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ABSTRACT

The theoretical development and application of a quasilinearization 

technique to problems of system identification is presented. A one-degree- 

of-freedom system is used for the examples for the identification problems. 

Several numerical experiments are presented relating the effects of noisy 

input data to the accuracy obtained in computing unknown parameters of the 

governing differential equations. Also presented is the application of 

quasilinearization to the identification problems of automobile coasting 

dynamics. Conclusions from these experiments are included.
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CHAPTER I

INTRODUCTION

In many instances, measured, observations of various physical phenom­

ena can be considered, as solutions to the differential equation(s) which 

describe the phenomena. By knowing the initial conditions and the coef­

ficients for the appropriate equation(s), it is possible to gain insight 

into engineering problem areas. The process of determining these coeffi­

cients and initial conditions is called "System Identification." This 

thesis presents a development and an application of some quasilineariza­

tion techniques for solving problems of system identification.

The origin of quasilinearization can be found in the theory of dynam­

ic programming (1). The theory of quasilinearization gives a systematic 

iterative approach to solving nonlinear or linear differential equations 

subject to initial and multi-point boundary-value conditions and unknown 

parameters. The development of quasilinearization involves the solution 

of a set of linear differential equations with varying coefficients in 

which the solution converges under appropriate conditions to the solution 

of the nonlinear equations. Since these equations are linear, and the 

principle of superposition applies, the boundary conditions at each itera­

tion will be satisfied.

The application of quasilinearization techniques is illustrated by 

an engineering analogy of a one-degree-of-freedom system. The examples 

presented are linear and nonlinear oscillators and the dynamic phenomenon 

of a coasting automobile.

The data given for the linear and nonlinear oscillators illustrate 

the relation between the accuracy of the specified boundary conditions 

1



2

and the resulting predicted accuracy of the initial conditions and coef­

ficients of the pertinent differential equation(s). The automobile pro­

blem illustrates how the aerodynamic drag coefficient and the rolling 

friction coefficient can be predicted with data which is generally the 

most economical to obtain.



CHAPTER II

SYSTEM IDENTIFICATION

System identification is the process of fitting the governing differ­

ential equation(s) to a given set of boundary conditions. This process 

involves the determination of the coefficients and initial conditions of 

the differential equation(s) that satisfy the given set of boundary con­

ditions. The coefficients and initial conditions of the differential 

equation(s) are referred to as the unknown parameters of the mathematical 

model.

To illustrate the concept of system identification, consider the 

simple example where the governing differential equations are

dt ay

0 Qb

(2.1)

where "a" is an unknown parameter.

The solution of equation (2.1) can be determined by straightforward 

integration. If the range of interest is from 0 to t then it can be 

written as

y = yo eat (2.2)

where the term y is the initial condition. If the desired solution must o
satisfy certain specified boundary conditions, say

y = y1 @ t = t1

y = y2 @ t = t2

3
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then it is found, that

1 yl
a = t1 - t2 In y2

I Xi yl
- I T------- T" I ln ----yo = y2 e Ul - y2

(2.3)

(2.11)

Thus system, identification for a system that can he described by a differ­

ential equation as simple as (2.1) is straightforward. It should be noted 

that even through equation (2.1) is apparently linear, the identification 

problem is nonlinear.

Consider a more complex differential equation such as

2 + X2y = 0 (2.5)
dt

Again the apparent solution is straightforward when

y = A sin At + B cos At (2.6)

where A and B are arbitrary parameters. If at t = 0, y = yQ, and y = yQ, 

then

A'

and

B = yo

Equation (2.6) can now be written as

y = yQ cos At + yQ/x sin At (2.7)
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determine yQ, yQ, and A, three independent "boundary con- 

are necessary, say

y = y-L @ t = t1

y = y2 @ t = t2

y = y3 @ t = t3

(2.7) at the data points t^, tg, and t3 gives

yl = yo COS Atl + Sin Xtl

y2 = yo C0S Xt2 + Sin At2 (2'8)

y3 = yo cos At3 + yo/x sin At3

which are independent if the spacing of the data points is properly

chosen.

Because of the presence of the sine and cosine functions, the set of 

equations (2.8) is nonlinear. In order to determine yQ, and A, an 

iterative technique for solving nonlinear equations is required. One 

such technique is the Newton-Raphson method. This method is discussed in 

the next chapter.

The governing differential equations will always he written as a set 

of first order equations and unknown constant parameters are incorporated 

by adding a null equation.

In order to 

ditions for y(t)

Writing equation



6

Thus equation (2.5) will "be written as

where

?y
dz 
dt

= z 
dt

dt 0.

6 = X
2

From, the discussion of equations (2.1) and (2.5), it is obvious that 

the problem of system identification can be difficult. A discussion of 

quasilinearization theory and application to the identification of systems 

is presented in the following chapters.



CHAPTER III

QUASILINEARIZATION

Newton-Raphson Method

The Newton-Raphson algorithm is an iterative procedure for solving 

nonlinear simultaneous algebraic equations (2). The theoretical develop­

ment of the Newton-Raphson method is based on a Taylor’s series expansion 

of several variables.

Consider the vector R(x) which represents a set of residue equations 

of the form

R1 (x) = R1 (x1, x2,

R2 (x) = R2 (x1, x2,

Rm = Rm (xl’ x2’

Expanding R(x) in a Taylor’s series about an approximate solution x^ gives

where n denotes the iteration.

If l.xn+-|_ - xn) is sufficiently small such that the higher order terms 

of equation (3.2) can be neglected, then equation (3.2) reduces to

R (x) = R (x)n+1 ' zn + dR(x)

n

(3.3)

7
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In the final iteration the residue vector R(x) must go to zero for the 

vector (x) to he a solution, therefore equation (3.3) reduces to

5(1) + 8B& (iU-in) =0 
n dx n '

or rewriting in matrix form gives

R1(x)

R2(x) +

dR1(x) 

dx-L

dR2(x)
dx1

dRi(x)

dx2

dR2(x)
dx2

dRqCx)
dxm

dR2(5)
dxm

£ - X_
^+1 ln

Xp - x„
n+1

= 0 (3-5)

_Rm(x)
dB^x) 
^x1

dR (x) m . . .
dx2

dR (x) m
dxm

X Xm - m n+1 n

Denoting the Jacobian matrix by J,
JL.

d l'j (x) (x ) d R । ( x )
dx2 dT7

dR2(x) dR2(x)
dxl dx2 = Jn (3.6)

dRm(x) . ^VX)
dx2 dxm x = xn

the equation (3.5) can be written in vector form as

? = X - J -1 R(x)
n+1 n n n (3.7)
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Equation (3.7) is the recurrence relation for the Newton-Raphson algorithm. 

This algorithm converges rapidly when the initial guess vector (x) is in 

the convergence space. Problems do arise when there are irregularities 

in the individual equations. The Newton-Raphson method possesses the 

properties of quadratic convergence and monotonicity for many problems.

To illustrate the application of the Newton-Raphson algorithm, con­

sider the nonlinear algebraic equation (2.8) of chapter II.

R1 (x) = yQ cos X t1 + yo/,A sin X t1 - y1 = 0

R2 = yo COS A t2 + yo/X sin X t2 " y2 = 0

Rg (x) = yQ cos X t3 + yo/,x sin X t3 - y3 = 0

The Jacobian matrix is

X t^ + —-— cos 
^ot2

X t^ + —x— cos 
^ot3

X t3 + —-— cos

Using the recurrence equation (3.7)» (x) and R(x) are defined by

X =

yo"

yo

5
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Two initial guess vectors for (x) are selected to show the rate of 

convergence. Presented in table (3.1) are values of y , yQ, and E, for 

each iteration of the initial estimate vectors of (0, 1, 1) and 

(•5» .5, .5). The boundary conditions to be satisfied are

y = 1.00 at t^ = .0 

y2 = 1.36 at t2 = .5 

y = I.38 at t_ = 1.03 3

TABLE 3.1.- NEWTON-RAPHSON ITERATIVE SOLUTION TO EQUATION (2.8)

p— . ..
State

Variable
Iteration

1st 2nd 3rd 4th bth bth

yo .0000 1.0000

yo 1.0000 1.0000

1 5 1.0000 1.0000

yo .5000 .98409 .741428 1.001728 .9999 1.0000

yo .5000 1.00000 1.00000 1.00000 1.00000 1.0000

.5000 1.00000 .92949 1.00861 1.00000 1.0000

Newton-Raphson-Kantorovich Method

The Newton-Raphson-Kantorovich algorithm is an extension of the 

Newton-Raphson technique to "function space" (3). The concept of "func­

tion space" as explained by Lanczos (4) involves the replacement of a 

continuous function by a vector such that the vector describes the con­

tinuous function by a set of discrete points.
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The development of the Newton-Raphson-Kantorovich algorithm starts 

with the consideration of the first-order, nonlinear vector differential 

equation

z = f (z,t) (3.8)

where (z) is composed of M dependent variables, and t is the independent 

time variable. Expanding equation (3.8) in function space gives

= ? + (Zn+1 - " (3‘9)
oZ n

Truncating the higher order terms and rewriting gives

?n+1 - ? (?,t) d?(2,t) * *
d? nn+1 d? n 

n n

(3-10)

Letting

A = df(Z,t).
n d?

B = f(Z,t) - Zn x ’ zn n

equation (3.10) can be written in the form

= A nZn+1 Z + B n+1 n
(3.11)

Note that the vectors (Z) and (Z) are linear with respect to the (n+1—)

solution. Also the An and B^ terms in equation (3.11) are known functions
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that are calculated, from the known nth solution. Functions A and. B n n 
reflect, in the (n + 1st) solution, the nonlinearity of the original 

differential equation. Using the quasilinear equation (3.11) successive 

approximation can he made to the nonlinear solutions until the desired 

accuracy is achieved.

Equation (3.11) is linear with varying coefficients and is easily 

solved through superposition. The particular solution is a solution of 

equation (3.11) with appropriate initial conditions. The vector 

will denote this particular solution. The homogeneous solutions are 

governed "by

•(i)  Ji) 
n+1 An Zn+1

These solutions are generated with linearly independent initial condition 

vectors (t = o). The total solution of equation (3.11) is

Jo) M Ji)
Z x. = Z J_. + 5T a. Z (3.13)
n+1 n+1 ZL# i n+1

i=l

3.12)

where the are taken to insure satisfaction of the boundary conditions.

The initial conditions for the particular and homogeneous solution 

should show as much information as is known about the desired solution. 

Thus, the initial condition for the particular solution is taken to be

Jo) Jo) M Jl) 
2n+l(o) = Zn (o) + L “i Zn (o) (3.U+)
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where the right hand, side of equation (3.1^) is known from the previous 

iteration. The initial conditions for the homogeneous solutions are taken 

to he approximately the same except arbitrary perturbations of elements 

of these vectors are made to insure

det(Zn+l(o) • • • ' Zn+l(o))^° (3'15)

which is a general Wronskian type statement. These strategies insure 

a^. ■* o as convergence is approached and therefore gives a straightforward 

indication of convergence.

The number of boundary conditions is denoted by L. The individual 

boundary values are denoted by S^, i < k < L. These boundary conditions 

are on elements of Introducing an operator the boundary condi­

tions are satisfied by

(3.16)
k < L

where t, is the time at which S, is measured, k k
If L = M, the following matrix equation yields the a^’s upon inver­

sion of the coefficient matrix.

C a = <1 (3.17)

where

(t.) 



defines the elements of the coefficient matrix. The elements of the 

right hand side vector are defined by the following equation

Ldi - S1 - «1 2n+l (ti> (3-18)

If L > M and all boundary conditions are to be satisfied in a least squares 

sense, the following matrix equation is used

E a = e (3.19)

rp
where E = C C (3.20)

e = CT 1 (3.21)

In many disciplines there exist problems where some boundary condi­

tions are to be met exactly and others in some "best fit" sense simultan­

eously. For these cases the following procedure has been used successfully 

in some numerical experiments.

The governing matrix equation is taken to be equation (3.19) except 

the exact equations similar to lines from equation (3.17) are substituted 

for arbitrary lines of equation (3.19)- This lacks in rigor but each 

least squares equation does involve all "best fit" data. All rigorous 

procedures to obtain better fits will involve iterate techniques.
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Once the vector (a) is determined, the solution and initial condi­

tions for the nonlinear differential equations can he updated for the next 

iteration. The updated solution vector can he calculated hy equation (3.22). 

The updated initial condition can he calculated hy

Z(o)
Jo) 

= Z(o) 
n+1

(3.22)

With the updated solution and initial conditions, the process is 

repeated until the desired accuracy is achieved.

To illustrate the Newton-Raphson-Kantorovich algorithm, consider the 

second-order differential equation

X+ u = o (3.23)

Where the observed responses or boundary conditions are

X = S1 @ T = T

X = S2 @ T = T2

X = S3 @ T = T3

The problem now is to determine the initial conditions Xq, Xq, and E, such 

that the specified boundary conditions are satisfied. First reduce 

equation (3.23) to two first-order differential equations

X = u

u = - CX
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and, since is a constant.

1 = 0

such that three first-order differential equations are formed.

Expanding equation (3.23) according to equation (3.12)

= - 5n xn - (xn+1 - xn) - xn (5n+1 - 5n)

■^n+1 ^n+l

Si-tl = " 5n Xn+1 " 6n+l Xn + Xn En

inti = °

Before particular and homogeneous solutions can be determined, an ini­

tial guess has to be made for the initial condition vector (Z). In this 

case

Also, an initial guess for the solution of the governing differential 

equation (3.23) has to be made. A first approximation can be linear 
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interpolation between the specified, boundary conditions. These assumed 

solutions and initial conditions are needed to calculate the N subscripted 

terms in equation (3.11).

Using the initial contitions that result in linearly independent 

solutions, the homogeneous and nonhomogeneous equations are numerically 

integrated over the time interval of interest, say from t^ to tf. Once 

the homogeneous and nonhomogeneous solutions have been determined, equa­

tion (3.13) can be used with standard matrix inversion techniques to 

determine the unknown a’s. After the a's have been determined, the solu­

tion to the governing differential equation can be updated by using equa­

tion (3.1U), also the initial conditions and coefficients can be updated 

by using equation (3.11|). The process is repeated, using the updated 

solution and initial conditions, until convergence has been achieved.

Presented in table (3.2) are values xq, and xq, and g for each iter­
ation for the boundary conditions.

Iteration

TABLE 3.2 NEWTON-RAPHSON-KANTOROVICH ITERATIVE SOLUTION TO EQUATION (3-23)

State
Vector

Exact 
Solution

Initial 
guess

First Second Third Fourth

X o 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

X o .0000 1.0000 -.00273 -.00273 -.00766 -.00766
2 

IT 1.0000 11.300 9.8520 9.8712 9.8712
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Also presented, on figure (3.1) is the initial guess solution and. the pre­

dicted solution for each iteration. It is noted that the accuracy of the 

solution doubles with each successive iteration (quadratic convergence).

Discussed in the following chapter are specific applications of the 

quasilinearization methods to problems of system identification.
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Figure 3-1- Newton-Raphson-Kantorovich iterative 
solution to equation (3-23)



CHAPTER IV

APPLICATION OF QUASILINEARIZATION

The application of quasilinearization techniques to problems of sys­

tem identification is discussed in this chapter. The specific examples 

used are variations of a single-degree-of-freedom system.

The first set of examples will deal with the linear and nonlinear 

oscillator problem. These examples are designed to show the influence 

of noisy input boundary conditions on the identification of the unknown 

parameters of the differential equation.

Consider the system shown on figure (U.l) as having a linear and 

nonlinear spring and a damper characteristic such that the governing 

differential equation for the nonlinear system is

(U.l)2 / \ 3 3+ A^ + By + Cf^i| + D y =
A4-2 \dt Ju/t d.v ' f

By letting the parameters C and D equal zero, the nonlinear differential 

equation (U.l) reduces to the linear equation

ndjr + A djr + By= Q 
p

dt dt
(4.2)

To develop precision data for the input boundary conditions, values for 

the unknown parameters were assigned and equations (4.1) and (4.2) were 

numerically integrated (5). It is noted that values of velocity and dis­

placement have six-digit accuracy.

20
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t (time)
♦

M Mass
K(y) Spring characteristic 
C(y) Damper characteristic

Figure 4.1- One degree-of-freedom oscillator
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Several numerical experiments were conducted to determine the influ­

ence of noise and density of the specified boundary conditions on the pre­

dicted accuracy of the initial conditions and the parameters A, B, C, and D.

The noise on the specified boundary conditions was generated by 

rounding off the six-digit accuracy data to four-and-two-digit accuracy. 

The density of the input boundary conditions was taken from 0.0 to

6.5 seconds in increments of 0.1 seconds (high density) and from 0.0 to

6.5 seconds in increments of 0.5 seconds (low density).

Presented in table (U.l) are comparisons of initial conditions and 

the parameters A and B for six-, four-, and two-digit accuracy for the 

specified boundary conditions of the linear differential equation (U.2). 

There were 1U specified boundary conditions over a range of 0.0 to

6.5 seconds in increments of 0.5 seconds. In table (U.2) is a similar 

comparison for 66 specified boundary conditions of two-digit accuracy 

from 0.0 to 6.5 seconds in 0.1 second increments.

Presented in tables (H.3) and (ll.U) are similar comparisons for 

six-, four-, and two-digit accuracy on the specified boundary conditions 

for the nonlinear differential equation (H.l).

It is noted for these examples that the predicted values for the 

unknown parameters were better for the linear differential equation with 

the same accuracy and density of the specified boundary conditions. There 

was a slight change in the predicted accuracy of the unknown parameters 

for the linear differential equation when the density was increased from 

lit to 66 specified boundary conditions of two-digit accuracy. On the 

other hand, the increase from 1H to 66 boundary conditions did improve 

the accuracy of prediction of the unknown parameters of the nonlinear 

differential equation.
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TABLE 4.1.- TABULATED VALUES FOR THE LINEAR DIFFERENTIAL EQUATION

PARAMETERS FOR THE LOW DENSITY INPUT BOUNDARY CONDITIONS

TABLE 4.2.- TABULATED VALUES FOR THE LINEAR DIFFERENTIAL EQUATION

Remarks: From t-Otot-b.5

14 Specified. Boundary Conditions

Differential equation:

y + A y + B y = 0

Exact
6 digit 
Input

4 digit 
Input

2 digit 
Input

yo 0.0000 .000000 .000000 -.001870

yo 1.00000 1.00002 1.00001 1.00012

A .100000 .099999 .100030 .102050

B 3.00000 3.00015 3.00015 3.00104

PARAMETERS FOR THE HIGH DENSITY INPUT BOUNDARY CONDITIONS

Remarks: From t =0 to t = 6.5

66 Specified Boundary Condition

Differential equation:

y + A y + B y = 0

Exact
2 digit
Input

yo

yo

A

B

0.00000

1.00000

.10000

3.00000

-.000550

.996580

.0985520

3.00177
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TABLE 4.3.- TABULATED VALUES FOR THE NONLINEAR DIFFERENTIAL EQUATION

PARAMETERS FOR THE LOW DENSITY INPUT BOUNDARY CONDITIONS

TABLE 4.4.- TABULATED VALUES FOR THE NONLINEAR DIFFERENTIAL EQUA­

Remark: 14 Specified Boundary Conditions from t=Otot=6.5

Differential Equation:

y + Ay + By+Cy3 + Dy3 = O

Exact
6 digit 
input

4 digit 
input

2 digit 
input

yo

yo

A

B

C

D

0.00000

1.00000

.1000

3.0000

.2000

4.000

-.000001

1.00002

.100027

3.0001$

.199912

4.00063

.000010

.999846

.100171

2.99986

.199583

4.00348

-.001527

1.02469

.059754

2.99733

.303364

4.03972

TION PARAMETERS FOR THE HIGH DENSITY INPUT BOUNDARY CONDITIONS

Remark: 66 Specified Boundary Conditions from t=Otot=6.5

Differential Equation:

y + Ay + By + Cy3 + Dy3 = O

Exact
2 digit 
Input

yo

yo

A

B

C

D

0.0000

1.00000

.10000

3.0000

.20000

4.00000

-.000498

1.00487

.089051

3.00770

.224580

3.94190
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In table (H.5) are comparisons of predicted, differential equation 

parameters for six- and two-digit accuracy using a density of eight spe­

cified boundary conditions over the range of 0.0 to 6.5 seconds. The 

reduction in density had little effect on the predicted accuracy of the 

nonlinear differential equation parameters for the six-digit accuracy 

boundary conditions. However, there was a significant loss of accuracy 

in the predicted differential equation parameters for the two-digit accu­

rate boundary conditions.

Another application of quasilinearization techniques is in the area 

of evaluating aerodynamic and rolling friction coefficients on automobiles. 

The mathematical model used in this thesis to describe the dynamics of an 

automobile coasting along a level surface is a one-degree-of-freedom sys­

tem. The external forces acting on this model are aerodynamic forces 

(F^) and rolling friction forces (F^). The governing differential equa­

tion is

.2
M 2^- + F + F = 0 (U.3)

n Al 
dt

where M is the mass of the vehicle.

Defining the aerodynamic force term to be

/rlvX^
F =1/2 nA C l-^lA 1/2 P Af LD ^dt)

2 where p = air density (slug/ftJ)

2A.p = vehicle frontal area (ft )

(U.M

Cy = dimensionless aerodynamic drag coefficient
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TABLE H.5.- TABULATED VALUES FOR THE NONLINEAR DIFFERENTIAL EQUATION

PARAMETERS FOR EIGHT SPECIFIED INPUT BOUNDARY CONDITIONS

Remark: 8 Specified Boundary Conditions from t = 0 to t = 6.5

Differential Equation:

y + Ay + By+Cy3 + Dy3 = O

Exact
6 Digit 
Input

2 Digit
Input

yo

yo

A

B

C

D

0.0000

I. 0000

.1000

3.0000

.2000

Il. 0000

.000000

I. 000037

.099978

3.000211

.200023

I1. 00037

-.000131!

1.09951

-.070835

.667966

.667966

3.23572
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The rolling friction force term will be constant such that the rolling 

friction coefficient (p) is defined as

.LlU MG- (U.5)

where
2G = acceleration of gravity (ft/sec )

Equation (U.3) then becomes

(^.6)

Using equation (U.6) as the governing differential equation for des­

cribing the dynamics of a coasting automobile, the aerodynamic drag and 

the rolling friction coefficients were determined for the Sunbeam Alpine, 

Porsche, and XKE Jaguar automobiles. Coasting data (6) for these cars 

are shown in table (H.6) along with the calculated aerodynamic drag and 

rolling friction coefficients.

Figure (4.2) shows the predicted velocity history and the governing dif­

ferential equation for the Sunbeam Alpine. The air density in the calcu­

lation of the aerodynamic drag coefficients was assumed to be 
0.00238 slug/ft3.



TABLE 4.6.- TABULATED COASTING DATA

Sunbeam Alpine
2Af = 17.3 ft CD = .51

M = 80.43 slugs p = .0207

Porsche 911 
p

A = 18.4 ft CD
, M = 76.39 slugs p

= .27
= .0201

XKE Jaguar
Af = 18.2 CD = .37
M = 105.59 slugs p = .0198

Sec
Exp. Measured 
Velocity (ft/sec)

Predicted
Velocity

Exp. Measured 
Velocity (ft/sec)

Predicted
Velocity

Exp. Measured 
Velocity ft/sec

Predicted
Velocity

0 117.3 116.9 117.3 116.9 117.3 117.0

5 104.9 105.5 108.4 108.7 108.5 108.9

10 95-3 95.6 100.9 101.2 101.2 101.4

15 87.3 86.8 93.9 94.2 94.6 94.6

20 79.2 79.0 88.0 87.7 88.6 88.2

25 71.9 72.0 82.1 81.7 82.1 82.2

30 65.7 65.5 76.3 76.0 76.4 76.6

35 59.8 59.7 70.5 70.7 71.6 71.3

40 54.0 54.2 65.4 65.6 66.0 66.3
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Time Seconds

Figure U.2.- Velocity Decay History of a 1966 Sunbeam Alpine



CHAPTER V

CONCLUSIONS

Quasilinearization theory gives a systematic iterative approach to 

fitting a governing differential equation(s) to a set of measured obser­

vations. The advantage of this technique is that it allows the selection 

of the state variable that describes the measured observation. These 

measurements can be made from the standpoint of economy, accuracy, or 

convenience.

Several numerical experiments were conducted to relate the accuracy 

of measured observations with the predicted accuracy of the unknown param­

eters of the governing differential equation. The results presented in 

chapter IV for the models studied indicate that the accuracy of the pre­

dicted parameters of the governing differential equation(s) can be less 

than the accuracy of the specified boundary conditions. However, the 

accuracy of the predicted parameters of the governing differential equa­

tions can be better than the accuracy of observed responses due to the 

averaging effect of the least squares procedure. These results indicate 

that the predicted accuracy of the unknown parameters of the governing 

differential equation(s) can be improved by increasing the density of the 

specified boundary conditions as shown by the nonlinear model. The ex­

periments with the linear model indicate that there exists some "optimum" 

density for a given differential equation. This "optimum" is the point 

where any increases in density of the specified boundary conditions of 

the same accuracy results in no increase in the accuracy of the predicted 

parameters of the differential equation.
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The experiments conducted, to determine the aerodynamic drag and roll­

ing friction coefficients of a coasting automobile illustrate the applica­

tion of quasilinearization techniques to solving engineering problems of 

one-degree-freedom systems. With available data developed outside the 

laboratory, the coasting dynamics of an automobile was determined.

The aerodynamic drag coefficient would be extremely difficult and expen­

sive to experimentally determine in the laboratory. The same can be said 

for the rolling friction coefficient and again the laboratory experiments 

could only approximate the field conditions.

The ability of the quasilinearization techniques to fit the govern­

ing differential equation(s) to the measured response gives an economical 

method of determining coefficients and initial conditions.
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