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ABSTRACT

This thesis presents a program to evaluate uniform pseudo-random 

number generators. It presents various methods of generation and the 

tests available to test the adequacy of the methods. The program is 

employed to test a number of frequently used generators and the results 

are reported. The strengths and weaknesses of the programmed tests 

are also discussed.
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CHAPTER 1 

RANDOM NUMBER GENERATORS

A. Introduction

There have been many words written and spoken on the relative 

merits and shortcomings of various types of uniform random number 

generators. As soon as a new algorithm or procedure is presented 

as being totally random and unbiased a critic of the new method dis

covers an area where the performance of the procedure is less than 

ideal. This type of banter has been going on for years and with the 

emergence of the digital computer and the availability of a high-speed 

means of generating these numbers the arguments are becoming more 

and more frequently found than ever in the journals of computer and 

statistical methodology. One point, however, is not argued; that is 

the statistical importance of random number generators in a wide 

variety of applications.

Random numbers are useful in many areas. For example:

a. Simulation - when a computer is used to simulate natural phenomena, 

random numbers are required to make things realistic. The term 

simulation is rather broad and covers studies from nuclear physics 

and space technology to queuing theory (for example, people entering 

a bank or cafeteria at random intervals expecting services) and 

computer software simulation (analysis of various types of software, 

hardware, peripherals and job streams to optimize throughput).



b. Sampling - in many statistical analyses it is often impractical to 

examine all possible cases due to the large number of possibilities.

A well chosen random sample, will, however, allow the 

statistician to draw meaningful conclusions from the data and gain 

insight into the problem from a substantially smaller subset of 

observations.

c. Numerical analysis - many techniques for solving complicated 

numerical problems have been devised using random numbers.

d. Computer programming - random values make a good source of 

data for testing the effectiveness of computer algorithms.

e. Decision making - random numbers are becoming increasingly 

more important in association with corporate and industrial 

decisions. Techniques such as decision theory and risk analysis 

employ random numbers in a simulation type application to aid 

managers in evaluating various alternatives.

f. Recreation - rolling dice, shuffling cards, playing roulette are all 

every day occurrences which involve random number theory. This 

commonplace use of random numbers has had the name "Monte Carlo 

Method" devised as the general term used to describe an algorithm 

that employs random numbers.

Although we have been and will probably continue to talk about random 

numbers, there really is no such entity as a random number. We 

cannot, for example, say 21 is a random number or 21 is not a random 

number. What we are actually saying is that we really are speaking

about a sequence of independent random numbers with a previously 
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specified distribution and that each number observed by us was obtained 

by chance, having nothing to do with other numbers in the sequence.

Uniformly distributed variables in the range zero to one (denoted 

(0, 1)) play an important role in the generation of random variables 

drawn from other probability distributions such as the exponential, 

normal, Poisson and binomial distributions. In fact, random variables 

from these distributions are often derived by transforming one or 

more uniform (0, 1) random variables. For example, -ln(r) where r 

is a random variable from a uniform (0, 1) yields an exponentially 

distributed random variable with mean 1. For this reason, we will 

concern ourselves primarily with the uniform distribution and the 

distributions referred to should be understood to be uniform unless 

some other distribution is explicitly stated.

A uniform distribution is one in which each possible number is equally 

probable. In other words each of the ten digits 0 through 9 will occur 

about 1/10 of the time in a (uniform) sequence of random digits. Each 

pair of two successive digits (00 through 99) should occur about 1/100 

of the time and so on. Yet if we take a truly random sequence of 1000 

digits, it will not always have exactly 100 zeros, .100 ones, etc. In 

fact, the probability of this actually occurring is quite small; however, 

a sequence of such sequences will have this character on the average.

Another quality of a random number generator besides the frequency 

of the appearance of the digits, is the actual sequence of the digits.
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A sequence such as

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

or

0,0, 1, 1,2, 2, 3, 3, 4, 4, 5,5, 6, 6, 7, 7, 8, 8, 9, 9

might have each digit appear with the same frequency but indeed there 

is a suspicious ordering to the digits which would cast doubt on the 

validity of the generator.

There are several ways to formulate a good abstract definition of a 

random sequence but perhaps we should begin with an intuitive 

approach to the concept.

One of the first published accounts of random digits appeared in 1927 

as a table of over 40,000 random digits taken at random from census 

reports. This table was compiled by L. H. C. Tippett (17). Since then 

a number of machines were built for mechanically generating random 

numbers. M. G. Kendall and B., Babington-Smith (7, 8) describe such 

a machine in their papers in the Journal of the Royal Statistical Society. 

The machine essentially consisted of a spinning disk divided into 

ten equal sections, each having a digit from 0 to 9 on it. The disk 

was caused to spin at a relatively high speed in a dark room. The 

operator would at unequal intervals press a button to flash a light on 

for an instant which would illuminate the spinning disk, making it 

appear motionless and noticing the digit at which a previously mounted 



pointer was indicating. Statistical analyses of the sequences generated 

by the above method proved it to be a reasonable means of random 

number generation.

Shortly after computers were introduced people began to search for 

efficient ways to obtain random numbers in computer programs. One 

obvious way is to read in tables of already known random sequences. 

This method, however, is of limited utility because of memory 

available, input time requirement, the table may be too short for the 

application and it certainly seems like it would be a nuisance to prepare 

and maintain the table. Obviously, the computer should be programmed 

to generate its own random number sequences.

B. Random Numbers by Computer

The idea of using the computer and its inherent high speed for generating 

random numbers was suggested in the 1940's by John von Neumann.

His method was called the "middle square" method and consisted of 

using the previously generated random number, squaring it and extracting 

the middle digits as the new random number. So, for instance, if we 

were generating 10-digit numbers and the previous value was 5, 772, 156, 649 

the new random number would be 7923805949 (the middle ten digits of 

33317792380594909291).

One obvious objection to this technique is how can a sequence generated 

in such a way be random since each number is completely determined by 

its predecessor. The answer, of course, is that the sequence is not

random, but it appears to be. For this reason such deterministically 
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generated sequences are called pseudo-random or quasi-random 

sequences. Although they are derived from a fully specified formula 

by a digital computer, their statistical properties coincide with the 

statistical properties of numbers generated by an "idealized chance 

device" that selects numbers from the unit interval independently 

and with all numbers equally likely. Provided that these pseudo-random 

numbers can pass the set of statistical tests (frequency tests, auto

correlation tests, lagged product tests, runs tests, gap test and others 

all of which will be fully detailed in this paper) implied by an idealized 

chance device, then these pseudo-random numbers can be treated as 

"true" random numbers even though they are not.

Naylor (15) proposes several criteria that should be satisfied by an ideal 

pseudo-random number generator. An ideal pseudo-random number 

generator should yield sequences of numbers that are 1) uniformly dis

tributed, 2) statistically independent, 3) reproducible and 4) nonrepeating 

for any desired length. Furthermore, such a generator should also be 

capable of 5) generating random numbers at high rates of speed, yet of 

6) requiring a minimum amount of computer memory capacity. He also 

states that congruential methods of random number generation come 

closer to satisfying all of these criteria than any other known method. 

Congruential Methods

The congruential methods for generating pseudo-random numbers are 

based on the mathematical concept of congruence which basically states
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that two numbers a and b are congruent modulo m if their difference

is an integral multiple of m. The congruence relation is expressed

by the notation a E b (mod m) and is read "a is congruent to b modulo m. " 

In other words a-b is exactly divisible by m which also implies that a/m 

and b/m have the same remainders.

The following recursive formula is basic to all congruential methods.

= (aX^ + c) mod m n> 0 (I- 1) 

where XQ, a, c, and m are all non-negative integers. Expanding (I- 1) 

for i = 0, 1, 2. . . we obtain

Xj = (aXQ + c) mod m

= (afaX^ + c) mod m

2
= a Xq + (a + 1) c mod m

3 2Xo = a X + (a +a+l) c mod m■5 o

3 (a3 - 1) ,= a xo + (T-'i) c modm
i (a1 - 1)

Xi = a Xo + (a 1'1) c mod m (1-2)

Given an initial starting value XQ, a constant multiplier a, and an additive 

constant c, then (1-2) yields a congruence relationship (modulo m) for 

values of i, i=0, 1,2...

This sequence is called a linear congruence sequence. For example, the 

sequence obtained when XQ = a=c=7, m=10, is 7, 6, 9, 0, 7, 6, 9, 0, . . . . As 

this example shows, the sequence is not always "random" for all choices 

of the initial parameters; in fact the choice of these values is extremely
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critical in producing useful random sequences.

The above example illustrates another characteristic of congruential 

sequences: they always get into a loop or begin repeating themselves. 

This repeating cycle is called the period; the sequence above having a 

period of 4. Obviously a useful sequence will have a relatively long 

period.

Two types of congruential methods have been derived from Equation (1-2).

When c = 0 the term multiplicative congruential generator is often used 

and when c / 0 often the term mixed congruential method is employed. 

The case c = 0 generally proceeds a little faster than when c / 0.

However the restriction c = 0 cuts down the length of the period of the 

sequence although careful selection of the other parameters still allows 

for a reasonably long period.

Far and away, the most widely used method of generating random numbers 

by computer employs in one variation or another a congruential method.

In almost all of these cases the method used is a multiplicative congruential 

method or a mixed congruential method. These two methods and two 

variations of them are discussed below.

The Multiplicative Method

The multiplicative congruential method computes a sequence {X.} of 

non-negative integers less than m by means of the congruence relation 

X^j=aX^ mod m (1-3).
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This method is a special case of the congruence relation (1-1) where 

c = 0. This method has been found to behave quite well from a 

statistical point of view. Given a prudent choice of the multiplier a 

and starting value (or seed) Xo, it is possible to generate sequences 

of numbers that are uncorrelated and uniformly distributed.

Additionally, careful choice of the two above-mentioned parameters 

guarantees a maximum period for sequences generated by this method. 

Knuth (9) states the following theorem concerning multiplicative congruential 

generators and cites the proof by R. D. Carmichael, Bulletin of the 

American Math. Society, Vol, 16, (1910), pp 232-38.

Theorem

The maximum period possible when c = 0 (a multiplicative congruential 

method) is achieved if

1) X is relatively prime to m
o

2) a is a primative element modulo m.

To clarify the above theorem it is also necessary to note that when a is 

relatively prime to m, the smallest integer X for which a^ = 1 (mod m) 

is called "the order of a, modulo m". Any value of a which gives the 

maximum possible order modulo m is called a "primative element, 

modulo m. "

If we let A(m) denote the order of a primative element, i. e. , the 

maximum possible order, modulo m, we can show (Knuth) that X(pe), 

e
where p is a prime number and e a positive integer, p > 2, is a divisor
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e-1 \of p (p-1). The precise value of A(m) for all cases can then be 

given as

X(2) = 1
X(4) =2 

A(2e) = 2e-2, e> 3 
A(pe) = pe‘* 1 ii) iii)(p-i), P> 2-

a is a primative element modulo pe if and only if

i) pe = 2, a is odd;

pe = 4, a mod 4 = 3; or

pe = 8, a mod 8 = 3,5, 7; or

p = 2, e > 4, a mod 8 = 3,5;

or

ii) p is odd, e = 1, a £ 0 (mod p) and

a(P~l)/<I £ i (mod p) for any prime divisor 

q of p-1;

or

iii) p is odd, e >1, a satisfies ii) and

aP~l ¥ 1 (mod p^)

This theory simplifies somewhat when we note that as applicable to 

computer generated random numbers p represents 2 or 10 depending 

on whether the generator is to be run on a binary or decimal computer 

and e represents the number of bits per word available for computation. 

For the IBM 360 then p = 2, e = 31.

Knuth then presents another theorem as follows:

Theorem
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Once again this theory simplifies in the common case where m = 2e, e > 4 

and our sole requirement is that a = 3 or 5 (modulo 8).

The Mixed Method

The mixed congruential method computes a sequence of of non

negative integers less than m by means of the congruence relation given 

by
= aX^ + c (mod m).

This method differs from the multiplicative procedure in that c is not 

assumed to be zero. The advantage of this method is that it is possible 

to obtain sequences with a period that covers the full set of m different 

numbers (the multiplicative method has a maximum period of m-1). 

From a computational and speed standpoint this method requires an 

extra addition operation compared to the multiplicative method.

The theorem concerning the maximum period for a linear congruential 

sequence is as follows: 

Theorem

The linear congruential sequence has a period of length m if and only if

. i) c is relatively prime to m

ii) a = 1 (mod p), p is a prime factor of m

iii) a E 1 (mod 4) if 4 is a factor of m.

The practical considerations of this condition, when dealing with binary 

computers, is relatively straightforward. To achieve a full period 

h = m = 2e the parameter c must be odd and a must satisfy the congruence 

relationship

a = 1 (mod 4) 



which can always be achieved by setting a = 2^ + 1 for k > 2. Any 

positive integer can be selected for the starting value XQ. However 

the above-mentioned conditions are not in themselves sufficient for 

assuming that sequences generated by the mixed congruential method 

will be statistically satisfactory. Naylor states that only by empirical 

testing can we have confidence in the statistical properties of sequences 

that are produced.

The Combination Methods

Within a few years after their discovery, congruential methods came 

under attack in the literature on the grounds that the sequences generated 

were not statistically satisfactory especially with respect to autocorrela

tion (a measure of the tendency of numbers in the sequence to show a 

linear functional relationship to other numbers in the sequence a given 

but constant distance away). As a result of these findings, several new 

versions of congruential methods were suggested in the literature.

MacLauren and Marsaglia (11) suggested two combination methods. The 

first method, to be used on computers with buffered input, reads in a 

tape of p previously stored random numbers. Then, a congruential 

generator computes an index that determines which random number is 

selected from the inputted sequence. This process is continued until 

all the inputted numbers are exhausted at which time a new tape is 

read and the process continues. The second method suggested by 

these two men uses two random number generators. To begin, a table

of 128 locations in core was filled with numbers generated by the first 
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generator. To output random numbers the second generator computed 

an index to determine the location in the table of the random number 

to be used. The location in the table was refilled with a new number 

generated from the first congruential generator. MacLauren and 

Marsaglia recognize that the time required using this method is about 

twice the time required in a non-combination method but they strongly 

feel the time penalty is worth suffering to obtain a sequence of numbers 

with better statistical properties. In fact an article written three years 

later by Marsaglia and Bray (14) presents a combination method that involves 

three congruential generators. They state "short and fast programs 

will result even if three generators are mixed. One to fill, say 128 

storage locations, one to choose a location from the 128 and a third 

thrown in just to appease the gods of chance. Why be half (or two-thirds 

safe)? 11

Another method of generating pseudo-random numbers based on the 

combination of two congruential generators has been proposed by 

Westlake (18). It retains two of the desirable features of congruential 

generators, namely, the long cycle and the ease of implementation with 

a digital computer. Unlike the combination method of MacLauren and 

Marsaglia, Westlake’s method does not require the retention in memory 

of a table of generated numbers. Westlake, instead, uses the two 

generators and does bit-wise addition followed by division. To further 

insure randomness, Westlake also adopted the procedure of modifying 
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one random number by permuting its bits in a random manner determined 

by the other random number. Like the generators of MacLauren and 

Marsaglia, this procedure yielded completely satisfactory results on a" 

fairly stringent series of statistical tests.

The combination methods are so prevalent as to be too numerous to 

describe. More recently, however, the enthusiasm has been dampened 

somewhat by the paper by Coveyou and MacPherson (1). They conclude, 

through Fourier analysis, that any multiplicative generator is statistically 

satisfactory if its multiplier meets certain requirements. On the other 

hand Marsaglia (13) still maintains that every multiplicative generator has 

a defect which makes it unsuitable for certain Monte Carlo problems 

namely - points produced in the n-cube fall in a relatively small number 

of parallel hyper-planes.

Other Methods

Of course, linear congruential methods of pseudo-random number 

generating are not the only methods ever suggested for computer use. 

There are a number of other methods which should be briefly discussed.

One of the common fallacies encountered in connection with random 

number generation is that a good generator can be modified slightly 

to yield an even better generator. Actually this is not so and in fact 

the new generator is oftentimes less random than the original one. 

Knuth expresses this idea as a moral to an episode where he thought 

he was creating a fantastically good random number generator using 
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a rather complicated and peculiar algorithm, without actually examining 

the theory behind the algorithm. The algorithm when implemented proved 

deficient in many areas and led Knuth to state "random numbers should 

not be generated with a method chosen at random. "

Two additional methods of generating random numbers are quadratic con- 

gruential methods of the form

2
X ,. = (dX + aX + c) mod m (1-4)n+1 ' n n ' ' *

and

X , . = X (X +1) mod 26, X., mod 4 = 2. (1-5)
ut inn u

In the case of (1-4) the sequence has a period of length m provided parameters 

a, c and d are properly chosen. Case (1-5) involves less computation time 

than (1-4), in fact just slightly more time than the linear congruential form 

of (1-1).

One other nonlinear congruential method of generating random numbers 

involves using the Fibonacci sequence, X = Xn + X This sequence, 

which in itself is important in describing many natural phenomena can be 

modified by division modulo m to produce a random sequence of a relatively 

long period. However, recent studies of such sequences have proved them 

not to be satisfactorily random. A slight modification to the Fibonacci 

sequence to the form

Xn+1 = (xn + xn _ k > mod m

when k is comparatively large has been shown to produce acceptable 

sequences of random numbers (k = 16).
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There are therefore different and varied methods of generating random 

numbers by computer. Without knowledge of the particular application 

however it would be indeed difficult to recommend one over any other.

Chapter 2 deals with various statistical tests to aid in selecting a satis

factory generator.



- 17 -

CHAPTER 2

STATISTICAL TESTS FOR EVALUATING 
RANDOM NUMBER GENERATORS

The statistical properties of pseudo-random numbers generated by 

methods such as those described in Chapter 1 should of course coincide 

with the statistical properties of numbers generated by an idealized chance 

device that selects numbers from the unit interval (0, 1) independently and 

with all numbers equally likely. Obviously, as we have previously 

mentioned, the numbers generated by computer are not random because 

they are completely determined by a number of initial parameters and 

have their precision limited to the accuracy of the computer. However, 

we will agree that as long as our pseudo-random numbers can pass a rigid 

set of statistical tests that the idealized generator would theoretically also 

pass, the pseudo-random numbers will be treated as "truly" random 

numbers.

Because random number generators are frequently used in the simulation 

of nondeterministic or stochastic systems the importance of the statistical 

agreement described above becomes evident. For example, if the probability 

of the occurrence of a physical event at a given point in time is . 60, 

then if the generated random number assigned to that event at that point 

in time is less than or equal to . 60 the event is assumed to have occurred.

A generated random number between . 60 and 1. would imply the event at 

this point in time did not occur. Generally, in this manner the entire 
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course of events of a given case are run or simulated and the final outcome 

along with relevant intermediate results are reported. Obviously a poor 

or biased random number generator would tend to cast suspicion as to the 

accuracy of the simulation. A number of statistical tests are available to 

examine pseudo-random sequences and which allow the analyst or statistician 

to make statements concerning the apparent randomness or lack of it in a 

given sequence. There is literally no end to the number of tests that can 

and have been conceived and, in fact, for specific applications oftentimes a 

specific test need be developed to protect against biased introduced by the 

peculiarities of the application itself. In general there are a number of more 

common tests and these are described below.

A. Moments

An obvious and desirable characteristic of a pseudo-random number 

generator on the unit interval is agreement between the observed 

moments and the known theoretical ones. The first moment, or 

average, is calculated as

1 N
X= N.^ X.. (II-1)

(H-2)

(II-3)i

3is 1/3. The third moment, or X is expressed asand its theoretical value

-3 -1x = N
i=l

The expected value for this quantity would be 1/2. The second 

2
moment, denoted X , is expressed as 

N
~ A X 2
x =N i = i ""



and it has a theoretical value of 1/4. Another quantity directly

related to moments, and in the case of a 0 mean distribution identical 

2
to the second moment is the variance, denoted S , and calculated as

- 1 n —2~2 - 2 - x- (X. - X) (U-4)
S=X -X=N2,xi ' 1

i=l

The variance of a uniform distribution on the unit interval (0, 1) is 

1/12.

2
B. Chi-Square ( X ) Tests

v 2The X test is perhaps the best known of all statistical tests and it 

is a basic method which is often used in connection with many other 

tests. To apply this test we divide the range (0 to 1) of the N samples 

into r classes and determine the number of samples, V., which fall 

into each class. From the assumed theoretical distribution we 

compute pp the probability of being in the ith class. Then Np^ is the 

expected number in the ith class and a statistic X is defined as

■r 22 V <Vi - NPi> 

i=l NPi

and represents a measure of dispersion between the data and the 

assumed distribution. A comparison can then be made with the

2 2
computed value of X and a known value of X such that if the 

calculated value is larger than the known value from a table a very 

small probability can be attached to the conclusion that the observed 

observations were actually drawn from the assumed distribution. 

Also, if we have k-independent sets of N observations we can perform

2 
similar tests on the k calculated values of X .
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The selection of class width is somewhat arbitrary. Generally speaking 

class width should be chosen so that all Np. are at least 5 and probably 

should be nearer to at least 10. The lengths of the class intervals 

need not all be the same but except for the endpoints of some distri

butions where larger class widths are needed to satisfy the requirement 

of Np^> 5, there is not much to be gained by unequal interval sizes. 

Mann and Wald (10) suggest using k intervals where 

5/ 2 T"
k = 4V 2(n-l) to

and c is related to the size of the critical region (the probability 

associated with the critical region under the null hypothesis or signi

ficance level). Some values of c for different significance levels are 

shown below in Table II-1.

TABLE H- 1
Mann-Wald Values of c for Some 

Significance Levels

Significance Level c

.001 3.09

• 01 2. 327

. 025 1. 960

.05 1. 645

. 10 1.282

. 15 1. 037

.20 . 842
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Another consideration might lead to a different number of classes.

For example, if many times in the simulation model using the 

pseudo-random number generator under scrutiny a choice is made 

between n equally likely alternatives it might be expeditious to 

choose k = n. As Gorenstein (4) points out, in the final analysis it is up 

to the user to design tests to suit the needs of his simulation. There 

can be no general method that will guarantee good results.

C. The Kolmogorov-Smirnov Test 
2

The X test applies to the situation where observations fall or are 

arbitrarily placed in a finite number of categories. It is commonplace 

however to consider random quantities which may assume infinitely 

many values, e. g. , random variables on the (0, 1) interval, and for 

some reason be unwilling to set up arbitrary classes. By examining 

the cumulative distribution function we can eliminate the need of setting 

up arbitrary class sizes and use the Kolmogorov-Smirnov Test (K-S test).

The cumulative distribution function, denoted F(X), where

F(X) = Pr {x<X}

indicates the probability that a random variable x is less than or 

equal to some given value X. In the case of a uniformly distributed 

variable on the unit interval (0, 1), Pr{x<X} = X. For example 

Pr{x^2/3} = 2/3. If we made N independent observations or
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samplings of the random variable x, obtaining the values x,, x , . . . x
1 2 N

we can form the empirical cumulative distribution function

number of x- < X
F (X) = ------------------- LZ—

N N

As Nincreases F^(X) should be a better and better approximation of 

F(X).

The K-S test may be used when F(X) has no jumps. It measures the 

concordance between F(X) and F^(X). A poor random number generator 

will yield an empirical distribution function which will not approximate 

F(X) very well.

To apply the K-S test to the unit interval (0, 1) where we have a sequence 

of N random observations we form the following two statistics:

K*  = v^F Max (Fn(X) - F(X) )

0 < x < 1

K = /N Max (F(X) - F (X) ).
N N

0 <x < 1

II-6

+
Here K measures the greatest amount of deviation when F is 

N N

greater than F, and K represents the maximum amount deviation

when F is less than F.
N
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2 +As in the X -test, we may now look up critical values of K

in a table to determine if they are significantly high or low and thus

decide if our sampled distribution does, in fact, resemble the hypothesized

distribution.

Although the Kolmogorov-Smirnov test is a more statistically accurate

2test than the X -test, there are a number of disadvantages associated

with it. Some of the main disadvantages are 1) all N observations must 

be available during the test 2) the observations, although obtained in a 

random order, must be sorted in ascending order and 3) there are a 

considerably greater number of calculations involved in the K-S test

2
as compared to the X -test.

Runs Tests

D. The expected random oscillatory nature of sequences of pseudo-random 

numbers can be tested by "runs tests". Two standard types of runs tests 

are runs up and down and runs above and below the mean.

Runs up and down - Let x^, x^, . . . x^ be a sequence of N unequal 

numbers. Consider a sequence of N-l signs, a^, where a^ is the sign 

of x^j-x^. A sequence of p consecutive plus signs not immediately 

followed or preceded by a plus sign is called a "run up of length p".

An analogous sequence of minus signs is called a "run down of length p".

For example the sequence

1 5 19 15 13 12 18 2 4 9 11

gives ++--- + -+ + +

which has a run up of 2 followed by a run down of 3, up of 1, down of 1, and
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up of 3.

If we let

r = number of runs in the sequence

Tp = number of runs of length p in the sequence

r = number of runs of length p or more in sequence 
P

then

E(r) = 1/3 (2N-1); Var (r) = (16N-29)/90, (II-7)

2 3 *>
E(rp) = 2N(p +3p+l)-2(p +3p -P-4) /(p+3)!

for p<N-2, (n-8)

+ 7E(rp)= 2N(p+l) - 2(p^+p-l) /(p+2)! forp^N-1 (H-9)

and

r-E(r) 
/Var (r) (II-10)

is asymptotically normally distributed as N+oo with mean 0 and variance 1.

We, therefore, can easily test the hypothesis H :r=E(r) by calculating 
o

(II-10) and comparing it to the value in the appropriate table of the 
2

normal distribution. Likewise, the X goodness of fit test may be used

to check whether a pseudo-random number generator is acceptable based 

on the distribution of length of runs. A common characteristic of nonrandom 

sequences of numbers is an excess of long runs.

Runs above and below mean - The expected number of runs above and 

below the mean is

E(r(m)) =7+1 (II-11)



- 25 -

where r' ' is the number of runs above and below the mean. These 

runs are counted by constructing a sequence of N signs with the plus 

or minus depending on whether X is greater or less than the mean of 
i

the distribution (1/2 in our case). The expected total number of inns

-k-1 2
of length p is (N-p+3)2 . A X -test may be used to check whether

a given pseudo-random number generator is acceptable.

E. Serial Tests

1) Pairs Test

For a locally random series no number shall tend to be followed by 

any other number. If we, therefore, construct a table with the rows 

representing a frequency distribution of the first number of a pair 

of uniform random values and the columns representing a frequency 

distribution of the second number of the pair we would expect the 

frequencies to be approximately equal in all cells after N pairs had
2 

been examined. To test this hypothesis we could apply the X test

to these cells of the table with the theoretical or expected number 

of observations in each cell equal to N/number of cells. Clearly 

it would be possible to extend this test to triples, quadruples, etc. ; 

however, the size of the table increases rapidly and to insure an 

expected theoretical value of at least five or ten the total number of 

observations needed begins to get quite large. Also, the calculations

v * 2required to compute X begin to use substantial computer time.

It would be appropriate to note here that it would be a mistake to 

perform the serial test on the pairs (x.,x9), (x xq) . .. (x_ ., x
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because the chi-square test requires independence of the observations.

Rather, for this particular test we should use the pairs (x^, 

(x3, x4) .. . (x2N_ j,x2j^) which yields approximately half as many 

observations as the incorrect former method.

2) Autocorrelation

The autocorrelation function is a measure which is widely used 

in the study of stochastic processes. If we let Xp i = 1, 2, . . . 

be a sequence from the unit interval (0, 1), then we may define 

the autocorrelation function of a sample of length N from this 

sequence as
N-t

R(t) = 1/12 (Xi - 1/2) (xi+t - 1/2) (H-I2)

where t is commonly referred to as the length of the lag and R(t) 

as the autocorrelation at lag t.

The correlation coefficient always lies between -1 and +1. When it

is zero or near zero, it indicates that the sequences {x.J. and 

are (statistically speaking) independent of each other. When the 

correlation coefficient is near - 1 (it indicates a high degree of linear 

dependence between the two sequences. A value of - 1 would indicate 

total dependence and, in fact,

Xi+t = ^i + b

for some constants and and b.

A satisfactory random sequence would have autocorrelations near zero 

for all lags tested.
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F. Gap Test

All of the preceding tests have been conceived for randomness of 

numbers where each number consisted of some fixed or finite number 

of digits. The gap test for digits is concerned with the randomness 

of the digits in a sequence of numbers. For any given digit d, we can 

examine the lengths of the gaps of "non-d" digits between any two 

"d-digits". In other words, a gap of length k occurs when k "non-d" 

digits occur between two "d-digits". Two consecutive d's produce a 

zero gap.

The theoretical probability of obtaining a gap of length k is

Pr {gap = k} = (,9)k (. 1) (n-13)

For a given sequence of digits, tallies are made of the number of 

gaps occurring for each length. A chi-square goodness of fit test 

can be used to compare expected and theoretical number of gaps.

A second type of gap test does not examine digits but examines the 

actual random number. In this case, a gap is the number of consecutive 

observations in the sequence that do not fall between a specified a and b. 

Generally, a tally is kept as to gaps of lengths 0, 1, 2 . . . t-1, and the 

number of gaps of length t or greater.

In the case of examining pseudo-random numbers between zero and one, 

we would have the following relationship

0 < a < b < 1



and the following probabilities associated with the gap lengths

Pr {gap = 0} = b-a

Pr (gap = 1} = (b-a) (l-(b-a) )

, 2
Pr {gap = 2} = (b-a) (l-(b-a) )

Pr {gap = t-1} = (b-a) (l-(b-a) / 1

Pr {gap>=t} = (l-(b-a) )t

Chi-square tests can also be applied here as in the digit gap test.

G. Maximum Test

For a set of N independent uniform random numbers, x^, x^, . . . x^.

in the unit interval (0, 1), we can define a random variable

(11-14)

W = Max (x^, . x^) and the distribution of W is given by

x NF (W) = max (x^, X2, . . . x^)

NSince Pr {W <a} = F(a) = a for 0<a<l, F (w) as defined in (11-14)

is distributed over the unit interval with a cumulative distribution function

N
F(W< w) = W . By sampling several sets of N independent random

numbers we can use the X -test on the distribution of W.

H. Minimum Test

This test is the same as the maximum test of N except that the minimum 

of (Xp X2, . . . x ) are taken and the corresponding distribution function 

used.

At this point it might be wise to close by answering the question as to 

why are so many tests necessary. It seems like more time is spent



testing the numbers than in using them. This is probably not true but the 

importance of knowing the shortcomings of a particular random number 

generator cannot be understated. This is because the simulation, risk 

analysis or other models using the particular random number generator 

are highly dependent on the accuracy and unbiasedness of the generator for 

their value as viable tools. If confidence cannot be established in the random 

number generator of these models, there is little likelihood of people 

believing in the models that employ these generators. With confidence 

established in the random number generator the question of confidence in 

the actual model is at least reduced to the assumptions and relationships 

developed therein.
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CHAPTER 3

A PROGRAM TO EVALUATE 
UNIFORM RANDOM NUMBER GENERATORS

A. Introduction

The computer program described in this section performs eight 

standard statistical tests on a vector of random numbers. The vector 

can be input to the program or the subroutine which generates the 

vector can be linked to the main program and the random numbers 

generated at execution time. The eight tests available are:

1. Gap test

2. Runs test

3. Pairs test

4. Chi-square test

5. Moments

6. Runs above/below mean

7. Autocorrelations

8. Kolmogorov-Smirnov test.

The program is written in FORTRAN IV and was compiled using the

IBM FORTRAN G compiler on a System 360 Model 65. The program 

runs in approximately 120 K bytes of core and uses a temporary disk 

file to store the vector of random values. The maximum length of this 

vector is essentially unlimited as the program reads the random numbers 

into core from the temporary file in blocks of 10, 000.
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B. System Control Cards

The user documentation contained herein assumes that the program is 

available in a load module form, i. e. it has been compiled and link 

edited. To execute the program, therefore, the function RAN need only 

be compiled and linked to the main program. Although RAN will be 

called only if the user specifies that random numbers will be generated 

during execution, its module must always exist, therefore the load 

module contains a dummy function RAN. This function is as follows:

FUNCTION RAN (NX) 

RAN = 0. 0 

RETURN 

END

If the user is to read his random vector from an already created file 

the above dummy function will allow the load module to execute. If the 

user wishes to generate his vector of random values during execution 

he must compile his random number generator as a function named 

RAN (NSEED) and link edit this function into the load module in place of 

the existent dummy function. The mechanics of this procedure will of 

course vary from computer to computer. For an IBM/360 computer 

with the program load module located in an accessible library the 

following sequence of instructions will suffice. FORTGCLG is a 

catalogued procedure to execute a FORTRAN compile, link edit and go. 

It is comprised of three steps - FORT, LKED, and GO. TABLE III. 1 

shows this procedure.
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TABLE III. 1

FORTGCLG - A Procedure to Execute FORTRAN 
Compile, Link Edit and Go

♦♦♦ PROCEDURE FORTGCLG »»*  *♦*  PROCEDURE FORTGCLG ***
//FORTGCLG PROC FORMS=*A ,,0001•,CPRM=SOURCE,LPRM=LIST, 
// LIBR=*UTCC.DUMMYLIB*  
//****  FORTRAN G COMPILE LINK EDIT AND GO 
//FORT EXEC PGM=IEYFORT,REGION=104KtTIME=10,PARM=,CCPRM» 
Z/SYSPRINT DC SYSOUT=(LFORMS),DCB=(LRECL=120,BLKSIZE=3120,RECFM=FBSA), 
// SPACE=(3120,(40,40)) 
//SYSL1N DD DSN=L&LOADSET,SPACE=(3120,(12,12)),DCB=BLKSIZE=3120, 
// UNIT=SYSCA,CISP=(MOD,PASS,DELETE) 
//SYSIN DO DSN=GLSOURCE,DISP=(OLD,DELETE,DELETE) 
//LKED EXEC PGM=IEWLF880,REGION=114K,CCND=(4,LT,FORT), 
// TIHE=2,PARM=«XREF,LIST,LET,CLPRM,SIZE=(114K,24K)•
//SYSPRINT DC SYSOUT=(&FORMS),DCB=BLKSIZE=6C5,SPACE=(605,(17,34)) 
//SYSLIN DD DSN=LLLCADSET,DISP=(OLD,DELETE,DELETE) 
// DC DDNAME=SYSIN
//SYSLMOD DD UNIT=SYSDA,DSN=LLGOOATA(RUN),DISP=(,PASS,DELETE), 
// SPACE=(TRK,(19,10,1)) 
//SYSLIB DC DSNAME=SYS1.FORTLI8,DISP=SHR 
// DD DSN=LLIBR,DISP=SHR
// DD DSNAME=TEHO.LOADLIB,DISP=SHR 
// DD DSN=SYS1.GULFMQD,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(19,10)) 
//GO EXEC PGM=*.LKED.SYSLMOD,COND^t 44,LT,FORT),(4,LT,LKED)) 
//SYSUDUMP DD S YSOUT^= (LFORMS) , SPACE = ( TRK , (1,19 ) ) 
//FT05F001 DC DDNAME=SYSIN 
//FT06F001 DD SYSCUT=(LFORMS),SPACE=(TRK,(1,19)), 
// DCB=(RECFM=VBA,LRECL=137,BLKSIZE=1100) 
//FT07F001 DD SYSOUT=B,SPACE=(TRK,(1,19)), 
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800)
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ccl 7

// EXEC FORTGCLG, REGION. GO=120K, LIBR='libr*

//FORT.SYSIN DD *

FUNCTION RAN (NSEED)

FORTRAN Source

code for function RAN

RETURN

END

/*

//LKED.SYSIN DD *

INCLUDE SYSLIB (progname)

ENTRY MAIN

/*

//GO. FT02F001 DD UNIT=SYSDA, SPACE = (TRK, (50, 10)), DISP=NEW,

// DCB=(RECFM=FB,LRECL=160,BLKSIZE=3200)

//GO.SYSIN DD *

Program control

cards

/*

where in the above deck listing:

libr denotes the library where the program load module

can be found,

progname denotes the name of the program.

In the Gulf Houston Datacenter, libr would be MSDC.LOADLIB and progname

would be MSHC0074.
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To run the Uniform Random Number Evaluation Program where the vector 

of random numbers is already on a file the following sequence of cards 

would be used. Once again we assume the program resides on an accessible 

library.

ccl 6

H EXEC PGM =progname,REGION=120K

//STEPLIB DD DSN=libr, DISP=SHR

//FTnnFOOl DD UNIT=SYSDA, DSN=filename, DISP=OLD 

//FT06F001 DD SYSOUT=A 

//FT05F001 DD *

Program control 

cards 

/*

where in the above deck listing

progname denotes the name of the program

libr denotes the library where the program

load module can be found

nn denotes the unit number of the file where 

the vector of random numbers is located 

filename denotes the name given to this file

C. Program Control Cards

The program will evaluate, sequentially, an unlimited number of 

pseudo-random numbers. Each vector to be analyzed requires a single 

header card and then, depending on which tests are to be performed and 
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whether or not the pseudo-random numbers have already been generated, 

a variable number of additional control cards.

1. Header Card

This card specifies the length of the vector to be analyzed, 

provides a seed if the pseudo-random numbers are to be 

generated during execution or the file number where the 

previously generated vector resides, specifies which tests 

are to be executed, and provides the user the option to print 

the vector of pseudo-random numbers. The format for the

= 1 perform runs test

header card is as follows:

Card Column Label Description

1-10 (right justified) NT Number of random values in the vector

if it is located on an already existing 

file or the number of values to be 

generated during execution using the 

supplied function RAN.

11-20 NSEED Initial seed for random number

generator if vector is to be generated 

during execution. May be left blank 

if vector already exists on a file.

21-22 IND(l) Number of gap tests to be performed

max=10

24 IND(2) =0 do not perform runs test
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26 IND(3) = 0 do not perform pairs test

= 1 perform pairs test

28 IND (4) = 0 do not perform chi-square test

-1 perform chi-square test

30 IND(5) = 0 do not calculate moments

= 1 calculate moments

32 IND(6) = 0 do not perform runs above/below

mean test

= 1 perform runs above/below mean test

34 IND(7) =0 do not calculate autocorrelations

= 1 calculate autocorrelations

36

37-40

IND(8) = 0 do not perform Kolmogorov-

Smirnov test

= 1 perform Kolmogorov-Smirnov test

not presently used

41-42 IFILE Unit number of file where previously 

generated vector of pseudo-random 

numbers resides. Should be 0 or 

blank if numbers are to be executed 

at run time.

44 NPRNT = 0 do not print pseudo-random vector

= 1 print pseudo-random vector

45-80 TITLE(l)-

TITLE(9)

A user-supplied title which will be 

printed on the first page of output
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2. Variable Format Card

The variable format card is only read if the vector of pseudo

random numbers is to be read from an existing data file. If 

such is the case, this card is the FORTRAN FORMAT state

ment, without the statement number and word FORMAT that 

was used to write the previously generated vector to its data 

file. For example, if the file generated contains 50,000 random 

numbers in records of length 20 the statement that wrote these 

to the data file might have been

cc3 7 21

900 FORMAT(20F10.5)

In this instance, the variable format card would be

ccl 9

(20F10. 5)

No card should be inserted in this position if the pseudo-random 

vector is generated at execution time.

3. Test Parameter Cards

Certain of the statistical tests available require a control card 

to provide user specified parameters needed for the test. These 

tests are

a) the gap test

b) the pairs test

c) the chi-square test



Each time one of these tests is to be performed its parameter 

card is read. For the tests specified in the header card, the 

respective parameter cards must therefore be present. The 

format of these cards for each of the above tests is as follows: 

Gap Test

The gap test performed by the program is the second one 

mentioned in Chapter 2, Section F. It tallies the number 

of consecutive observations in the sequence that do not 

fall between a user specified interval from a to b. The 

program has the capability of performing up to 10 simul

taneous gap tests as indicated by IND(l). This number 

of cards (IND(l)) is needed. The format is as follows:

Gap Test Parameter Card

Card Column Label Description

1-5 CA Lower end of gap interval

6-10 CB Higher end of interval

14-15 MXGAP Maximum number of cells to

record gap length; 0, 1, 2, . . . MXGAP- 1.

MXGAP <10

CA must be less than CB. Also, to insure a meaningful chi-square

test on the distribution of gap lengths

nt*( cb-ca)2(1-(cb-ca))MXGAP >5.
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Pairs Test

The pairs test tallies adjacent pairs of pseudo-random 

numbers in a two-dimensional frequency table where 

the horizontal and vertical axes are divided into a user 

specified number of categories, say NCP. Thus there

2
are NCP total cells. The user can specify NCP or the 

program will calculate a desirable value using the 

Mann-Wald criterion described earlier. In either 

instance, however, a Pairs Test Parameter Card must

be present if the Pairs Test has been specified. Its format 

is as follows:

Pairs Test Parameter Card

Card Column Label Description

1-3 NCP Number of cells to appear on 

horizontal and vertical axes.

Maximum 50.

=0 program will calculate NCP 

using Mann-Wald criterion.

Chi-Square Test

The user must provide the number of cells for the tallying

of the frequency distribution for the Chi-square test. As 

with the pairs test mentioned above, if no explicit specifica

tion is made the program will calculate the number of cells 

using the Mann-Wald criterion. The format for the Chi-square
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Test Parameter Card is as follows:

Chi-Square Test Parameter Card 

Card Column Label Description

1-3 NC Number of cells for tally of

frequency distribution. 

Maximum 500.

=0 program will calculate NC 

using Mann-Wald criterion.

If the gap test, pairs test or chi-square test is not requested 

on the header card by the appropriate IND(i), its corresponding 

parameter card must not appear.

D. Output 

The standard output from the Uniform Random Number Evaluation 

includes the following:

1. the number of observations in the vector of pseudo-random 

numbers

2. the user supplied seed if the sequence was generated 

during execution

3. a listing of the random sequence (optional).

Output for each of the tests available in the program is as follows: 

Gap Test

- the user specified gap interval

- the frequency distribution of observed and theoretical gap 

lengths from length 0 to MXGAP-1 and over
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v2- the calculated X statistic and associated degrees of

freedom

2
- the critical X value for 90% and 95% confidence levels

Runs Test

- the frequency distribution of observed and theoretical run 

lengths

- the calculated X statistic and associated degrees of freedom

2
- the critical X value for 90% and 95% confidence levels

- the Z-score for the test of the hypothesis H : r = E(r)
o

Pairs Test

- the number of intervals the horizontal and vertical axes have 

been divided into

- the end points of each interval and the frequency count of

adjacent pairs in each grid

v2
- the calculated X value and its associated degrees of freedom

2
- the critical X value for the 90% and 95% confidence levels

Chi-Square Test

- for each cell the interval end points, observed and theoretical 

frequency counts

v2

2
- the critical X value for the 90% and 95% confidence levels

Moments

- the calculated and theoretical mean, second moment, third

moment and variance

- the calculated X value and its associated degrees of freedom
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- the normalized deviate of the observed mean from the 

theoretical mean of . 5

Runs Above/Below Mean

- the frequency distribution of observed and theoretical mm 

lengths

v2- the calculated X statistic and its associated degrees of 

freedom
2

- the critical X value for 90% and 95% confidence intervals 

Autocorrelations

- the calculated autocorrelations of the series for all lags up to 

the minimum of 50 and NT/10

- the 95% confidence interval for the theoretical autocorrelations 

of zero

- the number of observed autocorrelations which fall outside 

the 95% limits

Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov test involves sorting the vector of pseudo

random numbers. Since the vector is handled in blocks of 10, 000, 

each block of 10, 000 is sorted and the test performed on the 

sorted vector of length 10, 000. The results are shown for each 

block up to twenty, or 200, 000 random numbers and are as follows

- the maximum and minimum (ZP and ZM) deviations of 

the observed and theoretical distributions

- the probability of observing a ZP less than the one realized

- the probability of observing a ZM greater than the one realized
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E. The Program and Necessary Subroutines

The Uniform Random Number Evaluations Program consists of a main 

program and fifteen functions and subroutines. It requires 114 K 

bytes of core on an IBM/360 Model 65. A run to generate 50, 000 

uniform random numbers and perform all eight tests uses approximately 

4 1/2 CPU minutes of which the generation of the random numbers uses 

about half of the total time.

The main program acts as a control module among the subroutines.

It performs necessary bookkeeping as well as all input/output. The 

subroutines are the modules that perform all the statistical tests and 

they are called by the main program and by other subroutines. A list 

of the functions and subroutines, their calling sequence and a brief 

description are shown below.

GAP2 (called by MAIN) - tallies gap lengths in the random 

vector and records results in appropriate table.

CHISQ (called by MAIN, RUNTS) - calculates the chi-square 

statistic and degrees of freedom for a pair of observed and 

theoretical frequencies.

TALLY (called by MAIN) - tallies vector of observations into a 

frequency distribution.

MOMNT (called by MAIN) - calculates mean, variance, second 

and third moments of a vector.

KOLMO (called by MAIN) - sorts vector into ascending order and 

finds the maximum and minimum deviations between the 

empirical and theoretical distributions.



RUNTL (called by MAIN) - tallies the number of inns up and 

down in a vector.

RUNTS (called by MAIN) - computes the theoretical frequencies

2
of runs up and down and calculates the X statistic (using

CHISQ).

PARTL (called by MAIN) - tallies the occurrence of the adjacent 

paired coordinates in a vector.

PARTS (called by MAIN) - performs the Pairs Test on the frequency 

of pairs tallied in PARTL.

CHSQD (called by MAIN) - calculates the critical chi-square value 

for an alpha level and a given degrees of freedom

GAUSD (called by CHSQD) - calculates the deviate associated with 

the cumulative probability of a normal distribution.

AUTOC (called by MAIN) - calculates autocorrelations in a vector 

for up to fifty lags.

SMIRN (called by MAIN) - computes the limiting distribution function 

of the Kolmogorov-Smirnov statistic.

MWALD (called by MAIN) - computes the optimal number of classes 

for a chi-square test according to the Mann-Wald criterion.

RAN (called by MAIN) - a user supplied function to generate uniform 

pseudo-random numbers.

A listing of the entire program and all functions and subroutines is shown in 

Appendix A.



CHAPTER 4

EVALUATING SELECTED UNIFORM 
RANDOM NUMBER GENERATORS

A. Introduction

In this chapter, the results of applying the subject program to a number 

of frequently used uniform pseudo-random number generators are 

presented and discussed. Additionally the subject program was run on 

"random" sequences from three intentionally biased generators. A 

summary of the output from these tests is presented, along with relevant 

remarks. A complete set of the output reports is available upon request.

A sample output report is shown in Appendix B.

B. The Tested Random Number Generators

As previously mentioned, four frequently used uniform pseudo-random 

number generators were tested. The four selected and a brief description 

of each is shown below:

1. RAN - A function coded in FORTRAN supplied by Dr. C. E. Donaghey 

in the class I. E. 670, Operations Research - Digital Simulation, 

Fall 1972. The validity of the generator is supposedly machine 

independent. The code for RAN is as follows: 

FUNCTION RAN (NSEED) 

NSEED = IABS (NSEED  655393)*

RAN = FLOAT (MOD(NSEED, 33554432)) / FLOAT (33554432)

RETURN

END
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2. RANDU - A FORTRAN subroutine presented in the IBM Scientific 

Subroutine Package, p. 77. RANDU is used in PETROS, originally 

an IBM simulation game of the oil industry, which has since been 

substantially modified and improved by Gulf and is periodically 

presented to Gulf management as part of an executive training 

seminar. The subroutine coding for RANDU is as follows:

SUBROUTINE RANDU (IX, IY, YFL)

IY = IX * 65539

IF (IY) 5,6,6

5 IY = IY + 2147483647 + 1

6 YFL = IY

YFL = YFL * .4656613E-9

RETURN

END

In its above form as a subroutine, RANDU, when used in conjunction 

with the evaluation program, would have to generate its sequence 

of random values externally to the test program. It would be 

appropriate to note here that with a few minor changes however, 

RANDU could be converted to a function program and the random 

sequence generated during execution of the test program. The 

converted subroutine (renamed RAN, as required) would be as 

follows:



FUNCTION RAN (IX)

IY = IX * 65539

IF (IY) 5,6,6

5 IY = IY + 2147483647 + 1

6 RAN = IY

IX = IY

RAN = RAN * . 4656613E-9

RETURN

END

3. GGU1 - An assembler language uniform pseudo-random number 

generator developed and distributed by IMSL (International 

Mathematical and Statistical Libraries, Inc.). GGU1 generates 

a sequence, |R| of uniformly distributed numbers using a mul

tiplier and a seed

where:

R. = A * R i = 0, 1,2. . .
i+l i

where:

A is a constant initialized in GGU1,

Rq is the input seed, a floating point number in the 

interval (0, 1).

4. GGU2 - An assembler language uniform pseudo-random number 

generator developed and distributed by IMSL. GGU2 is similar to 

GGU1, except that two multipliers and two seeds are used in the 

former whereas GGU1 uses a single multiplier and seed. In GGU2, 
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each seed-multiplier continuation is used to produce a floating 

point deviate. The resulting random deviate is built using the 

characteristic (exponent) of one of the original deviates and 

"Exclusive OR" ing the two mantissas, securing, in a random 

manner that the resultant lies in the interval (0, 1).

Each of the above random number generators was used to generate 

random sequences of length 1000, 2500 and 5000. The initial seed(s) 

for each of the twelve runs (4 generators, 3 runs each) were selected 

from a table of random numbers. All tests available in the program 

were executed on each sequence. The results are summarized in 

Tables IV. 1 and IV. 2.

Generally speaking, all the generators did fairly well with respect to 

2
these tests. The one or two significant X. values for the gap tests is 

not abnormal for the 30 tests on each generator as it only represents 

about a 5% incidence of failure. Both JMSL routines fa.red poorly on 

the Runs Test, exhibiting an excessive number of runs in the sequence 

of length 1000. RANDU revealed a poor distribution of run lengths above 

and below the mean for its sequence of length 1000.

All of the tests were identically specified with respect to the available 

user parameters. The Mann-Wald criterion was used for selecting 

the number of cells in the Pairs Test and Chi-square Test. The gap 

tests evaluated ten gap intervals from (. 0, . 1) through (. 9, 1. ) It would 

be advisable for an analyst considering using one of these pseudo-random



TABLE IV. 1
RESULTS OF GAP TESTS

GENERATOR

GGU1 GGU2RAN RANDU
Length of Sequence (M) _1 2.5 5, _1 2. 5 5 _1 2. 5 5 J. 2, 5 5

Gap Interval
(.0 - . 1) .6 8. 5 5.4 5. 6 14. 9* 3.9 2. 0 7. 1 14. 5 4.6 9. 6 6. 6

(.1 - .2) 1. 7 11. 5 4.6 4. 0 9.3 3. 7 2. 7 8.4 8. 1 5. 8 8. 3 9. 9

(.2 - .3) 3. 6 8. 7 6. 5 3. 5 11. 3, 6. 1 2. 1 7. 1 10. 7 2. 1 9. 1 10. 7

(.3 - .4) 3. 5 5. 5 6.4 3. 6 6. 6 4. 8 . 9 16. 5* 5. 9 5.2 13. 8 8. 2

(.4 - .5) 4. 7 7.4 3.9 . 6 10. 0 8. 6 4. 5 2. 0 4. 1 8. 3* 7. 1 7. 1

(.5 - .6) 2. 1 6. 7 5. 6 3. 3 8. 2 15. 2* 3. 5 10. 3 13. 6 3.4 5. 7 13. 5

(.6 - .7) 2. 3 12. 0 6. 5 . 0 12. 5 6. 8 9. 0* 8.2 5. 6 3. 1 9. 7 6. 2

(.7 - .8) 2. 4 8.4 11. 7 4. 9 4. 5 7. 6 2. 1 3. 2 13. 3 2. 6 6. 1 4. 9

(.8 - .9) 8. 1* 5.7 7.2 5. 1 10. 5 10. 6 2. 6 9. 6 8. 4 2. 1 16. 8* 6. 3

(.9 - 1.0) 3. 0 4. 3 10. 0 5.3 7. 4 11. 0 3.7 7. 6 13. 0 2. 8 6.4 3. 6

2
Critical X

Alpha = . 05 9.49 16. 92 16. 92 9.49 16. 92 16. 92 9.49 16. 92 16. 92 9.49 16. 92 16. 92

Alpha = .10 7. 78 14. 68 14. 68 7. 78 14. 68 14. 68 7. 78 14.68 14. 68 7. 78 14. 68 14. 68

* Significant X value at 90% confidence level



TABLE IV. 2

SUMMARY OF STATISTICAL TESTS ON FOUR UNIFORM 
PSEUDO-RANDOM NUMBER GENERATORS

GENERATOR

RAN RANDU GGU1 GGU2
Length of Sequence 1 2. 5 5 1 2. 5 5 1 2. 5 5 1 2. 5 5

1)

(M)
Test

2Runs Test - X 1. 0 3. 5 1. 5 6. 5 12.8** 3. 7
*

8. 9 4. 3

2)

Critical values 
(»<= . 05) 
(=*=  . 10)

Runs Test - 
Z-score

9. 5
7. 8

-.6 -1.2

11. 1
9.2

. 0

9.5
7.8

. 5 -. 6

.11. 1
9.2

. 1

9.5
7. 8

-1. 3 -.2

11. 1
9.2

. 8

9. 5
7. 8

1. 5 . 17

11. 1
9.2

-1. 0
Critical values 

(=<= . 05) 1. 96 1. 96 1. 96 1. 96 1. 96 1. 96 1. 96 1. 96 1. 96 1. 96 1. 96 1. 96
( =x= . 10) 1. 65 1. 65 1. 65 1. 65 1. 65 1. 65 1. 65 1. 65 1. 65 1. 65 1. 65 1. 65

3)
2

Pairs Test - X 54. 1 94.2 109.2 45. 5 91. 2 100. 1 36. 7 91. 6 104. 6 40. 4 80. 1 82. 7
Critical values 

(o<= . 05) 65.2 101. 8 123.2 65.2 101. 8 123. 2 65. 2 101. 8 123. 2 65.2 101. 8 123. 2
(=x= . 10) 60. 9 96. 6 117.4 60. 9 96. 6 117. 4 60. 9 96. 6 117. 4 60. 9 96. 6 117. 4

4) Chi-Square
Test - X 2 42. 7 65.4 115. 0 45. 5 88. 1 73. 6 53. 3 72. 8 98. 6 48. 4 94. 3 130. 0
Critical values 

(o<= .05) 76. 8 107. 5 137.7 76. 8 107. 5 137. 7 76. 8 107. 5 137. 7 76. 8 107. 5 137. 7
(cx= . 10) 72. 2 102. 1 131. 6 72.2 102. 1 131. 6 72.2 102. 1 131. 6 72. 2 102. 1 131. 6



TABLE IV. 2 (Cont'd)

SUMMARY OF STATISTICAL TESTS ON FOUR UNIFORM 
PSEUDO-RANDOM NUMBER GENERATORS

GENERATOR

Length of Sequence 
(M)

Test

RAN RANDU GGU1 GGU2
1 2. 5 5 1 2. 5 5 1 2. 5 5 1 2. 5 5

5) Moments - Z - *
score of mean 
Critical values

. 7 .6 -.8 5 1. 24 -.3 1. 19 1. 12 . 3 . 3 -1. 8 . 2

(=x= . 05) 1. 96 1. 96 1. 96 1. 96 1. 96 1. 96 1. 96 1. 96 1. 96 1. 96 1. 96 1. 96
(<x= . 10) 1. 65 1. 65 1. 65 1. 65 1. 65 1. 65 1. 65 1. 65 1. 65 1. 65 1. 65 1. 65

6) Runs Above/ 
Below Mean - X 10.4 2.9 5. 8

*
11. 8 5. 0 9.7 4. 1 7. 3 6.4 5. 1 9. 1 4. 0

Critical Values
(o<= . 05) 12. 6 15. 5 16.9 12. 6 15. 5 16. 9 12. 6 15. 5 16. 9 12. 6 15. 5 16. 9
(=<= . 10) 10.7 13.4 14. 7 10. 7 13. 4 14. 7 10. 7 13. 4 14. 7 10. 7 13. 4 14. 7

7) Autocorrelations -
% Outside i 95% 
limits 8*  ** 2 8* 2 0 2 6 2 4 12* 6 4

8) Kolmogorov- 
Smirnov Test - 
Max (Prob (ZP), 
Prob (ZM) ) .74 . 18 .73 . 34 . 77 . 02 .49 . 82 . 07 . 32 . 88 . 24

* statistically significant difference at 90% level
** statistically significant difference at 95% level



number generators for a specific application, to retest the generator 

with the characteristics of that application in mind. Particulars to 

consider would be the number and length of gap intervals, the number 

of cells in the Chi-square and Pairs Test, the initial seed, NSEED, 

and the length of the random vector. These factors would obviously 

have a direct bearing on the meaningfulness of the tests in relationship 

to the validity of the simulation.

C. Intentionally Biased Generators

As mentioned above, the evaluation program was also run using three 

biased random number generators. The function RAN referred to 

earlier in this chapter was modified to produce non-random sequences 

of length 5000. The three biased generators can be characterized as 

follows:

1. Correlated random numbers - each generated pseudo-random 

number in the sequence was correlated with the previously 

generated number using the relationship

Xi+1 = '3xi + •7 (NSEED) i = 1,2, ... 4999 

where

RAN (NSEED) is the call to the function RAN described 

in Section B of this chapter.

2. Gap between . 8 and . 85 - random values were generated by RAN 

with all values in the interval (. 8, . 85) ignored. The resultant 

vector thus consisted of 5000 values of which none were in the 

mentioned interval.



3. Periodicity length of 1000 - RAN was used to generate 1000

pseudo-random values. This sequence was then replicated four 

times and appended to itself to yield a vector of 5000 pseudo

random values having a periodicity or cycle length of 1000.

The summarized results of these three tests are shown in Table IV. 3.

Critical values are not shown in this Table, but are identical to the 

critical values shown in Table IV. 2 for the sequences of length 5000.

The program does quite well in the detection of the aberrated pseudo

random number generators. The correlated random number generator 

shows significant differences in all tests, except the Moments Test 

Z - score for the mean. However, although not shown in Table IV. 3, 

the variance and second and third moments of this sequence are showing 

substantial difference from their respective expected values. With 8% of 

the autocorrelations significant, it is also interesting to note the value 

of the autocorrelation for the first lag is .296. The values for lags two 

and three are . 098 and . 019 which exhibit the pattern of autocorrelations 

from an autoregressive time series. The "gapped" generator shows its 

aberrations exceptionally well in the Pairs Test and Chi-square Test. 

The gap in the interval (. 8, . 85) lowers the mean significantly and also 

causes suspicious results in the Runs Above/Below the Mean and the 

Kolmogorov-Smirnov Tests. The cycled generator shows significant 

2
X values in all Gap Tests, the Runs Test, Pairs Test, Chi-square Test 

and Runs Above/Below the Mean. It also shows statistical significance



TABLE IV. 3

RESULTS OF TESTS ON BIASED GENERATORS

GENERATOR

Correlated Gap at (. 8, . 85) Cycle length 1000

2
1) % significant X values for maximum

of 10 Gap Tests ( o< = . 05) 100% 10% 100%
( o< = .10) 100% 30% 100%

2) Runs Test - X 118.9** 2.9 25. 4**

3) Runs Test - Z - score -8. 6** -1. 0 1. 4

2
4) Pairs Test - X 1939.2** 234.7** 570.**  ,

2
5) Chi-Square Test - X 1531. 8** 341. 7**

in
626.3**

6) Moments - Z - score of mean . 50 -4.96** 1. 34

2
7) Runs Above/Below Mean - X 134.2** 24. 1* 48.9**

8) Autocorrelations - % outside f 95% limits 8* 14* 28**

9) Kolmogorov-Smirnov Test - Max (Prob (ZP), 1. 00** 1. 00** . 99**
Prob (ZM) )

* statistically significant difference at 90% level
** statistically significant difference at 95% level
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with the high proportion of non-zero autocorrelations and a very small 

K-S probability of actually representing its supposed theoretical dis

tribution.

D. Conclusions

The subject program to evaluate uniform pseudo-random number gen

erators provides a consistent yet flexible tool for the analysis of 

computer generated random sequences. Additional areas of study re

lating to and expanding upon the work done to this point could prove 

to be interesting and informative.

The program might be used to evaluate additional uniform random number 

generators that are frequently used. This could be done as a general 

comparative test9 similar to the ones described in this paper# or as a 

specific test with a particular application of the random number generator 

in mind and the tests parameters selected for that one application.

A study to determine the sensitivity of the program and define its discrim

inatory ability with regard to valid and invalid generators would be useful. 

This study could proceed by sequentially altering a valid pseudo-random 

number generator with more subtle aberrations until the program was 

no longer able to distinguish the biased generator from the presumably 

unbiased one. The various tests included in the program could be ranked 

according to their ability to detect defective generators and which tests 

are most likely to detect certain common deficiencies (e. g. autocorrelation, 

cycling, subtle patterns in the generated sequence).
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The area of periodicity is one in which additional study might prove to 

be especially revealing. The theory presented in Chapter 1 detailing 

the relationships between multipliers, seeds and various congruential 

methods could be taken further, using the subject program as a means 

of evaluating possible alternatives. Along the lines of the cycling gen

erator presented earlier in this chapter, the ratio of cycle length to 

length of the evaluated sequence might be varied to determine at what 

point cycling becomes apparent.

All of the above areas of additional study propose use of the subject 

program as it now exists. There are of course, a number of possible 

enhancements to the program which might also be considered. There 

are a number of additional tests which could be included in the program 

such as the maximum test, minimum test, poker test, triplets test and 

.distance test. An option for the user to code his own test (called UTEST, 

for example) and link edit the code to the main program in a manner like 

RAN is now handled would be a valuable feature and would give the program 

virtually total flexibility.
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APPENDIX A

Source Code for the Program



RAN

1

4
-5
6
7

8

0
1
2
3
4
5
6
7

8
9
0
!i
2
3
4
5
6
7
8
9
0

I
3
4

- 60 -

TV LEVEL 21 MAIN DATE = 74160 11/07?

C

C 
C 
C 
C 
C 
C
C 
C
Cc cc cc c c c c

1
900c c c

9001

DATA SET MSHOAEVRAN AT LEVEL 039 AS OF 06/09/74 
DIMENSION X(10000),KOUNT(10),CELLS(500),EXPCT(500),ANS(4) 
DIMENSION A(50,50)fIND(10),IF0MT(20) 
DIMENSION CELLG(IO),RUNS(8) 
DIMENSION KNTMN(10),AC(50),ZP(20),ZM(20) 
DIMENSION CELGP(10,10),CAG(10),CBG(10),MEG(10) 
DIMENSION KNTSV(10),TITLE(9) 
DATA IFOMT /•(20F•,•8.5)•,18*•  •/

WHICH TESTS ARE TO BE PERFORMED ARE SPECIFIED 
BY IND(I) = 0 OR 1 WHERE 

1=1 GAP TEST 
1=2 RUNS TEST 
1=3 PAIRS TEST 
1=4 CHI-SCUARE TEST 
1=5 MOMENTS 
1=6 RUNS ABOVE/BELOW MEAN (GAP TEST ON (0,.5)) 
1=7 AUTOCORRELATIONS 
I = , KOLMOGOROV - SMIRNOV TEST

IFILE = UNIT NUMBER OF DATA SET WHERE RANDOM VALUES 
ARE LOCATED

= 0 FOR NUMBERS TO BE GENERATED BY USER 
SUPPLIED FUNCTION RAN

READ(5,900,END=89000) NT,NSEED,IND,I FILE,NPRNT,TITLE 
FORMAT(2110,1212,9A4)

SET SYSTEM LIMITS

MAXRN=10000
KIN=5 
K0UT=6 
MXCLS=500 
MAXA=50 
MAXKN=10 
WRITE(KCUT,9001) TITLE,NT,NSEED 
FCRMAK’IRANDOM NUMBER EVALUATION*,5X,9A4///»  NT =»,I10/» NSEE

1 =,110)*
WRITE(KOUT,9002)

9002 FORMAT(/////• TESTS REQUESTED*)
IF (IND(l) .GE. 1) WRITE(KOUT,°OO3) IND(l)
IF(IND(2) .EQ. 1) WRITE(K0UT,90O4)
IF(IND(3) .EQ. 1) WRITE(KOUT,9005)
IF(IND(4) ,E0. 1) WRITE(K0UT,9006)
IF(IND(5) .EQ. 1) WRTTE(KDUT,9007)
IF(IND(6) .EQ. 1) WRITE(K0UT,9009)
IF(IND(7) .EQ. 1) WRITE(KOUT,90091)
IF(IND(8) .EQ. 1) WRITE(KCUT,9008)

C
C WILL ALL RANDOM NUMBERS FIT IN CORE?

9009 FORMATt* RUNS ABOVE/BELOW MEAN*)
90091 FORMATt* AUTOCORRELATIONS*)

9003 FOPMAK* GAP TESTS - *,I2)
9004 FORMATP RUNS TEST*)
9005 FORMATt* PAIRS TEST*)
9006 FORMATt* CHI - SQUARE TEST*)
9007 FORMATt* MOMENTS* )
9008 FORMATt* KOLMOGOROV - SMIRNOV TEST*)
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"RAN IV G LEVEL 21 MAIN DATE = 74160

6

7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3

5
5
7
3
9

) 
L 
>
3 
t
> 
>

C ESTABLISH NUMBER OF ITERATIONS NECESSARY 
C

NITER= (NT-l)Z MAXRN ♦ 1 
C 
C 
C 
C IS DATA GENERATED BY RAN, IF $0 PLACE
C ON UNIT 2, PRINT DATA IF RECUESTED
C

IEND=MAXRN 
DO 50 1=1,NITER 
IF( I .EQ. NITER) IEND= NT- (1-1) * MAXRN 
IF( IFILE .NE. 0) GO TO 20 
DO 10 J=1,IEND 

10 X(J)=RAN(NSEED)
WRITEt 2 ,IFOMT) (X(J),J=1,TEND) 
GO TO 40

20 IF(I .EO.l) READ(KIN,9010) IFOMT 
9010 F0RMAT(20A4)

40 IFfNPRNT .EQ. 0) GO TO 50
IFtlFILE .GT. 0) READtIFILE,IFOMT,END=45) X 

45 IFd.EQ. 1) WRITE(KOUT,901) NT
901 FORMATdHl,I10,» RANDOM VALUES’)

WRITE(KOUT,902) (X(K),K=1,IEND)
902 FORMAT(1X,15F8.5) 

50 CONTINUE
C 
C BEGIN TESTS 
C

IFtlFILE .EO.O) IFILE=2 
REWIND IFILE 
N=MAXRN 
DO 1000 1=1,NITER 
IFd .EO.NITER) N=NT-d-l)*MAXRN  
READ(IFILE,IFOMT) (X(K),K=1,N) 

C 
C GAP TEST 
C

60 IF(INDd) .LF. 0 ) GO TO 100 
IF( I.GT. 1) GO TO 65 
NGT=IND(1)
DO 61 J=1,NGT

61 READ(KIN,903) CAG(J),CBG(J),MBG(J)
903 F0RMAT(2F5.0,I5)

DO 63 Kl=l,10 
DO 63 K2=l,10 

63 CELGP(Kl,K2)=0. 
65 DO 90 KK=1,NGT 

CA=CAG(KK) 
CB=CBG(KK) 
MXGAP=MBG(KK) 
IF(CA .LT. CR) GO TO 70 
WRITE(K0UT,904)

904 FORMATC’IGAP TEST’,/’    INPUT ERROR   »)  
WRITE(K0UT,905) CA,CB

* * * * * *

905 FORMATP CA .GT.CB’//’ CA =’,F8.5,» CB =’,F8.5) 
IND(1)=-1
GO TO 100

70 IF (MXGAP ,LE. 10) GO TO 80 
WRITE(KOUT,904)

11/07^
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82
83
^4

86
87
88
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90
91
92
93
94
95
96
97
98
99
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14
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25
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K
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35

G LEVEL 21 MAIN DATE = 74160 11/07.

WRITE(K0UT,906) 
906 FORMATt*  MXGAP .GT. 10 ------SET TO 10*)

MXGAP=10 
80 DO 62 K=1»MXGAP
82 KDUNT(K)=0

CALL GAP2(N,K0UNTfMXGAPtX,CA,CB,I,KNTSV(KK))
DO 83 K = l,MXGAP

83 CELGP(KK,K)=CELGP(KK,K)+KOUNT(K) 
IFd.NE. NITER) GO TO 90 
XT0T=0.
DO 84 K=l,MXGAP 
XTOT=XTOT+CELGP(KK,K)

84 CELLG(K)=CELGP(KKtK) 
WRITE(K0UT,9061) CA,CB

9061 FORMATCIGAP TEST//  GAP INTERVAL =( • ,F7.4, »♦ • ,F7.4, » ) • ) 
WRITE(KCUT,9062)

**

9062 F0RMAT(//5Xf»GAP LENGTH•f7X,•OBSERVED•,4X,‘THEORETICAL•) 
CBA=CB-CA
PROB=CBA 
TP=O. 
DO 87 K=l,MXGAP 
K1=K-1 
IF( K.LT. MXGAP) GO TO 85 
PROB=1.-TP

85 TP=TP+PROB
EXPCT(K)=XTOT*PROB  
WRITE(KOUT,9063) K1,CELLG(K),EXPCT(K)

9063 FORMAT(I15tF15.O,F15.3) 
IFfK.EO.MXGAP) WRITEtKOUT, 9064)

9064 FORMATf,T16,•+») 
PROB=PRDB(1.-CBA)*

87 CONTINUE 
WRITEtKOUT,9065) XTOT

9065 FORMATtlOX,•TOTAL,F15.0)*
CALL CHI SO(CELLG,EXPCT,MXGAP,CS,IDF) 
CV05=CHS0D(.05,IDF) 
CV10=CHS0D(.10,IDF) 
WRITE(KCUT,9066) IDF,CS 
WRITE(KOUT,9067) CV05,CV10

9066 FORMATt//  CHI - SQUARE(»,14,• DF) =»,F9.2)*
9067 FORMATt//  CRITICAL VALUE (ALPHA=.O5) =»,F9.2,*

1 /• CRITICAL VALUE (ALPHA=.1O) =,F9.2)*
IFtIDF .EQ. 0) WRITEtKOUT,9068)

9068 FORMATt///      NO CHI - SQUARE TEST CALCULATED    •* * * * * * * * *
1 /• ONE EXPECTED CELL COUNT .LT. 1 OR THREE EXPECTED COUNTS .LT. 
2») 

90 CONTINUE
C
C RUNS TEST
C 

100 IFtINDt2) .EQ. 0) GO TO 200 
IFt I .GT. 1) GO TO 110 
NVAL=4 
IFt NT .GT. 500) NVAL=5 
IFt NT .GT. 1000) NVAL=6 
IFt NT .GT. 25000) NVAL=7 

110 CALL RUNTL tX,N,RUNS,I,NVAL> 
IFtI .NE. NITER) GO TO 200 
CALL RUNTS tRUNS,NT,EXPCT,CS,IDF,NVAL) 
WRITEtKOUT,9071)
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9071 FORMATCIRUNS TEST V/5X, »RUN LENGTH ’ , 7X » •DBS ERVED ’ 
1»)
XTOTO=O.
XTOTT=O.
DO 120 K=1,NVAL
XTOTO=XTOTO+RUNS(K)
XTOTT=XTOTT+EXPCT(K)
WRITE(KOUT»9072) KtRUNS(K)tEXPCT(K)

9072 FORMAT(115vFl5.01F15.3)
IF ( K.EO. NVAL) WRITE(KOUT,9073) X70T0,XT0TT

9073 FORMAT! ,T16, t + V10X,‘TOTAL  ,F15.0 ,F15.3) 
120 CONTINUE

*

CV05=CHSCD (e05tIDF)
CV10=CHS0D (.10,IDF)
WRITE(K0UT,9066) IDF,CS 
WRITE(K0UT,9067) CV05,CV10 
IF(TDF .EQ. 0) WRITE(KOUT,9068) 
VAR=(I6e*NT-29.)/90.
Z=(XTOTO-XTOTT)/SORT(VAR) 
WRITE(K0UT,9074) Z

9074 FORMAT(///‘ Z - SCORE (TOTAL RUNS) =‘,F8.2)
C
C PAIRS TEST
C

200 IF(IND(3) .EQ. 0) GO TO 300 
IF(I .EQ.l) READ(K1N,9O7) NCP

907 FORMAT(I3,2Flp.O)
IF(NCP .EQ. 0) NCP=SQRT(FLOAT(MWALD(NT)) ) 
IFtNCP .LF.50) GO TO 220 
WRITE(KOUT,908)

908 FORMAT( 1PAIRS TEST,/     INPUT ERROR   •)  
WRITE(K0UT,909)

* * 1 * * * * * *

909 FORMAT!» NCP .GT. 50 ------ SET TO 50‘)
NCP=50

220 CALL PARTL(X,N,NCP,A,MAXA,I) 
IF(I .NE. NITER) GO TO 300 
CALL PARTS(A,MAXA,NCP,CS,STDCS) 
WRITE(K0UT,9091) NCP

9091 FORMAT!‘1PAIRS TEST//  NO. OF INTERVALS =‘,I3) 
XST=0.

* 1

XINT=1./NCP
LS = 1
LF=NCP 
IFfNCP .GE. 11) LF=10

240 WRITE(K0UT,9092) (JP,JP = LS,LF )
9092 FORMATP INTERVAL FROM - TO »,10I8) 

DO 250 K=1,NCP
XFN-XST+XINT
WRITE(KOUT,9093) K,XST,XFN,(A(K,J),J=LS,LF)

9093 F0RMAT(I9,lX,2F7.4,I0F8.0)
XST=XFN

250 CONTINUE
IF(LF .EQ. NCP) GO TO 270
LS=LF+1
LF=LF+10
IF(LF .GT.NCP) LF=NCP 
XST=O.
WRITF(KOUT,9094)

9094 FORMAT!•!») 
GO TO 240
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270 IDF=NCP*NCP-1
WRITE(KOUT,9066) IDF,CS
CV10=CHS0D(.10,IDF) 
CV05=CHS0D(,05tIDF) 
WRITE(KOUTt9067) CV05»CV10 

C 
C

300 IF (IND(4) ,LE. 0) GO TO 500
C
C CHI-SOUARE TEST
C

IF (I .EQ. 1) REA0(KIN,907) NC 
IF(NC .EQ. 0) NC=MWALD(NT) 
IF(NC .LE. MXCLS) GO TO 310 
WRITE(KOUT,910)

910 FORMATt•ICHI-SGUARE TEST/     INPUT ERROR  ♦ •  
WRITE(K0UT,911)

** * * * * *

911 FORMATt  NC .GT. 500 ------ SET TO 500)* *
NC=MXCLS

310 XM=1./NC 
XD=XM 
CALL TALLY(X,N,CELLS,NC,XM,XD,I) 
IF(I .NE. NITER) GO TO 400 
DO 330 KK=1,NC

330 EXPCT(KK)=NT*XD
C

CALL CHI SO(CELLS,EXPCT,NC,CS, IDF ) 
WRITE(KCUT,9111)

9111 FCRMAT(«1CHI - SQUARE TEST //' INTERVAL FROM - TO 
1HF0RETICAL  )

1
1

XST=O.
XINT-l./NC 
XTOT=O.
DO 360 K=1,NC 
XTOT=XTOT+CFLLS(K) 
XFN=XST+XINT
WRITE(KCUT,9112) K,XST,XFN,CELLS(K),EXPCT(K)

9112 FORMAT(19,2F7.4,F10.0,F12.2)
XST=XFN

360 CONTINUE 
WRITE(K0UT,9113) XTOT

9113 FORMAT(4X,•TOTAL ,14X,F8.0) 
WRITE(KOUT,9066) IDF,CS 
CV05=CHSOD(.05,IDF) 
CV10=CHSGD(.10,IDF)

1

WRITE(KOUT,9067) CV05,CV10 
IF(IDF .EQ. 0) WRITE(KOUT,9068) 

C 
c

400 IF(IND(5) .FQ.O) GO TO 500 
IC=2
IF(I .EQ.NITER) IC=3 
IF(I .EO.l) IC=1 
IF(NITER .EQ.l) IC=4 
CALL MOMNT(X,N,ANS,IC) 
IF(IC .LT.3) GO TO 500 
WRITE(K0UT,912)

912 FORMATt •1MOMENTSV/22X,•DESERVED THEORETICAL ) 
WRITE(KCUT,913) ANS

1

913 FORMAT(016X,•MEAN•,F10.4,8X,•.5000•/10X,•2ND MOMENT.*

11/07/

)

OBSERVED

F10.4,8X,».
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IV G LEVEL 21 MAIN DATE = 74160 11/07/

133V10X, »3RD MOMENT SF10.4,8Xt«. 2500 V12X, ’VARIANCE*  tF10.4,8Xt 
2 ’.0833*)

ADJSD=SORT(.0833333/NT) 
Z= (ANS(1)—e5)/ADJSD 
WRITE(KOUT,9131) Z 

9131 FORMATC///*  Z - SCORE (XBAR-MU) = ’,F8.2) 
C 
C RUNS ABOVE / BELOW MEAN 
C 

500 IF (IND(6) .EQ.O) GO TO 600 
C0=0. 
C5=.5 
MABMN=10
IF (NT .LE. 3000) MABMN=9
IF (NT .LE. 1500) MABMN=8
IF (NT .LE. 1000) MABMN=7
IF (NT .LE. 500) MARMN=6
CALL GAP2(N,KNTMN,MABMN,X,C0,C5»I,KTMSV) 
IF(I. NE. NITER) GO TO 600 
XTOT-O. 
DO 520 K=1,MABMN 
XTOT=XTOT+KNTMN(K) 

520 CELLG(K)=KNTMN(K) 
WRITE(KOUT»9150)

9150 FORMAT!’1RUNS ABOVE/BELOW MEAN (.5)’) 
WRITE(KCUTf9151)

9151 F0RMAT(///5X,’RUN LENGTH•,7X,’OBSERVED THEORETICAL’) 
PR0B=.5
TP=O. 
DO 540 K=1,MABMN 
K1=K~1 
IF(K .LT. MABMN) GO TO 535 
PR0B=1.0-TP 

535 TP=TP+PRCB
EXPCT(K)=XTOT*PROB
WRITE(KCUTt9063) KI,CELLG(K) ,EXPCT(K ) 
IF(K .EO. MABMN) WRITE(KOUT,9064) 
PROB=.5*PROB  

540 CONTINUE 
WRITE(KOUT,9065) XTOT 
CALL CHISQtCELLG,EXPCT,MABMN,CS,IDF) 
CV05=CHS0D(.05,IDF) 
CV10=CHSCD(.10,IDF) 
WRITE(K0UT,9066) IDF,CS 
WRITE(KOUT,9067) CV05,CV10 
IF(IDF .EO. 0) WRITE(K0UT,9068) 

600 IF(IND(7) .EO.O) GO TO 700 
NLAG-50 
IF( NT/10 .LT. NLAG) NLAG=NT/10 
CALL AUTOC(X,N,NLAG,AC,I,NITER) 
IFtl.NE. NITER) GO TO 700 
WRITF(K0UT,9152)

9152 FORMAT(’1AUTOCORRELATIONSV/7X,’LAC•,8X,’AC’) 
KAC=O
SD=S0RT(l./NT)*2.  
DO 620 K=1,NLAG 
WRITE(K0UT,9153) K,AC(K) 
IF(ABS(AC(K) ) .GT. SD) KAC=KAC+1 

620 CONTINUE
9153 FORMAT(I10,Fl0.31



01
02 
03
04
05
06 
07
08

09
10
11
12
13
14
15
16
17
18
19
20
21
22

IV G LEVEL 21 MAIN DATE = 74160 11/07,

WRITE(KnUTf9154> SD,KAC
9154 F0RMAT(//» 95S LIMITS ON AUTCCORRELATIONS= (♦/-)•,F6.3/e NO. AC ’ 

1SERVED OUTSIDE LIMITS^ •,I4)
700 IF(IND(8) .FQ.O) GO TO 1000 

IF(I .GE. 21) GO TO 790 
CALL KOLMO(X,N♦ZP(I)tZM(I)) 
XN=N 
ZP(I)= SQRT(XN)*ZP(I)  
ZM(I)=SQRT(XN)*ZM(I)  
IF(I .NE. NITER) GO TO 1000

710 WRITE(KCUT,914)
914 FORMATt»1KOLMOGOROV - SMIRNOV TEST//  ITER NO. »,8X,»ZP»,8X,'1 

!,• PROB(ZP) PROB(ZM)')
**

DO 720 K=l,NITER 
CALL SMIRN(ZP(K),PZP) 
ZMA=ABS(ZM(K)) 
CALL SMIRN(ZMAtPZM) 
WRITE(K0UT,9141) K,ZP(K),ZM(K),PZP»PZM 

720 CONTINUE
9141 F0RMAT(I10,4F10.4) 

GO TO 1000
790 IF(I .EO.NITER) GO TO 710 

1000 CONTINUE
REWIND IFILE 
GO TO 1 

89000 CALL EXIT
END
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C DATS SET MSH0AG4P? AT LEVEL 004 AS OF 05/24/74
SUBRCUTImE GAP2(N,KNTtMXGAP,X,A,F,IC»KSV) 
niMFNSICN KNT(1),X(1)

C THIS ROUTINE FINDS GAPS OF THE LENGTHS 0,l»?, ...,MXGAP-G, 
C >=MXGAP-1 IN A SEQUENCE rP *N»  INPUTS NUMBERS..
C A GAP IS THE LFNC-HT OF CBS^RVASTICNS NO OPSE^VATICN
C IN THE RANCE (A,F) IS RECORDED. 

IF(IC .GT.l) GO TO 20 
DO 10 I=1,MXGAP

10 KNT(I)=0 
KSV=1 

20 KR=KSV 
DO 50 J=1,N 
IF(X(J) .LT. A) GO TO 30 
IFtXfJ) .LT. =) GO to 40 

30 KR=KR+1 
GO TO EC

40 JF(KR .GT. MX^AP) KR=MXGAP 
KNT (*<  R ) =KNT (KR ) + ! 
KD = 1

50 CONTINL'F 
KSV=KR 
RFJUPN 
END
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IV G LEVEL 21 MAIN DATE = 741^8 22/46/:

c DATA SET MSHCACHISO AT LEVPL 005 AS OF 05/18/74
SUPRCUTINE CHISQ(CELLS,EXP♦K,CS,irF)
THIS PRCGFAM CALCULATES T^P CHI-SOUAPP STATISTIC K CCLLS

WITHCSSPRVFD PRPOUENCY COUNTS IN VECTrF CELLS AND THFDFETICAL
VALUES IN 'EXP*.
DIMENSION CELLSd ) ,EXP(1)
KADJ5=0
CS=O.
DO 20 1=1,K
IF (PXP(I) .GF. 5) GO TO 10
IF(EXP(I) .Lc.l) GO TO 50
KADJc=KAnJ5+l
IFCKACJ5 .ED. 3) GO TO 50

10 CS=CS+(CCLLS(I)-PyP(I))**2/~XP(I)
20 CONTINUE

IDF=K-1
PETUPN

50 CS=G.
IDF = C
RETUDN
END
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IV r- L^VEL 21 MAIN DATE = 7415? 22/46/

C DATA SET MSHCATALLY AT LEVEL 003 AS CF 03/13/74
SU^RCUTINE TALLY (X , N , CFLLS ,K,XMIN,XO^LT,ICALL) 
DIMENSION X(1),CFLLS(1) 
TALLIES VECTOR X CF LENGTH N INTO C^LLS <XM1N1XMIN TO XMIN+XF^LT,

XMIN + XDcLT TO XMIN + ?(XOFLT) t...«XMIhf+(K-2)XDcLT TO XMIN+ (K—1 )XDCI 
AND XK-DXDELT
ICALL =1 CN FIRST CALL
ICALL ON SUPSEQUFNT CALLS 
IFdCALL .NE. 1) GO TO 10 
CO 5 1 = 1 ,K

5 CELLS(I)=C. 
10 CO 100 1=1,N

IS'Jp= (X( I)-XMJN )/XDFLT+2 .
IFdSl'E .GT.K) ISUF=K
IFdSUF .LF.O) ISUc = l
CELLS(I SUE)=CELLS dSUB)+1 

100 CONTINUE
RETURN 
END
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IV C- LEV'LL 21 MAIN DATC = 7^158 22/46/

C DATA SET MSH9AMPMNT AT LEVCL 004 AS OF 0?/20/74
SUBROUTINE MOMNT (X»N,ANS♦ICALL) 
DIMENSION X(1)»ANS(1)

C THIS SUBROUTINE CALCULATES 1ST, 2ND, MOMENTS AND
C THE VARIANCE OF A VECTOR OF LrNGTH N.
C ANS(l) = MCAN
C ANSI 2) = 2ND MOMENT
C ANS(3) = 3RD MOMENT
C ANS(4) = VARIANCE
C
C ICALL = I FIRST PASS
C ICALL = 2 SUCCFFCING PASSES CXC-PT LAST PASS
C ICALL = ?■ LAST PASS
C
C SFPC ANS ON 1ST PASS

IFdCA.LL .GT.l .AND. ICALL .NF. 4) GO TC 10 
DO 5 1=1,4

5 ANS(I)=O. 
NT0T=0

10 DO 100 K>< = 1,N
XI=X(KK)
ANS(1)=ANS(1)+XI
AMS(2)=ANS(?)+XI*XI
ANS(3)=AMS(3)+XI**3  

100 CONTINUE
NTOT=NTOT+N 
IF (ICALL .LT. 3) RETURN

C CALCULATE RESULTS
AMS(I)=ANS(I)/NTOT
ANS ( 2 ) = AN'S (2)/NT0T
ANS(3)=ANS(3)/NTOT
ANS(4) = ANS(2)-ANS(1 )**2  
RETURN 
END



IV G LEVEL 21 MAIN DATE = 74158 22/46/

C DATA SET MSH3AK0LMD AT LF'^L CO? AS OF 05/28/74
SUFROUTINF KOLMD (X,N,ZPLUS,?MIN)

C THIS SUFRCUTINE TESTS THE DIFFERENCE B^TWEFN AN
C EMPIRICAL AND THEORECTICAL DI STR IF L'TTCM USING THE
C KOLMCCORCV-SMIRNDV GCrDNcSS CF FIT T^ET.
C
0 RFFFFFNCE IBM - SSP CDPVPJCHT ]C6P PR. 63-64 

DIMENSICN X(l)
C
C SORT X INTO ASCENDING ORDER
C

M = N
20 M.=M/2

IF(M .ED. 0) GO TO 40 
K = N-M
J=I

41 I = J
49 L=I+M

IF(X(I)-x(L)) 6C,6C,50
50 XS=X(I)

X(I)=X(L ) 
X(L)=XS
I = I-M
IF(I-l) feO,49,4o

60 J=J+1
IF(J-K) ^-1,^1,20

40 CONTir:UTc
C PIND MIN AND MAX DCVTATION
C

NM1-N-I
XN=M

■ ZC’LUS=-1000.
ZMIN=: + 1COO .
IL^l

6 DO 7 I=IL,NM1 
J=I
IF( X(J) .No. X(J+1)) GO TO o

7 CONTINUE
8 J=N
9 IL=J+1

FS. = riCAT( J)/XM
IF (X(J) .GT. 0) GO TO 23
Y=0.
CO TC 27

23 IF(X(J) .LT. 1.) GC TO 25
Y=I .
GO TO 27

2^ Y=X(J)
27 DIFF=Y-FS

IF(DIFF .GT. ZPLUS) ZPLUS=DIFF
IF(Dipf .LT. ZMIN) 7MIN=DIFF 
IF(IL-N) 6,8,28

28 RETURN 
ENO
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G LEVEL 21 MAIN DATE = 74158 22/^6/

C DAT/ SET MSHOAPUNTL AT L^VPL OC^ AS DE 05/23/74
SUPRDUTINE RUNIL (X ,N ,RUNS,ICALL,NVAL) 
DIMENSICN X(l),FUNS(1)

THIS SU8RDUTINE TALLIES THE ML,fV!8cP GF RUNS CF
LENGTH I, 1=1,6 . RUNS CF LENGTH >= TD 8 ARP TALLIED IN PUNSfF) 

THE FIRST AND LAST PUN TDF THE TOTAL SEQUENCE ARE NCT TALLI^r.

IFtlCALL .NE.l) C-C TO 50
C ZrP.D CUT RUNS

DO 5 1=1,8 
5 RUNS(I)=O. 

C IGNOPR 1ST RUN
C IS FIRST PUN UP OR DOWN 

IUPS=+1 
IF(X(2)-X(1) .LT.O) IUPS=-1 
DO 1C I=3,N 
IUP=+1 
IF(X(I)-X(I-1) .LT. 0) IUD=-1 
IFdUPS .CC. IUP) GO TO 10 
iups-iup 
NSTA.RT = I + 2 
CO TO 20 

10 CONTINUE 
£TOd 59 

20 KNT-] 
XSAVP=X(NSTART-1) 
C-r TO IGO 

50 1UP=+1 
NSTAPT=2 
IF(X(NSTAFT-1)-XSAVE .LT.O) IUP=-1 
IFdUPS .FC. IUP) GO TO 80 
IUPS=IUP 
IP (KNT .GT. NVAL) KNT=NVAL 
RUNS(KNT)=FUNS(KNT)+1 
KNT=1 
GO TO ICO 

PC KNT=KNT+1 
100 CD 200 I=NSTART,N 

IUP=+1 
IF(X(I)-y(I-I) .LT.O) IUP=-1 
IFdUPS .FO.IUP) GO TO 180 
IUPS=IUP 
IF (KNT .C-T. NVAL) KNT=NVAL 
RUNS(KNT)=RUNS(KNT)+1 
KNT = 1 
GO Tn 200 

ICO KNT=KNT*1  
200 CONTINUE 

XSAVP=X(N) 
RETUCN
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IV G LEVEL 21 MAIN DATE = 74158 22/^6/

DATA SET MSHOARUNTS AT LEVEL 007 AS OF 05/24/74 
SUBROUTINE RUNTS (RUNS»N,EtCS ,ICFtNVAL)

THIS SUEROUTINF COMPUTES THE CHI-SOUAPE STATISTIC FOR THE rUNS 
TALLIED IN SUBROUTINE RUNTL.

RcFfrEncf ICM SYSTEMS JOURNAL 1969 PP. 136-46 
DIMFNSICN RUN'St 1) »E (1 )

C EXPECTED NUMBER Dr RUNS 
DFN0M=6. 
NV1=NVAL-1 
DO 100 1=1,NV1 
SUM1=N*(I*I+?*I+1)  
Sl'M2 = I**3+3*I*I~I~4  
r,MCm, = DFNOM*(  1+3 . ) 

100 F(I)=2.*(SUM1-SUM2)/DFNOM
E(NVAL)=2.* (N* (NVAL+1.)-(NVAL**/+NVAL-1 .)) 
E(NVAL)=E(NVALJ/DENnM
CALL CHIS O(RUNS,E,NVAL,CS , IOF) 
RETURN 
END
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IV G LEVEL 21 MAIN DATE = 2?/Aic,/

C DATA SET MSHDAPARTL AT LEVEL 001 AS nF 03/11/74
SUPPGL'TINE PARTL ( X , N, K , A » I A , IC A LL ) 
DIMENSION X(l).AdAtlA)

C THIS PROGRAM TALLIES THE CCCURFNCE PF THE PAIRED COrpriNATFS
C X(I)tX(T+l) OR A SEDUFNCE OF PSFUDO-RAN^ry
0 NUMDFPS ON (0,1) INTO A K X K ARRAY
C IF ICALL = - 1 ROUTINE INITIALIZES A MATRIX.
0

IF(ICALL .MF .1) GO TO ICO 
DO 10 1 = 1, IA

DO 10 J=1,IA 
10 A(I,J)=n. 

100 DO 15G 1=1,N,2 
J=K*X(I)+l  
M=K*X(I+1)+l  

15 0 A(J,M) =A(J,M) + 1.
RETURN 
END
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C DATA SET MSHDAPARTS AT LEVEL 00° AS nF 03/23/74
SURPnUTINc PARTS(A,IKtCStSTDCS) 
DIMENSION A(IArlA)

C THIS PROGRAM PERFORMS THE PAIRS TEST ON A PREVIOUSLY
C TALLIED SECUFNCe Or PSEUDO-RANDOM NUM? 0**  (US ING PAPTL).

TOT=0. 
DO c0 1=1,K 
DO 50 J=1,K

50 TOT=TOT+A(I,J)
E=T0T/K**2  
cs=o.
DO 100 1=1,K
r-0 100 J = 1,K

100 CS=CS + (A(I,J)-E)**2/E
F=K.* 1K-1
STDCS=(CS-F)/SCRT(2.* e) 
RETURN 
END
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IV G LEVEL 21 MAIN DATE = 74160 11/07/

C DATA SET MSH0ACHS0D AT LEVEL 002 AS OF 06/09/74
FUNCTION CHSQD (P,N) 

C THIS FUNCTION IS USED TO EVALUATE THE OUANTILE 
C AT A GIVEN PROBABILITY LEVEL, P, FOR THE CHI-SQUARE 
C DISTRIBUTION WITH N DEGREES OF FREEDOM. 
C 
C REFERENCE COMM. OF THE ACM VOL 16 NO 8 PR. 483-5 
C 

DIMENSION C(21),A(19) 
DATA C/1.565326E-3,1.060438F-3,-6.950356E-3,

* —1.323293E—2,2.277679E—2,—8.986007E-3,
* -1.513P04E-2,2.530010E-3,-1.450117E-3,
* 5.169654E-3,-1.153761E-2,1.128186E-2,
* 2.607083E-2,-0.2237368,9.780499E-5,
* —8.426812E—4,3.125580E—3,—8.553069E—3,
* 1.3480286-4,0.4713941,1.0000886/

DATA A/1.264616E-2,-1.425296E-2,1.400483F-2,
* -5.8860906-3,-1.0912146-2,-2.3045276-2,
* 3.1354116-3,-2.728484E-4,-o.699681E-3,
* 1.3168726-2,2.6189146-2,-0.2222222,5.4066746-5, 
*3.4837896-5,-7.274761E-4,3.2921816-3,
* -8.7297136-3,0.4714045,1./ 
IF(N-2) 10,20,30

10 CHS0D=GAUSD(.5P)  
CHSOD=CHSQDCHSQD  
RETURN 

20 CHSC'D= -2.ALCG(P)  
RETURN 

30 F=N 
Fl=l./F 
T=GAUSD(1.-P) 
F2=SORT(F1)T  
IF(N .GE. (2+INT(4.ABS(T)) )) GO TO 40 
CHSOD=( ( ( ( ( (( C(1)F2  + C(2) )F2-tC(3))F2+C(4)  )F2

*
*

*

*
*

* ** *
1 +C(5))F2C(6))F2C(7))F1  + ((((((C(8)C(9)F2)F2***** ***
2 +C(10))F2+C(ll))F2+C(12))F2+C(13))F2+C(14)))F1  ***** *
3 (((((C(15)F2+C(16))F2+C( 17))F2+C(18))F2** **
4 +C(19))F2+C (20))F2+C (21) 

GO TO 50
* *

40 CHSCD=(((A(l)+A(2)*F2)*Fl+( ((A(3)*A (4)*F2 )*F2
1 ♦A(5))F2+A(6)))Fl+(( (((Af7)+A(8)F2)F2+A (9))F2** ** *
2 +A(10))F2+A(11))F2+A(12) ))Fl+( ((((A(13)F2** * *
3 ♦A(14))F2+A(15))F2+A(16))F2+A (17))F2F2*** **
4 +A(18))F2+A(19)*

50 CHSOD=CHSCD*CHSQD*CHSQD*F  
RETURN 
END
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LEVEL 21 MAIN DATE = 74160 11/07/

C DATA SET MSHOAGAUSD AT LEVEL 003 AS OF 06/09/74
FUNCTION GAUSD(P)

C THIS FUNCTION CALCULATES THE NORMAL DEVIATE FOR THE VALUE 
C P OF THE CUULMULATIVE PROBABILITY DISTRIBUTION.
C
C ALGORITHM FROM HASTINGS, CECIL,JR. APPROX FOR DIGITAL COMPUTERS 
C 1957, P. 192.

DATA AO,Al,A2/2.515517,.802853,.010328/ 
DATA Bl,62,63/1.432788,.189269,.001308/ 
B=P 
IF(B .GT. .5) B=l.-B 
U1=-ALOG(B) 
U=SORT(2.*U1)  
U2=U*U  
U3=U2*U  
GAUSD=U-(AO+A1*U+A2*U2)/(I.+B1*U+B2*U2+B3*U3)  
IF(P .LT. .5) GAUSD=-GAUSD 
RETURN 
END



G LEVEL 21 MAIN DATE = 7415P

C DATA SET MSHDAAUTDC AT LEVEL 004 AS nF G5/1P/74
SUBROUTINE AUTCC(X,N,LAG,AC11C,NITER ) 
DIMENSION X(l) 
DIMEMSir'N AC (1 ) ,XSAVE (SO ) 
X?AD=.5 
IF(IC .GT. 1) GC TO 50 
NT=N 
C0=0. 
DC 10 1=1,LAG 

10 AC(I)=O. 
GO TO 200 

50 NT=MT+N 
DO ICO K=1,LAG 
NK=LAC— K+l 
DO 60 1 = 1,K 
AC(K)=AC(K)+(XSAVE(NK)-XEAR)*(X(I)-XEAP)  

SO NK=NK+1 
100 CONTINUE 
200 DO BOO K=1,LAG 

NK=N-K 
DC BOO 1=1,NK 
NKI=I+K 
AC(K)=AC(K)+(X(I)-X?AP)*( X(NKI)-XcAR) 
IF(K.EQ.l) CO = CO + X(I)*X(I  ) 

300 CONTINUE 
CO=CO+X(N)*X(N)  
pn ago 1 = 1,LAG 
MLI=M-L AC-+1 

400 XSAVF (I)=X(NLI ) 
IFIIC .NF. MITER) RETURN 
C0=(CO-NT*XF AR*X cAR)/NT 
CP 450 K = 1,LAC- 

" 450 AC(K)=AC(K)/(NT*CC)  
FETUPN 
ENO
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C- LEVEL 21 MAIN DATE - 741EP

C DATA SET MSHOASMIPN AT L-VEL 003 AS OF 05/11/74
SUBROUTINE SMIRN(X,Y)

C
C THIS SUBROUTINE COMPUTES THE LIMITING DISTRIFUTICN
C FUNCTIDN PF THE KCLMOGPFPV-SMIFNIV STATISTIC.
C RFF. IBM SSP PR. 66-67
C 

IF(X-.27) 1,1,2
1 Y=0. 

RETURN
2 IC(X-1.) 3,£,6
3 C-1 = RXP(-1.233701/X?)  

02=0101
**

*
C4=02*G2  
09=04*04  
IF(08 .LT. l.E-25) 08=0.
Y=(2.5O66?C/X)*P1*(1.+O8*(1.+PF*P8) ) 
PFTURN

6 IF(X -3.1) 8,7,7
7 Y = l. 

PFTURN
8 C1=FXP(-2XX)**

0'2=01*01
0'4=02*02
08=0^*04
Y=1.-2.*(01-04+08*(01-08))
RETURN
FND

22/46/



21 MAIN DATE = 741rE

DATA S^T MSHOAMWALD AT LCVFL 001 AS OF 05/2c/74 
FUNCTION MWALC(N)

THIS FUNCTION COMPUTE THC OPTIMAL MI'^FP'CF CLASS
FOR A CHI-AQUARE TEST ACCO-DING TO TPC MANN-WALD CFITEPIA

5-4.
CCRIT=1.645
XN=N-1
MWALD=E* (2.*XN*XN/CC DIT**2)**,2
RETURN
END



-SI

AN IV G LEVEL 21 RAN

FUNCTION RAN(MX)
RAN=0.0
RETURN
END

DATE = 74158 22/46/1
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APPENDIX B

Sample Output Listing
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RAN

NT = 5000



RANLCM NUMErt? EVALUATirN
- 84 - 

PR. rCNAC-HFY«S FUNCTICN »RAM»

. NT =
NSEED =

5000
95605

TESTS RFCli^STEP 
GAP TESTS -10 
RUNS TEST 
PAIRS TST 
CHI - SCUACE TEST 
MPF=NTS 
RUNS AcCiVF/FcL0W NS AN 
AUTCCCPF^LATITNS 
KCLMUGCRCV - SNI-MOV T^SI



- 85 -
GAP I?ST

GAP INTERVAL =( 0.0 , C.1CCC-)

GAP LENGTH
0

riper I? V7.7
E7.

THpC?rTICAL
51 .Q00

1 FZ, . 46.710
2 ■7 "i 42.039

37.B35
4 7 0. 34.052
r O F 30.646

6 ? 1 , 27.562
7 27 . 24.624
R 1°. 22.341
c>+ 2 01. 201.072

TOTAL c19.

CHI - SCUAREt o r-F) - ■ 5 .44

CRITICAL VALUE ( ALP**-'A  C71 -
CRITICAL VALUE. (ALPHA--,.! '? -

16.c'2
14.68



GAP TEST
- 86 -

GAP INTERV/L =( 0.1CC0, O.2OGG)

GAP LENGTH CFS^PVED THFGPETICAL
0 FA. 48.700
1 49. 43.830
2 39. 30,447

31 . 35.602
4 26. 31.952
F, 29. 28.7C-7
6 23 • 25.881
7 IE. 23.293
E 2F. 20.964
9 + 191. IP8.674

TGTAL t E:7.

CHI - SCUAREt o Dc ) = 4,

CRITICAL V/'LUF
CRITICAL VALUE

( ALPl-’A = .O5) -
(ALPHA-.10) -

16.C-2
li.68



GAP IFST
- 87 -

GAP INTERVAL = ( 0.2CC0» O.Z'OCO)

GAP LENGTH pp.$rp vrr THEORETICAL
0 A7. 50.200
1 41. ^5.180
2 4? . 40.662
3 :-.4. ?6.5C>6
4 24. 32.436
c 30. 2Q.643
6 28 . 26.678
7 32. 24.010
8 15. 21.609
o+ 203. 1Q4.486

TCTAL 5 02.

o pc)CHI - SOUARE(

CRITICAL VALUE (ALPUA=.C5) -
CRITICAL VALUE (ALPHA=.10) =

16. R2
1 A. 6 £■



GAP TEST - 88 -

GAP INTERVAL =( 0.3000, 0.4000)

GAP LENGTH OF SERVED theoretical
0 59 . 52.600
1 4^. 47.520
2 A7. 42.768
3 38. 38.491
4 43. 34.642
F 29. 31.178
6 24. 28.060
7 31. 25.254
e 21 . 22.72°
9+ lc2. 204.558

TOTAL 526 .

CHI - SOUAFEt 9 DF) - 6.36

CPITICAL VALUE (ALPHA = .C5) = 16.9?
CRITICAL VALUE (ALPHA = . 1G ) *-  14.66



GAP TEST
- 89 -

GAP INTERVAL =( O.^CCOt 0.c000)

GAP LENGTH GES ER VEG' THcr?cTICAL
C A4 . 47.IGO
1 44. 42.3CjC
2 36. 38.151
a 32. 34.336
L *1 *.  e 30.°C?
F 22. 27.612
6 31. 25.031
7 26. 22.528
P 20. 20.275
9 + 1E3. 182.475

TGTAL 471.

CHI - SGUARE( ° OF) = 3.?7

CRITICAL VALUE (ALPUA=.O7) = 16.^2
CRITICAL VALUC (ALPHA=.1O) - 1-.6E



GAP TF5T - 90 -

GAP INTERVAL =( 0.5C00, 0.6GC0)

GAP LENGTH CESEFVEC THEORETICAL
0 44. 50.100
I Ar' . ^5.090
2 39. 40.581
5 47. 36.523
4 30. 32.871
5 25. 29.c83
6 26. 26.625
7 22. 23.^63
£ 25 . 21.566
9+ 1°P . 194.0°8

TOTAL 501 .

CHI - SCUARFl • c’;tF) = 5.57’

CRITICAL VALL'C
CRITICAL v*LU-

(ALPHA-.OF) =
(ALPHA=.1C) =

16. ^2



GAP TEST - 91 -

GAP INTFE.V/L =( 0.6GGC. 0.7000)

GAP LENGTH 
0 
1 
? 
3 
4

CpSERVE?
51.
57.
35.
43.
36 .

30.
23.
16.

199.
523.

THEORETICAL 
52.300 
47.070 
42.363 
3E.127 
34.314 
30.883 
27.7C‘4 
25.015 
22.513 

702.621

CHI - SOL'APEt 9 OF) = 6.54

CRITICAL VALVE
CRITICAL VALl’6 c

6 
7
e 
O+

TPTAL

(ALPHA = 4C.r) =
(ALDHA=.1C) =

16.92
14.68



GAP TEST - 92 -

GAP INTERVAL =( 0.7000» 0.80CC)

GAP LENGTH rFSEPVF'"' theoretical
0 51. 52.300
1 58 . 47.070
2 42. 42.363
3 ?6. 33.127
4 24. 34.314
r 27. 30.83?
6 •an e 27.704
7 32. 25.015
f 20. 22.513

191. 202.621
total 523.

CHI - SCUAR-( ° OF) 11.74

CRITICAL VALUE
CRITICAL VALUE

(ALPHA=.0c) =
(ALPHAS.1C) =

16 .S2
1A . 63



GAP TEST - 93 -

GAP 1KTFRVAL =( O.POOO, O.c'OCG)

GAP LENGTH cp.srrvEO THEOFFTICAL
0 38. 45.400
1 37. 40.860
2 37. 36.774

34. 33.097
4 27. ?t?.7R7
c 20. 26.FOR
6 20. 24.127
7 26. 21.715
R 7* 19.543
c» + 192. 175.FE9

TOTAL 4 54 .

CHI - SCUAPC( 9 DF) = 7.23

CRITICAL VALUF (ALPHA-.OF) = 16.92
CRITICAL VALLT (ALPHA=.1D) = 14.68-



GAP T^ST
- 94 -

GAP INTERVAL =( 0.90G0, 1.0000)

CAP LENGTH 05SERVED THEORETICAL
C 60. 49.200
1 47. 44.260
2 42. 39.852
*. ?2. 35.867
lv 31 .

o
 

0. (M 
(Xj 
M

c 23. 29.052
6 21. 26.147
7 17. 23.532
F 15. 21.170
9+ 2 04. lo0.611

TCTA L 402.

CHI - S0UAF.E( 9 OF) = 9.95

CRITICAL VALUE
CRITICAL VALUE

(ALPHA=.O5) =
(ALPHA=.1C) -

16.02
14.68



RUNS TEST - 95 -

RUN LENGTH 08 SERVE? THEORETICAL
1 20«-7. 2083.417
2 8 EE. 916.43?-
3 277. 263.758
4 60. 57.^98
5 10. JO.159
OH- 0. 1.734

TOTAL 333.2. 3332.°99

CHI - SOUA.RF( 5 DE) = 3.48

CRITICAL VALUE
CRITICAL VALUE

(ALPHA-.05)
(ALPHA=.ie)

11.07
P. 24

Z - SCORE" (TOTAL PUNS) = -0.C3



PAIRS TF^

ND . GF INTERVALS = 10
interval FRCM - TG 1 2 3 Z, 5 6 7 a 0 10

1 C.C 0.1000 22. 21. 27. 27. 24. 25 . 22. 16. 20. 25.
2 o.loro 0.2000 12. 25. 20. 24. 24. 12. 26. 30. 14. 25 .

0.2000 0.3000 34. 28. 2] . ?..? . 25. 20 . 21. 31 . 20. 27,
A 0.3000 0.4000 30. 33 . 23 . 2C'. 22. si L- • 2 °. 25 . 25 . 24.
F C.A CTO O.CCGO 10. 27. I1’. 23 . 21. 2’. 26. 32. 26. 25 .
6 o.cooo 0.6GUO 31. 33. 30. 27 . *> *7 24 . IP. 20. 22. 24.
T O.C GCG 0.7 G 0 0 34 . 24. 26. 26 . 25 . 20. 23. 3 2 . 1 o
D C.7GG0 0.E0OO 33. 24. 21. 30. 3 6 31. 24. 23. 19. 34.
O O.COOO O.ROOO 3 6. 2 5. 21 . 25 . 21. 21 . 22. 2 3. 21. 4 - •

10 O.EOCO 1.0000 ?f- . 26. 27. 17. 16 . < • 27. 15 . 16. 26.

CHI - SCUAREt oc> CT) = 100.20

CRITICAL VALUE (ALPHA=.0F) - 123.23
CRITICAL VALUE (ALOHA=.1C) = 117.^1

i
xO 
CT'
I



- 97 -
CHI - SOUAFI- TEST

INTERVAL FROM -- TO PRS9RV~D THE0EETTC4L
1 0.0 10.0088 45 . 44.25
2 1D.CCf F. 0.0177 c7. 44.25
3 lD.C177 0.0265 46 . 44.25
A ID.0765 0.03c4 42. 44.25
5 10.03^4 0.044? 37 . 44.25
6 0.0442 0.0531 42. 44.25
7 0.0531 0.0619 38. 44.25
8 C.C61C 0.0708 c 2 44.25
9 0.0708 0.0796 53. 44.2 5

TO 0.C796 C.0EE5 56. 44.2 5
11 0.0885 0.0973 36 . 44.25
12 O.C'C’73 0.1062 42. 44.25
13 0.1062 0.1150 44. 44.25
14 C.115G 0.123° 44. 44.25
15 0.17?° 0.1327 39 . 44.25
16 0.1 2 ?7 0.1416 40. 44.25
17 0.1416 0.1c04 39. 44.25
IE 0.15C4 0.15c3 c o 44.25
19 0.1593 0.16E1 37. 44.2 5
20 0.16P-1 0.1770 41. 44.25
21 0.1770 0.1858 45. 44.25
22 0.1E c f 0.1947 48. 44.25
23 0.1947 0.2035 46. 44.25
24 0.2C35 0.2124 34 . 44.25
25 0.7174 0.2212 36. 44.25
26 0.Z212 0.2301 45. 44.25
27 0.7301 0.2289 47. 44.25
28 0.2389 0.2478 39. 44.25
29 0.247S 0.2566 56. 44.25
30 0.2566 0.2655 39. •^4. 2 5
31 0.2'655 0.2743 54. 44.25
32 0.2743 0.2822 44 . 44.25
33 0.283? 0.2o2G A* 2' . 44.2 5
34 0.2970 0.3009 36 . 44.2 5
35 0.3009 0.309? ’ A . 44.25
36 0.2 Cc'7 0.3186 ■J ■ . 44.25
37 0.3186 0.3274 45. 44.25
38 0.3274 0.3363 55. 44.25
39 0.3363 0.3451 48. 44.25
40 0.-451 0.3c40 52. 44.25
41 0.3c4C 0.3628 ' 37. L.L. . 2C
42 0.2628 0.3717 36. 4^.2 5
43 0.3717 0.3805 58. 44.25
44 0.3805 G.38-94 c 7 e ■^4.25
45 0.?8°4 o 3 '.0

 
K

' 48 . 44.2 5
46 0.3°E2 0.4071 £v e 44.25
47 0.4071 0.41^9 41 . 44.25
48 0.41re 0.4248 ?1. 44.25
49 0.4748 0.4336 36 . 44.25
50 0.4336 0.44?5 41 . 44.25
51 0.4425 0.4^l? 46. 44.25
52 0.4 51.3 0.4602 44 . 44.2 5
53 0.4 6 02 0.4 6 9 0 36. 44.25
54 C.46CC. 0.4-770 47. 44.25
5 5 0 ,477c 0.486/ 53. 44.2 5
56> 0.4 8 6 7’ 0.4cr^ 46. 44. 2 5
57' C.4<'r6.. C.c044 48 . 44 . ?5
58 0.5044• 0.9133 4?. 44.25
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62 0.53c8 0.5A57 44. 44.25
63 0.5AF7 0.5575 56. -■ 44.25
64 O.c575 0.5664 43 . 44.25
65 0.5 664 G .5752 38. 44.25
66 0.5752 C.cq41 47. 44.25
67 0.5S41 C.KC29 45. 44.25

68 0.592° C.c018 36. 44.25
69 0.6018 0.6106 53. 44.25
70 0.6106 0.6195 54. 44.25
71 0.6195 0.6283 36. 44.25
72 0.6783 0.6■’72 56. 44.25

LU
 o » O
'

O
' o 39. 44.25

74 0.6460 0.6c49 41. 44.25
75 0.6549 0.6637 39. 44.25
76 0.6637 0.6726 39. 44.25
77 0.6726 C.6814 52 . 44.25
78 0.6814 0.6°03 48 . 44.25
79 0.6903 0.6°91 55 • 44.25
80 0.6°91 O.^OSO "’9 . 44.25
El 0.70E0 0.7168. 44. 44.25
E2 0.7168 0.7757 35 . 44.2 5
83 0.7257 0.7345 51. 44.25
84 0.7?45 0.7434 52 . 44.25
85 0.74?4 0.7522 60. ' 44.25
86 0.7522 0.7611 C" 44. 25
87 0.7611 O.^F^P C.O 44.25
88 0.7699 0.7788 32 . 44.25
89 0.7788 0.7876 37. 44.25
90 0.7876 0.7965 4G. 44.25
91 0.7965 0.3053 44 , 44.25
92 0.8053 G.S142 38. ^4.25
93 0.8142 0.8230 "’7 . 44.25
94 0.8230 0.3319 37. 44.250

 
si a> 
O

 

0i• 
O

 
U
1 

0 32. 44.25
96 0.8407 O.BAOft 40. 44.25
97 0.840 6 42. 44.25
98 0.8584 C.867? 40. 44.25
99 0.E673 0.8761 51. 44.25

100 0.8761 0.8850 44. 44.25
101 G.E 8 50 C.8°3 8 42. 44.25
102 0.89?? G.CC26 40. 44.25
103 C.CC26 O.°llr 43 . 44.25
104 0.9115 O.°2C3 49 . 44.25
105 G.c20? 0.9?°? 41 . 44.2 5
106 G.°292 O.°3EC 44 . 44.25
107 0.9390 0.9469 44 • 44.25
108 0.946° G.9557 40. 44.25
109 0.9557 0.9646 50. 44.25
110 C.°646 0.9734 41. 44.25
111 O.°734 0.9823 49. 44.25
112 G.9E23 0.9911 43. 44.25
113 0.9511 1.000C 36. 44.25

TOTAL 5 000.

CHI - SC'UAFFt 112 OF) = 115.01

CRITICAL VALUF ( A L PH/- = . C5 ) - 137.71
CRITICAL VALl,r (ALPHAS.10) = 131.56



MOMENTS
- 99 -

MEAN 
2NO MCNCNT 
3RD MOMENT 

VARIANCE

pcccPvcD
0.4Q69
0.2296
0.2461
0.0827

2500
0833

THcr'DETICAL
.5000

Z - SCORE (XEAR-fU) = -C.77



RUNS AETVE/^ELnw MEAN (.5) 100 -

RUN LpMFTH OESERV13 C THFORCTICAL
0 1249. 1253.rOO
1 639. 626.750
2 321. 313.375
3 144. 156.688
4 69. 78.344
5 43. 39.172
6 24. 19.586
7 7. 9.793
8 7. 4 . P.-9 6
o+ 4. 4.896

TOTAL 2507.

CHI - SCUAREt 9 PF) = 5.82

CRITICAL VALl'F (ALPHA = .n5) = 16.92
CRITICAL VALUC (ALPHA^.10) = 14.68



AUTOCnPRFLATir'MS: - 101 -

NO. AC CUTS IDF LI PITS =

LAG AC
1
2

0.008
-o.co^

4
-0.002

0.01 5
5
6
7
8
9

10
11
12
13
14
15
16

-0.00?
-0.011
0.004
0.016
0.01?

-0.028
O.COR

-0.030
-0.011
0.00^
0.006
0.015

17
18
19
20
21
22
23
24
25
2 6
27
28
29
30
31
32
33
?A
35
36
37
38
3°
40
41
42
43
46
45
46
47
48
40
50

-0.00-
-0.012
0.006
0.008

-0.015
0.013
0.000
0.005

-0.022
-0.035

0.C09
-0.006
0.006
0.01?
0.02 1

-0.004
-0.02?
-0.016
-0.02?
-0.010
0.00p

-0.014
-C.0C2
-0.022
0.020 i
0 . C1 3

-0.016
—0.006
0.012
0.G1C

-0.016
0.014

-0.005
0.004

952 LIMITS ON 4!nr'CCR8-LATl'-VS= (+/-) 0.026



KOLMCT-CPCV - SMl^NCV TrST “ ""

NO.
1

ZP ZM PROR(7P)
0.1632 -1.003? 0.0

PROD(ZM) 
0.7341


