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ABSTRACT

In some cases of linear regression analysis, there exists 

a functional relationship Y = f(X^ , ... , Xn) among variables, 

but all variables cannot be observed because of measurement 

error. Instead of observing Y, X^, ... , Xn# we obtain y, x^, 

.., , x , where y=Y+e,x. =Xn+e1, ...,x = X + e .* n y 1 1 xl* n n xn
e , e 1 , ... , e are random errors with means 0 and variances y* xl’ xn

(7^ » (Txi * * * * ’ Gxn * t^s case where all variables are 

subject to error, the only equation studied in the literature 

contains only one dependent variable and one independent variable; 

Y = a + bX. In 1941, A, Wald gave a simple method which could 

estimate the parameters of the equation Y = a + bX by dividing 

the data into two groups for estimating the slope and fitting 

a line paralleling to this slope through the mean point (x , y) 

of all observations. In 1949, M. S. Bartlett found another 

simple method by dividing the data into three groups and using 

the two extreme groups for fitting the slope. In this thesis 

the techniques of both these simple methods will be extended 

to a multiple linear regression model. The linear model studied 

here is

Z = a + bX + cY

The purpose of this thesis is to make consistent point estimates 

of the parameters of the above equation by extending Wald’s method 



and Bartlett’s method. Proofs of consistency are given.

A simulation study was used to compare these two methods 

to the least squares method. The results indicate that all 

three methods give similar results. In addition it appears 

that all three methods are biased and that the bias is a function 

of the variances of the random errors.
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CHAPTER I

INTRODUCTION

In today’s science, it is of interest to describe and predict 

events in the world in which we live. One way to accomplish this 

goal is by examining the effect that some variable quantities, 

or events, exert on others and finding an equation that relates 

these quantities or events in the real world. In many areas of 

scientific endeavor, the relationship of variables may possibly 

be expressed as functional equation Y = f(X^, ... >xn)»

When the function f or an approximation to f is obtained, 

it can be used to predict Y. Regression analysis is a procedure 

to estimate the parameters of an unknown equation from data.

Usually in the linear regression analysis one assumes that the 

independent variables of the equation Y = f(X^, ... , Xn) can 

be measured or observed, but the dependent variable cannot be 

measured exactly. Instead of observing Y we actually observe 

y where y = Y * e^, Generally e is random error (or normal 

random error) with zero mean and variance. In this case the 

least squares method or the maximum likelihood method can be 

used to estimate the parameters.

In some cases even though there exists a functional relationship 

Y = f(X^, ... Xn) among variables, all variables cannot be 

observed because of error of measurement. Instead of observing

Y, X1, ... Xn, we obtain y/x1, ... xn, where y = Y + ey, x1= X1+ exl.
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... , xn = X + exn. The set [ey. exI> ...

errors with zero means and (L , y , 0 XI

, e I are random ’ xn J
variances. This

case violates the assumption generally used in linear regression 

analysis, therefore presenting complexities that cannot be handled 

by the least squares method or the maximum likelihood method 

without additional assumptions.

In the case where all variables are subject to error, the

only equation studied so far contains only one dependent variable 

and one independent variable; Y = a + bX where Y and X will be 

unobservable quantities. Actually y and x are obtained where

y = Y + e2 y
zero means

and x = X + e , and e and e„ are random errors with x y x
and OL and QV. variances. Thus the only model studied

in the literature is

y - ey = a + b(x - ex) (1-1)

In the case where e and e are normal and the ratio y x
A=L%^is known, the maximum likelihood method for estimating 

the parameters a, b, , and in equation (1-1) is given in 
Graybill flJ. If the ratio is unknown, there are two simple 

methods which can handle this problem. In 1941, A. Wald [2] 

gave a simple method which could estimate the parameters of 

the equation Y’ = a + bX by dividing the data into two groups 

to estimate the slope and fitting a line paralleling to this 

slope through the mean point (x , y) of all observations.
In 1949, M. S. Bartlett [3] found a more efficient way by dividing 
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the data into three groups, the number k in two extreme groups 

being chosen as near n/3 as possible, then using these two 

extreme groups to fit the slope. Furthermore in 1957, W. M. 

Gibson and G. H. Jowett [4] studied the problem of the optimum 

allocation of points in the three groups in Bartlett’s method. 

They showed that the allocation of n/3 (approximately .33 of 

the data points) was optimum if the values of X come from a 

uniform distribution. For other distributions of the X data, 

other allocations are optimum.

The estimates of these two simple methods converge to 

the parameters when the number of data approach infinity; that 

is the estimates of both methods are consistent estimates of 

the parameters of the equation Y = a + bX. All these details 

are covered in Chapter II.

The primary result of this thesis is the extension of 

the techniques of both simple methods to multiple regression 

models. The equation studied in this thesis is

(1-2)Z = a + bX + cY

where X and Y are independent variables and Z is the dependent

variable. Since all three variables are unobservable we

actually obtain x, y, and z. where x = X + ex, y = Y + ey, and

z = Z + ez, and ex.
means and Q*

6^, and ez are random errors with zero 
and (jt variances. By extending Wald’s 

2r 
method and Bartlett’s method consistent point estimates of the
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parameters a, b, c, , and 0"^ are obtained.

details will be covered in Chapter III.

All these

Throughout this thesis we call the extension of Wald’s 

method the two group method and the extension of Bartlett’s 

method the three group method. In Chapter IV these methods 

are compared to least squares estimation in simulated problem 

for the model in equation (1-2). These studies indicate that 

all three methods give very similar results.

Chapter V contains the conclusions and some discussion 

of problems for future study.



CHAPTER II

FITTING A STRAIGHT LINE WHEN BOTH

VARIABLES ARE SUBJECT TO ERROR

2.1 Introduction

In this chapter we shall consider the equation in which 

there exists a functional relationship between two mathematical 

variables that cannot be observed due to error of measurement. 

For example, suppose distance S and time T are related by the 

equation

S = a + bT

where a is the distance at time T = 0 and b is velocity. Now 

suppose that S and T are not observable but s and t can be 

observed where s = S + eg and t = T + et» and eg and et are 

error of measurement. We can rewrite the equation as

s = a + bt + (e - be. ) s t

Also we may set the random term (eg - bet) equal to ee and 

write the equation as

s = a + bt + ee

At first sight the above equation looks analogous to that 

usually solved by the least squares method or the maximum 

likelihood method. However here t is a random variable and 

not independent of the error term e , therefore this relation e
does not fit into the framework of either of the"afore mentioned 
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methods. If we add one more condition, such as the ratio of 

two variances and 0^ are known, then the maximum likelihood 

method are valid to solve this problem.

2.2 The General Assumptions

Suppose we obtain two sets of observations

xl* x2, ... , xn ; Y1, y2, ... , yn 

and we make the following assumptions:

(1) x. = X. + e . and y. = Y. + e., where X. and Y.
1 j. y j. j.

are unobservable quantities and and are 

random variables for i = 1, ... , n. The pairs 

(Xi , y^) are observable.

(2) A single linear relation holds bfetween X and Y, 

that is to say Y = a + bX.

(3) Each random variable e n, ... , has the samexl xn
distribution with zero mean and (^variance and 

the random variables are uncorrelated.

(4) Each random variable ev-., ... , e has the samej -1* yn
distribution with zero mean and (^variance and 

the random variables are uncorrelated,

(5) The random variables e and e are uncorrelated.x y

2.3 Wald’s Method

With the above assumptions, Wald examined this problem
in 1941 [2], As the estimates of a, b,

the following expressions:

and Wald used
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2m Im

(2-1)
2m Im

m

where n is an

correspond to
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1values of x m

(2)
(2-2)

where x and y are the means of the variables x and y

(3)
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£
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m
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m
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y3 > Yi
(2-5)b

where x.

kk

and + rsk yny3i Ik

k k

in which k =

values

group)group (first

1 k

(2-6)

where x is the mean

x3

X3

X31

of the variable x, and y is

a. Id, GV, and Oil are the estimates of the parameters a d
and respectively.

n/3, y^^ and y^ correspond to x^^ 

is in the upper group (third group)

+ xlk

i = 1 k, and j

and xld, x3.

with largest of x, xn . is in the lower 1J
with smallest values of x

- X1

+ x3k
----------- , XY =

2.4 Bartlett’s Method

the mean of the variable yi
a and Io are the estimates of the parameters a and b
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2.5 The Optimum Choice of the Number of Points in

the Three Groups

The number of data points in the three groups described 

above are equal; the ratio of points in the three groups is 

1 : 1 : 1. Some people may question if it is necessary that 

the ratio has to be kept at the 1 j 1 : 1 standard-for all 

situations. W. M. Gibson and G. H. Jowett [4], in 1957, 

examined several different distributions of X and found the 

optimum allocation of points in the three groups varied with 

the type of X-distribution.

The different distributions of the variable X that were

examined by Gibson and Jowett an? shown below:

(1) Normali f(X) =
e-X2/2

-oo<X<*°a

(2) Uniform: f(X) = 1/2 - 1 <x<+ 1

(3) Bell-shaped : f(X) = 1 - X2 - 1 <X<+ I

(4) U-shaped: f(x) = 1/4 - X4 -1 <X<+ 1

(5) J-shaped: f(x) = e-X -2 <X<+^>

(6) Skew: f(x) = X3e-X/2 0 < X<to»

The optimum proportions of points in the three groups with 

different distributions of the variable X are given in 

Table 2-1.
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Table 2-1

Optimum proportions of points 
in the three groups

distributions proportions approximate
ratios

nl n2 • n3 nl : n2 n3

Normal 0.27 2 0.46 0.27 1 2 . 1
Uniform 0.33 0.33 2 0.33 1 • 1 1
Bell-shaped 0.31 2 0.38 2 0.31 3 8 4 3
U-shaped 0.39 0.22 2 0.39 2 1 2
J- shaped 0.45 2 0.40 : 0.15 3 3 1
Skew 0.36 0.45 8 0.19 4 5 i 2

2.6 Maximum Likelihood Method
We can use the maximum likelihood method (13 to obtain 

the estimates of the parameters of the equation Y = a + bX if 

we know the distributions of e^. and ex are normal and have 
knowledge of the ratio/^=<^? . These estimates are consistent

This procedure is not considered because of the need to know
A 5= ^/(t • 

a



CHAPTER III

FITTING THE EQUATION Z = a + bX + cY

WHEN ALL VARIABLES ARE SUBJECT TO ERROR

3.1 Introduction

Up to this point we have considered the methods for fitting 

a straight line to the equation Y = a + bX. Usually more 

complex linear models are needed in practical situations.

There are many problems in which a knowledge of more than one 

independent variable is necessary in order to obtain a better 

prediction of a particular response. The two simple methods 

given in Chapter II provide us with a procedure for extension 

to more complicated linear models. We shall apply both simple 

methods to the first-order linear model

Z = a + bX + cY (3-1)

3,1 The Formulation of the Problem

Let us begin with the precise formulation of the problem.

We obtain three sets of observable variables

xl* •**’xn *’ yl’ ••• * yn ‘ zl* * zn
and know that x. = X. + e ., y. = Y. + e ., and z. = Z. + e .,

X X A4. X X y X X X x« x

where X^, Y^, and Z^ are unobservable variables and ex^, ey£>

and e„. are unobservable random errors. We can observe the zi
set ^x^, y^, z^J for i = 1, ... , n data points. Then we make

the following assumptions:
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A linear relation holds among the unobservable

variables X an equation

Z = a + bX + cY

same

distribution with zero mean and and

the variables are uncorrelated

(3) has the same

variance and

the variables are uncorrelated

has the same

distribution with zero mean and

the variables are uncorrelated

with one another

X and Y are uncorrelated with each other

Consistent Estimates of the Coefficients of the

Equation by the Two Group Method

group method is as follows»

Find the relationship between the first independent

variable, say x, and the dependent variable z by

Wald's method

equation is

(3-2)xz

yn

Each random variable ex^.

Each random variable e ., ... , yl' ’
distribution with zero mean and

Each random variable ez^.

Using the above assumptions, the procedure of the two

and Z; there is

3.3 The

e are uncorrelated z

ezn
variance and

e^, has the xn
variance

given in Section 2.3, The resulting

The random variables e , e , and x y*

z = a X xz
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where
(Z-- + ... + Z„ ) (z,- + ... + z. )21 2m  11 Im

m "" m

(x21 + ... + x2m) _ (xn + ... + xlm) 
m m

Z2 " Z1 

X2 “ X1
(3-2-1)

in which m = n/2, n is an even number. zo. and z. .21 1 j
correspond to x^- and xn .1J X21 is in the upper

group (second group) with large values of x. x

is in the lower group (first group) with small values 

of x, i = 1, ... , m, and j = 1, ... , in,

and 

axz z - b x xz (3-2-2)

in which z is the mean of the variable z and x is 

the mean of the variable x.

Finally, after zx is obtained, calculate the 

residuals

zf - zxi, i = 1, ... , n.

The fitted equation does not predict z exactly. However 

adding another variable y to the prediction equation might 

improve the prediction of z significantly. In order to accomplish 

this , we desire to relate the variable y to the unexplained 
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variation in the variable z after the effect of the independent 

variable x has been removed from the variable z. However, if 

the variable x is in any way related to the variability shown 

in the variable y, we must correct for this first. Thus, what 

we need to do is to determine the relationship between the 

unknown variation in the variable z after the effect of the 

variable x has been removed and the remaining variation in 

the variable y after the effect of the variable x has been 

removed. Therefore in next step, we have y in term of x.

(2) Find the relationship between y and x. The 

resulting equation is

y = a + b x (3-3)Jx xy xy

where
(y21 + ... + y2m)  (y^ + ... ■<• ylm)

A m m

m = n/2, y2i and y^j correspond to X2^

and X2£ is in the upper group with large 

values of x, x^j is in the lower group with small 

values of x, i = 1, ... , m, and j = 1, ... , m.

b = --------------------------------------------
<x21 + + x2m> _ + ... + xlm)

m " m

^2 “

”2 " X1
(3-3-1)

in which
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and

a = y - b x (3-3-2)xy 1 xy

i = 1, ... , m, and j =1, ... , m.

in which y is the mean of the variable y and x is

the mean of the variable x.

Finally, after yx is obtained, calculate the residuals

y. - y ., i = 1, .,. , n, 11 2 xi * * *

(3) Find the relationship between (z - zx) and (y - yx)

by Wald’s method. The resulting equation is

(z - zx) = byz(y - yx) (3-4)

where
2(z - z )o. r(z - S ), ._____ x 21  x li

/>. m ~ m  bvz = -------- A--------------- A------ (3-4-1)
 - rx’n

m m

in which (z - zx)2j and (z

(y - yx)21 and (y - 

upper group, (y - Yx)1j is

- z )- . correspond to x i j
(y - yx)2i is in the

in the lower group.

Note that no ayz term in equation (3-4) is required since we

use two sets of the residuals whose average values are zero.

(4) Within the parenthesis of equation (3-4) we substitute
(a + 6 x) for z and (a + b x) for y . The 

jsju jxx* a. Ay Ay a.
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resulting equation is

(z - (a „ + b x')') = b (y - (a^ + b x)) xz xz yz 2 xy xy

After shifting (a + ^xzx^ to t^ie right side and 

rearranging the above equation, we have

z = (a - b a ) + (b - b b )x + b y xz yz xy xz yz xy yzJ

Simplifing the above equation, we have the prediction

equation

z = a + bx + cy (3-5)

where

a “ xz "" kyz xya a

b = £ - b £xz yz xy

c = byz

(3-5-1)

(3-5-2)

(3=5-3)

Next we shall prove that a, b, and c are the consistent 
estimates of a, b, and c; that is a, S, and c converge to a, 

b, and c when n -* o° , First consider a and b when n —* 00 • xz xz
If all assumptions in Section 3.2 are true, then equation

(3-1) will become

z = a + bx - be + cy - ce + e x 1 y z

When n oo the mean of the variable z will be
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vz. 5"(a + bx. - be . + cy. - ce . + e . )i i xi 11 yi zi
lim z = ----  = ---------------------------------------
n^tx) n n

Zxi *yi texl Ieyi Iezi 
= a + b ----  + c --- - b ----  - c ----  + ----

n n n n n

= a + bx + cy (3-6)

ye. ye. ye.2L xi . vi • zibecause lim -----  , lim --- , and lim ------— are all zero.
n-»oo n n-*6o n n-*o° n

From equation (3-2-1) we have

52 -21

Substituting (a + bx + cy) from equation (3-6) for and z^ 

in the numerator of the above equation, then we have

lim n-»co

(a + bx2 + cy2) - (a + b^ + cy1)

x2 ” X1

According to the assumption (6) X and Y are uncorrelated with

each other, therefore the value of the variable x which is 

divided into an upper group and a lower group does not affect

the value of the variable y. Thus when n becomes large, the 

means of the variable y in the two groups are equal, that is
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we have

(3-7)

(3-2-2) we haveFrom equation

bx + cy - bxlim a a

(3-8)= a

Now consider From equationanda

(3-3-1) we have

y2

Again when n becomes very

lim b 0 (3-9)

From equation (3-3-2) we have 

xa

axz

large, y2 = thus we have

As n becomes large, we substitute (a + bx + cy) for z and

z - b x xz

equation (3-7) for b , then we have

b when n -» oo

Hm b 
n ->0O XZ

y2 = yl* Hence

b = --------
x - x x2 1

X2 - X1 
b —----— = b

X2 " X1
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When n becomes large, substituting equation (3-9) into the 

second term in the right side of the equation, we have 

lim a = y - 0 x n-»oo xy

= y (3-10)

Finally, obtaining lim a , lim b lim a , and lim b ,11 3 n-»<» xz n-»oo xz' n-»oo xyf n->oo xy*
we substitute lim a for the first term and lim bw, for the n-»oo xy nHxOo xy
second term of equation (3-3), then we have

lim y = y - 0 x

= y (3-11)

• e A • •We substitute lim a for the first term and lim b for theTl-»co xz n->z>o xz
second term of equation (3-2), then we have

lim z_ = (a + cy) + bx y\-»dD X

= a + cy + bx (3-12)

After having lim z. and lim y , we can obtain lim b 
y\-*co x n-»oo x yz

From equation (3-4-1) we have

£(z - z )o. 2i(z - z )_ .x 2i _ x 11
m m

> = --------------------------------
yz z(y - yx>2i E(y - yx>i-i 

J. X J
m m

As n becomes large, substituting (a + cy + bx) from equation
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(3-12)" for zx, and equation (3-11) for yx> we have

lim b „ n-><« yz

£(z2i - (a+cy2+bx2i)) - (a+cy1+bx1 ^))
m ~ m

£<y2i - y2J _
m m

5^21 _ 
m m

(z2 - z1) - b(x2 - x1)

^2 ~ ^1

and substituting (a + bx + cy) from equation (3-6) for z2 and

z^, we have

(a + bx2 + cy2) - (a + b^ + cy1) - b(x2 - ^) 
lim b = ----------------------------------------------------n-’«o yz y2 _ yi

= C(y2 - ?!>

^2 - ^1

= c (3-13)

From the aforementioned discussion, we know when n becomes 
large, a converges to (a + cy), B to b, S to y, b to 0, 

and byZ to c. Hence substituting all these values into
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equation (3-5-1), equation (3-5-2), and equation(3-5-3), 

we have

lim a = (lim a ) - (lim b )(lim a ) yx-»oo xz n->oo yz y\-»oo xy

= (a + cy) - cy

= a

lim b = (lim b ) - (lim b )(lim b ) 
n-»«o n->o° ti-*60 ri-*co xy

= b - c 0

= b

lim c = lim b n-»c° n-»oo

= c

Thus from the above expressions we can be assured that a, b,

and c are consistent estimates of the coefficients of the equation

Z = a + bX + cY.

3.4 The Consistnet Estimates of the Coefficients 

of the Equation by the Three Group Method 

Bartlett’s method is more effective in estimating the 

parameters of the equation Y = a + bX than Wald’s therefore 

it may be benefical to extend his method to the equation Z = 

a + bX + cY. Comparing the two group method and the three 

group method, we see these two simple methods are very similar
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procedure

of the three group method in the following sections To illus

trate the procedure we consider the case where X and Y both

have uniform distribution

The procedure of the three group method is as follows:.

variable z by .

Bartlett’s method given in Section

ing equation is

(3-14)

where

Ik
k

3k Ik

(3-14-1)

in which

k

z 
X

bxz

variable, say x, and the dependent

Z11+ Z3k

Z3 - Z1

a „ + b x

in procedure. Therefore we will briefly discuss the

k = n/3, Zg^ and z^j correspond to x^ and 

is in the upper group (third group) with

(1) Find the relationship between the first independent

Z31 + *•
k

X11 + •* 
k

X31 + *•
k

2.4. The result-

x3 * X1

k, and j = 1 

xlj* x
largest values of x, x^j is in the lower group 

(first group) with smallest values of x, i = 1

and
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(2)

axz = z - bxzx (3-14-2)

in which z is the mean of the variable z and x is 

the mean of the variable x.

After zx is obtained, calculate the residuals

z. - z ., i = 1, .,. , n,i xi * *

Find the relationship between the variable y and 

the variable x. The resulting equation is

y = a + 6 x 
Jx xy xy (3-15)

where
y3i + ... * y3k yn + ... + ylk 

k ” k

X31 + ••• + x3k X11 + ••• + xik 
k - k

Y3 " 71

X3 " X1
(3-15-1)

in which k = n/3. and y^j correspond to x^^

and x1j. x-. is in the upper group with largest

values of x. xlj is in the lower group with smallest

values of x, i = 1, .., , k, and j = 1, ,, k.

and
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a = y - b x xy 1 xy

Finally calculate the residuals

(3-15-2)

y. - y ., i = 1, ... , n.

(3) Find the relationship between (z - zx) and (y - Yx). 

The resulting equation is

(z - zx) = £yz(y - yx) (3-16).

where
r(z - z )Q. s- (z - z )_ .*-_____ x 3i L x 11

k k

k " k

(4)

in which (z - z )q. and (z - z ). . correspond to 5C 1 «X X J
(y ■ yx’si and ly • yx’ij* (y ■ yx)3i ls ln the 

upper group with largest values of (y - Yx)»

(y - yx’ij is in the lower group with

values of (y - yx), and k = n/3.

smallest

Within the parenthesis of equation (3-16), we 
substitute (axz + ^xzx^ from equation (3-14) for z 

and (axy + ^^x) from equation (3-15) for yx in 

equation (3-16). After simplification the result

becomes similar to (3-5), that is

A A Az = a + bx + cy (3-17)
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where

a = a - b „a xz yz xy

- b b yz xy

c = b yz

(3-17-1)

(3-17-2)

(3=17-3)

As shown in the preceding section, we also can prove a, 

b, and c are the consistent estimates of the coefficients of 

the equation Z = a + bX + cY.

3.5 Example

We will look at an example solved by the two group method 

and the three group method. Now suppose the distance a particle 

travels from a given reference point is given theoretically 

by the curve

Z = a + bX + cY

where Z is the distance, X is the time a particle moves, and

Y is the temperature of the medium through which the particle 

moves. These three variables are all measured with error.

We observe x, y, and z where x = X + ex, y = Y + e , and z =

Z + e . e , e , and e z x’ y z
means and (^ , , andx g-

are normal random errors with zero 

variances. The data is given in

Table 3-1.
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16 observations 
of x, y, and z

data with * is in the lower group

Table 3-1

observation
number X y z

1 10.043 9.318 49.222
2 11.723 10.362 55.480
3 8.580* 9.740* 42.004*
4 10.519 5.722 39.126
5 6.061* 9.792* 44.543*
6 3.880* 10.638* 45.688*
7 5.615* 2.229* 22.833*
8 3.426* 6.454* 30.729*
9 5.789* 11.538* 51.718*

10 9.708 9.743 51.203
11 14.942 6.139 48.328
12 10.514 -0.800 19.831
13 11.348 4.190 36.634
14 7.876* 11.485* 52.518*
15 9.597 3.272 33.330
16 5.535* 2.859* 23.791*

The solution of two group method:

(1) Find the relationship between z and x by the two

group method. The result is

= 37.17 + 0.39x

Then calculate the residuals, z^ - z^ 

i = 1, ... , 16. These residuals are shown in

Table 3-2.
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Table 3-2

Residuals: z. - z .i xi

(2) Find the relationship between y and x. The

observation 
number X z z. - z .1 XI

1 10.043 49.222 12.244
2 11.723 55.480 13.649
3 8.580 42.004 3.423
4 10.519 39.126 -2.190
5 6.061 44.543 4.983
6 3.880 45.688 6.988
7 5.615 22.833 -16.552
8 3.426 30.729 -7.792
9 5.789 51.718 12.266

10 9.708 51.203 9.207
11 14.942 48.328 5.268
12 10.514 19.831 -21.483
13 11.348 36.634 -4.973
14 7.876 52.518 12.244
15 9.597 33.330 -7.623
16 5.535 23.791 -15.560

result is

x

= 9.96 - 0.359x

Then calculate the residuals, - ^xi*

i = 1, ,, 16. These residuals are shown in

Table 3-3.
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Table 3-3

Residuals: y. - y .Ji Jxi
observation 

number X y - ?xi

1 10.043 9.318 3.094
2 11.723 10.362 4.618
3 8.580 9.740 1.161
4 10.519 5.722 -0.470
5 6.061 9.792 1.903
6 3.880 10.638 2.065
7 5.615 2.229 -5.721
8 3.426 6.454 -2.281
9 5.789 11.538 3.651

10 9.708 9.743 3.261
11 14.942 6.139 1.534
12 10.514 -0.800 -6.993
13 11.348 4.190 -1.640
14 7.876 11.485 4.346
15 9.597 3.272 -3.250
16 5.535 2.859 -5.121

(3) Find the relationship between two sets of the 

residuals and y^ — yx£- These two sets

of the residuals are shown in Table 3-4. From 

Table 3-4, using the two group method, the result 

is

(z - z ) = b (y - y ) x yz 2 2x

= 2.97(y - yx)
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Table 3-4

Residuals: z. - z . and y. - y .i xi Jxi

observation 
number yi - yXi z. - z .1 XI

1 3.095 12.244
2 4.618 18.698
3 1.161* 3.423*
4 -0.470* -2.190*
5 1.903 4.983
6 2.065 6.988
7 -5.721* -16.552*
8 -2.281* -7.792*
9 3.651 12.266

10 3.261 9.207
11 1.534 5.268
12 -6.993* -21.483*
13 -1.640* -4.973*
14 4.346 12.244
15 -3.250* -7.792*
16 -5.121* -15.500*

(4) Within the parenthesis of the equation . substituting 

(37.17 + 0.39x) for zx and (9.96 - 0.359x) for yx#

the result is

z - (37.17 + 0.39x) = 2.97 (y - (9.96 - 0.359x)) 

z = 7.42 + 1.46x + 2.97 y

The above solution is the prediction equation solved 

by the two group method.

If we use the three group method to solve this problem, 

we get another solution

z = 7,863 + 1.429x + 2.964y
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3.6 The Consistent Estimates of , anti

Let us introduce the following notations:

the sample standard deviation of x

S
K(y1 - y)2

the sample standard deviation of y

J
— 9- z)2

----- '2—— = the sample standard deviation of z

= the sample covariance 
between x and y

^(Xj, - x)(z. - z)
= ------n - 1------  ~ t^ie samPle covariance

between x and z

£<71 - y)(zi - z)
S = ------ n~- 1------  = t^ie samPle covariancey between y and z

and S— denote the same expressions for

the unobservable values of X, Y, and Z.

Now we have equations of expection, which are proved in

Appendix A where all expections are over the distributions 

of the measurement errors, ex, e^, and ez, as follows:

9 7 jzE(sx) = Sx + °x (3-18-D

E(S2) = S2 + (3-18-2)
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E<sz> = SZ +

E(Sxy) « SXY

= SXZ

(3-18-3)

(3-18-4)

(3-18-5)

E<SZy> = SYZ (3-18-6)

Since Z = a + bX + cY, we have the following equations, which 

also are proved in Appendix A,

=:2 - h2=;2 SZ = b SX + 2 2CZS^ + 2bcSxy

2 sxz = bsx + cSXY

SyZ = CS| + bSXY

(3-18-7)

(3-18-8)

(3-18-9)

We solve equation (3-18-7), equation (3-18-8), and equation 
2 2(3-18-9) and have S„ in termsof S™ and Sv„, S„ in terms of o XZi A

2 . Sv-, and Sw, and m terms of S— and Sw as follows: 
aZi AY Y YZ» AY

7 S^ = bSy- + CSV7 (3-18-10)
AZi IZi

2 1 r
sx = 5sxz-6sxy (3-18-11)

SY = >YZ - cSXY (3-18-12)

Substituting E(S from equation (3-18-4) for S^, 2(5^ 

from equation (3-18-5) for and E(S^z) from equation 

(3-18-6) for S— in the above equations, we have
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= bE(S ) + cE(S ) (3-18-13)Z xz yz

SX = - BE(Sxy> (3-18-14)

SY = ^‘Syz’ " IE<Sxy> (3-18-15)

2 Substituting the right side of equation (3-18-13) for S- in4U
equation (3-18-3), the right side of equation (3-18-14) for
2Sx in equation (3-18-1), and the right side of equation (3-18-15)

2for SY in equation (3-18-2) and rearranging these three equations, 

we have

ffx= E<Sx> - 5E(Sxz> + EE(Sxy> (3-18-16)

y E(Sy) " ̂ ^yz’ + ̂ ^xy’ (3-18-17)

(7*= E(s2) - bE(S ) - CE(S ) (3-18-18)
^5 Z XZ. 1^*

Since when n becomes very large. 2 2 2Sz, S , S^ x* y* z S S , and S xz* xy* yz
converge toward their expected values and a, b, and c converge 

toward a, b, and c, the expressions

9 >> A0;= (S - bS - cS ) J z xz yz

are the consistent estimates of Ox ' and respectively.
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3.7 Fitting the Equation W =

All Variables Subject to

Consider briefly the two

the equation

a + bX + cY + dZ with

Error

simple methods when applied to

W = a + bX + cY + dZ

Now we obtain four sets of observations

X1# ... , xn ; Y1, ... , yn ; Z1, ... , zn ;

w!’ » wn

where x = X + ex, y = Y + e^., z = Z + e^, and w = W + e^. X,

Y, Z, and W are unobservable variables and ex# e , e„, and e y zr w
are unobservable random errors. The assumptions listed in

Section 3,2 are extended as follows:

(1) A linear relation holds among the unobservable 

values X, Y, Z, and W; there is an equation

W = a + bX + cY + dZ.

(2) Assumptions (2), (3), and (4) still hold.

(3) Each random variable e ... , e has the samewl wn
distribution with zero mean and ^variance and the 

variables are uncorrelated.

(4) The random variables e , e , e . and e are x’ y* z' w
uncorrelated.

(5) X, Y, and Z are uncorrelated with one another.
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Suppose the above assumptions are true and the observations 

of the (x, y, z, w) data set are obtained, the procedure for 

fitting the equation W = a + bX + cY + dZ is as follows:

(1) Find the relationship among the first two variables, 

say x and y, and the dependent variable w by the 

two group method (dr the three group method). The 

resulting equation is

w^ = a^ + b^x + c^y (3-19)

After w^ is obtained, calculate the residuals

W1 - *li* 1 = 1* * n*

As discussed in Section 3.3 the above fitted equation does 

not predict w exactly. Adding the other variable z to the 

prediction equation may improve the prediction of w. Thus, 

what we need to do is to determine the relationship between the 

unknown variation in the variable w after the effect of the 

variables x and y has been removed from w and the remaining 

variation in the variable z after the effect of the variables 

x and y has been removed from z. Therefore, in the next step 

we have z in terms of x and y.

(2) Find the relationship among the first two variables, 

x and y, and the variable z by the two group method

( or the three group method ). The resulting 

equation is
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z2 = a2 + k>2x + c2y (3-20)

After z2 is obtained, calculate z^ - z2^, i = 1, 

... , n.
(3) Find the relationship between (w - ) and (z - z2)

by the two group method (or the three group method). 

The resulting equation is

(w - wx) = b3(z - z2) (3-21)

(4) Within the parenthesis of equation (3-21) substituting 

(a^ + + c^y) from equation (3-19) for w^ and
(a2 + S2x + c2y) from equation (3-20) for z2, the 

resulting equation is

(w - (ax + fi-jX + 61y)) = b3(z - (a2 + £>2x + c2y))

After shifting (a^ + b^x + c^y) to the right side 

and rearranging the above equation, it is

w = (a^ - a2b3) + (bi - b2b3)x + (<?! - c2fi3)y

+ b3z

After simplification the above prediction equation 

becomes

w = a + bx + cy + dz
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where

a = S-! - a2b3

b = - b2&3

c = ci c2&3

d = fio3
A A A . • i
a, b, c, and d are the estimates of the coefficients of

the equation W = a + bX + cY + dZ.
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SIMULATION

A FORTRAN IV program has been written to fit the linear 

equation Z = a + bX + cY by the two group method, the three 

group method, and the least squares method. The observable 

values of the variables X, Y, and Z are generated in program 

and these observable values come from a linear equation Z = 

a + bX + cY. where a, b, and c are selected and known values.

In our program XX, YY, and ZZ denote unobservable variables, 

X, Y, and Z denote observable variables, and EX, EY, and EZ 

are for random error terms. First we generate XX and YY from 

uniform distribution within their region. This makes Bartlett's 

method consistent with the optimum proportion 1:1:1 given 

by Gibson and Jowett. The unobservable dependent variable is 

ZZ = a + bXX + cYY. Next we generate normal random values 
with zero means and <5^ , , and (7^ variances for the error

terms EX, EY, and EZ. The observable values in our program 

are X = XX + EX, Y = YY + EY, and Z * ZZ + EZ. We can use this 

procedure to generate data consistent with the assumptions of 

our model. The program is shown in Appendix B.

In the example shown below we initially give the following 

input data to the program,

the region of XX is (17 to 1)

the region of YY is (20 to 7)
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the standard deviation of EX, EY and Ez are 0.1

a = 4, b = -1, and c = 2

the number of observations is 10

Then we obtain 10 observations of X, Y, Z, XX, YY, and ZZ as 

shown in Table 4-1

Table 4-1

X Y Z XX YY ZZ

15.63 17.54 23.13 15.81 17,44 23.07
15.08 7.04 3.14 15.03 7.13 3.23
15.80 9.69 7.71 15.83 9.79 7.74
12.64 11.84 15.19 12.72) 11.84 14.97
12.17 13.26 18.50 12.19 13.33 18.48
3.40 12.67 26.42 3.24 12.83 26.42

12.91 8.04 7.07 12.87 8.01 7.16
14.31 9.31 8.35 14.40 9.28 8.16
3.45 7.67 16.09 3.21 7.64 16.07

14.86 13.34 16.01 14.80 13.38 15.95

The subroutine REARR is used to rearrange an array in 

increasing order. The CALL REARR(Fl,F2,F3,F4,F5,F6,NO) 

statement will rearrange according to the specified variable. 

Fl, meanwhile F2, F3, F4, F5, and F6 will be also rearranged 

according to the new order of Fl values. In our program X 

is Fl. NO is the number of observations and F2, F3, F4, F5, 

and F6 all correspond to Fl. After rearrangement it is easy 

to divide the set into either two or three groups. Under the 

new order, the values of X, Y, Z, XX, YY, and ZZ are shown in
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Table 4-2.

The subroutine TAT calculate the estimates using the data 

as sorted. The CALL TAT(X,Y,Z,XAVE,YAVE,ZAVE,NO,A,B,C,L) 

statement will make the points estimates of the coefficients 

of the equation by the two group method and the three group 

method. XAVE, YAVE, and ZAVE are the average of X, Y, and Z. 

NO is the number of observations, L = 1 is for the two group 

method, and L = 2 is for the three group method. A, B, and C 

given by the subroutine are the estimates of a, b, and c. The 

rest of the arguments are furnished by the CALL statement.

data with # is in the third group 
data with ♦ is in the first group

Table 4-2

1 X Y Z XX YY ZZ

3.40* 12.67* 26.42* 3.24 12.83 26.42
3.45* 7.67* 16.09* 3.21 7.64 16.07

12.17* 13.26* 18.50* 12.19 13.33 18.48
12.64 11.84 15.19 12.72 11.84 14.97
12.91 8.04 7.07 12.87 8.01 7.16
14.31 9.31 8.35 14.40 9.28 8.16
14.86 13.34 16.01 14.80 13.38 15.95
15.08# 7.04# 3.14# 15.03 7.13 3.23
15.63# 17.54# 23.13# 15.81 17.44 23.07
15.80# 9.69# 7.71# 15.83 9.79 7.74

We also determine the estimates by the least squares method 

using the subroutine LSM. The CALL LSM(X,Y,Z,XAVE,YAVE,ZAVE, 

A,B,C,NO) statement will make the point estimates of the 

coefficients by the least squares method. All the arguments 

in the statement CALL LSM are the same as those in CALL TAT, 
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except without L. All SUBROUTINE programs are shown in Appendix

B. The results for these 10 observations shown in Table 4-1 

are:

two group method: a = 4.32 b = -1.02 c = 2.00

three group method: a = 4.44 b = -1.03 c = 2.00

least squares method: a = 4.55 b = -1.02 c = 1.98

A series of simulated example problems have been run 

similar to the example above. The results have been combined 

in Appendix C. The method of calculating the values in Appendix 

C is as follows:

In the first row, the set (A = 1.86, B = 4.06, C = 2.03) 

is the average estimate of three runs by the two group method 
with 10 data points and (7^ = (T^= 6^_= 0.1. The second set 

(A = 2.35, B = 4.03, C = 2.01) is the average estimate of 

three runs by the three group method using the same three sets 

of 10 data points. The third set (A = 2.30, B = 4.03, C = 2.01) 

is the average estimate of three runs by the least squares 

method with the same data sets, and the other sets are similarly 

the average estimates of three runs with 10 data points but 
with different 0^ , , and . In the output. NO is the

number of observations, STD are standard deviations

a
In Appendix C, the problem are

(1) fit the equation Z = 3 + 4X + 2Y with 10 data points

and Q. . We let (J = (T
0 /?

0V throughout our problems.
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(2) fit the equation Z = -3 + 3X - 4Y with 20 data points

(3) fit the equation Z = 5 - 4X + 2Y with 30 data points

(4) fit the equation Z = 3 + 3X + 3Y with 10 data points

(5) fit the equation Z = 4 + 4X + 4Y with 20 data points

(6) fit the equation Z = 5 + 5X + 5Y with 30 data points

(7) fit the equation Z = 3 - 3X - 3Y with 10 data points

(8) fit the equation Z = 4 - 4X - 4Y with 20 data points

(9) fit the equation Z = 5 - 5X - 5Y with 30 data points

From these results, we note that these two simple methods 

give similar results to the least squares method and these 

estimates from all three methods seem to be biased. The 
magnitude of the bias of estimates increases as ()" , (h. , and 

O') increase.



CHAPTER V

CONCLUSION

These two simple methods have been developed and extended 

to multiple regression with two independent variables. Proofs 

that the estimators are consistent are given. A small simulation 

study has been made to compare these methods to the least squares 

method .’

From the simulated examples, it can be seen that the two 

simple methods give similar results to the least squares method. 

It appears that when the standard deviation of the error terms 

becomes larger, the absolute values- of the estimates of b and 

c get smaller. Thus the estimates appear to be biased. It 

looks like that the magnitude of the bias of the estimates is 

a function of the standard deviation of the error terms. This 

might be the subject of a future study.

According to assumption (6), X and Y are uncorrelated, 

this is used to prove that the estimates are consistent. However, 

in practice, X and Y might be correlated. It would be interesting 

to try and prove that the estimates are still consistent when 

X and Y are correlated.

These two methods give an alternative to least squares 

in which the estimates are known to be consistent. However 

the numerical results obtained in simulation studies do not 

indicate that the methods are better than least squares.
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Appendix A

The proofs for the equations 

in Section 3.6
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2 2 2The notations S^, Sy, Sy, S^y, Sxz, and Syy for the 

2 2 2mathematical variables and S , S , S , S , S , and S for

the observable variables are the same as those in Section 3.6 

x, y, and z are the observable variables, while X, Y, and Z 

are the unobservable mathematical variables, x * X + ex> y =

Y + e , and z = Z + e are random errors with zero means and y z
and variances.

g
Note that X, Y, and Z are not

considered as random variables in this appendix.

(1) The proof for (3-18-1), (3-18-2), and (3-18-3):

£(xi - i)2

x n - 1

r((x. + e .) - (X + e ))2
- i xi x

n - 1

r((X. - X) + (e . - e ))2
_ i____ xi____ x

n - 1

£(X. - X)2 £(e . - e )2 KX. - X)(e . - e )
= _” ——— T Z

n - 1 n - 1 n - 1

— 7 — —o o E(e ,• * e ) Y(X. - X)(e . - e )E(S2) = E(S2) + E(---—---- -—) + 2E(--- 1--------—----—)
n - 1 n - 1

Since X is mathematical variable,

E(s2) = s2
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Since E(ex) = 0 and var(ex) =

n - 1

T(e . - e e£_xi---- X_) =

and
^(X. - X)(e . - e ) 

E(—i------- ------ ^-)
n - 1

^(X. - X)
----i-----  E(e . - e ) 

n - 1

L(X. - X) 
——-----  0

n - 1 

at 0

Therefore

E(SX> = Sx +

Similarly

B(s|) = + (7=

o o ,E(S') = s‘ + 5*

(2) The proof for (3-18-4), (3-18-5), and (3-18-6):

£(xi - x)(Yi - y)

2"((X. + e . ) - (X + e ))((¥. + e .) - (Y + e )) i xi x i yi y
n - 1

£((X. - X) + (e . - e ))((Y. - Y) + (e . - e ))
X wx A. x y j. y

n - 1



46
_ E(X. - X)(Y. - Y) L(X. - X)(ey. - ey) 

n - 1 n - 1

7(Y. - Y)(e . - e ) 5"(e . - e )(e . - e )L i xi x xi x yi y

n - 1 n - 1

£(X. - X)(e . - 5 )
= e(sxy) + E(—------ ------------------- Z-)

T(Y. - Y)(e . - e ) £(e . - e )(e . - e )+ E(tl_i------- xi---- x_) + E(±_xi-----xLl_n---- Zl)
n - 1 n - 1

Since X and Y are mathematical values, the equation becomes

Z(X. - X) E(Y. - Y)
E(S ) = S™ + --- 1----- E(e . - e ) + --- ------  E(e .xy2 XY n - 1 yl Y n - 1 X1

E(e . - e )(e . - e ) + E( xi x,v yi____
n - 1

Since E(ex) = 0» E(ey) = °» and ex and ey are uncorrelated, 

the above equation becomes

£(X. - X) £(Y. - Y)
E(SW) = S + --- ------  0 + --- ±-----  0 + 0

XY n - 1 n - 1

E(S ) = S^ xy XY

Similarly E(Sxz) = S^ , and E(Syz) = S^
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(3) The proof for (3-18-7):

2(z. - Z)2
2 " n - 1

Substituting (a + bX^ + cY^) for Z^, the equation becomes

— —72 E((a + bXj^ + cYj,) - (a + bX + cY)) 
SZ = :

n - 1

£(b(X. - X) + c(Yi -Y))2

n - 1

£(b2(Xi - X)2 + 2bc(Xi - X)(Yi -Y) + c2(Yi - Y)2) 

n - 1

b2r(X. - X)2 2bc£(X. - X)(Y. - Y) c2£(Y. - Y)2
- ----- ±------  + ------- 1------- i-----  + ------ 1------

n - 1 n - 1 n - 1

2 2 2 2= bzS^ + ZbcS^ + czSy

(4) The proof for (3-18-8) and (3-18-9);

£(X. - X)(Z. - Z)e --- n. ■ ... 1 .
n - 1

£(Xi - X)((a + bXi + cYi) - (a + bX + cY))

n - 1
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£(X. - X)(b(Xi - X) + - Y))

n

-7 - -bHX. - X)2 cl(x. - X)(Y. - Y) 
---- ±------  + ----- ±------- i-----
n - 1 n - 1

2= bSx + cs^

Similarly
2SYZ - cSY + bSXY



Appendix B

FORTRAN IV program for fitting the 

equation Z = a + bX + cY



L •' V " L i J DATE 72342 16/12/491 I

c

L .;.v ;;v v^v

c v^r p 'C.;

c 'i* *r v :r 'C -r v* *r *il •* '•* ***
c VN'.IVL: SC 4 I >•■-’•TIC ;
c NO AND nm ARF nl^rer of data and iteration

c XX, YY, ANO zz APE 'JNORSCRVABLE VAR. I ARLES
c X, Y, AMD 7 A-'E O’. 5 - AV ABLE V A.< I ARLES
c EX, EY, AND EZ ARE RANDCY ERRORS
c STCX, STL'Y, A.\C STDZ ARE STANDARD DEVIATIONS OF EX, EY, AND EZ
c X A V r , Y A V 12 , a-.t Z AVE AD-E AV ERASE VALUES CF X, Y, AND Z
r -r *** t 'r *»' V t "»* ♦;!
c

DLMENSIOL X( 70 ) , Y( 70) ,z ( 7'j ) , XX( 70) , YY( 70) f 7_Z ( 70) , 
1 A ( 1 0,1 0,3 ) , A ( 11 2,3 ) , C ( 1J , 12,3 ) , A A ( 3 ), B8 ( 3 ) , CO ( 3 )

NSTEC= 7') 757h 75
C 

;d: it 2 (n ) 
j LL=1,3

Q t 4 S. * J: # v * V * *

C P.E-'L' TIE PA\3E uF VAiH AELES: XX AUD YY

REAP(5tlC3)Al,A2,Bl,P2
C
£ **************
C READ THE CCEFFICIENTS CF THE EGUATIDN: 11 = AA1 + BB2*XX + CC3*YY
Q r i' * v v r r v r

READl5,122)AA1,BB2,CC3
C
0 ******** ******
C READ THE mean, STO DEVIATION, NUMBER CF DATA AND ITERATION 
0 **************

READ(5,120 ) STCX,EXPX,STOY,EXPY,STDZ,EXPZ,NO,NM 
kAIT:(t>,4C-) Al,42,01,'72 
kRlTE(6,3?3)AAl,P32,CC3 
'a'RITE(6,401 INC

10 H = l,9 
Di: 8 1 = 1,3 
A(V,N>',L)=O .
P ( y , n , l ) =: .

8 C(M,\V,L)=?.
UC 11 <.= 1,HV

C
C ****-::***:•.*/;***
0 'IS'.F 1 AT I O'^c<VA'>LE VARIABLES; X,Y, AND Z
C **************

DC 12 1 = 1,.'in
XX(I)=(A1-A2)*RA\(NSEED)+A2
FX = ATIl‘/r(FXPX,STDX,'ISEED)
X(I)=XX(I)+EX
YY( I ) = (hl-n2)*9A?;(':SE7D)+l7 2
L Y= AT I -E ( f. XPY , ST^Y , , SEED )
Y( I )=YY( I ) ♦ E.Y
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LJV--1 r; VAI': CATE = 72342 • 16/12/49

z n i > - •'. i +- > ??v < < i) 4 cc yy (i) 50
-:z= *.t i(r.x^zt srpz.NS-.eu)

12 Z ( I)= 1 7 ( I ) + £Z
7AVE = ' .
YAVE- .
ZAVE='.
DQ 13 ! = 1,\T
Y*-VE = XAVE+X( I )
YAVE=YAVE + Y ( I )

13 ZAVE=ZAV-f-Z ( I )
XAVE=XAVE/FLCAT (,\1G)
YAV-=YZVE/CLOAT(NO) 
z Av -•=zav.-/clcat (•,:))
CALL REAKR(X,y,Z,XX,yy,Z7,N0)

14 L = ! ,3
GO TO (51,d1,<0),L 

c

C CALL LEAST S<?UARE METHOD
C * * -r X- * *(.,.»***«

E'- CALL Lcfl( X, Y, Z ,y AVE, YAVEfZAVE, NOt C CO, C 11, C22 )
AA(L ) ^COO
EIHL )=C1L
CC(L )=C22 
GO TC 53 

51 IF(L .EQ. 1) GC TO 40
GO TC 41

C
C ***t**»****^*
C CALL TUO G20UP METHOD
C 4 v -r -r T "r 'v 'r r V ■(1 v -r

42 CALL T-'T(XtY,Z,XAVE,YAVE,ZAVE,NO,COC-,Cll,C22,L)
AA(L)=CC".
B8(L)=C11
CC(L)=C22 
GO TO ^3

C
C s:*»»-i:»**l:**t**
C CALL THREE GROUP METHOD
C * A 3^ v - ijt

41 C ILL TAT{ X^^.XAVFfYAVErZAVFf.NUrCCCtCllrCZPfL)
AA(L )=COr' 
B3(L)=CU 
CC(L )=C2 2

53 A< ■'•,N|»f,L )=■'.(?•,/yL tL ) + AA(L )
B(^,MM,L)=C(v,NvtL)+BB(L)

14 C(M,VIM,L) =C(M,N.v,L)+CC(L)
11 CONTINUE

GO ^4 L=l,3
A( n, I ) = A ( -',NM,L )/FLOAT ( \M )
E ( H, N M, L ) = ^ ( " , N .v , L ) / F L 0 A T ( N M )

54 C ( M, NM,L )=C(,'<,NM, L )/FLOATING )
EPITt (6,4C2)STRX,(A(.v,,\MtL) ,D(M,NM,L) , C ( M , NM , L ) , L = 1,3 )
STCX = STLX + . 1



'> LcVrL lc ‘-'Al'; CATC = 72342 16/12/47

S T C Y = S I r Y + . I 
i" i r7 = s t i. 7 +. i 

, i r f (6, - •" ) 
'< CONTINUE

LrC C0RMA1 (- "•7. 1, 21 T)
1 . 2 FORK'I ( V-./ )
I"? FORMU (4F--.2 )
327' COR1 M( ^,iA =* ,F4.1,7X , • 6 = * , F4.1, yx , 1 C =*,F4.1)
Ajr rO"--‘AT(.,<, uc X I 5 * , F 6.2 , 2 X T * Tr • , F 6.2,4 X , • RE G I CF Y IS'.F

1 h . ? , 7 X , ' 7 C * , F n . ? )
401 FORMAT!/6X,*\C =',I 3,4X,'TUC GROUP*,12X,*THREE GROUP*, 11XLEAST S 

H-U-ME «//AX, « STL* t 3( GX, ' A* , EX, '>3* ,.5X, 'C 1 ,2X) / )
4C2 Fi'i-MAT (e x , F7 . 1, 2X , 3 ( Fo.2, IX, F6.2, IX, F6. ?, 2X ) ) 
4C3 FLGMATI//)

' F '1CMAT( )l ] )
srru
:-\p

51



r- t.\t c*.r^ = 7234? 16/12/4

Si: " '' 'V l ,c T ' T( * r v t 1- 1 X V/'-" , v AVI-, Z XV c , \0, A, n , C , L )
(2 4. , v , -r 1:x-*
r two GROvK method AM Thr-*-: 3-2i p ••zthcc fi."1 Ti- P-Er. ci>’t:vsin\s

c 
c 
c L = 1

;■ * * <• Z-
is >=r -! T'.-.t: 3 3TJP HETHOD

c L = 2 [ s FC 3 P - EE .,<CUP RETELL:
r «» = TI ?" J- OBSF’VATICl

X AVE = THE AVl- AGE OF x CASE"V\TION
c YAVE = THE AVERAGE OF Y OBSERVATICN
c Z2-.VE = Tr.E ■\ V E 3 E uF Z OBSERVATION
c RE 1 = Th'E R ES 1DUAL VALUES OF Y DM X
c REZ = Tnt. cS I DUAL VALUES OF Z GN X
r* *iL- A 76 •I* *)• *«• *»•

DI ME M.> I ON X ( 7^ ), Y ( 7 J ) , Z ( 7 ? ), ? t:l ( 72 ) t I> E2 ( 73) t ['A ( 7C )
DATA i?A/7C*C . /
OC TC ( 4 ,z. I ) ,L 

4G ‘:xi=?
MX2-?
CC Tl F2

Al i A I = ?
.4X2= i
LUl = \O/MXl

Q * * * * ^X'-T*******
C FIM' PGLXTICflSHD SEThEEN X AND Z
Q $*************

XAVl=O.
ZAVL=O.
DO 15 I = l »LUl
XAVl=XAVl+X(I)

15 ZAVl=ZAVl+Z(I)
XAVI = XVI/FLT.AT ( LUI )
ZAVl = ZA»Vl /FLCAK LUI )
XA.V3 = ?.
Z V 3 = " .
LU2=N.VNX2
yMX = AO-LL!2 + l
DO 16 I=MMX,Nr
XAV3=XAV3+X(I)

16 7 AV 3 = 7 - VA+7( I )
XAVl-XAV/FLiJATILL?)
7.;.V3 = ZAV »/FLGAT(LL2 )
F XE = ( ZAV3-Z W1 ) / ( < AV3-XAV1 )
FXA=ZAVE-FXV*XAVE

C
Q * ¥ * * « * * * * *
C FIND ’FLATICNSHIP BETwEE.N X ANO Y
c

vAVI=n.
r^r 17 f = ULUl

17 YAV1 =Y '-V l + Y ( I )

i
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_v-! TAT CATE = 72342 16/12/4J
. 53

Y* VL = \-' V! /FLn-<T ( ILL)
YAV3=0.

18 L=HMX,NQ
L ■ YA V3=;''AV~ tY ( ! )

YA V' 3=Y • ;3/PLl!AT(LU2)
s K - = ( Y ■ j t -Y uV 1 ) / ( -< »V 3-X AV 1 )
c. < i = y \V ".-SXr" *,* AV

c
Q S: v * "r ’I * * -r V * * * * -r
c FINE V ELAT I C'TEh I P B'2ThcE?i TWO KcSID'JALS
£ **************

oc ?: i = i,'.0
q -_2 ( I ) = Z ( I )-F<---FX-i*X( I )

22 i ( [ ) =y ( I )-c X A-<Vz->*x ( 1 )
CALL REARSl :;.E 1 ,RE2,1 u , t.‘» , P A , C A,\2 )
P 1V 1 = C .

IV 1 = .
R2V1=O.
T ? V A = ■' .
;C 30 1 = 1, LUI
rivi=Ri vi+ie i (i)

?' [’2V1 = R2VH-;F2( I )
?xLV1=R1V1/H.P AT ( LU 1 )
R2Vl=R2Vl/FLrAT(LUl)
MMX=NC-LU1+1
DO 31 I=NYX,NO
R1V3 = F1V3 + D.E1 ( I )

31 R2V3 = ''2V3+<E2 ( I )
R2V3 = .-12V3/FLCAT( LU2)
R1V3 = C.1V3/FLCAT(LU2)
TX:»= (LTV 3-^2 VI ) / ( R1V3-R1V1 )
CCC=F XA-TX«*SXA
CCl=FXF-TXfi*SXP
CC2=TXR

C
r ************** _
c C’TAri THE ESTIU/'TORS FOR THE COEFFICIENTS OF EQUATION: A, R, AND C

r * v * s * * ■* * * * * * * *
A=Fa
9 = FXf - TXF'-SXR
C = TXb

’ . . RFTl.T 'I
t \ C



L-v.-L 1-; DME = 72342 16/12/49

SLI>- ?C'LT1 != ?. cAR'*1(Fl,r<,F3,E4>F5,F6t\C)

C R.EARRAC-E Fl VARIABLE, L'T ITS V1LL:S I'C'-eEASE IT! C?F>DbR.
C F ? Tp 3 , F4 » F ■'i, ' V' r..s C-'.< "lb SPCi.D TC hl, TrcSE C 0R2 <S PU\C I NG VARIAt.LES
C WILL BE ‘‘ EA-f? ?C,-C aCCGRDL'VJ TO THe MEW U-ILCR OF Fl
C
C

PIMENS I O’l F 1 ( 7C ) , F2{ 7C ) , 3 ( 7C ) ,F4( 7C) ,F5( 70) ,F5( 70 )
K-l
Fi(xr + i) = i''1O'*c.
DO 2C M=1,NO
PC 2 1 I=K,.X!u
I F ( F 1 ( ) - F 1 ( I + 1 ) ) 2 1,2 1,2 2

22 SIF1=F1(I+1)
S T 0 2 = F ? ( I + 1 )
S T C 3 = I- ( I + 1 )
STC4=F4(I+1)
STC5=F5(I+1)
S 100 = 0''- ( 1 + 1 )
F 1 ( I + 1 ) = F I ( - )
F 2 ( I + 1) = F 2 ( ^ )
F 3 ( I + 1 ) = F 3 (:: )
F/t( I+1)=F4(,1-)
F5(I+1)=F5(P)
F6(I+1)=F6(M)
Fl(P) = STC1
F2(.V)=STO2
F3(v ) = ST03
F4(.V) = STU4
F5P')=STC5
F6(F)=ST06

21 CUMIXUE
20 K=K+1

RETURN
END
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L.,7.1- >7 LSN C^TE = 72?A2 16/12/49

S"-i 7 I RTt LSM( * T \ , </.V2 , Y^VE, Z/IVf , \0, A, -1, C )
* * * * - •? v x •; v v 4-
C LEAST SQUARE METH'" FC'" Tt--Er, *i I1' 7‘S I2f *; ; 1 = A + PX + CY 
" 4 i; •? #, ■■-. $
C

DIM-MS I./, ^(7C) , Y (7') , /( 7:)
S. '< = .?.
S y =:.
S<Y-".
5XZ = -. .
SYZ=C.
na 2? i = i,'c
$x=(v( [ )-xAVF )»-2+SX
SY=( Y ( I )-x ' ) ;:;:- + ;y
.$•< Y= ( X( I l-x-' v" ) H /( 1 )-/' VS) +SXY
SX7= ( x < I )-X’v 2 ) HZ( I l-ZAVF l+SXZ

22 SY/=(Y( I )-YAVZ )*(Z(I )-Z^VF ) +SYZ
S3 = Sa;;=SY-( SxY)<-*2
C =SX/SS*SYZ-SXY/5S*SXZ
8 = S Y / $ S -= S X Z - 3 X V / S 5 * S Y Z
A = ZAvE-B^XAVf-C-YAVE
•-"ETLRN
t'T

LEVEL 19 ATIME DATE = 72342 16/12/49

FUNCTION ATIME(P1,P2,NSEED)
Q * n" v X'1 v

C MI."!2MI’.L DIST- PAfiPCN NUMP.CR GENERATION

c
c ********-■?****
c pi = MFA'I OF NORMAL DI ST.
C P2 = STl. DEVIATION OF NORMAL DIST.

c
SUP = 0.
LU 1C1 1=1,12

101 SLN=SUH + R'.' ( N->r ED)
ATIMF=(SUM-6.)*P2+P1
Rl-TORN
F N U

LEVEL 19 RAN CATE = 72342 16/12/49

FtNCT If'lN RA--I (\SEcr )
Q * « * * •> * =!■ •;
C -'ANi'D') M'iHBl i GEHERATirN

C
NSCEO=1ABS(MDL2D*655393) 
:<AN=FLQAT (Mr:j(NSEE'), 3 1554432) ) / F L 0 AT ( 3 3 d c.z,4 32 ) 
{RETURN



Appendix C

The results of simulation 

study in Chapter IV



REG.!1”' > X I", 15.00 TO 2.?" R£OIO\ TF Y IS 2n.0-J TC 2.0C
A = 3.S 0 = 4-0 c = 2.:

uo = L6 TWO GROUP T hpee LEA ST SOL' 'VRc

:.to A S C A B c A B C

■ .1 1 . '►.06 ’.03 2.35 4.0^ 2. Cl 2.30 4 . .7 3 2.3 L
2.32 A. Il 1.9'. 2.7 3 4 .' ■ 5 1 .S*3 2.51 4. C9 1.96

n.1 .T"7 3.S8 7 .r 1 .'*? 3.71 2.21 5.16 3.7 0 1.99
3 . r 7 3*89 . 00 2 <■ 3.5 4 1.4 3 3. 3 •" 3.92 ■ 2.00

C.5 2.3J 4.05 2.C7 3.26 4.00 1.99 3.28 3.95 2.04
. : . A 3.23 "’.86 n. 14 3 .‘?A 3.44 2.03 4. C7 3.90 2.02
■„ .7 5.55 3.7Q 1.97 3.17 3.'-a 2.10 3.8 5 3.99 1.9«

4 . c-9 3.41 2.03 4.8? 3 .c 1 2.15 t: « 0 6 3.50 2.C5
5 . C 3 •* ♦ L 4 *7 b.&8 3.9": 1.07 7.4 8 3 . 1 A 1.63

REGICX CF X IS 22.00 T■r. s.-c
c =-

PrOICO' CF Y 
6 . ?

IS 14.0 C TO 1.00
=-3. ■: B = 3.2

NO = 20 TWO GRLL9 THR e: grou-3 LE AST SCLARF

S ID A D r A 5 c A B r

C.l -3.31 3.01 -3.97 -3.17 3.Cl -4.00 -3.14 3.01 -4.00
0.2 -2.94 3.01 — 4.0 2 -2.51 2.97 -4.02 -2.65 2.98 -4.01
0.3 -4.84 3.04 - o . p 3 -4.4C 3.04 -3.90 -4.45 3.C5 -3.92
0.4 -2.27 2.93 -3.96 -3.18 2.97. -3.91 -3.25 2.99 -3.95
0.5 -2.80 2.P6 -3.76 -1.39 2.82 -3.80 -2.01 2.83 -3.79
C.6 -3.34 2.80 -4. Cl -0.60 2.79 -3.95 -C. 80 2.81 -3.96
C.7 -L . 16 2.77 - 3 . E 4 -3.64 2.90 -3.77 -2.66 2.82 -3.75
C.8 -4.37 P.Fo -3.oC — 6.63 2.94 -3.43 -4.82 2.90 -3.59
0.9 -6.Cl 3.13 -3.86 -7.00 3.20 -3.87 -7.38 3.15 -3.72

o EGICN- CF X IS 13.00 TC 2.C9 CEG I CM CF Y IS 1P .C0 TC 4. CO
A = j • 6 =-4.C = L . J

xc = 30 Tv.-i] G-CL-1 TH.IeE group LEA ST SCUAR E

STO A C A p C A P. C

C.l 4.5? -4.00 Z.04 4.5] -3.99 2.04 4.55 -3.99 2.03
0.2 5.12 -4.C2 1.9) 5.1^ -4.01 1.99 4 . q r> -3.9 8 1.99
0.3 5.25 -4.00 2.03 5.56 -4.C4 1.98 5.2 3 -4.C2 2. CC
0.4 4.14 -■».'<7 1.99 3 . P4 -3.69 2.03 4.03 -3.88 2.00
C .5 5.36 -4.00 2.2? 5.1 A -3.96 1.99 5.20 -3.94 1.97
.j . 6 5.11 -3.81 1.^4 5.11 -3.84 1.65 5.14 -3.78 1.82
0.7 4.3 6 -1.87 7.00 -3.58 2. C5 4.73 -3 . F4 2 . C 1
C.8 D . 80 -4.0^ 1.96 5.11 — 3.94 1.93 3.77 -3.78 1.94
0.9 1.20 -3.4 3 1. 5C 1.69 -3.55 2.CO 1.62 -3.51 1.97
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REGION Cir \ 1'2 25.00 TO 10.00 REGION OF Y IS 17.00 TC 5.CO
A = 3.0 8 = 3.0 C = ?.(.•

N'"' = 10 t w-: GROUP THR " _ .TRlTJ^ Lr A,ST SCO A'-.E

STL 4 S L r. b c A 8 C

•' . 1 1 . S7 3.0^ . "4 .06 3 . 2 3. 03 2.2 3 3. r ■) 3.C2
2 . 2 2 • 2 4 3.0/ 2.9 3 1 .57 3 .22 2. 0 2.65 3 . 0 5 2.93
2.3 3 3 ?. 6 "■ 3.0"? 6 .4 7 2 . 7^ 3 . r 7.0 7 *> 7 2.9b
2.4 5 • 13 2 • • 2.94 .•--.4 2 . 96 2 . 87 4.46 2 • 92 2.97
C.5 2. 22 3. '*2 3.07 2 .52 3 .00 3. 07 3.47 2. 9 9 3.CO
0.6 5. 6 7 , Z, ?. । • 4 3 .65 *> .'?7 3 . 0 n 5.07 2. 9 2 2.96
2' .7 P. 1 L ?. ?>•' 7 ; .7 t; e C ? 2 • 7 5 6.32 2. 93 2. H2
C . 0 11. 1? 2.4V. ^.02 C .«? z_ . 54 3. 14 10.24 2 . 69 2.93
1" , o 1 e 7 "> 3.11 2. S" Vl 4_ . 0 ) 2 . 9.19 ? . S3 2 .-5?

R.
A

LG I nr: ce
— 4 »C

X IS 20.r" TC
5 = 4.0

4 . C 9
C =

RELICT
4 . '?

' OF Y IS 15.00 TC 3.00

\C = 20 I in f) G -• L L F THR EE GROUP LEAST SQUARE

STO 4 E C A b C A B C

0.1 4.07 3.48 4.02 3.88 3.98 4.03 3.85 3.99 4.02
0 .2 3.38 4.0 3 4.1’4 3.64 4.00 4.05 3.93 3.99 4.02
3.3 5.86 3.95 3.91 4.5 8 4.03 3.95 4.43 3.97 4.04
0.4 4.55 4.00 3.96 5.99 3.94 3.89 5.99 3.92 3.92
C.5 6.55 3.00 3.27 8.21 3.87 3.74 7.41 3. E9 3.79
G.6 5.71 ■’.9? 3.94 5.14 3.97 3.94 6.26 3.E9 3.91
0.7 7.22 4.18 3.37 5.55 4.11 3.63 6.04 4.11 3.57
0.8 11.91 3.62 3.65 12.57 3.61 3.60 12.73 3.59 3.61
0.9 8.35 3.E 5 3.73 9.76 3.81 3.67 11.37 3.77 3.55

REGirx OF X 12.0^ TO 1.??
3 =

ncGirN CF Y
5 . t.'

IS 12.03 TQ 2.GC
A - 5 . C 5 = 5 ■

r.. 0 = 3 0 T ^0 GROUP TUR EE URCUP LEAST SQUARE

g TC A R C A 8 C A B C

. 1 4.9b b. 0^ L. 5b 5.11 5.03 4". 95 5.19 5.C2 4.94
C .? 4. E.r 6.02 r-.oc 4 . 9 4.98 5.C3 5.14 4.97 5.0 j
c .3 6. C7 4.95 4.89 5.23 4.97 4.98 5.73 4.9 3 4.95
c .4 6.83 ’ 5.24 4.54 6. Cl 5.23 4.68 6.04 8.15 4.76
c . 5 3.95 4.86 4 . t>4 5.60 4.85 4.70 Q.C5 4.86 4.76

.6 7.4 9 4. 73 4.3/ 6.79 4.74 4.96 7.27 4.68 4.94
c .7 9.18 4.7 -■ 4 . c 2 8.5 1 4.35 4.66 3.91 4.85 4.61
c . 5 8.80 4.96 4.56 10.97 4.73 4.45 11.37 4.67 4.45
V, • V1 6 .C5 5.57 4.73 7.78 4.98 4.57 8.92 4. E4 4.53
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RE0I7": 'T- X I. 20.00 T'- 3.00 Cr Y IS TC 3
5 = 3.0 8 =-.'*■ C =-3.C

k>0 - 10 TWO GROUP TUR g?’}! * J LEAST 3 JUAkt

1T0 r ,1 c A n C

0.1 3.3-! -?.O1 -^..0 3.3 3 - 3 . C ■? -3. ul 3.3 3 -3. -3.U-?

1.1 -5.36 -2.71 —— f ) 0.73 -3.21 -2.41 -0.46 -3.05 -2.52

2.1 -5.25 -1.79 a •" — ID. 7 1 -1.69 -2.87 -9.4 0 -1.65 -3.06

3.1 -12.41 -2.51 -2.10 -9.39 -2.54 -2.44 -11.84 -2.48 -2.29

-'i . 1 -15.-1 -2.'6 “ . f \ *> ”■ 2. 7 q -1. ?2 -2.0 3 -20.33 -1.98 -2 . GO

5. 1 -3^.22 -1 .6- -0.9 't - 24 .<'.*3 -2.22 -1.61 -32.01 — 1.54 -1.51

6.1 -3 2 .03 -1 .*79 — 1. 1 - 3? .32 -1.16 -1.62 -33.CO -1.11 -1.42
1. 1 — 51.6., — L • •- *J -1.1 * > **" c-". .44 -2.57 -C!. 89 -49.20 -0.4 5 -u .97

3.1 -3 5 .L_- — :J • 5 '1 -1.3 h — 27.6 6 -1.22 -1.77 -38.18 -1.21 -1.03

Rh G 11)i\ Ct X is 20. OQ TU 3.0'3 i-G lui'J Lir Y IS 20. OC TC 3.0G

A = 4.C p = -■4.0 C = -4 ,U

TkO G'<CUP ThP.EE GROUP LEAST S-JUARENO

STD A B C A B C A B C

0.1 4.03 -3.98 -4.03 4.13 -3.98 -4.03 4.16 —3.99 -4.02

1.1 1 .45 -3.93 -3.83 1.66 -3.94 -3.85 2.23 -3.90 -3.93

2.1 -12.31 -3.69 -3.34 -16.76 -3.27 -3.C9 -13.35 -3.32 -3.35

3.1 -22.71 -3 .i-2 -2.76 -27.97 -2.67 -2.66 -24.63 -2.96 -2.67

4.1 -38.38 -2.39 -2.C 8 -35.23 -2.54 -2.12 -38.99 -2.27 -2.0 9

5.1 -45.83 -2.12 -1.80 -44.03 -2.09 -1.93 -48.19 -1.94 -1.71
6. 1 -69.41 -1.82 -C.ll -62.24 -1.81 -0.63 -62.76 -1.79 — 0.61
7.1 -61.97 -1.57 — r , c 7 -64.89 -1.44 -0.72 -64.40 -1.54 -0.70

8.1 -59.33 — 1.0 9 -1.44 -64.-6 5 -0.73 -1 . 34 -63.14 -0.7 4 -1.51

REGION OF X IS 20. C) TC
ti =-5.9

3.00
C =

REGION OF Y 
-5.0

IS 20.00 TC 3.00

A = 5.0

NO = rwc t'-soup TH R EE GROUP LEAST SOU ARE

STD A B 0 A B C A B C

C . 1 4.96 -5.32 -4.97 4.86 -5.01 -4.97 4.76 -5.01 -4.96

1.1 4.91 -t- . 95 -5.03 3.43 -4.90 -4.92 1.93 -4.81 -4.8 8

2.1 -8.C9 -4.29 -4.4 9 -4.83 ' —4.52 -4.55 -8.3 3 -4.26 -4.49

3.1 -2- . 31 -4.6'9 -3.06 -24.17 -4.32 -3.03 -28.60 -4.06 -2.96
4.1 -41.73 -3.2 2 -7.74 -46.95 -3.18 -2.30 -47.92 -2.8 2 -2.60

5.1 -43.57 -2.74 -44.37 -2.83 -2.91 —4 4.67 -2.76 -2.95

6. 1 --3.7<> -2.37 -2.C'- -52.16 -2.6 7 -2.C2 -58.97 -2.2 1 -1.90

7.1 - 5 7 . q ■ 9 -2.03 -2. 3q -63.61 -1.87 -2.07 —64.52 -1.91 -1.94

r;. 1 -71.55 -1 . '<? -1 . 3 « -78.86, -1. 73 -1.11 -77.09 -1.77 -1. 19


