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Abstract

The recent advances in the Internet of Things (IoT) technologies have started a new

era in sensor networks and smart assistant systems. Various types of sensing platforms

are being deployed to understand the in-depth behavior of people while maintaining

human comfort. Technology that tracks people inside buildings could become a key

enabler for many applications in this space.

Indoor localization is a process to find the exact location of devices, objects or

people inside buildings in which GPS service is mostly unreliable. Existing indoor

localization and tracking solutions can be divided into two main categories: passive

and active solutions. Passive asset tracking systems are scalable, but their accuracy is

limited to a few meters (Room Level). On the other hand, in active tracking scenarios,

the target has to carry a tacking device, which makes the location estimation more

accurate and robust. In this dissertation, we improve the scalability and robustness

of indoor tracking solutions.

Ultrawideband (UWB)-based indoor localization techniques are one of the well-

known and popular active indoor tracking systems. Large bandwidth of UWB signals

makes them resilient to multipath fading problem and brings the ability to estimate

the location of a target with a few centimeters error. Despite the recent advancement

of the accuracy of UWB based indoor tracking systems, the scalability of these systems

did not receive enough attention from the research community until the last few years.

In this dissertation, we focus on four primary challenges in scalability of UWB

systems: adaptively finding optimum UWB physical layer setting to achieve best

ranging performance while maintaining application requirements, reducing deploy-

ment constraints by proposing single anchor UWB indoor localization, studying and

mitigating the impact of multi-user interference on UWB ranging, and combining

ranging traffic with non-ranging traffic to increase the applicability of UWB networks

for non-ranging applications.
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Chapter 1

Introduction

Recent advances in the Internet of Things (IoT) technologies have started a new era

in sensor networks and smart assistant systems. Various types of sensing platforms

are being deployed to understand the in-depth behavior of the people. Technology

that tracks people inside buildings could become a key enabler for many applications

in this space.

Indoor localization is a process to find the exact locations of devices, objects or

people inside buildings in which GPS service is mostly unreliable. Existing indoor

localization and tracking solutions can be divided into two main categories: passive

and active solutions. Passive asset tracking systems are scalable, but their accuracy

is limited to a few meters (Room Level). The key idea in passive indoor localiza-

tion techniques is utilizing existing sensing infrastructure for monitoring activities

and movements inside the buildings. Each activity has some impact on the sensing

environment, and by continuously monitoring the environment, those techniques can

locate activities.
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Passive indoor localization techniques are not able to achieve high levels of ac-

curacy in estimating the locations of people. On the other hand, active localization

techniques are very accurate in terms of location estimation. In such systems, the

target carries a device that communicates with the infrastructure, and the location

of target can be estimated using communication link properties. Ultra-wideband

(UWB)-based indoor localization systems are state-of-the-art active solutions that,

on average, can achieve less than 5 cm error in locating devices [60]. The most

common active localization system measures its distance to 3 other anchors, which

are devices with known locations, and using trilateration, the target can locate itself

inside the building.

1.1 Scalability Challenges

Despite the existence of very accurate UWB-based indoor localization techniques, the

scalability of such systems is under question. Through our studies, we identified four

primary challenges in UWB networks which need to be addressed to pave the way for

UWB radios to become scalable indoor localization solutions.

• UWB physical layer, as defined in IEEE 802.15.4, has several parameters which

can be configured to control the tradeoff between energy efficiency and ranging

performance. Finding the optimal setting for UWB physical layer considering

the application constraints is a challenge.

• Existing UWB localization solutions rely on line of sight access to anchors to be

able to locate the target. This requirement increases the deployment constraints

and reduces the scalability of such systems.

• To the best of our knowledge, multiuser interference is not properly addressed

2



in UWB-based indoor positioning systems. State-of-the-art solutions use ran-

dom back off, or TDMA approaches to avoid interference between users, but

these approaches are not scalable. UWB-based systems suffer from the unre-

liable access control mechanism, and multi-user interference can degrade the

performance of such systems.

• Alongside with ranging capabilities, UWB radios have communication capa-

bilities. Today’s indoor localization techniques rely on separate protocols for

ranging and communication which increases the complexity of these systems.

1.2 Dissertation Contribution

In this dissertation, we study and address all four above mentioned scalability related

challenges in UWB Networks.

• We study the impact of changing different parameters at UWB physical layer

on ranging performance and propose our proposal to adaptively search and find

optimal physical layer setting to minimize the ranging error while maintaining

application requirements in terms of energy and delay. We evaluated the per-

formance of our framework in real-world environment scenarios, and our results

show an average 20% reduction in range errors achieved by our proposed method

through proper setting of UWB physical layer parameters. We published the

results of our work as a conference paper at IEEE ISCDE’18 conference.

• To relax the minimum 3 line of sight (LoS) anchors constraint from UWB based

indoor localization solutions, we investigate the feasibility of fingerprinting for

indoor localization to reduce the number of required anchors. We propose our

novel single anchor UWB based indoor localization technique which is based on

3



generating unique fingerprints using UWB signals received in each spot. Our

results show using previously generated fingerprints, our solution can locate

moving target inside the square of 20 cm × 20 cm with the accuracy of 96%.

We published our proposed technique as a workshop paper at IEEE CNC’19

workshop.

• To make UWB-based tracking systems more robust, we study the likelihood of

UWB interference in indoor localization applications. We quantify the possi-

bility of interference in such solutions and show the impact of such interference

on ranging performance. We also propose simple yet effective techniques to

detect packets impacted by interference and also mitigate ranging error caused

by interference. We observe 30% to 40% reduction in ranging error caused by

interference after applying our proposed technique. We published the results of

our study as a conference paper at ACM EWSN 2019 conference.

• To improve the scalability of UWB networks, we utilize the communication

capabilities of UWB radios. In all the existing UWB based indoor localization

techniques, the UWB radio is used only for ranging. We study the possibility

of running non-ranging applications over UWB networks and analyze the co-

existence of ranging traffic alongside with non-ranging traffic. We show the

feasibility of piggybacking the information required for ranging (timestamps)

on top of non-ranging traffic and vice versa. We propose our adaptive scheduler

which monitors both ranging and non-ranging traffic and piggybacks either

ranging traffic over non-ranging traffic or vice versa. Our results show that our

adaptive scheduler can reduce 40% of network traffic. We published this work

as a full paper in IEEE DCOSS 2019 conference.

In summary our focus in this dissertation can be divided to two major problem on

4



scalability of the UWB-based indoor localization. First challenge is minimum number

of required anchors for locating the target in which we proposed single anchor indoor

localization to reduce the number of anchors from three to one. The second challenge

is contention in UWB networks. In our first attempt to reduce contention in UWB

networks, we decrease number of packets by piggybacking information which reduces

the network traffic by 30% to 40%. On the second work in this area, we propose

adaptive physical layer configuration in which we minimize the length of the packet

while preserving ranging performance. We also propose using random pulse shapes

to be able to recover packets distorted by interference and our results indicates 50%

reduction in error caused by collision. Based on the results we achieved in this

dissertation, we can estimate that the combined solution is able to handle network of

20 to 30 nodes with localization error below 30 cm.

1.3 Dissertation Organization

We organize the rest of the dissertation as follows. In Chapter 2, we present back-

ground information about UWB signals and UWB-based ranging and localization

techniques. In Chapter 3, we propose a novel approach to adaptively tune UWB

physical layer setting to improve ranging performance while maintaining application

energy and time constraints. Chapter 4 describes our fingerprinting technique to re-

duce the number of required anchors for indoor localization to just one anchor. We

explain our measurement campaign and modeling techniques used for generating fin-

gerprints. Chapter 5 presents the detailed UWB interference analysis and provides

detailed information about our proposed interference detection and mitigation tech-

niques. Chapter 6 introduces our proposed network traffic scheduler alongside with

our novel technique for combining ranging and non-ranging traffic. Finally, chapter
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7 concludes our contributions in this dissertation.
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Chapter 2

UWB Ranging/Localization Basics

IEEE 802.15.4-11 standardized the use of low power UWB signals in wireless sensor

networks. In this chapter, we briefly explain basics of UWB communication and

UWB physical layer parameters defined by this standard.

2.1 UWB Wireless

Wireless signals with the bandwidth higher than 20% of their central frequency are

called Ultra-wideband (UWB) signals. Although this general definition can be applied

to many frequency ranges but most popular center frequencies for UWB signals are

in the range of 3 GHz to 10 GHz and according to the IEEE 802.15.4 standard [41],

the minimum bandwidth for each UWB channel is 500 MHz.

2.1.1 Physical Layer Modulation

IEEE 802.15.4-11 [9] standardized the use of low power UWB signals in personal

area networks (PAN). In this standard, a specific format has been defined for UWB
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packets. It begins with a synchronization header consisting of the preamble and the

start of frame delimiter (SFD) after which the PHY header (PHR) defines the length

(and data rate) of the data payload part of the frame. The UWB used in 802.15.4 is

sometimes called impulse radio UWB because it is based on high-speed pulses of RF

energy. The PHR and Data parts of the frame, use burst position modulation (BPM)

in which position of the burst is utilized to modulate the bits. In addition, binary

phase-shift keying (BPSK) is used to shift the phase of the burst by calculating a

parity bit.

Forward error correction (FEC) is also included in the PHR and Data parts of the

frame. The PHR includes a 6-bit single-error-correct double-error-detect (SECDED)

code and the data part of the frame has a Reed Solomon (RS) code applied. These

features increase the resilience to interference in the receiver.

In contrast to the BPM/BPSK modulation used for the PHR and data, the syn-

chronization header consists of single pulses. Preamble code defines the actual se-

quence of pulses sent on each symbol interval. The preamble sequence has a property

of perfect periodic autocorrelation which helps a coherent receiver to estimate precise

impulse response of the radio channel (CIR).

In summary PHR and Data parts of UWB frame are more resilient to interference

compared to synchronization header due to the difference in modulation schema used

in these sections compared to synchronization header.

2.1.2 UWB Physical Layer Parameters

UWB communication link has to be configured properly before being used for local-

ization or communication purposes. Fundamental factors in UWB links are explained

in this section. In this section, we focus on the parameters which are supported by
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DW1000 chip [3], a widely used UWB platform.

• Center Frequency: The IEEE 802.15.4 standard UWB PHY defines 16 different

channels; the ones supported by DW1000 have been summarized in Table 2.1.

Since different channels face different levels of ambient noise, proper selection

of center frequency has a critical role in the robustness of the system.

• Preamble Length: UWB packet begins with a synchronization header which

contains the preamble and Start of Frame Delimiter (SFD). During the message

reception phase, the receiver searches channel to observe the preamble, and once

the preamble is detected, the receiver looks for SFD symbols. The moment the

receiver detects the first SFD symbol is timestamped as the time of arrival

(ToA) for the message. Higher robustness in longer ranges after increasing the

length of preamble comes at the price of consuming more energy and spending

more time sending each message.

• Pulse Repetition Frequency (PRF): The PRF is one of the basic characteristics

of radio systems. In simple terms, PRF defines the amount of time inter-

val between sending two consecutive pulses. After sending the first pulse, the

transmitter is not sending new pulses for a time period which gives the receiver

enough time to hear the reflections of the first pulse. The required time between

sending of each pulse is a function of the system’s desired range. Higher PRF

values generate more pulses in the constant amount of time, and thus higher

radio energy, which are detectable in longer distances. UWB standard defines

16 MHz and 64 MHz as standard PRF values for communication.

• Preamble Code: Depending on the channel and PRF, IEEE 802.15.4 standard

defines a choice of two or four preamble codes. These preamble codes are de-

signed in a way that they have a low cross-correlation with each other with
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Table 2.1: UWB Physical Layer Parameters (Supported by DW1000)

Parameter Values

Frequency Channel (MHz) 1(3494.4), 2(3993.6), 3(4492.8),

4(3993.6), 5(6489.6), 7(6489.6)

Bandwidth (MHz) 1(499.2), 2(499.2), 3(499.2),

4(1331.2), 5(499.2), 7(1081.6)

Pulse Repetition Frequency (PRF) 16 MHz, 64 MHz

Preamble Length (symbols) 64, 128, 256, 512, 1024, 2048, 4096

Date Rate 110 Kbps, 850 kbps, 6.8 Mbps

the intention that separate channels with different preamble codes can work

simultaneously without interfering with each other.

• Data Rate: IEEE 802.15.4 standard has defined three different data rates (110

kbps, 850 kbps, and 6.8 Mbps) for UWB communication.

Table 2.1 summarizes all UWB physical layer’s adjustable parameters and their

potential values.

2.2 UWB-based Localization Procedure

The procedure in UWB based localization techniques is similar to GPS approaches. In

a 2D localization setting, there are at least 3 anchor points with the known positions

and the fourth node (Tag) which can locate itself by measuring its distance to each

anchor and finding the intersection of the circles with the centers at anchor locations

and the radius of distance to each anchor as shown in Figure 2.1a.

To measure the distance between the Tag and each anchor at least 2 messages

needs to be exchanged between them. In the simplest scenario Tag sends the first

message to the anchor and puts the time of sending inside the message (T1). The
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(a) Intersection of circles is the location of
Tag

(b) Ranging technique in UWB

Figure 2.1: UWB-based localization procedure

anchor receives the message and marks the reception time (T2) and replies back with

the second message which contains sending time from the anchor (T3) alongside with

reception time (T2). Upon the reception of the second message at Tag (T4), signals

travel time can be calculated using formula 2.1:

SignalTravelT ime =
(T4− T1)− (T3− T2)

2
(2.1)

This process is called two-way ranging and is illustrated in Figure 2.1b.

2.2.1 Time of Arrival Measurement in UWB

Perfect auto-correlation between preamble codes allows UWB receiver to accurately

estimate channel impulse response (CIR). The accurate CIR helps the receiver to

resolve the channel in detail and determine the arrival time of the first (most direct)

path, even when attenuated.

Accurate ranging using UWB requires the ability to precisely detect first path’s

time of arrival. The challenging part in time of arrival estimation is proper selection

of the threshold for the minimum gap between signal’s power and noise. If the gap
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Figure 2.2: Energy-based first path detection

between the power of the first path and the noise floor is small, the chance of mis-

classification of noise signal as the first path signal (false positive) increases. On the

other hand, higher threshold value increases the chance of not finding the first path

signal which is buried in the noise (false negative).

2.2.2 First Path Detection Challenge in UWB Ranging

The challenging part in ToA calculation is proper selection of the threshold for the

minimum gap between signal’s power and noise. The smaller gap between first path

power and noise floor increases the chance of misclassification of noise as the first path

signal. On the other hand, higher threshold values, increase the chance of not finding

the firth path signal. This phenomenon is shown in Figure 2.2 where Threshold 2 is

not a suitable choice but Threshold 1 is able to detect proper first path.

Another problem in UWB systems is that the Non-Line-of-Sight (NLoS) signal is

indistinguishable from LoS on the receiver side. For instance in Figure 2.2, in the

case that the system is using Threshold 2 value, the receiver can not spot the real

first path and will consider reflected signal (second peak) as the first path. There is
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no practical way for the receiver to realize that the measured distance is wrong due

to detection of NLoS signal as LoS.
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Chapter 3

UWB Physical Layer Adaptation

for Best Ranging Performance

Despite very accurate results achieved by UWB-based techniques to track objects

with errors less than 5 cm [60], building a robust UWB-based indoor localization

system is challenging. The accuracy of localization with UWB technology depends

on the propagation characteristics of the unique circumstances of the deployment.

To achieve best ranging performance one can set the transmission power and frame

length to the maximum possible but that approach is not suitable in some applica-

tions. For instance, increasing frame length decreases the location update rate (due

to interference) which is not desired in most of the tracking applications. There are

no tools or methodologies to determine the best configuration for UWB communica-

tion to increase ranging quality while limiting power consumption and air utilization

within application constraints. Without those tools and methodologies, it is difficult

to achieve accurate and efficient UWB-based localization while meeting application

constraints in power and latency. Dynamics in wireless propagation environment

requires re-discovery of best settings, thereby making the problem of robust indoor
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localization even more challenging.

One of the major problems that threatens the robustness of UWB based indoor

localization systems, is short coverage due to noise interference and attenuation from

obstacles. In our work, we propose a framework to make UWB localization more

robust and resilient to attenuation and noise. We implement an efficient algorithm to

find the best setting for the UWB channel which gives the best ranging performance

while it meets power consumption and air utilization requirements. Our solution

changes the parameters of the UWB channel to improve the quality of ranging which

makes the whole localization system more reliable and robust. The proposed method

can be used during the deployment phase to find the best channel setting and also

during online ranging once the quality of ranging drops due to changes in the envi-

ronment. We proposed a simple technique to monitor the ranging performance and

trigger the proposed method to change the UWB channel setting if the quality of

ranging drops below a certain threshold.

Our contributions in this work can be summarized as the following:

• Investigate the impact of changing UWB communication channel configuration

on accuracy and robustness of UWB-based indoor localization system.

• Design a framework to monitor the quality of ranging and change the configura-

tion of UWB physical layer to improve the ranging accuracy while maintaining

power consumption and frame duration restrictions.

• Evaluate the performance of the system in a real-world environment using

DW1000 UWB transmitters.
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3.1 Related Work

The literature on UWB based indoor localization techniques can be divided into two

major topics: First path detection techniques and error detection techniques. The

following paragraphs elaborate on both areas in more details and cover state-of-the-art

work in UWB indoor localization.

3.1.1 First path detection in UWB

Time-of-Arrival (ToA) is a critical concept in wireless indoor positioning systems.

The general idea here is that considering the constant speed of the signal through the

air, accurate measurement of signal’s flight time provides an accurate estimation of

the distance between sender and receiver nodes. The challenging part is accurately

timestamping signal’s ToA. Even one nanosecond error in ToA measurement may

cause in the order of 30 cm error in estimated range. Two most common categories of

previous work to identify ToA are maximum likelihood (ML) techniques and energy-

based methods.

3.1.1.1 ML-based First Path Detection

Correlation between sent and received signals is utilized in ML techniques. The goal

is finding the optimum propagation time which maximizes the correlation between

sent and received signals. Experiments have shown that ML estimators can achieve

to the Cramer Rao Lower Bounds (CRLB) in the high-SNR region [22]. In addition

to the correlation between sent and received signals, the similarity between uplink

and downlink also has been utilized to estimate the most likely propagation time for

the signal [69]. However, ML estimators require processing the signal at very high
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sampling rates which makes them inapplicable in most of the low power embedded

system implementations.

3.1.1.2 Energy-based First Path Detection

Energy-based ToA detection algorithms utilize the power of the received signal as

an indicator to leading edge of the signal [27]. The basic idea is sampling the re-

ceived signal and detecting the first sample which has higher power than a particular

threshold as the leading edge of the signal. Although the accuracy of energy-based

first path detection techniques is not as good as ML estimators, they are much easier

to implement. The first sample that passes the threshold is considered as the first

path and is used to measure ToA.

The real challenge in energy based leading edge detection techniques is selecting

the proper threshold. There are many research work that tried to propose a suitable

threshold based on the signal and noise characteristics. The lowest complexity ap-

proach is monitoring a massive amount of data and finding the best threshold value to

set for deployment [39]. Threshold also can adaptively change based on the maximum

and minimum energy level in the signal [42], [55]. A proper threshold value should

be designed depending on the received signal characteristics, the operating condition,

and the channel characteristics. The ambient noise floor is an important factor in de-

tecting the first path. SNR can be utilized [57] to find the best threshold to mark the

leading edge of the signal. Due to their simplicity and excellent performance, energy

detection-based first path detection algorithms are used in current UWB-based indoor

localization systems including DW1000 chip which is most dominant UWB-enabled

chip used in indoor localization [3].

The general rule of thumb in UWB ranging is that higher power UWB frames
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provide more accurate ranging since the gap between the first path and ambient

noise will be bigger which means it would be easier for the receiver to detect the first

path. IEEE 802.15.4-11 [41] which standardizes the low power UWB communication

suggested a few adjustable parameters for UWB physical layer which provides the

capability of changing transmitted frame’s power and duration. The effectiveness of

changing these UWB physical layer settings to improve communication quality has

been investigated before [37] and the results show 30% to 40% of improvements in

packet reception rate under interference by changing the UWB physical layer settings.

To the best of our knowledge, there is no previous study on the impact of dif-

ferent UWB physical layer settings on ranging performance and quantization of each

configuration’s ranging improvements. Our solution finds the optimum physical layer

setting which meets the power consumption and frame duration requirements of the

application and at the same time minimizes the ranging errors.

3.1.2 UWB Localization in the Real World

Recent advances in embedded system design and development have made the inex-

pensive UWB transmitters available for public usage. Despite the huge body of work

in UWB system design, in most cases, evaluations have been done through simula-

tions. There are few works [40, 43, 50, 71] that tried to deploy UWB systems in the

real world and report their performance. Overall, based on those reports, in the situa-

tions with clear Line-of-Sight (LoS) between two nodes, the UWB indoor localization

systems are very reliable with centimeter-level accuracy in locating objects, but in

the locations with high levels of noise floor or crowded areas where LoS signals are

not available, there is a huge performance drop in localization performance including

lots of blind spots (places where a Tag cannot determine its location) even in short
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ranges.

In summary, the research community has been successful to propose highly accu-

rate UWB-based wireless indoor localization, but robustness and reliability of such

systems still require a lot of attention.

3.2 Design

To make UWB-based indoor localization systems more robust, the best configura-

tion for UWB channel which meets accuracy, power consumption, and air utilization

requirements is selected through an efficient search algorithm. Features like pream-

ble length and frequency channel have a significant impact on the robustness of the

UWB positioning system. Higher preamble length means better robustness but with

the cost of consuming more energy and having higher air utilization. In addition, re-

ducing the receiver’s threshold for received signal power, will increase coverage of the

system but at the same time increases the chance of detecting noise as the first path

signal in the environments with higher levels of noise. The effectiveness of changing

these settings is directly related to the power in the reflected signal. In this section,

we study the impact of changing each of the above mentioned UWB physical layer

settings on the accuracy of localization solution.

3.2.1 Building the Dataset

UWB physical layer has several adjustable parameters which are listed in Table 2.1

alongside with the list of their potential values. Overall, the DW1000 chip supports

252 different configurations (6channels× 2PRFs× 7preamblelengths× 3datarates)

for UWB physical layer. To estimate ranging error associated with each configuration,
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Figure 3.1: Average ranging error, first path gap, current consumption and frame
duration across all 252 UWB physical layer configurations (Each configuration ID
represents one combination of physical layer parameters)

we conducted experiments in 2 different locations (inside an academic building and

also a coffee shop with lots of furniture). In each experiment, a pair of UWB nodes

(Decawave EVB1000) are placed in the distance of 10 m from each other. The sender

and transmitter both set their physical layer parameter to one setting at a time from

the 252 possible settings, and under each configuration, the two-way ranging is done

for 200 times. Figure 3.1 shows the ranging error, the gap between the first path signal

and ambient noise ((firstpathpower−ambientnoise)/firstpathpower), transmission

and reception current (mA) and frame duration (µs) for all the 252 configurations

averaged based on the data collected in both of the locations.

The main purpose of Figure 3.1 is to show the impact of changing configuration
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of UWB channel on ranging accuracy. We use error values measured in this phase

to assign an error to each of the configurations. Later on, our algorithm uses this

information to find the best configuration for UWB communication and ranging. All

the frame duration and power consumption measurements in this work are based on

the tool [29] provided by Decawave company which measures current consumption

and duration for each packet based on the channel’s setting. Power consumption is a

general limitation in wireless sensor networks including UWB based indoor localiza-

tion. Also, there are regulatory restrictions on maximum transmission power in UWB

communication. Frame duration is also important since it impacts the interference

and reliability of communication.

We performed a simple experiment to determine the optimal inter-node distance

for our empirical study. In this experiment, we use 2 nodes (Tag and Anchor). We

configure our UWB radios to use channel 2 and increase the distance between Tag

and anchor (2 m, 5 m, 10 m, 16 m, and 25 m) and measure error reported by them

in different distances. We repeat the same experiment with channel 5. Figure 3.2

summarizes the results.

Figure 3.2 shows that the ranging error does not increase significantly as we in-

crease the distance between nodes to 20 m. Based on this observation, we decide to

put 2 nodes in 10 m distance during data collection phase to build our dataset.

As shown in Figure 3.1, changing the physical layer has some impact on ranging

performance but what could be the reason? As mentioned in the previous section,

energy detection algorithm is used inside DW1000 chips to mark the first arriving

path, which means the difference between the first arriving path’s power and ambient

noise has direct relationship with the accuracy of ranging. In Figure 3.3, we focus on

the relationship between the first path gap and ranging error across different channels.
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Figure 3.2: Ranging error across different distances. Below 20 m distance, ranging
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Figure 3.3: Gap between first path and noise has a direct relationship with observed
ranging error
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Figure 3.3 supports our earlier hypothesis. Across different channels, ranging

error increases once the gap between first path and the ambient noise decreases.

This observation gives us the idea of improving the ranging performance by changing

the channel setting. For example noise pattern is different across different channels

which means changing the center frequency can reduce the ranging error. Also, longer

preamble length provides more power in the received signal which means higher first

path power gap.

3.2.2 UWB Physical Layer Parameter’s Impact on Ranging

In the following paragraphs, the impact of changing each of the factors on the final

accuracy of UWB-based localization system has been investigated using the data we

collect in our dataset. In all the experiments, off-the-shelf EVB1000 chips [30] are

utilized as anchor and Tag nodes.

3.2.2.1 Frequency Channel

The first analyzed factor is frequency channel. Figure 3.4 shows the average error

measured in estimating the distance to the Tag node using different frequency chan-

nels (average of 4000 ranging per channel). As shown in Figure 3.4, higher frequencies

provide more accurate and reliable (with less variation) results.

Figure 3.5 shows the gap between the noise floor and the first path signal in dif-

ferent frequency channels. As it is shown in Figure 3.5, the amount of noise floor in

different frequency channels varies a lot which is reasonable considering the distri-

bution of noise in different frequency channels. This observation helps us to justify

different ranging performances across different frequency channels.
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Figure 3.4: Ranging error across different frequency channels. Higher frequency chan-
nels have more reliable ranging performance. On channel 4 and 7 larger bandwidth
(1 GHz) increases the error.
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Figure 3.5: Gap between first path power and noise across frequency channels

3.2.2.2 Preamble Length

The second parameter to be considered to change in UWB physical layer is the pream-

ble length. Figure 3.6 shows the average error (more than 4000 ranging measurements

per preamble length) in estimating the distance to the Tag node while changing the

24



64 128 256 512 1024 2048 4096
Preamble Length (symbols)

0.5

1.0

1.5

Er
ro

r (
m

)
Figure 3.6: Ranging error across different preamble lengths. Increasing the preamble
length significantly improves ranging performance
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Figure 3.7: Frame duration across different preamble lengths. Longer preamble length
increases air utilization

preamble length. As we expect, increasing the length of the preamble from 128 sym-

bols to 1024 symbols significantly decreases the error but after 1024 symbols, increas-

ing the preamble length does not have a noticeable impact on reported accuracy. On

the other hand, increasing preamble size increases the length of message which means

it will increase the amount of time required for the system to transmit the message

(higher energy consumption and lower location update rate). Figure 3.7 shows the

amount of time required for sending messages with different preamble lengths (with

30 bytes of data payload). Based on the results from these two experiments, changing
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Figure 3.8: Ranging error across different PRFs. Higher PRF has better ranging
performance.

preamble length is one of the key features of the designed solution to increase the ro-

bustness of the system. We need to mention, looking at Figure 3.7, increased ranging

performance comes with the price of increased frame duration which means higher air

utilization. To emphasize the importance of air utilization in UWB communication,

we need to mention that, in IEEE 802.15.4-11 standard, the default Medium Access

Control (MAC) for UWB communication is ALOHA [20] which is based on random

access to the medium (UWB signals are very low power compared to background noise

which makes CSMA protocols impractical in UWB communications [41]). In the case

of long frames, the chance of collision and interference increases which reduces the

robustness of the UWB based localization and communication technique.

3.2.2.3 Pulse Repetition Frequency

The third channel configuration parameter is PRF value. Figure 3.8 shows significant

improvement by changing the PRF value from 16 MHz to 64 MHz in estimating the

distance to a Tag.
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Figure 3.9: Ranging error across different preamble codes. Preamble code does not
have signification impact on ranging performance.

3.2.2.4 Preamble Code

Preamble code is another configurable parameter in UWB communication link. As it

can be seen in Figure 3.9, changing the preamble code in the same frequency channel

does not have a significant impact on the accuracy of estimated location.

3.2.2.5 Data Rate

The last configurable parameter is data rate. Figure 3.10a shows the impact of

changing the data rate on final accuracy of ranging. As shown in Figure 3.10a,

changing the data rate does not have a noticeable impact on the final accuracy of

the system but on the other hand, Figure 3.10b indicates the fact that increasing

the data rate will significantly decrease the frame duration which means reduced air

utilization in higher data rates.
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(a) Ranging error across different data rates
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(b) Frame duration across different data rates

Figure 3.10: Impact of data rate on ranging error and air utilization. Higher data
rate reduces air time but does not significantly change the ranging performance.

3.2.2.6 Frequency Channel Vs. Preamble Length

As mentioned in previous sections, frequency channel and preamble length have high

impacts on average error. In order to compare the impact of each of them, we designed

a simple experiment. A pair of Tag and anchor points were placed in the distance of

20 m, in non-line of sight condition. We changed channel setting (preamble length

and frequency channel) and measured average error. Figure 3.11 shows the impact

of changing the frequency channel and also preamble size on the reported accuracy.

Figure 3.11 shows that increasing preamble length has a lower impact on accuracy of

measurements (25% error reduction) compared to increasing the frequency channel

(50% error reduction). In all the cases, increasing preamble length makes the mea-

surements more stable. On the other hand, channels with higher frequencies have

more accurate results but with higher chances of NLoS measurements.

3.2.3 Detecting Low Quality Ranging

The environment has a significant impact on the UWB ranging error. Interference and

attenuation change the UWB channel characteristics which leads to different ranging
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Figure 3.11: Impact of frequency switching compared to increasing the preamble
length on ranging
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Figure 3.12: Observed gap between first path power and noise in different ranging
error intervals.

performance. As mentioned earlier, our proposed solution can improve the ranging

performance by changing the channel setting, but, we need to have an indicator of

low quality ranging to trigger the search algorithm. DW1000 chips utilize energy

detection algorithm to find the first path which means the distance between the first

path’s power and ambient noise can be used as ranging quality indicator. Figure 3.12

shows the amount of gap between the first path power and noise in different ranging

error ranges from our dataset. It is shown in Figure 3.12 that if we want to keep the

error range below 20 cm, the gap between first path and noise should be bigger than

50%. We decided to use threshold of 50% as an indicator of low quality ranging. In

other words, if the gap between first path power and ambient noise is smaller than

50% of first path power, our framework marks the ranging as low quality ranging and

in the case of seeing multiple consecutive low quality ranges, it will trigger the search

algorithm to change the UWB physical layer setting.

3.2.4 Proposed Search Algorithm to Find Best Physical Layer

Configuration

Impact of changing each of the configuration parameters on the final accuracy of the

system has been investigated in previous sections. The simplest way to change the
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channel configuration is running a brute-force search algorithm and test the error

based on all the possible combinations of values for configuration parameters. In this

case, the search space would be 252 different settings. In our framework, considering

the impact of each factor on final robustness, accuracy, energy consumption and delay,

an efficient search algorithm proposed. Based on our measurements, we proposed

Algorithm 1 to change the setting of the channel to improve the robustness considering

trade-offs between data rate, power consumption, error rates, and robustness.

Algorithm 1 Find The Best Physical Layer Configuration

Configs← AllAvailableConfigurations
Pth ←MaxAllowedPower
Dth ←MaxAllowedFrameDuration
PC ← PotentialConfigurations
PCfiltered ← {Config ∈ PC,Configpower ≤ Pth and Configlength ≤ Dth}
for all C ∈ PCfiltered do
Cerror ← Extract ranging error associated with current configuration from the
dataset

end for
Cmin ← {C,Cerror ≤ allConfigs ∈ PCfiltered}
return Cmin

The proposed algorithm first finds the configurations which satisfy energy and

time constraints. As we showed in previous sections, changing channel settings will

change power consumption and frame duration. Based on the desired application, user

can define thresholds for maximum power consumption preferred per ranging activity

and also the maximum duration of time per packet. Packet length has two direct

impacts on the ranging. First, the packet length identifies the power consumption. It

is obvious that longer packets require longer transmission and reception which leads

to higher power consumption. Frame duration also is important in air utilization. If

the packets are too long, the air utilization increases and causes interference problem

among the UWB nodes. We need to find a configuration which meets both the

requirements and also minimizes the error rate. Since the size of the whole search
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space is 252, the total time to execute the proposed algorithm is negligible.

3.3 Evaluation

In this section, we first evaluate the effectiveness of the proposed algorithm on reduc-

ing ranging errors and next, we study the impact of changing UWB physical layer

configuration on 2D localization (3 anchors and 1 Tag).

3.3.1 Ranging Quality in Proposed Solution

To evaluate the effectiveness of the suggested technique, we perform simulations using

our collected dataset from 2 nodes. In each round, we randomly select a configuration

to be the starting configuration, then run proposed search algorithm over all the

252 settings in our dataset, to find best configuration in which power consumption

and frame duration are below the power consumption and frame duration of current

configuration and ranging error is the minimum among the rest of configurations.

Figure 3.13 shows reductions achieved by running our proposed search algorithm

to find the best possible configuration which satisfies either power consumption or

frame duration thresholds. The results are achieved by running the simulation for

100 times. Figure 3.13a shows the reductions in ranging error by only considering

power consumption threshold and Figure 3.13b illustrates error reductions happened

by only considering frame duration threshold.

Figure 3.13, shows as much as we have higher power consumption or frame du-

ration thresholds, there is more room for error reduction. Another interesting fact is

that increasing power consumption threshold has more potential to reduce ranging

errors compared to frame duration threshold.
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Figure 3.13: Effectiveness of proposed search algorithm on ranging

3.3.2 Localization with Different Physical Layer Configura-

tions

In this section, we conduct few experiments to evaluate the effectiveness of the pro-

posed algorithm on accuracy and robustness of UWB-based indoor localization tech-

nique. In our experiments, we used TREK1000 [80] system provided by Decawave.

The system contains four DW1000 based modules (EVB1000) providing UWB trans-

missions conforming to IEEE 802.15.4a standard. We deployed three nodes as anchor

nodes inside an academic building and tracked the fourth node (Tag) carried by a

person moving across a predefined path inside a corridor (12m× 6m). There were no

other obstacles or moving objects around the data collection area. We conducted the

experiment with 4 different configurations to show the impact of changing physical

layer configuration on the ranging performance. The four configurations are summa-

rized in Table 3.1. As mentioned in earlier sections, preamble size and PRF are the

two most important factors which have direct impact on accuracy and coverage of

UWB localization system. In these experiments, we change both PRF and preamble

size to evaluate their impact on final accuracy and robustness of system. Figure 3.14a

shows the trajectory as green lines and reported locations for each configuration. We
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Table 3.1: ”UWB Physical Layer Configurations Selected for the Evaluation of mobile
Tag Localization

Config Frequency PRF Preamble Data Rate

# (MHz) Length

1 3493.6 16 MHz 128 110 kbps

2 3493.6 64 MHz 128 6.8 Mbps

3 3493.6 16 MHz 1024 110 kbps

4 3493.6 64 MHz 1024 6.8 Mbps

find that by increasing the preamble length, the location update rate is reduced but

the reported locations are more accurate.

Figure 3.14a also shows that configuration 4 which has 1024 symbols as preamble

length and 64 MHz as PRF value, increases the robustness of the system by covering

more places. Figure 3.14b shows average reported error in locating the object with

each of the configurations. We calculated the minimum distance of each point to

the trajectory and considered it as the error in estimating the location. Figure 3.14b

shows the average error for each configuration. As expected, configuration 4 has the

smallest value of the error.

Finally, Figures 3.14a and 3.14b prove that changing configuration of the channel

will improve the robustness of indoor localization system.

3.4 Discussion

UWB wireless technologies can be used both for localization and data communication.

The optimal setting for localization application may be different from the optimal

setting for communication application of UWB. In our current work, we focused

on indoor localization and changing the channel setting in a way to increase the
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Figure 3.14: Localization with different physical layer configurations (The configura-
tion parameters are shown in table 3.1)
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robustness of localization at the cost of reducing the efficiency and speed of data

communication. Different UWB applications may make different tradeoffs in settings

depending on their combination of localization and data transfer goals.

The designed framework will be executed during deployment of the system and it

finds the best performing settings. It also can continue monitoring the performance

of the localization and update the setting during runtime via a central or distributed

protocol. In the localization algorithm, Tag communicates with each anchor in a sep-

arate message which means it can utilize different setting to communicate with each

anchor node. The channel setting can be exchanged between Tag and anchor during

a simple handshaking protocol, in fact, we used this technique in our evaluations.

3.5 Conclusion

Wireless indoor localization using ultra-wideband signals is one of the promising tech-

nologies to solve problem of locating moving objects inside the buildings. In this work,

we propose a novel framework to improve the robustness of UWB localization sys-

tems by changing the UWB channel setting in an efficient and quickly. Through

extensive real-world implementations using DW1000 UWB transmitters, we verified

the effectiveness and robustness of our proposed framework. We showed the impact

of different UWB channel settings on the ranging performance and proposed an al-

gorithm to utilize these differences to increase the robustness of UWB-based indoor

localization systems. Utilizing proposed technique, UWB localizations can adapt to

changes in the environment and also support more challenging scenarios which overall

increases the scalability of UWB localization systems.

36



Chapter 4

UWB Localization Using Single

Anchor

The recent studies in UWB-based indoor localization have reported errors of less than

40 cm for 3D localization [60]. Most of UWB-based indoor localization techniques

need to process LoS signals to accurately locate the target. However, in indoor

environments, the reception of LoS signals is not guaranteed in every location e.g.

LoS either is blocked by obstacles or is not distinguishable from NLoS signals. Recent

work in UWB-based positioning approached this challenge either by increasing the

chance of receiving LoS signal through addition of extra antennas and channels, or

utilizing NLoS signals to improve the robustness of the localization system. Despite

these improvements, creating a UWB-based indoor localization solution that is robust,

reliable, scalable, and accurate remains unsolved. Most of the existing works require

at least three anchors in the line of sight condition to be able to locate the target

which means robustness of them is dependent on the number of LoS anchors.

In this work, we increase the robustness of UWB-based indoor localization by

reducing the number of required anchors. Our approach requires only one node with
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known location (anchor) to locate the target node. Our main idea is utilizing the

unique features of UWB signals by extracting high-resolution estimations of Channel

Impulse Response (CIR) to accurately estimate the location of the target node. The

shape of CIR is dependent on the location of the sender and receiver of the signal. Our

hypothesis is that the differences in CIR patterns in different places can be utilized as

reliable fingerprints to locate targets based on previously seen patterns. We study the

characteristics of CIR samples in each location and use statistical features of those

components as fingerprints. Later on, to find the location of a target, CIR samples

in the received signal are compared with a list of previously seen clusters in the same

area and the location corresponding to the best match is selected as the estimated

target location.

We designed and implemented our single anchor UWB-based indoor localization

system on Decawave platform and evaluated its performance in different indoor en-

vironments. Our results show that the proposed system can locate the target within

a 20cm × 20cm area with an accuracy of 96% using only one anchor node. Our

contributions are:

• Propose a robust single anchor UWB-based indoor localization technique by

utilizing differences in statistical characteristics of Channel Impulse Response

in different locations using only one anchor node.

• Generate fingerprints using statistical characteristics of amplitude and phase

information for each CIR sample which increases the resilience of generated fin-

gerprints to temporal changes in the environment and also significantly reduces

the model size.

• Evaluate the reliability and accuracy of using CIR as fingerprints in different

environments with frequent temporal changes.
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4.1 Related Work

Literature in NLoS handling area can be categorized in two groups: Avoiding NLoS

signals [26,45,58] and utilizing NLoS signals [28,38]. In avoiding NLoS category, the

key idea is increasing the chance of receiving LoS signal by adding more channels and

links and try to avoid NLoS situations. In utilizing NLoS category, the main idea

is estimating the error caused by the presence of NLoS signals then correcting it in

range measurements. Despite the accurate results achieved by approaches in both

categories, the scalability of such techniques is under question. These approaches

require at least 3 anchors to work. To reduce the number of required anchors to make

indoor localization system more robust, the idea of using virtual anchors has been

explored in the literature [38, 50]. These techniques hold a lot of assumptions about

the environment, such as prior knowledge about room geometry, highly reflective sur-

faces, and insignificance of the effects like diffraction and diffuse scattering. Although

as shown in [40], other effects like diffraction and attenuation can severely impact the

ranging accuracy and consequently, the overall performance of such systems.

Our proposed solution as a single anchor localization solution utilizes the unique

shape of the combination of NLoS and LoS signals received in each location to gen-

erate reliable and robust fingerprints. Feasibility of using information from wireless

links (Bluetooth and WiFi) to generate fingerprints has been studied before [31, 82].

Features like the Received Signal Strength Indicator (RSSI), Channel Frequency Re-

sponse (CFR), and Channel Impulse Response (CIR) have been utilized previously.

CFR is an estimation of the impact of environment on wireless signals across their

bandwidth while they travel from sender to receiver. CIR is the equivalent of CFR

in the time domain. CIR information contains multipath components (MPC) which

can be used to generate fingerprints. The advantage of using CIR compared to CFR
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is that CFR is very dependent on temporal frequency fading and simple changes in

one of the sub-carriers change the CFR model, but CIR information is more resilient

to temporal changes, since each impulse response is based on response across all

the bandwidth [83]. Existing wireless fingerprinting techniques can locate the target

within 75cm × 75cm spot with 90% accuracy [79]. The key benefit utilized in our

approach to improve accuracy is the larger bandwidth and the shorter wavelength of

UWB signals compared to WiFi and Bluetooth.

Feasibility of using UWB signals to generate fingerprints has been studied be-

fore [24,56], but the evaluation focused on signals with very large bandwidth (3 GHz

to 7 GHz), and high sampling rates in the lab environment. Studies [25] showed that

the bandwidth of UWB signals has a huge impact on the reliability of fingerprinting

approaches. To the best of our knowledge, no prior work in the literature evaluates

the reliability of CIR information, captured from UWB signal (IEEE802.15.4-11 stan-

dard) with the bandwidth of 500 MHz using commercial off-the-shelf DW1000 chips,

to generate reliable and persistent fingerprints.

4.2 System Design

Multipath reflection is a serious challenge in wireless communications. Reflected

multipath components can cancel out each other and make it difficult for the receiver

to decode the packet [78]. UWB signals have a unique feature. They are sent as

a sequence of short pulses (2 ns) [9] which makes reflections from different paths to

arrive at the receiver with enough time gap which enables the receiver to distinguish

them. This characteristic is a key enabler for accurate distance measurements since

the receiver can accurately timestamp the reception of the first path (LoS) signal. In

this work, we utilize this capability to increase the robustness of the indoor localization
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Figure 4.1: CIR distinguishability across spatial change. Changing the location
changes the CIR pattern

systems in challenging scenarios in which LoS signals either do not exist (buried in

the noise floor) or are not distinguishable from NLoS signals. Different locations or

environments have different patterns of multipath components (MPC) which means

MPCs can be considered as fingerprints of locations. In this section, the design choices

we have for converting MPCs to reliable fingerprints are explained in detail.

4.2.1 Channel Impulse Response in UWB

In UWB communication, accurate estimation of CIR is possible due to the unique

shape of UWB signals (sequence of short pulses). The CIR contains high-precision

information about how UWB signals are propagated which includes first (direct)

arriving path and other reflected or scattered paths. We analyze the CIR information

in different locations to generate unique fingerprints. CIR contains information from

both LoS and NLoS signals and we utilize uniqueness of this combination as a key

feature for generating unique fingerprints.
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Figure 4.2: Correlation of CIR across spatial and temporal change. CIR is consistent
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4.2.2 CIR Distinguishability across Spatial Changes

To have a reliable fingerprinting system we have two basic assumptions which we

need to verify. Our first assumption is CIR information in different locations is

different enough and this difference can be utilized to generate unique fingerprints

per location. Our second assumption is CIR information at the same location is

relatively stable across time which means it is resilient to temporal changes. We

perform several experiments to validate our assumptions. In all the experiments,

there is a pair of sender and receiver nodes. The location of the sender (anchor) is

fixed but the receiver (target) is placed at different locations. Figure 4.1a shows the

amplitude values for the first 100 CIR samples collected from two different locations

(400 packets in each location) which are 30 cm away from each other. Figure 4.1b

is the cumulative amplitude of CIR samples. From Figure 4.1 two clusters of CIR

are clearly distinguishable. This observation supports our first assumption about the

distinguishability of CIR over short spatial changes.

To validate our second assumption, we collected CIR samples at 4 different lo-

cations (each location for 1 hour). The CDF of autocorrelation between amplitude
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values seen for first 50 CIR samples is reported in Figure 4.2b and the CDF of cross-

correlation between amplitudes of first 50 CIR samples in pairs of spots (distance >

20 cm) are reported in Figure 4.2a. As shown in Figure 4.2, cross-correlation between

CIR in two different locations is much lower compared to autocorrelation across the

samples collected from one location which means our second assumption is also valid

in these datasets. It is also shown in Figure 4.2a that cross-correlation between CIR

decreases as the distance between the spots is increased. In conclusion, CIR samples

are reliable sources to generate unique fingerprints per location.

4.2.3 CIR Classification

In this section, we evaluate the feasibility of using standard classification algorithms

to generate fingerprints using CIR and accurately distinguish different spots from

each other.

4.2.3.1 Feature Extraction

We extract the following features from CIR values:

• First Path Delay & Power: The time it takes for the first arriving path to

travel from sender to receiver and its received power.

• Power: Amount of power in the received signal.

• Average & Std Deviation of Noise: Average and standard deviation of the

ambient noise.

• Preamble Count: UWB packets start with preambles (sequences of 0,1 and

-1 determined by preamble code). The accumulative correlation between the
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Figure 4.3: Classification accuracy using extracted features from CIR.

received signal and expected preamble is used to estimate the CIR. The number

of preambles used to estimate the CIR depends on the quality of the received

signal. We utilized the number of preambles used for estimating the CIR, as a

feature.

We divided the target area to grids with different sizes (5cm× 5cm to 50cm× 50cm).

To perform data collection consistently and systematically, we used a robot (TurtleBot

[18]) to move around with a constant speed (0.05 cm/s) while the receiver is mounted

on top of it. The sender (anchor) is in a static location and sends beacons every 50

ms. The maximum distance between sender and receiver is 12 m. Figure 4.3 shows

the classification accuracies achieved by running neural networks (MLP Classifier with

quasi-Newton solver and with network size (5 layers, 5 neurons per layer)) and random

forest (number of estimators = 10, criteria = entropy) classification algorithms on the

features collected from different spots (15 spots which are at least 30 cm apart) with

the same size (in each spot, at least 2000 packets used for training). The accuracies

are reported after running 10-fold-cross-validation on the dataset.

As shown in Figure 4.3, the best result which is approximately 84% accuracy is

achieved by the random forest algorithm with the spot size of 50cm × 50cm. The

classification becomes less accurate as we decrease the size of squares. Overall, the
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Figure 4.4: Classification accuracy using raw CIR information for localization. Not
best performance due to Overfitting problem.

collected features are not reliable enough for generating fingerprints. Using other

classification algorithms like SVM and Bayes Nets in scikit-learn 0.19.1 also could

not improve the accuracy.

4.2.3.2 Over-fitting with Raw CIR

Next, we study the feasibility of using raw CIR information as classification features

instead of extracting general features from CIR samples. Figure 4.4 shows the ac-

curacy reported by the neural net (MLP Classifier with quasi-Newton solver and

with network size (5,10)) and random forest (number of estimators = 20, criteria =

entropy) algorithms after feeding them with raw CIR values from the previous exper-

iment (15 spots). We also changed the number of CIR samples used in the training

phase from 5 samples up to 100 samples.

As shown in Figure 4.4, overall accuracies improved (in average 25%) compared to

the previous approach (using extracted features). This observation is expected since

CIR information contains more details about each location. Despite improvements

in the reported accuracy, Figure 4.4 shows that the classification using raw CIR data
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suffers from overfitting. As we increase number of reflected components above 50, the

accuracy starts decreasing. In other words, those algorithms do not benefit from the

rest of CIR samples in the data.

4.2.3.3 Modeling CIR

Up to now, we showed either extracting general features or using raw CIR to generate

fingerprints did not achieve either accurate nor robust performance. The former

suffers from low accuracies and the later suffers from overfitting and non-resilience

to temporal changes. In next step, we extract generalized statistical features of CIR

samples in each location. Our hypothesis here is that statistical distributions are more

resilient to temporal changes compared to previous approaches and can improve the

robustness of localization solution. Figure 4.5 shows the histogram of amplitude and

phase for the first three CIR samples calculated from sampling 400 packets while

the locations of sender and receiver are fixed. Figure 4.5a shows that the amplitude

information on each reflected component follows a mixture of Gaussian distributions.

Also, the collected phase information (Figure 4.5b) follows the Beta distribution which
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is reasonable due to the nature of UWB signals. They are sent as sequence of 0,+1

and -1 values [9] which means the phase values are mostly around +90 degrees and

-90 degrees phases.

We observe the same pattern in the rest of the CIR samples across different loca-

tions. Amplitude values for each CIR sample is modeled as Gaussian Mixture model

when observing 400 packets. Variational Bayesian Gaussian Mixture [68] is used to

find optimum number of Gaussian components for each CIR sample. In summary, the

proposed fingerprinting approach works as follow. For each location CIR is collected

across several beacon packets sent from the nearby anchor; for each CIR sample, the

amplitude is modeled as a Gaussian Mixture model and phase is modeled as Beta

distribution with α and β parameters when observing 400 packets. We store these

models for each CIR sample as fingerprints. For instance, if we decide to use infor-

mation for 50 CIR samples as fingerprint, at each location, we store set of 50 pairs of

models (amplitude model and phase model). Later, in the online phase, to locate the

target, after receiving beacon message from a specific anchor, the CIR information

from test packet is investigated to find its best match with previously seen clusters

which are associated with same anchor. To measure the similarity, we define the

following metric:

S(P,U t, V t) =
N∑
i=1

LogLK(U t
i , Ampi) +

N∑
i=1

LogLK(V t
i , Phasei) (4.1)

in which, P is the received test packet, U t is set of Gaussian Mixture models for

amplitude values in location t (one Gaussian mixture model (GMM) per CIR sample),

V t is the set of Beta distributions for phase values at location t (one Beta distribution

per CIR sample), LogLK stands for log likelihood function, Ampi and Phasei are

amplitude and phase values of ith CIR sample at test packet P respectively and N is

number of CIR samples considered for generating fingerprint. By searching through

all the clusters which are associated with the sending anchor, the most similar one
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to the test packet is the estimated location of target. It is essential to mention that

since for each spot the proposed approach only saves distribution parameters and not

the raw data, the approach has low memory overhead and faster to search for the

matching location.

4.3 Performance Evaluation

To evaluate the accuracy and robustness of the proposed fingerprinting approach,

we collected data from different locations and evaluated the accuracy of correctly

identifying the locations. Following sections cover various aspects of our evaluation

process.

4.3.1 Experiment Setting

We used EVB1000 [7] nodes which are evaluation kits manufactured by Decawave

company and include DW1000 chips. DW1000 chips estimate CIR with 1 ns resolu-

tion. We collected data from different locations including office space in (i) our lab

(12m × 6m), (ii) a crowded coffee shop on campus (18m × 12m) and (iii) a large

(40m × 30m) dining hall with lots of furniture. In each experiment, we compared

the performance of proposed solution in accurately classifying the signature into 15

classes corresponding to the 15 different spots. In each location, we collected data

from up to 3 different anchors. As expected results from anchors with LoS condition

outperform results from NLoS anchor; We focus on the results with the NLoS anchor.

Our dataset contains 223366 packets collected from 200 different spots. The target

node is placed on top of a robot which moves with constant speed (0.05 cm/s). The

anchors broadcast beacons every 50 ms. The target node estimates and saves the
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CIR information from received beacon messages. In each environment, we made sure

one of the anchors is in the NLoS condition (no visual Line-of-Sight, error in distance

measurement at least twice the error in LoS condition with the same distance). In all

of the following sections (except those in which source of data is clearly mentioned)

reported results are average performance results over all three tested environments.

The anchors are deployed at the height of 160 cm and the target is deployed at the

height of 70 cm. Knowing the start location and speed of the robot, ground truth

information can be extracted.

4.3.2 Impact of Contributing Factors

4.3.2.1 Number of CIR Samples and Spot Size

There are two main factors which determine the accuracy of the proposed system:

number of used CIR Samples and spot size. Figure 4.6 shows the F1 score (Formula

4.2) calculated from

F1 =
precision× recall
precision+ recall

(4.2)

test data collected in the coffee shop. As shown in Figure 4.6, as we increase the

number of used CIR Samples in fingerprint, the score goes higher but this trend stops

after using 100 CIR samples which is due to over-fitting. Also, increasing spot size

improves performance. With spot size of 5cm × 5cm, the maximum score is around

0.8 which is not good enough but if we increase the spot size to 15cm × 15cm, the

score increases to 0.95. Another interesting observation is the fact that the best

classification score happens at spot size 7cm × 7cm. The data were collected while

the nodes were communicating over channel 2 with center frequency of 3.993 GHz.

The wavelength of this frequency is approximately 7 cm which is the reason spot size
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Figure 4.6: Impact of increasing number of CIR samples and spot size on accuracy
of spot detection using our proposed technique (Modeling CIR)

of 7cm× 7cm has very high classification scores (0.88 with 100 CIR samples in use).

We verified that in average, the difference between power level of 100th CIR sample

and noise is greater than 10 dB in our dataset.

4.3.2.2 Minimum Spot Size

Instead of using just one packet, we evaluated the possibility of using multiple packets

and considering the majority vote (to increase the resilience to outliers) as the final

detected location. Figure 4.7 shows the F1 scores reported from window sizes of 3

and 5 packets. As we expected, the score increases to 0.96 after considering the last

3 samples for deciding the location with the spot size of 7cm× 7cm. Average human

walking speed is 130 cm per second [23] and we are collecting data every 50 ms which

means to receive 3 samples, the target has moved around 20 cm. In other words, our

solution locates the target within the spot of 20cm× 20cm with the F1 score of 0.96.

50



0 25 50 75 100 125
Number of CIR Samples

0.0

0.2

0.4

0.6

0.8

1.0
F1

 S
co

re

5cm x 5 cm
7cm x 7 cm

10cm x 10 cm
15cm x 15 cm

(a) Window size = 3

0 25 50 75 100 125
Number of CIR Samples

0.0

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

5cm x 5 cm
7cm x 7 cm

10cm x 10 cm
15cm x 15 cm

(b) Window size = 5

Figure 4.7: Minimum reliably distinguishable spot size using proposed technique
(Modeling CIR)
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Figure 4.8: Impact of increasing number of anchors on accuracy of proposed solution.
Increasing the number of anchors increases classification accuracy.

4.3.2.3 Number of Anchors

We collected data in each location from 3 different anchors but in all the previous

sections, the reported results are average scores calculated from just 1 anchor. In

this section, we evaluated the impact of combining results from more than 1 anchor.

Figure 4.8 shows the evaluation results. As expected, combining data from more

anchors increases the robustness. Figure 4.8 shows that if we combine data from

3 anchors, using just 1 sample (window size of 1), we can detect the spot size of

7cm× 7cm with an F1 score of 0.97.

4.3.2.4 Training Size / Time

One of the important aspects of every classification problem is the amount of training

data. In this section, we evaluate the amount of required training data to adequately

estimate the location. In this experiment, we change the amount of packets used

to generate fingerprints and report the final F1 score to classify 15 spots with the

size of 7cm × 7cm. The results are reported in Figure 4.9. Figure 4.9 shows that
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Figure 4.9: Impact of changing training size on accuracy of proposed solution.

after increasing number of training packets to more than 450 packets, the training

score does not change that much and test score becomes higher which is an indicator

of overfitting. We observed the same behavior in other locations (dining hall and

office space) as well. Since the anchors broadcast beacons every 50 ms, collecting 450

packets for training requires at least 22 seconds of data collection in 7cm× 7cm area.

4.3.2.5 Wireless Link Properties

DW1000 chip supports up to 7 channels with different central frequencies. In this sec-

tion, the impact of using different frequency channels on the accuracy of the solution

is shown. In this experiment, we collected data in two rounds. In the first round, the

nodes communicate in channel 2 with frequency of 3.993 GHz and in the second round

we collected data from the same spots but this time nodes communicate in channel

5 with central frequency of 6.489 GHz. As it is shown in Figure 4.10, the results

are more reliable in channel 2 compared to channel 5. It is reasonable considering

the fact that higher frequency channels have lower penetration capabilities and loose

power faster than lower frequency channels.
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Figure 4.10: Impact of different frequency channels on accuracy- lower frequencies
generate more reliable fingerprints

4.3.3 Overall Accuracy

4.3.3.1 Compared to Time-of-Arrival Ranging

We also run two-way ranging application provided by Decawave company in the coffee

shop area (15m×10m) with 3 anchors and measured its accuracy over 12 test points.

The average error was approximately 45 cm.

4.3.3.2 Maximum Localization Error

There are cases in which the system misclassifies the target’s location. Now we study,

how far is the detected location from the real location. Figure 4.11 shows the CDF of

maximum errors. As shown in Figure 4.11, in 92% of the times the maximum error

is below 6 cm and in 97% of times, the maximum error is below 10 cm making the

system useful in indoor localization applications.
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Figure 4.11: Maximum localization error observed by proposed solution(CDF). In
92% of the times the error is less than 6 cm.

4.3.3.3 Resilience to Temporal Changes

To evaluate the resilience of proposed method to temporal changes, we collect data

from the coffee shop one week after collecting the training data creating four differ-

ent scenarios: in each scenario, we reorganized some pieces of furniture like tables

and chairs and collected data from the same spots as training data was collected.

Figure 4.12 reports F1 scores and maximum errors calculated from our proposed

method. Despite sometimes F1 score going down to 0.6 even with window size of 3,

the maximum error remains under 20 cm in all the scenarios. Periodic training could

improve the classification score.

4.4 Discussion

The smallest spot which can reliably be located with proposed approach is 20cm ×

20cm which is comparable with state of the art indoor localization techniques using

ToA or TDoA estimation; but those approaches need information from at least 3

anchors in Line-of-Sight view to accurately estimate the location of target. Since
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Figure 4.12: Resilience to temporal changes. Changing the environment does not
dramatically degrade the performance of spot detection

56



the proposed approach uses signal features to generate fingerprints, and does not

not measure the time of flight, the path traveled by the signal can be either line of

sight or non line of sight. Other single-anchor localization techniques (virtual anchor

solutions) in the best case achieve 1 m error in 90% of the times.

In our data collection, we used a robot to move around and collect data. Despite

the fact that our evaluations show that the CIR fingerprints are resilient to tempo-

ral changes in the environment, to improve the robustness of the system to massive

changes in the environment (for instance, movement of big pieces of furniture), the

automatic retraining can be done via programming the robot to follow a predefined

path on regular basis. The main advantage of proposed approach is reducing the

number of required anchors from 3 to 1 while keeping the accuracy reasonably com-

parable with state of the art solutions. Also, data collected by robot is only used for

training; our solution is able to locate the target with 96% accuracy by using only 3

consecutive packets which makes it practical for indoor object/human tracking. In

other words, receiving 3 packets only takes 150 ms in which target still is inside the

target cell.

4.5 Conclusion

In this work, we study the feasibility of using reflected multipath components ex-

tractable from CIR information from UWB signals to implement a robust single

anchor indoor localization applications. Our evaluations show that the proposed ap-

proach can locate a target inside a spot with size of 20cm × 20cm with F1 score of

0.96. Our solution uses just one anchor, which is not necessarily LoS, to locate the

target which significantly increases the robustness of indoor localization systems.
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Chapter 5

Study and Mitigation of UWB

Interference on Ranging

The 802.15.4-11 standard defines ALOHA as MAC protocol for UWB communication

in which interference is considered negligible and nodes use the medium whenever they

need to send a message without checking the availability of medium.

If we increase the number of communicating UWB nodes in localization network,

ALOHA may not be able to protect UWB communication from interference. In

addition, non-cooperative UWB communication may increase ranging errors. Non-

cooperative UWB traffic and interference are caused by other UWB nodes in the

vicinity but are not necessarily adversarial. As UWB systems become more common,

the chances of non-cooperative UWB interference increases. The main question we

try to answer in this work is how scalable is the UWB localization given the possibility

of interference and its impact on localization accuracy?

In our work, we study the likelihood of wideband interference in different local-

ization scenarios with different UWB physical layer setting and network sizes. We

58



also quantified the impact of interference on ranging accuracy and showed perfor-

mance drop in UWB-based localization due to the existence of non-cooperative UWB

interference.

UWB signals are sent as a sequence of short pulses and the accuracy of UWB-

based ranging methods is mostly dependent on the ability to identify the time of

the first path’s arrival. UWB-based ranging techniques use an accurate estimation

of the channel impulse response (CIR) to accurately identify the first path. Non-

cooperative UWB traffic can change the CIR which may lead to errors in ranging. In

this work, we proposed a simple and practical technique called RAPSI (Random Pulse

Shape Identification) to detect the ranging error caused by wideband interference and

reduce this error by using unique characteristics of UWB signals. For each node, we

use different pulse shapes and we utilize this unique shape of UWB pulses to search

the distorted CIR to find the best match for the known pulse shape. Overall, RAPSI

reduces 30% to 40% ranging error caused by wideband interference in normal indoor

localization applications.

Our contributions in this work are:

• Study the likelihood of wideband interference and its impact on UWB-based

ranging

• Design RAPSI, a simple and practical method to detect and mitigate ranging

error caused by wideband interference

• Evaluate the effectiveness of RAPSI in real world scenarios
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5.1 Related Work

Interference is an old research problem in wireless communications including Ultra-

wideband signals.

5.1.1 UWB Interference Detection & Mitigation

Impact of interference from narrow-band signals on UWB receivers has been studied

before. Non-linear filters can improve the performance of UWB receivers by canceling

out narrow-band interference [47, 49, 72, 75]. Recently [70] compressed sampling is

also used to estimate and remove narrowband interference (NBI). Creative ideas like

using direction of UWB waves to detect and remove narrowband interference showed

reduction in the bit error rate in UWB receivers [46].

Multi-user interference (MUI) in UWB systems has also been investigated before.

Multi-user interference can be modeled with hidden Markov model or Gaussian mix-

ture model [32]. Another work [76], utilizes the received UWB signal cluster sparsity

characteristics to mitigate the multi-user interference. These efforts improved de-

coding performance of energy detection based receivers in UWB communication by

adding complexity to the receiver.

Studies show [34] adding randomness to modulation scheme will improve the per-

formance of ranging and reduces the error to a few meters. Using non-linear filters

in physical layer also reduces the errors but makes the receiver more complicated

and expensive [74]. Perfect autocorrelation characteristic of UWB preambles is used

to detect the interference in the physical layer and reduce the ranging error to few

meters [33].

One option to prevent multi-user interference is to coordinate medium access,

60



Table 5.1: Maximum Advised Transmissions per Second If ALOHA used as MAC
Layer vs datasheet [3]

Channel PRF Date Preamble Payload TX TX per second
rate Length Time at 18%

(MHz) (Symbols) (Bytes) air-utilization
2 64 110 kbps 2048 30 4.684 ms 40
2 64 6.8 Mpbs 1024 30 1.108 ms 180
7 16 110 Kpbs 256 30 2.853 ms 62

for instance, with carrier sensing. However, the low power signals, the intermittent

characteristics of IR-UWB signals and the possible absence of a carrier make it hardly

feasible to reliably perform carrier sensing or clear channel assessment (CCA) with a

reasonable complexity.

5.1.2 ALOHA Protocol

The ALOHA mechanism is the suggested channel access method in the IEEE 802.15.4

UWB PHY standard. Performance of ALOHA protocol has been evaluated previously

and studies [53] showed its performance drops dramatically in dense networks. For

ALOHA to work successfully total air utilization has to be less than 18% across all

nodes in range of each other [3]. With air utilization above 18%, collision probability

is high and system performance degrades quickly. Below the 18% air utilization, 97%

of transmissions are likely to succeed without collisions. This 18% air utilization

comes into play when deploying a group of Tags. Table 5.1 gives some indications

of the blink transmission rates corresponding to some typical data rate/preamble

length combinations and with a minimum 12-byte blink frame sending the Tag ID.

It is shown in table 5.1 that due to a comparatively long transmission time of typical

ranging packets, collision is very likely in dense networks.
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Table 5.2: Scalability and Limitations of Commercial UWB Indoor Localization.
(Supporting evidence for some of these claims are not available and could be incorrect)

Company Localization Max number Max number Update Limitation
Technique of Tags of Anchors Rate (Hz)

Decawave [2] TWR 6 4 10 TDMA
based MAC

CIHOLAS [1] TDoA 48 10 ≤20 not evaluated
UNISET [19] TWR Limited 10 ≤ 20 Density

Density Unknown
UNISET [19] TDoA Unlimited 10 ≤ 20 Not evaluated

(Claimed)
POZYX [12] TWR 10 10 ≤ 40 Not evaluated
RedPoint [14] TDoA 65000 1000 Not Wired

(Claimed) Specified Infrastructure
Time Domain [17] TWR Unknown Unknown Unknown TDMA

based MAC

5.1.3 Commercial UWB-based indoor Localization and In-

terference

After IEEE 802.15.4 standardized the usage of UWB signals in low power wireless

networks, there have been a lot of efforts to bring inch-level accurate UWB based

indoor localization systems to the real world. There are many companies who design

and sell the real time localization system (RTLS) solutions. We did a survey on the

most widely used commercial solutions to understand how they handle interference

and their scalability. Despite the very accurate results in ranging performance these

companies mention in their websites and show in their demos, almost all of them did

not evaluate their systems in dense networks. Table 5.2 summarizes the result of our

survey.

Table 5.2 shows that two-way ranging solutions support a maximum of 10 nodes

in the network since most of them use the time division multiple access (TDMA)

protocol to handle the interference. Other solutions suggest using time difference of

arrival technique (TDoA) for localization and claim that their solution can support
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high density networks. TDoA based solutions also have their scalability limitation.

First of all, in TDoA, the anchors (nodes with known position) should be synchronized

which is a major problem in making these solutions scalable. Also, TDoA solutions

are mostly for tracking applications (Localization is done in Anchors) and are not

useful for navigation solutions. TDoA requires cooperation between anchors to be

able to locate the target which reduces the scalability.

In summary, the impact of multi-user interference in energy detector receiver in

impulse UWB ranging has not been studied and addressed properly in the literature.

In our work, we study the likelihood of interference in UWB localization applications

and the impact of that interference on ranging performance. We also provide a simple

yet effective solution to mitigate the impact of interference.

5.2 Design

In this section, we describe the basics of UWB communication and ranging, present

the results that show UWB interference in different scenarios and their impact on

ranging error, and present the design of RAPSI, a technique to detect and mitigate

ranging errors caused by interference. Our key idea is using different pulse shapes for

different nodes to improve the ability of receiver to extract the intended pulse from

CIR which is distorted under interference.

5.2.0.1 Network Traffic in Localization Applications

Generally, localization applications are considered low traffic applications due to the

limited number of messages required for ranging. However, factors like location up-

date rate and the number of neighbor nodes may increase the overall traffic leading to
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a higher chance of wideband interference. There are three major techniques for UWB

indoor localization: Two Way Ranging (TWR), Time Difference of Arrival (TDoA),

and Direction of Arrival (DOA). The most simple one is TWR since the other two

approaches require precise synchronization (with nanosecond granularity) between

nodes which decreases the scalability of such approaches.

In TWR, each target node (Tag) needs to estimate its distance to at least three

other nodes with known locations (Anchor) and finally, use trilateration to estimate its

2D location. To estimate the distance to each Anchor, at least three messages (double-

sided two way ranging [48]) have to be exchanged. Thus, each location estimation

requires at least 8 packet transmissions in localization applications and 5 packets in

tracking applications even with an optimization: Tag talks with all 3 anchors with

one message through broadcast which reduces the total number of packets.

Based on the values reported in table 5.1, if on average each packet occupies the

channel for 2 ms, and each Tag updates its location 10 times per second, overall

each Tag occupies the channel for 160 ms per second. Such a network with just five

Tags would result in 80% channel utilization. Thus, a relatively simple localization

application in a small network could lead to high channel contention and interference.

In non-cooperative UWB networks, the probability of packet collision can be sur-

prisingly high as we found from testbed experiments and also quantified under sim-

plifying assumptions: 1 − e−2G (G is number of attempts to send packets during

twice the time it takes to send one packet). A 10-node network with 10 Hz broadcast

of 12 bytes/pkt can lead to collision probability of 46%. Empirically we found this

probability to be about 54%.
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(a) Radino32 (b) EVB1000

Figure 5.1: UWB nodes used in data collection

5.2.1 Wideband Interference & Ranging

In this section, we analyze the impact of wideband interference from non-cooperative

UWB nodes on the ranging performance.

5.2.1.1 Interference Measurement Setup

Our testbed consists of Radino32 (Figure 5.1a) and EVB1000 (Figure 5.1b) boards

which both have DW1000 RF Transceiver, which is IEEE 802.15.4-2011 UWB com-

pliant. Radino32, uses STM32L151CC with 32-bit ARM Cortex-M3 CPU with 256

KB Flash, 32 KB RAM, 8 KB EEPROM and 12 bit ADC and DAC [10]. EVB1000

boards use STM32F105 ARM Cortex M3 processor with 12 MHz external crystal and

32.768 kHz RTC crystal [5].

We deployed 15 Radino32 nodes in a corridor (6m × 14m) (Figure 5.2) while

two Decawave EVB1000 nodes are placed 12 meters apart. In all the experiments,

EVB1000 nodes are used for distance measurements and we refer to them as ranging

nodes. Ranging nodes are placed in constant locations and run two way ranging with

10 Hz.
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Figure 5.2: Experimental set up to create interference

To create non-cooperative UWB network traffic, we setup Radino32 nodes to

periodically send packets with 30 bytes payload. The sending rate can be configured

to 20 Hz, 10 Hz or 5 Hz. Each node uses a random delay value before sending its

packet. This random value is selected between 0 up to maximum possible delay based

on configured sending intervals (for instance 0 to 50 ms for 20 Hz frequency).

In each experiment, we collect at least 2000 packets and results are averaged over

all the collected packets. In total, during our experiments, we collected more than

200000 ranging packets.

Last but not least, in order to improve the visibility of figures and claimed as-

sumptions, in all the experiments, CIR samples are 10 times up-sampled using the

Fourier method [8].

5.2.1.2 Likelihood of Wideband Interference

We first study the impact of the non-cooperative wideband interference on communi-

cation. We want to know if the nodes can decode messages under interference. How

do changing the parameters of UWB physical layer impact the packet drop rates? In

this section, we use different settings (Number of Nodes, Physical Layer Setting and
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Figure 5.3: Packet drop caused by wideband interference under different data rates
(110 Kbps and 6.8 Mbps)

Packet Transmission Rate) of UWB nodes and measure packet drop rates in each

of those settings. Unless otherwise mentioned, in each experiment, all the interfer-

ing nodes (Radino32) and ranging nodes (EWB1000) are configured using the same

parameters.

Data rate & Wideband Interference. UWB nodes can communicate with

three different data rates: 110 Kbps, 850 Kbps and 6.8 Mbps [9]. Generally, lower

data rates are preferred for a better ranging performance, but decreasing the data rate

will increase the packet transmission time which leads to higher chance of collisions.

Figure 5.3 shows the impact of changing the data rate on packet drop rates.

In less dense networks with less traffic, the lower data rate causes more packet drop

rates in crowded scenarios. Higher data rates are preferred on more dense networks.

Preamble Length & Interference. Another parameter in UWB physical layer

which impacts ranging performance is preamble length. Figure 5.4 shows the impact

of changing the preamble length on the likelihood of collision and dropping the packet.

In most cases, changing the preamble length does not cause a noticeable increase
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Figure 5.4: Packet drop caused by wideband interference under different preamble
length (64 and 1024 symbols)

in packet drop rates.

Center Frequency & Interference. IEEE standard defines 16 different chan-

nels for UWB communication which are in the range of 3 GHz to 7 GHz but DW1000

only supports 6 of them (Table 2.1). In this experiment, we kept all the UWB phys-

ical layer configurations same (PRF = 64 MHz, Preamble Length = 1024 and Data

rate = 110 Kbps) and only changed the center frequency. The results are summarized

in Figure 5.5. Channel 7 has higher bandwidth (≈1.3 GHz) compared to channel 2

(≈500 MHz) and that is why the packet drop rates are higher in channel 7.

Results from Figure 5.5 show that wideband interference is a real problem across

all the frequency channels and increasing the bandwidth will not significantly improve

the ranging performance under interference.

5.2.1.3 Ranging Errors Under Wideband Interference

In previous sections, we showed that even in high density and high traffic networks,

nodes still receive some ranging packets. Now, if a node receives a packet under
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Figure 5.5: Packet drop caused by wideband interference under different frequency
channels (Channel 2 and 7)

interference, what happens to the ranging performance. Figure 5.6 shows the CDF

of ranging errors under interference happening in different channels.

We find that ranging done with the packets retrieved under interference leads to

large errors.

Regardless of the frequency channel, on average the chance of ranging error of

more than 40 cm is more than 50%. The error is worse in 2D localizations: at least

3 range estimations are required to locate the target thus leading to higher chances

of not being able to locate the target.

5.2.2 Design of RAPSI for UWB Interference Detection and

Mitigation

In this section, we describe the design of RAPSI, Random Pulse Shape Identification,

a technique to detect and mitigate the impact of interference on UWB-based ranging.
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Figure 5.6: CDF of observed ranging errors across different number of interfering
nodes and with different traffic

5.2.2.1 Pulse Shape

UWB signals are sent as a sequence of pulses. There is a parameter in DW1000 set-

tings called pulse generator delay (PGDelay). PGDelay sets the width of transmitted

pulses which changes the output bandwidth. Previous studies showed that changing

the pulse width will not impact the ranging performance but it changes the pulse

shape and unique pulse shape can be used as unique identifier for sender nodes [36].

Our hypothesis is if nodes use different pulse shapes, these unique pulse shapes can

be extracted from distorted CIR using matched filters (the key idea of our proposed

random pulse ranging). In order to validate our hypothesis, we put two EWB1000

nodes in an anechoic chamber (Figure 5.7a) and collected CIR information while nodes

were communicating with different PGDelay values. We also created a reflection path

by using a reflective surface (Figure 5.7b) to make sure the data we use to extract

the pulse shape is from the first path and not from a reflected path.
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(a) Line of Sight (b) Line of Sight with Controlled Reflection

Figure 5.7: Using anechoic chamber to extract pulse shape

Figure 5.8 shows pulse shapes extracted from the first path in CIR data collected

in the chamber. As expected, the width of pulse is different using different PGDelays

in both channel 2 and channel 7.

Pulse Shape Adjustment. Even though Figure 5.8 shows the different width

of pulses, the amplitudes of pulses are approximately equal which makes them not

practical to be used as templates in matched filter. To mitigate this problem, we

adjust those pulse shapes to make sure the area under each pulse is equal while the

width of them are different (adjusted pulse shape). We change the amplitude of

pulses to make pulses equal in the area. Figure 5.8 shows the pulse templates after

the adjustment. In summary, the core of RAPSI is to utilize different pulse shapes

during transmission and utilizing these pulses as templates for standard matched

filtering to detect distorted CIR and also extract the first path from it.

5.2.2.2 Using Random Pulse Shapes

UWB nodes can communicate with each other using different pulse shapes. In other

words, different pulse shapes typically do not have much impact on the ranging or

communication capabilities of UWB nodes. Our proposed interference avoidance
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Figure 5.8: Pulse shapes across different PGDelay values

technique (RAPSI) is the combination of adding random delays and also random

pulse shapes in UWB ranging. Since pulse shapes do not need to match between

sender and receiver of UWB message, the sender can randomly choose a pulse shape

and send its data using that pulse shape. The sender should include the pulse shape

code (1 Byte) in its message. The receiver upon receiving this pulse shape code can

both detect and also mitigate the ranging error caused by interference.

5.2.2.3 Detect the Existence of Interference

Our technique for detection of interference is based on the hypothesis that match

filter output will not match with the first path from CIR in the packets retrieved

under interference.
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Algorithm 2 Proposed Interference Detection Technique

ThDetection ← Interference Detection Threshold
CIR← Channel Impulse Response Extracted from Received Packet
PGDelaytarget ← Sender’s PGDelay Encoded in the Payload
PulseShape← Pulse shape based on PGDelaytarget
MatchedCIR← Call MatchFilter(CIR,PulseShape)
MaxCorIndex← Index of Maximum Value in (MatchedCIR)
FPIndex← Index of First Path in (CIR)
if abs(MaxCorIndex− FPIndex) ≥ ThDetection then

Return True
else

Return False
end if

85 cm 15 cmInitiator Responder Responder

Figure 5.9: Experimental setup to verify proposed interference detection technique

To verify our hypothesis, we conducted a simple experiment. We placed one

EVB1000 board as initiator node and two other EVB1000 boards as responders (Fig-

ure 5.9). The initiator node sends a broadcast message and each responder upon

the reception, replies after a constant time (190 µs) using DW1000’s delayed send

functionality. In delayed send mode, DW1000 copies the data to its internal buffer

and on the designated time (±8ns) it just sends the data. Since two responders are

15 cm away from each other, two arriving paths should be visible at receiver as two

consecutive pulses.

Following above mentioned setup, we are able to create an interference scenario.

We conducted this experiment on both channel 2 and 7 while two responders were

using different PGDelay values then we applied our interference detection technique

on the collected CIR (Average of 1000 Packets). Figure 5.10 shows the matched filter

result after applying the filter on the retrieved CIR.
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(a) Channel 2 (b) Channel 7

Figure 5.10: Detect the wideband interference from CIR - peak of matched filter
output (orange arrow) 6= first path of CIR (blue arrow)
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Figure 5.11: Wider first path shape under interference

On both channels, there is a gap between the first path of CIR and the peak

of matched filter output. We utilize this difference as an indicator of wideband in-

terference impact on the UWB packet which causes the ranging error. Basically, if

captured packets are impacted by wideband interference, interfering signals overlap

with original first path signal and increase the width of the first path pulse. Fig-

ure 5.11 shows validity of our hypothesis. Figure 5.11 shows the first path pulse

width with and without interference on channel 7. This observation is the building

block of our interference detection and mitigation technique.
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Algorithm 3 Proposed Interference Mitigation Technique

Thmitigate ← Interference Mitigation Threshold
FPOrg ← Original First Path
FPAdj ← Adjusted First Path
CIR← Channel Impulse Response from Received Packet
PGDelaytarget ← Sender’s PGDelay from the Payload
PulseShape← Pulse shape based on PGDelaytarget
MatchedCIR← Call MatchFilter(CIR,PulseShape)
if InterferenceExists then
FPAdj ← First index in which MatchedCIRindex ≥ Thmitigate ∗
max(MatchedCIR)
Return FPAdj

else
Return FPOrg

end if

Our interference detection solution is described in Algorithm 4. The detection

threshold value has been measured using trial and error technique to be 5 which

means if the difference between path with maximum CIR value and index of maximum

output of matched filter is bigger than the detection threshold (5), it can be classified

as distorted CIR and range estimation which used that packet has been done under

interference. As mentioned earlier, the CIR has been up-sampled to 10 times before

calling interference detection algorithm.

5.2.2.4 Mitigate Impact of Interference

After detecting the packets which are impacted by interference, we adjust the range

measured using those packets because using those packets as-is for ranging could

result in incorrect time of flight measurement. Our hypothesis here is if nodes use

different pulse shapes, the location of the first path can be adjusted using matched

filter technique. To evaluate the feasibility of this idea, we used the same set up as

previous experiment (Figure 5.9). In this experiment, we collected data on channels

2 and 7. On channel 2, one of the responders (target) used 0xC2 (194) as PGDelay
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(a) Channel 2 - Intended PGDelay = 0xc2 (b) Channel 7 - Intended PGDelay = 0x93

Figure 5.12: Intended pulse template has higher correlation values. First path can be
adjusted from matched filter output. (blue arrow = first path detected by DW1000,
orange arrow = matched filter output peak- red arrow = adjusted first path)

value while the other one (interferer) used 0xD6 (214). On channel 7, the target

node used 0x93 (147) as PGDelay and interferer used 0xA7 (167). Figure 5.12 shows

the result of applying matched filter with different templates (pulse shapes) on the

captured CIR (Average of 500 Packets).

The correlation values on the intended pulse shape (0xc2 on channel 2 and 0x93

on channel 7) are significantly higher (≈ 10%− 17%) than the correlation values for

other templates. If the receiver knows the PGDaley value used by sender, instead of

searching inside the CIR, it can search the output of matched filter and extract the

first path.

Overall, our experiments support the feasibility of using different pulse shapes to

detect and mitigate the impact of non-cooperative UWB interference on UWB-based

ranging. Algorithm 3 summarizes our mitigation algorithm. Using trial and error,

we found that the suitable value for mitigation threshold in algorithm 3 is 0.85 which

means after calculating the match filter output from CIR, the adjusted path is the

first path whose correlation value is higher than 85% of peak of correlation values.
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Figure 5.13: Impact of changing transmission power to avoid interference

5.3 Evaluation

In this section, through extensive data collection from real world scenarios, we eval-

uate the effectiveness of our proposed approach to detect wideband interference and

also remove its impact on the range estimation (first path detection)

5.3.1 Performance of Interference Avoidance Techniques in

IEEE 802.15.4-11

The IEEE 802.15.4-11 standard defines a few adjustable parameters (table 2.1) in

UWB physical layer aiming to avoid wideband interference in UWB communication.

In this section, we evaluate the effectiveness of utilizing UWB physical layer settings

to avoid interference.

Reducing Transmission Power to Avoid Interference. In this experiment,

we placed two EVB1000 nodes (ranging nodes) 12 m apart while different number (4,

8, 15) of Radino32 nodes (interfering nodes) broadcast messages with different (5 Hz,
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Figure 5.14: Impact of adding random delay to avoid wideband interference

10 Hz, 20 Hz) rates but with the same physical layer configurations as ranging nodes.

Ranging nodes transmit with maximum possible transmission power(-30 dBm) and

interfering nodes transmit with different levels of transmission power (-14 dBm, -30

dBm and -40 dBm). We want to study the impact of lowering interfering nodes’

transmission power on avoiding the interference.

Figure 5.13 shows that lowering the transmission power is not a reliable way to

avoid the interference in dense networks. In addition, in general, localization/tracking

applications, long range performance is desired and lowering transmission power de-

creases the ranging performance.

Utilizing Random Delay to Avoid Interference. Carrier sensing techniques

are considered challenging in UWB due to the limited maximum transmission power

in UWB signals (To avoid interfering with narrow-band devices). IEEE 802.15.4-

11 suggests ALOHA as the main technique for UWB MAC layer which sends data

without checking the availability of medium. One potential improvement to pure

ALOHA could be adding random delays before sending data. In this section, we
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Figure 5.15: Packet drop and ranging error with ranging nodes (channel 2) and
interfering nodes using different frequency channels (channels 1 and 3). (Channel
1=3494.4 MHz, Channel 2= 3993.6 MHz, Channel 3= 4492.8 MHz)

evaluate the effectiveness of adding random delays to UWB transmissions to avoid

the wideband interference. The experiment setup is as those in the previous section,

but this time we change the maximum possible random delay before sending packets

and measure the packet drop rates. Each node selects a random value between 0 to

max delay value and sends its data after that time interval. The maximum delay is

determined by the packet sending rate. For example, for 20 Hz packet sending rate

maximum random delay is 50 ms, for 5 Hz packet sending rate the maximum random

delay can go up to 200 ms. Figure 5.14 shows the packet drop rates under different

delays.

As shown in Figure 5.14, in some cases, adding a random delay decreases the

packet drop rates but at the cost of increasing total delay of ranging application.

Overall, our results indicate that nodes can utilize the maximum possible random

delay to decrease the chance of interference but the improvements come at the cost of

the total delay added to ranging applications. In Figure 5.14, with 20 Hz broadcasting

interference, adding random delay does not change the packet drop rates due to the

large number of interfering packets.
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Channel Hopping to Avoid Interference. One of the standard ways in inter-

ference avoidance techniques is using different settings at physical layer to minimize or

avoid collision between packets transmissions. In this section, we evaluate the impact

of changing the UWB physical layer setting to avoid the collision. Easiest parameter

to change and keep the ranging performance the same, is changing the communication

channel (center frequency) of UWB signals. IEEE standard defines 16 channels for

UWB communication and DW1000 chip support 6 of them. Figure 5.15 shows the

drop rates and ranging errors in the experiment in which two nodes that are 12 meters

apart are running ranging algorithm on channel 2, while 15 other nodes are creating

traffic on other channels (channel 1 and channel 3). We kept other parameters of

UWB physical layer the same in all the experiments.

Figure 5.15a shows that changing the channel does not reduce the drop rate sig-

nificantly and also as Figure 5.15b reports, ranging errors are high even when the

interfering nodes are communicating on different channels. This could be due to

inter-channel interference between UWB channels as reported in previous studies [11]

Changing the Preamble Length to Avoid Interference. Other UWB phys-

ical layer setting which can be changed to increase the resilience to interference is

preamble length. In this experiment, we changed the length of preamble on rang-

ing nodes and also interfering nodes and measured the performance of ranging. The

results are reported in Figure 5.16. Generally increasing the length of preamble in

ranging nodes compared to interfering nodes increases the resilience to interference.

Using 4096 symbols as preamble length for ranging and 64 samples as preamble length

for interfering nodes achieved the lowest packet drop rate. Although longer pream-

ble increases the performance of ranging, it increases the power consumption and

transmission time which leads to a higher chances of interference.

Changing the PRF to Avoid Interference. Pulse repetition frequency is
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Figure 5.16: Packet drop and ranging error with ranging nodes and interfer-
ing nodes using different preamble lengths. RP=ranging node’s preamble length.
IP=interfering node’s preamble length.

another parameter in the UWB physical layer. In this experiment, we evaluate two

scenarios. In the first scenario, the ranging nodes use PRF 64 MHz while interfering

nodes use 16 MHz PRF. In the second experiment, ranging nodes switch to 16 MHz

and interfering nodes use PRF 64 MHz.

This is one of our most interesting findings. As shown in Figure 5.17, using differ-

ent PRFs significantly reduces the likelihood of collision between nodes (Maximum

packet drop of 6%). Figure 5.17 also suggests that higher PRF improves the ranging

performance and resilience to interference.

Changing the Preamble Code to Avoid Interference. IEEE 802.15.4 de-

fined different preamble codes per channel to avoid the interference. Figure 5.18

shows the packet drop rates while ranging nodes and interfering nodes use different

preamble codes.

As expected, using different preamble codes reduces the chance of interference.

Overall, based on our experiments, using different PRFs and Preamble codes seems

to be the most effective way to avoid the interference but DW1000 only supports two
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Figure 5.17: Packet drop and ranging error with ranging nodes and interfering nodes
using different PRF values. RPRF=ranging node’s PRF. IPRF=interfering node’s
PRF. The maximum drop rate was 6%.

different PRF values (16 MHz and 64 MHz) and maximum of 4 different preamble

codes per channel per PRF which limits the scalability of above interference avoidance

techniques. In addition, for successful UWB communication, PRF and preamble code

between sender and receiver should match. Otherwise the receiver is not able to

decode the received messages. This fact significantly limits the applicability of these

kinds of techniques in real world localization/tracking applications since in normal

localization technique, all the Tags use the same set of Anchor nodes and they all

should use the same PRF and preamble code to be able to communicate. On the other

hand, RAPSI just changes the pulse shape which does not impact the communication

link between UWB nodes.

5.3.2 Accuracy of RAPSI for Interference Detection

In this section, we evaluate the accuracy of RAPSI in detecting wideband interfer-

ence. In this experiment, 2 EVB1000 nodes are placed 12 m apart and run two way

ranging algorithm and another 15 Radino32 nodes generate traffic using the same
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Figure 5.18: Packet drop and ranging error with ranging nodes and interfer-
ing nodes using different preamble codes. RPC= ranging node’s preamble code.
IPC=interfering node’s preamble code

physical layer setting but using random delays and also random pulse shapes. One

of our assumption here is since the location of ranging nodes are constant during the

experiments, additional ranging error after activating interfering nodes, is due to the

interference. To evaluate the accuracy of the proposed interference detection tech-

nique, we used amount of ranging error as an indicator of interference existence. If

the ranging error estimated using a packet is higher than normal error(error when all

the interfering nodes are off), we mark the packet as interfered packet. We calculated

minimum and maximum of ranging error observed in our dataset and divided the

error range into 10 equal size bands. Next, in each error band, we walked through all

the interfered packets with error range in that specific band and measured the proba-

bility of classifying an interfered packet (ranging packet impacted by interference) as

correct packet (False Negative) by our interference detection algorithm. The results

are summarized in Figure 5.19.

In most cases, our proposed solution (RAPSI) is able to detect the packets which

are received under interference with very small false negative rates (below 20% to
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Figure 5.19: False negative values for distinguishing interfered packets from correct
packets using RAPSI

%30). We achieved almost the same results with 6.8 Mbps data rate. On average

on more than 75% of the cases, our technique accurately classifies corrupted ranging

packets by investigating CIR and looking for the best match for designated pulse

shape. We also looked at packets which were not impacted by interference and mea-

sured the false positive values (marking the packet as interfered while it is not). In

average our interference mitigation technique has false positive values below 5%.

5.3.3 Effectiveness of RAPSI for Interference Mitigation

Next we evaluate the effectiveness of RAPSI to mitigate the impact of interference

on ranging errors. We used the data collected from previous section and used our

proposed technique to adjust ranging errors due to the existence of wideband inter-

ference. The results are summarized in Figure 5.20.

Regardless of bandwidth (channel 2 with 500 MHz and channel 7 with 1 GHz), our

proposed interference mitigation technique is able to significantly reduce the ranging

error caused by wideband interference. Based on the results from our extensive ex-

periments, the proposed method in average reduces the ranging error by 30% to 40%
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Figure 5.20: Ranging error with and without RAPSI. With RAPSI, the error is lower
because RAPSI adjusts the first path using match filter

depending on the bandwidth of the channel. Higher bandwidth channels show better

interference detection and mitigation on average.

5.4 Discussion

Time Difference of Arrival (TDoA) and Angle of Arrival (AOA) techniques reduce

the localization traffic since the Tag can send one blink message for each location esti-

mation but the chance of interference still is high in more dense networks in low data

rates like 110 Kpbs. In these approaches the localization is happening in Anchor side

which means these techniques are usually suitable for tracking applications and not

the navigation applications. Both TDoA and AOA techniques require very accurate

synchronization between anchors which may increase network traffic and chances of

interference.

Changing the value of PGDelay alters the output pulse shape. Our experiments

in different real world scenarios show that to be able to reliably differentiate pulse
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shapes, the minimum difference between two selected PGDelay values should be 5.

Since PGDelay is a one byte register, on each frequency channel (DW1000 supports 6

frequency channels), 255÷5 = 51 distinguishable PGDelay values are available which

means our protocol can support up to 51 nodes in one area. To make sure the output

signal does not violate regulatory restrictions, the TX power is tuned based on the

PGDelay value.

5.5 Conclusions

In this work, we studied the likelihood of wideband interference from non-cooperative

UWB nodes in ranging applications. We showed, in applications with low location

update rates, there is a high chance of UWB interference. We also measured the

impact of this wideband interference on UWB-based ranging applications. Finally,

we proposed a simple yet effective technique to detect and mitigate the impact of

wideband interference on ranging. Our extensive experiments in real world scenarios

show the effectiveness of our proposed technique to both detect and mitigate the error

caused by non-cooperative UWB nodes.
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Chapter 6

Simultaneous Communication and

Ranging in UWB

One of the physical layers covered by the IEEE 802.15.4 standard is Ultra-wideband

(UWB) communication, which supports high data rate (up to 27 Mbps) communica-

tion alongside with centimeter-level ranging capability.

The ranging capability of UWB signals has recently been investigated by both

research and industry, which has led to very accurate indoor localization solutions,

but communication capability of UWB based LR-WPANs has not received much

attention.

One common application of wireless sensor networks (WSN) is for monitoring

physical events (temperature, humidity, and movement, etc.) in environments through

network of sensors. In some of the applications, a mobile sink moves around the build-

ing and collects data from the deployed sensors. Accurate ranging and localization

can enable lots of location-based services in sensor network applications. In current

systems, UWB nodes are added to existing wireless systems to provide an accurate
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ranging capability to WSN.

The network traffic on today’s Low Rate Wireless Personal Area Networks (LR-

WPAN) can be divided into two categories: ranging traffic and non-ranging traffic. In

the applications which require both communication and localization, separate hard-

ware and software parts are responsible for each of the tasks. In other words, one

chip/software reads the sensor values and reports it through WiFi or Bluetooth to

the sink. In addition, a UWB chip, runs simple ranging applications and using time

of flight measurement, estimates the distance between two nodes.

Existing solutions suffer from being complicated (different hardware/ software

modules need to be assembled) and also high network traffic and duty cycle (handling

both ranging traffic and non-ranging traffic). To be more specific, each location

estimation in minimum requires at least 5 to 8 packets to be exchanged between

nodes which consumes power, reduces network lifetime, and increases interference.

In our work, we investigate the possibility of using existing non-ranging traffic to

estimate the distance between sender and receiver in the scenarios with high non-

ranging traffic and also the feasibility of piggybacking non-ranging information (e.g.,

sensing application data) over ranging packets in the scenarios with low non-ranging

traffic and high location update rate requirements. In the end, we propose our adap-

tive scheduler algorithm to optimize the ranging/non-ranging traffic by piggybacking

of information which reduces the complexity of the hardware and also significantly

reduces the network overhead and duty cycle.

Our contributions in this work can be summarized as the following:

• Investigate the feasibility of using existing network traffic to estimate the range

• Study the feasibility of piggybacking of non-ranging information such as sensing
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application data on ranging packets.

• Propose an efficient adaptive scheduler algorithm to reduce the network over-

head by utilizing existing traffic and piggybacking of information

• Evaluated our proposed algorithm over real deployment and using typical traffic

on standard network stacks for low rate personal area wireless networks (LR-

WPAN)

6.1 Related Work

6.1.1 Ranging in IEEE 802.15.4-11

IEEE 802.15.4-11 standard [9] suggests the following procedures for ranging. First,

the application asks for ranging services from MAC layer. MAC layer increases the

preamble length from its default value (to improve the ranging performance) and

informs the designated receiver about new preamble length. Both sender and receiver

should agree on new preamble length before starting the ranging session. Ranging

will be conducted through acknowledgment packets. During ranging session, the

MAC layer attaches turn around time (TX-to-RX) for all the received packets before

sending them up to the higher layers. The application will inform the MAC layer to

exit from ranging session and stop timestamping the packets. MAC layer informs the

receiver and reduces the preamble length to its default value.

This approach is only useful for single-sided ranging which suffers from clock drift

problem which leads to less accurate ranging [73]. It is also based on acknowledgment

packets which increases the network traffic. The standard does not provide any further

details about ranging process and ranging rates.
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6.1.2 Traffic Reduction Techniques in Wireless Networks

One of the key techniques to improve network throughput is reducing the number of

broadcast packets. RPL [81] is a standard routing protocol for Internet of Things and

WSN applications. One of the main components of RPL is Trickle timer [52]. The

Trickle algorithm benefits from simple suppression mechanism and also transmission

point selection technique which allows Trickle’s communication rate to scale logarith-

mically with density [52]. Trickle algorithm is not efficient in highly mobile networks

and in [66] some improvements on Trickle timer has been suggested to make it more

practical in mobile sensor networks.

The idea of piggybacking of packets on networks to reduce traffic overhead has

been tried before. For instance, acknowledgment packets are one of the most obvious

candidates for piggybacking and studies [44] showed the effectiveness of this technique

in network performance improvements. Some studies [51] show up to 40% improve-

ment in throughput by piggybacking acknowledgment messages to data messages but

the improvement depends on available network traffic and the maximum delay the

application can tolerate. The Nagle’s algorithm [67] also tries to reduce traffic by de-

laying the sending of new data if any previously transmitted data on the connection

still have not been acknowledged.

In summary, despite all the previous works have been done in wireless sensor

networks to reduce the network traffic, to the best of our knowledge, there is no prior

work that studies the coexistence of ranging and non-ranging traffic in UWB based

networks.
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6.2 Design

In this section, we explain the building blocks of our proposed technique for Simulta-

neous Ranging and Communication (SRAC) in UWB networks. First, we talk about

our observation in two-way ranging algorithm which leads us to design two modes

for ranging: active ranging and passive ranging. Finally we elaborate the scheduler

algorithm in SRAC.

6.2.0.1 Two Way Ranging

As mentioned in previous sections, UWB physical layer is able to accurately times-

tamp the arrival of the first path and estimate the time of flight. There are different

algorithms which utilize these timestamps to estimate the distance between two nodes.

Double-sided two-way ranging (DS-TWR) is one of the most common range esti-

mation techniques used in UWB localization. The overall procedure for double-sided

two way ranging is shown in Figure 6.1 in which device A starts the transmission

and device B replies to that message. Upon reception of B’s response, device A again

sends another message to B. All the communications are precisely timestamped by

devices. The estimated T̂prop can be calculated as shown in formula 6.1 [59]:

T̂prop =
(Tround1 × Tround2 − Treply1 × Treply2)
(Tround1 + Tround2 + Treply1 + Treply2)

(6.1)

In formula 6.1, Tround1 is the time it takes from sending first packet by device A

to the time that device A received the reply message from device B. Tround2 is the

interval between the moment device B replies to device A’s message to the moment

that device B receives the reply message from device A. Treply1 is the time between

reception of A’s first message at B and the time B’s reply leaves the antenna. Treply2
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Figure 6.1: Double sided two way ranging technique

is time between receiption of B’s reply at A and sending A’s reply to that message.

let’s assume device A runs kA times faster than its default frequency and device

B runs kB times faster than its frequency.

T̂prop =
(kATround1 × kBTround2)− (kATreply1 × kBTreply2)

(kATround1 + kBTround2 + kATreply1 + kBTreply2
(6.2)

After small back of the envelope calculation using formula 6.2, estimated propa-

gation time would be:

T̂prop =
2TpropkAkB
kA + kB

(6.3)

finally the error in time of flight estimation can be written as formula 6.4

error = T̂prop − Tprop = T̂prop × (1− kA + kB
2kAkB

) (6.4)

6.2.0.2 Resilience to Clock Drift

One of the key ideas in our work can be inferred from formula 6.4 in which the

time of flight estimation error is not dependent to the Treply1 or Treply2 which means

the response messages (from device B and A) do not necessarily have to be sent

immediately. Our hypothesis is existing network traffic (sensor reports or routing

information) can be utilized for ranging without sending any specific ranging packet.
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Figure 6.2: Ranging error with different Treply times. Increasing Treply does not in-
crease the ranging error

To verify our hypothesis, we conducted a simple experiment. We placed two

UWB-enabled chips (EVB1000 nodes [6]) in three different distances (3 m, 6 m, and

10 m) and used double sided two way ranging to estimate the distance between the

two nodes. In each experiment, we increased the Treply time and measured the ranging

error. The results are reported in Figure 6.2. As shown in Figure 6.2, as we increase

the Treply time in two way ranging (which also leads to an increase in Tround time),

the observed ranging error does not change. This observation follows our expectation

and proves the validity of our hypothesis.

Another interesting result from Figure 6.2 is the fact that increasing distance will

not significantly change the error even during long delays. As it is mentioned in

formula 6.4 Tprop has direct relationship with the error but the speed of light in air

is approximately 3 × 108 which means the UWB pulse travels almost 30 cm in each
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nanosecond. Even if the distance of two nodes is around 100 m the total Tprop is

around 300 ns which causes errors less then few millimeters in ranging.

This observation relaxes the requirement for immediate reply in two-way ranging

algorithm. In our work, we leverage this observation to add ranging capability to

sensor network applications using their existing traffic.

6.2.1 Passive Ranging

In passive ranging, we utilize existing network traffic to estimate the distance between

nodes. Each packet contains precise timing information which helps the receiver to

estimate the distance between sender and receiver of the packets.

In passive ranging, upon reception of each packet from the neighbor, the packet’s

sequence number and the reception timestamp is stored in the local memory. Each

outgoing packet with the destination address of one of the already seen neighbors

contains reply times (TLastTX−TLastRx) and delay times (TCurrentTX−TLastRX) which

are calculated from packets received or overheard from neighbors. It also includes the

LastTX sequence number which is the last sequence number sender node has sent

to target neighbor and LastRx which is the last sequence number sender node has

received from target neighbor. Having sequence numbers and reply and delay times,

each node can calculate its distance to its neighbors.

For broadcast messages, the procedure is almost the same with a slight differ-

ence. The broadcast packet contains information from all the neighbors the node has

received a packet from them in the past.

Since the size of reply time and delay time does not impact the ranging error

(formula 6.4) the age of timestamps in each node’s local memory does not impact
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ranging performance. The node could have received a packet from its neighbor 20

seconds ago and now it is sending a message to that node or broadcasting a message

to all the neighbors. Upon reception of this message, the receiving neighbor can

calculate its distance to the sending node.

6.2.2 Active Ranging

In the high mobility networks, the non-ranging traffic may not be enough for fre-

quent ranging resulting in low rate of location updates to the applications. In this

situation, SRAC switches from passive ranging to active ranging. During active

ranging double sided ranging is conducted through sequence of 3 messages. The

first packet is called poll message and it is a broadcast message (sent by initia-

tor). All the recipients of poll packet immediately reply to poll message with re-

sponse message which includes their calculated delay time for responding to poll

message (ResponseTX − PollRX). Upon reception of response messages from at

least 3 responders at initiator, it sends out another broadcast message (final mes-

sage) which includes initiator’s reply time (ResponseRX − PollTX) and delay time

(FinalTX − ResponseRX). After receiving the final message, the responder nodes

calculate second reply time (FinalRX−ResponseTX) and finally are able to calculate

time of flight and their distance to initiator node. The fourth message which is an

optional message is sent from responders to the initiator with calculated distance of

each responder to the initiator.

During active ranging phase, SRAC piggybacks the non-ranging traffic over rang-

ing packets. We call this case active ranging since in active ranging mode the primary

traffic of the network is ranging and the non-ranging traffic has lower priority. All

the non-ranging traffic will be stored in the queue and upon the availability of next
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Figure 6.3: SRAC’s proposed packet format

ranging packet, the non-ranging data is piggybacked over ranging packets.

6.2.3 SRAC:Simultaneous Ranging and Communication

We propose an adaptive scheduler to decide about active or passive ranging modes

based on network conditions. In this section, we explain in details all the components

of SRAC.

6.2.3.1 SRAC’s Packet Format

To run double sided two way ranging, time information needs to be exchanged between

each pair of nodes. Figure 6.3 shows our proposed packet format to be used in SRAC.

As illustrated in Figure 6.3, each packet starts with one octet sequence number

and 1 bit indicator of auto reply. In active ranging mode, poll and response messages

require immediate reply which means auto reply bit has to be set in those packets.

Receiver of a packet with auto reply flag on, should immediately reply to that message
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and include ranging timestamps. The next octet is Ranging info Len which deter-

mines the size of ranging information. In broadcast messages, the sender includes

timestamps for all the previously seen neighbors. In unicast messages Ranging info

Len field has a value of one. Next, ranging information for each neighbor starts. The

first 2 octets are short Address of the neighbor. Last TX Sequence Number is the

last sequence number sent by the sender to the target node and Last RX Sequence

Number is the last sequence number received from target address by sender node.

Tround is TlastRX − TlastTX and Treply is TTX − TlastRX . After ranging information the

packet can have non-ranging (e.g., application) data which can vary in length.

6.2.3.2 Scheduler Algorithm

SRAC utilizes both active and passive ranging. In this section, we propose an adap-

tive scheduler which switches between active and passive ranging based on network

condition. Our algorithm considers the following parameters to decide about suitable

ranging mode:

• Window Size: Scheduler constantly monitoring both ranging and non-ranging

traffic. It uses windowing average to calculate recent traffic rates. Windows

size determines the length of window to be used for averaging.

• Maximum Delay - NonRanging: Maximum delay the non-ranging traffic can

tolerate. For instance, a simple temperature sensor which reports every 10

seconds has the maximum delay of 10 seconds or router solicitation message

which has expiration time of 30 seconds should be sent before its expiration.

• Ranging Rate: The interval for estimating the distance between neighbors. It

depends on the location update rate required by the application and network

mobility. In slightly mobile networks low ranges like 2 range estimations per
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second should be enough while in more mobile networks ranging rate could go

up to 10 or 20 Hz.

• Movement Threshold: In some applications, the ranging rate can change de-

pending on the mobility of the network. This threshold can be defined to

increase the ranging rate in movements higher than this threshold.

• Buffer Size: In active ranging mode, the non-ranging traffic can be stored in the

internal buffer while it is waiting for the next ranging packet. the large buffer

size is an indicator of high non-ranging traffic and triggers the SRAC to switch

to passive ranging.

Our scheduler algorithm minimizes the network traffic while satisfying all the appli-

cation and network constraints:

minimize RangingTraffic +NonRangingTraffic

subject to RangingRate ≥MinRangingRate

NonRangingDelay ≤MaxNonRangingDelay

BufferSize ≤MaxBufferSize

(6.5)

Algorithm 4 summarizes the SRAC algorithm.

As summarized in algorithm 4, SRAC runs in a while loop. Every Windowsize,

scheduler calculates the ranging rate and non-ranging traffic rate. It also updates

minimum ranging rate based on average movement. The algorithm switches to mini-

mum rate (ranging or non-ranging) based on measured values if this switch does not

violate other constraints like maximum tolerable delay by non-ranging applications

and minimum ranging rate.
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Algorithm 4 SRAC

DelayMax ← Maximum Non-Ranging Delay
RRMin ← Default Minimum Ranging Rate
Thmov ← Movement Threshold
Windowsize ← Widowing Average Size
Buffer ← Buffer to Store Non-Ranging Traffic
while TRUE do

if Movement ≥ ThMov then
Increase RRMin

end if
RRanging ← Calculate Ranging Rate
RNonRanging ← Calculate NonRanging Rate
if RRanging ≤ RNonRanging then

if DelayMax ≤ 1
RRanging

and len(Buffer) ≤MaxBuffer then

Switch to Active Ranging
else

Switch to Passive Ranging
end if

else
if RNonRanging ≥ RRMin then

Switch to Passive Ranging
else

Switch to Active Ranging
end if

end if
Sleep for Windowsize

end while
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6.2.4 Ranging as a Service for WSN Applications

One of the key contributions of our work is analyzing the feasibility of using existing

network traffic for ranging. Network traffic in our work has a general definition, it

could be packets from a simple sensor which is reporting sensed temperature (few

bytes) to the central sink (cluster head) every 10 seconds or it can be packets from an

IPv6 enabled IoT device which supports a CoAP [77] server and answers the HTTP

requests from other devices. Another example could be mesh of UWB-enabled nodes

which are using RPL [81] and Trickle [52] algorithms for routing dissemination process

over IEEE 802.15.4 MAC layer.

SRAC improves on the efficiency of ranging service on UWB networks by com-

bining UWB’s ranging and communication capabilities.

6.2.4.1 OS Jitter & DW1000 Delayed Send

One concern about developing ranging service in embedded operating systems, is

the impact of delay and jitter added by operating system to ranging. To recap,

one of the critical points of centimeter level ranging in UWB systems is picoseconds

level timestamping of send and receive events. For accurate ranging, we need to

know the exact moment the signal left the antenna and the exact moment the first

path received by the antenna. In reception, DW1000 timestamps the exact reception

moment but for sending, it provides the concept of delayed send. During delayed send

phase, a near future sending time (designated send time) is calculated and written

on DW1000 registers. Once the internal timer of DW1000 chip arrives close enough

(designated timestamp − antenna delay) to designated send time (40 bit value,15.6

picoseconds granularity) , the chip starts sending the signal.

In our work, we utilize delayed send feature to avoid the delay and jitter added by
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Figure 6.4: Ranging error with and without SRAC. Piggybacking of ranging infor-
mation does not change the accuracy of ranging.

operating system and network stack. Our experiments show if we set send timestamp

around 5 ms after the time that application layer provides the outgoing data, it will

leave enough gap for operating system to copy the message to DW1000’s buffer and

arm the chip to send the packet.

6.3 Performance Evaluation

We evaluate SRAC in two phases. In the first phase, over the set of controlled experi-

ments, we evaluate the performance of SRAC for reducing network traffic by switching

between active and passive ranging modes while meeting application constraints. In

the second phase, we show the applicability of SRAC on different sensor network

applications.

6.3.1 Implementing SRAC as a Network Service

To evaluate the performance of SRAC, we decided to implement SRAC as part of

existing network stacks which are developed for embedded systems and Internet of
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Figure 6.5: Traffic generated by SRAC. Traffic is measured in 10s intervals. SRAC
adaptively switches between active and passive modes and piggybacks traffic. (Total
= Ranging Traffic + Non-Ranging Traffic).
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Thing applications.

Our hypothesis is that ranging can be implemented as a service provided by net-

work stack alongside with other network services. Usually, embedded network stacks

are part of embedded operating systems. We chose RIOT [21] operating system to

implement SRAC. RIOT has smaller memory footprint compared to other embedded

operating systems and also supports multi-threading and benefits from modular de-

sign [15]. We implemented UWB radio driver for RIOT and integrated it into the

RIOT’s core.

To implement passive ranging, we modified the send functionality of network

driver. Whenever there is a packet to send (non-ranging traffic), and the mode is

passive, the ranging information will be added to the outgoing packet but if the mode

is active, the packet will be stored in a queue waiting for next outgoing ranging packet.

Since RIOT supports multi-thread programming we developed active ranging as

a separate thread. The active ranging thread takes the ranging interval as input and

periodically conducts ranging (broadcast poll message, receive responses and send

final message). During transmission of ranging packet, it checks the internal buffer

for any queued message and piggybacks the ranging packet with non-ranging traffic.

The scheduler thread monitors the ranging and non-ranging traffics and based on

our proposed algorithm 4 decides about the ranging mode.

6.3.2 Controlled Experiments: How Effective is the SRAC?

6.3.2.1 Experiment Setup

DW1000 [4] is one of the most popular UWB-enabled radio ICs which is already

being used in many commercial UWB-based indoor localization solutions [12,19]. In
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our experiments, we use Radino32 [13] platform which combines an STM32L151 [16]

micro-controller with the DW1000 chip.

In this phase of evaluation, we placed two Radino32 nodes in three different dis-

tances (3 m, 6 m, and 15 m) and ran SRAC on both of them which by default is

in active ranging mode (1 ranging every 5 seconds). Also during the experiment,

there is a random UDP traffic generated by the application layer (Using RIOT’s

UDP server/client package). The maximum delay that non-ranging applications can

tolerate is 2 seconds in this experiment. Both nodes report ranging results and packet

dump of sent and received packets over serial port. In each distance, we collected

data for 10 minutes.

6.3.2.2 Ranging Accuracy

First metric to evaluate is the accuracy of ranging conducted by SRAC. Figure 6.4b

shows the average errors in range estimation in each experiment. It can be seen in

Figure 6.4b that regardless of active or passive mode running on the devices, the

ranging error never exceeds a few centimeters (10 cm). As we expected even long

ranging interval (5 seconds) does not have any impact on the ranging performance.

We also conduct the same set of experiments but this time just running simple

ranging application between a pair of UWB nodes. The ranging errors are shown in

Figure 6.4a. Comparing Figure 6.4a and 6.4b the difference between errors is less

than 1 cm which proves that SRAC does not increase the ranging errors.

6.3.2.3 Traffic Reduction

In this section, we show the ranging and non-ranging traffic during previous exper-

iments at 3 m and 6 m distances. Figure 6.5 shows the ranging, non-ranging, total
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(ranging + non-ranging) and SRAC (real traffic sent by physical layer) traffic observed

during the experiment. The windows size in scheduler algorithm in this experiment

has been set to 10 seconds which means the scheduler algorithm always calculates

the average traffic over the last 10 seconds to decide about the ranging modes. The

reported values in Figure 6.5 are also traffic measured in each windows (10 seconds).

Since in this experiment both nodes are static, the ranging traffic is always on default

values (once every 5 seconds).

As shown in Figure 6.5, the proposed solution adapts to the network changes and

reduces network traffic. In Figure 6.5 the total line shows the amount of traffic would

have been sent by physical layer if SRAC was not there and the SRAC line, shows

the traffic sent by physical layer after SRAC piggybacked either ranging traffic over

non-ranging traffic or visa-versa.

Figure 6.5 also shows the proposed scheduler algorithm is effectively changing the

mode based on the network condition shortly after sudden changes to the non-ranging

traffic.

To quantify the amount of traffic reduction achieved by SRAC, we calculated

traffic reduction (TrafficReduction =
Totaltraffic − SRACtraffic

Totaltraffic
) for intervals of 10

seconds and plotted the CDF of the savings in Figure 6.6.

As shown in Figure 6.6, for almost 50% of the times the amount of traffic reduction

achieved by SRAC is bigger than 40%. In 75% of the times, the amount of reduction

is higher than 25%.

6.3.2.4 Time Delay in SRAC

To achieve network traffic reduction, our scheduler may have to queue the packets.

Queuing may lead to an increase in the transmission delay in non-ranging traffic.
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Figure 6.6: SRAC achieves more than 40% traffic reduction in 50% of times.
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Figure 6.7: Time delay in SRAC. SRAC does not violate time constraints in ranging
and non-ranging applications

Figure 6.7a shows the delay faced by packets during the experiments. The added

delay is reasonably low considering amount of saving on network traffic.

We also measured the time difference between every two consecutive range estima-

tions to make sure the ranging update interval is never below the minimum acceptable

ranging rate. The calculated intervals are reported in Figure 6.7b.

As shown in Figure 6.7b, the time interval between two consecutive ranging up-

dates never exceeds 5.2 seconds which shows the fact that SRAC keeps its promise to

meet application constraints (20 ms of delay can be tolerated by ranging applications).
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Overall, SRAC achieves significant (≈ 40%)traffic reductions and reduces the air

time. Reduced air time reduces the chance of interference in UWB networks.

6.3.3 Uncontrolled Experiments: Is SRAC applicable in ex-

isting WSN applications?

Mesh networks in combination with IPv6 can connect local area networks to the

Internet and turn the local network to real Internet of Things. In the second phase of

our evaluations, over a set of uncontrolled experiments,we show applicability of our

solution to add ranging to UWB networks using existing traffic. The idea here is to

have ranging enabled UWB mesh networks which are able to simultaneously transfer

application data and estimate their distance to neighbor nodes. In other words, we

wanted to know the scenarios in which SRAC is applicable and can it save significant

traffic in real world applications?

Many applications can benefit from accurate distance measurement between nodes

and being able to track/localize mesh members. Mobile sensor and ad-hoc networks

can directly benefit from accurate ranging. Location aware routing [54] and mobile

sink sensor networks [35] can be named as a few examples.

6.3.3.1 Experiment Setup

To evaluate the performance of proposed solution in IPv6 enabled mesh networks,

we set up network of 12 UWB-enabled nodes (Radino32) in a corridor (3.5 m × 20

m). They are all running RPL protocol (implemented by RIOT operating system)

over 6LoWPAN [65] and IEEE 802.15.4 MAC Layers. In the physical layer our

implemented UWB driver (SRAC) is running. Figure 6.8b shows our setup in the

corridor.

107



Root Router Mobile Sink

2 m

3.
5 

m

StartEnd

20 m

(a) DODAG created by RPL.

(b) Deployed UWB Mesh Network

Figure 6.8: UWB mesh network experiment setup.
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The deployed network has one root and 11 RPL routers. As shown in Figure

6.8a, root and 10 of the nodes are in static locations but the 12th node is mounted

on top of a robot. We configure transmission power of UWB nodes to create multi-

hop network so that RPL forms the DODAG (Destination Oriented Directed Acyclic

Graph) shown in Figure 6.8a. The robot travels from starting point which is 4 hops

away from the root to the end point in which the root is within transmission range

of the mobile node. During the travel, every 3 m, mobile node stops for 1 minute

and again resumes the move. During the move from start to end point, mobile node

generates a UDP traffic with constant rate and sends it to the root of DODAG over

multihop network. During stop times, the mobile node looks for new parent (node

which is closer to the root) and updates its next hop accordingly. Localization is also

running on the Robot.

We conducted this experiment several times by changing different parameters to

measure SRAC’s performance on different scenarios. The experiment parameters

are listed in table 6.1. First parameter is speed of robot which impacts the minimum

acceptable ranging rate for SRAC. We are interested to know the location of the robot

every 5 cm movement which means if the robot moves with 10 cm per second speed,

the minimum acceptable ranging rate would be 2 updates per second. The second

parameter is the UDP traffic generated by mobile node. We use three sources of

application traffic in our experiments: first from a camera that takes video at 5 frames

per second, second from a sound sensor that generates data at 1 KBps, and third from

a sensor kit that generates data at 20 Bps. The last parameter is responsiveness of

RPL. In our experiments, we test two different settings for RPL which we call them

fast and slow RPL. The main difference between fast and slow RPL is how fast the

RPL reacts to network changes which largely determines total traffic generated by

RPL protocol. During all the experiments, all the nodes are using the same physical
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Table 6.1: Settings of Uncontrolled Experiments with Mobile Robot

Parameter Value

Robot Speed (cm per second) 10, 30, 70
Traffic Video (100 KBps), Sound (1 KBps),

Sensor Kit (20 Bps)
Fast RPL Imin = 64ms, Imax = 17m,K = 3
Slow RPL Imin = 1024ms, Imax = 4h,K = 7

layer settings (Frequency = Channel 2 (3494 MHz), Preamble Length = 1024, PRF

= 16 MHz, Data rate = 6.8 Mbps). All the nodes are deployed at a height of 120 cm

from the ground and have clear line of sight to each other. The surrounding walls are

wooden and there is no blocking by obstacles during the experiments.

Table 6.2: Traffic Reductions Achieved by SRAC in Uncontrolled Experiments

(a) Fast RPL

Speed

Traffic

Video Sound Sensor Kit

10 0.49% 32.21% 12.52%
30 1.47% 41.57% 5.49 %
70 3.37% 23.40% 2.49%

(b) Slow RPL

Speed

Traffic

Video Sound Sensor Kit

10 0.30% 27.32% 8.07%
30 1.31% 35.05% 3.54%
70 2.07% 20.1% 1.34%

6.3.3.2 Traffic Reductions by SRAC in Uncontrolled Experiments

In table 6.2, the overall traffic (Bytes) reductions achieved by SRAC are summarized.

It can be seen from table 6.2 that savings as high as 41% can be achieved by SRAC

which proves the effectiveness of proposed technique.

As can be seen in table 6.2 in applications with extremely low or high traffic

(sensor kit/video) the percentage of traffic reductions are not that significant which

is reasonable considering the ratio of ranging traffic over non-ranging traffic. We

have to mention, in all numbers reported in table 6.2, the number of bytes required
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Figure 6.9: Ranging error observed by mobile robot in uncontrolled experiments

by SRAC to include time information have been included which means during all the

scenarios SRAC leads to traffic reduction and the overhead proposed by SRAC to the

network is negligible.

6.3.3.3 Ranging Accuracy

Figure 6.9 reports ranging errors during uncontrolled experiments which shows the

maximum observed ranging error during our uncontrolled experiments is less than 7

cm and the average error is around 5 cm which is comparable with average ranging

accuracy reported by state of the art UWB based indoor localization solutions [60].

6.4 Discussion

Reducing traffic is important in low rate-wireless personal area network but it is more

important in the context of ranging performance. Our experiments show that even

in the small network of UWB nodes (8 nodes) with 5 ranging per second per node
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, there is high chance of interference (50%). This interference from non-cooperative

UWB nodes increases the packet drop rates and in the case of successful reception of

packet, the ranging error increases significantly (60 cm on average). The observations

from our small experiment emphasize the importance of reducing network traffic to

reduce chance of interference.

Our approach is mostly practical in mesh networks with moderate mobility. In

highly mobile networks, the non-ranging traffic will not be enough and our solution

goes to active ranging mode which is still better than having both ranging and non-

ranging traffics. Since, in active mode, non-ranging traffic will be piggybacked over

ranging traffic.

One of the interesting implications of providing ranging service over mesh networks

is the ability to estimate distance over several hops. In other words, the target

does not need to be in direct contact with all the anchors. Only contacting one

anchor can provide location information about other anchors which can be used for

localization. The only modification to existing RPL protocol would be including

location information from neighbors inside DAO messages. The major benefit would

be saving extra ranging traffic.

6.5 Conclusion

In this work, we showed that two way ranging does not require the reply packets to

be sent immediately. We utilize this feature and study the feasibility of using existing

network traffic for ranging instead of having separate traffic for ranging. We showed

the feasibility of piggybacking ranging information over normal network traffic to

reduce the ranging overhead in UWB networks. We also investigated the possibility

of utilizing ranging traffic for communication purposes and reducing overall network
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traffic.

Based on observed results, we proposed a simple yet effective scheduling algo-

rithm which simultaneously sends non-ranging and ranging information embedded in

existing network traffic. We developed our proposed solution on RIOT which is an

open source embedded system and evaluated the effectiveness of our proposed solu-

tion. Our evaluations show 40% reduction in overall network traffic after using our

proposed adaptive scheduler.
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Chapter 7

Conclusion

In this dissertation, we studied the scalability of existing UWB-based indoor localiza-

tion techniques and provided practical solutions to improve improve the robustness,

scalability, and applicability of UWB networks in indoor environments. We analyzed

four basic problems related to scalability of UWB networks and proposed simple yet

effective techniques to address them. To be specific, we made the following contribu-

tions:

Adaptively Changing Physical Layer Setting. We studied the impact of each

of the parameters in the UWB physical layer on ranging performance. Based on

the observed impact, we proposed our technique to adaptively change physical layer

setting for best ranging performance while maintaining application requirements in

terms of energy and delay.

Single Anchor UWB Localization. Most of existing UWB-based indoor local-

ization techniques require line of sight access to at least three anchors for accurate

estimation of the target’s location in a 2D setting. We proposed single anchor UWB

indoor localization based on unique fingerprints generated from UWB signals. Our
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technique can locate the target in a 20cm × 20cm square with 0.96 F1 score. Our

technique can be combined with existing solutions and can locate the target even in

scenarios where it is not possible to have three anchors.

Interference Resilience: Random Pulse Shape Identification. We study the

possibility of UWB interference in common settings and applications and how that

interference impacts ranging performance. We propose simple yet effective techniques

to detect the ranging impacted by interference and mitigate the impact of interference

on ranging. Our technique can reduce 50% of errors due to the interference.

Simultaneous Ranging and Communication in UWB Networks. Most of the

focus on today’s research in UWB networks is about their ranging capability. We

study the feasibility of combining ranging traffic with non-ranging traffic in UWB

networks to expand the applicability of UWB radios to non-ranging applications.

We propose our scheduler to monitor existing traffic and piggyback either ranging

traffic over non-ranging traffic or vice-versa depending on the setting that will reduce

network overhead. Our evaluation showed 20% reduction in total traffic in UWB

networks while running both ranging and non-ranging applications.

7.1 Looking forward

UWB-based indoor localization is becoming a standard approach as time passes and

researchers resolve most of its challenges. Very accurate localization results along-

side with reliable and robust deployments make the UWB networks more popular.

Millimeter-wave and 5G are relatively new topics and gaining more attention. Lessons

learned from UWB indoor localization can be applied to those standards and help to

have more global indoor localization solutions. One of the key challenges for UWB
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networks is the availability of chips that support these signals. The 5G standard is

almost there and would be on all the cellphones in a few years from now. Based on

the high frequency and larger bandwidth available on 5G networks, one potential line

of research would be to investigate the feasibility of accurate ranging on 5G networks

and to apply localization techniques from the UWB world to 5G.
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