamber particle definition, 
defined as in (b) above.

(e) Four-digit information code. This code is 

a number from 1-6 which is used to 

characterize the type of event being 

analyzed. Ninety per cent of all events 
were classified as "normal" (informa

tion code 0001); these are events in which 

only one muon is observed in each spark 

chamber. Occasionally more than one muon 

were observed and the event was then
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judged to belong to one of the categories 

of Table 3.1. These classifications 
should not be taken literally (a "shower 

. event" may not be discernable from a 
"nuclear event"), but are used primarily 

as a check on the analyzing personnel 
and as rough estimates of the number and 

types of events In the data.

(f) Six digit time code, XXYYYY. XX » time In 

minutes on the event clock, YYYY ■ time on 

the clock In centl-seconds, i.e. a time 

of 231960 Is 23 mln. 19.6 sec.

The second step In the track measuring procedure

Is measurement of the clock coordinates. In order to 

determine the position and orientation of the "clock 

coordinate frame" we measure the X-Y coordinates of the

0 and 30 second marks on the clock (see Figure 3.3).

Also the angle that the clock diameter makes through the

0 and 30 second marks Is measured.

To accomplish the third step In the measurement 

procedure, one point (X-Y) and one angle (6) are measured 

on each particle track. This is sufficient to determine 

the line associated with each track.

3.3.2 GEOMETRY OF THE OPTICAL CONFIGURATION

The magnetic spectrometer has six distinct optical 

systems, one for each spark chamber for both the field 

and no-field views. Each optical system contains the 

following elements:



TABLE 3.1

PARTICLE EVENT INFORMATION CODES



INFORMATION 
CODE DESCRIPTION

EXAMPLE OF 
EVENT TYPE

OOO1 "NORMAL EVENT" "" __
0002 "SPURIOUS EVENT" NO PARTICLES

0003 "NUCLEAR EVENT" ._ _

0004 "SHOWER EVENT"
******** -i '■*

0005 "KNOCK-ON EVENT" 1 
i\ 

M
\

0006 "PAIR PRODUCTION 
EVENT"
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(1) spark chamber.
(2) mirrors to deflect the optical path 

into the camera.
(3) lens and film plane of the camera.
(4) lens and light source of the film projector 

used in the data analyzer.
(5) overhead mirror of the data analyzer.
(6) measuring table.

Analysis of all the above optical elements is not a 

simple task nor even a desirable one. We do not require 

knowledge of the effects of each of the optical elements; 

only the total effect of all the elements is required. 

In this light we point out that an optical system may 

(1) translate, (2) rotate and (3) generate non-linear 

effects such as “barrel", "astigmatic" , and "pin cushion" 

distortions. Normally we do not expect an optical system 

(if adequately designed and built) to be a source of 

non-linear distortions. Even though an optical system 

is never completely linear, we expect the non-linearities 

to be small. Thus, we may assume the optical systems of 

the spectrometer to be linear to first order. This allows 

the entire optical system to be replaced by a single 

simple lens and a "film plane" (which here we take to be 

the plane of the analyzing table). We have previously 

shown this simplified view of the optics in Figure 3.1. 

In Figure 3.4 the optical reconstruction geometry 

is shown where the fictitious "lens" of our optical system 

is located by the vector 7. ... In the following 
lens
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FIG. 3.4 OPTICAL RECONSTRUCTION GEOMETRY
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development all vectors and matrices are assumed to be 

relative to the "spectrometer coordinate frame" labeled 

Xs, Ys, Z$. This frame has its origin and Xs-Y$ plane 

in the middle plate of the bottom spark chamber. All 

three spectrometer axes are parallel to the edges of the 

solid iron magnets. The spectrometer is contained in the 

first octant of this frame (see Figure 3.1). The Y$-axis 

is parallel (or antiparal1 el) to the magnetic field. The 

Zs-axis points upward along a magnet edge, and the X$ 

axis completes the right-handed triad. The "fiducial 

coordinate frame" (Xp.Y^.Zp) has axes parallel to the 

spectrometer-frame axes. Actually there are two sets of 

fiducial axes, one for the field view, the other for the 

no-field view. The field view set is obtained by trans

lating the spectrometer axes in the direction of -Y 

through a distance sufficient to place the Xp*Zp plane 

in the field view fiducial plane (see Figures 3.5,3.6) 

In a similar way the no-field view fiducial frame 

(XFN,YFN,ZFN^ d1sP1aced 50 that the YFN"ZFN plane 

lies in the no-field view fiducial plane (see Figures 

3.5,3.6).

Next in order is the "wire coordinate frame" 

(labeled XW>YW»ZW) which also is defined differently 

in the field and no-field views. This frame has its 

origin in the plane of a center chamber plate with Xw-Yw 

plane in the fiducial plane as shown in Figure 3.5. The
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Xw-axis is parallel to the Z$-axis and lies along the 

center fiducial wire.

Another coordinate frame of interest is the "image 

reference frame", labeled (xr»Yr»Zr) in Figure 3.4. To 

define this frame it is assumed that the lens position, 

^lens* we^ known. The origin of the image reference 

frame is then found by

y . y ♦ fn ♦ al (Xlens * ^wo^ ...
XR0 * Xwo + (D + d) 75-------------f-T C1)

where t is the position vector of the wire frame origin, 

D is the distance from the wire frame origin to the lens, 

and d is the distance from the lens to the origin of the 

image reference frame. All of the variables on the right 

of.equation (1) are measured ones except for d. This 

parameter is related to the optical magnification and 

must be determined from a xz fitting procedure. The defi

nition of the image reference frame is now clear. Its 

origin lies at the point defined by equation (1) and its 

orientation is found by rotating the wire frame through 

an angle of 180° about the Zw-axis. The motivation behind 

the above definition comes from the fact that simple lenses

(1) rotate and (2) translate images by conic projection. 

This means that all points in space which lie on a line 

through the lens point must map onto a single point on 

some specified plane. Here the specified plane (which we
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/ . X

shall call the image reference plane) is parallel to the 

1 fiducial plane and a distance (s + dM) from it (see 

Fig. 3.4). Here s is the perpendicular distance from 

f the fiducial plane to the lens, and dM 1$ the distance 

from the lens to the image reference plane. Thus the 

image reference frame Xr-Yr plane is the conic projection 

of the wire frame Xw-Yw plane onto the image reference 

/ plane. In the same way the fiducial plane maps onto the 

image reference plane by conic projection. Since the 

fiducial plane is parallel to the image reference plane 

the fiducial wire images must be parallel and equally 

spaced. If s f d^ then we expect the image of be magni

fied (dM > s) or demagnified (dM < s) and thus the 

spacing between the Imaged wires and the wires themselves 

is not the same. In any case the spacing between the 

wire Images leads to a geometrical derivation of the 

parameter dM (or equivocally the parameter, d), (see 

section 3.3.4).

Now consider what happens when the fiducial wires 

are mapped onto a plane not parallel to the fiducial 

plane. In this case the fiducial images are not 

parallel or equally spaced. This is, in fact, what we 

see when the fiducials are projected onto the analyzing 

table. If the plane of the analyzing table were parallel 

to the fiducial plane (optically speaking, of course)
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then all fiducial Images would appear parallel and 

equally spaced In the absence of non-linear effects.

The image reference plane and the plane of the analyzing 

table would be superimposed. Likewise the digitizer 

coordinate frame and the image reference frame would 

coincide. Because the fiducial wires are not observed 

to be parallel and equally spaced the digitizer and 

( image frames must be related by a rotation matrix
/

describing their relative orientations. This leads to 

the matrix equation

[SD] = [RD3ESR] (2)

where

[SD] = spectrometer-to-digitizer rotation 
matrix

[RD] « image reference-to-digitizer rotation 
matrix

[SR] = spectrometer-to-image reference frame 
rotation matrix

It is clear that [RD] is a unit matrix when the fiducial 

Images are parallel and equally spaced. In reality we do 

not expect [RD] to be much different from unity because 

the fiducial Images are observed to be nearly parallel 

and equally spaced.

It will be shown in a later section that the 

matrix [RD] may be represented by three infinitesimal 

rotations about the XR, YR, and ZR axes through angles
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6X 6y, and 02. The angles are adjustable parameters 

(along with d) which must be determined by a x2 fitting 

technique to best describe the conic projection of the 

fiducial wires onto the digitizer plane. How these four 

parameters affect the fit Is easily seen. Physically 

If the parameter d Is varied, then the magnification 

(and also the distance between the Imaged fiducial wires) 

must change. When the angle 6y Is non-zero the fiducial 

Images become non-parallel and when 6X Is non-z.ero the 

spacing between the fiducial lines becomes unequal. 

Finally If ez Is non-zero, then the fiducial Images are 

rotated In the digitizer plane. It will be shown In 

later sections how these results may be determined 

quantitatively. First, however, expressions will be 

developed for the lens positions. Additionally estimates 

of the four parameters d, ex, 0y, and ez will be made. 

Then these estimated results will be used as starting 

values In a numerical x2 fitting procedure which deter

mines the set of (d, 0X, 0y, 02) best describing the 

optical projection of the fiducial wires onto the digitizer 

plane for each of the six optical systems of the spectro

meter. If any non-linear distortions are present in the 

optics, then discrepancies (l.e. deviations In the sense 

of a x2 fit) will appear In the projection of the 

fiducial wires onto the digitizer plane.
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3,3.3 DETERMINATION OF THE LENS POSITION VECTOR

Previously the lens position vector was used to 

determine the origin of the Image reference frame. It 

was assumed that this vector was known, l.e. a measurable 

quantity of the optical system. Furthermore It Is now 

assumed that the lens lies In the plane of the center 

plate of a spark chamber and that the lens Is a distance 

s from the fiducial plane (see Figures 3.5 and 3.6). The 

distance s Is taken to be the same as the true distance 

that the real camera lens lies from the fiducial plane. 

Thus the lens position can be described In terms of a two 

dimensional vector, fi. In the Yw-Zw plane of the wire 

coordinate frame. This vector makes an angle 6 with the 

Zw-ax1s which was measured by means of a laser beam. 

The laser was mounted so that (1) the beam was parallel 

to a spark chamber center plate and as close to the plate 

as possible without Intercepting or reflecting the light,

(2) the beam Intercepted the center fiducial wire and

(3) the beam Intercepted the camera lens. Thus the laser 

beam follows the "optical path" of the spectrometer for

a chosen spark chamber. Now define a new set of ortho

gonal axes, designed "optical axes" (Xo,Yo»Zo), which 

are parallel to the magnet edges and Intercept at the 

geometrical center of the magnet (see Figures 3.5 and 

3.6). The distances AX and AX' were directly measured
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FIG. 3.5 FIELD VIEW LENS 
COORDINATE GEOMETRY



FIELD VIEW
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FIG. 3.6 NO-FIELD-VIEW LENS 
COORDINATE GEOMETRY



FIELD 

VIEW

NO-FIELD VIEW 
FIDUCIAL PLANE
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where in the field view

AX - distance from the Yo~Zo plane to 
the laser beam as measured along 
the X0-axis

AX‘» distance from the Yo-Zo plane.to 
the laser beam as measured along 
the Xp axis

The angle A j$ then found, in the field view, from

TAN 6 - --X- (field view) (3)
Ya ♦ Yfid

where, from Figure 3.5:

YA ■ magnet half-width in the no-field view

^fid ■ distance from the magnet face to the 
fiducial plane in the field view

Correspondingly in the no-field view

TAN 6 » -A----- ?X-- (no-field view) (4)
XA * xfid

where, from Figure 3.6:

X^ ■ magnet half-width in the no-field view 

xfid ■ distance from the magnet face to the 
fiducial plane in the no-field view

Finally the distance D (length of the vector D) was 

measured by stretching a string along the laser beam 

path and then measuring the length of the string. Values 

of all of the measured optical parameters are presented 

in Table 3.3.

The lens position vector in the field view may 

be found from (again see Figure 3.5)
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TABLE 3.2

MEASURED OPTICAL PARAMETERS



a.) FIELD VIEW DATA

SPARK CHAMBER D(cm) TAN 6 AX(cm) Zsc(cm)

TOP 330 .014 2.08 244.039

MIDDLE 218 .0039 .615 126.683

BOTTOM 317 .0048 -.076 0.0

b.) NO-FIELD VIEW DATA

SPARK CHAMBER D(cm) TAN 6 AX(cm) Zsc(cm)

TOP 325 .0026 .160 244.039

MIDDLE 231 .0000 .150 126.683

BOTTOM 347 .0087 .524 0.0
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X1fv - Xwo f D (5)

where jtw0 1s the position of the wire frame origin In the 

spectrometer frame:

Xw0 = (XA " AX', - Yf1d, Zsc) (field view) (6) 

where Z$c is the spark chamber Z-coordlnate. Also

5 - (DSIN6, - DC0S5, 0) (field view) (7)

Thus the field-view lens vector is

^Ifv " [(XA-AX')+DSIN6,-Yfid-DC0S6. Zsc] (8)

For the no-field view we have

Xwo B C-Xfid’ yA + AX', Zsc) (no-field view) (9)

- (-DC0S6, -DSIN6, 0) (no-field view) (10) 

Finally the no-field view lens vector is

*lnv “ [-Xf1d-DC0S6,(YA+AX')-DSIN 6, Zsc] (H)

3.3.4 ESTIMATION OF THE MAGNIFICATION PARAMETER

In section 3.3.2 the position vector of the origin 

of the image reference frame was developed (eq. 3.1). It 

has subsequently been necessary to determine the lens 

position vector, jt]ens, the position vector of the wire 

frame origin, )two, and the distance from the wire frame 

origin to the lens, D. The parameter associated with



optical magnification, d, will now be considered. From 

Figure 3,7 it can be seen how d and D are related to the 

• distance between fiducial wires in the fiducial plane, 

Wp, and the width between fiducial wires In the digitizer 

plane, Wq. This figure Is a view of the optical geometry 

as seen from above the spectrometer; thus Figure 3.7 Is a 

"top" view of Figure 3.4. In addition to the fiducial plane 

and the image reference plane, the dititlzer plane is also 

shown in Figure 3.7. Recall that If the digitizer orien

tation angles e x, 6 y, 0 z are all zero then the digitizer 

and image reference planes coincide. In this event the 

magnification parameter obtained Is

d ' ST WD (’,Wp u

In actual fact the orientation angles are not zero and a 

more exact relation than (12) 1$ necessary. Because a 

simple optical system can only invert Images we expect 

that 0^-0 (this is consistent with the results of a 

X2 fitting procedure to be discussed in a later section). 

Additionally a rotation about 0y does not change the dis

tance between the fiducial wires along the Yq axis (i.e. 

along the image of the center spark chamber plate). Hence 

if we chose to measure (for the purpose of estimating 

the parameter d) the distance between fiducial wires in 

the digitizer plane along a center spark chamber plate 

then Wq Is not affected by oy and 02. The only angle
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FIG. 3.7 GEOMETRY OF THE MAGNIFICATION PARAMETER



FIDUCIAL
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(2)

where W Is the distance between fiducial wire images in

that

(3)

where the variable definitions can be easily deduced from

Alsothe expanded inset of Figure 3.7.

(4)

where

r
C5)sin e

for W to get:

(6)

where

(7)r » D SIN 6

are used in (8) the

obtainedfollowing result for the magnification parameter is

(8)

sin ex

which affects the determination of d is 6. which is seen

from Figure 3.7. First write

the image reference plane. From the geometry it is seen

S!N 0x

COS 6X

r« « wdsin ox TAN e -

d r" W WyI COS 6X
F L

h « wD cos ex

W-_r
TAN 6 = -E— 

s

d . 2* 
«F

Put (5)

(6) and (7)

WD

into (4) and solve

«P *

s

H * r' 
WD

VIF - r
s

Wp-DSIN 6 
s

In the limit as 6X 

expected.

0 equation (8) becomes (2) as
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3.3.5 CHI-SQUARE FIT TO THE SPECTROMETER OPTICAL 
PARAMETERS

Here we arrive at a method for determining the 

optical parameters (d, 6 , e ,6 ) which we have defined x y z 

previously. In order to accomplish this we need to 

develop the equations which describe the mapping of the 

fiducial wires onto the digitizer plane. To this end 

we may write the position vector, of any point, P, 

in the spectrometer frame as

ts - tD0 ♦ [OS]tD (1)

where 1DO is the position vector of the digitizer frame 

origin ($D0 = ^R(p» the digitizer-to-spectrometer

frame matrix and is the position vector of P in the 

digitizer frame. Here tD0 is given by eq. (3.3.2.1). The 

matrix [DS] is defined by

[DS] - [RS][DR]. (2)

The reference-to-digitizer frame matrix is given by

[RD] ■ [DR]T • [Z][Y][X] (3)

where the matrices [X], [Y] and [Z] are Euler angle rota

tions about the XD, YD and ZD axes respectively and are 

given by

1 0 0
[x] ■ o cos e„ -sin e„

o sin ej cos
(4)
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[Y]
COS 6y 0 —SIN 0y 

0 10
SIN ey 0 COS 8y

[Z]
■ COS 6- SIN 6_ O' 
-sin g; cos g, o

0 1 0 1 1

(5)

(6)

k-ut (4)-(6) Into (3) and obtain

C(6z)C(6y)

[RD] - -S(Gz)C(Gy)

S(Gy)

-C(6z)S(6y)S(6x)
+ s(ez)c(tx)

S(e,)S(6y)S(6x)
* C(6z)c(6x)

C(6y)S(6x)

-C(6zlS(6y)C(6x)
- s(ez)s(^x)

S(ez)S(G )C(GX) 
- shz)s(Gx) x

C(6y)C(6x)

(7)

where S( ) « SIN( ) and C( ) « COS( ).

Inspection of Fig. (3.4) shows that the reference-to- 

spectrometer frame matrix is given by (for the field view)

[RS]
1 0
0
0 0

(8)

Use (7) and (8) in (2) to get, finally, in the field view:

[ds]fv

C(ez)S(6y)S(6x) 
+S(0Z)C(6X)

c(e.)s(ey)c(6x)
+ S(OZ)S(GX)

-c(ez)c(6y)

S(Gz)S(0y)S(6x) 
+C(OZ)C(6X)

-S(0 )S(0 )C(0 )
* ctoz)S(0x)

S(0z)c(0 )
4 /

C(6y)S(0x)

-C(Gy)C(0x)

-S(Qy)
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In the no-field view we likewise find

ctejsteyMex) 
+s(ez)s(ex)

-S(9 z)S(9y)C(9x)
+C(9Z)S(9X)

-C(9y)C(9x)

[DS]^ - C(9z)S(6y)S(9x)
*S(9z)C(9x)

-S(02)S(9y)S(9x)
*C(9z)C(9x)

"•C(9y)S(0x) (10)

-C(9Z)C(9y) S(9z)C(9y) -S(6y)

Eqs. (9) and (10) give us all the information we need to 

calculate the coordinates of a point In space, P, either 

in the spectrometer frame (")($) or the digitizer frame 

(t ) by means of eq. (1).

We now develop a procedure by which we determine 

the conic projection of the fiducial wires from the wire

frame onto the digitizer frame. In the wire frame each 

fiducial wire lies in the xw-yw plane with a slope and 

Intercept 

mw - 0 (11)

bw - yw (12)

Hence we may select two points on some particular wire 

. to be

(o,yw) and (a,yw) (13)

where "a" is an arbitrary distance from the origin. We 

may transform these points to the spectrometer frame for 

the field view
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f f + Aswl Awo
‘ -Yw 

0 
0 (FIELD

^Swl “ ^wo + "Yw 
0

VIEW)

a

(14)

For the no-field-view we have

0
t - ♦

swl wo Yw 
0 (NO

FIELD (15)
X , « X + sw2 wo

0 '
Yw

VIEW)
a

It is clear that the two points on a fiducial wire (given 

by (14) for the field view or (15) for the no-field-view) 

and the lens point, ^lens» define a plane. The intersec

tion of this plane with the digitizer x-y plane defines 

the conic projection of the fiducial wires. Using eq. (1) 

we have the three points which determine the plane defined 

by a fiducial wire and the lens point:

tD1 • [SO] (t -tnA 
wo DO

+ [-Yw.o,o])
(FIELD

tD2 * tso]
wo DO

+ [-Yw.o,a]) (16) 
VIEW)

>D3 " [S0]
lens

^dq)

or

*0! "

*02 "

[SD] ^wo^DO + C0*^*0^ 

^sd^^wo“^do + [°’yw»a^
(NO 

FIELD 
VIEW)

(17)

*D3 [SD] ^Icns'^DO1
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These three points in space determine a plane In the 

digitizer frame

AX+BY+CZ - 1 (18)

where A, B and C are the plane parameters found by 

writing the three points as

^D1 *

^D2 ’ tX2,^?,z2^

^D3 * ^X3,y3,Z3^

Then
2^1 Z2“Z1 

y3'yi Z3-Z

2"Z1 X2‘X1 

Z3"Z1 X3-X 

2-Xl y2-yi 

X3"XI y3-y

(20)

D ■ Ax1 + By1 + Cij

The line of Intersection of (18) with the digitizer 

plane Is given by

AX + BY -,1 (21)

so that
v  AX + 1Y ■ -y T (22)

Thus the fiducial wires mapped onto the digitizer plane 

have slopes and Intercepts:
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mD ■ (23)

bD ■ 1 (")

The preceding equations leading up to (23) and 

(24) allow the fiducial wires to be conically projected 

onto the digitizer plane provided we select appropriate 

values of the free parameters (d,9 ,0 ,0_). Thus these A / 4

optical parameters can be determined by measuring the 

fiducial wires in the fiducial plane and in the digitizer 

plane; then a xz fitting procedure can be used to deter

mine the "best" set of the parameters for a particular 

optical system. This fitting procedure is discussed in 

the following paragraphs.

There are six optical systems (2 views and 3 

spark chambers). The fiducial wires were photographed 

for each of these systems. Then the slopes and inter

cepts of each fiducial were measured 10 times each in 

the digitizer frame with the optical scanning apparatus. 

The 10 measurements were averaged for each wire and the 

corresponding standard deviations calculated (see Figs. 

3.8.a and 3.8.b for, examples of wire slopes measured 

in this way). Thus a "measured parameter" vector was 

formed
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mDl 
bDl 

mD2 
bD2

mDn 
bDn

(25)

Here mD1 and t>D1 are the slope and Intercept of the 1st
*

wire as measured in the digitizer frame. Thus con

tains 2n entries,.where n is the number of fiducial wires. 

The "fit parameter" vector is given by

a »

The fitting procedure used here calculates the slopes 

and intercepts of the wires in the digitizer frame using 

the initially guessed vector a. In order to minimize x1 

a "best" set of parameters a* are calculated by the well 

known technique. Shown below are the results of 

fitting the 6 optical systems in the spectrometer:
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VIEW CHAMBER X2v d 
(cm)

e , X ®y 
(RADIANS)

0z

FV BOTTOM .78 286.57 -.0580 .0606 .0025

FV MIDDLE 2.30 293.69 -.0113 .0077 -.0002

FV TOP 1.14 308.37 -.0359 -.0357 -.0003

NV BOTTOM .81 312.34 -.0327 .1989 .0061

NV MIDDLE 2.33 303.99 .0024 .0123 .0019

NV TOP 1.30 302.61 -.0004 -.0746 .0032

X2V is the reduced value of x* from the fit.

It is perhaps instructive to examine some of the 

measured fiducial data in light of further corrections 

which must be made. In Figs 3.8.a and 3.8.b we see the 

slopes of fiducial wires In the bottom and top chambers. 

In both cases there is a general trend of changing slope 

(from positive to negative in Fig. 3.8.a and negative 

to positive in Fig. 3.8.b). Thus there is a definite 

indication of a rotation about the yD-axis. If all of 

the optical error were due to this rotation then all of 

the slopes would fall along the straight line drawn 

through the points. Deviations about the straight line 

indicate that non-linear optical corrections must be 

made. In order to account for these non-linear effects 

linear Interpolation Is used to correct the slopes and 

Intercepts according to the deviations (in the sense of
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FIG.3.8.a FIDUCIAL WIRE SLOPES IN THE 
FIELD VIEW, BOTTOM CHAMBER





3.3.5.10

FIG. 3.8.b FIDUCIAL WIRE SLOPES IN THE 
FIELD VIEW, TOP CHAMBER
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a x2~fit) between measured and calculated values after 

the optical parameters (d,e ,6 ,8 ) have been determined.x y z
Thus the deviation vector (between measured and calcu

lated slopes and Intercepts) Is a measure of the non

linearity of the optics.

In order to make a check on the optical model 

developed above we devise the following method for 

determining how "Infinite momentum events" are detected. 

Thus we form various combinations of fiducial wires 

(which appear as "tracks" on film and which can be 

viewed as Infinite momentum events) as seen In the 

digitizer frame and assume that the combination of any 

3 fiducial wires In the top, middle and bottom spark 

chambers Is an "event". We realize that such "events" 

are not consistent with real events because their re

constructed positions are a function only of the random 

selection process. However we shall examine only the 

angles between the flduclals In the various chambers.

If the optical model were perfect then the angle differences 

would all be zero (since the flduclals stretch the full 

length of the spectrometer and are parallel to within .01 

mllllradlans). The fiducial events, formed In the above 

way, were momentum analyzed and the resultant momenta 

were hlstogramed as shown In Fig. 3.9. In order to see 

the significance of this histogram we shall develop the 

probability density which describes It. k'e assume that
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FIG. 3.'9 HISTOGRAM OF "INFINITE MOMENTUMf EVENTS" AS VIEWED BY THE SPECTROMETER



MOMENTUM, GeV/c
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the measured angle difference between any two fiducial 

wires, ♦ ■ has uncertainty A* and is distributed

by .'(A.pf(t)./rj.e?W (27)

Vw A*
In (27) we are concerned only with the absolute value of 

This is due to the fact that we shall calculate a 

momentum by

P ■ t (28)
♦

which we require to be positive, hence only the absolute 

value of is used. If we Introduce the "effective momen

tum* , p , by
e

»e " (29)

then we see that pe corresponds to the angle uncertainty 

in the reconstruction process. If we use (28) and (29) in 

(27) we find ]-x2
f(P|Pe) ■ 6 7 P (30)

e V IT P2

Eq. (30) is a probability density in momentum which is 

conditionally dependent on the effective momentum. We see 

that (30) must describe the histogram of Fig. 3.9 for some 

particular value of pfi. A of eA» (3°) t0 this data

yields a value for the effective momentum of pe ■ 310 GeV/c; 

the fitted curve is also shown in Fig 3.9. We conclude 

that the hypothetical "Infinite momentum event" will, on
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the average be distributed by eq. (30) with an effective 

momentum of 310 GeV/c.

3.4. RECONSTRUCTION OF A MUON TRAJECTORY INTO REAL SPACE

In this section we derive the equations necessary 

for the optical reconstruction of a muon event as defined 

In Sec. 3.2. We begin this task by determining how 

variables in the clock frame are related to corresponding 

variables in the digitizer frame.

3.4.1. CLOCK FRAME-TO-DIGITIZER FRAME TRANSFORMATION

The measurement of a single muon event allows the 

position and orientation of the track to be determined 

in the clock frame. We now develop equations necessary 

for transforming the positions and orientations to the 

digitizer frame. Referring to Fig. 3.10 we see that the

origins of the clock frame, )tcl, and the digitizer frame, 
*

XD1, allow the relative origin vector, XCD» to be

calculated.

X • X • X acd aD1 AC1

The angle between the clock frame Xc-axis and the

(2)

while the corresponding angle between the X^ and X? axes
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FIG. 3.10 CLOCK FRAME TO DIGITIZER 
FRAME TRANSFORMATION
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% ■ TAN’1
[^oPy-^oPy] (3)

^D2^x*^Dl^x-*

Thus the angle of rotation from the clock frame to the 

digitizer frame is *

8CD ®D ~ 6C

Any vector in the clock frame, ftc» has components 

in the digitizer frame, given by

RD - [CD][Rc-Xcd] (5)

where the clock-to-digitizer rotation matrix is

r COS 6,,^ SIN 01
CD CD •

[CD] - -SIN ecD cos 6cd 0 (6)

0 0 1

Thus given a point cn a muon spark as measured in the 

clock frame eqs. (5) and (6) can be used to determine 

this point in. the digitizer frame. Likewise any measured

angle in the clock frame, 6-.., can be found in the CM
digitizer frame by

8 DM 8CD (7)

In order to use (5) - (7) the vector ^CD and 0CD must be 

measured for all six optical systems.

3.4.2 DETERMINATION OF THE POSITION ANO ANGLE OF THE 
MUON SPARK IN THE DIGITIZER FRAME

Let tnu be a measured position on the muon track 
r M
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in the table frame and Z be the same point as 
P

measured in the digitizer frame. From Fig. 3.11.a we

that

- ^C1) - *CD

where the table-to-digitizer frame matrix is given by

and

[TD]
COS eD

-SIN eD 

0

sin eD o
cos eD o

o 1

« e CM% 6CD

The angle of the muon track, ep. in the digitizer

frame is seen to be

6P " ePM ■ eCM ’ 6CD

. A single muon event consists of the measurement of

^PM,ePM * ^C1*0CM

where all variables are measured in the table frame:

1DU = position vector of some point on the
PM track

ePM = angle of the track with some arbitrary 
reference line

XC1 ■ position vector of clock frame origin

erM “ angle that the X -axis makes with the 
LM same arbitrary reference, line as eDu.

r M

see

(1)

(2)

(3)

(4)

(5)
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FIG. 3.11.a POSITION AND ANGLE OF MUON 
SPARK IN DIGITIZER FRAME



MUON SPARK
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We assume that

(6)

variables (6) one can use eqs. (1) - (6) to establish the

particle track coordinates in the digitizer frame

has some

(2)

X2-fit of the optical parameters as discussed in

Sec. 3.3.5.

3.4.4

From Fig. 3.11.b we see that two points on the muon

clock 
digi-

DETERMINATION OF
THE SPECTROMETER

origin relative to the 
with components in the 
frame.

TWO POINTS ON THE MUON SPARK IN 
FRAME 

between the Xc-axis and the

*cd,6cd 

are well known constants:

slope, nip, and intercept

bp, of the line are given by

eCD e *ngle<
XD-axis

Thus by measurement of the variables (5) and knowing

°p

* yn~XnTAN 9n 
p p p

m ■ TAN 
P 

b 
P 

Non-linear optical corrections are applied to (1) and 

(2) using the deviation vector, 3, obtained from the

In the digitizer frame the muon spark 

position, Ip, and angle, 0p, determined by the methods of 

Sec. 3.4.2. The corresponding 

3.4.3 CORRECTIONS DUE TO NON-LINEAR OPTICS

Xrn ■ position vector of digitizer 
LU frame 

frame 
tizer
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FIG. 3.11.b DETERMINATION OF TWO POINTS 
ON THE MUON SPARK



D
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spark in the digitizer frame, , XD2, are given by

tDl - t, (1)
XD2 " + £,0» Xo + ™ 6p3 <2>

where Xo is an arbitrary displacement. In the spectro

meter frame these points are given by

*51 ■ tDS]tDl * tDO

*52 * [DS]tD2 4 tDO <4>

where [DS] is the digitizer-to-spectrometer frame matrix 

given by eqs. (3.3.5.9) and (3.3.5.10). The position 

vector of the digitizer frame origin is given by (3.3.2.1).

3.4.5 DETERMINATION OF THE PLANE FORMED BY THE PARTICLE 
LINE AND THE LENS POINT

The two points on the particle line and tS2 

(given by (3.4.4.3) and (3.4.4.4)) together with a lens 

point

^S3 " ^lens 

determine a plane which contains the muon spark in real 

space. The two particle planes, one from the field view, 

the other from the no-field view, intersect along the 

muon trajectory in real space. The equation of a plane 

in three Jimensions is given byAX + BY + CZ ■ D (2)

When the plane is determined by three points
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(3)

then the plane parameters A,B,C,D are given by

. ep2^1 Z2-Zl|
I^S^l Z3-Zll

B z2-z1 X2-XJ
Z5-Zl X3-Xll

c e X2-Xl

x3-xi y3-y1

D = Axj + B/j + CZj

(4)

3.4.6 DETERMINATION OF THE MUON POSITION VECTOR

The muon position vector is defined to be that 

point in space determined by the intersection of the 

field view and no-field view particle planes with the 

center plate of a spark chamber (see Fig. 3.1). Assume 

that the two particle planes are given by

AjX + BjY + « 0* (1)

AOX + BY + C,Z - DI (2)
2 2 2 2

To find the point of intersection with the constant 

z-plane of a spark chamber middle plate, set Z ■ ZQ in 

(1) and (2) to get
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(3)A,X + B,Y - D

(4)

where

(5)d:d

(6)

Now let
A

(7)bm

(8)
2

Thus (3) (4)and become

(9)Y ■ m.X ♦ b

(1O>

The intersection

(11)X

(12)Y

write the

position vector of the muon as

(13)

3.4.7 UNIT MOMENTUM VECTOR OF THE MUON

The unit momentum vector of the muon is the downward

pointing unit vector formed by the intersection of planes

5.
B.

C1ZO

C2Z0

a2x ♦ b2y

D2
b2

D2

"2
*2

Using eqs. (7) and

■ m2X + b2 

of (9) and (10) is

d;

' °2

°2A1 ,
a.b,- Zo

a2d,■Bl°2 - B20l
Vl " A1B2

mlb2 ' m2bl 
m^ - m2

b2 - bl
m1 - m2

(8) in (11) and (12) we may
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(3.4.6.1) and (3.4.6.2). Normal vectors to these planes 

are given by

^2 e 1^2 * * ^2^

Then the unit momentum vector, P, Is found by

a ■ 
I®! X ii2|

To insure that 0 is downward pointing we inspect the 

z-component, p , to see if it is negative; if not the 

sign of 0 is reversed.

(1)

(2)

(3)
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3.4.8 SAMPLE OF RECONSTRUCTED EVENTS

Fig. 3.12.a-i show histograms resulting from the 

reconstruction of a sample of 1033 muon events.

Fig. 3.12.a displays the cosmic ray muon spectrum as 

observed by the spectrometer where the mean momentum is 

15.9 GeV/c. Multiple scattering distributions in lateral 

displacement and scattering angle (Fig 3.12.b-e) are 

given for the middle spark chamber (after penetration 

of about 40 cm of iron) and the bottom spark chamber 

(after penetration of 95 cm of iron). Histograms of muon 

positions in the scintillator planes are shown in 

Fig. 3.12.f-i. The vertical dotted lines indicate the 

scintillator boundaries. Particles outside the scintilla

tor edges were presumably caused by shower particles from 

muon collisions in the ceiling or spectrometer structure.

3.5 DETERMINATION OF THE MUON CHARGE AND MOMENTUM

Given the reconstructed muon position vector, x, 

(eq. (3.4.6.13)) and the unit momentum vector, p, 

(eq. (3.4.7.3)) for each of the three spark chambers we 

now wish to determine the" muon charge and momentum.

3.5.1 MUON CHARGE DETERMINATION

In order to find the muon charge we write the unit 

momentum vector as

| ■ [PX. Py. PZ] (1)
r a / a
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FIG. 3.12.a MOMENTUM HISTOGRAM FROM A 
SAMPLE OF 1023 EVENTS



STANDARD DEVIATION - 52.1 GeV/c MEAN ■ 15.9 GeV/cWEIGHT - 1023

MOMENTUM, GeV/c
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)

FIG 3.12.b MIDDLE CHAMBEP SCATTERING 
POSITION DISTRIBUTION



STANDARD DEVIATION - 5.567 cm MEAN ■ .265 cmWEIGHT - 1023
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FIG. 3.12-C BOTTOM CHAMBER SCATTERING 
POSITION DISTRIBUTION.



STANDARD DEVIATION ■ 12.18 cm MEAN ■ .343 cmWEIGHT • 1023
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FIG. 3.12.d MIDDLE CHAMBER SCATTERING 
ANGLE DISTRIBUTION



WEIGHT - 1023 STANDARD DEVIATION - 3.62° MEAN ■ .03®
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FIG. 3.12.e BOTTOM CHAMBER SCATTERING 
ANGLE DISTRIBUTION



WEIGHT - 1023 STANDARD DEVIATION - 4.28* MEAN ■ -.07*
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FIR. 3.12.f DISTRIBUTION OF EVENTS IN 
FIELD VIEW TOP SCINTILLATOR 
PLANE
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FIG. 3.12.g DISTRIBUTION OF EVENTS IN NO-FIELD 
TOP SCINTILLATOR PLANE
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FIG. 3.12.h DISTRIBUTION OF EVENTS IN FIELD 
VIEW BOTTOM SCINTILLATOR PLANE
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FIG. 3.12.1 DISTRIBUTION OF EVENTS IN NO-FIELD 
VIEW BOTTOM SCINTILLATOR PLANE
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(p is the magnitude of the momentum), and then form

ffl ■ ["xl- 0> l’12] 

?2 ' tPx2l °- PX2]

(2)

(3)

where the Indices "1" and "2" refer to two points along

the trajectory. From Fig. 3.13 we see that u1 and u? are

vectors in the xs*zs plane and are thus perpendicular to 

the magnetic field ft ■ ±B0J* “i has the direction of the 

entry momentum vector of the muon and u2 has the direction

' tpzlpx2-pxlpz2,?

|1BO| |PzlPx2"PxlPz2| 

or finally 

I ■ *<1 

where

of the exit momentum vector in the xs~zs plane. 

Fig 3.13 we may easily establish that

From

u, x = _ _9_ _L
x u2l 1AI |ft|

If we write the sign of the charge, 1^, as

(4)

lq" "h

so that Ig ■ 1 or -1 then

(5)

Iu • PzlPx2 " pxlpz2

fpzlpx2 " pxlpz2^
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FIG. 3.13 MUON CHARGE DETERMINATION



F ■ qvXff
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Nb - ±1, sign of the £ field. (9)

Thus one uses the proper sign of the magnetic field, 

calculates (8) from (1) and determines the sign of the 

muon by (7).

3.5.2 DETERMINATION OF THE MUON MOMENTUM

In order to calculate the incident muon momentum 

we use the x*’ftt technique to discover a numerically 

Integrated muon trajectory which best fits the measured 

data for a single event. Thus we would like to deter

mine a muon position vector, x*, and momentum vector, 

p*, (both in the top chamber) which generate a trajectory 

best characterizing the data. Here we use the notation

x* = [x*, y*» z*] (1)

P* ’ [P*. P*. P*3 (2)
x y z

We prefer to transform the momentum vector to an equally 

good triple of numbers

* P*) (3)

where
6* . tan’1 (4)

irxJ

e* . TAN-1 (5)

P* - tp*' * pj’ ♦ pf]’/2 (6)
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If we assume that the z-component of x* (i.e. z*) Is a 

constant in the center plate of the top spark chamber 

then (1) and (2) may be written in terms of 5 parameters 

(x*,y*.e*.e*,p*) (7)

which we now write X* - (x*,y*.6*.e*,l/p*) (8)

where we have used 1/p* rather than p* because 1/p* has 

errors which are gaussian distributed (a prime require

ment of the x2~fit technique). In general we shall use 

as fit parameters the 5-component vectort ° (xT.yT.eXT»eyT» Vpt) (9)

where the subscript "T" denotes that all variables are 

in the top chamber. Given suitable initial values for the 

components of A one can approach arbitrarily close to 

X* by applying the to the measured data. We

assume the measured parameter vector, xM, to be

V (,3-y3'6.3'ey3'X2-y2-e.2’6y2'xl-M.l'ilyl) (10)

where

XpYj are the x and y coordinates of the muon 

in the ith chamber (i-1,2,3 for the bottom, 
middle, and top chambers respectively) 

°xi’6yi are the projected angles of the muon track 

in the xs-zs and ys-zs planes respectively 

for the ith spark chamber.
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From (10) It is seen that a suitable initial value of X 

1$

« (Xx«y3»e,z«6v3»1/p31 C11)
w O * w j v v

where

Here Bo is the magnetic field in gauss, S is the path length 

in cm and is the effective bending angle of the muon 

as measured in the field view. Thus, In summary, we are

making an initial guess for the "state" of the muon as it 

enters the spectrometer, and subsequently hope to 

find some initial muon state, X*, which best

characterizes the data, eq. (10). Since there are 5 fit 

parameters in X and 12 measured parameters in xM there 

are 7 degrees of freedom in the x2-fit.-

We have assumed that the parameters of xM are directly 

measured; however this is not strictly true. The compo

nents of xM are "real space" variables found by recon

structing other measured variables into the spectrometer 

frame by the methods of Sec. 3.4. However we expect the 

errors in the components of xM to be gaussian distributed. 

This is because coordinate variables used in the recon

struction precess are measured in planes nearly parallel 

to the spectrometer xs-zs and ys‘Zs planes. However 

the errors in xM include not only measurement error but 

also errors in the reconstruction process itself.
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The fitting procedure, by which we determine A*,

has been computer programmed. An outline of this pro

gram follows:

(1) Reconstruct the muon event Into real 
space

(2) Determine the charge on the muon

(3) Make an initial guess of the muon 
momentum by

„ . .3B0S .
♦b

(4) Form the initial state of the muon in the 
top chamber

X(1) -

(5) Given the initial state of the muon, A^1^, 
integrate the muon motion through the 
spectrometer and subsequently obtain a 
calculated parameter vector

;c • (x3-),3-e.3-6y3-X2-y2-e.2-ey2-Xl-yl'6xlieyl)C

Here the subscript "c" on the brackets indi
cates that all the included variables were 
calculated via a trajectory alaorithm 
(discussed in the next section).

(6) Numerically calculate derivatives of xc with 
respect to (x3,yj,0x%,oy3,l/p3) by means of 
the trajectory algorithm.

(7) Estimate a better value of A via the x2-fit 
method and return to s^cp (5) if another 
iteration is desired (i.e. if A is not 
sufficiently close to A*).

We see that the heart of the muon momentum deter

mination program is the trajectory algorithm by which

the muon motion is numerically integrated through a
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computer model of the spectrometer. This trajectory 

algorithm is discussed in the following section.

3.5.2.1 NUMERICAL INTEGRATION OF THE MUON TRAJECTORY 
THROUGH THE SPECTROMETER

A typical trajectory of a muon passing through 

the spectrometer is shown in Fig. 3.14. Neglecting 

multiple scattering it is possible to completely generate 

such a trajectory if the incoming state (xT>pT) of the 

muon is known. Given (xT»pT) the computer program 

TRAJEC is designed to calculate the muon trajectory through 

the spectrometer.- Fig. 3.15 is a flowchart of this 

program which saves the muon state vector (x,p) for 5 

points inside the spectrometer:

1) xT»pT top spark chamber

2) *sl»*slt0P scintillator

3) xm>pD middle spark chamber

4) xs2,xs2bottom scintillator

5) xB»pB bottom spark chamber

From Fig. 3.15 we see that TRAJEC requires (a) an extra- 

polator (translates the muon along the momentum vector 

to a desired zs-plane in the absence of magnetic iron), 

and (b) an integrator (which integrates the relativistic 

equation of motion of the muon in iron). Before examining 

(a) and (b) we need to be able to transform the muon
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FIG. 3.14 TYPICAL MUON TRAJECTORY 
IN THE SPECTROMETER
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FIG. 3.15 FLOWCHART OF THE PROGRAM 
'TRAJEC
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FIG. 3.15 FLOWCHART OF THE PROGRAM 
'TRAJEC (CONT.)
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state X in the top chamber into a position vector, x^, 

and momentum vector, pT. For the position vector, since 

X ■ (x,y,ex,ey,l/p), we find

xT ■ (x,y,zT) (1)

where zT is the z$-coordinate of the top spark chamber. 

The momentum vector is obtained by noticing that p is 

the intersection of the plane ABO and BCO in Fig 

The cross product of the normals to these planes 

the direction of p:

1 . "x* "y
p lfixx 6,l

where n* is normal to plane ABO and ny is normal

plane BCO. From Fig. 3.16.b we see that

nx - [-sin ex, o, cos ex] 

ny = [0, -SIN 8y» COS 6y] 

Thus eq. (2) becomes

* -[cose sin© , sins cose » sing sing ]

p [siN2ey + siN26xcos2ey]1/2

Eq. (5) is the unit momentum vector of the muon; 

momentum vector itself can be found by using the 

that A$ ■ 1/p. The minus sign in (5) insures that p will 

always point downward into the spectrometer.

In order to extrapolate the muon position to some

. 3.16.a.

is in

(2) 

to

(3)

(4)

(5)

the

; fact

desired z -coordinate, z‘, we write the unit momentum
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FIG. 3.16.a PROJECTED ANGLES OF THE MUON 
MOMENTUM VECTOR

FIG. 3.16.b DETERMINATION OF THE NORMAL 
VECTORS n AND nv
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vector as

“ " p * *-ux,uy,uz^

Now define the desired zs~axis position delta to be 

Az - z* - z (7)

where z is the present z-axis position, and z* is the 

desired z-axis position. Then the extrapolated position 

vector x1 is Just

x' - x + Az (8)

We now turn our attention to the muon motion in 

magnetic iron. Since the motion is relativistic we shall 

need the following

FOUR-POSITION

rp = [r, let] (9)

FOUR-VELOCITY
uu - Y[v,ic] ;Y- 1/(1-82)1/2 ; (10)

FOUR-MOMENTUM

py - Cvv, (11)

Pp * [p. 1E/C] (12)

where

P ■ Ymov (13)

E ■ Ymoc2" ^E04+p5cJ ; Eo - n^c1 (14)

Here all the usual definitions hold 
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r ■ position 

t » time

v » velocity

p « momentum

E e energy

The equation of motion of a charged particle in a B-field 

is given by

From (13) we can show that

v - (16)

so that (15) becomes

fftj " P x 

Because of collisions Inside the iron we expect the

• charged particle to undergo momentum loss* hence we write

&ICO|/ [-&]£■ —d?* 08)

where p is the density of iron. Use (16) in (18) to get

^C0l--p[  ̂ (”>

Finally the equation of motion of the muon in iron is

. 4? +3t dt B 
p

(20)
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U1)

where

/ E - p2cJ * mjc* (21)'

Thus (21) accounts for magnetic bending and momentum 

loss (due to Coulomb collisions) but does not account 

for multiple scattering. Since multiple scattering is 

a random process we cannot predict how it will affect a 

single trajectory and we will therefore not attempt to 

correct for it here.

The muon relativistic equation of motion (21) is
10 

integrated numerically by the Adams-Moulton scheme 

which we write in terms of our own notation

Xn.l 1 Xn * a<55V59in.l + 37in-2 L 98n.3» («>

X„H ■ xn * $9*n.l + 19*n ' * 8n-2> <23>

Here the subscript "n“ denotes “nth past value"; thus 

n » 1 corresponds to the first past value, n ■ 2 the 

second, etc. We execute eqs. (22) and (23) iteratively 

with sone arbitrary time step At between iterations.

Eq. (22) is called a "predictor" while (23) is a "corrector". 

Thus (22) may be used to estimate and (23) applies 

a smaller final correction. However the true value of 

x j lies somewhere between (22) and (23). By reducing
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i . '

the step size one finds that the results of (22) and

(23) become arbitrarily close; hence if At is sufficiently 

small we do not need to use (23) at all. Thus by reduc- 

ing At one can use the Adams-Moulton scheme to estimate 

the error in the resultant integration. Further, if At 

is small enough,one can reduce the computer time by a 

factor of 2 by not executing (23) since (22) is 

sufficiently accurate.

A single iteration in the integration of the muon 

equation of motion (21) is executed thus by:

p - Jpdt + p0 (24)

v - p (25)

x » Jvdt + xQ (26)

where the integrations are performed by (22) and (23).

. The Iteration of (24) - (26) is repeated until the bottom 

of a magnet section is reached.

In order to integrate eq. (21) a knowledge of the 

momentum loss for muons in iron is required. Fig. 3.16 

shows the dependence of the energy loss rate on energy. 

Values of energy loss were taken from Barkus and 

Berger^ for E < 5 GeV/c, while values above 5 GeV/c were 

found by extrapolating the above data according to the 
m 12 

equation
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FIG. 3.17 MUON ENERGY LOSS RATE IN IRON
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e a+bE + c tn
.mpc2.

.2MeV/gm-cm

where
E - ______ Pac* -

m E + mp2c2/2me

The momentum loss rate is then found by

d(pc)s E dE 
"IT

(27)

(28)

(29)
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CHAPTER IV

MOLIERE'S THEORY OF MULTIPLE 
SCATTERING

4.1 INTRODUCTION

In this chapter we develop the small angle theory 

of multiple scattering due to MoliereV However we first 

discuss some basic assumptions of multiple scattering 

theory in general.

It is assumed that a fast charged particle will 

undergo many small angular deflections while traversing 

a target material. The deflections are due to collisions 

with atoms of the material and are described by the single 

scattering probability density, w(6,B,x), such that

w(6,B,x) SINededpdx « the (1)

probability of the Incident particle 

being deflected by a single collision 

into a spatial angle between e and 

6 + dg and an azimuthal angle between 
fj and B + dg (see Fig. 4.1) during 

traversal of a target of thickness dx.

While penetrating the target material there occur n 

collisions resulting in the total angular displacements,

e » e + e, + ... + (2)
iz n

6 ■ »1 * 62 + ••• * Bn

The probability density in the total deflection angles 

given by (2) is called the multiple scattering density.
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F(6*B*x) SINededBdx ■ the probability of the 

particle being multiply scattered into 
(6, 6 + de) and (B,B + dB) after n colli- (3) 

sions in a target of thickness, x.

Given the single scattering function, W(6,B,x), 

the goal of multiple scattering theory,in general,is to 

calculate the multiple scattering density, F(e,B»x), from 

the following assumptions:

(1) The single scattering function is indepen
dent of the azimuth angle, B» (in the 
absence of spin) hence W(e,B*x) = W(e,x).

(2) Successive single scatterings in the 

target material are statistically indepen
dent.

(3) The small angle approximation can be used, 

i.e. SIN 6=6 and COS 6=1.

Moliere makes further assumptions about the physics of 

single scattering which we will discuss in a later 

section.

Due to the assumptions made above we write:

2tW(e,x)ododx = the probability of only one 

scattering occurring in dx at x through an 

angle between 6 and 0+de.

If, further, we suppress the dependence on x, (which is 

equivalent to ignoring ionization momentum loss tn the 

target) then we seek the density in
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e - e. + e_ + ... ♦ 12 n

where the 8^ are described by the density wte^) and 

also the Bi are statistically Independent. This allows 

the use of the limiting form of the central limit theorem 

(for the special case <8ia> » <8j2> for 1,j ■ 1,2, ... n) 

14 which gives

F(8) = -L- e 7 [1 - -5- H (8) 
✓27 3!/n 3

4ti? H4<6)

+ nflTn H6(6) * •••]
(5)

where the skewness coefficient, s, is given by

The coefficient of excess, y, is

Y • - 3 (7)
2 

Here the kth moment of the single scattering law is

Mk ■ 2-n de (8)

o
Finally the Hermite polynomials, Hk(e), are

llk(0)

»' I -ti.
(-l)k e7 T) 

dDk
(9)
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Ho(6) - 1
H^e) - e
h2(6) - e1-!
h3(6) - e’-3e (io)
h4(6) » e'-ee1 ♦ 3
Hk+1(e) ■ eHk(e) - kHkl(e)

From eq. (5) we see that for sufficiently large n: 
e1

Um F(e) - 1 T* m
n-H» py- c 'ven

Since the number of collisions, n, is proportional to 

the target thickness, t, then (11) is the limiting 

multiple scattering density for an infinitely thick 

target. Thus we have shown that,from mathematical 

considerations, the multiple scattering density is 

gaussian with correction terms, eq. (5). Moliere uses 

physical arguments to develop correction terms which are 

considerably simpler than those in eq. (5).

4.2 THE PROJECTED ANGLE DENSITY

We shall ultimately be interested in the projected 

angle densities f(<t , x) and f(<$> ,x) where <t> and $ are 
x y x y

the projected angles defined in Fig. 4.1 and are given by

TAN <t>x = TAN 6 COS 6 (1)

TAN <|>y ■ TAN 6 SIN B (2)

In the small angle approximation these become
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♦x • 6 COS 3 (3)
♦y - 6 SIN B (4)

Thus a deflection (0,6) can be described as a vector

8 ■ ♦’]1/2 (5)

The functions F(e,x) and f(4>x»x) are normalized 

according to

2ir | 6d6F(e,x) -1 (6)
o 

and
*j*f(*x.x)d*x ■ 1 (7)

*eo 
One may calculate the projected angle density by

f(tx»x) * | d<i>yF[(4>x2 4>y2)1^2»x] (8)

Moliere introduces the zeroth order infinite

. Hankel transform of the multiple scattering density

F(C,x) - 2n pdeJo(ce)F(0,x) (9)

o 
and its inverse

F(0,x)-^ j Cd;J0(5G)f(C,x) (10)
o 

A useful property of this transform can be developed 

if we consider two successive scatterings 01 and 02 such 

that the total scattering angle is

0 ■ e1 + 02
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we then find

F(C.x) ■ F^e.x) F2U,x) (11)

In fact for n collisions

F(t.x) - F.(e,x) F(C,x) ... FU.x) (12) 
1 2 n

Moliere then proceeds to use (9) - (12) to discover the 
15 multiple scattering density F(e,x). Cooper and Rainwater 

have shown that the multiple scattering density in pro

jected angle can be derived using Fourier transforms. We 

shallthowever, follow the method of Moliere, and thus 

neglect the projected angle density until a later section. 

There we will derive f(4>x»x) directly from F(e,x).

4.3 THE WENTZEL SUMMATION METHOD

Here we develop a general expression for the 
multiple scattering density after the method of WentzelV*

To this end we assume that a beam of like particles Is 

Incident on a homogeneous target of thickness, x. We 

assume that the incident beam is a delta function

F(e,O) • 6s(0) (1)

such that 
• 40

2irdxj edesje) ■ 1 (2)

0
We now seek to find the density for the beam after n 

scatterings. We write

>00 
Zudx I 0d0W(e) ■ wodx

o
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which is the probability that one scattering will occur 

in dx. Here we have assumed that

W(6,x) - W(6), (3)

i.e. that there is no momentum loss in the target. The 

probability that no scatterings will occur in a thickness, 

Ax, 1$
-to0AX

P0(Ax) ■ e (4)

Now the probability that exactly n scatterings 

occur of (61,B1) in Gjde^Bj, (02,B2) in e2de2d02, ... 

(6 ,B ) in 6 de dB at depths in (x ,x +dx )» (x ,x +dx ), 
n n n n n ill 222

...(xn,xn+dxn) is just the product

[wCeJe.de.dB dx ][w(eJe,de,dB dx ]...

X[W(0nl0nd6ndendXn^ 
n n n n n

From (4) we see that the probability that no scatterings 

occur in x is just

lim -'"o(x-1x1-4x2 - ... - lxn) -Mox
Ax*o - k *

Here x-Ax -Ax_ - ... Ax is just the total space between 12 n
the Ax's in the limit of the integral over x. Finally the 

probability of exactly n scatterings is given by the 

product of (5) and (6)

-<0OX
e [W(0t)0tdexd0xdxt3[W(02)e2de2d02dx2

...x[t>(oll)cndohd,1ndxn]
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Integrating over the x's and B's we get the probability 

of exactly n scatterings in x:

n *toQx
(2irx) e [W( 6 j) 6 ^9 JC w( 0 2) 6 ^de ^... [ w( 6 n) e nde J 

n!

or

n Wr>X *
e it w(ei)eidei (8)

n 1 t ■ 1

where n! removes all the extra permutations obtained in

the integrations over the x's. If we introduce the Hankel 

transform

«( c) ■ 2w j XdxJ0(Ex)W( X) (9)

0
then the transform of the. density, in 6 after n scatterings 

is

•WnX nFn(C.x) - e 0 Mc)x]n (,0)

n!

The final distribution is just the sum over all n so that

)x-wox
f, (?. X) - e 0 (11)

Finally the multiple scattering density we seek is found 

by (4.2.10)
• 1 r* u)(e)x-wQx

F(0,x) • j £d£J0U6)e 0 (12)

0
If we had assumed the single scattering law to be a 

function of target thickness then a more general result is
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i r* fi(y«x)-O-x
F<e’x) * st j ydyJo<y6)e (13>

o 
where

fi(y»x) « | w(y,x')dx' - 2ir |xdx j dx' J0(yX)W (x.x ’) (14)

o *oo.
Also

%(x) - n(O.x) - 2ir |*xdx |Xdx*W(X,xl) (15)
o o

WhenW(x.x) is independent of target thickness wefind

from (13) and (14) that, as we saw before:

n(y,x) - <d(y)x (16)

%(x) • u)ox (17)

We now investigate the single scattering law, w(e,x), 

in preparation for the evaluation of (13).

4.4 THE SINGLE SCATTERING LAW

The scattering of fast charged particles by atoms 

is given, for the non-relativistic case, by the Rutherford

formula

°RU(0) "
2zZe2? 

mv2
1

[2 SIN I)*1
(1)

Relativistic scattering is described by a simple modifica

tion to (1), i.e. if we use the relativistic mass, ym, 

then the Rutherford formula describes the scattering of 
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relativistic particles. If we use the small angle 

approximation then the relativistic single scattering law 

becomes

W(0,x) - N(x)oru(6) « 4N(x)aL (2) 
k20*

where N(x) is the number of scattering centers/cm’. Here 

"a" is the Born parameter given by 

where B » v/c and

1 * *o * p (4)

is the particle wave number.

The basic single scattering law, eq. (2), is in

accurate for several physical reasons:

(1) The screening of the nuclear Coulomb field 

by the atomic electrons.

(2) The finite size of the nuclear charge dis
tribution.

(3) The contribution due to particle spin.

(4) Scattering by the atomic electrons.

The single scattering law eq.(2) determines the 

scattering of a fast charged particle by a heavy point 

charge. Moliere modifies (2) to take electron screening 

into account; he neglects all of the other contributions. 

A simple way to take screening into account is by use 

of the Yukawa potential
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r
V(r) -

r
(5)

Here rQ Is the so-called screening radius or the Thomas- 

Fermi radius, given by

r0 ■ .885a0Z'1/3 » .468 x 10"8Z"1/3cm (6)

where aQ is the Bohr radius

a - « 5.292 x 10”9 cm (7)
meel

Using the potential (5) and the first Born approximation 

solution to the relativistic Schroedinger equation, one 

gets

V(e,x)---------------- ----------------------------------------- (8)
k2[l/k2r02 + 2 SIN2(0/2)]2

In the small angle approximation one finds

W(e,x) - ------ 4N(x)a2 . (g)
k2(e2 + e02)2

where the Born screening angle, 60, is

a - 1 -
0 Pro ro

From (6) and (7) we find for (10)

(10)

% . U2
137

zl/3 mec2

PC
radians (ID

When the momentum of the particle greatly exceeds the 

rest energy of the electron we see that e0 << 1 (which 
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is clearly the case for the present experiment, where 

pc>2.5 GeV).

Moliere writes the single scattering law (9) in 

the following form

H(e.x) - ,(e)
k2e*

where 

q(6)---------------------------
(e1 ♦ e0«)*

1 Im q(e) ■ 0 
6*0

which corresponds to small scattering angles that occur

for passage of the fast particle far from the nucleus, i.e.

outside the atomic electrons where screening is most

effective. Likewise

1im q(0) ■ 1
0-*<x>

corresponding to large scattering angles occurring for

passage near the nucleus.

We defer, until the next section, a discussion of

Moliere's derivation of q(0).

4.5 DERIVATION OF THE MULTIPLE SCATTERING DENSITY

Here we develop the multiple scattering density.

We may view (13) as being the ratio of "actual" to

(12)

(13)

Rutherford scattering; q(e) is sometimes referred to as a 

screening factor. It is seen that
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F(6,x) by means of eqs. 4.3.13-15. Neglecting momentum 

loss and using the fact that

W(e,x)dx » N(x)o(6,x)dx (1)

we find the multiple scattering function to be

F(e.x) - J*ndnJ0(ne)e-,,xfo(x)xdxt1-J0(nx)] (2)

o
where o(x) 1$ the differential scattering cross section 

of a screened Coulomb potential. After Molibre we write 

for (4.4.12)

Nxa(X)xdx * 2xc2xdx<Ux)/x* (3)

where q(x) the ratio of actual to Rutherford scattering 

and

X^ ■ 47TNxeN(zZ)2/(pv)1 (4)

The characteristic angle, x|« has a physical meaning: 

the probability of single scattering through an angle 

greater than xc is exactly one. Conversely, no scatter

ing angle less than xc is possible. Using (3) we now 

evaluate the exponent of (2):

fiox-n(n)x ■ 2X* jx'3dX[l-J0(xn)]q(x) (5)

0 17
To evaluate this integral we use the method of Bethe, 

which is simpler and more physically transparent than 

that of Molibre. Bethe selects an angle, k, with the 

property
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v << k << 1 - v Ao : n Ac (6)

Then the integral (5) is split at the angle k so that for 

the part of the integral from k to infinity the function 

q (x) can be replaced by 1. Further, in the Integral 

from 0 to k,the argument of the Bessel function Is 

sufficiently small so that we may write

1 - J0(xn) » (7)
0 4

Hence for (5) we get

n^x o x"3dx[l - J0(xn)]q(x) ♦

+ | x"3dx[1-J0(xr')]q(x)

fiox -fi(r.)x = 2Xc2(yi1(kn) + I2(k)]} (8)

where

I2(Z) ■ 4 [* ^[1-Jo(t)] - -^[1-Jo(z)] ♦ 

Z 1 2

JUZ)
—-------- +

z

I2(7.) ■ 1 - £nZ + in2 - c + 0(Z2) + ...

dt MH
(9)

(10)

where c ■ .577.. is Euler's constant. Furthermore for
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I. we have
fk

■ q(x)dx/x

If we use (10) and ill) in (8):

nnx-n( r)x « (^cTJ. 
0 2

<l(x)dx/x + 1 - Ink + tn2-c

(ID

(12)

Following Molifcre it is instructive to investigate the 

quantity

i . Jk aLxlix t | .Ink (u)

o
We shall evaluate (13) for the Yukawa potentialtfor which

q(x) ’ (x2 * xj)2 (14)

where x0 - %» the Born screening anglei Using (14) in

(13) we find, upon evaluating the integral:

--------- - X + i- - Ink (15) 
2(k2+x$) 2 2

I •}in(k^x» ) - llnx,1 + —

Using the condition (6) we get

I ■ -tnXo (16)

This leads to Moliere’s definition of a screening angle.

Xa, which is used when q(x) is not given by the Yukawa 

potential:

-tn Xa = Um I q(x)dx + 1 -Ink 
k-" j X ?o A

(17)
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The limit as is consistent with (6). If we use (17) 

in (12) we get

0. . 0(n)x . Mn(x.y) ♦ lUn2-c] (18)
0 2 .

Now let xcn * y to get

nQx -n(n)x « (19)

where b « in f^-l ♦ l-2c = inf^-l (20)
bU (xj

The new screening parameter, Xj» Is given by

-InXa* a - InXa + | - c (21)

After Molifere.we introduce a new parameter B by the 

transcendental equation

B - InB « b

We obtain, finally, for the multiple scattering function, eq. (4.3.12): 
nan Aax f inf(e)6d6 ■ -------- [ ydy J ------- 7e (22)Xl B i Olxr/ffJ (22)

If we let

(23)

f(s)sds ■■ J0(,y). (24)

The upper
0

limit, ymax» 1$ required to prevent (22) or

(23) from being divergent. In fact ymax can be estimated

from (6). Since the evaluation of (5) depends on the
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approximation (6), our derivation will fail if n ~ l/x0 

or y is of order Xq/x0 * eb^2. Since the exponent in (23) 

has a minimum at y « ymax ' 2e^2^b"^ we shall use this 

as the upper limit of (23).

Due to the fact that B is reasonably large 

eq. (23) may be expanded in a series:

f(s)sds = sds[2e"s*+ + 11^2111 + ...] (25)

B Bx

where

f(n)(s) • tV ydy J0(sy)e 4 H- tn (26)
nl J 0 L4 4J

0
Where now we let the upper limit •* » since the integrand 

of (26) is convergent. Eqs. (25) and (26) are the basic 

Moliere formulae and show that the multiple scattering 

density is a Gaussian density with correction terms.

We now emphasize the single most important result 

of Moliere's theory: it does not depend upon the shape 

of the single scattering cross section, only on the 

screening parameter, xa» calculated by eq. (17). In

order to see the explicit dependence on xa we use a 
18result from Scott who wrote an approximation for B:

B - 11.32 + 2.48 log
Y 2Z4/3 A-]x Xq l A X

B1 Xj
(27)
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where A is the target atomic weight. Because xa2 is in the 

argument of a logarithm small variations in xa will not 

affect the value of B to an appreciable extent. Neverthe- 

less( Molibre calculates his own value of q(x) for single 

scattering by a Thomas-Fermi potential- which he numerically 

fits to the form

V(r) - ^(r/rg) (28)

where

yM(r/r0) s P-O! e*‘6r/r° * .55e‘1,2r/r° + .35e",3r/r° (29)

Using (28) and (29) Molibre accomplished a numerical 

solution to the Schroedinger equation by the WKB method.

for .which he obtained

q(X) « 1 - 8.85^)

Assuming a linear relation

obtained, after numerical

+ a2 in
7-1 « IO'^x/Xq)' " 

(a- + a2/3 + .13)
(30)

between xa and a2 Molibre

integration of (17),

Xj - xj (1.13 + 3.76a2) (31)

When "a" is small (as it is for B - 1 and with Z for 

moderately dense elements) then xa differs from x0 by 

only a few percent; for iron xa “ 1*12 x0»

Experimenta1ly, we shall be interested in the pro

jected angle density. This may be derived directly from
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eq. (22) by the use of

_ O w3o^ e A I e1yxC0Spdp (32)
o

If we let i i i
9(y*)-eT 4B 4 y<ymax (”>

gty1) ■ o y > ymax (34)

then eq. (22) becomes

yeCOS p 
o .Q /oe . f2ir i — —i 

f(e)6de = —i ydy L— e Xc/B dp g(y2) (35)1 J J
*c o o

Since the variable of integration, p, is arbitrary we let 

yeCOSp - " yt»x + y2ty (36)

where the vectors y, 5 are given by

y - tyj.yp (37)

5 ■ (tx.»y) (38)

which are consistent with the small angle approximation.

Also use

Get for 35:

f(»xt*v)d» d6
A / A 7

2irOdO ■ d»xd^y

ydydp - dy1dy2

* + IZA
d^xd.ty— f I dy dy e Xc*^ xc*^ g(y?+yi) 
(Zi-l'x’B JJ 1 2 12

(39)

(40)

(41)

Subsequent integration over $
y

and use of the delta

function,
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1 f” IjMy 6(y2)eA-j dv <42)

-oe
gives

f(*)d* - -Sli— p3* dy cos[-ix-l e"^" * & ln (43) 

»xc/^ {, Lxc/ffJ

We prefer a multiple scattering density in the parameter

a:

tt — > C i f a A 1xc^ °* ♦ /? (44)

where will be called the “widttf of the multiple

scattering density. Hence (43) becomes

12 2
f(a)da « — fy,naxdy COsMe 4 + fc tn 4“ (45)

/?< * L/ZJ

A series expansion about 1/8 gives

f(a) - -1- e 2 + 'La). + f-------[al + _ (46)
✓Zi 8

where
f(n) . _J_ r dy cosfaxle'^

✓Z nn! I l/ZJ M q J
(47)

Thus the dimensionless projected angle density in a is a

gaussian with correction terms.

In.order to take ionization energy loss into

account integrations over target thickness, x, must be

carried out in xc an<i Xa« We now sum up the equations



4.5.10

theory (which include energy loss):of the Moliere

(DIMENSIONLESS SCATTERING PARAMETER)

(WIDTH OF SCATTERING DENSITY)

(49')

2 (MEAN NUMBER OF COLLISIONS) (50)

(51)

(52)

(53)
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(55)

(56)

(57)(P*) tn
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multiple scattering curves for

18.45 for 95The parameter B

less than .5% for momenta > 2.5 GeV/csince B varies by

constant and assume the curves ofwe take B to be a

for all momenta above 2.5 GeV/c.Fig. 4.2 are good

muons in iron, (Fig. 4.2) 
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(48)
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c Po

dp*
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FIG. 4.2 MOLIERE MULTIPLE SCATTERING 
DENSITY
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4.6 WIDTH OF.THE MULTIPLE SCATTERING PROBABILITY DENSITY

We have previously defined the width of the multi-

pie scattering density to be

^xe (1)

which we now write

%e
------ 5------- (2) 
f(p»x)p

so that •

f(p.x) " H px; t3)

Motivation for introducing the function f(p,x) comes from 

the well known equation for when momentum loss is 

negligible

' pb (4)

where xQ is the radiation length of the target material and 

x is the target thickness in gm/cm2. Comparing (2) with 

(4) we find 

f(p’x) ’ (5)

Thus when momentum loss is not important f(p,x) is inde

pendent uf the particle momentum.

For 1inear momentum loss Eyges’Hi as shown that

is rr
% /p^7/xo (6)
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where p0 and are the entry and exit momenta of the 

particle. For this case we have

f(P0’x) * (7)

For high momenta pQ = Pj and (7) becomes independent of 

momentum.
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CHAPTER V 

MODIFICATION TO THE THEORY OF 
MULTIPLE SCATTERING

5.1 STATEMENT OF THE PROBLEM

The ideal multiple scattering experiment, nominally 

conducted with a particle accelerator, consists of a 

collimated beam of high energy particles of well defined 

momentum, p0, traversing a target of thickness, x. The 

projected multiple scattering angle, $s» is experimen

tally measured for each incident particle (see Fig. 5.1). 

The relative multiple scattering parameter aQ, for each 

event can then be formed by

♦
% " "a : - x> <”

♦ 

where the root-mean-square multiple scattering angle, o.,
♦ 

varies approximately as the square root of x and inversely 

as pQ. The parameter a0 in eq. (1) has a Moliere probability 

density that is a gaussian with correction terms:

f(a„) - -L . dlW . f(2,("o) . ... (2)

The exact expressions for o^, B and f^n^(a0) have been 

derived in Chapter IV. Typically in an experiment one 

measures the scattering angle, ^s, and then calculates the 

corresponding value of aQ by eq. (1), A histogram of the
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FIG. 5.1 IDEAL MULTIPLE SCATTERING 
EXPERIMENT USING A PARTICLE 
ACCELERATOR
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TARGET
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values of a0 can then be directly compared to the theory, 

eq. (2).

We now turn our attention to the present cosmic ray 

experiment which is considerably different from particle 

accelerator experiments. Our intention is to delineate 

how this experiment differs from a conventional multiple 

scattering experiment, what the difficulties encountered 

are, and what a course of action for removing these diffi

culties might be. Fig. 5.2 shows how multiple scattering 

can be investigated with the magnetic spectrometer. Recall 

that two cameras photograph orthogonal projections of 

the muon sparks. One film plane is parallel, the other is 

perpendicular to the magnetic field. Hence we observe the 

muon trajectory as projected onto a plane perpendicular to 

the magnetic field (which we have labeled the "field view") 

and also as projected onto a plane parallel to the magnetic 

field (the "no-field view"). It is clear that one observes 

magnetic bending of the muon in the field view. However, 

(in the absence of multiple scattering) the projection of 

the particle trajectory onto the no-field view is nearly a 

straight line, i.e. the projection of a trajectory which 

is approximately a helix of large radius. We realize of 

course that the effects of multiple scattering and ioniza

tion energy loss are observed in both views.

In later sections we will show the following results:
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FIG. 5.2 MEASUREMENT OF MULTIPLE SCATTERING 
VARIABLES

. >
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(1) The muon momentum can be determined from the 

field view projection. However, because of 

multiple scattering, the momentum determined by 

the spectrometer is a random variable, p, 
statistically distributed about the real momen
tum, pQ. It will be shown that the experi
mentally measured momentum has an uncertainty of 
about 20% due to multiple scattering and that a 
direct determination of the real momentum, pQ, 
cannot be made.

(2) The projected multiple scattering angle, |s, 

can be measured from the no-field view projec
tion of the muon trajectory.

(3) Since the momentum determined by the spectro

meter, p, is not the real momentum, pQ, we 
conclude that the relative scattering angle, 
ao * "o^1* ca1culated by e<l- (1) does not 
have the probability density of eq. (2). We 

shall seek to derive the correct density.

The purpose of this chapter is to ultimately modify 

the Molifcre theory to take into account the fact that (due 

to multiple scattering) the experimentally determined 

momentum, p, is statistically distributed about the (un

known) real momentum, p0, with an uncertainty of about 20%. 

However, we shall first modify the simpler Gaussian theory 

because (1) the results are necessary in the modification 

of MoliSri's theory and (2) a great deal of physical 

insight is obtained in the mathematically simpler deriva

tion.
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5.2 MODIFICATION OF THE SIMPLE GAUSSIAN THEORY

5.2.1 INTRODUCTION

In this section we shall derive the probability 

density for the relative scattering parameter, a:

a % ’ % fCp’x'Jp (1)

where pis the experimentally determined momentum (not the 

real momentum, p0) and f(p,x) is a slowly varying function 

of p given by eq. (4.6.3). We may write eq. (1) as

a » f(p»x)p|s (2)

For high momentum we find that f(p,x) « f(x) ■ CONST and a 

is proportional to the product of momentum and scattering 

angle.

We already know that has a probability density 

given by eq. (5.1.2). The following sections will be 

devoted to: (1) discovering a probability density function 

for the experimentally determined momentum, p, and finally 

(2) to deriving the probability density for the random 

variable a = f(p)p<^s»

5.2.2 UNCERTAINTY IN MOMENTUM

Here we derive the uncertainty in the experimentally 

determined momentum. If we assume that there is no momentum 

loss or multiple scattering then the real momentum,pQ, is 

given by
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p . .3B0S ,
0 ♦b pH

(1)

where

pQ » momentum in MeV/c.

= magnetic bending angle in radians.

Bq ■ magnetic field in kilogauss.

S « path length in cm.

x * path length in gm/cm2.

p = target density in gm/cm?

From eq. (1) we find

(2)

If it is assumed that the uncertainty in bending angle

(3)o

When momentum loss is hencenot

eq. (1) we getusing

150 (4)o
o 0

B is the particle velocity in units of the speed ofwhere

light

dPo

Po

important

and So is the radiation length of the target material 

in cm. For high momenta B~1 and the momentum uncertainty, 

uncertainty, Ap0/p0, to be

, is due only to multiple scattering then we may define 

the relative momentum

d$B

♦ B

A<j>B a.
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o, is Independent of particle momentum. Additionally this 

uncertainty can be seen to decrease with increasing magne

tic field, Bo, and the square root of the path length, S. 

Here we have seen that o is independent of momentum when 

ionization energy loss is not important. However, we 

shall later show that a is nearly independent of momentum 

even when momentum loss is substantial. For the magnetic 

spectrometer with an iron target of thickness 725 gm/cm2 

and magnetic field 17.5 kilogauss we find o = .2, hence the 

experimentally determined momentum is uncertain by about 

20% due to multiple scattering in the Iron.

5.2.3 THE MOMENTUM AND TOTAL ANGLE PROBABILITY DENSITIES

Given a muon beam incident on an iron target with 

zero magnetic field the multiple scattering probability 

density in total scattering angle, 6, is approximately

f(e)ede (1)

The projection of (1) onto the X-Z and Y-Z planes respec

tively (see FIG. 5.3.a) gives

] J *x2
f(A ) . ------------- e ? ; <$2> - o 2

x /2ir c. x ♦

i J !z_
f(\) ■ —------ e 7 V ; <♦’> - o 2

y /2n ox y ♦

(2)

(3)
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FIG. 5.3. a PROJECTED MULTIPLE SCATTERING ANGLES FOR 
NO MAGNETIC FIELD

FIG. 5.3.b PROJECTED ANGLES WHEN A MAGNETIC FIELD IS PRESENT
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I . X

where

<e2> = 2<^1> (4)

The random variables <L and 4>v are the projected multiple 

scattering angles and are statistically uncorrelated. In 

the gaussian approximation used here | and | are also 

statistically independent. If we now assume that a magnetic 

field is present in the iron then the ratio, o,of rms

/ scattering, o^, to bending, $B, yields

■ otB (5)

Thus for (2) and (3) we get
i V 

_ 1_  x|
f(»x) • ------ --------e (6)

0*B . 1 f*Z]*
f(»„) - ------ 1------- e"557!*,) (?)

z /Z7 o*.

Here we have traded the particle momentum, po,for the bending 

angle, 4>_, and written multiple scattering in terms of the D
"noise”, o. We now have three different ways to write the 

relative scattering parameter

°o ■ 57 " I r (8)
$ B

from which either (6) or (7) becomes

“a11 —5-
f(a0) ■ ------ e 2 (9)

' /Tir
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5.2.3.1 APPROXIMATE FORMS FOR THE MOMENTUM AND TOTAL ANGLE 
DENSITIES

In this section we examine how multiple scattering 

affects a muon trajectory in an iron magnet. In particular 

we will derive the momentum probability density which is

caused by the randomizing process of multiple scattering.

In Fig. 5.4 we see how a fast charged particle enters a solid 

iron magnet and is subjected to multiple scattering.

magnetic bending, and ionization energy loss. If no energy

loss or multiple scattering were to take place then the 

muon would be bent through only the projected magnetic bend

ing angle *&. Because of multiple scattering however the 

particle undergoes a total angular displacement, $ * $ . D **
If we ignore energy loss for the present resultstwe know 

that the real particle momentum is found by

% ”
.3BOS

♦b
(REAL MOMENTUM) (1)

The experimentally measured momentum,due to the total deflec

tion angle, is

p . —— (MEASURED MOMENTUM) (2) 
|tB * ♦xl

Eq. (2) is graphed in Fig. 5.5. Only when the scattering 

angle, <f>x , is zero is the momentum determination correct. 

If | “I- then p = Po ; however, when | ■ -<(>„, then p*«. 

Thus the determined momentum is very asymmetric in <f>x. We



FIG. 5.4.  BENDING AND SCATTERING ANGLES
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already know that the rms scattering angle is a times the 

magnetic bending angle. Hence most values of *x fall in 

or near the range

-3o4>b < 4>x < 3o4>b ; o=.2 (3)

We have stated that the probability density for the scatter

ing angle, 4>x. is nearly gaussian and given by (5.2.3.6). We now 

seek the corresponding probability density for the 

measured momentum, p. Clearly such a density exists, for 

if we randomly choose values of <J>X from eq. (5.2.3.6) and calcu

late corresponding values of o (for some particular value 

of <J>B) using (2), then for a sufficiently large number of 

values of p we could simulate the probability density of p 

(this procedure is a straightforward application of the 

Monte Carlo technique). To develop an analytical expression 

for the density of p, we use a result from probability 

theory^®

|d4> । .
f(p) = fUx) I-d^| '• $x ’ 9-1(d) (4)

where it is understood that

P - 9<*x) (5)

is a monotonically increasing or decreasing function in 

the region of interest. From Fig. 5.5 this must be the 

region centered around 4>x = 0, namely

-4ib ♦x -
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FIG. 5.5 EXPERIMENTALLY DETERMINED MOMENTUM



SCATTERING ANGLE, ♦x, radians
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But we know that the width of the multiple scattering 

density is Hence the above range, (6 ), corresponds 

to the 5-sigma point for a gaussian density. Notice that 

we have neglected the regions less than and greater 

than 4>b; we will investigate these regions in Sec.5.2.3.2. 

Even though we have confined ourselves to region ( 6) In 

order to use (4), we have not significantly affected the 

normalization of the resultant probability density, f(p).

At this point it can be noted that the probability 

densities used here have the usual definitions, i.e.

f(p)dp « probability that a particle of initial 

momentum pQ will be measured to have a momen
tum between p and p+dp after traversing an 

iron magnet of "noise" o.

• probability that a particle incident 

at angle <}>x = 0 will be multiply scattered 

into an angle between 4>x and $x + d<j>x after 

traversing an iron target of "noise" o.

Also we require f(<t>x) 0 and f(p) >_ 0 for all values of

4>x and p. Likewise we require the normalizations

J f(^x) d*x " 1
’♦b

( 7)

j f(p) dp ■ 1 

Po 
2

(8)
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where the limits on (7 ) and ( 8) can be taken directly 

from Fig. 5.5. Notice once again that the normalizations 

of ( 7 ) and (8) are little affected by the restrictions on 

the range of lx.

Eq. (2 ) can now be written without the absolute

value sign since <f>B + $x >, 0 in the region ( 6 ):

and

wherewe have let

■ *c° 
6_ + 6*X

k0 * -3Bos

(9)

(10)

(ID
If we use (5.2.3.6), (9) and (10) in (4) we get the momentum

probability density

f(PlP0)

JfPo)2 fl . if 
1 p0 °J Ip PoJ 

- ------------------- e 
/TH a P2

(12)

Fig. 5.6 shows the shape of the momentum density, which is

an asymmetric function about the real momentum, pQ. The 

density f(p) has a long tail in the region of high momentum 

indicating a high probability of measuring momenta much 

greater than the real momentum, p0.

If. the relative momentum is defined by

(13)
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FIG. 5.6 MOMENTUM DISTRIBUTION DUE TO MULTIPLE 
SCATTERING, o ■ .2



RELATIVE MOMENTUM, a ■ p/pQ
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then the relative momentum density is found to be

1 e “ 
f(a) - —— S- 

/Zv o a1
(14)

The maximum value of f(a) is easily evaluated and gives

amax - -L- [/TTs^ - 
4o2

1] (15)

Since 8o2 is reasonably small we may write approximately

amax * 1 * 2°l + 4°2 * ••• w e96 (16)

The n— moment of the relative momentum, a,, can be found 

by:

1 « - 1 f3"1!<an> = ---------- [ an~2 e 2oi I a J da (17)

VTr a (
T

If we let

then (17) becomes 

where we have let l/o * ~ in the limits of the integral.

Without evaluating (18) directly it is Intuitive that

<p> > pQ (19)
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<P2>1^2» pP0 (20)

If we define the total-angle to be

■ l»B ♦ ♦J (21)

then the experimentally determined momentum, p, is found

from |T by where we include only the region of

P .
♦r

Finally the total-angle probability density is

to be:

eq. (6):

(22)

easily found

(23)

Thus while the total-angle, <#>T, has a gaussian density, the 

corresponding momentum, p, is distributed by the more 

complicated equation (12).

We have developed expressions for momentum and total

angle probability densities f(p) and f(4>j) by assuming that 

contributions from the region -* < 4>x < are negligible. 

In the next section we will include this region and calculate 

exact expressions for (12) and (23).
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5.2.3.2 EXACT FORMS FOR THE MOMENTUM AND TOTAL-ANGLE 
DENSITIES

We may write the total-angle, eq. (5.2.3.1.21) as

♦t ” ♦r * *x 1 "*r < *x < * REGION 1

♦j e ■(♦b + *x) i < ♦x <"4ib REGION 2
(1)

where we have separated the 4>x domain into two regions 

(see FIG. 5.7). We see that the total-angle is monotonically 

Increasing in region 1 and monotonically decreasing in 

region 2. This allows one to write for the total-angle 

probability densit^

f(4>T) = fl(4>x)
d^x
d •p

+ f2(4,x)
d*x 
d4*T

2

Using the above we may easily find the exact total-angle

density, i.e. we include effects in the region -®<4>x <-$B.

The second term in (2) is given by (5.2.3.1.23) while the first is 

obtained by changing the sign of 

exact total-angle density is

f (4> | o, 4> B) ■

<t>T In (5.2.3.1.23),hence the

a»B
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FIG. 5.7 THE MULTIPLE SCATTERING DENSITY AND 
TOTAL ANGLE AS A FUNCTION OF PROJECTED 
SCATTERING ANGLE
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where 0 < $T < *. Eq. (3)1$ graphed In FIG. 5.8. The 

first term Is a gaussian of width o<j>_ centered at while 

the second term also has width c$o,but is centered at D D
We see that f(^T) is just the sum of the two curves in the 

region 0 < 4>T < »•» thus no negative values of |T are 

allowed si nee,experimentally,one assumes the total-angle 

to be positive to insure that the corresponding momentum 

we may neglect 

; 0 < $T < * ( 4 )

the second term of

e

is sufficiently small 

( 3 ) to obtain

is positive. If o

f(»T|c,4B) = ——-—
✓27 o*B

- 1 *T-*B

2c2l ♦r

which is the approximate result obtained before, (5.2.3.1.23.

Using the fact that p = k0/<t>T we find directly from (3)

n -ifPo) fl ±1 lfP0] fl+±lf(p|0,p ) = _!_Eo e 2(cJ (p PoJ+L Po e "?[oj [p pj

0 P! p1 

for 0<p<“».

Again,when c<<! we get

_1 fPoPh _ 1_P 
f(p|o.P0) 8 -zz- e 0 J J-p poJ ; 0<<l ; 0<p<« ( 6 )

/27o P2

which we obtained earlier in (5.2.3.1.12)
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FIG. 5.8 TOTAL-ANGLE DENSITY: THE SUM OF 
TWO GAUSSIAN DENSITIES
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Before continuing to the next section we recall 

the relationships between the following variables:

pQ ■ real momentum of the incident particle.

♦g » bending angle of the incident 
particle neglecting multiple scatter
ing and hence corresponds to p0.

p = experimentally determined momentum.

4>t « experimentally measured deflection 
angle (due to bending plus scattering) 
of the incident particle and corresponds 
to momentum p.

Therefore 
to ko 

po = t- ; p ■ 7-

While we can measure 4>T and hence calculate p, we have as 

yet no knowledge about 4>B and pQ. Equations ( 3 ) and ( 5 ) 

can only be used if particular values of 4>B and pQ are 

assumed. Thus.ultimately.we must fold the probability 

density in B (or pQ) with the density in <t>T (or p). This 

will require knowledge of the momentum spectrum of the 

incoming cosmic ray muon flux. However, we delay these 

considerations until a later section.

5.2.4 THE EFFECTS OF MOMENTUM LOSS

Previously we have ignored ionization energy loss. 

Here we examine how the relative momentum uncertainty, a, 

varies as the incident muon loses energy in the magnet 

iron. To this end we first determine how the magnetic
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deflection angle is affected by momentum loss.

For a differential thickness of target material, 

ds, the particle undergoes a net magnetic deflection, 

d*B:
d#, . ^ds ' (1)

If energy loss occurs then we expect p « p(s). Integra

ting eq. (1) leads to

♦b ■ (2)p°

where

k(s,p0) - kglts.Pg) (3)

kg * .3BgS (4)

Here

4>b ■ net magnetic deflection angle, 

s ■ target thickness in cm.

pQ = entry momentum of the particle, MeV/c.

From eq. (5) we see that if no momentum loss occurs

I(s,p0) = 1 and 

4b («>

which is the expression that we have used before for no 

momentum loss.

For constant momentum loss we have
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P(s) ■ Po - if s •• st • CONSTANT

Thus for eq. (5) we get

(7)

(8)

where we have let c » dp/ds.

Integration of (8) leads to

I(s.po) • - 1 tn(l-e)-1 (9)
° Ko e

where

e = ^2.
Po

is the fractional momentum loss of the particle and Ap0 is

the total momentum loss:

Apo = <Js $

If the fractional momentum loss is small we may expand (9) 

in a Taylor series to obtain

Ks.po) • k(j?Po) - 1 ♦ I ♦ ... (12)

For constant momentum loss we have finally for the magnetic

bending angle

(13)

which, for e<<l, reduces to
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L *■ e■ IT I1 + 7 + T + •••! <14>

is the rms multiple scattering angle for no momentum loss.

B po L Z 3 J ' *

If the momentum loss is linear

■ a ♦ bp,

(where a and b are constants) then to an excellent degree 

of approximation eqs. (13) and (14) are still true if we 

let

Ap0 s (a+b^)s (15)

Next we examine how the rms multiple scattering

angle, a., varies as a function of momentum loss. Recall 
11 

that a, for constant momentum loss, was found by Eyges to

be:

" /TF-TT- SO
✓P^PJ

(16)

The momentum pQ is the entry momentum and pj is the exit 

momentum of the particle after traversing a target of 

thickness, s, and radiation length, s0. We may write pp 

for constant momentum loss, as

Pl a P0(1‘e)* <17)

Hence (16) becomes

°» ■ (,8>

where
 15 FT

°<t>o P0VS0 (19)
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For small e we expand (19) in a series:

* a4>ot1 + f + |e ♦•••]• (20)

Finallytwe are able to determine the relative 

momentum uncertainty due to multiple scattering from (13) 

and (18) 

n =
o(p) ■ T- » vr-7"." (2D

where
a » 52- —L_ (22)
°

is the relative momentum uncertainty for no momentum loss. 

When the fractional momentum loss, e, is small we obtain 

from (14) and (20)

o(p) ■ o0[l + + + •••]/['* + 7 + s’ + (^^^

Thus for small c we do not expect o(p) to be very momentum 

dependent. In fact for the AMH magnetic spectrometer (with 

a target thickness of about 725 gm/cm2, sufficient to stop 

a 1.2 GeV/c muon) we find for an incident momentum of

2.4 GeV/c that o/a0 ~ 1.02. Thus even at this low momentum 

o does not vary by more than 2%. We conclude that o(p) can 

be assumed to be constant over the momentum range of interest

2.5 GeV/c Po <
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We now investigate how the momentum and total angle 

densities (eqs. (5.2.3.2.6 and (5.2.3.2.4 are altered by 

momentum loss. First, since a(p) » constant, we see that 

the total angle density remains unchanged. However we must 

determine the momentum density from

♦ . (24)
TP

where now k(s,p) f constant. Taking the derivative we get

1^1 • - >3?] (25)
where

k(s,p) « k0I(s,p) (26)

I(s,p) « | | pT(-$i-y (27)

o
This leads to a momentum density (when o<<!) of

f(p) — I(s,p)
✓ 2n o

(28)

This may be compared to ti.e previously derived result.

eq. (5.2.3.2.6)« which was developed for no momentum loss.

Eq. (28) may be greatly simplified if we assume

that momentum loss is constant. We find that

k(s,p) ■ tnd-c)"1 (29)

Ks.p) - 1 + (30)
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Idtrl k_ i kn - *|^_| . _2 . _a 0 t E) (31)

The momentum density for constant momentum loss is then* 

approximately.

(32)

It is easy to see that eq. (32) becomes the simpler form used 

previously when e-*-O.

In order to verify the utility of (32) a Monte Carlo 

investigation of multiple scattering in the AMH magnetic 

spectrometer was made. A total of 1000 muon trajectories 

of momentum 10 GeV/c were calculated by numerical integration 

of the muon relativistic equation of motion. The computer 

simulation included the effects of magnetic bending, 

ionization energy loss and multiple scattering. After each 

step in the numerical integration the muon direction was 

randomly scattered according to eqs. (5.2.3.6-7). The 

trajectories generated in the above fashion were then 

submitted to the x2 momentum determination program 

described in Sec. 3.5.2. Finally, the momentum histogram for 

the 1000 simulated trajectories was fitted to the momentum 

probability density, eq. (32) using the x2 minimization 

technique. The result of this fit is shown in Fig. 5.9.
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FIG. 5.9 MONTE CARLO MOMENTUM DISTRIBUTION 
FOR THE MAGNETIC SPECTROMETER
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/ . " .

The fit parameters were taken to be the real momentum, p0, 

and the momentum uncertainty, a. The values resulting 

from the fit were pQ ■ 10.0 ± .8, o « .22 ± .01 with a 
reduced x2 of .89. The real values were p0 = 10.0 and 

o - .217.

In this section we have determined that, even when 

momentum loss is taken into consideration, the relative 

, momentum uncertainty, a, remains a constant. Furthermore

(1) the total-angle probability density remains 

unchanged, while

(2) the momentum density becomes much more com
plicated.

In fact the momentum probability density does not have an 

analytic form for the most generalized expressions of 

momentum loss. We shall therefore use the probability 

density in total-angle, rather than the probability density 

in momentum, in all future calculations.

5.2.5 MODIFICATION OF THE GAUSSIAN THEORY

Recall that the relative scattering parameter, cto, 

can be written two ways

°o ‘ f(Po>Po*x " I 1,1

where the first is in terms of the incident particle 

momentum, pQ, and the second is in terms of the correspond

ing bending angle, 4>B. Here we assume



5.2.5.2

which is a transcendental equation in pQ. We have disr 

cussed previously that 4>B and hence p0 are not measurable 

with the magnetic spectrometer. Only the "experimentally 

measured total-angle", can be determined and hence the 

"experimentally measured momentum", p, can then be found 

from

p-UltBl (3)
*T 

We have seen that p is a random variable given by a well 

defined probability density, eq. (5.2.4.28). This leads to 

a new definition for the relative scattering parameter:

»• f<P)P»y-5^ W
where we now use the experimentally determined value of 

momentum, p, and the total-angle, t» rather than the 

assumed true values, p0 and 4>B. It is clear that the proba

bility density in a is not a gaussian probability density, 

and thus it is our goal to discover this new density. We 

will assume that the new relative scattering parameter, a, 

does not have the same probability density as that for aQ, 

because the experimentally determined momentum, p, is a 

random variable distributed about the real momentum, pQ, 

or stated differently,because the experimentally determined 

total-angle, 4>T, is distributed about the real bending
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order to discover the new probability

density in a we may

of the densities of

is sufficient for our needs and both

should yield the

second of the two methods is mathematically simpler,we

(5)

magnetic bending) measured in the spectrometer field-view.

to the

angle.ratio of the no-field view angle to the field view

angleThe approximate no-field view density in scattering

is
2

(6)

2

(7)

covered, or (2)

Hence the scattering parameter, a, is proportional

sities of 4>t and 

of these methods

same resultant density in a. Since the

use (1) a « f(p)p4*y, so that knowledge 

p and 4> will allow f(a)dct to be dis-

angle, 4>b. Thus in

ct « — and hence knowledge of the den- 0 (jxp
4> allows f(ct)dct to be calculated. Either

shall pursue a determination of the density in terms of

a . It® 

a

where we have let 4>s=4>y. Thus <j>s is the multiple scatter

ing angle as measured in the spectrometer no-field view.

♦t is the total-angle (due to multiple scattering plus

1____ e 2^UbJ

while the field view density in total angle is

J 
f(»T|»a> ‘ tzz3----- e1"/2ir a<|>B
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The variables 4>s. <{>T and <^B, can be seen in Fig. 5.10. Here 

we have defined:

e Probability of a muon of momentum 

P0(*k(s ,p0)/4>B) entering the spectrometer and 

being scattered into (<t>s • 4>s ♦ d<J>s) in the no

field view.

f(4*r Ie probability of a muon of momentum 

Po (=k(s,p0)/$B) entering the spectrometer and 

being scattered and magnetically bent into total 

angle (4>T, 4>T + d^>T) in the field view.

We may form the joint density in ♦g and 4>T by 

J(»S,'llTl»B)d»sd»T = f (»T l4>B)f (♦Sl<i,B)d4>Sd,,>T * 

probability of a muon of momentum p0( = k(s»P0)7<*>b) 

entering the spectrometer and being scattered

into (tg, <$>s + dOg) in the no-field view AND being 

scattered and magnetically bent into (^T,*T + d<bp) 

in the field view.

(8)

We now seek the density in a (eq. (5)). To this end we 

write
a

f(a')da’
• 00

J (•t’g»O-p I $|j) d d <t>-p 
R

(9)
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FIG. 5.11.

Thus eq. (9) becomes

a
(10)f(a-)da*

o

Differentiation with respect to a yields

f(<x) - (IDo

The upper limit maximumthe

lowest measurable momentum.

Because of momentum loss any muon which enters wi th
Thus a cutoffp < 1.2 GeV/c is absorbed by the magnet iron.

pc% is defined bymomentum

(12)

• such that

values of

If we put we get:
2

(13)f(a) =

(13) becomesIf we let x

(14)f(«)

on the integral corresponds to

<tT correspond

(8) into (11)

♦yt1 max

total-angle possible, or the

max
4>T<J(aa^T,4>T

2
Cl

" 2
1

e"2o2
r
4*81 

2n

lfx-11 g^2 xe-7[—J -aT-dx

max |
J J(4>-l4>R)d4> d<f>T

D * D D «

0

4>TnB eq.

fX max
2 no *

n . klS-LEnl 
Pc » 

max
no values of <L. > 4T are allowed. These 

1 1 max
to values of momentum < pc - 1.2 GeV/c

where f(a) is the density in a. The region R in space 

corresponding to (-»,a ) in a space can be seen in

2

o



where
X ■ *Tm^x , k.(..s.?P.c).

max vB k(s,p0) Pc (15)

For linear momentum loss

X ■ APo tnfl-ec) 
max Apc in(1-e0) (16)

_ , APC . _ _ APp
c pc • Go p0

Apc = (a + bpc)s

Ap0 = (a ♦ bp0)s

(17)

(18)

When pQ = pc. Xmax = 1 and when p0 »pc, Xmax « p0/pc.

for small ec.

By completing the square in the exponent of eq. (14) 

we obtain
1 aZ fXmAv 1 fx -XoV

i — o ......... I max “ o I 6 rt If(a> " e 2 l(1+o2ai)J J xe 1 d* (19) 
£710 Q

where

(20)

If we assume that Xmax is sufficiently large and that a is 

sufficiently small eq. (19) can be integrated exactly to 

obtain
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FIG. 5.10 SPECTROMETER FIELD AND NO-FIELD 
VIEW SCATTERING VARIABLES

FIG. 5.11 DOMAIN OF (ts,tT) INTEGRATION
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1 a1
, -i rr?orarr 

f(a|a) * "zz. ---2
✓27 (l+o2a2)'$/^

(21)

If we examine momenta >2 GeV and use a • .2 we find that 

numerical integration of (19) gives results which compare 

favorably with (21). The error is found to increase with 

a but is found not to exceed .2%at a ■ 7, i.e. approximately 

7 standard deviations.

Fig. 5.12 compares the gaussian density in aQ to 

the corrected density in a, eq. (21). We see that the 

corrected density is lower in the region near a ■ 1 but 

is greater for a > 2. Thus the corrected density is 

characterized by a “tail" at large a. Notice also that 

if o is set to zero in (21) we obtain the gaussian density 

in aQ. This is equivalent to removing the momentum un

certainty due to multiple scattering and is tantamount to 

replacing the momentum density, eq. (5.2.4.28) and the 

total-angle density, eq. (7), by Dirac delta functions and 

then evaluating eq. (11) as before. In fact we shall 

ultimately require

11m f(a|o) 'moll”) (22)
o-»o

where Moliere density and f(a|o) is the

Moliere density corrected for uncertainty in momentum 

determination. The corrected Moliere density will be
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FIG. 5.12 MODIFICATION TO THE SIMPLE 
GAUSSIAN THEORY, a ■ .2



SCATTERING PARAMETER, ci
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developed in a later section.

Another feature of eq. (21) can be noted: it is not 

a function of 4>b (and thus not a function of pQ) and is 

therefore not a function of the cosmic ray muon momentum 

spectrum. This is a most fortunate circumstance (because an 

integration over the cosmic ray spectrum is not required) 

and will be investigated further in Sec. 5.2.7.

Before proceeding to the next section we examine 

what effect the approximation eq. (7) has caused in the 

development of f(a|o). Recall that the exact form of (7) 

is given by (5.2.3.2.3). Thus our calculation of f (ci I) has 

excluded scattering in the region -®<$x <-$B* Use of 

(5.2.3.2.3) allows f(a|o) to be calculated exactly:

f(a|o) “ f_(a|o) + f+(a|o) (23)

where

.1 o2 /max 1 fx* 
f;(a|o) ■ e ? (1+a'a2) f xe?l°l|dx (24)

Evaluation of the above leads to

1 J*2-

f.(a|o) - -L-e-------— g (O|o) (25)
t /2T (l+o2a2)3/Z +

where
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gt(a|a) 2

*m1n

Zmax
e 2 dZ•J— a(l+o2a2)(e vn L

z2 . 
min

e

Z2 max ~T"
Z . » ± xo
Snin crp

2max » Xmax 1 xo 

°1

v « *T max 
Amax

(26)

(27)

(28)

Notice that there is a slight dependence upon 4>B in (25) 

through (28); however, this effect is small. Numerical 

integration of eqs. (25) - (28) yields results consistent 

with (21) to within 2% (at a=7) for different values of 

4>b. The total error in eq. (21 \ due to all of the sources 

mentioned, does not exceed 3% for values of a>5. These 

errors are considered negligible because (1) the data 

in this region has errors ~50X, and (2) the MoliSre 

correction terms for a>. 3 completely dominate the tail 

region of eq. (21). These points will be considered in 

greater detail in later sections.
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5.2.6 THE EFFECTS OF UNCERTAINTY IN ANGLE MEASUREMENT

In this section we consider the effect that angle 

measurement uncertainty has on the multiple scattering 

density, f(a). First we shall assume that there is some

measurement error In the total-angle, <j>T, say A<fr. Then the

measured total angle, 4>TM, Is

r c W

distributed by

1 
e"Z

(1)

Recall that the total angle density In the spectrometer field-

view Is given by

t

Bef (4>t Kb) (2)

B

(1)Al 1 of the variables of

measured total-angle, which Isnow seek the density 1 n the

product of (1) and (2) over theobtained by Integrating the

2

1 (3)

where 2
(4)2

°n

and (2) are shown in Fig. 5.13. We

total-angle, <t>T, to obtain

TM'^B 

n^B

1 
"7 O4>

ifL_ 

e ?lon«'

/ZT on#B



FIG. 5.13 FIELD VIEW AND NO-FIELD VIEW ANGLE 
VARIABLES
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or
aH ■ o*c n (5)

for which a‘ ■[' . (6)

Thus the density in the measured total-angle, is the 

same as that for the total-angle, <#>T, except that f(<t>TM) has 

a new standard deviation given by eqs. (5) and (6). Notice 

that on ■ o only if the uncertainty in angle measurement, 

A|, is zero.

Multiple scattering in the spectrometer no-field view

is given by _lfl ♦si*
f(»s) ■ ------ !-------e 21’

✓27 o$B
(7)

Due to measurement error we introduce a measured scattering 

angle, 4*SM» distributed by

1

5>N A A
yen

(8)

where we have assumed the angle uncertainty, A<j>, to be the 

same for the no-field view as for the field view. We seek 

the density in the measured scattering angle which we obtain 

by integrating the product of (7) and (8) over the scattering 

angle, *s:
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11 ♦sm 
f(*SM>---------- ?--------- e"7^n ♦’J W

/Z* On*B

where an is again given by (5) and (6). Fig. 5.13 shows the - 

no-field view scattering variables of eqs. (7) and (8). The 

probability density for eq« (9), differs from that for 4s 

only in that the standard deviation is now given by on rather 

than a.

product of (4) and (9):

1 (10)
e"^7

We now form the joint density in 4>_u and 4>cu from theIM 5>M

.♦b -
2ir(an4>B)

2
+ I 6

I *B

Comparison of this result with eq. (5.2.5.8) shows that the. 

following changes of variable have taken place

*S * *SM

4>t ►

a -------► a_

Thus the exact values of <j>s and <f>T have been replaced by 

their measured values , ^and the uncertainty a has 

been replaced by on. Hence we can rewrite eq. (5.2.5.21) with 

the above changes of variable to obtain a new multiple 

scattering density
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where

1 an‘

o * %2«n2)3/z

1
6 ) VSM 
6 I

(ID

(12)

(13)

The new scattering density eq. (11) has a characteristic 

"width", an, which is a function of multiple scattering 

"noise", o, and of measurement uncertainty. A*. If it is 
possible to reduce measurement error to a negligible level 

then the uncertainty, an, is due only to the noise, o. 

However, for a sufficiently thick target and/or a sufficiently 

great magnetic field the parameter o becomes arbitrarily 

small and on is due only to measurement error. When both 

sources of uncertainty approach zero the probability density 

f(an|on) becomes the Dirac delta function.

From eq. (13) we see that the new value of «n is not 

useful since it is a function of <#>_ and hence of the real 

momentum p0. Since we cannot experimentally determine p0, 

eq. (13) cannot be used. A more useful scattering parameter 

for the evaluation of experimental results is

M . 1 M 
o <>TM 1 M

(14)
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because now a can be experimentally measured. Comparing 

(13) to (14) yields

o a « aa n n
Also let

an - 00' ; o' . [1 . [I*] ]1/2

so that

Transforming (11) by (15)-(17) we get

(15)

(16)

(17)

1 _______ Ct*
. 1 e"? o'i(' ♦ o'aZ)

f((x|o>$-) ■ i'?)B /2T a1 (1 + o*a*)3/2 (18)

(19)

From (19) It Is easy to see that o' = 1 only when 

the measurement error is zero. In this limit (18)i$ equal 

to eq. (5.2.5.21). Eq. (18) is the corrected gaussian 

density which we originally sought to discover; unfortunately 

It cannot be compared directly to experimental results be

cause of the conditional dependence on <f> and hence on the 

real particle momentum, pQ. Integration of (18) over the 
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cosmic ray muon momentum spectrum allows a momentum Inde

pendent multiple scattering density to be calculated.

This problem will be treated In the next section.

5.2.7 INTEGRATION OVER THE COSMIC RAY SPECTRUM

In order to see the explicit dependence of the 

corrected multiple scattering density, eq. (5.2.6.18). on 

the cosmic ray muon momentum spectrum we must make a 

change of variable in eq. (5.2.6.19) from angle to 

momentum coordinates. First we define 

n k(S1PrnM) 
PCDM « ----- ;--C" (1 

to be the "characteristically determined momentum'(COM) of the 

spectrometer. This is the value of momentum for which the 

uncertainty due to measurement error is approximately 

100X. This relationship forpcl)M^s analogous to similar 

relations which have been introduced, i.e. it can be 

recalled that the "real muon momentum" is given by

and that the "experimentally determined momentum" is 

found from

P ■ (3)

In the high momentum limit we use eq. (5,2.4.12) to show



that
k(s,p) - k(s,p0) - k(s,pCDM)-k0 - .3Bos (4)

One can then easily transform the measured total angle 

density, eq. (5.2.6.3),to a momentum density which includes 

measurement error:

D ify1!! _l]x

f(p|p0) - -L- ^e"?l°nJ IP PoJ (5)

✓Fir an p»

This is the same density which we have seen previously 

except that the relative momentum uncertainty, a, has been 

replaced by an. Thus an is a measure of momentum uncer

tainty which not only includes the effects of multiple 

scattering but also the effects of measurement error.

• The expression for on, eq. (5.2.6.12), can be 

transformed from angle to momentum variables by use of (1) 

and (2).

From eq. (4) we find that at high momentum eq. (3) becomes, 

approximately.

If o2 is assumed small then when p0 =» pCDMthe uncertainty is 

nearly 100% (actually the figure is about 102% if o ■ .2).

In the same way we are led to a new expression for
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o’, eq. (5.2.6,19)

a- - [1 t[5]-]'/2 (8)

where
n « k(s«PCDM)PO (9)

k(SiPo) PcDM s
k(s.PCDM>s ! P(S'.Pcdh) O0)

s 
. f ds * k(s^'-^!pT^ (n)

For linear momentum loss we obtain

f$ /f$
n = ds' / ds' APO £n(] - APm/PCDM) Po /S, 

J P(S^PcDm/ pCs'.Po) " APCDM£n^"" ^Po/Po) " PCDM 
0 0

{a + bPCDi?

APo * (a+bp0)s (14)

The last approximation of eq. (12) is obtained only when 

momentum loss is assumed to be small.

We are finally able to write the expression for the 

corrected gaussian multiple scattering density

f(a|0,po) ■

1 a1
i e"2oi2 (1 + ozaz)

---------------------- sry (15)✓Z7 o' (1 + ozaz)3/Z
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where ]
A7

o* - h + XK2. T1 (16)I fl •• ID I I x "L ° vhcdmJj

« e J- f 1 71
° a a I•7)° VTM

Here we have used only an approximate expression for a*, 

however, it is sufficient for the arguments which follow.

From (16) we see that if the COM is finite, then 

o* « o,(po), a relation which forces (15) to have a "width" 

which is dependent on the real momentum, p0, of the muon. 

The probability density for p0 is governed by the cosmic 

ray muon momentum spectrum, I(p0|y)« Knowing the functional 

form for the spectrum allows one to calculate a multiple 

scattering density Independent of pQ:

f60 
f(a|a,y) - j f(a|a,p0)I(p0|Y) dp0 (18)

Pc 
It is this expression which must ultimately be compared 

to experimental results. The form for the spectrum, 

KPoIyX is discussed in Appendix I.
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5.3 MODIFICATION OF THE MOLIERE THEORY

5.3.1 INTRODUCTION

In Section 5.2 the simple gaussian theory of multi

ple scattering was modified to take into account the 

random nature of the momentum measured by a muon magnetic 

spectrometer. In this section we use the same techniques 

to modify the more complete theory of Moli&re. It will be 

seen that all of the results of Section 5.2 are applicable 

here. Only one previous assumption will be Invalidated; 

in the Molidre theory the projected angles <t>x and are 

not statistically independent. The consequences of this 

one change will be investigated in subsequent sections.

5.3.2 MOMENTUM UNCERTAINTY DUE TO MULTIPLE SCATTERING

Here we determine the momentum dependence of the

multiple scattering noise, o, in a rigorous way. In 

particular we calculate o using Moliere's theory, which 

includes the effect of ionization energy loss. Recall

magnetic bending,
D

that o is the ratio of rms multiple scattering, o., to

O • -A (1
♦b

From eqs. (5.2.4.2-5) we find an integral expres

sion for $D: D

♦b b •3BO
rs ds>

i Pts'.Po).
(2)
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where s is the target thickness and pQ is the momentum 

of the muon as it enters the solid iron magnet. Because 

of the complicated behavior of ionization energy loss 

eq. (2) must be integrated numerically. To this end we 

rewrite eq. (2):

♦b ’ |P1 --------
B p i p(-dp/dx) 

Po
where the rate of momentum loss (-dp/dx) is a tabularized 

function and is described in Sec. 3.5; p is the density 

of the iron and p1 is the particle momentum as it exits 

from the magnet iron. Before integrating eq. (3) the 

exit momentum, p , must be calculated from

rpl -•I pfc (*)
Pq

Here pQ and x are known and p1 is determined numerically. 
This task is easily accomplished by the Newton-Rhapson^ 

method which yields an iterative equation:

P?’1 - p? - [f(p;)-x][ -a^(p?)] (5)

where

'(Pl’ ‘ J 1 FTp^aTT <6>

and p" is the ntfl value of the exit momentum. Typically 

one guesses an Initial value of p1 (based upon constant 

momentum loss) and then uses (5) and (6) to iteratively 

converge on the actual value of p1. No more than three 
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iterations are necessary to obtain p1 to an accuracy of 

.1$ or better.

In chapter IV we found that the root mean square 

multiple scattering angle of Molidre is given by

■ f2irBNl ze* [ fP1 dp f71
♦ I'V] c I J (pBlVdp/dx) J 

po
Numerical integration of (7) is of course necessary. 

A computer program was written to calculate the 

momentum uncertainty using equations (l)-(7). The program 

requires for input the target thickness, x, and the par

ticle entry momentum, pQ. The exit momentum, p , is then 

determined by eqs. (5) and (6). The magnetic bending 

angle, <f>o, is found by numerical Integration of eq. (3), D
and the rms scattering angle, a., is determined by 

*
numerical integration of eq. (7). (All numerical inte

grations in this program are performed by a fifth-order 
Runga-Kutta^algorithm.) Finally a value of o is calcula

ted from eq. (1). Values of o, determined from the above 

program, were used to plot the curve of Fig. 5.14 for a 

magnet target thickness of 95 cm. We see that o = .228 

for entry momenta > 5 GeV/c but rapidly Increases to 

.247 at 1.5 GeV/c. While a is not constant below 5 GeV/c 

we see that the deviation from constancy is only 1.7X 

down to 2.5 GeV/c. The uncertainty for momenta > 2.5 GeV/c 

is considered negligible and Is justification for assuming
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FIG. 5.14 SPECTROMETER NOISE AS A FUNCTION 
OF MOMENTUM
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a to be constant above 2.5 GeV/c. Thus all data below 

2.5 GeV/c are neglected in the data analysis.

5.3.3 THE TOTAL ANGLE DENSITY

We have seen that Moliere's joint density in the 

projected multiple scattering angles ♦xt 4>y (see eq. (4.5.41) 

is given by:

d6 d6 60 00 '■ I * i I yI
J(*x.»y)d»xd»y - 72 l0»BJg(y2typ (1)

where

g(y?+y22) - e 1 J 1 (2)

Eq. (1) represents the probability that a particle inci

dent on a target will be multiply scattered into projected 

angle intervals ( 6 »6 +d4> ) and (6 ,6 +d4> ) during tra- 

versal of the target.

Recalling the definition of the "total" angle (the 

muon angular deflection due to multiple scattering and 

magnetic bending as observed in the spectrometer field 

view), we write

4>t ■ ♦jj + (3)

This allows the density (1) to be transformed into:

d(»y,»T)dtTd»y -
d6Td<t>y 

2(2no6B)2.

o» co
|J dyidy2e 

co •«

(4)
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Thus in complete analogy to eq. (5.2.5.8) we know that 

eq. (4) represents the joint probability that a charged 

particle of momentum p0 (corresponding to a bending 

angle, 4>B) enters the spectrometer and (1) is multiply 

scattered into (♦y,4'y+d4>y) in the no-field view and (2) 

is multiply scattered and magnetically bent into 

(4>t,<J>T*d<J>T) in the field view.

If we Integrate eq. (4) over $iT we immediately

obtain the density in scattering angle, f(0y).

f (4>y)d4.y =
d* r”-------- [ dy COS 

J
_ixL e (5)

Using the fact that B is reasonably large (B = 18) we 

may expand (5) about 1/B to obtain: 
f 

”71 h*—1 r^2)
f(.|0.*B) . e (»y) (♦,)♦..• (6)

D 

where i

f,n)(»J - —L— fdy COS [3-1 e [fin fl" (7)

If we now Integrate eq. (4) over <j>
y

we obtain the

density in total-angle, f(4>T):

f (d>T)d<t>T =
d4>T

/Zito4)d
D

ply COS 

o

'(♦T-»B)y'
(8)

Expanding about 1/B gives
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where

n n
(10)

4 
e

y2b»B

. 2
■’♦T 4”(*) flzl(» )

® *T*p/ \T«p/

® B

f(">(^)- —-1— fdyCOS

1 1 /Zno^-n! JD O

f(♦jlo,* ) - —!------
/Zno*n D

1 

e

We shall later have need to reference the series expan

sions above, i.e. eqs. (6) and (9).

One can easily see that the product of eqs. (5) 

and (8), does not yield a joint density in 4>T and 

equal to eq. (4). This Implies that 4>Tand 4>y are not 

statistically independent (since J(4>y,<}>T) # J(<f> J(♦y)). 

Thus we are forced to use eq. (4) rather than the pro

duct of (5) and (8) to modify the Moliere theory of 

multiple scattering. How the statistical dependence of 

4> and <b effects our results will be seen in the * y
following section.

(9)
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5.3.4 MODIFICATION TO THE MOLIERE DENSITY

5.3.4.1 INTEGRAL FORMULATION

In order to modify Moliere's theory we use equation 

(5.2.5.11) together with (5.3.3.4) to obtain the density 

1 n a, f (a):

4.. fx-11 iy? a x
i r n” 1yil^J J?—

f(a) «------------ dx x dy.dy e g(y| * y|) (1)
2(2i-)’ai JJ 1 2 12

Here we have let x « 4>-/4>D in order to simplify the 1 D
equation. Notice-that eq. (1) is not a function of and " D
hence not a function of the cosmic ray muon momentum 

spectrum (this is exactly what we found in Section 5.2.5 

when the gaussian theory was modified). Notice also that 

the upper limit of eq. (5.2.5.11) has been set to infinity 

in eq. (1). This has been done because numerical integra- 

of (1) yields results which show that all possible values 

for this upper limit are consistent with infinity. This 

is due to the rapid convergence of the two inner integrals 

over y1 and y2<

Now recall the arguments in Sec. 5.2.3.2 which led 

to an examination of the scattering angle 4>x in the region 

-* < 4>x < -$B (REGION 2 of Fig. 5.7) and which subsequently 

led to a correction of the total angle density as given 

by eq. (5.2.3.2.2 ). We now apply eq. (5.2.3.2. 2 ) to the 
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joint density J(4>T,4>y), eq. (5.3.3.4), and obtain the 

exact form of the joint density:

* J_(^T»$y) (2)

where
1X Pt^r] + Jy f_±L]

J±(<L»* ) • —----------- - |[ dy dy e^ t °^B J 72 + yj) (3)
± T X 2(2ira»B)2 Ji, 12

We have formed eqs. (2) and (3) In exactly the same way 

as we formed eq. (5.2.3.2.3 ). If we use eq. (2) (rather 

than 5.3.3.4) to form the density In f(a) we obtain:

f(a) « f+(a) * fja) (4)

where 1v fx±L] + iy?ax
i r 7r 1ye ~7"" dx x dyidy2e sty?+ yP

1 2(2ff)2a 1 1 2 12

Notice the similarity of (4) and (5) compared to eqs. 

(5.2.5.23) and (5.2.5.24) which were derived In analogous 

fashion. Numerical Integration of f±(a) shows that 

f+(a) may be neglected, i.e. that f(a) = f.(a) to a 

sufficient degree of accuracy. It is found that f+(a) 

amounts to, at most, a 5% correction to f(a) at a ■ 7 

(7 standard deviations).

Before proceeding further we point out that a 

simple change of variable In eq. (1) was made In order
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to facilitate its numerical Integration. This change

of variable was accomplished by

and led to

f(a) (6)

Here we have taken the real part of eq. (1). This re

sult is very well behaved (much more so than eq. (l))and 

can be easily integrated on the computer.

5.3.4.2 SEMI-ANALYTIC FORMULATION -

We now proceed to the direct integration of

eq. (5.3.4.1.1). To this end we write

iy Jxd)*
1 /2o VZ [(x-l) ctxy3l Ffx-lT cixy^l ...e .Cos[^ly,.  ̂ (1)

■ COsK^y 1 COS [^y-2l -SInK5^- y IsInF^I (2) 
L Jio U I /2 J L Vzo ij L 2 J

where only the real part has been retained in eq. (2).

Now use (2) in eq. (5.3.4.1.1) to obtain

00 co

f(a) ■ -J- fdxx [I dy dy COS yJ COS g(y2 + y2) (3)
2n2o J J) 12 [ /2o J I J 12

o 00
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where g(y^ + y|) is given by (5.3.3.2).

If we expand (3) in a series about 1/B we obtain

f(a) ■ —y- r dx X f| dy1dy2 COS py-'yJcOS e

2^0 J n 1 z L Via L VT J 
o oo

In eq. (4 ) we have neglected terms of order (1/B)1 and

greater. We shall designate the first integral of (4)

as fQ(a) and rewrite it:

The integrals in brackets are easily evaluated

(7)

(8)

Put (7) and (8) into (6) to get
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e» - (X*^ 1 2 . 012_X
f (n \ f v a I ® J 2 
fo'a' 2110 J xe dx (9)

o

We have integrated eq. (9) before (see eq. (5.2.5.14)) in

Sec. 5.2.5; our result was

1 a1
1 e~2T7^F

H (lto,a2)3/2
(10)

Thus the zeroth order term in the corrected Moli6re 

density is exactly the result we obtained for the 

corrected gaussian density. Needless to say, this is an 

expected result. Eq. (4) can now be written

f(o) . _L_ . fillXol
✓27 (l+o’a2)3'2 B

(ID

where

eo 
f^^(a) ■ —-— [ dx x 

2n20 J
00

COCO

dy1dy2 COS
✓2b

COS G (yJ+yj)

For reasons which will soon become clear we prefer to 

rewrite G(y21+y2) so that

G(y}*y|) • e

(12)
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2 22
■ e

4

(13)

Put eq. (13) into (12) and get

oxy 2f(1,(a) e
ooo

eooooo 212
yj COSCOS.x

/2o
ooo

+ H(a)

where

2
■axy2

COS COS e
V2a ^1J

1 +

Now Integrate the to getV2

axy?
(16)e

V2
2
1yinA tn

y2

y1

A 
in -r

y232

A
A

dy2COS

?y2

4

A

dxdy^y^

A

A♦ tn

fy?nr tn

411

4](i4)

yiJ

v A en "X in

(xzl)yi cos
VZo

axy^l e

first integral of (14) over

n e ■"T”

M+y2 

~r*

ri J2
-e"l 4-

OCkCO W
M(a) - fff 

2ii?o *22, 
ooo

o
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Integrate the second integral of (14) over and get

dy COS [^-.D.yile
1 /Za

(17)
o

Put (16) and (17) back into (14):

(18)

where
a'x

F(y,a) (19)x e
o

ax (20)x dx

Eq. (19) (which written

COS COS dxe

(21)SIN SIN dx
/ZiTo

The second be evaluated exactly

and

2

(22)
/7o

-ZX
/Za

o 
we

v2 
4

JL_ 
/Zctoi

I x 
o

1 fx-1 
e

-ZX 
y7o.

COS

1 fx-lV-I ~
e COS

label Ii) may be 

a2x2

h(y) COS -^-1 + K 
/To

JL_
/Zo

j— 
/2o

1 
/Zwa

f^\a) • — Tdy F(y,a) e K 

/7ir J I*
o

J
/Zita

. a2x2 
f” "T* 

x e 

o
of (21) may

hence (21) becomes:

1 /TW

/2 na

Lx:.i.). y dx
I VIo

where
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1* .* . [^Vx1
h(y) - I x e ly J COS xdx (23)

I y J i

Eq. (23) can be expressed in terms of an infinite series; 

likewise h(y) may be written in terms of other Integrals 

of different form. However, for computational purposes, 

no other formulation has proved more useful than (23).

If in eq. (20) (which we lable I2) we let 

z • V (24)

then
* -li

I, • — f (az+1) e 2 COShXozlDx]dz (25)
M >- /? J
"a

For a sufficiently small the lower limit of (25) approaches 

Infinity. This allows I2 to be written

_22 _Z1
I „ = — [ ze COS(az+b)dz + — I e 2 C0S(az+b)dz (26)

L L

where

a = . b - 2X (27)
✓Z /Z

Expanding COS(az+b) in (26) leads directly to

I 2 - ~ COSb 
z vTtt

COSazdz - SINb 
/2rf

_Z2
^ze SINazdz 

o
These integrals are readily evaluated to give

(28)
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SINa2 51

Finally (19) and (20) become

(29)

g -^-SIN (30)
1

e 4JL
VZo

a2 51

—-— [h(y)COsf-^-
VTHoa1( V2o

SIN

We now return to eq. (18) which is the first order 

correction term of the modified Molfere theory. Notice 

that the Integral over F(y,a) in eq. (18) has exactly the 

same form as the Moliere integral given by eq. (5.3.3.7), 

i.e. the cosine function of (5.3.3.7) has been replaced 

by.eq. (30). Thus the integral

y a
H„(a) = — [ dy F(y,a)e 4 [V tn (31)

J (4 4 J

looks like the Moliere integral, where F(y,a) is given 

by (30). Using (31) in (18) allows the first order 

correction to be written

f(1)(a) » H0(a) + H(a) (32)

It is Interesting to note the physical meanings of 

HQ(a) and H(a):



5.3,4.2.8

H0(a) ■ Moliere correction integral which is 

obtained by assuming that the pro
jected scattering angles and 

are Independent

H(a) » Additional MoliSre correction 

obtained when the statistical depen
dence of <t> and d> is included.Tx Ty

The above meaning of HQ(a) can be shown by assuming that 

the joint density J(4y.4>T) is the product of the den

sities of 4>t and

• f(»T)f(»y) (33)

where f(4>T) and f(4>y) are given by eqs. (5.3.3.6) and 

(5.3.3.9) respectively. This leads to a density in a:

However when the joint 

statistical dependence 

is given by (5.3.3.4))

density J(4>y, $T) includes the 

of $T and (i.e. when *3(<t«y»4>T) 

we obtain

+ Vil t Hlal

B B (35)

Thus H(a) contains the contribution due to the statis

tical dependence of 4>T on 4>y. The direct integration 

of H(a) has not proven feasible. However the numerical
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integration of H(a) has shown that

H(a) « H0(a) (36)

At most H (a) amounts to a 5X correction to eq. (35) for 

a > 4. This correction is not important because statis

tical errors in this region vary from 15X to SOX. Thus 

we shall neglect the function H(a) in our analysis; this 

is equivalent to neglecting the statistical dependence 

of 4» (or <j> ) on 4> . Finally we have the corrected Molidre * i y

When eq. (37) is compared directly to numerical inte

gration uf (5.3 . . 1.'<) the tc tai error due to all sources

density which we originally sought, (see Fig. 5.15 where 

the MoliSre and modified Moliere densities are compared):
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FIG. 5.15 COMPARISON OF MOLIERE AND CORRECTED 
MOlURE DENSITIES



MOLIERE

SCATTERING PARAMETER, a
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of error does not exceed 6% as a * 7 (see Fig. 5.16).

As we shall see eq. (37) cannot be directly 

compared to experiment when angular measurement error 

is appreciable. Further modification of (37) to take 

measurement error into account will be developed in 

the following section.

5.3.5 THE EFFECTS OF UNCERTAINTY IN ANGLE MEASUREMENT

In this section we modify the corrected Moliere 

density to include measurement error. To this end we 

first modify the joint density in projected angles.

d(4> ,4> ), 
** y

to include measurement error.

we have the Moliere joint density

From eq. (5.3.3.1)

d(4> »4> )d<j> d» = 
A J A / COS

■^B
COS (1)

We now assume measured projected angles <}> .. and which r xM yM
are described by

f^xM^x^

1 ^xM ^xl

_L—e"2l J
/2"nA$

(2)

fUyMl»y) 1
/TnAf

1 
e"? (3)

Thus the measured projected angles are assumed to be 

gaussian distributed with uncertainty A<#>. The mean
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FIG. 5.16 CORRECTED MOLIERE DENSITIES: 
SEMI-ANALYTIC VS. NUMERICALLY INTEGRATED



SCATTERING PARAMETER, a
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values of the measured angles 4>xM» are taken to 

be the real values of $x»

If we take the product of (2) with (1) and inte

grate over we obtain

«tyldy2S<*xM-yi)C0S W

where

W5)cos
D

Now let

(6)z

Thus eq. (5) becomes

yi&» (7)
/Zo$B

2 2
(8)e

Now take the product

to obtain

’’♦xM-h — COSvm

y-i 4> illx

9UxH.y1) = cos

♦xM'*x 
A*

1l^xM'^X 
e"2l

Finally

9 (u • y i) e „ 
xM 1 /ZITa*

y]^xM
_z2 

e dz

yl*xM

of (4) with (3), integrate overly

d4> ud<$> u YxM YyM
2(2Tra<t>B)2

| j dy1dy2g(*iiM,y1)9(tyM.ypg(y,ltyp (9)

where
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which leads to

9(»yM.y2) •

COS
-^♦b-

e

1 ♦vmA t

COS
y2 *yM

d»y

We can now write the Integrand of (9) as

(10)

(ID

g(txM.yl)9(*yM.y2)9(y^yp •

(u)

If we let

(13)

we get for (9)

d$> ..d<£ xM YyM
2(2tto4>b)2

OD CO

■ | jdyidy2C0S 

wW .00
cos e

y2\M 

j/2atB

(14)

Now let

Yj * o'yj y 2 41 a'y2

and hence (14) yields
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Jin
fpy^COS xM (15)

Furthermore since the measured total-angle is given by

eq. (15) becomes

(16)e
o o

We

(17)

(18)
B

f(a|a,<J>B)

(19tn
COS

TM 
^7

1±2

0
Put (16) into (18) and let x • 4>T../4’D to get1 M/ D

2+v2
1 y2

2l+y2

y’+yn

rMcos^-*

introduce (as we previously did for the gaussian 

modification) the relative scattering parameter

COS 
yzlpo’^,

“ *xM * *B

fy;+y££nh^

ryi.(2 

yz[oo'4>B

±1
•4o'2

11 ■
e

—!------  (dx X ldy,dy.COS

J2
4Ba'2

COS — y^v00 ♦bJ

«-1 a • r10 *TM

From (17) we have 4> . « ca4>„..; substitution of this equationy M IM
into (16) and subsequent integration over yields

2 
ttirua-tg)2 0 0

y2l+y2

■4Bd'2-

2
Uiroa'tg)2

M+y2
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where

a1 ■ I 1°*bJ J (20)

Eq. (19) is the integral formulation of the modified 

Moliere density corrected for uncertainty in angle mea

surement. If the uncertainty in angle measurement, 

approaches zero then a* 1 and eq. 19 approaches 

eq. (5.3.4.2.3), in the limit.

It is easy to verify that

O ♦ 0*0 

transforms (5.3.4.2.3) into (19) except for the additional 

factors of o' in the 1/B term of the exponent. This 

allows the semi-analytic form of the modified Moliere 

density, eq. (5.3.4.2.37), to be corrected for measurement 

error by inspection. The final result is easily verified 

by series expansion and subsequent integration of eq. (19).

We now present the final result

f (a|a,<t>B) 1 
m ,'(1 - -V)3/2" B (21)

where

f(1)(a|o.4.B) -J— I dy F(y,a) 

✓Z ff ,4a'2
V £n —

4o,2_
(22)
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F(y,a) (aa1)2 SIN W

A*.
(23)

/Ziraa2
1 g(y) cos _JL_ + 1^91. f_L_ kxl [/Z-aa\

Where
g(y) - 2^)' f 

0 
and

a* = [1

COS xdx (24)

(25)

5.3.6 INTEGRATION OVER THE COSMIC RAY SPECTRUM

Eq. (5.3.5.21) must be integrated over the cosmic 

ray spectrum in order to remove the dependence on the bend

ing angle, <}>_. This is accomplished by o 

f(a|a,Y) = ( f(a|a,p0) I(PohJdpo (1)

Pc
where f(a|a,p0) is given by (5.3.5.21), p0 is the momentum 

corresponding to <|>B and UPqI^ is the cosmic ray differ

ential intensity discussed in Appendix I. The dependence 

on the momentum p0 is due to

o' 1 Po
PCDM.

1/2
(2)

where P^^. is the COM (characteristically determined momentum)
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of the spectrometer. Thus plays the role of a free 

parameter which may be (1) calculated by independent 

means, or (2) fitted to the data. Here we determine 

PCDM fitting the experimental data to the theory.

Fig. 5.17 shows multiple scattering curves calcu

late ‘ by eq. (1) for pCDM » 100 GeV/c and 50 GeV/c. Also 

shown in the figure is the corrected Moliere density

/' calculated by eq. (5.3.5.21) for a* « 1. This corres

ponds to prnu * “. Thus as p^nu •* o the multiple scatterUUM UuM
Ing density increases its width and "flattens out" until, 

in the limit, the density merges with the a-axis.

Fig. 5.18 shows most of the multiple scattering 

densities which have been encountered in our development; 

thus the reader can compare the various corrections which 

have been accounted for in this chapter.
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FIG. 5.17 MULTIPLE SCATTERING CURVES AT 
CHARACTERISTICALLY DETERMINED 
MOMENTA OF 50 GeV/c, 100 GeV/c, »
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FIG. 5.18 MULTIPLE SCATTERING CURVES





6.2.1

CHAPTER VI

EXPERIMENTAL RESULTS

6.1 INTRODUCTION

In this chapter we briefly review the physics of 

multiple scattering and then describe the analysis of the 

data from the AMH magnetic spectrometer. In particular we 

discuss: (1) the Moliere theory and its basic assumptions, 

(2) the modification to the Moliere theory (as presented 

in Ch. V) and the corresponding assumptions made, (3) the 

need for folding in the cosmic ray muon momentum spectrum 

in order to account for measurement error, (4) prepara

tion of the data for analysis, and finally (5) comparison 

of the data to the theory and interpretation of the results.

6.2 ASSUMPTIONS OF THE MOLIERE THEORY

The multiple scattering of a fast charged particle 

is due to the many successive collisions of the particle 

with atoms of some target material. MoliSre, in the deve

lopment of his theory, made two assumptions which were 

independent of the single scattering (collision) law:

1) Successive single scatterings in the target 

material are statistically independent.

2) The small angle approximation can be used, 

i.e. SIN o=0 and COS 0=1.

Further assumptions, made by Moliere, about the single 

scattering law are:
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(1) The single scattering cross section is inde

pendent of the azimuthal angle in the absence 

of spin effects.

(2) The single scattering law includes scattering 

due to a nuclear Coulomb field as screened by 

a cloud of atomic electrons.

Using the above assumptions, Moli&re developed a multiple 

scattering density which consisted of a gaussian with 

correction terms (as we have seen in Ch. IV).

Moli&re did not include the following physical 

processes in his results:

(1) The finite size of the nuclear charge distri

bution.

(2) Effects due to inelastic collisions in the 

nucleus.

(3) Multiple scattering by atomic electrons.

The effects of finite nuclear size and inelastic collisions 

in the nucleus have been developed by Cooper
14

and Rainwater. The scattering by atomic electrons is dis
cussed by ScottV We have, with Moliere, ignored the above 

effects in our analysis.

6.3 ASSUMPTIONS MADE IN THE MODIFICATION TO THE MOLIERE 
THEORY

Mclibre's theory has been modified in Ch. V for 

use with magnetic spectrometers. Certain approximations 

were made in the development of the resultant semi- 

analytic multiple scattering function, eq. (5.3,4.2.37):
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1) The statistical dependence of the projected 

angles ♦x and <J>y is Ignored.
2) Whenever i appears in the limit of a rapidly 

converging integral the limit is assumed to - 
be eo.

3) Field view scattering angles in the region

-«» < < - 4>b are neglected, thus simplifying
the resultant multiple scattering density, f(a).

4) The spectrometer noise, a, is a constant.

We have shown (see Fig. 5.16) that the above approximations 

introduce an error in the multiple scattering density of 

no more than 6% in the region a>3.

We have also shown that the dimensionless scatter

ing parameter, a, of the modified multiple scattering 

density, f(a), can be expressed in two ways:

(1) In terms of the experimentally determined 

momentum, p, the scattering angle, $, and 

the target thickness, x,

a « f(p,x)p$ (1)

(2) In terms of the field-view total-angle, $T,
the scattering angle, $, and the "noise", a,

a « (2)

In the analysts of the experimental data we shall bin 

the data according to values of a calculated for a single 

event by both (1) and (2). When eq. (1) is applied the 

procedure used is to x2-fit the momentum, p, by the 

technique discussed in Sec. 3.5.2. Briefly, this method 
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generates the best muon trajectory through the measured 

muon position and unit momentum vectors in all three 

spark chambers. The resultant momentum, p, and path 

length in the iron, x, come from the x2-fit procedure. 

Using p and x together with the scattering angle, 

(as measured in the no-field view) a value of the para

meter a is calculated for a particular event. A histo

gram of the values of a for all of the events can then 

be compared to the theoretical results. In a similar way 

eq. (2) can be used to generate an a-histogram of the 

data. Here, however, the values of a are calculated much 

more simply by use of an average path length in the iron, 

<x>, in order to determine an average value of o (for the 

data <x> = 95 cm iron, o = .23). We will compare the 

data for eqs. (1) and (2) in a later section.

Before proceeding to the next section we point out 

that the semi-analytic multiple scattering density, f(a), 

(eq. (5.3.4.2.37)) can be used for any magnetic spectro

meter experiment (provided it obtains both field view and 

no-field view data), and hence f(u) is a theoretical 

result useful for interpreting multiple scattering in 

magnetic spectrometers. However, each experiment has 

measurement error which must be accounted for. A 

technique for taking measurement error into account has 

been discussed in Sec. 5.3.5. This technique may or may 
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not be applicable for other experimental apparatus; the 

assumptions made about experimental error for the AMH 

magnetic spectrometer may not hold true for other spectro

meters. Thus other investigators may be unable to use 

the multiple scattering density which has been developed 

here to account for measurement error, i.e. eq. (5.3.5.21) 

but may, in fact, have to account for measurement error in 

a different way.

6.4 EXPERIMENTAL ERROR AND INSTRUMENT RESOLUTION

In Sec. 5.3.5 measurement error is taken into 

account by assuming that all measured angles have errors 

that are gaussian distributed. This leads to a new den

sity in f(a) which is dependent upon the parameter o', 

where

Here o is the spectrometer noise, pQ is the "real" momen

tum of the muon,and pnnu is the "characteristically 

deterrained momentum". Since f(a) is a function of pQ we 

must now remove this dependence by integration over the 

cosmic ray muon momentum spectrum by eq. (5.3.6.1). As 

seen in Appendix I the cosmic ray spectrum is dependent 

upon two parameters: (1) No» which insures normalization, 

and (2) the spectral exponent. For our purposes we 

require f! to be such that
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I<PolNcrYJdpo - 1. (2)
o 

Thus the dependence on the cosmic ray spectrum lies 

entirely in the spectral exponent, yq. The experimental 

determination of yois discussed in Appendix II.

Eq. (1) depends on the parameter PCDM. Thus, 

after integration over the cosmic ray spectrum, the 

multiple scattering density has the dependence:

Recall that PCDM is the momentum corresponding to the 

.uncertainty in an angle measurement, A<}>, so that 

n - k 
PCDM

In order to fit the multiple scattering data we shall 

use pnnu as a fit parameter. We have assumed that p,.nu 

and are constants independent of the momentum. While 

we shall assume that this is the case we realize that 

p.,ni. may not be constant, due to the following argument: 

High momentum events traversing the spectrometer 

generally pass nearly perpendicularly to the spark 

chamber plates,while low momentum events may be bent 

appreciably by the magnetic field,and therefore may 

traverse the chambers at angles as large as 35° from the 

perpendicular. The wide gap chambers are less effi

cient for these low energy events, i.e. the spark has 
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less of a tendency to follow the ionized path, they become 

"s" shaped. Thus these events may be measured to less 

precision than the high momentum events. Such a depen

dence might be represented by

■ a + a.p + a_p2 + ... (3)KCDM o 1K 2K ' •

Assuming that all the coefficients are positive then the 

characteristic momentum is greater for higher momentum. 

Since we do not know a1»a2 ••• we shall assume that they 

are zero and fit a„. If indeed prnu is given by (3) we O LUM
expect an average <prnil> over the muon momentum spectrum 

to be dominated by low momentum events, since 70% of the 

events are below 15 GeV/c. Thus the assumption that 

PCDM constant means that, when the multiple scattering 

data is fitted to theory, the resulting value of p_ni, will be 

dominated by low momentum events. We shall henceforth 

designate a constant value of p„nu by plinu> the "maximum 

detectable momentum" of the spectrometer. pnnll ■ LUM MUM 
only when the measurement error, A4>, is Independent of 

momentum. We see that, in general

PCDM * PMDM

Now recall the definition of the "effective momentum", 

Pe: that momentum which corresponds to the error due 

to the optical reconstruction of a muon event and excludes 

measurement error incurred by use of the digitizing 
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apparatus. We see that p. ■ punu only when measurement 

error is zero. The relationship between the above three 

types of momentum is therefore

PCDM - PMDM - pe

We have already estimated p in Ch. III. prnu will be C v* UM
obtained in a fit to the multiple scattering data, and we 

will have then obtained upper and lower limits on PMDM*

6.5 PREPARATION OF THE DATA FOR ANALYSIS; THE DATA 
ANALYSIS

A certain percentage of the data is contaminated 

by "bad" events of various types. For this reason 

selection criteria are required in order that only the 

clean events be retained for analysis. To this end the 

X2 momentum determination program of Ch .III classif1es 

bad events according to the following:

(1) CROSS OVER EVENT - an event which crosses 

from one channel of the spectrometer to the 

other. Such events undergo a magnetic 

field reversal,and therefore are not 
analyzable.

(2) INDETERMINANT CHARGE EVENT - an event 

which appears to have a different charge 

in the top and bottom magnets. This may 

be due to a badly scattered event or due
to contamination by an accompanying particle.
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(3) EVENT OUTSIDE THE SPECTROMETER . an event 1$
n *

judged to be outside the spectrometer if its 

position vector does not penetrate both the 

top and bottom scintillators of the same 

channel. Events of this type are frequently 

encountered when particle showers from the 

ceiling trigger the apparatus.

(4) SPURIOUS EVENT - an event is labelledHspurious* 

if one or more spark chambers do not fire
for a single event.

All events, which were diagnosed as belonging to one of 

the above types, were not considered for multiple scatter

ing analysis. Further, all events with a value of x2 * 16 

(from the momentum determination program) were considered as 

candidates for remeasurements. For a 7 degree-of-freedom 

fit this value of x2 corresponds to a 95% probability 

that, upon remeasurement, these events would yield a 

smaller value of x2»

After the above selection criteria were applied to

13,000 muon events approximately 8,000 remained. A x2-fit 

to this remaining data was made using eq. 5.3.6.1. The 

fit parameters used were

NQ » normalization, used to scale the ordinate 

of the multiple scattering density.

aQ “ a scale factor for a, the abscissa of t’.e 

multiple scattering density.

Pmu ” the characteristically determined momentum. CUM
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The results of the fit are shown in Fig. 6.1. The resul

tant fit parameters were: No = 1.01 ± .01, oo ■ .97 ± .03 

and pMDM = 47.3 ± 6.6 GeV/c. This value of pCDM is 

unexpectedly low, perhaps Indicating that the data is 

still contaminated by some source yet to be accounted for. 

Further Investigation indicated that a number of events 

contained knock-on electrons in one or more spark chamber. 

If, in the measuring process, a particle is judged to be 

a muon, but is in fact an electron, then a "bad" event 

results. We conclude that knock-on electrons are a 

source of contamination. An additional run was made with 

al 1 knock-on events removed. The result of a fit to 

this data is shown in Fig. 6.2. Again No and oq fit 

sufficiently close to 1(as they theoretically should) and 

PMDm increases to 98.9 ± 23.8 GeV/c. The data of Figs. 6.1 

and 6.2 were histogramed using a ■ --A-. However Fig. 6.3 
a *t 

shows the data histogramed by a ■ f(p)p<#>. The data of 

Figs. 6.2 and 6.3 is the same except for the method of 

calculating a. It can be seen that there is very little 

difference in the histograms. The curve drawn through 

the data of Fig. 6.3 is the same as that fitted to the 

data of Fig. 6.2. Thus either method for calculating a 

appears to be just as good. However, we point out that 

the x2 momentum determination allows events to be selected 

on the basis of their value of x2- Thus a ■ f(p)p|
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FIG. 6.1 MULTIPLE SCATTERING FIT TO DATA CONTAMINATED BY 
KNOCK-ON ELECTRONS

o<t>T



£catteaH;g ER, u



6.5.5

FIG. 6 2 MULTIPLE SCAHERING FIT WITH KNOCK-ON ELECTRONS REMOVED 
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FIG. 6.3 COMPARISON'OF CURVE OF FIG. 6.2 WITH DATA HISTOGRAMED VIA

a = f (P)P4>
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appears to be the preferred method for calculating a. 

In conclusion,we state that a x2 fit of the ' 

theoretical multiple scattering density to data from the 

AMH magnetic spectrometer has been accomplished. The 

resultant fit parameters were

No = 1.00 ± .01 

oq e 1.03 ± .03 

PCDM = 98.9 ± 23.8

with a reduced x2 of .87. Theoretically we expect No = 1 

and oo = 1. The width of the experimentally determined 

multiple scattering density, oEXp» Is given by

CEXP x °oa4.

We conclude that the width of the Molie.re multiple 

scattering density, o^, agrees well with the experimental 

result. Finally the determination of P^dm se^s a lower 

limit on the spectrometer MOM; taken together with the 

determination of the effective momentum, pc, (see 

Sec. 3.3.5) we can set an upper limit on the MOM, 

resulting in

98.9 GeV/c < pMnM < 310 GeV/c 

Uncertainties in the behavior of measurement error as a 

function of momentum prevent a more precise determination 

of the spectrometer MOM.
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We emphasize here the Important role that measurement 

error plays In our results. Fig. 5.17 compares the corrected

Mollere density for no measurement error (Pcdm ■ ”>•t0 the

corrected Mollere density which Includes measurement error 

(pCdm " GeV/c). We see that the Introduction of mea

surementerrorspreads out the multiple scattering distri

bution, Increasing Its rms width. If measurement error 

Is not Included In our analysis anomalous results are en

countered when theory Is compared to the data, l.e. the rms 

width of the data Is about 10% greater than what theory 

predicts. This Increase In width Is accounted for only 

when measurement error Is Included In our analysis. As 

we have seen before, the Inclusion of measurement error 

results In an excellent fit to the data (Fig. 6.2). We 

conclude that the Mollere theory accounts for the observa

tions made with the AMH magnetic spectrometer.

Several observers have examined their data for 
2 6 8 the effects of finite nuclear size * * , which Is accounted 

15 2for theoretically by Cooper and Rainwater . Bhattacharyya 

and Meyer et al.® report good agreement with the theory 

of Cooper and Rainwater. Physically, finite nuclear size 

"cuts off" the single scattering cross section at large 

angles, resulting In a reduction In the height of the 

"tall" of the multiple scattering distribution. No attempt 

has been made to account for finite nuclear size In our 
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analysis. The primary reasons for this omission are: 

1) the relatively small number of events analyzed In 

the experiment, and 2) the lack of complete understanding 

of the momentum dependence In the measurement error, A*. 

Thus, this uncertainty In the data In the region of large 

a means that a search for effects due to finite nuclear 

size may not be meaningful. Also, the large amount of com

puter time required for an additional analysis (40 hours 

of UNIVAC 1108 time were used for the analysis presented 

In this dissertation) precludes closer Investigation 

of the data at this time.

A modification to the theory of Cooper and Rainwater 

(similar to the modification of the Moliere theory In 

Ch. V), to account for magnetic spectrometer observations, 

has been accomplished and will be reported on In a later 

publication.
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APPENDIX I

THE COSMIC RAY MUON MOMENTUM SPECTRUM

The maximum likelihood technique was used to fit 

cosmic ray muon momentum spectrum to a two parameter 

phenomenological model in N,

KpIN.f) - N py(p)(pnp)^ [8zI21®I-]e(p) (1)

where

N « normalization parameter

p = observed muon momentum

y * spectral exponent

Bw « 90 GeV/cw

R„ » ratio of muon to pion mass, .76H r
Ap = ionization momentum loss of the muon in the 

earth's atmosphere

E(p) ■ spectrometer efficiency function, the ratio 
of the geometrical factor at momentum p to 
the geometrical factor at p = •».

Pp(P) = muon survival probability
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APPENDIX II

CORRECTION OF THE COSMIC RAY MUON
SPECTRUM FOR MULTIPLE SCATTERING

The cosmic ray muon spectrum described in the 

previous appendix must be corrected for the effects of 

multiple scattering. Thus we introduce the "total angle 

spectrum", I(4>TM|N,ir), corresponding to the measured 

momentum spectrum I(p|N,y). Here as we have previously 

seen, 

p • (1)
*TM 

Likewise we introduce the "magnetic bending angle 

spectrum", U<>b|No,yo), which corresponds to the actual 

momentum spectrum I(po|No»yo). Also we have 

po"^ (2)

The angular spectra are related by 

o 

where fa.,1('}>T.l|<?>„) is the Moliere total angle density given IMlNo 

by .

rdy c°s 

^n^B o L/? on*B (4)

where
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an a2 <- fAtlUBJ 2ll/2

The angle corresponds to the "characteristically deter

mined momentum" Pcdm* the spectrometer:

PCDM * A» (5)

Thus the measured cosmic ray muon spectrum is a function 

of PCDM just as the multiple scattering density is a 

function of PCDM»
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