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ABSTRACT 

My dissertation consists of two essays, both leveraging data from Google Shopping 

Insights in developing models for forecasting online shopping searches, a critical precursor of 

sales. The first essay presents a novel Bass-type diffusion model for forecasting online shopping 

searches of rapid life cycle (RLC) products. The most important innovation of my model is that 

it allows for imitation/contagion effects to take place through dual channels: a ‘local’ channel of 

influence mainly through direct, in-person interactions (e.g., schoolmates, colleagues, neighbors) 

and a ‘national’ channel of influence mainly through social media (e.g., YouTube, Instagram, 

Facebook). To separate the effects of these two channels of influence, I leverage the fact that 

data from Google Shopping Insights is at the city level, which allows me to model consumer 

shopping searches in a particular month and city as a function of not only past searches in the 

city but also past searches in the rest of the country. The former is treated as a proxy for the 

amount of local influence, while the latter a proxy for the amount of national influence. 

Empirical estimates suggest that imitation/contagion can indeed take place through both local 

and national channels, with their relative importance varying across products. When influence 

from the national (local) channel dominates, the diffusion curve tends to be steeper (flatter), 

which provides support for the idea that imitation/contagion through social media, compared to 

in-person interactions, shortens the product life cycle. Another important feature of my model is 

that it allows for rapid decay in the influence of prior adopters. Empirical estimates show that, 

for most RLC products, the influence of prior adopters drops drastically after just one month. 

The second essay develops a “Big Data” solution to the so-called ‘cold start’ problem in 

forecasting, where insufficient longitudinal information prevents one from extrapolating 

historical patterns into the future with standard time series methods. The innovation of my 
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solution is to mitigate the cold start problem by compensating for the lack of longitudinal data 

with the abundance of data from a large number of cities and products in Google Shopping 

Insights that can serve as training samples. My solution adopts a fusion of multiple methods for 

identifying similar products, and then leverages the spatiotemporal patterns of those similar 

products in the holdout period to forecast city-level growth in online shopping searches for the 

focal product. Extensive empirical comparisons suggest that my solution outperforms the 

benchmarks. Furthermore, I find that a bigger training sample is not always better: a gradual 

increase in the size of the training sample first improves and then counterintuitively reduces 

forecasting performance. I attribute this finding to the fact that the incremental predictive value 

of additional training data diminishes as the sample size increases, while the proportion of noise 

remains. As a result, methods commonly used for variable/feature selection fail to remove the 

added noises, resulting in over-fitting and thus deteriorating forecasting performances. This 

finding cautions that, even in the “Big Data” era, all else being equal, the bigger the training data 

is not necessarily the better when it comes to forecasting demand growth for new products. 
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CHAPTER 1.    Modeling the Diffusion of Online Search Interests in Rapid Life Cycle 

Products 

Introduction 

The wide adoption of social media overcomes physical boundaries and connects people. 

As a result, new product information in such an interlinked society spreads much faster among 

consumers (Shapiro and Varian 1998). This creates a positive feedback loop that facilitates the 

rapid development of new trends and shift of consumer tastes. In such a climate, I have 

witnessed some fascinating new products. Take the fidget spinner as an example – in a matter of 

months, it rose to stardom, dominating the air waves and at one point accounting for 20% of the 

toys and games sold online in the U.S., and then just as rapid as its upsurge, it fell out of 

consumer favor. Figure 1.1 illustrates the fidget spinner’s rise and fall in Google search index 

(Panel A) and sales (Panel B). 

[Insert Figure 1.1 about here.] 

Despite their short life spans, such products, often characterized by a greatly accelerated 

life cycle (Anderson and Zeithaml 1984), are not failures. They are indeed splashing successes – 

consumers bought tens of millions of fidget spinners, worth hundreds of millions of dollars (The 

Economist 2017). Although the phenomenon of rapid life cycle (RLC) products isn’t new (e.g., 

Pet Rock 1975-1976) 1, the acceleration of information dissemination in social media has created 

the soil for making their cycles shorter and more importantly, their occurrences far more 

frequent, from being merely incidental to predictably recurrent. To name a few examples, over a 

short period of time between 2015 and 2017, the fidget spinner, adult coloring books (No. 1 and 

2 bestselling books on Amazon in April 2015, Flood 2015), and L.O.L. Surprise! (No. 1 toy in 

 
1 Such a short-lived trend that happened for no apparent reason is often referred to as a “fad” (Bikhchandani, 

Hirshleifer, and Welch 1992). In this paper, I refer to such products by their key characteristics of rapid life cycles. 
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the U.S. through November 2017, Semuels 2018) all experienced substantial national level 

successes and then fizzled out. Consequently, given the scale and regularity of modern-day RLC 

products, it can become worthwhile for businesses to tap into the constant emergence of such 

rapid trends and build a business model to plan around them. That said, chasing an explosive 

trend like the fidget spinner was not risk free. Zing, a toy company located in Portland, Oregon, 

noticed the trending hashtags related to fidget spinners and jumped onto the bandwagon. 

Although at the beginning its fidget spinners were sold out immediately, four months after June 

2017, the trend had completely faded away, and companies like Zing were left with a large 

amount of inventory (Nicolaou 2017). 

The volatility of RLC products poses various modeling challenges, because the lead time 

is short, the number of potential leads is high, and their paths to popularity differ markedly. 

Piecing together the full cycle of an RLC product at its budding stage can be a tall order. The 

default solution in marketing, often rooted in the Bass model (Bass 1969), intends to resolve the 

long range forecasting problem for durables. While the three-parameter Bass model doesn’t 

require many periods of observations to implement, its parameters are time invariant, weighing 

the recent and distant past observations equally. This makes the model insufficiently adaptive to 

more recent changes when the diffusion process progresses rapidly. In practice, marketing 

research analysts often have to rely on other analogous products, with their full diffusion cycles 

known, to fine tune their forecasts in order to ensure performance (Lilien and Rangaswamy 

2004). Given the distinct nature of RLC products, however, analogies are not obvious to spot. 

Recent developments in trend forecasts, such as the quantitative trend spotting method based on 

dynamic factor analysis (Du and Kamakura 2012), require a relatively long period of 

observations, a luxury often unavailable for RLC products. In this paper, I aim at filling the gap 
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in the literature by leveraging on a spatiotemporal data from the Google Shopping Insights (GSI, 

https://shopping.thinkwithgoogle.com/) to develop a parsimonious and yet informative model for 

tracking the online shopping search interests in RLC products. The GSI data is granular 

comparing to what’s common in diffusion models. It contains a large number of products, 

instead of the usual one or two. In addition, it tracks hundreds of cities in the U.S. With this data, 

instead of sales, I focus on the diffusion of shopping search interests, a measure shown in both 

Figure 1.1 and previous research to be closely associated with product sales (Du, Hu, and 

Damangir 2015; Hu, Du, and Damangir 2014). Comparing to the Bass model, my model 

performs well in capturing both the timing and peaks of the shopping search history of various 

RLC products and is able to significantly improve the forecast accuracy for out-of-sample 

holdout products. 

I arrange the remainder of the paper as follows. First, I detail the full product life cycle of 

the fidget spinner to provide a general descriptive characterization of RLC products. Then I 

explain the data, model development, and results, followed by applying the model to forecast the 

life cycle of two holdout products. Finally, I discuss the managerial implications and caveats of 

my model.  

 

Characterizing a Rapid Lifecycle Product 

As shown in Figure 1.1, the fidget spinner is one of the most well-known among the RLC 

products. In this section, I use the fidget spinner as an example to illustrate the diffusion process 

of a rapid cycle product and summarize the key characteristics of such products.  

The fidget spinner, originally considered to help children with attention-deficit 

hyperactivity disorder, stormed the market instead as a novelty toy in 2017. A vast amount of 

publicity received by fidget spinners was through social media and various online channels (The 

https://shopping.thinkwithgoogle.com/
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Economist 2017). This information diffusion process also manifests itself in the form of online 

searches. As shown by the data from the Google Trends (https://trends.google.com), Figure 1.1, 

Panel A illustrates the Google search index for the keyword “fidget spinner” over time. The 

interests started the major uptick at the beginning of 2017, followed by a sharp surge that peaked 

in early May of the same year. By the end of 2017, the search interests all but vanished. Figure 

1.1, Panel B (note for the different time span from Panel A) illustrates the online sales of the 

fidget spinner, which had a similar upsurge process and peaked in May 2017. At its apex, all 20 

of the top selling toys on Amazon were fidget spinners or their mutations. By any measure, its 

market size was in the magnitude of hundreds of millions of dollars, enviable even for a large toy 

manufacturer. Importantly, despite its popularity, the fidget spinner has never seen its days in 

advertising on national TV (The Economist 2017). 

To recap the case of the fidget spinner, I conclude with two characteristics that define an 

RLC product. First, an RLC product is rarely a necessity, or even a utilitarian product. Like the 

fidget spinner, the factors that drive the decision to purchase such a product can often be novelty, 

impulses, or even the social needs to blend in with a group. This is perhaps the main reason why 

the sales cycle can pick up and spread quickly but is lack of a utilitarian anchor to sustain itself. 

Consequently, the life cycle of such a product, measured in weeks or months, is usually 

composed of both a sharp rise and a deep downfall of consumer interests. It is very different 

from a typical durable good with a more sustained life cycle measured by years or decades. 

Second, the diffusion of an RLC product is often a grassroots movement, starting from 

consumers and gradually responded by manufacturers. As a result, social media, instead of mass 

market advertising campaigns plays a significant role in spreading the trends. Given the 

borderless accessibility of new media such as Facebook, Instagram, Twitter and YouTube, 

https://trends.google.com/
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information diffusion at the national level can be a leading influence for the takeoff of the 

product life cycle. Because of such grassroots nature, information cascades plays of a major role 

in the diffusion process (Bikhchandani, Hirshleifer, and Welch 1992). It is not surprising that the 

crowd would eventually move on to the other novel things.  

 

Data 

I acquired the data from the Google Shopping Insights, a business intelligence platform 

launched in 2014. With this data, I are able to track fifteen RLC products introduced in the U.S. 

market between January 2014 and March 2018. Google aggregates the shopping related searches 

for each product at https://google.com and https://google.com/shopping, and creates a “shopping 

search interests” measure, which is closely associated with the actual search volume.2 Google 

aggregates queries like “best fidget spinner”, “fidget spinner deals”, and “fidget spinner price” 

all to the product “fidget spinner”.3 Out of the fifteen RLCs products, I use thirteen of them to 

calibrate the model and leave two as out-of-sample holdouts. I aggregate the search interests at a 

monthly level. In total, my data covers 51 months between January 2014 and March 2018. 

The product search interests are from the most populated 60 Census designated places in 

the United States with a population size larger than 300,000. The Census designated places are 

often delineated around concentration of population, housing, and commercial structures. With 

my relatively high population threshold, they are typically cities (hereafter I refer to my unit of 

geographic measure as a “city” instead of a Census designated place). The largest city in my 

 
2 Google doesn’t explicitly define the “shopping search interests” measure as a straight sum of the actual shopping 

related search volume. However, from all the evidence I see, it closely tracks the actual volume. Unlike the Google 

Trends data, which is indexed to a maximum of 100 for each keyword or set of keywords, the GSI data I use is 

scaled and comparable across products. 
3 https://shopping.thinkwithgoogle.com/faq 

https://google.com/
https://google.com/shopping
https://shopping.thinkwithgoogle.com/faq
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sample is New York City, New York, with a population of 8.37 million and the smallest is 

Anchorage, Alaska, with a population of 301 thousand.  The total population in these cities is 

approximately 53 million, or 17% of the U.S. population, a caveat that I discuss more 

extensively in the conclusion. 

Not surprisingly, bigger cities tend to have higher search interests, on all the products. 

Instead of using this absolute measure, I transform search interests into the penetration of search 

interests, as normalized by the population of the city. In Equation 1.1, I define the penetration of 

search interests4, sijt, as the search interests per 100,000 people for product i (i = 1, …, I) in city j 

(j = 1, …, J) during month t (t = 1, …, T): 

  sijt =
(Search Interests)ijt × 100,000

Populationj
 

(1.1) 

The point of initial product introduction or even awareness may sound like an appealing 

time point to start tracking the diffusion process and producing forecasts for the RLC products, 

as it seemingly would lead to early market intelligence, something very desirable given my 

goals. This is however not true. As Golder and Tellis (1997) show, the two common reasons why 

the launch point isn’t a good point for forecasting are: 1) Many products fail before they have 

been widely adopted by the public. Those unsuccessful products would only bring more noise to 

the model. 2) Although some products do succeed in the end, their diffusion processes can be 

accompanied by a long and slow acceptance pattern at the beginning. The large increase in sales 

only happens when the number of adopters has accumulated to a certain degree. They define the 

time point of the transition from the introductory stage to the fast growth stage as the “takeoff”, a 

critical time point in the life cycle of a new product that is associated with all aspects of 

 
4 Hereafter I refer to sijt as “search interests”. 
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manufacturing, financing, marketing, product distribution, and inventory management. It also 

has important implications to whomever responsible for making the decision to promote the new 

products (Tellis, Stremersch, and Yin 2003). 

Therefore, the length of the introductory stage can vary greatly. Since the sales or search 

interests are not stable in this stage, the data availability is also a problem. Perhaps as a result, 

the marketing literature on modeling takeoff is very limited. One of the most widely 

implemented is the aforementioned descriptive definition by Golder and Tellis (1997), that the 

takeoff is the beginning of a new phase in the sales history of a product, marked by rapid growth. 

They model the takeoff as a linear function of the baseline sales and growth rate in sales. 

Specifically, the takeoff pattern is characterized by a large percentage increase in sales when the 

base level sales is small, or contrariwise, a small percentage increase in sales with a relatively 

large base level sales. They calibrated the model using consumer durables such as color 

television, clothes dryer, and microwave oven.  

To apply the takeoff model to the RLC products in my sample, I first calculate the 

monthly growth rate and highlight the big jump in growth after introductory. For most of the 

RLC products, the threshold rule can seamlessly apply. Figure 1.2, Panel A illustrates the 

application of the threshold rule to the fidget spinner. The line represents the monthly shopping 

search interests before it reaches its peak. I observe a sizable jump in search interests between 

September and October 2016. Consequently, I code the month September 2016 as the takeoff 

point of the fidget spinner. 

[Insert Figure 1.2 about here.]  

Universally applying Golder and Tellis (1997) to model the takeoff of all the RLC 

products, however, may incur two problems. First, they measure the takeoff rule on a yearly 



16 

basis. The annual adoption growth is relatively stable for durables and their life cycles can last 

for decades. In my research, the adoption process updates on a monthly basis because of the 

rapid life cycle. With RLC products’ narrow observation time windows, the data becomes even 

more sparse and susceptible to random shocks. Second, I face the risk of seasonal surges that 

falsely signal the takeoff. It is especially important to eliminate the temporary sales rises caused 

by seasonality. Simply using the first large growth as the takeoff signal can increase the risk of 

false takeoffs. 

As an example, Figure 1.2, Panel B shows the takeoff pattern for the adult coloring book. 

Two sizable jumps in search interests exceeded the threshold after introduction. The first takeoff 

point, followed by a drop in search interests, would have been defined as the takeoff per Golder 

and Tellis (1997). There is however, a second takeoff point, from where the search interests 

never looked back during this time window. Thus, the second time point is a more appropriate 

choice for the takeoff of the adult coloring books. By modifying the threshold rule concept 

introduced by Golder and Tellis (1997), I make the framework flexible enough for all the RLC 

products. Specifically, my approach requires the search interests to increase continuously in the 

period right after takeoff, not just an isolated uptick. This requirement ensures that seasonality or 

unexpected events are not the sole cause of the jumps in search interests. 

Figure 1.2, Panel C shows, for all the takeoff points, the scatter plot between the search 

interests and the growth rate measured by the change in search interests. Given the curvilinear 

relationship between these two, I revise Golder and Tellis (1997)’s linear method to fit a two-

parameter curve (Equation 1.2), which yields better performance in forecasting. To define the 

takeoff point, the actual growth rate of the search interests for product i in city j must be above 

the curve described by sij0  declining at an exponential rate of -1.1, adjusted by a constant factor 
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27,000 (Equation 1.2).  

   Growth Rateij = 27000 × sij0
−1.1 (1.2) 

For each RLC product, I only use the twelve-month time window after the takeoff to 

calibrate the model. Prior to the takeoff, the search interests in many cities tend to be intermittent 

and unreliable due to sparsity. I truncate the data after the twelfth month of takeoff, as the 

dominating search interests have all but fizzled out by this point. Table 1.1 reports the takeoff 

and peak months for each product in my sample. For instance, the fidget spinner took off in 

September 2016 and the diffusion process peaked in May 2017. The longitudinal history of the 

search interests is largely consistent with that of online sales (Figure 1.1). The most common 

takeoff months are July, August and September. The most common peak month is December.  

In Table 1.1, I also report the summary statistics of sijt for each product. The fidget 

spinner has the highest peak search interests of 157,739 per 100,000 people. The zero minimum 

search interests happened because some of the RLC products lost search interests almost entirely 

towards the end of their twelve-month window. I leave two products, Doc McStuffins Mobile 

Cart and J-Animals, as the holdout samples to evaluate the performance of my forecasting 

model. The takeoff month was July 2014 for both products.  

 

Model Development 

I extend the Bass model to capture several key characteristics of the diffusion process of 

RLC products. Consider the classic Bass model, where the probability of purchasing during time 

period t, f(t), given that no purchase has happened yet is a function of F(t), the cumulative 

distribution function of f(t). 
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f(t)

1 − F(t)
= p + qF(t) (1.3) 

where the innovation parameter p and imitation parameter q are both constants over time.  

First of all, given the rapid pace of the product life cycles I model, an RLC product 

adopter’s attention span is likely to be short as they quickly move on to the next “new thing”. 

Reflected in the Bass model, the imitation effect may no longer be static. Easingwood, Mahajan, 

and Muller (1983) relax the assumption that the rate of the imitation effect in the Bass model is 

constant over time. They propose a non-uniform model by allowing the imitation effect to vary. 

They use a shape factor to capture the degree of influence from early adopters. When the shape 

factor takes different values, it allows the diffusion process to accelerate, decelerate, or stays 

constant as in the Bass model. A different approach, taken by Sharma and Bhargava (1994), 

compares the influence from the distant past adopters to that of the recent past adopters. By 

allowing unequal weights on their imitation coefficients, they find the adopters in the recent past 

to be more influential. They further quantify the decay rate of the influence to be 0.25 a year, 

suggesting that the dominating imitation influence comes from those who adopted during the 

past year or two. In the same spirit, I differentiate the search interests of the most recent month 

from the more distant months. I model the imitation effect of as composed of two parts: the 

lagged search interests right before the focal time period t, during t-1, and the lagged cumulative 

search interests from the more distant past, up until t-2. The binary discretization of the imitation 

effect gives the model the flexibility in capturing the time decay of the early adopter’s influence, 

and at the same time avoids over burdening the model by making the number of such parameters 

increase with each additional period. 

Second, when the diffusion process is limited to a few months, the surge of search 

interests can easily overlap with the holiday season during November and December, particularly 
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for novelty products and toys whose introductions are often planned ahead for sales towards the 

end of the year (Kurawarwala and Matsuo 1996). With durables, one could aggregate the data to 

the annual level to remove seasonal fluctuations (Venkatesan, Krishnan, and Kumar 2004). 

Without meaningful lagged annual seasonal data, as long range forecasting can often depend on, 

the seasonality of RLC products becomes entangled with their diffusion process. Twelve out of 

thirteen products in my data sample had their search interests peaks in November or December 

(Table 1.2). Another approach, used in the generalized Bass model (Bass, Krishnan, and Jain 

1994) is to control for seasonality with dummy variables. However, in the context of search 

interests, the seasonal swings have been expanding overtime (Figure 1.3), making it insufficient 

to conduct seasonal control through dummy variables. Radas and Shugan (1998) use a 

transformed-time method to adjust for seasonality. Their method accelerates the product life 

cycle during peak seasons. When off-peak, the product ages more slowly along the life cycle. 

Base on this setting, Peers, Fok, and Franses (2012) modify Radas and Shugan (1998) by 

estimating the seasonal structure based on the proportion that each month contributes during the 

seasonal peak. Both approaches come at a cost, as they require a complete diffusion cycle to 

estimate the monthly proportion and diffusion pattern. As the lifespan of an RLC product is 

usually much shorter than twelve months, a meaningful forecast may need to start as early as two 

months after the initial takeoff. Since the complete life cycle used in these methods is no longer 

an option for us, I instead rely on the total category search interests, deducting those of the focal 

product, to separate the seasonal movements from the diffusion cycle. 

[Insert Figure 1.3 about here.] 

Third, the information diffusion process of RLC products happens in multiple cities 

simultaneously. With digital media, the dependence of the neighborhood effect (Bronnenberg 
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and Mela 2004; Mahajan and Peterson 1979; Redmond 1994) on physical proximity weakens. 

Garber et al. (2004) argue that the formation of a successful spatial diffusion is the joint work of 

two forces. The external signal (more national or global) after arriving at the focal location, must 

be spread by the internal force (more local) in order to complete the diffusion process. Following 

this line of consideration, my model takes advantage of the spatial granularity of the data from 

the GSI and untangles the driving force of diffusion as from dual channels: local and national. 

From the local channel, the influence can come from direct exposure to product adoptions by 

family, friends, colleagues or neighbors, and can happen in person, by traditional means such as 

local TV, or from local friends on social media. From the national channel, the influence can be 

national TV, widely distributed publishing products such as newspaper – online or printed, and 

particularly social media. Such a dual-channel framework allows us to simultaneously address 

two layers of variations in diffusion that are interlaced together: for a product, different cities can 

inherently have different rates of diffusion; and the contamination of information across cities, 

especially with social media, can happen beyond the border contingency at a national level. With 

this setting, I can answer some important managerial questions: 1) which channel has a stronger 

influence on the rate of diffusion? 2) At the early stages of an RLC, local level signals can be 

spotty. Does including the national channel provide the wisdom of the “crowd” and improve the 

forecast performance? 

Finally, given my goal to create a model valuable for practitioners, I need the model to be 

able to start picking up signals at an early stage when the data is still limited – with one or two 

months. Therefore, I set up the model in a hierarchical Bayesian framework to pool information 

across different RLC products. With my model, product managers can find a convenient tool, 

taking advantage of the data from a free platform by Google, enabling them to plan on new 
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products long – by RLC standard long – before the full sales potential is realized. 

 

Model 

I model the search interests for product i in city j during month t, sijt, to follow a normal 

distribution: 

 sijt~N(μijt, σ2) (1.4) 

where the mean of the distribution μijt is guided by a diffusion process, akin to the Bass model, 

as a function proportional to the overall search interests potential mij deducting the lagged 

cumulative search interests Sij,t−1 (Equation 1.5). 

 μijt = (rij ⋅ csjt + pij + Qijt
L + Qijt

N )(mij − Sij,t−1) (1.5) 

where the coefficient of proportionality (rij ⋅ csjt + pij + Qijt
L + Qijt

N ) is composed of four 

components: csjt are the search interests for the overall toy category in city j, during month t. It 

controls for the seasonality that may exist and otherwise confound with the diffusion process of 

the RLC product. pij, similar to the Bass model, is the innovation parameter. Qijt
L  and Qijt

N  are the 

constructs for the imitation effect from the local (superscript L) and national (superscript N) 

channels, respectively. Further, I specify Qijt
L  and Qijt

N  as 

 Qijt
L = q1ij

L ⋅ sij,t−1 + q2ij
L ⋅ Sij,t−2 (1.6.a) 

 Qijt
N = q1ij

N ⋅ sij,t−1
N + q2ij

N ⋅ Sij,t−2
N  (1.6.b) 

where q1ij
L  and q2ij

L  are the local imitation parameters, and q1ij
N   and q2ij

N  are the national imitation 

parameters. In Equation 1.6a, which defines the local imitation effect, the first component q1ij
L ⋅

sij,t−1 on the right hand side represents the imitation effect from the recent past, as a function of 

the search interests during month t-1, sij,t−1. The second component q2ij
L ⋅ Sij,t−2 represents the 
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imitation effect from the more distant past, as a function of the lagged cumulative search 

interests up until month t-2, Sij,t−2. Equation 1.6b defines the imitation effect from the national 

channel, with sij,t−1
N  representing the national level search interests during month t-1 from the 59 

cities excluding city j, and Sij,t−2
N  is the lagged cumulative national search interests up until 

month t-2 from the 59 cities excluding city j. 

As discussed earlier, this specification allows us to 1) separate the imitation effects driven 

by the local channel (q1ij
L  and q2ij

L ) from the national channel (q1ij
N  and q2ij

N ), and 2) capture the 

rapid nature of RLC products’ life cycles by discerning the size of the influence from the recent 

past (q1ij
L  and q1ij

N ) and the distant past (q2ij
L  and q2ij

N ). Notably, my model is not limited to RLC 

products; it is able to accommodate the diffusion of durable products as well. One can treat the 

Bass model as a special case of my proposed model when rij = 0 (without seasonality control), 

q1ij
L = q2ij

L  (no decay in the imitation effect), and q1ij
N = q2ij

N = 0 (no national channel imitation).  

From Equations 1.5-1.6, I expect all the parameters to be positive and let them follow 

lognormal distributions (Clayton and Kaldor 1987). The log-transformed parameters are 

therefore normally distributed.  I denote the set of parameters to be estimated as 

λij = log{rij, pij, q1ij
L , q2ij

L , q1ij
N , q2ij

N , mij} 

where I denote each parameter in λij as λij
(k)

 (k = 1,…,7).5 Further, I model each parameter in λij 

as a function of product level fixed effect αi
(k)

, plus city j’s profile defined as a linear 

combination of the city’s demographic variables Zj and a city level random effect 

uj
(k)

~N(0, σu(k)
2 ): 

 
5 λij

(1)
= log (rij), λij

(2)
= log (pij), λij

(3)
= log (q1ij

L ), λij
(4)

= log (q2ij
L ), λij

(5)
= log (q1ij

N ), λij
(6)

= log (q2ij
N ), λij

(7)
=

log (mij). 
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 λij
(k)

 = αi
(k)

+ Zjβ
(k) + uj

(k)
+ εij

(𝑘)
 (1.7) 

where εij
(k)

~
i.i.d

N(0, σ(k)
2 ). Following Katona, Zubcsek, and Sarvary (2011), I include the 

population density (POPDENj), the percentage of male population (MALEj), median age (AGEj), 

home ownership (HOMEj), and median household income (INCOMEj) as the city level 

demographic covariates. With  

β(k) = [
β1

(k)

⋮

β5
(k)

],  

and Zj = [POPDENj  MALEj  AGEj  HOUSEj  INCOMEj], Equation 1.7 becomes: 

 

λij
(k)

 = αi
(k)

+ β1
(k)

⋅ POPDENj + β2
(k)

⋅ MALEj + β3
(k)

⋅ AGEj + β4
(k)

⋅ HOMEj 

+β5
(k)

⋅ INCOMEj + uj
(k)

+ εij
(k)

  

(1.8) 

The β(k) coefficients represent the effects of city demographics on the parameter λij
(k)

. For 

instance, β5
(2)

 reflects the effect of INCOMEj on logged pij, the innovation parameter. If β5
(2)

 is 

positive and significant, it would suggest that a higher median household income is associated 

with a higher innovation parameter.  

Essentially, I have a multilevel model where the parameters for product i in city j from 

the first level are the dependent variables of the second level linear regressions with product 

level fixed effects and city level random effects. 

I use a hierarchical Bayesian (HB) framework to estimate the diffusion model specified 

in Equations 1.4-1.8. Besides the typical advantage of providing accurate inferences of the 

unobserved heterogeneity in the parameters (Neelamegham and Chintagunta 1999), the HB 

framework in my model becomes especially useful in forecasting the diffusion process of a 

holdout product. Considering the importance of timely forecasting an RLC product’s cycle, my 
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forecast is tailored to begin early – right after takeoff. Of course, the catch is at that point of time, 

there is very limited useable data available for the new product. This is when an HB framework 

reigns supreme, because it allows us to pool information from the data already available for the 

calibration products. As the new product’s history gradually increases, the shrinkage starts to 

kick in and the influence from the data of the calibration products slowly eases away. Moreover, 

although this is not relevant to this paper per se – the HB pooling can be location specific. Let’s 

imagine a scenario where the data for the new product is only available in some but not all the 

locations. The HB framework can borrow information from the other locations in the sample.  

To summarize, the parameters and hyperparameters in the model are 

{σ2, σ(k)
2 , σu(k)

2 , λij
(k)

, αi
(k)

, β1
(k)

, β2
(k)

, β3
(k)

, β4
(k)

, β5
(k)} 

where i = 1, …, I (the number of products) and k = 1, …, 7. I use non-informative priors – 

normal distributions with mean 0 and variance 100 for the parameters defined on the real 

domain, and inverse-gamma distributions for those defined on the positive domain. Following 

Neelamegham and Chintagunta (1999) and Spiegelhalter (1998), I use a Directed Acyclic Graph 

(DAG) to illustrate my hierarchical Bayes model in Figure 1.4. The circles represent the 

parameters to be estimated and the squares represent the data. The solid arrows show the 

deterministic relationships and the dashed arrow indicates a stochastic link. The unlinked entities 

are independent from each other in my model. 

[Insert Figure 1.4 about here.] 

Benchmark Models 

I compare my proposed model with two benchmark models. All three models are 

estimated in the same hierarchical Bayesian framework. The only difference is the diffusion 

model defined in Equations 1.5-1.6. The first benchmark model is based on the Bass model 
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(1969), where μijt, the mean of the distribution of search interests sijt, is as follows: 

 μijt = (pij + qijSij,t−1)(mij − Sij,t−1) (1.9) 

Notably, there is no seasonal control, and the imitation parameter qij is both local (without the 

national channel) and static (does not allow decay). 

The second benchmark model extends the Bass model with seasonal adjustment csjt and 

relaxes the static assumption. The model becomes: 

 μijt = (rij ⋅ csjt + pij + q1ijsij,t−1 + q2ijSij,t−2)(mij − Sij,t−1) (1.10) 

Comparing this model to my proposed model, I can get a glimpse of whether allowing the 

national channel to influence the imitation effect can produce better predictions in the forecasting 

model.  

I fit my proposed model and the benchmark models using the SAS procedure MCMC 

(Markov Chain Monte Carlo methods). To improve the efficiency of the MCMC sampler, I 

estimate the model in two steps. First, I estimate the model for each product in the calibration 

sample separately and produce the posterior distributions of the parameters for each product 

without information pooling across products. In the second step, I apply the means of the 

posterior distributions obtained from the first step as the initial values of my proposed model. 

This two-step approach significantly reduced the time needed for the sampling process to reach 

convergence.  

Forecast Procedure 

After calibration, I implement the model to forecast the diffusion life cycles of two 

holdout products: Doc McStuffins Mobile Cart and J-Animals. Following the convention of 

Bayesian dynamic modeling, I treat the future search interests (sijt
′  for product i in city j during 

month t) as a variable with missing values and create an updated forecast posterior for one month 
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at a time. Using the posterior sampling draws of the parameters λij
′  estimated from my calibration 

sample and the holdout product until t-1, I can produce the posterior inference of sjit
′ , a procedure 

that I describe using the following integration: 

 p(sijt
′ |Data, Datat−1

′ ) = ∫ p(sijt
′ |λij

′ )p(λij
′ |Data, Datat−1

′ )dλij (1.11) 

where “Data” represents the data from the calibration sample and Datat−1
′  represents the data 

from the holdout until t-1. On the left hand side, p(sijt
′ |Data, Datat−1

′ ) is posterior of the forecast. 

On the right hand side, p(λij
′ |Data, Datat−1

′ ) is the posterior distribution of λij
′ , estimated from 

the data. Essentially, the integration calculates the posterior distribution of sijt
′  as the weighted 

average over the posterior distribution of the diffusion parameters λij
′ .  

To ensure I create a true forecast scenario, as in reality without the benefit of hindsight, I 

produce the posterior forecast of p(sijt
′ |Data, Datat−1

′ ) step-by-step, one month at a time (Figure 

1.5). Specifically, I start the forecast at month t = 3 after takeoff, at which point the only new 

data available is search interests during months 1 and 2. With meagerly two observations for 

each city, I forecast the search interests in month 3. At this point, given the extremely limited 

amount of information from the holdout product, the forecast would rely heavily on the 

calibration sample. Then after I create the forecast for month 3, I update the posterior distribution 

of the parameters p(λij
′ |Data, Datat−1

′ ) using the forecast I have just created and forecast month 

4. One month at a time, with these steps, I eventually forecast the search interests for the holdout 

products up until eight months after the takeoff.  

 

Results 

I start by comparing the goodness-of-fit performance of the proposed model to the 
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benchmarks. Model 1 is a direct adaption from the Bass model, which does not include 

seasonality control, the decay of the imitation effect, or informative spillover from the national 

channel to the imitation effect. Model 2 falls between Model 1 and Model 3, my proposed the 

model. It extends Model 1 by including a search trend in the toy category to control for 

seasonality and differentiating the imitation effects from the recent past (t-1) and the distant past 

(cumulative until t-2) in the diffusion process. Model 3 is my proposed model. Comparing to 

Model 2, it distinguishes the two sources of information channels, local and national, for the 

imitation effect. Following Neelamegham and Chintagunta (1999), in Table 1.2, I compare the 

performances of the three models using the overall – for all thirteen calibration products across 

the 60 cities – the root mean square errors (RMSEs) and mean absolute errors (MAEs).6 By both 

performance metrics, Model 3 performs the best. Comparing to Model 1, Model 2 improves the 

performance substantially, improving RMSE from 7,655 to 5,332 and MAE from 1,540 to 1,077 

(both a 30% decrease). Model 3, adding the dual information channel imitation effect, improves 

further compared to Model 2, with RMSE dropping from 5,332 to 5,287 (a 31% decrease 

compared to Model 1) and MAE from 1,077 to 1,006 (a 35% decrease compared to Model 1). 

[Insert Table 1.2 about here.]  

Figure 1.6 shows the actual vs. predict monthly search interests for each product. The 

dots represent the actual search interests and the line the predictions from my proposed model.7 I 

have adjusted the vertical axis scales with the peak of each product’s cycle. Their magnitudes are 

not visually comparable. Overall, despite the conspicuously different paths and magnitudes of 

 

6 RMSE = √
∑ (sijt̂−sijt)

2
i,j,t

I×J×T
 and MAE =

|sijt̂−sijt|

I×J×T
 where sijt̂ is the predicted value of sijt from the model. 

7 Since the posterior mean search interests predictions from the model sijt̅̅ ̅̅  is at product-city-month level, I aggregate 

it across the cities for each product to produce the predicted search interests in Figure 1.6. 
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the search interests in the RLCs of the products, the proposed model proves capable; it captures 

the rally, peak, and downfall of most products quite well. By distinguishing the recent past and 

distant past imitation effects, the proposed model has generally avoided the overshooting issue8 

common among forecasting models. 

[Insert Figure 1.6 about here.] 

Next, I examine the estimated seasonality, innovation, market potential, and imitation 

parameters, interpret how the city demographic variables are associated with them, and 

demonstrate the results from applying my model to forecast the search interests of two holdout 

RLC products. 

Seasonality, Innovation, and Market Size 

In Table 1.3, I report the mean posterior estimates of the seasonality coefficients rij, the 

innovation parameters pij, and the marketing penetration potentials mij. The parameters reported 

are the averages across the cities for each product and log-transformed. The pattern in the 

seasonality coefficients log(ri)̅̅ ̅̅ ̅̅ ̅̅ ̅ shows that the search interests of more popular products tend to 

be less associated with the category-level seasonality movement, with a strong negative 

correlation between these estimates and the average search interests for each product from Table 

1.1 (correlation = -0.627). This is perhaps not surprising, as the search interests for more popular 

products tend to be more driven by the interests in themselves than the seasonal interests shift in 

general. The higher the innovation parameter estimates log(pi)̅̅ ̅̅ ̅̅ ̅̅ ̅, the more the early search 

interests arises without previous “adopters”. Such positive association often reveals as a steep 

ramp up in the early months after takeoff. The highest innovation parameters belong to the fidget 

 
8 Often manifested as: the carryover effect from the peak in the data pushes the predicted peak one or more periods 

delayed after the actual peak. 
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spinners, the Luvabella dolls, and the Fingerlings monkey. And the lowest ones are the adult 

coloring books, hideaway pets, and emoji joggers. And finally, the market penetration potential 

estimates log(mi)̅̅ ̅̅ ̅̅ ̅̅ ̅̅  are closely associated with the average search interests in Table 1.1 

(correlation = 0.639). Such relationship reflects a combination of the size of the overall RLC and 

the rates of ramp up and decline. A relatively “flat” life cycle would indicate a high potential 

even if the peak may not be as high. For example, the Fingerlings monkey and self-balancing 

scooters have similar average search interests at 497 and 484, respectively. The flatter life cycle 

of self-balancing scooters (peak at 1,554, lower than 1,829 of Fingerlings monkey) would 

suggest an eventual higher market penetration potential. 

[Insert Table 1.3 about here.] 

Imitation Effect 

In Table 1.4, I report the mean posterior estimates of the local imitation parameters of the 

recent past q1ij
L  and distant past q2ij

L , and the national imitation parameters of the recent past q1ij
N   

and distant past q2ij
N . The parameters reported are the averages across the cities for each product 

and log-transformed. Namely, I report log(q1i
L )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , log(q2i

L )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , log(q1i
N )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , and log(q2i

N )̅̅ ̅̅ ̅̅ ̅̅ ̅̅  in columns 1, 2, 

4, and 5, respectively. For example, the fidget spinner’s log-transformed national channel 

imitation coefficients are -11.14 for the recent past (column 4) and -17.55 for the distant past 

(column 5). The ratio between the two is 476.19 (column 6), suggesting much stronger imitation 

effect from the recent past. In column 3 and 6, the ratios between recent past and distant past 

imitation parameters for the local and national channels, 
exp(log(q1i

L )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

exp(log(q2i
L )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

 and 
exp(log(q1i

N )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

exp(log(q2i
L )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

  

respectively, suggest an almost universal decay of the imitation effect over time and most of 

them very strong (with the exception of Magic Tracks’ national channel). 
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[Insert Table 1.4 about here.] 

Recall that Sharma and Bhargava (1994) find an average annual decay rate of 0.25 for 

the durables, translating into a ratio of four compared to the numbers in columns 3 and 6. My 

ratios, at a monthly rate, have twelve out of thirteen cases above four, most of them many times 

above four, for either the local or the national channel. These results suggest that compared to 

conventional durables, the RLC products in my sample, plausibly RLC products in general, have 

a much higher decay rate over time in the imitation effect. Many of these ratios are above ten and 

some measured by hundreds, which suggests in those cases, the cycles move so rapidly that only 

the most recent month’s search interests are relevant as far as the imitation effect is concerned. 

Given that the dominant imitation effect comes from the recent past at month t-1, I focus 

on the comparison between the recent past effects from the national and local channels and 

report the ratio 
exp(log(q1i

N )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

exp(log(q1i
L )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

 in column 7 of Table 1.4. I observe a very wide range in the ratios, 

from the lowest at 0.03 for the adult coloring books to the highest at 169.27 for the darn yarn. A 

high ratio means the imitation effect from national channel is dwarfing that from the local 

channel. Moreover, the opposite is true for a low ratio. The simulation conducted by Garber et al. 

(2004) can explain the possible process behind such different ratios. Specifically, social media 

doesn’t have boundaries; it is conceivable that the national channel can “light up” a new trend 

almost instantly. When the national channel dominates the local, it usually means the RLC is 

heavily “top-down” and lack of local imitation support after the initial interests, which manifests 

as a rapid upsurge accompanied by a sharp decline in the life cycle – even by the RLC product’s 

standard. On the contrary, when 
exp(log(q1i

N )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

exp(log(q1i
L )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

 is small, it often suggests the new RLC product has 

attracted imitation support from the local channel and as a result, the life cycle may become 



31 

more sustainable. The Google Trends interests for the darn yarn and adult coloring books appear 

to support this interpretation of the implications from 
exp(log(q1i

N )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

exp(log(q1i
L )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

, where the life cycle of adult 

coloring books both rose and declined at a slower pace (Figure 1.7). 

[Insert Figure 1.7 about here.] 

City Demographics 

In Table 1.5, I present the estimated posterior mean coefficients for the city-specific 

demographic variables. These results, estimated from Equation 1.8, allow us to gain further 

insights into how the profile of a city may be associated with the parameters in the diffusion 

process. For example, what is the association between the median household income and the 

innovation parameter? Out of the 35 β(k) coefficients, 16 are significant.9 

[Insert Table 1.5 about here.] 

The estimates in the first column are for the seasonality control rij. Three demographic 

variables, median age (mean = -0.13), home ownership (mean = 0.12) and median household 

income (mean = 0.17) are significant. They suggest that 1) understandably, cities with an older 

population composition are less likely to have seasonal search interests for the toy category.  2) 

Home ownership, representing the ratio of stable city dwellers, and median household income, 

representing the wealth and disposable income that can be spent on discretionary products such 

as toys, are both positively associated with seasonality.  

Column 2 presents the estimates on the innovation parameter pij. Population density 

(mean = 0.23), percentage of male population (0.08), median age (-0.12), and household income 

(0.16) are significant. A higher population density is connected with a stronger innovation effect, 

 
9 I use “significant” or “significance” to refer to the Bayesian results when the 95% confidence interval of the 

posterior estimate does not cover zero.  
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likely holdout by the association between a high population density and large metropolitan areas. 

And large cities tend to have more concentrated earlier adopters and trend setters (Johnson 

2011). It also appears that a higher percentage of male population is associated with more early 

search activities among the RLC products in my sample, possibly holdout by the gender 

difference in the decision-making processes (Venkatesh, Morris, and Ackerman 2000). 

Unsurprisingly, a higher median age is associated with a lower innovation effect. Finally, higher 

median household tends to be positively related to the innovation effect.  

The estimates for the imitation parameters q1ij
L , q2ij

L , q1ij
N , and q2ij

N  are sparsely significant, 

suggesting that the demographic variables I are able to include do not have many linkages to the 

imitation effects. Much of the variations at the city level go to the unobservable. Particularly, as 

discussed earlier, since the near past imitation effects q1ij
L  and q1ij

N  tend to dominate in strength, 

the more practically meaningful demographic variable results would be related to them. I have 

only two demographic variables significant: home ownership (mean = 0.13) and median 

household income (mean = 0.15) on the recent past local channel q1ij
L , which can be interpreted 

as a stability of residency and disposable income explanation. There is also a hint of suggestion, 

from home ownership and median household income carrying negative coefficients on q2ij
N  

(mean = -0.11) and q2ij
L  (mean = -0.32) respectively, that in the cities where people have stable 

residency and more disposable income, the distant past imitation effect decays faster. 

Recall that my dependent measure, the search interests normalized on a per 100,000 

capita basis, represents the market penetration. For the total market penetration potential mij, the 

population density carries a negative coefficient (mean = -0.15), suggesting for more densely 

populated cities (tend to be large cities), it is more difficult to gain a higher rate of market 

penetration. Intuitively, this is plausible considering bigger cities usually have more distractions 
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competing for the residents’ attention. Moreover, home ownership is negatively associated with 

market penetration potential (mean = -0.23) and median household income is positive (mean = 

0.06). 

Forecasting 

A direct benefit of my model, estimated in an HB framework, is its ability to start 

forecasting when a new RLC product is still in the early stages of its life cycle. Specifically, my 

model needs only two data points after the takeoff to forecast the life cycle of a product. In this 

section, I present the forecast results of two holdout products Doc McStuffins Mobile Cart (Table 

6, Panel A) and J-Animals (Table 1.6 Panel B), both of which had takeoff month in July 2017 as 

identified using Equation 1.2. I also compare the holdout performance of the proposed model to 

that of the two benchmarks. 

For each holdout product, I report three forecasts, conducted using different starting 

months: two months, three months, and four months after the takeoff month. As one can 

imagine, the earlier month the forecast starts, the less information the forecasting model can rely 

on from the holdout product. Instead, it has to lean more towards pooling information from the 

calibration sample to produce the forecast. As I gradually have more months of data from the 

holdout product, the forecast tends to get more shrinkage towards it. I forecast a total of eight 

months out of the observation window of two, three, or four months. 

[Insert Table 1.6 about here.] 

In Table 1.6, I report the MAEs of the forecasts, calculated as the absolute value of the 

difference between the actual and forecast search interests of each product during each month. 

Overall, my proposed model consistently outperforms the benchmark models by big margins, 

with the exception of J-Animals forecast at three months after the takeoff. Comparing to Model 

1, the biggest improvement from my model happens when the data is the scantiest, forecasting at 
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merely two months after the takeoff. The forecasts from my model have a 94% decrease in 

average MAE for Doc McStuffins Mobile Cart (592 vs. 10,399) and a 53% decrease for J-

Animals (498 vs. 1,070). Comparing the MAEs on a month-by-month basis, Model 3 

outperforms Model 1 in 44 out of 48 contrasts, with the difference significant at p < 0.0001 in a 

two-tail paired t-test. Considering that Model 1 is a more parsimonious model with fewer 

parameters, it is surprising that the proposed model beats it when the available data points are 

few. Indirectly, it suggests that my extensions to the Bass model, namely the seasonal control, 

the decay of the imitation effect, and the dual-channel local/national influence on the imitation 

effect, are picking up the true signals pertinent to the diffusion of the RLC products. 

An unanticipated yet interesting result is the inconsistent performance of Model 2, which 

extends Model 1 to include the seasonal control and decay of the imitation effect but without 

adding the national channel influence. For Doc McStuffins Mobile Cart, its performance is much 

better than Model 1, worse than but at the same magnitude as Model 3 when forecasting two or 

three months after takeoff (From Models 1, 2, and 3, the average MAEs are: 10,399 vs. 822 vs. 

592; and 4161 vs. 925 vs. 794). Under other conditions and for J-Animals, however, the forecasts 

from Model 2 are much worse than either Model 1 or Model 3. The wildly inconsistent 

performance of Model 2 suggests that the national channel, being from dozens of cities, can be 

crucial in stabilizing the imitation signal and improve forecast output. 

Overall, the proposed model produces significantly improved forecast accuracy compared 

to the benchmarks. It is evident that when implemented in the field, my model can yield highly 

useful marketing intelligence, especially at a very early stage after the takeoff, for managing the 

life cycle of RLC products in a wide spectrum of business functions, from manufacturing, 

inventory, supply chain management, to social media and marketing mix planning.  
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Concluding Remarks 

Enabled by social networks, a constantly recurring theme in recent years is the rise and 

fall of new products that complete their life cycles within a short period of a few months. These 

products, such as the fidget spinner, create hundreds of millions of dollars in revenue every year 

despite their short-lived popularity – they are very successful by any new product standard. Yet, 

the volatile nature of their RLC makes them a challenge for practitioners to plan ahead. In this 

paper, I extend the Bass model to develop a framework, estimated in a hierarchical Bayesian 

setting, to track and forecast the life cycles of RLC products. 

Compared to the benchmark, a direct adaption from the Bass model, my model performs 

well in in-sample goodness-of-fit, lowering the MAE by 35%. More remarkably, when applied to 

forecast the life cycles of two holdout RLC products, my model shrinks the MAEs from the 

benchmark by 94% and 53%, respectively. The best performance in the holdout forecast happens 

when the lead time window for forecasting is the shortest at only two months of observations 

after the takeoff, making my proposed model a particularly useful tool for generating early 

marketing intelligence. 

I attribute the superior performance and practical value of my model to the following 

components integrated into the diffusion model. First, I control for the seasonality in the life 

cycle by using the product category level search interests. This may sound like a mundane 

extension from the Bass model, but it is essential for RLC products, whose life cycles run the 

complete A to Z within a year, very often leaving the sales or search signals extensively 

confounded with the holiday season. Second, I allow the imitation effect to decay, distinguishing 

the influence of the recent past from the distant past. I expect this extension to make a difference 

for RLC products. And it does. Different from durables where the imitation effect from existing 

adopters may last for years – and even when the decay of the imitation effect is considered, it’s 
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measured by years (Sharma and Bhargava 1994) – the RLC products in my data demonstrate a 

very fast decay of the imitation effect. For all but one of the products, the most recent search 

interests during month t-1 are the dominating forces in the imitation effect. Not surprisingly, 

such a decay is perhaps the fundamental reason why RLC products tend to run through the life 

cycle so quickly. Third, I allow two channels to influence the imitation effect: local and national. 

The relative strengths of the two channels vary by products. The results show that a relatively 

flat life cycle – by RLC standard – is associated with a stronger strength in the local channel. I 

interpret this as an indication that in order for the trends to sustain, interests from the local 

channel have to pick up. Fourth, the HB paradigm I use for estimating the model is vital for 

generating forecasts early in the life cycle when input from the holdout sample is limited. 

Bayesian pooling lets the model borrow information from the calibration sample. As the 

observed periods of the holdout gradually increase, more shrinkage automatically kicks in, 

allowing the holdout itself to have added weight in the estimated posterior results. Fifth, my 

model leverages on the search data from the GSI, a relatively open platform by Google. While 

sales data may be the Holy Grail for measuring product diffusion, they are also difficult to 

acquire timely. The search data I use, shown to be closely related to sales (Hu, Du, and 

Damangir 2014; The Economist 2017), are updated almost on a real time basis and contain great 

granularity spatially. 

My analysis of the city demographics adds an additional layer of output that can be 

informative in explaining how spatial factors influence the diffusion parameters. The results 

reveal that median age, whenever significant, appears to be consistently negatively associated 

with the diffusion parameters. Given the novelty and rapid nature of the RLC products, this 

makes sense. The results also show that a higher level of median household income to be 
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associated with a quicker decay in the imitation coefficient. With the demographic variables 

available to us, I do not have a full set of profile-generating demographics that practitioners can 

potentially use for geo-targeting purpose. I caution this as a limit. 

Last but not least, I acknowledge that a few caveats exist, and some provide potential 

directions for future research. First, when selecting the cities in my study, I choose a population 

threshold of 300,000. This is a relatively high threshold for a Census designated place – in the 

end I have 60 cities in my sample, accounting for 17% of the U.S. population. Ideally, I would 

like to set this threshold lower and include a higher share of the population. However, not every 

successful RLC product peaks at the same level as the fidget spinner, therefore leading to data 

sparsity with lesser successful products in small cities. The potential issue arises from the 

representativeness of the population in my sample. For instance, the rural and suburban areas 

tend to have lower population density. As a result, out data sample likely doesn’t cover the full 

range of possible population density. Therefore, some of the results related to the demographic 

variables may not be amenable to extrapolation into the range out of the sample. That said, since 

my model can easily scale up to many more cities, using a high threshold to fight off data 

sparsity itself isn’t a modeling concern. Perhaps most importantly, a high level of consistency 

exists between the RLCs aggregated from my 60-city sample and the U.S. overall (correlation = 

0.999), which means the aggregated diffusion parameters at the product level should be 

reasonably representative. 

Second, since I extracted my main data from the GSI, I can only observe the 

manifestation of social influences as reflected in the information acquisitions in the form of 

online searches. I do not have direct observations of the RLC products related activities on social 

media platforms such as YouTube, Twitter, or Facebook. Having such information would 
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certainly help enrich the findings, especially with the possibility of attributing the search 

outcomes to various types of media, the information they portray, and how the messages spread 

in a social network (Bakshy et al. 2012).   

Third, given the data available, I limit my research to studying physical products – all the 

RLC products in my data are. The framework, however, is extendable to estimate the life cycles 

of more intangible things, or shall I call them RLC activates. For instance, the ice bucket 

challenge,10 aiming at advocating for donations to the ALS11 Association, involves dumping a 

bucket of ice and water over a person’s head. It came out of nowhere and spread like wildfire on 

social media in the summer of 2014, successfully collecting $115 million in donations to the 

ALS Association (Rogers 2016). The diffusion process is extremely similar to the RLC products 

I study. I speculate that such activities, with an even stronger social component to it than 

physical products, maybe reveal to be more reliant on the national channel than my study. 

Besides activities, digital contents such as YouTube videos, Twitter Tweets, Instagram photos 

can all suddenly become “trending” and run through an even more rapid life cycle, measured by 

days or even hours.  

Fourth, to estimate the RLC, I use a two-step process. First, I use a takeoff model (Golder 

and Tellis 1997) to define the period of observations. Then I extend the Bass model to capture 

the diffusion cycle. This is less than elegant a solution, but probably unavoidable. As I have 

discussed earlier, prior to reaching the takeoff point, because of the sporadic nature of the signals 

in search, there isn’t a reliable way – at least not in the Bass-style diffusion paradigm – to 

identify and extract these erratic signals. Without reaching the critical mass, many of these pre-

takeoff signals may stay idle for an unpredictably long period of time and even die out without 

 
10 http://www.alsa.org/fight-als/ice-bucket-challenge.html 
11 ALS: amyotrophic lateral sclerosis, or Lou Gehrig’s disease, a progressive neurodegenerative disease. 

http://www.alsa.org/fight-als/ice-bucket-challenge.html
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ever really taking off (Valente 1996). I identify the recent development in machine learning 

models as a potential solution to this. My data is granular: it contains thousands of places. My 

data is also sparse: the search interests in small cities are like occasional flashes of fireflies; they 

are not a constant flow but a slow drip. If a machine learning model is able to aggregate the 

sparse signals across thousands of Census designated places, including the small ones with only 

a few thousand residents, the quality of the output signal may improve significantly. At the end 

of the day, the bottom line is whether a well-constructed machine learning model can take 

advantage of the spatial granularity of the data to overcome its sparseness. This is a future 

research direction that I are pursuing. 

Fifth, like the Bass model, the perspective of my model is reactive. That is, the goal of 

the proposed model is to track and forecast a product already in the market, sometimes for a 

while. While environmental factors such as social pressure and competition may play crucial 

roles in the diffusion of new RLC products, the product itself is obviously an indispensable part 

of the successful – or failed – life cycle. Therefore, adding coded characteristics of the product 

can potentially turn the model from reactive to proactive. However, RLC products are different 

from automobiles (Du, Hu, and Damangir 2015), and their characteristics are usually very 

nonstandard (e.g., imagine finding comparable commonalities between the fidget spinner and. 

the adult coloring books). The solution cannot be simply to extract features. Instead, it may again 

involve relying on machine learning to abstract the hidden traits that make a product fulfill its 

RLC potential. If successful, the method can be instantly applied to the fast fashion industry by 

companies such as Zara (Choi 2013), to not only follow successful trends, but also identify the 

designs that are more likely to become the next trend. 

I hope my model, given its tested performance and practical applications, can become a 
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useful tool in the field and inspire future research on the increasingly rapid pace of information 

diffusion through the massive social networks. 

 



Figure 1.1: The Life Cycle of the Fidget Spinner 

A: Google Search Index of “Fidget Spinner” in the U.S. 

 

 

B: Share of Fidget Spinner Sales Online in the U.S.  

(Reproduction from the Economist, Sep. 8, 2017) 
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Figure 1.2: Takeoff Threshold Rule  

A: Monthly Search Interests of the Fidget Spinner 

 

 

B: Monthly Search Interests of the Adult Coloring Books 
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C: Takeoff Threshold Curve 
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Figure 1.3: Search Interests for Toys in the U.S.  
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Figure 1.4: Specification of the Proposed Hierarchical Bayes Model 

 

Notes: k = 1, …, 7 
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Figure 1.5: Forecasting Holdout Sample in Month t 
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Figure 1.6: Actual vs. Aggregated Posterior Mean Search Interests for Each Product 
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Figure 1.7: Darn Yarn vs. Adult Coloring Books 

 

Notes: Height scales are not comparable. For each keyword (product), the Google Trends 

normalizes the maximum search interests to 100.
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Table 1.1: Summary Statistics of Search Interests for Each RLC Product 

 

Product Name Takeoff Month Peak Month Months Average Minimum Maximum Std. Dev. 

Calibration Sample        

Adult Coloring Books Jun-2015 Dec-2015 12 16,298 655 233,298 21,960 

Darn Yarn Sep-2014 Dec-2014 12 414 0 23,699 1,519 

Digibirds Jul-2014 Dec-2014 12 378 0 10,773 924 

Emoji Joggers May-2014 Dec-2014 12 4,960 0 78,868 8,653 

Fidget Spinners Sep-2016 May-2017 12 225,854 15 5,890,098 585,557 

Fingerlings Monkey Jun-2017 Dec-2017 10 4,240 0 130,046 9,232 

Girl Scout Cookies Oven Jul-2015 Dec-2015 12 309 0 12,798 860 

Hideaway Pets Jul-2014 Nov-2014 12 753 0 21,659 1,529 

LOL Big Surprise Jul-2017 Nov-2017 9 8,905 0 322,562 22,133 

Luvabella Dolls  Jul-2017 Nov-2017 9 3,495 0 110,374 8,269 

Magic Tracks May-2016 Dec-2016 12 5,940 0 166,235 12,021 

Self-Balancing Scooters Apr-2015 Nov-2015 12 7,716 0 167,417 16,999 

Speak Out Game Jun-2016 Dec-2016 12 6,259 0 119,830 10,679 

Holdout Sample        
Doc McStuffins Mobile Cart        
J-Animals             

 

Notes: Google’s website updates interrupted my GSI data collection in 2018. The disruption led to fewer than twelve months of data 

for Fingerlings Monkey, LOL Big Surprise, and Luvabella Dolls.
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Table 1.2: Comparison of Model Performance  

 

 Model 1 Model 2 Model 3 

 (Bass Model) 
(Proposed Model without 

National Channel) 
(Proposed Model) 

Root Mean Square Error 7,655 5,332 5,287 

Mean Absolute Error 1,540 1,077 1,006 

 

 

 

Table 1.3: Estimates of Seasonality, Innovation Effect, and Market Size 

 

Product Name 

Seasonality Innovation Effect Market Size 

log (r1) log (p1)  m1  

Adult Coloring Books -10.24 -11.86  1.158  

Darn Yarn -8.10 -8.73  0.005  

Digibirds -7.94 -8.23  0.006  

Emoji Joggers -8.98 -10.18  0.115  

Fidget Spinners -12.58 -5.23  3.025  

Fingerlings Monkey -12.16 -6.49  0.051  

Girl Scout Cookies Oven -9.12 -8.72  0.004  

Hideaway Pets -8.00 -10.98  0.017  

LOL Big Surprise -8.62 -8.19  0.090  

Luvabella Dolls  -9.86 -5.94  0.033  

Magic Tracks -10.70 -8.76  0.087  

Self-Balancing Scooters -9.01 -9.13  0.099  

Speak Out Game -9.05 -8.89  0.201  

 

Notes: The 95% confidence interval of each posterior estimate in the table does not cover zero. 
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Table 1.4: Estimates of Imitation Effects  

 

 Local Channel National Channel National vs. Local 

Product Name log(q1i
L ) log(q2i

L ) 
exp(log(q1i

L ))

exp(log(q2i
L ))

 log(q1i
N )  log(q2i

N )  
exp(log(q1i

N ))

exp(log(q2i
N ))

 
exp(log(q1i

N ))

exp(log(q1i
L ))

 

 (1) (2) (3) (4) (5) (6) (7) 

Adult Coloring Books -7.57 -15.56 2951.30 -11.21 -15.13 50.40 0.03 

Darn Yarn -5.23 -8.36 22.87 -0.10 -7.58 1772.24 169.02 

Digibirds -1.51 -7.61 445.86 -3.50 -7.04 34.47 0.14 

Emoji Joggers -5.36 -6.74 3.97 -6.69 -9.20 12.30 0.26 

Fidget Spinners -9.28 -13.01 41.68 -6.40 -12.55 468.72 17.81 

Fingerlings Monkey -5.76 -7.22 4.31 -2.70 -4.61 6.75 21.33 

Girl Scout Cookies Oven -4.59 -6.96 10.70 -0.14 -6.14 403.43 85.63 

Hideaway Pets -3.95 -9.53 265.07 -6.41 -9.39 19.69 0.09 

LOL Big Surprise -5.46 -9.49 56.26 -3.80 -9.09 198.34 5.26 

Luvabella Dolls -5.60 -8.87 26.31 -2.50 -8.44 379.93 22.20 

Magic Tracks -6.19 -5.26 0.39 -3.74 -6.30 12.94 11.59 

Self-Balancing Scooters -5.49 -8.21 15.18 -5.03 -5.39 1.43 1.58 

Speak Out Game -6.45 -11.06 100.48 -8.41 -11.34 18.73 0.14 

 

Notes: The 95% confidence interval of each posterior estimate in columns 1, 2, 4, and 4 does not cover zero. 
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Table 1.5: Estimates of Demographic Variables 

 

 Parameters for product i, city j (λij
(k)

) 

k = 1 2 3 4 5 6 7 

 rij pij q1ij
L  q2ij

L  q1ij
N  q2ij

N  mij 

Population density  0.04 0.23 -0.04 0.02 0.01 0.01 -0.15 

(POPDENj) (0.03) (0.07) (0.04) (0.07) (0.02) (0.03) (0.03) 

Percentage of male population -0.09 0.08 0.00 0.14 -0.02 0.06 -0.04 

(MALEj) (0.07) (0.04) (0.03) (0.04) (0.02) (0.04) (0.06) 

Median age -0.13 -0.12 -0.01 0.04 -0.01 -0.12 0.06 

(AGEj) (0.07) (0.04) (0.04) (0.07) (0.02) (0.06) (0.05) 

Home ownership 0.12 0.06 0.13 -0.09 0.02 -0.11 -0.23 

(HOMEj) (0.07) (0.03) (0.09) (0.06) (0.02) (0.04) (0.03) 

Median household income 0.17 0.16 0.15 -0.32 0.00 0.02 0.06 

(INCOMEj) (0.05) (0.05) (0.06) (0.04) (0.02) (0.03) (0.03) 

Notes: Bold fonts indicate the 95% confidence interval of the posterior estimate does not cover 

zero. 
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Table 1.6: Forecast MAEs of Holdout Sample Products 

 

A: Doc McStuffins Mobile Cart 

 

 Forecast Month  % decrease in 

MAE 

by Model 3 Model 1 2 3 4 5 6 7 8 Average 

           

 Forecast starts at the first month after takeoff  

   

1 617 4587 510 86 88 46 28 21 748 -96% 

2 28 54 108 97 51 26 13 9 48 -32% 

3 17 12 68 149 4 4 3 6 33 - 

           

 Forecast starts at the second month after takeoff  

   

1 355 1741 174 76 35 21 18 14 304 -83% 

2 148 252 95 30 9 6 4 4 69 -25% 

3 43 72 175 24 22 20 23 33 52 - 

           

 Forecast starts at the third month after takeoff  

   

1 243 641 141 36 21 15 12 9 140 -51% 

2 183 1373 636 109 32 13 7 4 295 -77% 

3 209 302 5 5 3 6 11 12 69 - 
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B: J-Animals 

 

 Forecast Month  % decrease in 

MAE 

by Model 3 Model 1 2 3 4 5 6 7 8 Average 

           

 Forecast starts at the first month after takeoff  

   

1 405 217 42 61 8 5 4 3 93 -67% 

2 59 133 412 395 213 88 46 26 172 -82% 

3 9 37 67 70 6 15 18 21 30 - 

           

 Forecast starts at the second month after takeoff  

   

1 142 141 75 11 9 7 7 10 50 32% 

2 70 239 862 703 293 119 58 34 297 -78% 

3 44 58 50 51 70 78 85 95 66 - 

           

 Forecast starts at the third month after takeoff  

   

1 223 169 25 21 15 13 13 12 61 -13% 

2 155 426 259 64 21 9 4 3 118 -55% 

3 207 149 11 9 10 12 14 15 53 - 
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CHAPTER 2.    Solving the Cold Start Problem in Online Shopping Search Forecast: An 

Assessment of Two Approaches 

 Introduction  

The memory of the Internet is fleeting. This rapid memory loss accelerates the life cycle 

of a product. More and more new products are popping up on the Internet and then quickly 

disappearing. The characteristics of the Internet pose a huge challenge to our marketing research. 

That is how to provide early forecast. When forecasting, an early start is valuable, but the data is 

not available. Therefore, the data is cold. The common time series models are unreliable when 

the temporal data is insufficient. This is also called a “cold start” forecasting problem. 

While the importance of cold start forecasting for new products is evident to businesses, 

there is very limited research in this area. One of the traditional approaches is mainly to apply 

diffusion models. These models have some problems with forecasting. The first problem is that 

traditional diffusion models need to define the life cycle of a product and there are no clear 

criteria for determining the cut-off point for certain cycles. This leads to inaccurate model 

estimates. 

The classical Bass model (Bass 1969), for example, requires estimating the parameters of 

the model after takeoff to get relatively accurate numbers. Due to the sparse data prior to takeoff, 

coupled with a lot of uncertainty, there was no good model to carve out this stage, causing 

trouble for subsequent product demand forecasts (Golder and Tellis 1997). 

The second problem is that sales don't all simply rise gradually after takeoff and 

eventually become bell-shaped. After one product takes off, the diffusion model predicts a 

monotonous increase in sales before the growth spike. However, in some cases, a sudden decline 

in sales might occur after an initial increase. Moore (1991) observed this drop in sales, which he 

referred to as the split between the early market and the main market. Goldenberg et al. (2002) 
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referred to this phenomenon as the "saddle phenomenon" and defined it as a pattern in which the 

initial peak precedes a trough of considerable depth and duration, followed by an increase in 

sales. This also spells trouble for the forecast. 

The third problem is the acceleration of the product cycle. There is substantial evidence 

that the overall temporal pattern of innovation diffusion accelerated over time (Van den Bulte, 

Christophe 2004). Moreover, Van den Bulte (2000; 2002) found evidence that such acceleration 

did exist. He investigated acceleration by studying 31 product categories of consumer electronics 

and household products using a Bass model with a zero internal impact parameter (p). His 

findings showed that the average annual acceleration between 1946 and 1980 was about 2%. 

In addition to the diffusion models, another approach is to use time series models. 

However, these time series methods require the use of large amounts of historical data. 

Forecasting can only be achieved based on repetition over time, also known as a hot start 

forecasting. In the cold start cases, it is impossible to observe the market for a long enough time.  

In general, the increasingly short life cycles require models to provide forecasts earlier. 

New products that have just come out in the morning hardly have enough information to 

complete the forecast. Therefore, cold start forecasting is a conundrum. Given these difficulties, 

the cold start issue has not received enough attention in marketing research.  

One of the current solutions is through collaborative filtering. The main idea is to find 

similar products or customers. The problem with collaborative filtering is that it requires many 

customers and products. However, there is no standard for the number of customers and 

products, and the relationship between the number of products and model performance is 

unclear. Another problem is that collaborative filtering can only provide cross-sectional forecast. 
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For products with different growth patterns, it has a hard time to provide reliable forecasts over 

time.  

In addition to the cold start issue, this essay also examines the impact of the sample size. 

From the big data perspective, the bigger the data the better the model performance. However, 

more products don't necessarily lead to better model performance. A larger sample can bring 

more noise than useful signals. In the absence of being able to effectively remove the noise in the 

sample, the argument that a larger sample is better is questionable. On the other hand, in a 

product recommendation or forecasting task, one may be required to make a response at short 

notice. For example, for a customer browsing a web page, the forecast should be provided in a 

short time frame. The introduction of more products may bring a dramatic increase in calculation 

time. In this situation, it is better to use a reasonable number of products to complete the forecast. 

Thus, this raises the general research question of studying the impact of sample size. 

Moreover, the collaborative filtering primarily uses the correlation coefficient to find the 

similar products or customers. In addition to the correlation coefficient, this study also 

systematically incorporates other methods, such as the use of wrapping and embedded methods 

to find the relevant products. 

After identifying the relevant products, two different models are used to make forecasts. 

In addition, I also analyze the effect of different product selection methods and product sample 

size. My study has important practical implications for a comprehensive solution to the problem 

of cold start forecasting. 

Finally, I found that bigger data was not necessarily beneficial and harmless to cold start 

problems in practice. While Big Data encompasses more products, it does not mean that the 

more products used in the model, the more accurate the forecast results. In the case of 
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insufficient data at the early stage, the performance of models can be improved by including 

more products. But when the number of products reaches a certain level, increasing the number 

of products does not continue to improve the performance of the model, but rather impairs the 

predictive accuracy of the model.  

 

Framework of Solving Cold Start Problem 

I provide a framework for solving cold start forecasting, as shown in Figure 2.1. The cold 

start problem is that the data for the new product is not enough on the temporal dimension. The 

key idea of addressing this problem is to find similar products with enough temporal data. Here, 

the similarity between two products is mainly measured by comparing the search growth rates in 

different locations. Specifically, the search growth rate of a new product will be projected onto 

multiple cities. Then I can obtain a geographical snapshot of search growth rate at time T. By 

comparing this geographical snapshot with the snapshots in my training product pool, we can 

find the most similar products in terms of the spatiotemporal search growth pattern. These 

products can further provide forecasts for the new product. Therefore, the framework includes 

two major stages: product selection (Stage 1) and search growth rate forecasting (Stage 2). 

[Insert Figure 2.1 about here.] 

Stage 1: Product Selection 

The first stage is the process by which a subset of products is selected from the training 

product pool based on the spatiotemporal search pattern of a new product. A good subset of 

training products has a huge impact on the performance of the models in the second stage. 

Considering that there are hundreds of thousands of products available, product selection plays 

an important role in a reliable forecast. In general, the product selection methods can be divided 

into three categories (Chandrashekar and Sahin 2014): 
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Filter Methods 

The filter methods are generally a group of methods for selecting the products based on 

the correlation coefficient between the new products and training products. The method to 

calculate the correlation coefficient here includes not only the Pearson’s correlation, but also 

other methods, such as Linear Discriminant Analysis (LDA), Analysis of Variance (ANOVA), 

Chi-Square, and so on. These methods are designed for different data types, which are shown in 

Table 2.1. The search volume in my research is continuous for both new products and training 

products. Therefore, I use the metric of Pearson’s Correlation in the following analysis. 

[Insert Table 2.1 about here.] 

Wrapper Methods 

The wrapper methods consider the product selection as a search problem. These methods 

employ a random forest algorithm to select the best subset from the training products. Since the 

random forest algorithm will train a predictive model on all possible product subsets, the 

wrapper methods are often computationally expensive. The most common methods include 

forward feature selection, backward feature elimination, and recursive feature elimination. 

Forward Selection: the forward selection method starts by evaluating all products 

individually and selecting one training product out of the library that can result in the best 

performance. In the following step, the forward selection method explores all potential 

combinations of the selected product from the previous step with the remaining products in the 

library. This approach keeps the pair of products that have the best performance and add more 

products one by one until the stopping criterion is met. 

Backward Elimination: the backward feature elimination is opposite to the forward 

selection method and starts with all products in the data. In the second step, the backward feature 

method removes the least important product, which contributes less to the model’s performance 
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than the others. One product will be removed from the model each time until the stopping 

criterion is met.  

Recursive Selection: the recursive elimination method tests the model on all possible 

products combinations. The target of this method is to select the best subset of products that can 

produce the best performance. Let’s say I have N training products; the recursive elimination 

tests the model on all possible combinations of these N products until the algorithm finds the 

subset of products with the best performance. 

Embedded Methods  

The embedded method conducts the product selection during the model training process. 

Like the wrapped method, the embedded method also takes into account the interaction of 

products but with much less computation. During the selection process, the embedded algorithm 

completes the regression analysis at the same time. 

One of the most notable features of embedded methods is the use of regularization, which 

is to add a penalty term to the regression model. The penalty term is multiplied to each 

coefficient in the model. This method has the advantage of effectively avoiding overfitting and 

improving the model robustness to the noise. The most common example of embedded method is 

lasso regression. 

Lasso regression is also called L1 regularization. It involves shrinking the coefficients of 

some variables in the regression to 0. Thus, there variables are not included in the subsequent 

forecasting process. In my case, if a product has a coefficient of 0, then this product is taken out 

of the training sample. 
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Stage 2: Search Growth Rate Forecasting 

The selected products in the first stage are then taken to the second stage. They are used 

to forecast the future search growth rate of the new products. The forecasting process in the 

second stage is further divided into two approaches. 

Approach 1 (Dash Arrows in Figure 2.1) 

The forecasting method in approach 1 is primarily by building a bridge between the 

selected training products and the new product. These selected training products are largely the 

group of products that are most like the new product in terms of the spatiotemporal search 

pattern. The underlying assumption here is that the products matched in this period are similar in 

growth rate pattern in the next period. 

As shown by the dashed arrows in Figure 2.1, the forecasting stage includes both the 

training and test processes. The training process builds a linear model between the selected 

training products and new products (Left Dash Arrow in Stage 2). During the training process, I 

can estimate how the selected training products in period T-1 explain the search growth rate of 

the new product in period T. In the test process, the search growth rate of the selected training 

products in period T is further used to produce the forecasts for the new product in the Period 

T+1 (Right Dash Arrow in Stage 2). 

Approach 2 (Solid Arrows in Figure 2.1) 

Approach 2 is primarily a study of the search trends in the product itself. As mentioned 

above, the selected training products and the new products have a high degree of similarity in 

terms of search behavior. If the selected training products all share similar growth patterns, then 

it is likely that the new product follows the same growth pattern. 

As shown by the solid arrows in Figure 2.1, the training process examines how the search 

growth rate of selected products changes from period T-1 to period T. Then the test process 
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applies the same change to the new product being forecasted. The predicted search growth rate of 

the new product in period T+1 is a function of its lagged search growth rate. 

Specifically, the second approach builds a hierarchical model and assumes each selected 

existing product has a growth rate and these growth rates would formulate a growth rate 

distribution. It is assumed that the growth rate of the new product is also a random draw from 

this distribution. By using this growth rate distribution, I can provide the forecast for the new 

product. 

 

Data and Model 

This study looked at Google's data from 2014 to 2017. A total of 6,100 of the most 

popular products, such as the Apple iPhone 7, PlayStation 4 and more, were included. The search 

volume was calculated on an annual basis. For each product, I had 4 years of annual search 

volume. Search volume for the product came from 763 U.S. cities with a population size greater 

than 50,000. 

A computer algorithm was used to randomly select 100 products from the complete 

product pool as a holdout product sample. These holdout products were seen as the new 

products. The target was to forecast the search growth rate of these holdout products in 2017. It 

was a true holdout sample because all information in 2017 was considered not available. The 

remaining products from the complete product pool served as the training samples. For the sake 

of convenience, products in the training sample were called training products and products in the 

holdout sample become holdout products.  

Given 4 years of annual search volume, I further calculated 3 growth rates for each 

product. The equation I used to calculate the growth rate is described below. 
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Growth rate of shopping-related searches 

My equation for calculating the growth rate of shopping-related search volume is 

different from the traditional growth rate equation. This difference is manifested in two main 

ways. 

The first difference is the denominator of my equation for calculating growth rates. In 

calculating the growth rate of search volume in the second year relative to the search volume in 

the first year, the denominator uses the search volume in the second year. The growth rate is 

calculated as follows. 

 

  Gijt =
SVijt − SVijt−1

SVijt
 (2.1) 

 

In equation 2.1, Gijt is the growth rate of product i in city j from year t-1 to year t. SVijt is 

the search volume of product i in city j from year t-1 to year t. 

The second difference is that my search growth rate is truncated. There are boundaries to 

growth rates. The smallest growth rate is -10 and the largest is 1. The right boundary of the 

growth rate is determined by the growth rate equation itself. When the search volume in the first 

year is 0 or non-existent and the search volume in the second year is greater than 0, the search 

volume growth rate is 1, which reaches to the right-hand boundary. When the first year's search 

volume is positive and the second year's search volume is 0, I set the value of the growth rate to -

10, meaning that the second year's search volume is about 9% of the first year's search volume. 

At the same time, I truncate the value of the growth rate less than -10 to -10. The assumption is 

that when the search volume in the second year is less than 9% of the first year, it is basically 

equal to no search volume in the second year. 
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The main reason I calculate search volume in this way is that I need to set an upper bound 

if the growth rate is calculated using the traditional equation. Otherwise, when search volume is 

0 in the first year and positive in the second year, the growth rate is infinity. I must subjectively 

set it to a large positive value, but this positive value should be large enough to cover most cases 

in my sample. Moreover, this number also highly correlates with baseline search volume. For 

example, a product has a search volume of 1 in the first year and 101 in the second year. 

According to the traditional search volume growth rate equation, the growth rate is 10000%. The 

growth rate cap should be larger than 100. To make the case even worse, many of the new 

products in the sample have annual growth rates greater than 100. If this upper limit is too large, 

it will further affect the calculation of the posterior correlation coefficients (see the product 

selection section for details). These large growth rates could be the influencers in the calculation 

of correlation coefficients. On the other hand, I can't set this value too small. For those products 

that have been adopted faster, a small cap on growth rates would abandon these important 

growth signals. 

As a result, I decided to use growth rate equation in 2.1. An upper bound is automatically 

set to 1, which addresses the previous concerns.  In my equation, a lower limit is needed. I set the 

lower bound at -10, which means that the second year's search volume is about 9% of the first 

year's search volume. For most of the products in my sample, this value is small enough that the 

distribution of growth rates is not severely left-skewed. 

Based on my growth rate equation, the growth rates of 6,100 products in 736 U.S. cities 

are calculated for 2015, 2016, and 2017. Summary statistics on growth rates are presented in 

Table 2.2. 

[Insert Table 2.2 about here.] 
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In Table 2.2, I note that shopping-related search volumes have declined year-on-year 

since 2014. On the one hand, total search volume has declined slightly from 2016 and 2017. On 

the other hand, the share of goods with a growth rate of -10 is increasing over time. In total, with 

the rapid growth of the Internet entering a bottleneck period, it is more difficult for total search 

volume to grow as quickly as it once did. On the other hand, the Internet has also accelerated the 

life cycle of new products. More and more products have shorter and shorter life cycles. As a 

result, the number of products "disappearing" from the Internet each year is increasing.  

In the growth rate calculations, there are four cases that require our extra attention.  

Case 1: No change. The product is not available, or the search volume is 0 in the first 

year and remains the same in the following year. 

Case 2: Emergence. The product is not available, or the first year's search volume is 0 

and the following year's search volume is positive. 

Case 3: Disappearing. The product experiences positive search volume in the first year. 

However, the following year has 0 search volume, or less than 9% of the search volume in the 

previous year. 

Case 4: Normal growth. Search volume is positive in both the first and second year. 

The growth rate values are shown in Table 2.3 Panel A. In each year, the proportions of 

these 4 cases are different. These proportions are detailed from Panel B to Panel D in Table 2.3. 

[Insert Table 2.3 about here.] 

Consistent with the previous discussion, the proportion of Case 3s increased year on year, 

from 1.9% in 2015 to 2.5% in 2016. And it reached 3.3% in 2017. In addition, the proportion of 

cases 2 was also decreasing over time, from 7.5% to 1.5%. This indicated that the number of new 

products that had been searched completely from 0 was getting smaller and smaller.  
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Most importantly, I analyzed the quality of my data by looking at the proportions of 

missing values in growth rate calculations. All the missing values were included in Cases 1 

through 3. Case 4 only contained the growth rates in the absence of missing values. The 

proportion of cases 4 increased from 84.4% in 2015 to 91.3% in 2017. It could be inferred that 

the number of searches missing from the data for a given year was around 10% or less. 

Therefore, in my study, the cold start problem was that how to forecast future growth 

rates when one only knew the first-year growth rate of a product?  

Product Selection Models 

As discussed in the previous section, the first stage of my framework for addressing cold 

start problem is product selection. The methods of product selection are mainly divided into 

three categories: filter method, wrapped method, and embedded method. Due to space 

limitations, I have not exhausted all methods in each category. Instead, the most representative 

methods were chosen from each category. Next, I describe the method selected in each category 

and the equation used for each method. 

Filter Method –Correlation 

The first measure in filter method is called weighted Pearson correlation, which reflects 

the linear relationship of two products. The weight I use is the population size in each city. I first 

select a holdout product and calculate its correlation coefficient with all training products. I 

further rank these correlation coefficients. The larger the correlation coefficient, the more similar 

the search pattern of the two products. By ranking these coefficients, the purpose of product 

selection is achieved. The correlation coefficient is calculated as follows. 

 rXY =
σXY

√σXσY

 (2.2) 
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Where 𝑟𝑋𝑌 is the weighted Pearson correlation coefficient between a training product X and a 

holdout product Y. σX is the weighted variance for training product X and σY is the weighted 

variance for training product Y. σXY is the weighted covariance between two products. The 

equations for σX, σy, and σXY are as follows. 

 σX =
∑ wj(xj,2015 − mX)

2

j

∑ wjj
, σY =

∑ wj(yj,2016 − mY)
2

j

∑ wjj
 (2.3) 

 σXY =
∑ wjj (xj,2015 − mX)(yj,2016 − mY)

∑ wjj
 (2.4) 

Where wj is the population size in city j. xj,2015  is the search growth rate of 2015 for training 

product X in city j. yj,2016  is the search growth rate of 2016 for holdout product Y in city j. 

 mX and mY are the weighted average search volume for the two products. The equation 2.5 

shows how I calculate mX and my. 

 mx =
∑ wjxj,2015j

∑ wjj
, my =

∑ wjyj,2016j

∑ wjj
 (2.5) 

The weighted Pearson correlation coefficients range from -1 to 1. The positive 1 means 

that the two products have the same growth rate in all cities. The negative 1 indicates that the 

two products have exactly opposite growth rates in all cities. If there is no relationship between 

the growth rates of the two products, the correlation coefficient is 0. I know that a large positive 

correlation coefficient can help us in the following forecasting. Moreover, two products with a 

large negative correlation coefficient can also provide important information in the forecasting 

process. Therefore, I use the absolute value of the weighted Pearson correlation coefficient to 

rank the products and select the products with the largest absolute values from the training 

sample. 
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Filter Method – K-Nearest Neighbors 

The second measure in filter method is called weighted K-Nearest Neighbors (KNN), 

which is very similar to the correlation coefficient method.  In the weighted KNN method, I 

calculate the weighted Euclidean distance between two products. From there, the obtained 

Euclidean distances are further sorted to find those products with the smallest distances. The 

Euclidean distance is calculated as follows. 

 dXY =  √
∑ wjj (xj,2015 − yj,2016)

2

∑ wjj
 (2.6) 

Where dXY is the weighted Euclidean distance between a training product X and a holdout 

product Y. 

Wrapper Method – Backward Elimination 

The wrapper method I use in this study is called backward elimination, which is to select 

a subset of training products by evaluating their importance in a linear regression.  I start with a 

model that uses all products and then take out the products from the training sample to achieve 

the best model.  These remaining products are my selected training products.  The equation of 

backward elimination regression is as follows. 

 yj,2016 = α + ∑ βixij,2015

N

i=1

+ εj (2.7) 

Embedded Method – Lasso Regression  

Lasso method is a also regression model based on the idea of reducing training variable 

set.  By constructing a penalty function, it can shrink the coefficients of variables and make some 

regression coefficients become 0, thus achieving the purpose of variable selection.  Lasso's 

model is shown in equation 2.8, in which I use L1 regularization, that is, the sum of the absolute 

values of the product coefficients. 
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min
α, βi

{∑ wj (yj,2016 − α − ∑ βixij,2015

N

i=1

)

2J

j=1

} subject to ∑|βi|

N

i=1

≤ t  

 

(2.8) 

where t is a prespecified parameter that determines the amount of regularization. 

Forecasting Models 

Approach 1 

First, I set up the training model between holdout products and selected training products. 

 
yj,2016 = α + ∑ βix′ij,2015

M

i=1

+ εj 

 

(2.9) 

Where I selected M products from the training products in stage 1 and x′ij,2015 is the growth rate 

for the selected training product i in city j from 2014 to 2015. 

Secondly, I use the x′ij,2016   and estimated coefficients from the training model to obtain 

the predicted growth rates. 

 
yj,2017̂ = α̂ + ∑ β̂ix′ij,2016

M

i=1

  

 

(2.10) 

where 𝑦𝑗,2017̂  is the predicted growth rate from 2016 to 2017 for the test product Y in city j. 

Approach 2 

First, the training process is to model the trend of the growth rate for the training 

products. The dependent variable is the growth rate of training products in 2016. The 

independent variable is their growth rates in 2015. 

 

x′ij,2016 = αi + βix′ij,2015 + γi(x′ij,2015)2 + εij 

αi~(α0, σα
2 ) 

βi~(β0, σβ
2) 

γi~(γ0, σγ
2) 

(2.11) 
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where I assume the parameters of αi, βi, and γi follow three normal distributions N(α0, σα
2 ), 

N(β0, σβ
2), and N(γ0, σγ

2) respectively. 

After I estimate the model 2.11, the estimated mean of the normal distribution is used to 

forecast the search growth rate for the holdout products. 

 yj,2017̂ = α0̂ + β0̂yj,2016 + γ0̂(yj,2016)2 

 

(2.12) 

Benchmark Model 

Since I only have one-year growth rate for the holdout products, in the benchmark model, 

the predicted growth rate is simply the same growth rate that I have. The benchmark model is a 

straight projection. The predicted growth rate has nothing to do with the training products. The 

equation of the benchmark model is presented in equation 2.13. 

 yj,2017̂ = yj,2016 

 

(2.13) 

 

Results 

In this study, 100 products were randomly selected as holdout products. The other 6,000 

products served as training products. The number of training samples gradually increased from 

50 products to 6000 products. The training sample was also randomly selected from the existing 

product pool. The subsequent product selection and forecasting procedures were only based on 

these 50 products. 

The reason I did this was to examine whether the size of the training sample would affect 

the performance of my model. Evaluation of model performance was based on calculating the 

value of the mean absolute error (MAE) for each product in the holdout sample. Since my 

holdout sample contains 100 products, I had 100 MAEs for each model. I further used the simple 

average of these 100 MAEs (MMAE) as the criterion for evaluting the overall performance of 
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my models. The smaller the MMAE value was, the better the overall performance of the model.  

For the benchmark model, the MMAE value was 1.019. 

In my framework of addressing the cold start problem, a total of four product selection 

methods and two forecasting approaches were used. It was a 4 by 2 design. Thus, I evaluated 8 

sets of models. In the next section, I reported the performance of each set of models in run. 

Model 1: Filter Method (Correlation) + Forecasting Approach 1 

The performance of Model 1 was presented in Table 2.4. The performance was related to 

the training sample size and the number of products selected in stage 1. Under the same training 

sample size, the performance of the model got worse as the number of products selected 

increased. On the other hand, I fixed the number of selected products and looked at the model 

performance under different sample size. When the number of products selected exceeded 4, the 

larger the training sample size, the worse the forecast. Moreover, all the sub-models were not 

better than the benchmark model. The model only performed better than the benchmark model 

when the training sample contained less than 500 products and the number of selected products 

was no more than 3. As more and more training products were included in the model, it was clear 

that the model's performance went off track. This was mainly because in regression models, too 

many variables were used, making the model prone to overfitting and introducing problems of 

collinearity. Model 1 achieved the best performance when the training sample size contained 50 

products and only selected the most correlated product into the forecasting model. The 

corresponding MMAE was 0.8812, which improved the benchmark model by about 13.52% 

[Insert Table 2.4 about here.] 

Model 2: Filter Method (KNN) + Forecasting Approach 1 

With the same training sample size, selecting more products into the model deteriorated 

the forecast sharply. This finding was the same as Model 1. When I fixed the number of selected 
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products, the performance of forecast presented a U-shape over sample sizes. Initially, increasing 

the training sample size was helpful in improving the overall forecasts. However, as more and 

more products were available in the training sample, the noise from these products outweighed 

their value to the model. After more than 4 products were selected in stage 1, the model's 

forecast became unreliable, about which I would not go into detail. In Figure 2.2, I plotted the 

MMAE curves where the number of selected products was less than 4. These MMAE curves all 

showed the U-shape patterns. The MMAE of Model 2 was reported in Table 2.5. The optimal 

MMAE was 0.855, which improved by 16.15% over the benchmark model. 

[Insert Figure 2.2 and Table 2.5 about here.] 

Model 3: Wrapped Method (Backward Elimination) + Forecasting Approach 1 

The wrapped method selected the best subgroup of products without the need to set a 

fixed number of selected products as in the filter method. Thus, as shown in Table 2.6, the 

evaluation of model 2 was only related to the size of the training sample size. When the training 

sample size was big enough, the wrapped method failed to pick a better subset of products. As a 

result, the MMAE values were more or less the same. To make the case even worse, the wrapped 

method did not solve the problems of overfitting, resulting in the forecast that were all inferior to 

the benchmark model. 

[Insert Table 2.6 about here.] 

Model 4: Embedded Method (Lasso Regression) + Forecasting Approach 1 

In the last model, I employed the Lasso regression to complete the product selection and 

forecasting procedures. The model 4 improved on the previous models, mainly by adding a 

penalty factor to the coefficients in the regression.  

The Lasso regression method automatically selected the optimal product subset. Only the 

sample size had an impact on the predicted outcomes. Table 2.6 showed the relationship between 
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MMAE and sample size. The overall MMAE curve presented a decreasing trend. Initially, the 

MMAE decreased rapidly as the training sample size increased. After training sample size 

reached to 700, the MMAE gradually plateaued. Finally, the MMAE had a minimum value of 

0.729 at training sample size of 6000, improving the benchmark model by about 29.15%. The 

improvement was much higher than the previous models. Moreover, the predictive accuracy of 

the Lasso model fluctuated very little. The worst one also improved by 22.42% over the 

benchmark model. 

Model 5: Filter Method (Correlation) + Forecasting Approach 2 

In Model 5, I used the second forecasting approach. The impact of the model 

performance was still from both the training sample size and the number of products selected. 

Contrary to Model 1, with the same training sample, the more products selected, the better the 

model performed. I focused on the relationship between predictive accuracy and training sample 

size in the case of large training samples. As shown in Figure 2.3, I plotted the model's MMAE 

curve with training sample size when 50, and 80 products were selected in stage 1. In general, 

the MMAE curve had a U-shape initially and then gradually increased with the training sample 

size. While it might contribute to the forecasts when the sample size was small, once the training 

sample size reached a certain level, the harm from the large sample outweighed its contribution 

to the model. According to the MMAE output in Table 2.7, when the training sample size was 

300 and 80 products were selected, the optimal MMAE was 0.831. The MMAE improved by 

18.42% compared to the benchmark model. 

[Insert Figure 2.3 and Table 2.7 about here.] 

Model 6: Filter Method (KNN) + Forecasting Approach 2 

The characteristics of the forecasting results exhibited in model 6 were highly like those 

in model 5. On the one hand, the MMAE curve gradually decreased as more products were 
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selected, reaching the lowest MMAE after the number of selected products was 50 and then 

increasing slightly. On the other hand, as shown in the Figure 2.4, the MMAE curve also showed 

a U-shape with the sample size. For models using forecasting approach 2, model 6 performed 

better than the other models. With a sample size of 800 and 30 products were selected for 

forecasting, the minimum MMAE obtained was 0.720, which was 29.37% better than the 

benchmark model. 

[Insert Figure 2.4 about here.] 

Model 7: Wrapped Method (Backward Elimination) + Forecasting Approach 2 

The MMAE curve for Model 7 also largely reflected the fact that the size of the training 

sample was not as large as it should be. As shown in the Figure 2.5, when the sample size was 

small, the impact on the forecast was more pronounced by adding more products. But once the 

sample size was large enough, say 1000 products, the additional products did not make the 

model perform better. 

[Insert Figure 2.5 about here.] 

Model 8: Embedded Method (Lasso Regression) + Forecasting Approach 2 

Finally, Model 8 had the worst prediction of all models that used in forecasting approach 

2. The overall model performance, while fluctuating little, was much worse than the benchmark 

model. 

 

Concluding Remarks 

This essay not only presents a framework for solving the cold start problem, but also 

examines the performance of the framework at different sample sizes, because the idea to solve 

the cold start problem is to find products that are sharing similar in spatiotemporal patterns from 

the training products. Also, the ability to find the most suitable products depends on the number 
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of products in the training sample. If the number of products in the training sample is too small, 

it will be difficult to find the right products. Therefore, for most models, as the number of 

products in the training sample increases, the model's forecasting accuracy becomes better.  

In the context of big data, increasing the number of products in the training sample seems 

endless. The intuitive feeling is that the larger the training sample, the more the model can 

benefit from it. But at the same time, the larger training sample poses a lot of problems. For 

example, it increases the time spent on searching for similar products. There is no fixed ratio 

between marginal search costs and marginal performance improvements. In some practical 

scenarios, it is not cost-effective to increase the training sample when the search time cost is too 

high. And to make matters worse, large training samples can have negative impact on model 

performance, such as introducing more noise and overfitting problems. 

Therefore, I compare the model in two dimensions: horizontal and vertical. A horizontal 

comparison is to examine the performance of the same model at different training sample sizes. 

The vertical comparison is the comparison looks at the performance of different models under 

the same sample size. 

First of all, after much empirical analysis, the LASSO method obtained the best 

performance among the models using forecasting methods 1. This is mainly because all the 

selected products in forecasting approach 1 are used as independent variables in the predictive 

model. The more products selected, the greater the likelihood that the model will be overfitting. 

And there are other problems that can arise such as collinearity. Thus, the model in Method 1 has 

a high sensitivity to the number of selected products. The smaller the number of products 

selected, the better the forecast. 



 76 

Forecasting approach 2 employs a random effects model. Since there is only one 

independent variable, it is more stable than forecasting approach 1. The selected products are 

used to estimate a growth rate distribution, so the selected products also need to reach a certain 

number. For example, when 30 or 50 products are selected, most models reach their best 

forecasts. Among them, KNN's method was used to select products, and Model 6 came out on 

top among all models. Comparing the Lasso model in Prediction Method 1, both models 

performed well, and the accuracy of the forecasts did not differ significantly. Both models 

improved the running score model by as much as 30%. 

Secondly, let's look at the results of horizontal comparison. I found that larger training 

samples were not always better: a gradual increase in training sample size first improved, and 

then in turn decreased the model performance. I attribute this finding to the fact that the 

incremental predictive value of additional training data decreases as the sample size increases, 

while the proportion of noise remains. As a result, the methods commonly used for 

variable/feature selection fail to remove the additional noise, resulting in overfitting, which 

reduces predictive performance. This finding cautions us that even in the age of "big data," all 

else being equal, training data is not necessarily as big as it should be when predicting demand 

growth for new products. 
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      Figure 2.1: The Framework of Solving Cold Start Problem  
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Figure 2.2: The MMAE Curve of Model 2 

 

 

      Notes: K is the number of selected products in the stage 1. 
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Figure 2.3: The MMAE Curve of Model 5 

 

 

       Notes: K is the number of selected products in the stage 1. 
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Figure 2.4: The MMAE Curve of Model 6 

 

 

       Notes: K is the number of selected products in the stage 1. 
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Figure 2.5 The MMAE Curve of Model 7 
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Table 2.1. Variable Type and Corresponding Metrics in Filter Method 

Training Product \ Holdout Product Continuous Categorical 

Continuous Pearson’s Correlation LAD 

Categorical ANOVA Chi-Square 

 

Table 2.2. The Summary Statistics of Search Growth Rate in Each Year  

 Growth rate in 2015 Growth rate in 2016 Growth rate in 2017 

Count 4489600 4489600 4489600 

Mean -0.07 -0.31 -0.61 

Standard Deviation 1.67 1.90 2.07 

Minimum -10.00 -10.00 -10.00 

25th Percentile 0.00 -0.15 -0.42 

50th Percentile 0.25 0.18 0.00 

75th Percentile 0.53 0.41 0.21 

Maximum 1.00 1.00 1.00 
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Table 2.3. The Calculation of Search Growth Rate 

Panel A: The Equations of Search Growth Rate in Four Different Cases 

2015-2017 SVijt−1 

𝑆𝑉𝑖𝑗𝑡  

 NA 0.00 >0 

NA 0 0 1 

0 0 0 1 

>0 -10 -10 GRijt =
SVijt − SVijt−1

SVijt
 

 

Panel B: The Proportion of Each Case in 2015 

2015 SVijt−1 

𝑆𝑉𝑖𝑗𝑡 

 NA 0.00 >0 

NA 6.14% 

(Case 1) 

7.52% 

(Case 2) 0 

>0 
1.90% 

(Case 3) 

84.43% 

(Case 4) 

 

Panel C: The Proportion of Each Case in 2016 

2016 SVijt−1 

𝑆𝑉𝑖𝑗𝑡  

 NA 0.00 >0 

NA 3.56% 

(Case 1) 

3.96% 

(Case 2) 0 

>0 
2.51% 

(Case 3) 

89.97% 

(Case 4) 

 

Panel D: The Proportion of Each Case in 2017 

2017 SVijt−1 

𝑆𝑉𝑖𝑗𝑡  

 NA 0.00 >0 

NA 3.86% 

(Case 1) 

3.32% 

(Case 2) 0 

>0 
3.32% 

(Case 3) 

91.26% 

(Case 4) 
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Table 2.4: The MMAE of Model 1 

Training Sample Size Number of Selected Products 

 1 2 3 4 5 10 20 

50 0.881 0.926 1.066 1.120 1.122 1.244 1.478 

100 0.934 0.936 0.985 1.165 1.135 1.211 1.396 

200 0.910 0.924 0.940 1.037 1.055 1.022 1.182 

500 1.203 1.258 1.785 2.321 2.397 3.161 8.357 

1000 1.157 1.210 1.243 1.343 5.991 >10 >10 

1500 1.009 1.265 1.359 1.359 2.377 >10 >10 

2000 1.083 1.454 1.333 1.313 1.577 8.986 >10 

3000 1.0341 1.2973 >10 >10 >10 >10 >10 

4000 0.9069 0.9819 1.1796 1.4820 >10 >10 >10 

5000 0.9103 0.9668 1.0599 1.1777 1.2385 >10 >10 

6000 0.9463 1.1181 1.0212 1.2813 1.5567 >10 >10 
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Table 2.5: The MMAE of Model 2 

Training Sample Size Number of Selected Products 

 1 2 3 4 5 10 20 

50 0.896 0.910 0.927 0.951 0.951 0.975 1.015 

100 0.927 0.975 1.047 1.122 1.168 1.274 1.372 

200 0.900 0.907 0.931 0.951 0.980 1.094 1.135 

500 0.898 0.920 0.935 0.968 0.973 1.103 1.190 

1000 0.855 0.888 0.918 0.926 0.947 1.042 1.219 

1500 0.866 0.878 0.904 0.920 0.940 1.080 1.227 

2000 0.861 0.885 0.917 0.928 0.957 1.044 1.232 

3000 0.876 0.921 0.969 0.977 0.995 1.001 1.248 

4000 0.882 0.928 0.943 0.943 0.975 1.021 1.171 

5000 0.875 0.939 0.975 0.977 0.992 1.058 1.132 

6000 0.864 0.928 0.972 0.975 0.994 1.054 1.096 
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Table 2.6: The MMAE of Model 3 and Model 4  

Training Sample Size Model 3 Model 4 

50 4.666 0.791 

100 3.771 0.769 

200 2.848 0.739 

500 >10 0.731 

1000 8.365 0.735 

1500 3.327 0.730 

2000 2.326 0.740 

3000 1.887 0.733 

4000 1.447 0.726 

5000 1.319 0.721 

6000 1.242 0.722 
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Table 2.7: The MMAE of Model 5 

Training Sample Size Number of Selected Products 

 
1 2 3 4 5 10 20 30 50 80 

50 1.044 0.990 0.951 0.931 0.933 0.871 0.852 0.856 0.936 - 

100 1.025 0.984 0.957 0.926 0.909 0.883 0.856 0.843 0.851 0.933 

200 1.054 0.936 0.935 0.913 0.890 0.888 0.878 0.865 0.834 0.833 

500 1.278 1.069 0.986 0.929 0.904 0.861 0.880 0.896 0.880 0.848 

1000 1.243 1.147 1.097 1.055 1.003 0.926 0.897 0.900 0.903 0.908 

1500 1.293 1.168 1.224 1.148 1.087 1.012 0.927 0.898 0.917 0.919 

2000 1.346 1.242 1.114 1.228 1.237 1.077 0.971 0.947 0.934 0.932 

3000 1.334 1.244 1.160 1.083 1.052 1.066 0.967 0.927 0.904 0.915 

4000 1.168 1.207 1.171 1.110 1.037 1.054 0.966 0.930 0.909 0.888 

5000 1.161 1.180 1.137 1.122 1.050 1.037 0.953 0.947 0.919 0.904 

6000 1.140 1.094 1.089 1.054 1.048 0.949 0.941 0.923 0.930 0.906 
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Table 2.8: The MMAE of Model 6 

Training Sample Size Number of Selected Products 

 1 2 3 4 5 10 20 30 50 80 

50 1.038 0.860 0.770 0.754 0.747 0.765 0.784 0.785 0.936 - 

100 1.217 0.991 0.846 0.815 0.776 0.747 0.753 0.767 0.785 0.809 

200 1.156 1.008 1.047 0.916 0.859 0.772 0.762 0.757 0.768 0.784 

500 1.058 0.975 0.904 1.053 1.011 0.787 0.729 0.728 0.743 0.763 

1000 1.028 0.950 0.918 1.032 1.008 0.793 0.733 0.739 0.743 0.746 

1500 0.899 0.881 0.862 0.853 0.986 0.792 0.729 0.739 0.742 0.740 

2000 0.882 0.883 0.883 0.833 0.825 0.852 0.737 0.732 0.743 0.743 

3000 0.959 0.869 0.834 0.836 0.826 0.842 0.800 0.760 0.753 0.747 

4000 1.015 0.879 0.825 0.805 0.814 0.811 0.835 0.778 0.757 0.755 

5000 0.985 0.880 0.874 0.839 0.837 0.816 0.942 0.812 0.771 0.758 

6000 0.943 0.861 0.855 0.816 0.825 0.805 0.816 0.864 0.809 0.771 
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Table 2.9: The MMAE of Model 7 and Model 8 

Training Sample Size Model 7 Model 8 

50 1.034 2.592 

100 0.972 2.218 

200 0.902 1.509 

500 0.939 3.263 

1000 0.934 3.576 

1500 0.935 3.970 

2000 0.935 3.101 

3000 0.935 3.176 

4000 0.935 2.932 

5000 0.935 2.994 

6000 0.935 2.984 
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