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Abstract
Intravascular ultrasound (IVUS) is a catheter-based medical imaging technique that is

capable of producing high resolution cross-sectional images of interior of blood vessels

and it is currently the gold standard technique for the study of the characteristics of the

atherosclerotic plaques. Segmentation of IVUS images refers to the delineation of the lu-

men/intima and media/adventitia interfaces of the vessel. This process is necessary for

assessing morphological characteristics of the vessel such as lumen diameter, minimum

lumen cross-section area, and total atheroma volume. This information is crucial for mak-

ing decisions such as whether a stent is needed to restore blood flow in an artery and to

determine the characteristics of the stent. Other applications of IVUS include the study

of mechanical properties of the vessel wall, characteristics of the plaque, and 3D recon-

struction of the vessel. Segmentation of IVUS images may be performed manually by

an observer. However, depending on the type of analysis, the number of frames to be

segmented can range from a few frames to hundreds of frames.

In this dissertation, we present a unified computational method for the semi-automatic

segmentation of the luminal/wall interface in IVUS data. The method can be used with

either B-mode or RF-data and it is based on the deformation of a curve by optimizing

a probabilistic cost function. The main contribution is the development of a physics-

based inverse method for the segmentation of the lumen employing the IVUS RF data as

compared with previous method which employs the B-mode reconstruction. Experimental

results demonstrate the robustness and accuracy of the method. These results pave the

way for the automation of the analysis of contrast-enhanced IVUS images to assess extra-

luminal perfusion.
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Chapter 1

Introduction

1.1 Motivation

Cardiovascular disease (CVD) refers to those disorders that affect the heart and/or the vas-

cular system. The most common form of CVD is atherosclerosis, a condition characterized

by the formation and accumulation of plaque in the walls of the arteries which results on

the narrowing and hardening of the arteries [38, 63]. Cardiovascular disease (CVD) refers

to those disorders that affect the heart and/or the vascular system. According to the Amer-

ican Heart Association, CVD accounted for 32.8% (811,940) of all 2, 471,984 deaths in

the United States in 2008, or one of every three deaths in the United States [61]. The most

common form of CVD is atherosclerosis, a condition in which the arterial wall hardens

and thickens due to the build up and accumulation of plaque [38]. Coronary artery dis-

ease (CAD) is usually caused by atherosclerosis in the arteries that supply blood to the

heart (i.e., coronary arteries). The inflammation and disruption of coronary atherosclerotic
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plaques (i.e., thrombotic-related complications) is the primary cause of acute coronary

events such as heart attacks.

Modern medical imaging techniques have the potential of providing structural and func-

tional imaging of the human body through a number of invasive, and non-invasive meth-

ods. In particular, contrast angiography is the standard technique for detecting and eval-

uating coronary artery disease. However, the two-dimensional nature of the images, the

absence of information about the blood vessel wall, the insensitivity to substantial plaque

burden in outwardly remodeled vessels and the inability to detect vessel wall disruption

during angioplasty are important limitations that reduce the chance of obtaining crucial

information necessary for an accurate diagnosis and effective treatment of CVD.

To overcome these limitations, intravascular ultrasound (IVUS) was developed towards

the end of the 1980’s and has rapidly become the gold-standard technique for assessing

the morphology of blood vessels and atherosclerotic plaques in vivo [64] (Fig. 2.3).

Intravascular ultrasound (IVUS) is an invasive catheter-based medical image technique

that is capable of providing high resolution cross-sectional images of the interior of blood

vessels in-vivo. Segmentation of IVUS images refers to the delineation of the lumen/intima

and media/adventita borders (Fig. 1.2). This process is necessary for assessing morpho-

logical characteristics of the vessel and plaque such as lumen diameter, minimum lumen

cross-section area, and total atheroma volume. This information is crucial for making

decisions such as whether a stent is needed to restore blood flow in an artery and to de-

termine the characteristics of the stent. Other applications of IVUS includes the study of

mechanical properties of the vessel wall and th characteristics of the plaque.
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(a) (b)

Figure 1.1: Examples of a typical IVUS B-mode image of (a) normal and (b) atheroscle-

rotic vessel.

In practice, manual segmentation of IVUS images may be performed by an expert ob-

server. However, depending on the type of analysis, the number of frames to be segmented

can range from a few frames to hundreds or even thousands of frames. Therefore, the

manual segmentation of those images may be excessively time-consuming. Moreover, the

manual segmentation may suffer from inter- and intra-observer variability due to its high

level of subjectivity. Studies have shown that there may exist large differences (up to 20%)

in the cross-sectional area of luminal segmentations provided by the same observer ([39]).

Thus, a robust automatic segmentation method for IVUS images is needed to overcome

these limitations.
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(a) (b)

Figure 1.2: Example of (a) an typical IVUS image with (b) its corresponding segmentation

(the lumen/intima and the media/adventitia interfaces are depicted using a solid and dotted

lines, respectively).

1.2 Previous work

Automated segmentation of IVUS sequences has been a topic of interest since the early

1990’s. Early IVUS systems operated at frequencies in the range of 10 MHz to 20 MHz.

At these frequencies, the blood presents a low acoustic impedance and speckle noise and

therefore these systems produce IVUS images on which the lumen has low intensity, no

texture, and a high contrast with respect to the vessel wall tissues. For this reason, many

approaches for IVUS segmentation were based on the use of local properties of the image

(e.g., pixel intensity and gradient information) combined with computational methods in-

cluding graph search [67, 75, 78], active surfaces [30], active contours [32, 41], and neural

networks [57]. Modern IVUS systems operate in higher frequencies (i.e., 30 to 40 MHz)

and produce images with better resolution. However, the lumen on this images depicts

more texture due to speckle, and lower contrast of the lumen with respect to the vessel
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wall tissues. For these images, edge information may not be sufficient and therefore, seg-

mentation approaches incorporated prior knowledge using region and global information

such as texture [45], gray level variances [20, 37], statistical properties of the image [3],

temporal information (3D segmentation) [6], and by mathematical morphology techniques

[13].

Current approaches for the segmentation of IVUS images includes the shape-driven method

for lumen and media-adventitia segmentation introduced by Unal et al. [71]. In this work,

the lumen and media-adventitia contours were constrained to a smooth, closed geometry.

Then, a shape space was built using training data and principal component analysis (PCA).

Finally, segmentation was performed on this shape space by the minimization of an energy

function using nonparametric probability densities with global measurements. Taki et al.

[68] proposed a method for the delineation of the vessel borders. This method consisted of

a preprocessing step for speckle removal followed by the deformation of parametric and

geometric models using edge information. Downe et al. [14] introduced a method where

active contour models were used to provide the segmentation using a 3D graph search

method. Multilevel discrete wavelet frames decomposition was used by Papadogiorgaki

et al. [56] to generate texture information that was used along with the intensity infor-

mation for contour initialization. Then a post-processing is applied to refine the detected

contour. Similarly, Katouzian et al. [25] presented a method where texture information

was extracted using a discrete wavelet packet transform. Then, pixels were classified as

lumen or non-lumen using k-means clustering. Finally, the contour was parameterized

using a spline curve. Ciompi et al. [9] presented a method in which segmentation was
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tackled as a classification problem and solved using an error correcting output code tech-

nique. In that work, contextual information was exploited by means of conditional random

fields computed from training data. Wennogle et. al [76] proposed improvements over the

method presented in [6] which include a preprocessing step to remove motion artifacts,

a new directional gradient velocity term, and a post-processing level-set method. Cardi-

nal et al. [7] presented a multiple interface 3D fast-marching method that was based on

a combination of gray level probability density functions and the intensity gradient. The

segmentation method included an interactive initialization procedure of the external vessel

wall border. Zhua et al. [79] proposed a snake-based method for segmentation of IVUS

images on which linear-filtered gradient vector flow which drives the deformation of a bal-

loon snake. Moraes et al. [46] presented a method that relies on a binary morphological

object reconstruction to segment the coronary wall in IVUS images. Balocco et al. ([1])

proposed a method based on the stabilization of the IVUS sequence and the subsequent

registration of contiguous frames to generate an image with high contrast between the

steady tissues from the blood. Finally segmentation was achieved by the classification of

the pixels in the IVUS image using the growcut method. Katouzian et al. ([24]) presented

a 3D method which employ frequency-based harmonic information extracted by brushlet

expansion. Then, the blood and non-blood regions of the IVUS image are detected by

clustering of the resulting brushlet coefficients. Finally, the detection of the lumen border

is performed using a surface function active framework.

A common characteristic of these methods is that the segmentation is performed using the

reconstructed B-mode reconstruction images either in polar, Cartesian or L-mode repre-

sentations (Table 1.2). This poses a limitation considering that, apart from the frequency of

6



operation of the transducer, the gray level distributions of the different regions of the vessel

in the B-mode images depends on the reconstruction settings of the IVUS systems such as

TGC, dynamic range compression and rejection, persistence, and gamma curves which are

subjectively selected by the interventionist [21, 43] (Fig. 1.3) and may change from one

intervention to the next [42]. Thus, a segmentation method designed using B-mode im-

ages generated using a specific set of parameters may not work or may require parameter

tuning or re-computation of gray-level intensity statistics in order to work appropriately

on sequences containing IVUS images that are have different gray level distributions to

those images used for the computation of the original gray-level intensity statistics.

(a) (b)

Figure 1.3: Example depicting a 40 MHz IVUS frame in Cartesian B-mode representation

using logarithmic dynamic range compression, (b) the same frame using linear dynamic

range compression with a compression factor of 0.4.
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1.3 Objectives

The goal of this research is to develop a computational method for the segmentation of the

lumen/wall interface which performance is comparable with the performance of an expert

observer and that is robust with respect to the variability in the gray-level distribution due

to different IVUS systems and the subjectively adjusted B-mode reconstruction settings.

The objective of this dissertation is to development of a probabilistic method for the seg-

mentation of the lumen/wall interface that is capable of working with either the B-mode

reconstruction images and the raw radio frequency (RF) signal data with minimal user

intervention.

1.4 Contributions

This dissertation presents a probabilistic segmentation framework for the identification

of the lumen/wall interface consisting of two approaches: (i) segmentation of the lumen

based on the analysis of the B-mode gray level images employing texture descriptors (IB

method), and (ii) segmentation based on the analysis of the IVUS RF signal data employ-

ing a physics-based model of the interaction of the ultrasound signal with the structures of

the vessel (RFB method).

IB method incorporates texture information by using the prediction of an machine learning

classifier model. This step enable the segmentation of IVUS images from different fre-

quencies (i.e., 20 and 40 MHz) without the need of adjusting any parameter, and it makes

the proposed method robust to the problem of variability on the gray level distribution of

9



the IVUS images due the B-mode image-generation parameters.

The RFB method is robust with respect to the problem of variability on the gray level

distribution of the IVUS images since the RF data are not affected by any of the B-mode

transformation parameters. Moreover, this method presents a new paradigm for the IVUS

segmentation problem on which the physics of the ultrasound transducer and the interac-

tion of the ultrasound beam with the structures of the vessel are considered, as opposed to

the traditional image-analysis based approach.

1.5 Document outline

Chapter 1 introduces this dissertation. Chapter 2 provides background to this work. Chap-

ter 3 presents the proposed work, and the implementation details of these algorithms. The

results of this work are presented and discussed in Chapter 4. Finally, we conclude this

dissertation in Chapter 5.
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Chapter 2

Background

2.1 Cardiovascular system

The cardiovascular system is in charge of transporting nutrients, hormones, metabolic

wastes, and gases (oxygen, carbon dioxide) to and from the cells of the body. The cardio-

vascular system is composed by the blood which consist of liquid plasma and cells, the

blood vessels which are the channels which carry the blood to and from all the tissues,

and the heart which is a muscular pump to move the blood through the vessels. As any

other organ or tissue in the body, the heart requires the supply of nutrients from the blood

to survive. The vessels that deliver blood rich in oxygen to the heart are know as coronary

arteries. The aorta, which is the main blood supplier to the body, branches off into two

main coronary arteries: right and left coronary arteries. The right coronary artery (RCA)

supplies blood mainly to the right side of the heart, while the left coronary (LCA), which

branches into left anterior descending artery (LAD) and circumflex artery (LCX) supplies

11



blood to the left side of the heart.

2.1.1 Anatomy of blood vessels

The blood vessels are the part of the circulatory system in charge of transporting blood

throughout the body. In the mammals, there are exist major types of blood vessels: (i) the

arteries which carry the blood rich in oxygen and nutrients away from the heart, (ii) the

capillaries which enable the exchange of water and chemicals between the blood and the

tissues, and (iii) the veins which carry blood from the capillaries back toward the heart.

Arteries can be divided into two main regions: lumen (i.e., the region where the blood

flows) and wall. The wall of a blood vessel consist of three layers.

1. The tunica intima is the thinnest layer and consist of in its majority of endothelial

cells (i.e., endothelium) that act as a semipermeable barrier between the wall interior

and the lumen. The remainder of the intima consists of a small layer of subendothe-

lial connective tissue interlaced with a number of circularly arranged elastic bands

called the internal elastic lamina.

2. The tunica media, which is the thickest layer and consist primarily smooth muscle

cells , and elastic tissue in large arteries. Its homogeneous nature implies that, in-

ternally, it is fairly echo free (i.e. dark) under ultrasound. Hence, if the media is of

sufficient scale to be resolved, it will appear as a dark band near the luminal border.

3. The tunica adventitia is the outermost and thickest layer in the vessels and consists of

irregularly-arranged connective tissue (i.e., collagen) and elastin. Since the adven-

titia is the vessel’s interface to the surrounding structures, it is common to observe

12



various features adjacent to it such as nerves that supply the vessel as well as nutri-

ent capillaries (i.e,., smaller vessels) apparently embedded within it. Therefore, the

adventitia could be considered not as a vessel layer in itself, but as a region of con-

nective tissue which merges the vessel into surrounding structures. The adventitia

often has no well-defined outer boundary.

2.2 Atherosclerosis and vulnerable plaque

Atherosclerotic processes mainly involve the thickening of the intima, and other process

such as fibrosis, necrosis, calcification, and hemorrhage [19]. The process of atheroscle-

rotic plaque formation is considered to be an inflammatory, response-to-injury phenomenon

that it is initiated by injury to the endothelium or smooth muscle cells of the artery wall

[63]. Although atherosclerosis is a multi focal disease, it is well known that atheroscle-

rotic plaques are not similar to one another in composition, progression rate, stability, and

thrombogenicity.

In the past, it was believed that the increase of plaque and the consequent narrowing of

the coronary arteries was the cause of fatal coronary events. Currently, it is known that

the inflammation and disruption of coronary plaques with superimposed thrombosis is

the primary cause of acute coronary events. It has been shown that for up to 75% of

the acute ischemic coronary syndromes, atherosclerotic plaque rupture is the underlying

pathological mechanism [5, 10]. Pathology studies indicate that certain plaques are more

prone to develop acute coronary events than others. In this context, the field of cardiology

has introduced the term “vulnerable plaque” (VP) which refers to those plaques with a high

13



likelihood of rupture, thrombotic complications, and the consequent rapid progression to

stenosis [44, 49, 50, 48].

Although there is no broad consensus on what characteristics define a VP, autopsy studies

have provided useful indicators of the features exhibited by certain plaques immediately

before rupture. The histopathologic characteristics of ruptured plaques have been well

defined [73]. The most consistent findings include: (i) a large lipid (necrotic) core com-

posed of free cholesterol crystals, (ii) cholesterol esters and oxidized lipids impregnated

with tissue factor, (iii) a thin fibrous cap depleted of smooth muscle cells and collagen,

(iv) an outward (positive) remodeling, (v) inflammatory cell infiltration of the fibrous cap

and adventitia (mostly monocyte/macrophages, some activated T cells and mast cells), (vi)

intra-plaque hemorrhage, and (vii) the formation of new microvessels (neoangiogenesis or

neovascularization) at the arterial wall adventitia, and within the atherosclerotic plaque

(i.e., vasa vasorum) [74].

2.3 Medical ultrasound

Ultrasound refers to the use of sound with frequencies higher than the upper limit of human

audible range (i.e., above 20 kHz). Ultrasound has widely been used as a diagnostic tool

in medicine for the visualizing muscles, tendons, and internal organs. The applications of

ultrasound in medicine include (but are not limited to) the visualization and study of mor-

phological and structural information of heart and blood vessels, liver, spleen, pancreas,

kidneys, bladder, uterus, unborn child in pregnant patients, etc.

Medical ultrasound is based on the transmission of sound waves to the interior of the body,
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and the reception of the acoustic echoes generated by the structures contained on it (Fig.

2.1).

Figure 2.1: Depiction of medical ultrasound principle.

The sound waves are produced by the electric excitation of a piezoelectric (i.e., pressure-

electric) material which expands and contracts producing pressure waves (i.e., ultrasound

transducer). As the waves travel inside the body, they interacts with the different organs

and tissues which reflects and scatter part of the waves. The intensity of the reflected waves

depend on the characteristics of the tissue such as compressibility and density which de-

fines its acoustic impedance. According on its acoustic impedance, homogeneous objects

are said to be echo-free, hypoechoic, or echolucent. Acoustically heterogeneous objects

are said to be echogenic or hyperechoic and generate stronger acoustic reflections.

The reflected waves are detected by the piezoelectric material which contracts and expands

producing an electrical signal. The signals are then processed to generate an gray scale

15



image that represents the intensity of the reflections with respect to the distance from the

piezoelectric to the tissues that generated the reflections. The distribution of the gray in-

tensity values of the reflected signal is often referred to as dynamic range. As the wave

propagates trough the body, some of its energy is lost due to reflection absorption. This

attenuation may be compensated by the amplification of the returned signal according to a

monotonically increasing function which is essentially the inverse of the expected attenu-

ation (i.e., time-gain compensation (TGC)). Applying TGC the received signals increases

signal to noise ratio (SNR) of the signal as attenuation increases. However, the use of this

techniques allows a better visualization of the structures farther from the transducer. Other

techniques for improving the visualization of the ultrasound data include: (i) compression

and rejection of the dynamic range in order to allow the visualization of structures with

certain acoustic characteristics, (ii) time averaging of the signals to improve the SNR, and

(iii) adjustment of gamma curves which control the relationship between the actual and

the displayed gray scale. However, it is important to note that there are no standard val-

ues for this parameters and therefore they must be adjusted by the operator according his

judgment.

2.4 Intravascular ultrasound

The IVUS imaging intervention consists of steering a guidewire with a small diameter

(about 0.84 mm) into the blood vessel branch to be imaged. The IVUS catheter is then per-

cutaneously slid-in over the guidewire and positioned within a target segment of interest.

For coronary imaging in humans, the entry point is typically located at the femoral artery.
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The IVUS system acquires and displays the acquired images usually at 30 frames/second.

For some procedures, the ultrasound catheter may be pulled back in order to identify and

analyze the different vessel regions. The pullback can be performed either manually or

by using a motorized device which moves the transducer at a constant determined speed

(usually 0.5 mm/s). In human coronary arteries, the target segments generally include at

least 10 mm of the distal vessel, the lesion site(s), and the entire proximal vessel back to

the aorta [42]. If additional information about a lesion is needed, an acquisition may be

performed by maintaining the IVUS catheter stationary over the region of interest. The

analysis of the acquired data may be performed in real-time during the intervention or

off-line after the acquisition.

The IVUS system consists of a catheter with miniaturized ultrasound transducer which

transmits ultrasound pulses and receives an acoustic radio frequency (RF) echo signal

(i.e., A-line, Fig. 2.2(a)) at a discrete set of angles (commonly 240 to 360). These signals

are then processed to reconstruct an image that is meaningful to the physicians (i.e., B-

mode image). The B-mode reconstruction process consists of the detection of the positive

envelopes of each A-line, application of a TGC, stacking of the signals along the angular

direction, quantization of the signal, compression of the dynamic range, and 8-bit gray

scale mapping. The result of this process is an image known as B-Mode polar representa-

tion (Fig. 2.2(b)). For easier visualization the image is converted from polar to Cartesian

coordinates in order to obtain a disk-shaped image that resembles the interior of the vessel

(Fig. 2.2(c)).

There exist two types of IVUS transducers: the mechanically-rotated transducer and the

electronically switched multi-element array system. The first type consist of a single
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piezoelectric element which is driven by a flexible wire that rotates about 1,800 rpm to

sweep a beam almost perpendicular to the catheter. The sensor/wire bundle resides in a

sheath in which the sensor may be moved back and forth. The electronically switched

multi-element array system consist of an annular array of small piezoelectric elements

rather than a single rotating element. When using this type of transducer, the ultrasound

beam can be manipulated to focus optimally at a broad range of depths.

2.4.1 IVUS image properties

2.4.1.1 Image resolution

The ability of the IVUS technique to provide details of the structures being imaged de-

pends on the spatial resolution and the contrast resolution of the employed system. Spatial

resolution refers to the ability of the system to discriminate small objects within the gen-

erated image and has three principal directions. The axial resolution (i.e., parallel to the

beam) depends on the frequency and duration of the impulse wave employed, the size

of the transducer, and the radial sampling rate. The lateral resolution (i.e., perpendicular

to the beam and the catheter) depends on the wavelength of the signal, the size of the

transducer employed. The out-of-plane direction (i.e., perpendicular the axial and lateral

resolution) primarily decides the slice thickness of the IVUS image and depends on the

beam width. Lateral resolution degrades linearly with distance from the catheter, while

axial resolution remains constant. Out-of-plane resolution improves as the distance of the

beam from the catheter increases. Spatial resolution increases with transducer frequency,
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however, attenuation also increases with frequency. Due to the rotational tomographic na-

ture of IVUS images, their spatial resolution is highly variable within a single image. For

a 20 to 40 MHz IVUS transducer, the typical resolution is considered to be 80 μm axially

and 200 to 250 μm laterally [43]. However, there is some variation in the reported values

regarding the spatial resolution. For example, Elliott et al. [16] reported for a 20 MHz

transducer an axial resolution of 0.19 mm, lateral resolutions of 0.5 mm and 0.83 mm at

1 mm and 5 mm from the transducer, respectively. Nissen et al. [53] reported an axial

resolution of 0.15 mm and lateral resolution of 0.25 mm at typical coronary diameters for

a 30 MHz transducer. Finally, Lin et al. [36] reported an axial resolution of 0.150 mm is

reported for a 40 MHz transducer.

Contrast resolution referees to the dynamic range of the generated images. An image

with low dynamic range depicts as black and white regions with a few intermediate gray-

level values (i.e., granular), while images at high dynamic range are often softer. Contrast

resolution depends directly on the B-mode reconstruction parameters selected by the in-

terventionist.
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(a)

(b)

(c) (d)

Figure 2.2: Depiction of (a) an A-line signal and its envelope, and the B-Mode IVUS

representations; (b) IVUS image in polar representation; (c) IVUS image in Cartesian

representation, and (d) Depiction of the regions in this image: (A) the area occupied by

the IVUS catheter; (B) The lumen; (C) the intima; (D) the media; (E) the adventitia and

surrounding tissues. 20



2.4.1.2 IVUS artifacts

A series of non-desired artifact may be presented in the IVUS images limitation the ability

of its analysis. The most common types of artifacts are listed next:

• Speckle noise. This term refers to random point-like artifacts visible in the lumen

and to the more organized interference patterns apparent even in relatively homoge-

neous tissues. The intensity of the blood speckle increases exponentially as trans-

ducer frequency increase and as blood flow velocity decreases. This phenomenon

can limit the ability to differentiate lumen from tissue (especially soft plaque, neoin-

tima, and thrombus). This problem is exacerbated by flow stagnation or rouleaux

formation, often most evident when the catheter is across a tight stenosis or within

certain dissections (e.g., intramural hematomas) [43].

• Non-uniform rotational distortion (NURD). This artifact is related exclusively to

mechanical catheter systems. NURD artifacts are the result of mechanical binding

of the drive cable that rotates the transducer. In an extreme situation, fracture of the

drive cable can occur.

• Motion artifacts. Motion artifact are the result of nonstable catheter position due to

cardiac and respiratory motions. Occasionally, the vessel moves before a complete

circumferential image can be created. This results in cyclic deformation of the IVUS

image.

• Ringdown artifacts. After the piezoelectric transducer is excited to generate the

initial ultrasound wavelet, it takes some time for it to cease vibrating. This causes the

appearance of bright concentric halos of variable thickness surrounding the catheter

21



that obscure the area immediately adjacent to the catheter. Since this artifact does not

present large variations in its location, it is usually replaced by a constant intensity

value in the image. However, this may create a lower limit on the distance a tissue

must be from the catheter for it to be imageable.

• Guidewire artifact. This artifact is produced by the reverberation of the guidewire

and is depicted in the IVUS images as a series of partial rings followed by more

distant shadowing behind the wire.

• Shadows. Shadow artifacts are depicted as dark regions in the IVUS image for

which no information is available. Shadow artifacts are typically produced by calci-

fication in the wall of the vessel or by the presence of stents.

(a) (b)

Figure 2.3: Examples of typical (a) 20 MHz and (b) 40 MHz IVUS images.
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Chapter 3

Methods

This chapter presents a developed probabilistic method for the segmentation of the lu-

men/wall interface in IVUS data, that is robust with respect to the variability in the gray-

level distribution due to different IVUS systems and B-mode reconstruction settings. The

proposed method consist of the deformation of a curve that represent the lumen/wall in-

terface that is parameterized using Fourier series in the polar space. The segmentation of

the lumen/wall interface is achieved by the minimization of a probabilistic cost function

that deforms the parametric curve which define a probability field that is regularized with

respect to the given likelihoods of the pixels to belong to blood and non-blood. The like-

lihoods of each pixel to belong to lumen and non-lumen are assigned using the posterior

probability of a support vector machine (SVM) classifier trained using features extracted

from user-provided samples from blood and non-blood regions corresponding to frames

of the sequence to segment. The method for the extraction of these features is divided into

two approaches depending the data employed. The first approach consist of the extraction
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of texture features from the B-mode reconstruction images (i.e., B-mode-based approach)

while the second approach (RF-based approach) consist of extracting texture features from

a reconstruction computed from the RF signal based on a physics-based scattering model

of the ultrasound signal (i.e., DBC reconstruction). The details of the probabilistic seg-

mentation method and its formulation for both approaches are provided next.

3.1 Lumen parameterization

Similarly to the work of Unal et al. ([71]), we employ the B-mode polar IVUS image

representation since this coordinate space makes the problem friendlier due to the 1D

appearance of the lumen contour. In this representation, the horizontal axis corresponds

to the angular position of the transducer, while the vertical axis corresponds to the radial

penetration by the ultrasound beam. Therefore, the intensity value of a pixel x = (r, θ)

can be defined as I(x) where r and θ correspond to the radius and angle, respectively. We

define the function F that represents the interface between the lumen and the vessel wall

(Fig. 3.1). This curve F is parameterized by θ and C (i.e., F (θ,C)).

Manual annotations from observers define the lumen contour as a smooth curve. More-

over, we know that a polar B-mode IVUS image is periodic with respect to the horizontal

axis. Therefore, the smoothness and the periodicity of the contour are requirement for the

parametric curve that defines the lumen/wall interface. In this work, we have chosen to

parameterize this curve using Fourier series since it provides a periodic curve in which

smoothness can be controlled by the number of coefficients Nk. The lumen contour is

24



(a) (b)

Figure 3.1: Depiction of the lumen contour in (a) Cartesian representation and (b) the polar

B-mode representation.

given by:

F (θ,C) =
a0
2

+

Nk∑
k=1

[
ak cos

(
k2πθ

N

)
+ bk sin

(
k2πθ

N

)]
, (3.1)

where N corresponds to the number of sampled angles (i.e., width of the polar image),

and

C = [a0, a1, ..., aNk
, b1, ..., bNk

]ᵀ

are the Fourier coefficients that control the shape of the curve.

3.2 Probabilistic segmentation cost function

In our method, the lumen segmentation problem consists of finding the optimum parame-

ters C∗ such that the curve F (θ,C∗) corresponds to the interface between the lumen and
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the vessel wall. The formulation we introduce to solve this problem is inspired by the

variational segmentation theory presented by Rivera et al. ([60]). This work pose the k

classes segmentation problem as the computation of a probability field P ∈ Rk with three

main characteristics: (i) P should be similar to a given likelihood field V̂ ∈ Rk, (ii) P

should be spatially smooth, and (iii) the entropy of P should be controllable. Then, P is

computed by solving a problem of the form:

min
p

U(P ) = D(P, V̂ ) + μ1R1(P ) + μ2R2(P ) , (3.2)

where D is a term that promotes P to be similar to V̂ . The regularization term R1 controls

the entropy of P while the regularization term R2 promotes P to be spatially smooth.

The relative contribution of the regularization terms to the total cost function U(P ) is

controlled by the parameters μ1 and μ2.

The segmentation of the lumen region corresponds to a binary segmentation task (i.e.,

P ∈ R2) on which the two possible classes for each pixel are lumen (k = l) and non-

lumen (k = n). By construction, in the IVUS polar B-mode representation, the class of

each pixel can be determined by evaluating the sign of the distance from the pixel to the

curve that defines the lumen/wall interface d(x,C) = F (θ,C)−r. If d(x) ≥ 0 the pixel is

considered to belong to lumen, otherwise the pixel is considered to belong to non-lumen.

We define a parametric probability field P for a polar B-mode image by using a sigmoid

function which determine the probability of each pixel in the image to belong to the lumen

Pl(x,C) depending on its distance to the curve:

Pl(x,C) =
1

1 + e−λd(x,C)
, (3.3)

where λ is a parameter that controls the rate of the transition from 0 to 1 defined by the
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sigmoid function (Fig 3.2).

Figure 3.2: Examples of a sigmoid function with different values of λ.

Using this formulation, pixels far above the contour will have a higher probability of be-

longing to the lumen, while the pixels far below the contour will have probability close

to zero. For the pixels near the contour, depending on the value of λ, the probability of

belonging to lumen will be close to 0.5 (Fig. 3.3). The probability of a pixel to belong to

non-lumen is given by: (1− Pl(x)).

In our problem, the entropy is related to the sharpness of the transition between the two

classes (from P ≈ 1 to P ≈ 0). This transition is controlled by the parameter of the

sigmoid λ resulting in a similar effect that the entropy control term R1 of Eq. (3.2).

Similarly, in our case the effect of the regularization term R2 of Eq. (3.2) which pro-

motes the spatial smoothness of P , is controlled by the number of Fourier coefficients Nk

corresponding to the parametric curve F (θ,C).

In ([60]) several choices for the term D are discussed. In this work, we chose to use the
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Kerridge’s inaccuracy measure:

D(P, V ) = −
∑
k

∑
x

Pk(x) log V̂k(x). (3.4)

which is a generalization of the Shannons entropy used to measure the inaccuracy of the

assertion of a probability estimation ([29]).

Let v̂l(x) and v̂n(x) be the likelihoods of the pixel x = (r, θ) to belong to the lumen and

non-lumen, respectively. Then the lumen segmentation problem is posed as the minimiza-

tion of the cost function:

U(C) = −
∑
x

Pl(x,C)[log(v̂l(x))] + [1− Pl(x,C)][log(v̂n(x))]. (3.5)

where v̂l(x) and v̂n(x) represent the given likelihoods of the pixel x = (r, θ) to belong to

the lumen and non-lumen, respectively. The existence of a minimum of the cost function

depends on the characteristics of the given likelihoods. The details regarding the compu-

tation of these likelihoods are provided in Sec. 3.3.

It is important to remark that the proposed cost function (3.5) is consistent with the spirit

of the probabilistic framework proposed by Rivera et al., since (i) the probabilistic seg-

mentation P is attached by the Kerridge information measure to the likelihood measure

field V , (ii) the smoothness of P is controlled by the number of coefficients that define the

parametric boundary curve, and (iii) the slope of P at the class boundary (i.e., entropy) is

controlled by the parameter λ of the sigmoid (Eq. (3.3)).
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(a) (b)

Figure 3.3: (a) Example depicting the curve corresponding to the lumen/wall interface,

and (b) the parametric probability field defined by the curve using λ = 0.8.

3.3 Computation of likelihoods

For the computation of the likelihoods of each pixel to belong to lumen or non-lumen

classes, it is necessary to generate features that characterize each class. In this work,

we propose two approaches for the characterization of each classes by the generation of

features extracted from (i) the standard B-mode reconstruction: IB method and (ii) a re-

construction based on the analysis of the RF IVUS data: RFB method. While the extracted

features can be used for estimating a probability density function by the use of histograms,

Parsen windows or clustering techniques, in this work we propose to determine the likeli-

hood of each pixel to belong to lumen or non-lumen classes by the use of the probability

estimates of the prediction of a support vector machine (SVM) classifier. The reason for

choosing SVM instead other techniques is that the SVM method achieve a good balance

between variance and bias. Alternative methods with different learning strategies exist
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(e.g., divide and conquer by decision trees, or probabilistic methods like Bayes classifiers)

and they remain as potential candidates for future work.

3.3.1 Support vector machines classifier

SVM is a class of binary supervised learning methods that are commonly used for clas-

sification and regression. SVMs process the data by mapping all samples features into a

high dimensional space defined by a kernel. In this high dimensional space, the data may

be linearly separated by a single boundary defined by a hyperplane where support is given

by selected samples in the data (support vectors). To increase the probability of a correct

classification it is desirable to have the decision boundary at a maximum possible distance

from the samples. The distance between the support vectors and the decision boundary

is called the margin. The goal of SVM, is to find a separating hyperplane that would re-

sult in the largest margin. Once the optimal hyperplane function is computed, any new

sample can be classified by mapping its features into the same space defined by the kernel

and then evaluating in the discriminant function1. In this work, we chose to employ the

radial basis function (RBF) kernel (i.e., k(Ei,Ej) = exp(−γ||Ei − Ej||2),γ > 0, for a

pair of feature vectors Ei and Ej). One of the motivations to use the RBF kernel, is that

it requires only two parameters to be tuned (c which corresponds to the penalty for errors

in the classification, and γ corresponds to the width of the RBF kernel) as compared with

other kernels (e.g., polynomial) ([22]). A common strategy for finding the values for these

hyper parameters is by using cross-validation and grid-search ([22]). In addition to the

class of a given sample, it is possible to compute the posterior probability estimate of the

1For more information regarding the theory of SVM we refer the reader to ([4]).
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SVM prediction P (k|Ex) ([77]). In this work, we propose to use P (k|Ex) as the learned

likelihoods for lumen and non-lumen v̂l(x) and v̂n(x), respectively.

3.3.2 Image-based approach

The intensity of the blood speckle increases exponentially with the increase of the fre-

quency of the transducer ([42]). For example, in 20 MHz images the gray level distribu-

tion of the pixels in the lumen region appears relatively dark when compared to 40 MHz

images which depict some texture due to the speckle. Therefore, in this work, we propose

to incorporate texture information into the terms corresponding to the likelihoods of the

pixels to belong to lumen and non-lumen.

3.3.2.1 Generation of features from the B-mode reconstruction

Laws’ texture measures are a well known, widely used class of textural image descriptors

and enjoy continued use today mostly due to their relatively simple implementation, and

the fact that they mimic the behavior of more advanced methods ([34]). Laws’ texture fea-

tures are generated from an image by first convolving the image with a number of special-

ized kernels. These kernels are in the majority of cases 5× 5 (level 5), though others were

proposed which do not currently find widespread use. The level 5 kernels are produced

by taking the outer product of all the combinations of the basis one-dimensional level 5

convolution kernels (Table 3.1) ([33]). The 2D kernels are assigned a string mnemonic

kLkE (e.g., Kernel L5E5 is generated by convolving vertical kernel L5 by horizontal ker-

nel E5). A total of 25 images are formed by convolving the original 2D images with the
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Table 3.1: One-dimensional convolution kernels for level 5.
Name Kernel

Levels (L5) [ 1 4 6 4 1 ]

Edges (E5) [ -1 -2 0 2 1 ]

Spots (S5) [ -1 0 2 0 -1 ]

Waves (W5) [ -1 2 0 -2 1 ]

Ripples (R5) [ 1 -4 6 -4 1 ]

convolution kernels.

After convolving the polar B-mode image with these kernels, it is necessary to convert each

of the resulting 25 images Ll into a measure of texture energy El. This is accomplished

by a windowing operation in which the value of every pixel x is replaced by the absolute

value of the sum of the pixel values in a 5× 5 window Wx centered in the pixel x

El(x) =
∑
y∈Wx

|Ll(y)|.

These texture energies are used to form a 25-dimensional feature vector

Ex = [E1, E2, ..., E25] that will characterize the class of each pixel x.

3.3.3 Generation of likelihoods based on texture analysis

In general, we can assume that the gray level distributions and texture of the lumen and

non-lumen regions remain similar within the frames belonging to the same sequence. We

part from this assumption to compute the likelihoods based on the use of a SVM classifier

that is trained using texture features of a number of samples from the lumen and non-

lumen regions given by the user in the first frame of the sequence to be segmented. How-

ever, although the assumption of similarity of gray level distributions within the frames of
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the same sequence is valid most of the time, minor differences in the gray level distribu-

tion of the lumen region on the frames can be expected since the gray level distribution

of speckle is also related to blood velocity, where low-velocity blood produces coarser,

brighter speckle and higher velocities produce finer, lower-intensity speckle ([53]). Al-

though it is not very common, it is possible that the interventionist perform changes in

the B-mode reconstruction parameters during an acquisition which may result in large dif-

ferences between the gray level distributions of frames within the same sequence. If any

of these cases occur, it may be possible that the original SVM model that was generated

using the samples from the first frame is not reliable for the computation the likelihoods

for the pixels of the subsequent frames in the sequence. One option to overcome this limi-

tation is to train the SVM using samples from all the frames in the sequence which depict

significant changes in the gray level intensities of the regions of interest. However, it is

the intention of this work to require the less user intervention as possible. Therefore, we

propose to detect the possible changes on the gray level intensities during the sequence

and then adjusting the SVM model to account for this possible changes. Then, the process

of estimating the likelihoods can be divided into three phases: training, deployment, and

model adjustment.

Training: In the training step, we require the user to select samples of lumen and non-

lumen regions (Rl and Rn, respectively) from the first frame f1 of the sequence to be

segmented (Fig. 3.4). We compute the texture energies L(x) ∀ x ∈ {Rl, Rn} in the IVUS

polar B-mode image using the Law’s filters as described previously. A feature vector

Ex ∈ R25 containing the computed texture energies for each pixel corresponding to Rl

and Rn is associated to its corresponding class k(x) = {l, n}. A training set T1 is then
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generated using the feature vectors and the classes of each pixel. Next, a SVM model Π1

is computed using the training set T1 and the optimal c and γ.

Deployment: For each of the frames to be segmented, we compute a vector Ex for every

pixel in the frame fi and we obtain its class k(x) using Π1. The posterior probabilities

of the classification result for each pixel are then used as the learned likelihoods v̂l(x) =

P (l|Ex) and v̂n(x) = P (n|Ex).

Cartesian B-mode frames depict a dark circle in the middle of the image. This circles are

generated by the IVUS system and corresponds to the IVUS catheter for which there is

no available information. Ring-down artifacts are produced by acoustic oscillations in the

transducer which are usually observed as bright halos of variable thickness surrounding

the catheter creating a zone of uncertainty adjacent to the transducer surface ([42]). These

artifacts are commonly present in the region corresponding to the lumen and may inter-

fere with the computation of the likelihoods for the lumen. However, our observations

in numerous IVUS sequences indicate that the width of this halo remains relatively con-

stant within a sequence. Therefore, since the region occupied by the ring down artifact

correspond to lumen we set the likelihoods of those pixels to belong to lumen to one. We

require the user intervention to provide the radial location χ of the outer-most trace of the

ringdown artifact in the first polar B-mode frame of the sequence to be segmented. Then,

we set the likelihoods for the region corresponding to the catheter and the ring down arti-

fact as v̂l(x) = 1∀x|r ≤ χ and v̂n(x) = 0∀x|r > χ. Figure 3.4 depicts examples of the

likelihood computed for a frame as computed with the SVM model.

Model adjustment: Considering the speed of the IVUS images acquisition (30 frames/s)

and the typical pullback speed using motorized device (0.5 mm/s), we can assume that the
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distance between the cross sections of the vessel depicted by two consecutive frames is

approximately 16 μm. Then, in general we assume the shape of the lumen contour of two

consecutive frames i and i+1 is very similar and therefore the maximum distance between

the lumen contour of these consecutive frames is constrained to wb (an experiment for val-

idating this assumption is presented in Section 4.1.1). We propose to use this information

to assess the reliability of the SVM model trained with the samples acquired from the first

frame of the sequence to detect the possible changes in the gray level intensities of the

lumen and non-lumen regions by assessing its accuracy on the classification of the regions

defined by the curve Fi(r, θ,Ci) on the next consecutive frame fi+1 in the following way.

Consider the segmentation result Fi for a frame i. If we place the curve Fi on the next

consecutive frame i+1, we can assume that most of the pixels above and below the curve

will effectively belong to the corresponding classes with exception of those pixels that are

closer to the curve. We define a distancewb around this curve and we assume that the pixels

with d(x,Ci) ≥ wb correspond to lumen while those pixels with −wn ≤ d(x,Ci) ≤ −wb

correspond to non-lumen. We introduce wn as a limit below the curve is because we are

only interested in the non-lumen regions more proximal to the lumen in order to discard

other outer regions such as adventitia or outer adventitia. This information is used to create

a class mask (Fig. 3.5), and we use the classes of these pixels as ground truth for assessing

the classification result of the texture features of frame i + 1 for the pixels on the mask.

If the accuracy A1 of the classification is above a given threshold (i.e., A1 ≥ τ1), we

assume that we can rely on the classification result and therefore we use the classes and

probabilities of the prediction given by Π1 as the likelihoods for the segmentation of this

frame. However, if the A1 < τ1 this may be an indication of a change on the gray level
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distributions of the regions of interest or a large change on the shape of the lumen contours

from frame i to frame i+1. Then, we perform the following steps: first we assume that the

reason for the low accuracy obtained is due to a change in the gray level distribution. Then,

we build a new training set T2 consisting of randomly selected samples from the original

training set T1 and from the blood and non blood regions on the frame i+1 defined by the

class mask. Then, we train a new SVM model Π2 in using T2. The accuracy A2 of Π2 is

evaluated by classifying all the pixels within the class mask. IfA2 improves with respect to

A1 (i.e., A2 ≥ A1), we consider that the new model is more reliable and therefore it is used

to estimate the likelihoods of the subsequent frames. However, if A2 < A1, we assume

that the low accuracy is the result of a large change on the shape of the lumen occurred

and therefore the previous SVM model Π1 is maintained to compute the likelihoods of the

pixels of that frame and the subsequent frames. This process is repeated for each frame in

the sequence leading to a progressively adapting blood and non-blood model.

After the likelihoods for each pixel in the image are defined. The segmentation of the

frame is performed by the minimization of Eq.(3.5). Algorithm 1 presents the steps of the

proposed B-mode approach.
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Algorithm 1: Image-based segmentation method.

Input : B-mode frames, and total number of frames on the sequence Nf

Output: Curve corresponding to the lumen/wall interface Fi(C
∗
i ) ∀ i

1 Training phase:
2 begin
3 Obtain Rl, Rn and χ from user annotations on f1
4 Generate Ex ∀ x ∈ {Rl, Rn}
5 Generate a training set T1
6 Compute c and γ
7 Train Π1 with T1 using c and γ
8 j = 1

9 Deployment phase:
10 begin
11 for i = 1 to Nf do
12 Generate Ex ∀ x ∈ fi
13 Obtain k(x) ∀x ∈ fi, P (l|Ex), and P (n|Ex) using Πj

14 Compute Aj

15 if Aj ≥ τ1 | i = 1 then
16 Set v̂l(x) = P (l|Ex) and v̂n(x) = P (n|Ex).
17 Set v̂l(x) = 1∀x|r ≤ χ and v̂n(x) = 0∀x|r > χ
18 Find C∗i by the minimization of Eq. (3.5)

19 Return the segmentation result Fi(C
∗
i )

20 Model adjustment phase:
21 else
22 Generate a class mask M using Fi−1(C∗i )
23 Generate Tj+1 using randomly selected entries from Tj , and samples

corresponding to Rl and Rn in M
24 Train Πj+1 with Tj+1

25 Obtain k(x) ∀ x | d(x,Ci) ≥ wb and

k(x) ∀ x | − wn ≥ d(x,Ci) ≥ −wbusing Πj+1

26 Compute Aj+1

27 if Aj+1 ≥ Aj then
28 j=j+1

29 Obtain k(x) ∀x ∈ fi, P (l|Ex), and P (n|Ex) using Πj

30 Go to 16

31 else
32 Go to 16
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(a) (b)

(c) (d) (e)

Figure 3.4: Examples depicting (a) the first frame of a sequence, (b) the corresponding user

annotation for blood and non-blood (red and blue, respectively), (c) the corresponding po-

lar B-mode representation, and the likelihood estimates for (d) lumen and (e) non-lumen.

The star in (c) indicates the radial location χ of the outer-most trace of the ringdown arti-

fact selected by the user.
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(a) (b) (c)

Figure 3.5: Examples depicting (a) the lumen segmentation result of a frame, (b) the next

consecutive frame, and (c) the class mask which defines the regions considered as blood

and non-blood.
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3.3.4 RF-based approach

One approach to overcome the limitation regarding the variability on the IVUS system and

B-mode reconstruction settings is to perform the segmentation employing the raw IVUS

RF signal since it is not affected by transformation parameters or visualization settings

(i.e., RF-based segmentation). While there exist several methods that make use of the RF

signal for IVUS data analysis, the majority of these methods are focused on the charac-

terization of atherosclerotic plaque composition. Nair et al. [51, 52] proposed a method

known as “virtual histology” (IVUS-VH) that is based on the analysis of some features ex-

tracted from the signal’s power spectrum combined with classification trees. Kawasaki et

al. [27, 28] proposed another method of tissue classification using the integrated backscat-

ter that is a parameter derived from the RF signal. Our group has presented studies of

the feasibility of blood [55] and contrast agent [40] characterization on IVUS data us-

ing one-class support vector machines employing features intended to quantify speckle

and features based on frequency-domain measures computed from the RF raw signal, the

signal envelope, and the log-compressed signal envelope. Most recently, the feasibility of

using wavelet analysis for plaque characterization using the RF amplitude has been studied

by Katouzian et al. [26] and Roodaki et al. [62].

The proposed segmentation method is based on the analysis of the physics involved in

the interaction of the ultrasound impulse signal with the elements of the vessel. Specif-

ically, we employ a scattering model of the RF signal corresponding to the intensity of

the echoes received by the ultrasound transducer generated by different elements of the

vessel which are modeled as a collection of point scatterers. The scattering model is used

to compute features which permit the classification of the RF signal into two categories:
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luminal blood and non-luminal-blood. Similar to the IB method, the confidence of the

resulting classification is employed as the likelihood for each pixel to each class.

In summary, the proposed RF-based segmentation approach consist of the following steps:

1. The RF signal corresponding to the A-lines of an IVUS frame is divided into a

number of overlapping partitions. Then, we employ the scattering model and an

inverse problem approach to compute a differential backscatter cross section (DBC)

value of the scatterers that generate the RF signal contained in a partition of an

A-lines. The result of this computation is a matrix containing the computed DBC

values for all A-line partitions (i.e., DBC reconstruction).

2. We perform texture analysis on the DBC image to generate a set of features that

characterize each region of the IVUS RF data.

3. A luminal-blood detection model is generated by training a SVM classifier using the

RF signal corresponding to user-provided annotations from the luminal-blood and

non-blood regions (Rl and Rn, respectively) on a set of randomly chosen frames

from the sequences to segment.

4. For each frame to be segmented, we compute the DBC reconstruction, we compute

texture features from the RF data corresponding to that frame and we perform the

classification of each pixel of the DBC image employing the luminal-blood detection

model.

5. The posterior probability of the classification result is used as the likelihoods for

each pixel.
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6. The lumen contour is obtained by the minimization of the probabilistic cost function

Eq(3.5).

The details of each step are provided next:

3.3.5 Generation of features from the RF signal

In order to understand the generation of features from the RF signal, it is necessary to in-

troduce further details regarding the principles of the generation of the received RF signal

by the interaction of the ultrasound wave with the elements in the vessel.

3.3.6 Intravascular ultrasound principles:

Sound waves are mechanical disturbance that moves as a pressure wave through a medium.

The intensity I of the sound wave is defined as the average power carried by a wave per

unit area normal to the direction of propagation of the wave over time [66]. The velocity of

an ultrasound wave through a medium c varies with the physical properties of the medium.

This speed c is determined by the density ρ of the medium, while the distance covered by

one cycle of the wave is the wavelength λ = c
f

. As a sound wave passes from one medium

into another, a part of the incident wave is reflected at the boundary and a part spreads in

the second medium (Fig. 3.6(a)). The acoustic impedanceZ refers to the physical property

of a medium which determines the reflection of the sound waves and it is computed as the

product of the propagation velocity and the density of the medium:

Z = cρ̇ (3.6)
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A discontinuity on a medium refers to local changes in compressibility, density, or both.

If in a medium the sound wave interacts with a discontinuity of dimensions comparable or

smaller than the wavelength of the incident sound wave (i.e., scatterer), part of the intensity

of the wave is scattered in all directions [31] (Fig. 3.6(b)). The ultrasound signal scatterer

by a single scatterer is defined by the differential scattering cross section σ which is the

power scattered per solid angle per unit incident intensity (W/sr) [65].

(a) (b)

Figure 3.6: (a) Ultrasound reflection when objects are larger in comparison with the wave-

length of the incident wave, and (b) ultrasound scattering when objects are smaller in

comparison with the wavelength of the incident wave.

The Rayleigh scattering theory implies that the scattering cross section is proportional to

the fourth power of the incident wave frequency and to the square of the scatterer volume, a

behavior independently of the geometry of the scatterer [59, 47]. For weak scatterers, (i.e.,

with density and compressibility that only differ slightly from the surrounding medium),

and for arbitrary shape, the differential scattering cross section at an angle θ is given by:

σ(θ) =
k4V 2

s

16π2

∣∣∣∣
(
1− κ0

κe

)
−

(
1− ρ0

ρe

)
cos(θ)

∣∣∣∣
2

, (3.7)

where k = 2π
λ

is the wave number, Vs is the volume of the scatterer, ρ0 and ρe are the

densities (g/cm3) of the surrounding medium and of the scatterer, respectively, and κ0 and
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κe are their respective compressibility (cm2/dyne). The ultrasound signal scattered in the

direction opposite to the direction of the incident wave (i.e, θ = 180◦) is referred to as the

differential backscattering cross section (DBC) [65].

As an ultrasound beam propagates through a heterogeneous medium, part of its energy

is removed from the beam as a function of distance by reflection, scattering, geometric

attenuation, and absorption. The attenuation of an ultrasound wave in a medium depends

on the frequency of the wave and is described by the attenuation coefficient μ which is

the sum of the individual coefficients for scatter and absorption in units of decibels per

centimeter. A simple phenomenological model used in practice to write the intensity I(r)

at a distance r from the transduce as

I(r) = I(0)e−μr.

An ultrasound transducer is a device that converts electrical energy into mechanical energy

and vice versa, and it consists of one or more piezoelectric crystals or elements. For a stan-

dard disc shaped transducer initially the beam is of comparable diameter to the transducer

D as the series of ultrasound waves that make up the beam travel parallel to each other.

This is known as the near-field or Fresnel zone Fz and can be computed as:

Fz =
D2

4λ
. (3.8)

Beyond the Fresnel zone, some of the energy escapes along the periphery of the beam to

produce a gradual divergence of the ultrasound beam (Fig. 3.7). In this region, called the

far-field zone, the axial pressure decrease approximately according to 1/r [66]. The angle

of divergence ΔΘ (in degrees) of the beam can be computed as:

sin(ΔΘ) = 1.22
λ

D
(3.9)
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Figure 3.7: Characteristics of the ultrasound beam for a standard disc shaped transducer.

Scattering model: The structures in the vessel imaged by IVUS such as collagen fibers

or red blood cells (RBC) are smaller than the wavelength of ultrasound wave. Such small

structures provide scatter that returns to the transducer through multiple pathways. The

sound that returns to the transducer from such nonspecular reflectors is no longer a coher-

ent beam. It is instead the sum of a number of component waves that produces a complex

pattern of constructive and destructive interference back at the source. This interference

pattern is known as speckle. The reflected echo signal in the direction of the incident wave

by each scatterer is an attenuated replica of the incident wave which signal intensity de-

pends on the DBC of the scatterer [72].

For the case of multiple point scatterers, it is possible to model the collective interaction

of all the scatterers using the Born approximation [18] which assumes that it is possible

to use the principle of superposition to represent the total scattered wave as a sum of the

individual reflections of each point scatterer. Based on this principle, Fontaine et al. [18]

presented a model to describe and simulate the ultrasound signal backscattered by red
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blood cells. In that work, the generation of the ultrasound signal is described by a con-

volution integral involving a transducer transfer function, a scatterer prototype function,

and a function representing the spatial arrangement of the scatterers. Later, Rosales et al.

[58] presented a similar formulation of the scattering model for the simulation of IVUS

images. That model assumed that the IVUS signal can be approximated with a physical

model based on the transmission and reception of ultrasound waves that radially penetrate

the arterial structures.

Similarly with Rosales’ work [58], in this work we employ a scattering model to simulate

the received IVUS RF signal by representing the structures in the vessel as a finite arrange-

ment of point scatterers with an associated DBC. The main difference from this work, is

that in we employ the simulated RF signals to extract information to characterize the IVUS

RF signal using an inverse problem approach instead of using the scattering model for the

forward problem consisting in the generation of synthetic IVUS images.

For our formulation, we employ polar coordinates with the origin located in the center

of the IVUS catheter. Consider a 3D distribution of N scatterers that interact with the

ultrasound beam. Let (ri) ∀i ∈ {1, 2, ..., Ns} be the distance of one scatterer from the

ultrasound transducer, and σi be its corresponding DBC. The proposed scattering model,

compute the total scattered wave in the direction of the transducer as a sum of the individ-

ual reflections of each point scatterer determined by its DBC value σi and the intensity of

the incident wave Ω at a distance ri from the transducer, that is attenuated by the medium
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and the divergence of the beam. Using this model, the received ultrasound signal corre-

sponding to the A-line j of the frame RF signal at time t is given by:

Ŝj(t) =
N∑
i=1

σiΨ(ri)e
−μriΩ

(
t,
ri
c

)
, (3.10)

where Ψ(ri) defines the decrease on the intensity of the beam when the scatterer is in the

far-field given by:

Ψ(ri) =

⎧⎪⎪⎨
⎪⎪⎩
1, if ri <= Fz

Fz

ri
, if ri > Fz

(3.11)

and Ω
(
t, ri

c

)
is the ultrasound wave intensity at the distance of the scatterer ri from the

transducer.

Since IVUS uses the pulse echo method which consists of short ultrasound pulses, the

wave intensity is approximated by a Gaussian which envelopes the intensity distribution

[69]:

Ω(t, ri) = I(0) exp

[−(t− ri
c
)2

2ς2

]
sin

(
ω
(
t− ri

c

))
, (3.12)

where ω = 2πf is the angular velocity, and ς is the standard deviation of the Gaussian

envelope of the pulse signal which is determined by the ultrasound pulse duration Δt.

Computation of DBC: Our hypothesis is that the scattering model can be used to de-

termine the DBC of the scatterers σi that generate a selected section of the RF signal

by minimizing the difference between the real IVUS RF signal S(t) and the signal gen-

erated by the scattering model Ŝ(t). The scattering model employed in this work, is a

phenomenological approximation of the ultrasound interaction with the scatterers of the

vessel that has been previously used for the simulation of IVUS data [58].
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In order to use this model, the main challenge is that the characteristics of the RF signals

depend on the spatial arrangement of the scatterers which is unknown. To overcome this

challenge, we propose to use a model for the position of the scatterers and obtain the

modeled RF signal produced with the scattering model which is then compared with the

true RF signal.

Specifically we perform an stochastic minimization process on which we generate Ns

random samples of 3D scatterers’ spatial distributions for the dimensions of the vessel.

Then, we divide the real and modeled RF signals corresponding to each angular position

of the ultrasound transducer θ (i.e., A-line) of an IVUS frame into Np 50%-overlapping

partitions of the same size ps. We assume that all the scatterers that generates the section

of the signal contained in each partition are of the same type with the same DBC value

σθ,p.

In this work, we propose compute the DBC value for the scatterers corresponding to each

partition by the minimization of the differences between the root mean square (RMS)

power of the real RF signal contained in the partition Rθ,p computed with

Rp =

√√√√ 1

tf − to

tf∑
to

S(t)2dt, (3.13)

were to = ro/c and tf = rf/c correspond to the distance ro and rf which defines the par-

tition, and the average of the RMS power of the Ns signals of the corresponding partition

in the modeled signal R̂s
θ,p(σθ,p). Additionally, we introduce a regularization term which

promotes the similarity of the computed DBC values across the neighboring Gδ A-lines.

Here, δ refers to the cardinality of the neighbors and Nn = 2δ is the number of neigh-

bors. Then, for recovering the DBC values corresponding to the scatterers that generate
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the signal in each partition we solve:

argmin
σθ,p

α

(
1

Ns

Ns∑
s=1

R̂s
θ,p(σθ,p)−Rθ,p

)2

+ (1− α)
∑
j∈Gδ

(σθ,p − σj,p)
2 . (3.14)

This formulation yields to a sparse linear system of coupled equations which we solve

using LU decomposition.

Note that given the small size of RBC, the number of scatterers required for the simulation

may be extremely large (order of 1.37× 107 [58]). To overcome this limitation we employ

the voxel approach [35] in which we define groups of scatterers (i.e., voxels) which allow

us to generate quantities of scatterer that are possible to emulate. In this approach, the

approximate number of scatterers that would exist within the volume corresponding to the

region of the vessel that is swept by the ultrasound beam is computed by considering the

average volume of a single scatterer (e.g., RBC). Then, the volume contained in a voxel Vv

and the number of scatterers that this voxel can contain is determined using the obtained

quantities. Finally, the number of voxels required to emulate the total number of scatterers

required in the volume is computed.

Feature extraction: The result of employing the proposed DBC computation approach is

a matrix (i.e., DBC reconstruction) which contains the DBC values for each partition as

computed by the scattering model on the RF signal corresponding to a frame of the IVUS

sequence (Fig. 3.8). Note that, as compared with the B-mode reconstruction, the DBC

reconstruction provide relatively more homogeneous values for the regions corresponding

to lumen, specially in the distal lumen areas.
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(a) (b)

Figure 3.8: Examples of (a) an IVUS B-mode reconstruction in polar representation using

a color palette and (b) its corresponding DBC reconstruction. The dotted line indicates the

region corresponding to lumen.

3.3.7 Generation of likelihoods based on RF signal analysis

Since the spatial distribution of blood scatterers is extremely complicated to emulate con-

sidering the large variability of scatterers positions due to the continuous blood flow and

other phenomena (e.g., aggregation of RBC), and the fact that the employed model is a

simple approximation of the real scattering phenomenon, the sole computation of DBC

values may not be sufficient for determining the region corresponding to lumen. However,

after the examination of the DBC reconstructions, it can be noted that the regions corre-

sponding to blood in lumen depict a different pattern from the other regions. Therefore,

we propose to employ texture features similarly with the proposed approach for the com-

putation of the likelihoods from the B-mode images. However, in this case, the texture

descriptors are computed from the DBC reconstruction image instead of the B-mode re-

construction. The generation of the likelihoods is also divided into two phases: training
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and deployment.

1. Training: We require the user to select samples of lumen and non-lumen regions (Rl

and Rn, respectively) on NT randomly selected B-mode IVUS frames of the sequence

to be segmented. We generate the DBC reconstruction Hi for each frame using the RF

signals corresponding to the selected B-mode frames. We compute the texture energies

L(x) ∀ x ∈ {Rl, Rn} in Hi. A feature vector Ex ∈ R25 containing the computed texture

energies for each pixel corresponding to Rl and Rn is associated to its corresponding class

k(x) = {l, n}. A training set T is then generated using the feature vectors and the classes

of each pixel. Next, a SVM model Π is computed using the training set T1 and the optimal

c and γ.

Deployment: For each of the frames fi to be segmented, Hi is computed by solving the

inverse scattering problem described in Eq (3.14). Then, we compute L(x) ∀ x ∈ Hi

we compute a vector Ex for every pixel in the frame Hi. We employ the luminal-blood

detection model Π. Finally, the posterior probabilities of the classification result P (k|Ex)

for each pixel are then used as the learned likelihoods v̂l(x) and v̂n(x). The result is an

image where the pixels with high probability of being blood have a value near to one (Fig.

3.9).
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(a) (b)

Figure 3.9: Examples of the likelihood of each pixel to belong to luminal blood computed

with (a) the B-mode and (b) the DBC reconstructions.

Algorithm 2 presents an overview the steps of the proposed B-mode approach.

3.4 Cost function minimization

To deform the lumen contour until it reaches the best segmentation, it is necessary to find

the values of C∗ that minimize the cost function of Eq. (3.5). In this work, we propose to

use a line search method for this minimization. In a line search method, the optimal value

C∗ is computed iteratively. At every iteration k, the new value for Ck+1 is computed by:

Ck+1 = Ck + αkPk , (3.15)

where αk is the step length at the iteration k and Pk is a descent or search direction. A

popular way to find an adequate value of αk is by searching the one that satisfies the Wolfe

52



Algorithm 2: RF-based segmentation method.

Input : RF-data corresponding to the frames of the sequence to segment, and total

number of frames on the sequence Nf

Output: Curve corresponding to the lumen/wall interface Fi(C
∗
i ).

1 Training phase:
2 begin
3 Randomly select Nt frames from the sequence

4 for f=1 to Nt do
5 Obtain Rl, Rn and χ from user annotations on the B-mode reconstruction of f1
6 Generate Hi from the RF-data corresponding to fi
7 Generate Ex for all pixels x in Hi

8 Generate a training set T
9 Compute c and γ

10 Train Π with T using c and γ

11 Deployment phase:
12 begin
13 for f=1 to Nf do
14 Generate Hi from the RF-data corresponding to fi
15 Generate Ex for all pixels x in Hi

16 Obtain P (l|Ex), and P (n|Ex) using Π
17 Set v̂l(x) = P (l|Ex) and v̂n(x) = P (n|Ex).
18 Set v̂l(x) = 1∀x|r ≤ χ and v̂n(x) = 0∀x|r > χ
19 Find C∗i by the minimization of Eq. (3.5)

20 Return the segmentation result Fi(C
∗
i )
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conditions ([54], Chapter 3):

U(Ck + αkPk) ≤ U(Ck) + u1αk∇U(Ck)
ᵀPk (3.16)

∇U(Ck + αkPk)
ᵀPk ≥ u2∇U(Ck)

ᵀPk . (3.17)

In this work, we employ u1 = 10−4 and u2 = 0.9 as recommended in [54].

For selecting the descent direction Pk at each iteration k we have several options. We will

discuss two options below.

The steepest descent method: One of the simplest ways to approximate the solution of

optimization problems is by using the steepest descent method ([54]). For an objective

function U(C), the steepest descent method is a line search method that iteratively moves

along a search direction given by:

PG
k = − ∇U(Ck)

|∇U(Ck)| . (3.18)

Although this method is robust and guarantees convergence to a local minimal, the main

disadvantage is that this method may take a large number of iterations (i.e., time) to con-

verge to the solution.

Broyden-Fletcher-Goldfarb-Shanno (BFGS) method: The BFGS method ([54]) converges

to a solution faster when compared to the steepest descent method since it incorporates

first and second order derivatives to find the point at which the gradient of the function

is equal to zero. The BFGS algorithm is efficient since, instead of computing the inverse

of the Hessian from scratch at every iteration, it is updated in a simple manner by taking

into account the curvature measured in the most recent step. In this method, the search
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direction at each iteration k is given by:

PB
k = −Hk∇U(Ck) , (3.19)

where the matrix Hk is the inverse of a positive definite approximation of the Hessian of

the cost function at each iteration computed as:

Hk+1 = (I − ρksky
ᵀ
k )Hk(I − ρkyks

ᵀ
k ) + ρksks

ᵀ
k (3.20)

with

ρk =
1

y ᵀ
k sk

(3.21)

were sk = Ck+1 −Ck and yk = ∇U(Ck+1)−∇U(Ck) which must satisfy the curvature

condition

s ᵀ
k yk > 0 . (3.22)

In our problem, depending on the IVUS image to segment, the cost functions U(C) may

have many local minima mostly due to the similarity between the gray levels distributions

of lumen and other regions of the vessel. Therefore, solving the cost function with the

BFGS method could lead us to an incorrect segmentation if the descent step is too large

in a given iteration. Note that the steepest descent method is robust but slow, while BFGS

is fast but may converge into an incorrect solution (Fig. 3.10). Therefore, we propose a

strategy for combining the strengths of the two methods which uses a linear combination

of the descent directions from steepest descent (PG) and BFGS (PG) methods to compute

a new descent direction. The linear combination of these methods is denoted as (PGB) and

therefore, we refer to this strategy as GB optimization .
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GB optimization: An advantage of the BFGS algorithm over other Newton-based methods

such as Levenberg-Marquart (LM) is the direct computation of the inverse of the Quasi-

Hessian H . However, the reason we chose BFGS over LM is because the information

obtained from the curvature condition Eq. (3.22).

When this condition is satisfied, the curvature of the function becomes more positive as the

descent approaches to a minimum. However, if the curvature condition is not satisfied, a

better descent direction is the negative gradient (i.e., steepest descent direction). Addition-

ally, note that for small values of the product s ᵀ
k yk, the computation of the update formula

for the Hessian, or its inverse, is non-defined (the function is not locally convex). Then,

by design there is more confidence in the BFGS descent direction if the value of ρ (Eq.

(3.21)) is large and positive. On the other hand, for ρ ≈ 0, the confidence in PB
k is smaller

and we prefer the steepest descent direction PG
k . Based on this analysis, we propose to

compute the descent direction as a convex linear combination of both descent directions

([41]):

PGB
k+1 = [ψ(ρk)P

B
k + (1− ψ(ρk))P

G
k ]. (3.23)

where the function that controls the contribution of each descent direction ψ(ρ) is defined

as:

ψ(ρ) =

⎧⎪⎪⎨
⎪⎪⎩
0 if ρ < 0

ρ2

K+ρ2
otherwise .

(3.24)
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(a) (b) (c)

Figure 3.10: Examples of a segmentation result on a 20 MHz IVUS frame using (a) steep-

est descent optimization (72 iterations), (b) BFGS optimization (38 iterations), and (c) GB

optimization (26 iterations).

3.4.0.1 Starting point

We define the starting point for the first frame to be segmented by setting the offset coef-

ficient a0 to be equal to the mean of the radial coordinates of the blood samples given by

the user. The values for the rest of the coefficients were experimentally found and set to

{ai, bi} = 0.1 ∀ i > 0.
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Chapter 4

Results and discussion

In this section, we provide an analysis of the sensitivity of the probabilistic segmentation

method with respect to its parameters. In addition, a comparison between the results em-

ploying the B-mode-based approach with state of the art segmentation methods existing in

the literature, and a comparison between the segmentation results employing the B-mode

and RF-based approaches. The methods proposed in this dissertation were implemented

using MATLAB. For the SVM classifier, we employed the implementation provided in the

libSVM library ([8]).
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4.1 Sensitivity analysis

4.1.1 Similarity between lumen shape of consecutive frames

The robustness of the proposed IB method with respect to changes in appearance within

an IVUS sequence is based on the assumption that the shape of the lumen of two consecu-

tive frames is very similar. In order to quantitatively verify this observation we computed

the Dice similarity coefficient [12] between the region defined as lumen by an observer

for each pair of consecutive frames corresponding to the validation sequences described

in Table 4.1. Figure 4.1(a) depicts the histogram of the obtained Dice similarities coeffi-

cients for the comparison of all the consecutive frames. Note that the similarity between

consecutive frames is most of the time above 97% which supports our assumption. Sim-

ilarly, we computed the maximum difference between the radial coordinate r in of the

pixels corresponding to the same angle θ belonging to the lumen contour on each pair of

consecutive frames max(Fi(r, θj,Ci) − Fi+1(r, θj,Ci+1)) ∀j. Figure 4.1(b) depicts the

empirical distribution function of the maximum differences for all the frames of the vali-

dation set described in Table 4.1. Note that, for more than 90% of the frames the largest

radial difference is less than 20 pixels and therefore, we set wb = 20.

4.1.2 Probabilistic segmentation sensitivity analysis

The sharpness of the transition between classes is controlled by the parameter λ while

the smoothness of the curve is determined by the number of Fourier coefficients Nk. The

value of these parameters may have an impact in the accuracy of the segmentation curve.
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(a) (b)

Figure 4.1: (a) Histogram of the Dice similarities, and (b) normalized cumulative his-

togram of the maximal radial lumen contour differences for consecutive frames.

To evaluate the sensitivity of our method with respect to these parameters, we performed

segmentation of ten randomly selected frames from the available IVUS sequences (120

frames in total) using different values for λ and Nk, and computed the similarity of the

results with the manual segmentation by an observer using the Dice coefficient. Figure

4.2(a) depicts the result of the sensitivity analysis with respect to λ using Nk = 5 while

Fig. 4.2(b) depicts the results of the sensitivity analysis with respect to Nk using λ = 0.5.

Note that our method is robust with respect to the value of λ, while the segmentation

result remains approximately constant when λ ≥ 0.3. Similarly, note that our method is

also robust with respect to the number of Fourier coefficients.

4.1.3 DBC reconstruction sensitivity analysis

Two experiments were performed to analyze the impact of the techniques described in

Sec. 3.3.5 for the computation of the DBC reconstruction, employing a synthetic IVUS

60



(a) (b)

Figure 4.2: Depiction of the sensitivity analysis for (a) λ and (b) Nk.

RF data generated with the scattering model. The experiments were designed to analyze

the following aspects:

1. For the computation of the DBC reconstruction, we use a stochastic minimization

process on which we generate random samples of three-dimensional spatial distri-

butions of scatterers. Therefore, it is important to analyze the effect of the number

of random samples Ns used for computing the DBC for each partition.

2. The volume of the voxels Vv determine the quantity of scatterers to simulate. How-

ever, when working with real data, the actual number, size, and location of the scat-

terers is unknown. Furthermore, the time-varying blood flow and the inhomoge-

neous distribution of RBCs make it even harder to determine the spatial distribution

of scatterers. Therefore, it is important to evaluate the impact of using a scatterers’

density that is different from the actual density.
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A two-layer (i.e., luminal blood and wall) synthetic IVUS was generated using a ran-

dom distribution of scatterers spatial positions with arbitrary DBC values of σb = 1 and

σw = 30 for blood and wall, respectively (Fig. 4.3). The size of the voxels for the synthetic

IVUS data (i.e., Vv =3.37×10−3 mm3) was determined by considering an axial resolution

of 150 μm for a Boston Scientific Galaxy 2 IVUS system with a 40 MHz catheter [36].

The standard deviation of the Gaussian envelope of the pulse signal ς can be determined

by taking into account that the axial resolution is equal to one half of the spatial pulse

length (SPL) [70]. For an axial resolution of 150 μm the SPL is 300 μm which corre-

sponds to Δt = 0.194 μs considering the average speed of sound in biological tissues

c = 1, 540 m/s. Since in a Gaussian function, at six times the standard deviation we have

approximately 99% of the signal, we compute the value of ς = Δt/6. The characteris-

tics of the IVUS beam were determined considering an ultrasound transducer of diameter

D = 0.6 mm [58]. The RBC voxel density (number of RBC voxels per mm3) was deter-

mined according to the volume of a RBC modeled as a cylinder (i.e., 1.1945 ×10−7 mm3)

using the typical values of RBC diameter and thickness [17], and the typical hematocrit

Concentration (i.e., 35%). The wall voxel density was determined by modeling the wall

scatterers as cylindrical collagen fibers with a volume of 1.9792 ×10−15 mm3 according

to the measurements reported by Elbischger et al. [15]. The values for the attenuation

coefficient for lumen and wall were set to 0.2 and 0.52 dB/cm at 1 MHz as reported by

Culjat et al. [11].

To analyze the sensitivity of our method with respect to the employment of the stochastic

minimization process, the proposed method was employed to compute the DBC for each
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(a) (b)

Figure 4.3: (a) Mask employed to generate the synthetic IVUS RF data and (b) Cartesian

B-mode reconstruction of the syntectic data.

partition of the RF signal of the syntectic IVUS data using different values for the num-

ber of samplings Ns. The mean and standard deviation of the recovered DBC values for

each blood and non-blood partition were computed. For this experiment we employed the

original voxel volume, the cardinality of the neighbors was set to δ = 2, and the regular-

ization term was set to α = 0.5. Figure 4.4 depicts the mean and standard deviations of

the computed DBC value for blood with respect to the number of samplings. Note that, as

the number of samples increase the computed DBC values approximate to the value em-

ployed for generating the synthetic RF signal. Moreover, the variability on the resulting

DBC values decreases as we employ larger number of samplings.

In a second experiment, the impact of using characteristics of scatterers different from

those used to create the synthetic RF data is evaluated. In this experiment the DBC for

blood and wall was computed employing the characteristics of blood scatterers (i.e., vol-

ume and attenuation coefficient). Additionally we evaluated the sensitivity of our method
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(a) (b)

(c)

Figure 4.4: (a) Mean and (b) standard deviation of the computed DBC values for blood in

the synthetic RF data with respect to the number of samplings employed.
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with respect to different voxel volumes. Figure 4.4(c) depicts the result of this experi-

ment. Note that the computed DBC value for blood approximates to the original DBC

value when using the original voxel volume employed for generated the synthetic RF data.

The computed DBC value for wall does not correspond with the original value for all the

different voxel volumes employed. This is expected considering that we are employing

the scatterers characteristics corresponding to blood. However, we can note that the ratio

between the recovered values remains more less constant independently from the voxel

volume employed. This experiment demonstrates the feasibility of the proposed DBC

computation method for the detection of the luminal-blood even if the model is not using

the exact parameters that generates real the RF signal.

4.2 Image-based approach results

The performance of the IB method in the segmentation of IVUS B-mode Cartesian images,

was evaluated on twelve non-gated stationary IVUS sequences from two IVUS systems us-

ing different frequencies. Six sequences were acquired from human coronary arteries from

different patients using a Volcano system with a 20 MHz Eagle Eye catheter, and the re-

maining six were acquired from Rabbit’s aortas using a Boston Scientific Galaxy 2 system

with a 40 MHz Atlantis SR Catheter. From each sequence a number of consecutive frames

corresponding to regions of interest within the artery (different degrees of stenosis) were

selected and manually segmented by human observers (585 frames in total). To compare

the IB method with other existing segmentation methods, we asked three research groups

to perform segmentation in the selected data sets using their segmentation methods. The
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original IVUS data was provided to each author and they provide us with the segmentation

results. The methods used for comparison correspond to the methods presented by Unal et

al. (UNL) ([71]), Papadogiorgaki et al. (PAP) ([56]), and Katouzian et al. (KAT) ([25]).

The details of each sequence and the number of segmented frames provided by each group

are listed in Table 4.1 1.

Table 4.1: Information about the IVUS sequences and the number of segmented frames

using our method (IB), Unal’s method (UNL), Papadogiorgaki’s method (PAP), and Ka-

touzian’s method (KAT).
Sequence information Number of segmented frames

ID IVUS system Frequency Subject IB UNL PAP KAT

1 Volcano 20 MHz Human 50 50 50 48

2 Volcano 20 MHz Human 50 50 50 0

3 Volcano 20 MHz Human 50 50 50 0

4 Volcano 20 MHz Human 50 50 50 0

5 Volcano 20 MHz Human 50 50 50 0

6 Volcano 20 MHz Human 50 50 50 0

7 Boston Scientific 40 MHz Rabbit 50 50 50 48

8 Boston Scientific 40 MHz Rabbit 50 50 50 48

9 Boston Scientific 40 MHz Rabbit 50 50 50 48

10 Boston Scientific 40 MHz Rabbit 50 50 50 48

11 Boston Scientific 40 MHz Rabbit 50 50 50 48

12 Boston Scientific 40 MHz Rabbit 35 35 35 32

We performed automatic segmentation of the sequences using λ = 0.4 and Nk = 5 as

the use of these values reports the largest Dice similarity in the sensitivity analysis. The

starting point for the first frame to be segmented is defined by setting the offset coefficient

a0 to be equal to the mean of the radial coordinates of the blood samples provided by the

user. The values for the rest of the coefficients set to {ai, bi} = 0.1 ∀ i > 0. The rest of

the parameters were empirically set to τ1 = 80, and wn = 50.

The performance of the methods was evaluated by comparing our segmentation results

1The missing segmentation results were not provided by the corresponding authors.
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with the manual segmentation of the same frames by two observers. Specifically, we

computed the Dice D coefficient and the Jaccard J index between the proposed method

and the expert segmentation. In addition, we computed the Hausdorff distance [23] which

measures the maximum difference between the corresponding lumen curves.

The agreement between the areas corresponding to lumen according to each segmenta-

tion was evaluated using linear regression, coefficient of determination and Bland-Altman

analysis ([2]). The number of times the model was computed along with its total time, and

the average time for segmenting each frame are listed in Table 4.2. The mean Dice simi-

larity and standard deviation results for the comparison of both manual segmentation and

each automatic segmentation method are depicted as a box plot in Fig 4.5. The segmenta-

tion results corresponding to each of the sequences for the comparison of both observers,

and the IB, UNL, PAP, and KAT methods and both observers, are listed in Tables 4.3, 4.4,

4.5, 4.6, and 4.7, respectively.

Figure 4.6 depict the linear regression and Bland-Altman plots for the comparison of the

lumen areas corresponding to the segmentations of Observer 1 and Observer 2. Figures

4.7 to 4.14, depict the linear regression and Bland-Altman plots for the comparison of the

lumen areas corresponding to the segmentation of both observers segmentation with the

segmentation obtained with the IB, UNL, PAP, and KAT methods respectively. Note that

the linear regression results indicate a good agreement between the luminal area detected

by the IB method with the luminal area defined by the observers and less dispersion as

compared by the area detected by the other methods. Moreover, the IB method reports

a higher coefficient of determination when compared with the other methods. From the

Bland-Altman plots it can be observed that IB method perform with a low mean bias and
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Table 4.2: Average segmentation time per frame (ST), number of times that the SVM

model was trained (MT), and total SVM model training time (TT) for each sequence.
ID ST (s) MT TT (s)

1 3.04 1 3.38

2 3.43 1 4.13

3 3.42 1 3.21

4 3.14 1 7.23

5 2.71 1 2.38

6 4.21 1 9.45

7 5.11 1 8.52

8 7.08 2 33.2

9 5.75 1 9.54

10 5.15 2 24.31

11 5.16 1 13.12

12 4.55 1 13.02

less dispersion when compared with the other methods. Figures 4.15 and 4.16 depict

examples of the segmentation results for each method along with the segmentation by the

Observer 1.
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Figure 4.5: Box plot of the Dice similarity coefficient for the comparison of the segmen-

tation results in all the sequences of the proposed method (IB), Unal’s method (UNL),

Papadogiorgaki’s method (PAP), and Katouzian’s method (KAT) with the manual seg-

mentation of two observers.

Table 4.3: Mean Dice similarity, Jaccard index, and Hausdorff distance and standard de-

viations (std) for the comparison of the segmentation results of Observer 1 and Observer

2. The mean is denoted by μ and the for the standard deviation by σ.
Dice Jaccard Hausdorff

ID μ (%) σ(%) μ (%) σ(%) μ (%) σ(%)

1 94.17 2.42 89.07 4.24 8.51 3.43

2 92.92 1.86 86.84 3.23 12.88 4.11

3 90.10 3.11 82.13 5.15 15.69 4.59

4 92.73 2.96 86.58 5.04 14.35 4.24

5 92.53 3.06 86.24 5.23 14.05 5.73

6 92.53 1.79 86.15 3.06 25.09 6.51

7 96.58 1.11 93.40 2.06 7.05 2.23

8 97.67 0.51 95.45 0.98 7.56 2.12

9 96.45 1.04 93.16 1.92 12.97 4.94

10 96.35 0.96 92.97 1.78 10.54 3.68

11 97.84 0.52 95.77 1.00 5.57 1.34

12 96.46 1.03 93.18 1.92 11.99 3.59

Average 94.69 1.70 90.08 2.97 12.19 3.88
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Table 4.4: Mean Dice similarity, Jaccard index, and Hausdorff distance and standard de-

viations (std) for the comparison of the segmentation results of Observer 1 and Observer

2 with IB. The mean is denoted by μ and the for the standard deviation by σ.
IB vs O1 IB vs O2

Dice Jaccard Hausdorff Dice Jaccard Hausdorff

ID μ (%) σ(%) μ (%) σ(%) μ (%) σ(%) μ (%) σ(%) μ (%) σ(%) μ (%) σ(%)

1 92.70 1.19 86.41 2.06 10.43 2.43 92.40 1.80 85.92 3.09 9.35 2.63

2 92.19 1.48 85.55 2.53 12.02 2.78 89.64 1.93 81.27 3.15 16.05 3.27

3 92.44 2.82 86.07 4.54 12.64 4.39 90.92 3.57 83.53 5.72 13.65 4.51

4 93.21 1.98 87.35 3.44 13.93 3.34 92.55 2.14 86.21 3.64 14.24 2.87

5 93.08 3.38 87.23 5.59 13.49 5.68 92.17 2.90 85.61 4.91 14.11 4.92

6 94.65 1.32 89.88 2.35 13.98 3.26 89.83 1.48 81.57 2.44 26.61 4.39

7 92.81 3.18 86.75 5.34 11.42 4.64 92.19 3.35 85.68 5.57 11.30 3.95

8 93.85 1.48 88.45 2.60 15.49 3.87 93.58 1.50 87.97 2.62 14.84 3.80

9 93.57 1.20 87.94 2.12 13.69 3.56 93.78 1.19 88.31 2.09 12.96 3.59

10 93.16 1.81 87.25 3.18 16.37 4.27 93.10 2.00 87.15 3.49 16.02 4.17

11 92.30 1.50 85.73 2.58 12.99 3.11 92.93 1.10 86.81 1.92 11.72 2.85

12 95.50 1.96 91.45 3.45 13.74 4.58 95.22 1.87 90.93 3.32 14.32 5.28

Average 93.29 1.94 87.50 3.31 13.35 3.83 92.36 2.07 85.91 3.50 14.60 3.85

Table 4.5: Mean Dice similarity, Jaccard index, and Hausdorff distance and standard de-

viations (std) for the comparison of the segmentation results of Observer 1 and Observer

2 UNL. The mean is denoted by μ and the for the standard deviation by σ.
UNL vs O1 UNL vs O2

Dice Jaccard Hausdorff Dice Jaccard Hausdorff

ID μ (%) σ(%) μ (%) σ(%) μ (%) σ(%) μ (%) σ(%) μ (%) σ(%) μ (%) σ(%)

1 90.24 1.80 82.26 3.02 13.94 2.86 89.78 1.42 81.49 2.34 15.53 2.65

2 90.18 1.90 82.17 3.12 20.14 5.86 90.39 2.81 82.59 4.60 20.74 6.98

3 93.26 2.75 87.50 4.73 12.11 4.56 88.31 3.40 79.23 5.48 16.94 4.18

4 96.25 1.02 92.79 1.88 9.42 2.30 93.42 2.96 87.79 5.02 13.04 4.58

5 94.79 4.30 90.36 6.73 11.14 6.01 93.00 3.89 87.15 6.40 12.23 5.70

6 92.50 2.31 86.12 4.01 24.00 6.24 95.51 1.74 91.46 3.13 13.87 5.42

7 95.59 1.17 91.57 2.15 8.34 2.13 95.65 1.19 91.69 2.17 8.03 2.09

8 91.16 9.56 84.88 13.15 21.43 23.21 90.43 9.53 83.63 12.94 22.59 22.95

9 91.22 2.42 83.94 4.07 20.98 7.59 91.25 2.57 84.01 4.33 20.77 8.38

10 88.33 8.31 80.01 12.57 32.14 23.46 88.49 7.83 80.16 11.90 31.45 22.05

11 93.52 1.10 87.84 1.93 9.73 1.29 94.07 0.57 88.82 1.02 8.68 1.18

12 95.32 1.08 91.07 1.96 13.52 3.16 96.23 1.24 92.77 2.27 11.78 3.57

Average 92.69 3.14 86.71 4.94 16.41 7.39 92.21 3.26 85.90 5.13 16.31 7.48
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Table 4.6: Mean Dice similarity, Jaccard index, and Hausdorff distance and standard de-

viations (std) for the comparison of the segmentation results of Observer 1 and Observer

2 with PAP. The mean is denoted by μ and the for the standard deviation by σ.
PAP vs O1 PAP vs O2

Dice Jaccard Hausdorff Dice Jaccard Hausdorff

ID μ (%) σ(%) μ (%) σ(%) μ (%) σ(%) μ (%) σ(%) μ (%) σ(%) μ (%) σ(%)

1 70.87 3.52 54.99 4.15 46.70 5.43 70.99 3.49 55.13 4.08 48.19 6.48

2 85.62 2.95 74.97 4.50 25.68 4.34 86.41 2.53 76.15 3.89 26.18 4.91

3 89.55 2.78 81.18 4.60 16.17 3.61 88.21 2.52 79.00 3.99 18.77 4.71

4 94.66 0.89 89.87 1.60 13.07 3.14 91.11 2.73 83.77 4.46 18.63 4.27

5 92.69 10.11 87.40 11.08 14.10 21.13 92.45 9.73 86.95 11.32 13.98 20.48

6 88.74 2.03 79.82 3.19 26.51 4.78 93.47 2.67 87.85 4.51 17.75 6.16

7 85.45 9.45 75.45 10.73 25.42 31.31 84.16 9.25 73.44 10.31 26.72 31.41

8 64.08 15.80 49.05 16.77 72.30 33.58 63.53 15.75 48.41 16.51 73.77 33.19

9 86.59 13.87 78.35 16.88 43.90 64.46 87.82 14.40 80.48 17.54 39.22 65.81

10 90.09 8.83 82.84 11.22 25.53 27.87 89.45 8.78 81.77 11.16 26.64 27.43

11 90.96 7.34 84.01 9.16 20.38 30.71 91.36 7.54 84.73 9.50 19.65 31.02

12 93.60 9.91 89.06 12.23 17.11 25.18 93.30 9.95 88.56 12.29 18.28 24.96

Average 86.07 7.29 77.25 8.84 28.91 21.30 86.02 7.45 77.19 9.13 28.98 21.74

Table 4.7: Mean Dice similarity, Jaccard index, and Hausdorff distance and standard de-

viations (std) for the comparison of the segmentation results of Observer 1 and Observer

2 with KAT. The mean is denoted by μ and the for the standard deviation by σ.
KAT vs O1 PAP vs O2

Dice Jaccard Hausdorff Dice Jaccard Hausdorff

ID μ (%) σ(%) μ (%) σ(%) μ (%) σ(%) μ (%) σ(%) μ (%) σ(%) μ (%) σ(%)

1 82.73 4.19 70.75 5.82 25.36 4.11 82.87 4.64 71.00 6.50 22.32 3.39

2 N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.

3 N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.

4 N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.

5 N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.

6 N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.

7 90.21 3.38 82.33 5.53 14.75 4.23 89.49 3.50 81.15 5.69 15.43 4.69

8 89.32 4.07 80.93 6.54 23.83 9.42 88.99 4.01 80.39 6.49 25.35 9.10

9 89.62 1.67 81.23 2.74 25.59 3.59 90.73 1.94 83.08 3.26 23.53 4.69

10 88.69 3.94 79.88 6.15 22.67 9.24 88.68 3.80 79.87 5.96 24.11 9.12

11 93.32 2.17 87.54 3.77 11.77 2.50 93.93 1.78 88.60 3.13 11.22 2.04

12 89.49 2.50 81.06 4.08 23.47 5.81 88.68 2.81 79.77 4.55 24.62 6.06

Average 89.05 3.13 80.53 4.95 21.06 5.56 89.05 3.21 80.55 5.08 20.94 5.58
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4.2.1 Results on a sequence with changes in appearance

To evaluate the robustness of the IB method respect to changes in the B-mode reconstruc-

tion parameters and large lumen shape changes, we performed an experiment using a mod-

ified version of Sequence 7 where we applied first a 90◦ rotation and then changes in the

dynamic range compression every 10 frames. Figure 4.17 depicts the segmentation result

on the first frame of each modified subsequence. In this case the average frame segmenta-

tion time was 4.51 s, the model was computed four times, and the total model computation

time was 63.88 s. The mean Dice similarity of the comparison with the manual segmenta-

tion was 92.84% with a standard deviation of 2.19%. This results indicates the robustness

of our method with respect to possible changes in appearance within an IVUS sequence

due to changes in the B-mode reconstruction parameters, catheter rotations, or the natural

changes on the physiology of the vessel.

72



(a)

(b)

Figure 4.6: (a) Linear regression and (b) Bland-Altman plot for the comparison of the

lumen areas segmented by Observer 1 (O1) with the areas segmented by Observer 2 (O2).
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(a)

(b)

Figure 4.7: (a, b) Linear regression and (c,d) Bland-Altman plot for the comparison of the

lumen areas segmented by Observer 1 (O1) with the areas segmented with the IB method.
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(a)

(b)

Figure 4.8: (a, b) Linear regression and (c,d) Bland-Altman plot for the comparison of the

lumen areas segmented by Observer 2 (O2) with the areas segmented with the IB method.
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(a)

(b)

Figure 4.9: (a, b) Linear regression and (c,d) Bland-Altman plot for the comparison of

the lumen areas segmented by Observer 1 (O1) with the areas segmented with the UNL

method.
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(a)

(b)

Figure 4.10: (a, b) Linear regression and (c,d) Bland-Altman plot for the comparison of

the lumen areas segmented by Observer 2 (O2) with the areas segmented with the UNL

method.

77



(a)

(b)

Figure 4.11: (a, b) Linear regression and (c,d) Bland-Altman plot for the comparison of

the lumen areas segmented by Observer 1 (O1) with the areas segmented with the PAP

method.
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(a)

(b)

Figure 4.12: (a, b) Linear regression and (c,d) Bland-Altman plot for the comparison of

the lumen areas segmented by Observer 2 (O2) with the areas segmented with the PAP

method.
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(a)

(b)

Figure 4.13: (a, b) Linear regression and (c,d) Bland-Altman plot for the comparison of

the lumen areas segmented by Observer 1 (O1) with the areas segmented with the KAT

method.
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(a)

(b)

Figure 4.14: (a, b) Linear regression and (c,d) Bland-Altman plot for the comparison of

the lumen areas segmented by Observer 2 (O2) with the areas segmented with the KAT

method.
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Figure 4.15: Examples of automatic segmentation results for 20 MHz sequences along

with the segmentation of Observer 1 (yellow line). The images correspond to the original

frame and the segmentation results with the IB, UNL, PAP, and KAT methods, from left

to right, respectively.
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Figure 4.16: Examples of automatic segmentation results for 40 MHz sequences along

with the segmentation by Observer 1 (yellow line). The images correspond to the original

frame and the segmentation results with the IB, UNL, PAP, and KAT methods, from left

to right, respectively.
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Figure 4.17: Segmentation results on the first frame of each modified subsequence.

4.3 RF-based approach results

The performance of the RFB method was evaluated using the RF data corresponding to 600

randomly selected frames from twelve 40 MHz pullback IVUS sequences obtained from

rabbit aortas and different arteries of swine (Table 4.3) acquired with a Boston Scientific

Galaxy II IVUS system with a 40 MHz catheter digitized with a sampling frequency of

fs = 400 Mhz.

We performed the segmentation of these data employing the B-mode reconstruction from

the RF data with the IB method and with the raw RF data using the the RFB method,

and we compared the results with the manual segmentations from an observer (O) on the

selected frames. The evaluation consisted in comparing the areas of the lumen region
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by computing, for each pair of segmentations, the Dice similarity coefficient (Fig. 4.18),

the Jaccard index (Fig. 4.19), and by performing linear regression (Fig. 4.21), and Bland-

Altman analysis (Fig. 4.22). Additionally, we computed the Hausdorff distance to measure

the largest distance between the lumen contours (Fig. 4.20). The parameters employed for

the segmentation of these frames are listed in Table 4.9.

Table 4.8: Information about IVUS-pullback sequences used for validation.

Sequence Swine/Rabbit IVUS system Artery Number of segmented frames

A Swine A LAD 50

B Swine A Carotid 50

C Swine A RCA 50

D Swine A Illiac 50

E Swine A RCA 50

F Rabbit A Aorta 50

G Rabbit A Aorta 50

H Rabbit B Aorta 50

I Rabbit B Aorta 50

J Rabbit B Aorta 50

K Rabbit B Aorta 50

L Rabbit B Aorta 50

Figure 4.23 depicts examples of the segmentation results. Note that the performance of

our method is comparable with the performance of the expert observer.
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(a)

(b)

Figure 4.18: Dice coefficient results per each sequence for (a) the image-based and (b) the

RF-based segmentation approaches.
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(a)

(b)

Figure 4.19: Jaccard index results per each sequence for (a) the B-mode-based and (b) the

RF-based segmentation method .
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(a)

(b)

Figure 4.20: Hausdorff distance results per each sequence for (a) the image-based and (b)

the RF-based segmentation method .
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(a)

(b)

Figure 4.21: Linear regression for the comparison of lumen areas corresponding to the

segmentation performed by the (a) the B-mode-based (IB) and (b) the RF-based (RFB)

segmentation approaches, and the expert observer (O).
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(a)

(b)

Figure 4.22: Bland-Altman plots for the comparison of lumen areas corresponding to the

segmentation performed by the (a) the B-mode-based (IB) and (b) the RF-based (RFB)

segmentation approaches, and the expert observer (O).
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Figure 4.23: Examples of automatic segmentation results for the RF-based method. The

yellow and red contours corresponds to the segmentations performed by the observer and

the proposed method, respectively.
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Table 4.9: Parameters used to generate the synthetic IVUS RF data.

Parameter Value

c 1,540 m/s
μ 0.2 dB/cm at 1 MHz
Vv 3.37 ×10−3 mm3

RBC volume 1.1945 ×10−7 mm
f 40 MHz
fs 400 MHz
D 0.6 mm
ς 3.2468×10−8
NT 5

α 0.4

Ns 100

δ 2

ps 0.05 mm

4.4 Results on IVUS images with artifacts

Shadows may appear on the IVUS images as dark regions representing of low acoustic

impedance. In general these artifacts are generated by calcified plaque or a region of

tissue with low acoustic impedance proximal to the vessel. Shadows represent a challenge

for 20 MHz sequences because the low echogenicity of blood at this frequency generates

gray level distributions on similar to those regions corresponding to shadows. However,

since in our approach the lumen region is constrained by a curve it is not affected by these

artifacts as long as there is a region with texture different from the lumen. Figures 4.24(a),

4.24(b) and 4.24(c) depicts a 20 MHz cases presenting shadows proximal to the vessel

lumen. Note that, the IB method was able to provide an accurate segmentation because

the existence of regions between the lumen and the shadow which constrain the evolution

of the curve. Similarly, Fig. 4.24(d) depicts a 40 MHz case which presents a large shadow
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proximal to the vessel lumen. Note that for this case, the IB method was able to provide an

accurate segmentation because of the evident difference between the texture of the lumen

and the shadow region. In general, shadow artifacts do not represent a challenge for 40

MHz sequences since the gray level intensities of the speckle present in blood are different

from the homogeneously dark shadow regions.

Side branches are identified as the opening formed when the vessel being imaged bifur-

cates. This is visualized as an area with similar texture extending from the lumen in the

near field towards the far field. Side branches represents a challenge for any segmentation

method and in some cases even for observers because of the lack of an apparent change in

the regions that indicates a change of interface. For these cases, the IB and RFB methods

are not capable of providing a segmentation result similar with the segmentation of an ob-

server. Figure 4.25 depicts an example of one case presenting a side branch with origin in

the lumen. In this example, the curve that defines the lumen/wall interface of the proposed

methods move through this region because the cost function is designed to keep inside the

contour as much region corresponding to blood possible.

Similarly, for cases presenting regions of the vessel wall adjacent to the lumen contour

with texture similar to the texture depicted in the lumen, the lack of an apparent change

in the regions represents a challenge for automatic segmentation methods and observers.

The IB method may produce inaccurate segmentation results in this cases. Figure 4.26

depicts an example of two 40 MHz frames in which the texture of the lumen is similar to

the texture of a region of the wall. In these cases the IB method performed incorrectly.

Guidewire artifacts are produced by the reverberation of the guidewire when interacting

with the ultrasound beam. Depending on the location of the guidewire with respect to
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(a) (b)

(c) (d)

Figure 4.24: Segmentation results examples of (a, b, c) 20 MHz and (c) 40 MHz IVUS

images with shadow artifacts. The arrows indicate the regions corresponding to shadows.

The Dice similarity score for each frame is: (a) 93.78%, (b) 94.72, (c) 94.32%, and (d)

95.64%.
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Figure 4.25: Segmentation results examples of (a) a 20 MHz and (b) a 40 MHz IVUS

images depicting side branches. The Dice similarity score for each frame is: (a) 91.48%

and (b) 86.66%.

(a) (b)

Figure 4.26: Example of two frames of a 40 MHz sequence in which the texture of the

lumen is similar to the texture of a region of the wall. The red line corresponds to the

automatic segmentation, while the yellow line corresponds to the manual segmentation by

the expert observer. The Dice similarity score for each frame is: (a) 88.72%, (b) 77.23%.
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the ultrasound transducer, these artifacts appears in the IVUS images as bright thick spots

or as series of partial rings followed by more distant shadowing behind the wire posing

a challenge for the segmentation methods. Figure 4.27 depicts the segmentation results

on images that present guidewire artifacts. Note that the IB method is capable to provide

accurate segmentation results (Figs. 4.27(a), 4.27(b), and 4.27(c)). However, for some

cases where there is a region of the lumen occupied by the artifact the proposed methods

may perform incorrectly (Fig. 4.27(d)).

4.5 Discussion

The segmentation of IVUS images is an important yet difficult and time-consuming task

necessary for the diagnosis and treatment of CAD. The proposed probabilistic segmen-

tation method provides a semi-automatic tool to perform segmentation of the lumen/wall

interface in IVUS data that can be used to help the physicians to reduce the time and effort

required to analyze a sequence.

The IB method based on the analysis of the texture depicted in the region of the lumen and

wall in the IVUS B-mode reconstructions. While the gray level intensity distribution of the

IVUS images depends on the system and acquisition parameters, the proposed segmenta-

tion method implements an strategy for computing statistics of the gray level distributions

of the sequence to segment allowing its use on IVUS sequences acquired with different

IVUS systems and B-mode reconstruction parameters without the need of any parameter

tuning. Note that the performance of the B-mode-based approach are closer and more con-

sistent with the manual segmentation and represent a statistically significant improvement
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(a) (b)

(c) (d)

Figure 4.27: Segmentation results example of 40 MHz IVUS images with guidewire arti-

facts. The arrows indicate the guidewire artifact. The Dice similarity score for each frame

is: (a) 94.32%, (b) 95.22%, (c) 93.38% and (c) 93.38% and (d) 89.21 %.
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as compared with the other existing segmentation methods. The linear regression results

indicate a better agreement between the luminal area detected by the proposed method

with the luminal area defined by the observer when compared by the area detected by

the other methods and higher coefficient of determination when compared with the other

methods. From the Bland-Altman plots it can be observed that the proposed method per-

forms with a low mean bias and less dispersion when compared with the other methods.

While the average Dice similarity results of the proposed method and Unal’s method are

comparable, the proposed method presents a consistently smaller standard deviation which

means that our method is more stable. In contrast to other methods, the proposed method

does not require any supervised parameter tuning when changing between sequences with

different IVUS frequencies or B-mode reconstruction parameters.

The RFB method is naturally robust with respect to the variability on the gray level in-

tensity distribution of the IVUS images since it relies in the use of the un-processed RF

signal. When comparing the segmentation results of the IB and RFB methods, it can be

noted that the results of the RFB method exhibit less dispersion than the IB method. This

is an indication that the DBC reconstruction provides a better way of characterizing the

regions of interest in the IVUS data as compared with the B-mode reconstruction. Figure

4.28 depicts the comparison of the segmentation provided by an expert observer and the

segmentation results employing both methods. Note that the RFB approach performs bet-

ter since the likelihoods computed using the DBC reconstruction provide better estimates

of the lumen and non-lumen regions.

The main novelty of the RFB method is the use of a physics-based approach for the lu-

men segmentation problem which represents a new paradigm for the analysis of the IVUS
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(a) (b) (c)

(d) (e) (f)

Figure 4.28: Examples of segmentation of lumen by an observer in (a) the polar and

(d) Cartesian B-mode representations. Segmentation results using the IB method in (b)

the luminal blood likelihood and (e) the Cartesian B-mode representation. Segmentation

results using the RFB method in (c) the luminal blood likelihood and (f) the Cartesian

B-mode representations. The red line indicates the lumen region.
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data as compared with existing methods which makes use of arbitrary image or RF-based

descriptors. The main advantage of our method when compared with B-mode-based seg-

mentation methods is that the method based on this approach is not affected by the B-mode

reconstruction parameters since it is based on the analysis of the RF signal instead of the

gray level distributions of the B-mode reconstructions which are depending on the charac-

teristics of the IVUS systems and the B-mode reconstruction parameters. Other possible

application of the proposed DBC reconstruction method using the scattering model may

include the characterization of plaques. While there may be a concern regarding the avail-

ability of the RF signal, note that recent IVUS systems available in the clinic are capable

of providing the RF data.

The main two parameters required for the proposed segmentation methods are the number

of Fourier coefficients for the lumen contour parameterization Nk, and the value λ of the

sigmoid function that is used to determine the prior probabilities of each pixel to belong to

lumen or non-lumen. The computation of the likelihoods for blood and non-blood in the

B-mode approach does not require additional parameters to be defined. However the RF-

based approach require the definition of the values for the size of partition ps and the car-

dinality of the neighbor partitions δ used for the regularization of the DBC-reconstruction.

The optimal values for these parameters were found experimentally and used to generate

all the results presented in this dissertation. In practice, the user of the proposed segmen-

tation method does not require to perform any modification of these parameters.
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4.5.1 Limitations

The main limitation of the proposed segmentation method is the requirement of an expert

user intervention in order to provide accurate annotations from the blood and non-blood

regions in frames of the sequence to segment. Incorrect samples from blood and non-blood

could result in an incorrect segmentation. Therefore, this initialization must be performed

by an observer familiarized with the IVUS data. It is recommended to select at least

50% of the region corresponding to lumen and most of the region adjacent to the lumen

corresponding to non-lumen.

Fully automatic approaches rely on the use of a priori information collected from train-

ing database consisting of high number of different IVUS cases. However, since the B-

mode reconstruction relies in a highly subjective process, it is necessary that this training

database is large enough to account for all the different appearances that an IVUS image

can have. We could transform IB to fully automatic by performing the computation of the

SVM models using blood and non-blood samples from a large training data set of different

IVUS images. However, the main limitation of fully automatic methods is that they rely

on the use of large training set databases for estimating the models of the gray intensity

levels of the regions of interest. In order for these models to be robust, it would be neces-

sary that this training database is large enough to account for all the different appearances

that an IVUS image can have, including different visualization parameters. With respect

to the RFB method, the initialization requirement is also necessary considering that the

DBC reconstruction values for blood depends on factors such as the speed of blood flow

that may be different depending on the size and location of the vessel that is analyzed,

and the hematocrit concentration which may also vary from one subject to the other. For
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this method to be fully automatic, it would also be necessary to employ a large data set of

different IVUS cases.

The second limitation of the proposed methods relates with the inaccuracy of the segmen-

tation result in the presence of artifacts in the IVUS images as discussed in Sec. 4.4. This

limitation could be solved with the prior detection of the artifacts by the incorporation of

further classes into the segmentation problem (e.g., ([71])).

4.5.2 Future work

An option to improve the results of the proposed segmentation method with respect to its

limitations, is to adapt the computational methods in order to allow an interactive segmen-

tation on which an automatically generated segmentation is provided to the user which

is then allowed to perform modifications on the lumen curve. An extension of this solu-

tion is to implement an active learning approach on which the computational segmentation

method is capable of learning the characteristics of the cases for which the segmentation

was incorrect and then apply the correction performed by the user on the frames which

presents the same characteristics.

The proposed probabilistic segmentation cost function of Eq. (3.5) is based on the use of

the Kerridge’s inaccuracy measure. However, the use of other similarity measurements

(e.g., Euclidean distance and Q-dissimilarity) could also lead to correct segmentation re-

sults.

Future work includes improvements on the classification of the region of interest by the
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exploration of additional features, adding robustness with respect to side branches and arti-

facts by the incorporation of additional classes (e.g., guidewire, shadows, plaque, and side

branches), segmentation of the media/adventitia interface, the use of temporal information

(i.e., 3D-approach), and the use of alternative models of the RF signal.
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Chapter 5

Conclusion

This dissertation has presented a probabilistic framework for the segmentation of the lu-

men/wall interface from IVUS data consisting of two methods. The IB method incorpo-

rates texture information by using the prediction of an SVM classifier model. This step

enable the segmentation of IVUS images from different frequencies (i.e., 20 and 40 MHz)

without the need of adjusting any parameter, and it makes the proposed method robust

to the problem of variability of IVUS image appearance. The RFB method represents a

change of paradigm for the IVUS segmentation problem on which we consider the physics

of the interaction of the ultrasound beam with the structures of the vessel as opposed to

the traditional image-analysis based approach.

It is our hope that the proposed computational methods presented in this dissertation pro-

vide significant advancement towards the segmentation of IVUS data, and to the field of

intravascular imaging in general.
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