A PROGRAM TO EVALUATE

UNIFORM RANDOM NUMBER GENERATORS

A Thesis Presented to the Faculty
of the
Department of Industrial and Systems Engineering

University of Houston

In Partial Fulfillment
Of the Requirements for the Degree
Master of Science

in Operations Research

by
Andrew J. Sacks

August 1974

ACKNOWLEDGMENTS

I wish to express my appreciation to the members of my
committee, Dr, Donaghey, Dr. Rhodes and Dr. Motard, for their
assistance. I also wish to express my appreciation to Gulf Oil Corpor-
ation for permitting me to avail myself of their facilities while completing
requirements for the Master of Science degree. Finally, to my wife,
Barbara, and son, Jonathan, a sincere thanks for their patience and

understanding,

ABSTRACT

This thesis presents a program to evaluate uniform pseudo-random
number generators. It presents various methods of generation and the
tests available to test the adequacy of the methods. The program is
employed to test a number of frequently'used generators and the results
are reported. The strengths and weaknesses of the programmed tests

are also discussed,

TABLE OF CONTENTS

CHAPTER
Random Number Generators

Statistical Tests for Evaluating
Random Number Generators

A Program to Evaluate Uniform
Random Number Generators

Evaluating Selected Uniform Random
Number Generators

Bibliography
Appendix A - Source Code for the Program

Appendix B - Sample Output Listing

PAGE

17

30

45

57

59

82

-1-

CHAPTER 1

RANDOM NUMBER GENERATORS

A. Introduction

There have been many words written and spoken on the relative
merits and shortcomings of various types of uniform random nu.rnbelf
generators. As soon as a new algorithm or procedure is presented
as being totally random and unbiased a critic of the new method dis-
covers an area where the performance of the procedure is less than
ideal. This type of banter has been going on for years and with the
emergence of the digital computer and the évailability of a high-speed
means of generating these numbers the arguments are becoming more
and more frequently found than ever in the journals of computer and
statistical methodology. One point, however, is not argued; that is
the statistical importance of random number generators in a wide

variety of applications,

Random numbers are useful in many areas., For example:

a. Simulation - when a computer is used to simulate natural phenomena,
random numbers are required to make things realistic. The term
simulation is rather broad and covers studies from nuclear physics
and space technology to queuing theory (for example, people entering
a bank or cafeteria at random intervals expecting services) and
computer software simulation (analysis of various types of software,

hardware, peripherals and job streams to optimize throughput).

b. Sampling - in many statistical analyses it is often impractical to
examine all possible cases due to the large number of possibilities.
A well chosen random sample, will, however, allow the
statistician to draw meaningful conclusions from the data and gain
insight into the problem from a substantially smaller subset of
observations.

c. Numerical analysis - many techniques for solving complicated
numerical problems have been devised using random numbers,

d. Computer programming - random -values make a good source of
data for testing the effectiveness of computer algorithms.

e. Decision making - random numbers are becoming increasingly
more important in association with corporate and industrial
decisions. Techniques such as decision theory and risk.analysis
employ random numbers in a simulation type application to aid
managers in evaluating various alternatives.

f. Recreation - rolling dice, shuffling cards, playing roulette are all
every day occurrences which involve random number theory., This
commonplace use of random numbers hé.s had the name '""Monte Carlo
Method'" devised as the general term used to describe an algorithm
that employs random numbers.

Although we have been and will probably continue to talk about random

numbers, there really is no such entity as a random number, We

cannot, for example, say 21 is a random number or 21 is not a random
numb‘er. What we are actually saying is that we really are speaking

about a sequence of independent random numbers with a previously

-3 -

specified distribution and that each number observed by us was obtained

by chance, having nothing to do with other numbers in the sequence.

Uniforrnly. distributed variables in fhe range zero to one (denoted

(0, 1)) play an important role in the generation of random variables
drawn from other probability distributions such as the exponential,
normal, Poisson and binomial distributions. In fact, random wvariables
from these distributions are often derived by transforming one or
more uniform (0, 1) random variables. For example, -1ln(r) where r
is a random variable from a uniform (0, 1) yields an exponentially
distributed random variable with mean 1. .For this reason, we will
concern ourselves primarily with the uniform distribution and the
distributions referred to should be understood to be uniform unless

some other distribution is explicitly stated.

A uniform distribution is one in which each possible number is equally
probable. In other words each of the ten digits 0 through 9 will occur
about 1/10 of the time in a (uniform) sequence of random digits. Each
pair of two successive digits (00 through 99) should occur about 1/100
of the time and so on, Yet if we take a truly random sequence of 1000
digits, it will not always have exactly 100 zeros, .100 ones, etc. In
fact, the probability of this actually occurring is quite small; however,

a sequence of such sequences will have this character on the average.

Another quality of a random number generator besides the frequency

of the appearance of the digits, is the actual sequence of the digits,

A sequence such as
0,1,2,3,4,5,6,7,8,9,0,1,2,3,4,5,6,7,8,9
or
0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9
might have each digit appear with the same frequency but indeed there
is a suspicious ordering to the digits which would cast doubt on the

validity of the generator.

There are several ways to formulate a good abstract definition of a
random sequence but perhaps we should begin with an intuitive

approach to the concept.

One of the first published accounts of random digits appeared in 1927

as a table of over 40,000 random digits taken at random from census
reports. This table was compiled by L., H. C. Tippett (17). Since then
a number of machines were built for mechanically generating random
numbers. M. G. Kendall and B. Babington-Smith (7, 8) describe such
a machine in their papers in the Journal of the Royal Statistical Society.
The machine essentially consisted of a spinning disk divided into

ten equal sections, each havi'ng a digit from.O to 9 on it, The disk

was caused to spin at a relatively high speed in a dark room. The
operator would at unequal intervals press a button to flash a light on

for an instant which would illuminate the spinning disk, making it

appear motionless and noticing the digit at which a previously mounted

pointer was indicating, Statistical analyses of the sequences generated
by the above method proved it to be a reasonable means of random

number generation.

Shortly after computers were introduced people began to search for
efficient ways to obtain random numbers in computer programs. One
obvious way is to read in tables of already known random sequences.
This method, however, is of limited utility because of memory
available, input time requirement, the table may be too short for the
application and it certainly seems like it would be a nuisance to prepare
and maintain the table. Obviously, the computer should be programmed
to generate its own random number sequences.

. Random Numbers by Computer

The idea of using the computer and its inherent high speed for generating
random numbers was suggested in the 1940's by John von Neumann,

His method was called the ""middle square' method and consisted of

using the previously generated random number, squaring it and extracting
the middle digits as the new random number., So, for instance, if we

were generating 10-digit numbers and the previous value was 5,772, 156, 649
the new random number would be 7923805949 (the middle ten digits of

33317792380594909291).

One obvious objection to this technique is how can a sequence generated
in such a way be random since each number is completely determined by
its predecessor, The answer, of course, is that the sequence is not

random, but it appears to be. For this reason such deterministically

generated seqﬁences are called pseudo-random or quasi-random
sequences., Although they are derived from a fully specified formula

by a digital computer, their statistical properties coincide with the
statistical properties of numbers generated by an 'idealized chance
device' that selects numbers from the unit interval independently

and with all numbers equally likely. Provided that these pseudo-random
numbers can pass the set of statistical tests (frequency tests, auto-
correlation tests, lagged product tests, runs tests, gap test and others
all of which will be fully detailed in this paper) implied by an idealized
chance device, then these pseudo-random ;:1umbers can be treated as

"true'' random numbers even though they are not.

Naylor (15) proposes several criteria that should be satisfied by an ideal
pseudo-random number generator. An ideal pseudo-random number
.generator should yield sequences of numbers that are 1) uniformly dis-
tributed, 2) statistically independent, 3) reproducible and 4) nonrepeating
for any desired length., Furthermore, such a generator should also be
capable of 5) generating random numbers at high rates of speed, yet of

6) requiring a minimum amount of computer memory capacity. He also
states that congruential methods of random number generation come
closer to satisfying all of these criteria than any other known method.

Congruential Methods

The congruential methods for generating pseudo-random numbers are

based on the mathematical concept of congruence which basically states

-7 -

that two numbers a and b are congruent modulo m if their difference

is an integral multiple of m. The congruence relation is expressed

by the notation a = b (mod m) and is read "a is congruent to b modulo m, "
In other words a-b is exactly divisible by m which also implies that a/m

and b/m have the same remainders.

The following recursive formula is basic to all congruential methods.

Xn+l = (aXn +c)modm n>0 (I-1)

where Xo’ a, ¢, and m are all non-negative integers., Expanding (I-1)
fori=0,1,2... we obtain
X1 = (aX, + c) mod m

X2 = (a(aX0 + ¢) mod m

=a2X°+(a+l)c mod m

X3 = a3Xo + (a2+a+1) ¢ modm
3 3_
= a Xo + (i—l—) ¢ modm

(a - 1)

. i
i -1
X; = axo.;.-%%-:—l)—) ¢ modm (I-2)

Given an initial starting value X, a constant multiplier a, and an additive
constant c, then (I-2) yields a congruence relationship (modulo m) for

values of i, i=0,1,2,..

This sequence is called a linear congruence sequence. For example, the
sequence obtained when X _ = a=c=7, m=10, is 7,6,9,0,7,6,9,0,... . As
this example shows, the sequence is not always '""random!' for all choices

of the initial parameters; in fact the choice of these values is extremely

critical in producing useful random sequences.

The above example illustrates another characteristic of congruential
sequences: they always get into a loop or begin repeating themselves.
This repeating cycle is called the period; the sequence above having a
period of 4. Obviously a useful sequence will have a relatively long

period.

Two types of congruential methods have been derived from Equation (I-2).
When c = 0 the term multiplicative congruential generator is often used
and when ¢ # 0 often the term mixed congruential method is employed.
The case ¢ = 0 generally proceeds a little faster than when c # 0.
However the restriction ¢ = 0 cuts down the length of the period of the
sequence although careful selection of the other parameters still allows

for a reasonably long period.

Far and away, the most widely used method of generating rand;)m numbers
by computer employs in one variation or another a congruential method.

In almost all of these cases the method used is a multiplicative congruential
method or a mixed congruential method. These two methods and two
variations of them are discussed below,

The Multiplicative Method

The multiplicative congruential method computes a sequence {Xl} of
non-negative integers less than m by means of the congruence relation

Xi417 a.Xi mod m (I-3).

This method is a special case of the congruence relation (I-1) where

¢ = 0. This method has been found to behave quite well from a

statistical point of view. Given a prudent choice of the multiplier a

and starting value (or seed) X, it is possible to generate sequences

of numbers that are uncorrelated and uniformly distributed.

Additionally, careful choice of the two above-mentioned parameters
guarantees a maximum period for sequences generated by this method.
Knuth (9) states the following theorem concerning multiplicative congruential

generators and cites the proof by R. D. Carmichael, Bulletin of the

American Math. Society, Vol, 16, (1910), pp 232-38.

Theorem
The maximum period possible when ¢ = 0 (a multiplicative congruential
method) is achieved if
1) Xo is relatively prime tom
2) ais a primative element modulo m.
To clarify the above theorem it is also néces sary to note that when a is

A

relatively prime to m, the smallest integer A\ for which a’* = 1 (mod m)
is called '"'the order of a, modulo m'. Any value of a which gives the

maximum possible order modulo m is called a 'primative element,

modulo m. "

If we let A(m) denote the order of a primative element, i.e., the
maximum possible order, modulo m, we can show (Knuth) that)\(pe),

3 . - . - e - - .
where p is a prime number and e a positive integer, p > 2, is a divisor

- 10 -

of pe_l(p-l). The precise value of A(m) for all cases can then be

given as

A@) =1

A4) =2

A(28) =202, >3
Ap®) =p% p-1), p> 2.

This theory simplifies somewhat when we note that as applicable to
computer generated random numbers p represents 2 or 10 depending

on whether the generator is to be run on a binary or decimal computer
and e represents the number of bits per word available for computation.

For the IBM 360 then p = 2, e = 31,

Knuth then presents another theorem as follows:
Theorem
a is a primative element modulo p° if and only if

i) p° =2, ais odd;

p =4, amod 4 = 3; or
p® =8, amod 8 =3,5,7; or
P =2, e>4, amod 8 = 3,5;

or
ii) pisodd, e=1, a # 0 (mod p) and
a(P-1)/a 4 (mod p) for any prime divisor
q of p-1;
or
iii) p is odd, e >1, a satisfies ii) and

aP-1 71 (mod pz)

- 11 -

Once again this theory simplifies in the common case where m = 2%, e > 4
and our sole requirement is that a = 3 or 5 (modulo 8).

The Mixed Method

The mixed congruential method computes a sequence of {Xl} of non-
negative integers less than m by means of the congruence relation given

by

X = aX; + ¢ (mod m).

i+l
This method differs from the mult_iplicative procedure in that c is not
assumed to be zero, The advantage of this method is that it is possible
to obtain sequences with a period that covers the full set of m different
numbers (the multiplicative method has a maximum period of m-1).

From a computational and speed standpoint this method requires an

extra addition operation compared to the multiplicative method.

The theorem concerning the maximum period for a linear congruential
sequence is as follows:
Theorem
The linear congruential sequence has a period of length m if and only if
. i) c is relatively prime to m

ii) a=1 (mod p),p is a prime factor of m

iii) a=1 (mod 4) if 4 is a factor of m.

The practical considerations of this condition, when dealing with binary
computers, is relatively straightforward. To achieve a full period

h =m = 2° the parameter c must be odd and a must satisfy the congruence
relationship

a =1 (mod4)

- 12 -

which can always be achieved by setting a = 2K + 1fork 2 2. Any
positive integer can be selected for the starting value X . However

the above-mentioned conditions are not in themselves sufficient for
assuming that sequencés geherated by the mixed congruential method
will be statistically satisfactory. Naylor states that only by empirical
testing can we have confidence in the statistical properties of sequences

that are produced.

The Combination Methods

Within a few years after their discovery, congruential methods came
under attack in the literature on the grounas that the sequences generated
were not statistically satisfactory especially with respect to autocorrela-
tion (a measure of the tendency of numbers in the sequence to show a
linear functional relationship to other numbers in the sequence a given
but constant distance away). As a result of these findings, several new

versions of congruential methods were suggested in the literature.

MacLauren and Marsaglia (11) suggested two combination methods. The
first method, to be used on computers with buffered input, reads in a
tape of p previously stored random numbers. Then, a congruential
generator computes an index that determines which random number is
selected from the inputted sequence., This process is continued until

all the inputted numbers are exhausted at which time a new tape is

read and the process continues, The second method suggested by

these two men uses two random number generators. To begin, a table

of 128 locations in core was filled with numbers generated by the first

- 13 -

generator. To output random numbers the second generator computed
an index to determine the location in the table of the ra'ndom number

to be used. The location in the table was refilled with a new number
generated from the first congruential generator., MacLauren and
Marsaglia recognize that the time required using this method is about
twice the time required in a non-combination method but they strongly
feel the time penalty is worth suffering to obtain a sequence of numbers
with better statistical properties. In fact an article written three years
later by Marsaglia and Bray (14) presents a combination method that involves
three congruential generators. They state '""'short and fast programs
will result even if three generators are mixed. Omne to fill, say 128
storage locations, one to choose a location from the 128 and a third
thrown in just to appease the gods of chance. Why be half (or two-thirds

safe)? "

Another method of generating pseudo-random numbers based on the
combination of two congruential generators has been proposed by
Westlake (18). It retains two of the desirable features of congruential
generators, namely, the long cycle and the ease of implementation with
a digital computer. Unlike the combination method of MacLauren and
Marsaglia, Westlake's method does not require the retention in memory
of a table of generated numbers., Westlake, instead, uses the two
generators and does bit-wise addition followed by division. To further

insure randomness, Westlake also adopted the procedure of modifying

- 14 -

one random number by permuting its bits in a random manner determined
by the other random number. Like the generators of MacLauren and
Marsaglia, this procedure yielded completely satisfactory results on a’

fairly stringent series of statistical tests,

The combination methods are so prevalent as to be too numerous to
describe. More recentl?, however, the enthusiasm has been dampened
somewhat by the paper by Coveyou and MacPherson (1). They conclude,
through Fourier anal ysis, that any multiplicative generator is statistically
satisfactory if its multiplier meets certain requirements, On the other
hand Marsaglia (13 still maintains that every multiplicative generator has
a defect which makes it unsuitable for certain Monte Carlo problems
namely - points produced in the n-cube fall in a relatively small number
of parallel hyper-planes.,

Othe‘r Methods

Of course, linear congruential methods of pseudo-random number
generating are not the only methods ever suggested for computer use,

There are a number of other methods which should be briefly discussed.

One of the common fallacies encountered in connection with random
number generation is that a good generator can be modified slightly
to yield an even better generator. Actually this is not so and in fact
the new generator is oftentimes less random than the original one,

Knuth expresses this idea as a moral to an episode where he thought

he was creating a fantastically good random number generator using

- 15 -

a rather complicated and peculiar algorithm, without actually examining
the theory behind the algorithm., The algorithm when implemented proved
deficient in many areas and led Knuth to state ''random numbers should

not be generated with a method chosen at random, "

Two additional methods of generating random numbers are quadratic con-

gruential methods of the form

2
X 4 =(dX +aX +c) modm (I-4)
and

X . =X (X +1) mod2%, X_ mod4=2. (I-5)
n n o

n+l
In the case of (I-4) the sequence has a period of length m provided parameters
a, c and d are properly chosen. Case (I-5) involves less computation time

than (I-4), in fact just slightly more time than the linear congruential form

of (I-1).

One other nonlinear congruential method of generating random numbers

involves using the Fibonacci sequence, Xn+l =X+ Xn . This sequence,
which in itself is important in describing many natural phenomena can be
modified by division modulo m to produce a random sequence of a relatively
long period. However, recent studies of such sequences have proved them
not to be satisfactorily random. A slight modification to the Fibonacci
sequence to the form

Xntl = (Xn +X _y) modm
when k is comparatively large has been shown to produce acceptable

sequences of random numbers (k = 16).

- 16 -

There are therefore different and varied methods of generating random
numbers by computer., Without knowledge of the particulai' application
however it would be indeed difficult to recommend one over any other.

Chapter 2 deals with various statistical tests to aid in selec-ting a satis-

factory generator.

- 17 -

CHAPTER 2

STATISTICAL TESTS FOR EVALUATING
RANDOM NUMBER GENERATORS

The statistical propeffies of pseudo-random numbers generated by
methods such as those described in Chapter 1 should of course coincide
with the statistical properties of numbers generated by an idealized chance
device. that selects numbers from the unit intei'val (0, 1) independently and
with all numbers equally likely. Obviously, as we have previously
mentioned, the numbers generated by computer are not random because
they are completely determined ‘by a number of initial parameters and
have their precision limited to the accuracy of the computer. However,
we will agree that as long as our pseudo-random numbers can pass a rigid
set of statistical tests that the idealized generator would theoreticélly also
pass, the pseudo-random numbers will be treated as ''truly' random

numbers,

Because random number generators are frequently used in the simulation

of nondeterministic or stochastic systems the importance of the statistical
agreement described above becomes evident, For example, if the probability
of the occurrence of a physical event at a given point in time is . 60,

then if the generated random number assigned to that event at that point

in time is less than or equal to . 60 the event is assumed to have occurred.

A generated random number between . 60 and 1. would imply the evént at

this point in time did not occur. Generally, in this manner the entire

- 18 -

course of events of a given case are run or simulated and the final outcome k
along with relevant intermediate results are reported. Obviously a poor
or biased random number generator would tend to cast suspicion as to the
é.ccuracy of the simulation. A number of statistical tests are available to
examine pseudo-random sequences and which allow the analyst or statistician
to make statements concerning the apparent randomness or lack of it in a
given sequence. There is literally no end to the number of tests that can
and have been conceived and, in fact, for specific applications oftentimes a
specific test need be developed to protect against biased introduced by the
peculiarities of the application itself, In gene.ral there are a number of more
common tests and thesAe are described below.
A. Moments

An obvious and desirable characteristic of a pseudo-random number

generator on the unit interval is agreement between the observed

moments and the known theoretical ones, The first moment, or

average, is calculated as

b
1
A Ly
M2

X.. (II-1)

i=1 i

The expected value for this quantity would be 1/2. The second

moment, denoted XZ, is expressed as

2

Z]~

N
S, 2

and its theoretical value is 1/3. The third moment, or X3 is expressed as

2

1 3
X°= N . X (13- 3)
1= .

and it has a theoretical value of 1/4. Another quantity directly
related to moments, and in the case of a 0 mean distribution identical
to the second moment is the variance, denoted Sz, and calculated as
N -2

3 X; - X) , (II-4)

i=1

—_ 1

2 —2 =

s“=x%_%X =N

The variance of a uniform distribution on the unit interval (0, 1) is
1/12.

Chi-Square (XZ) Tests

The X 2 test is perhaps the best known of all statistical tests and it
is a basic method which is often used in connection with many other
tests. To apply this test we divide the range (0 to 1) of the N samples .
into r classes and determine the number of samples, Vi’ which fall
into each class. From the assumed theoretical distribution we

compute p., the probability of being in the ith class. Then Np; is the

2
expected number in the ith class and a statistic X is defined as

XZ - .1‘ (Vi = NPi)z
i=1 Npi
and represents a measure of dispersion between the data and the
assumed distribution. A comparison can then be made with the
computed value of)(2 and a known value of X2 such that if the
calculated value is larger than the known value from a table a very
small probability can be attached to the conclusion that the observed
observations were actually drawn from the assumed distribution.
Also, if we have k-independent sets of N observations we can perform

2
similar tests on the k calculated values of X .

- 20 -

The selection of class width is somewhat arbitrary. Generally speaking
class width should be chosen so that all Npi are at least 5 and probably
should be nearer to at least 10. The lengths of the class intervals

need not all be the same but except for the endpoints of some distri-
butions where larger class widths are needed to satisfy the requirement
of Npi> 5, ‘there is not much to be gained by unequal interval sizes.

Mann and Wald (10) suggest using k intervals where

k=47% 2m-1)>%/c2
and c is related to the size of the critical region (the probability
associated with the critical region under the null hypothesis or signi-
ficance level). Some values of c for different significance levels are

shown below in Table II-1.

TABLE Ii-1
Mann-Wald Values of ¢ for Some
Significance Levels

Significance Level c
.001 3,09
.01 2,327
. 025 1. 960
.05 1. 645
.10 1,282
.15 1.037

.20 . 842

—21_

Another consideration might lead to a different number of classes.

For example, if many times in the simulation model using the
pseudo-random number generator under scrutiny a choice is made
between n equally likely alternatives it might be expeditious to

choose k = n. As Gorenstein (4) points out, in the final analysis it is up
to the user to design tests to suit the needs of his simulation, There

can be no general method that will guarantee good results,

The Kolmogorov-Smirnov Test

The Xz test applies to the situation where observations fall or are
arbitrarily placed in a finite number of categories. It is commonplace
however to consider random quantities which may assume infinitely
many values, e.g., random variables on the (0, 1) interval, and for
some reason be unwilling to set up arbitrary classes. By examining
the cumulative distribution function we can eliminate the need of setting

up arbitrary class sizes and use the Kolmogorov-Smirnov Test (K-S test).

The cumulative distribution function, denoted F(X), where

F(X) = Pr {x<X}
indicates the érobability that a random variable x is less than or
equal to some given value X. In the case of a uniformly distributed
variable on the unit interval (0, 1), Pr{x<X} = X. For example

Pr{x<2/3} = 2/3. If we made N independent observations or

- 22 -

samplings of the random variable x, obtaining the values x,, x_, ... x
1" 72 N

we can form the empirical cumulative distribution function

number of x, < X
N L

&S

As Nincreases FN(X) should be a better and better approximation of

F(X).

The K-S test may be used when F(X) has no jumps. It measures the
concordance between F(X) and FN(X). A poor random number generator
will yield an empirical distribution function which will not approximate

F(X) very well,

To apply the K-S test to the unit interval (0, 1) where we have a sequence

of N random observations we form the following two statistics:

+
Ky VN Max (F(X) - F(X))

0O<x<l I1-6

KN = /N Max (F(X) - FN(X)).

O0<x <1

Here KN measures the greatest amount of deviation when FN is
greater than F, and KI:I represents the maximum amount deviation

when FN is less than F.

-23 -

2 -
As in the X -test, we may now look up critical values of K;I s KN
in a table to determine if they are significantly high or low and thus
decide if our sampled distribution does, in fact, resemble the hypothesized

distribution.

Although the Kolmogorov-Smirnov test is a more statistically accurate
test than the X 2-test, there are a number of disadvantages associated
with it., Some of the main disadvantages are 1) all N observations must
be available during the test 2) the observations, although obtained in a
random order, must be sorted in ascending order and 3) there are a
considerably greater number of calculations involved in the K-S test

as compared to the Xz-test.

Runs Tests

The expected random oscillatory nature of sequences of pseudo-random
numbers can be tested by '"runs tests'. Two standard types of runs tests

are runs up and down and runs above and below the mean.

Runs up and down - Let Xys Koy o xN be a sequence of N unequal
numbers. Consider a sequence of N-1 signs, a., where a; is the sign
of Xip17%;e A sequence of p consecutive plus signs not immediately
followed or preceded by a plus sign is called a "run up of length p''.

An analocgous sequence of minus signs is called a "run down of length p''.

For example the sequence
1519151312182 4911
gives ++ - - - 4+ -+ + 4

which has a run up of 2 followed by a run down of 3, up of 1, down of 1, and

- 24 -

up of 3.
If we let
r = number of runs in the sequence
rp = number of runs of length p in the sequence
rp+ = number of runs of length p or more in sequence
then
E(r) =1/3 (2N-1); Var (r) = (16N-29)/90, (II-7)
E(r,) = 2N(p 43p+1)-2(p +3p2-P-4) /(p+3)!
for p<N -2, (11-8)
E(rp+)= 2N(p+l) - 2(pZ4p-1) /(p+2)! for p<N-1 (II-9)
and

r-E(r)

/‘ifar_(r) (II-10)
is asymptotically normally distributed as N- © with mean 0 and variance 1.
We, therefore, can easily test the hypothesis Ho:r=E(r) by calculating
(II-10) and comparing it to the value in the appropriate table of the
normal distribution. Likewise, the X goodness of fit test may be used
to check whether a pseudo-random number generator is acceptable based
on the distribution of length of runs. A common characteristic of nonrandom

sequences of numbers is an excess of long runs.

Runs above and below mean - The expected number of runs above and

below the mean is

(m)

v |2

E(r') = + 1 (LI-11)

- 25 -

where r(m)

is the number of runs above and below the mean. These
runs are counted by constructing a sequence of N signs with the plus
or minus depending on whether X is greater or less than the mean of
i
the distribution (1/2 in our case). The expected total number of runs
) -k-1 2
of length p is (N-p+3)2 . A X -test may be used to check whether

a given pseudo-random number generator is acceptable.

Serial Tests

1) Pairs Test
For a locally random series no number shall tend to be followed by
any other number. If we, therefore, construct a table with the rows
representing a frequency distribution of the first number of a pair
of uniform random values and the columns representing a frequency
distribution of the second number of the pair we would expect the
frequencies to be approximately equal in all cells after N pairs had
been examined., To test this hypothesis we could apply the XZ test
to these cells of the table with the theoretical or expected number
of observations in each cell equal to N/number of cells. Clearly
it would be possible to extend this test to triples, quadruples, etc.;
however, the size of the table increases rapidly and to insure an
expected theoretical value of at least five or ten the total number of
observations needed begins to get quite large. Also, the calculations

2
required to compute X Dbegin to use substantial computer time.

It would be appropriate to note here that it would be a mistake to

perform the serial test on the pairs (xl,.xz), (xz,x3) ‘e (XZN-I’ XZN)

-26 -

because the chi-square test requires independence of the observations.
Rather, for this particular test we should use the pairs (xl, xz),
(x3, x4) ces (XZN-I’XZN) which yields approximately half as many

observations as the incorrect former method.

Autocorrelation

The autocorrelation function is a measure which is widely used
in the study of stochastic processes. If we let X, i=1, 2, ...
be a sequence from the unit interval (0, 1), then we may define
the autocorrelation function of a sample of length N from this
sequence as
N-t
R(t) = 1/12 E.l (%; - 1/2) (x;,, - 1/2) (1I-12)

where t is commonly referred to as the length of the lag and R(t)

as the autocorrelation at lag t.

The correlation coefficient always lies between -1 and +1. When it
is zero or mear zero, it indicates that the sequences {Xi} and {xi+t}
are (statistically speaking) independent of each other. When the
correlation coefficient is near 1 (it indicates a high degree of linear
dependence between the two sequences., A value of 11 would indicate
total dependence and, in fact,

xi+t = axl +b

for some constants and and b,

A satisfactory random sequence would have autocorrelations near zero

for all lags tested.

-27-

F. GaE Test

All of the preceding tests have been conceived for randomness of
numbers where each number consisted of some fixed or finite number
of digits, The gap test for digits is concerned with the randomness
of the digits in a sequence of numbers. For any given digit d, we can
examine the lengths of the gaps of '""non-d' digits between any two
"d-digits''. In other words, a gap of length k occurs when k '"non-d"
digits occur between two '"d-digits', Two consecutive d's produce a

zero gap.

The theoretical probability of obtaining a gap of length k is

Pr {gap =k} = (. 9)k (. 1) (I1-13)
For a given sequence of digits, tallies are made of the number of
gaps occurring for each length, A chi-square goodness of fit test

can be used to compare expected and theoretical number of gaps.

A second type of gap test does not examine digits but examines the
aFmal random number. In this case, a gaﬁ is the number of consecutive
observations in the sequence that do not fall between a specified a and b.
Generally, a tally is kept as to gaps of lengths 0, 1, 2 ..., t-1, and the

number of gaps of length t or greater,

In the case of examining pseudo-random numbers between zero and one,

we would have the following relationship

05_a{b_<_1

and the following probabilities associated with the gap lengths

Pr {gap =0} = b-a

Pr {gap =1} = (b-a) (1-(b-a))
Pr {gap =2} = (b-a) (1-(b-a))2
Pr {gap =t-1} = (b-a) (1-(b-2))"
Pr {gap2=t} = (l-(b-a))"

Chi-square tests can also be applied here as in the digit gap test.

G. Maximum Test

For a set of N independent uniform random numbers, Xis Xy vee X

2 N
in the unit interval (0, 1), we can define a random variable
W = Max (xl, Koy ees xN) and the distribution of W is given by
N
F(W)= max(x., X5, «¢.X . II-14
(W) (%0 %,) (II-14)

Since Pr {W<a} = F(a) = aN for 0< a<l, F (w) as defined in (II- 14)
is distributed over the unit interval with a cumulative distribution function

N
F(W{w) =W . By sampling several sets of N independent random

2 .
numbers we can use the X -test on the distribution of W,

-

H. Minimum Test

This test is the same as the maximum test of N except that the minimum
of (xl, Koy vas xN) are taken and the corresponding distribution function

used,

At this point it might be wise to close by answering the question as to

why are so many tests necessary. It seems like more time is spent

testing the numbers than in using them. This is probably not true but the
importance of knowing the shortcomings of a particular random number
generator cannot be understated. This is because the simulation, risk
analysis or other models using the particular random number generator

are highly dependent on the accuracy and unbiasedness of the generator for
their value as viable tools. If confidence cannot be established in the random
number generator of these models, there is little likelihood of people
believing in the models that employ these generators. With confidence
established in the random number generator the question of confidence in

the actual model is at least reduced to the assumptions and relationships

developed therein.

- 30 -

CHAPTER 3

A PROGRAM TO EVALUATE
UNIFORM RANDOM NUMBER GENERATORS

A, Introduction

The computer program described in this section performs eight
standard statistical tests on a vector of random numbers. The vector
can be input to the program or the subroutine which generates the
vector can be linked to the main program and the random numbers
‘ generated at execution time. The eight tests available are:
1, Gap test
2. Runs test
3. Pairs test
4, Chi-square test
5. Moments
6. Runs above/below mean
7. Awutocorrelations
8. Kolmogorov-Smirnov test,
The program is written in FORTRAN IV and was compiled using the
IBM FORTRAN G compiler on a System 360 Model 65, The program
runs in approximately 120 K bytes of core and uses a temporary disk
file to store the vector of random values, The maximum length of this
vector is essentially unlimited as the program reads the random numbers

into core from the temporary file in blocks of 10, 000.

- 31 -

B. System Control Cards

The user documentation contained herein assumes that the program is
available in a load module form, i.e. it has been compiled and link
edited, To execute the program, therefore, the function RAN need only
be compiled and linked to the main program. Although RAN will be
called only if the user specifies that random numbers will be generated
during execution, its module must always exist, therefore the load
module contains a dummy function RAN. This function is as follows:

FUNCTION RAN (NX)

RAN =0.0
RETURN
END

If the user is to read his random vector from an already created file
the above dummy function will allow the load module to execute, If the
user wishes to generate his vector of random values during execution
he must compile his random number generator as a function named
RAN (NSEED) and link edit this function into the load module in place of
the existent dummy function. The mechanics of this procedure will of
course vary from computer to computer. For an IBM/360 computer
with the program load module located in an accessible library the
following sequence of instructions will suffice. FORTGCLG is a
catalogued procedure to execute a FORTRAN compile, link edit and go.
It is comprised of three steps - FORT, LKED, and GO. TABLEIII. 1

shows this procedure.

- 32 -

TABLE III. 1

FORTGCLG - A Procedure to Execute FORTRAN
Compile, Link Edit and Go

*xx PROCEDURE FORTGCLG *%xx *%% PROCEDURE FORTGCLG k%
//FURTGCLG FPROC FORMS='A,,0001',CPRM=SOURCE yLPRM=LI ST, ,

// LIBR='UTCC.DUMMYLIB®

[/ %xx%% FORTRAN G COMPILE LINK EDIT AND GO * Ak

//FQRT EXEC PGM=ITEYFORT,REGION=104K, TIME=10,PARM=*LCPRM?

//75YSPRINT DC SYSOUT={&FORMS) +DCB=(LRECL=120,BLKSIZE=3120,RECFM=FBSA),
// SPACE=(32120,(40,40))

//5YSLIN DD DSN=L&LOADSET,SPACE=(3120,(12,+12)),DC8=BLKSIZE=3120,

// UNIT=SYSCA,CISP=(MODyPASS,DELETE)

//7SYSIN DD DSN=&E&SOURCE,DISP={0OLD,DELETE,DELETE)

//LKED EXEC PGM=1EWLFB8B80,+REGION=114K4CCND=(4,LT,FORT},

// TIME=2,PARM=Y XREF¢yLISTyLET, ELPRM,SIZE={114K,24K)?

//7S5YSPRINT DC SYSOUT=(&FORMS) ,DCB=BLKSIZE=6C5,SPACE={605,(17,34))
//SYSLIN DD DSN=LLLCADSET,DISP={0OLD,DELETE,DELETE)

// DL DDNAME=SYSIN

//75YSLMUD DD UNIT=SYSDA,DSN=&L&LGUODATA(RUN) +DISP={[,PASS, DELETE)'

/7 SPACE=(TRK,(19,10,1))

//75YSLIB DC DSNAME=SYS1.FORTLIB,DISP=SHR

1/ DO DSN=&L IBR+DI SP=SHR
// DD DSNAME=TEHQ.LOAOLIB,DISP=SHR
/7 DD DSN=SYS1.GULFMOD,DISP=SHR

//SYS5SUT1 0D UNIT=SYSDA,SPACE={TRK,{19,10})

//GO EXEC PGM=*_, LKED.SYSLMOD+COND={{4,LT+FORT) ,(4,LT,LKED))
//75YSUDUMP LD SYSOUT=(&FORMS) 4 SPACE= (TRK1(1a19))
//FTG5F001 DL DDNAME=SYSIN

//FTO6FQ0L DD SYSOUT=(LFORMS) o SPACE=({TRK,(1,19)),

// DCB=(RECFM=VBA,LRECL=137,BLKSIZE=1100)

//FTO7FO01 DD SYSOUT=8,SPACE=(TRK,{1,19)),

// OCB=(RECFM=FB,LRECL=80,8LKSIZE=800)

- 33 .

ccl 7
// EXEC FORTGCLG, REGION. GO=120K, LIBR='libr'
//FORT.SYSIN DD *
FUNCTION RAN (NSEED)
FORTRAN Source
code for function RAN
RETURN
END
/*
//LKED,SYSIN DD *
INCLUDE SYSLIB (progname)
ENTRY MAIN
/*
//GO,FT02F001 DD UNIT=SYSDA,SPACE=(TRK, (50, 10)), DISP=NEW,
.// DCB=(RECFM=FB, LRECL=160, BLKSIZE=3200)
//GO,SYSIN DD *
Program control
. cards
/%
where in the above deck listing:
libr denotes the library where the program load module
can be found,
progname denotes the name of the program.
In the Gulf Houston Datacenter, libr would be MSDC, LOADLIB and progname

would be MSH@0074.

- 34 -

To run the Uniform Random Number Evaluation PArogram where the vector
of random numbers is already on a file the following sequence of cards
would be used. Once again we assume the program resides on an accessible
library.
ccl 6
/1] EXEC PGM=progname, REGION=120K
//STEPLIB DD DSN=libr, DISP=SHR
//FTnnF001 DD UNIT=SYSDA, DSN=filename, DISP=0OLD
//FT06F001 DD SYSOUT=A
//FT05F001 DD *
Program control
cards
/%
where in the above deck listing
progname denotes the name of the program
libr denotes the library where the program
load module can be found
nn denotes the unit number of the file where
the vector of random numbers is located
filename denotes the name given to this file

C. Program Control Cards

The program will evaluate, sequentially, an unlimited number of
pseudo-random numbers. Each vector to be analyzed requires a single

header card and then, depending on which tests are to be performed and

- 35 -

-

whether or not the pseudo-random numbers have already been generated,
a variable number of additional control cards.

1. Header Card

This card specifies the length of the vector to be analyzed,
provides a seed if the pseudo-random numbers are to be
generated during execution or the file number where the
previously generated vector resides, specifies which tests
are to be executed, and provides the user the option to print
the vector of pseudo-random numbers, The format for the

header card is as follows:

Card Column Label Description
1-10 (right justified) NT Number of random values in the vector

if it is located on an already existing
file or the number of values to be
generated during execution using the
supplied function RAN.

11-20 NSEED Initial seed for random number
generator if vector is to be generated
during execution. May be left blank

if vector already exists on a file,

21-22 IND(1) Number of gap tests to be performed
max=10
24 IND(2) =0 do not perform runs test

=1 perform runs test

- 36 -

26 IND(3) =0 do not perform pairs test
=1 perform pairs test
28 IND(4) =0 do not perform chi-square test
=1 perform chi-square test
30 IND(5) =0 do not calculate moments
=1 calculate moments
32 IND(6) =0 do not perform runs above/below
mean test
=1 perform runs above/below mean test
34 IND(7) =0 do not calculate autocorrelations
=1 calculate autocorrelations
36 IND(8) =0 do not perform Kolmogorov-
Smirnov test
=1 perform Kolmogorov-Smirnov test
37-40 not presently used
41-42 IFILE Unit number of file where previously
generated vector of pseudo-random
numbers resides. Should be 0 or
blank if numbers are to be executed
at run time,
44 NPRNT = 0 do not print pseudo-random vector
= 1 print pseudo-random vector
45-80 TITLE(l)- A user-supplied title which will be

TITLE(9) printed on the first page of output

- 37 -

2. Variable Format Card

The variable format card is only read if the vector of pseudo-
random numbers is to be read from an existing data file., If
such is the case, this card is the FORTRAN FORMAT state-
ment, without the statement number and word FORMAT that

was used to write the previously generated vector to its data

file. For example, if the file generated contains 50,000 random

numbers in records of lengthIZO the statement that wrote these
to the data file might have been
cc3 7 21
900 FORMAT(20F10.5)
In this instance, the variable format card would be
ccl 9
(20F'10. 5)
No card should be inserted in this position if the pseudo-random
vector is generated at execution time,

3, Test Parameter Cards

Certain of the statistical tests available require a control card

to provide user specified parameters needed for the test. These

tests are
a) the gap test
b) the pairs test

c) the chi-square test

- 38 -

Each time one of these tests is to be performed its parameter
card is read. For the tests specified in the header card, the
respective parameter cards must therefore be present. The
format of these cards for each of the above tests is as follows:
Gap Test
The gap test performed by the program is the second one
mentioned in Chapter 2, Section F. It tallies the number
of consecutive observations in the sequence that do not
fall between a user specified interval from a to b. The
program has the capability of performing up to 10 simul-
taneous gap tests as indicated by IND(1). This number
of cards (IND(1)) is needed. The format is as follows:

Gap Test Parameter Card

Card Column Label Description
1-5 CA Lower end of gap interval
6-10 CB Higher end of interval
14-15 MXGAP Maximum number of cells to

record gap length; 0,1,2,... MXGAP-1.
MXGAP £ 10
CA must be less than CB. Also, to insure a meaningful chi-square
test on the distribution of gap lengths

MXGAP > 5

NT*(CB-CA)Z(I-(CB—CA))

-39 .

Pairs Test
The pairs test tallies adjacent pairs of pseudo-random
numbers in a two-dimensional frequency table where
the horizontal and vertical axes are divided into a user
specified number of categories, say NCP. Thus there
are NCP2 total cells. The user can specify NCP or the
program will calculate a desirable value u-sing the
Mann-Wald criterion described earlier. In either
instance, however, a Pairs Test Parameter Card must
be present if the Pairs Test has been specified. Its format
is as follows:

Pairs Test Parameter Card

Card Column . Label Description
1-3 NCP Number of cells to appear on

horizontal and vertical axes,

Maximum 50.

=0 program will calculate NCP
using Mann-Wald criterion.

Chi-Square Test

The user must provide the number of cells for the tallying
of the frequency distribution for the Chi-square test. As
with the pairs test mentioned above, if no explicit specifica-
tion is made the program will calculate the number of cells

using the Mann-Wald criterion. The format for the Chi-square

- 40 -

Test Parameter Card is as follows:

Chi-Square Test Parameter Card

Card Column Label Description

1-3 NC Number of cells for tally of
frequency distribution.
Maximum 500.
=0 program will calculate NC

using Mann-Wald criterion.

If the gap test, pairs test or chi-square test is not requested
on the header card by the appropriate IND(i), its corresponding
parameter card must not appear.
D. Qutput
The standard output from the Uniform Random Number Evaluation
includes the following:
1., the number of observations in the vector of pseudo-random
numbers
2. the user supplied seed if the sequence was generated
during execution
3. a listing of the random sequence (optional).
Output for each of the tests available in the program is as follows:
Gap Test
- the user specified gap interval

- the frequency distribution of observed and theoretical gap

lengths from length 0 to MXGAP-1 and over

- 4] -

- the calculated XZ statistic and associated degrees of
freedom
2 .
- the critical X value for 90% and 95% confidence levels

Runs Test

t

the frequency distribution of observed and theoretical run

lengths

2
the calculated X statistic and associated degrees of freedom

2
the critical X value for 90% and 95% confidence levels

- the Z-score for the test of the hypothesis H : r = E(r)
o
Pairs Test

the number of intervals the horizontal and vertical axes have

been divided into

the end points of each interval and the frequency count of

adjacent pairs in each grid

2
the calculated X° value and its associated degrees of freedom

2
the critical X value for the 90% and 95% confidence levels

Chi-Square Test

- for each cell the interval end points, observed and theoretical
frequency counts
- the calculated Xz value and its associated degrees of freedom
- the critical X2 value for the 90% and 95% confidence levels
Moments |
- the calculated and theoretical mean, second moment, third

moment and variance

- 42 -

- the normalized deviate of the observed mean from the
theoretical mean of .5

Runs Above/Below Mean

- the frequency distribution of observed and theoretical run
lengths
- the calculated Xz statistic and its associated degrees of
freedom
- 2 . .
- the critical X wvalue for 90% and 95% confidence intervals

Autocorrelations

- the calculated autocorrelations of the series for all lags up to
the minimum of 50 and NT/10

- the 95% confidence interval for the theoretical autocorrelations
of zero

- the number of observed autocorrelations which fall outside
the 95% limits

Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov test involves sorting the vector of pseudo-
random numbers, Since the vector is handled in blocks of 10, 000,
each block of 10,000 is sorted and the test performed on the
sorted vector of length 10,000, The results are shown for each
block up to twenty, or 200, 000 random numbers and are as follows
- the maximum and minimum (ZP and ZM) deviations of
the observed and theoretical distributions

- the probability of observing a ZP less than the one realized

- the probability of observing a ZM greater than the one realized

- 543 -

E. The Program and Necessary Subroutines

The Uniform Random Number Evaluations Program consists of a main
program and fifteen functions and subroutines. It requires 114 K
bytes of core on an IBM /360 Model 65. A run to generate 50, 000
uniform random numbers and perform all eight tests uses approximately
4 1/2 CPU minutes of which the generation of the random numbers uses
about half of the total time,

The main program acts as a control module among the subroutines.

It performs necessary bookkeeping as well as all input/output. The
subroutines are the modules that perform all the statistical tests and
they are called by the main program and by other subroutines, A list
of the functions and subroutines, their calling sequence and a brief
description are shown below,

GAP2 (called by MAIN) - tallies gap lengths in the random
vector and records results in appropriate table.

CHISQ (called by MAIN, RUNTS) - calculates the chi-square
statistic and degrees of freedom for a pair of observed and
theoretical frequencies.

TALLY (called by MAIN) - tallies vector of observations into a
frequency distribution,

MOMNT (called by MAIN) - calculates mean, variance, second '
and third moments of a vector.

KOLMO (called by MAIN) - sorts vector into ascending order and
finds the maximum and minimum deviations between the

empirical and theoretical distributions.

RUNTL (called by MAIN) - tallies the number of runs up and
down in a vector.

RUNTS (called by MAIN) - computes the theoretical frequencies
of runs up and down and calculates the X2 statistic (using
CHISQ).

PARTL (called by MAIN) - tallies the occurrence of the adjacent
paired coordinates in a vector.

PARTS (called by MAIN) - performs the Pairs Test on the frequency
of pairs tallied in PARTL.

CHSQD (called by MAIN) - calculates the critical chi-square value
for an alpha level and a given degrees of freedom

GAUSD (called by CHSQD) - calculates the deviate associated with
the cumulative probability of a normal distribution.

AUTOC (called by MAIN) - calculates autocorrelations in a vector

| for up to fifty lags.

SMIRN (called by MAIN) - computes the limiting distribution function
of the Kolmogorov-Smirnov statistic,

MWALD (called by MAIN) - computes the optimal number of classes
for a chi-square test according to the Mann~-Wald criterion.

RAN (called by MAIN) - a user supplied function to generate uniform
pseudo-random numbers.

A listing of the entire program and all functions and subroutines is shown in

Appendix A,

CHAPTER 4

EVALUATING SELECTED UNIFORM
RANDOM NUMBER GENERATORS

A. Introduction

In this chapter, the results of applying the subject program to a number
of frequently used uniform pseudo-random number generators are
presented and discussed. Additionally the subject program was run on
"random!' sequences from three intentionally biased generators. A
summary of the output from these tests is presen.ted, along with relevant
remarks., A complete set of the output reports is available upon request.
A sample output report is shown in Appendix B.

B. The Tested Random Number Generators

As previously mentioned, four frequently used uniform pseudo-random
number generators were tested. The four selected and a brief description
'of each is shown below:
1. RAN - A function coded in FORTRAN supplied by Dr. C. E. Donaghey
in the class I. E. 670, Operations Research - Digital Simulation,
Fall 1972, The validity of the generator is supposedly machine
independent. The code for RAN is as follows:
FUNCTION RAN (NSEED)
NSEED = IABS (NSEED * 655393)
RAN = FLOAT (MOD(NSEED, 33554432)) / FLOAT (33554432)
RETURN |

END

2. RANDU - A FORTRAN subroutine presented in the IBM Scientific
Subroutine Package, p. 77. RANDU is used in PETROS, originally
an IBM simulation game of the oil industry, which has since been
substantially modified and improved by Gulf and is periodically
presented to Gulf management as part of an executive training
seminar, The subroutine coding for RANDU is as follows:

SUBROUTINE RANDU (IX, IY, YFL)
IY = IX * 65539
IF (IY) 5,6,6

51Y =1Y + 2147483647 + 1

6 YFL =1Y
YFL = YFL % ,4656613E-9
RETURN
END

In its above form as a subroutine, RANDU, when used in conjunction
with the evaluation program, would have to generate its sequence

of random values externally to the test program. It would be
appropriate to note here that with a few minor changes however,
RANDU could be converted to a function program and the random
sequence generated during execution of the test program. The
converted subroutine (renamed RAN, as required) would be as

follows:

- 47 -

FUNCTION RAN (IX)
1Y = IX * 65539
IF (1Y) 5,6,6
51Y = 1Y + 2147483647 + 1
6 RAN = IY
IX =1Y
RAN = RAN * ,4656613E-9
RETURN
END
3. GGU1L - An assembler language uniform pseudo-random number
generator developed and distributed by IMSL (International
Mathematical and Statistical Libraries, Inc.). GGU! generates
a sequence, {R} of uniformly distributed numbers using a mul-
tiplier and a seed
- where:
Ri+l=A*Ri i=0,1,2...
where:
A is a constant initialized in GGU1,
Ro is the input seed, a floating point number in the
interval (0, 1).
4. GGU2 - An assembler language uniform pseudo-random number
generator developed and distributed by IMSL. GGU2 is similar to
GGU1, except that two multipliers and two seeds are used in the

former whereas GGUI uses a single multiplier and seed. In GGU?2,

- 48 -

each seed-multiplier continuation is used to produce a floating
point deviate., The resulting random deviate is built using the
characteristic (exponent) of one of the original deviates and
"Exclusive OR" ing the two mantissas, securing, in a random
manner that the resultant lies in the interval (0, 1).
Each of the above random number generators was used to generate
random sequences of length 1000, 2500 and 5000. The initial seed(s)
for each of the twelve runs (4 generators, 3 runs each) were selected
from a table of random numbers, All tests available in the program
were executed on each sequence. The results are summarized in

Tables IV. 1 and IV. 2.

Generally speaking, all the generators did fairly well with respect to
these tests. The one or two significant X‘z values for the gap tests is
not abnormal for the 30 tests on each generator as it only represents
about a 5% incidence of failure, Both IMSL routines fared poorly on

the Runs Test, exhibiting an excessive number of runs in the sequence
of length 1000, RANDU revealed a poor distribution of run lengths above

and below the mean for its sequence of length 1G00.

All of the tests were identically specified with respect to the available
user parameters., The Mann-Wald criterion was used for selecting

the number of cells in the Pairs Test and Chi-square Test. The gap
tests evaluated ten gap intervals from (.0, . 1) through (.9, 1.) It would

be advisable for an analyst considering using one of these pseudo-random

TABLE IV. 1
RESULTS OF GAP TESTS

GENERATOR

RAN RANDU GGU1 GGU2

Length of Sequence (M) 1 2,5 5 1 2.5 5 1 2.5 5 1 2.5 5
Gap Interval

(.0 -.1) .6 8.5 5.4 5.6 14, 9% 3.9 2,0 7.1 14,5 4.6 9.6
(.1-.2) 1.7 11.5 4.6 4,0 9.3 3.7 2.7 8.4 8.1 5.8 8.3
(.2 - .3) 3.6 8.7 6.5 3.5 11.3. 6.1 2.1 7.1 10.7 2.1 9.1
(.3 -.4) 3.5 5.5 6.4 3.6 6.6 4.8 .9 16, 5% 5.9 5,2 13.8
(.4 - .5) 4.7 7.4 3.9 . 6 10.0 8.6 4.5 2.0 4,1 8.3% 7.1
(.5 -.6) 2.1 6.7 5.6 3.3 8.2 15, 2% 3.5 10.3 13.6 3.4 5.7
(.6 -.7) 2.3 12,0 6.5 .0 12,5 6.8 9. 0% 8.2 5.6 3.1 9.7
(.7 - .8) 2.4 8.4 11.7 4.9 4.5 7.6 2.1 3.2 13.3 2.6 6.1
(.8-.9 8. 1% 5.7 7.2 5.1 10.5 10. 6 2.6 9.6 8.4 2.1 16, 8%
(.9 -1.0) 3.0 4.3 10.0 5.3 7.4 11.0. 3.7 7.6 13.0 2.8 6.4
Critical X ¢
Alpha = .05 9.49 16.92 '16.92 9.49 16.92 16,92 9.49 16.92 16. 92 9.49 16. 92
Alpha =, 10 7.78 14,68 14, 68 7.78 14,68 14. 68 7. 78 14, 68 14, 68 7.78 14. 68

2
* Significant X value at 90% confidence level

TABLE IV.2

SUMMARY OF STATISTICAL TESTS ON FOUR UNIFORM

PSEUDO-RANDOM NUMBER GENERATORS

GENERATOR

Length of Sequence 1

(M)

Test

1) Runs Test - X 2

Critical values

(<= .05)
(== .10)

2) Runs Test -
Z-score
Critical values

(<= .05)
(== .10)

3) Pairs Test - X 2

Critical values
(e¢=.05)
(<= .10)

4) Chi-Square
Test - X
Critical values

(e¢=.05)
(=<=.10)

RAN RANDU GGU1 GGU2
2.5 5 1 2.5 5 1 2.5 & 1 2.5 35
1.0 - 3.5 1.5 - 6.5 12.8%% . 3.7 8.9 - 4.3
9.5 11.1 9.5 11,1 9.5 11.1 9.5 11.1
7.8 9.2 7.8 9.2 7.8 9.2 7.8 9.2
6 -1.2 .0 .5 -6 1 -1.3 .2 .8 1.5 17 -1.0
1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96
1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65
54.1 94.2 109.2 45.5 91.2 100.1 36.7 91.6 104.6 40.4 80.1 82.7
65.2 101.8 123.2 65.2 101.8 123.2 65.2 101.8 123.2 65.2 10lL.8 123.2
60.9 96.6 117.4 60.9 96.6 117.4 60.9 96.6 117.4 60.9 96.6 117.4
42.7 65.4 115.0 45.5 88.1 73.6 53.3 72.8 98.6 48.4 94.3 130.0
76.8 107.5 137.7 76.8 107.5 137.7 76.8 107.5 137.7 76.8 107.5 137.7
72.2 102.1 131.6 72.2 102.1 131.6 72.2 102.1 131.6 72.2 102.1 131.6

- NG =

TABLE IV.2 (Cont'd)

SUMMARY OF STATISTICAL TESTS ON FOUR UNIFORM
PSEUDO-RANDOM NUMBER GENERATORS

GENERATOR

RAN RANDU GGU1 GGU2
Length of Sequence 1 2.5 5 1 2.5 5 1 2.5 5 1 2.5 5
M)
Test
%) Moments - Z - "
score of mean .7 .6 -.8 -.5 1.24 -.3 1. 19 1.12 .3 .3 -1.8 .2
Critical values
(<= .05) 1.96 1.96 1.96 1.96 1. 96 1.96 1.96 1.96 1.96 1. 96 1.96 1. 96
(=¢=.10) 1.65 1. 65 1. 65 1. 65 1,65 1,65 1. 65 1. 65 1. 65 1.65 1. 65 1.65
6) Runs Above/ 2 "
Below Mean - X 10.4 2.9 5.8 11.8 5.0 9.7 4.1 7.3 6.4 5.1 9.1 4.0
Critical Values
(e<x=.05) 12,6 15.5 16.9 12.6 15.5 16.9 12.6 15.5 16.9 12. 6 15,5 16.9
(ex=,10) 10.7 13. 4 14,7 10.7 13.4 14,7 10.7 13.4 14,7 10.7 13.4 14,7
7) Autocorrelations -
% Outside T 95% ,
limits 8% 2 8™ 2 0 2 6 2 4 12* 6 4
8) Kolmogorov-
Smirnov Test -
Max (Prob (ZP),
Prob (ZM)) .14 .18 .73 .34 LT7 .02 .49 .82 . 07 .32 .88 .24

* statistically significant difference at 90% level
*% statistically significant difference at 95% level

number generators for a specific application, to retest the generator
with the characteristics of that application in mind. Particulars to
consider would be the number and length of gap intervals, the number
of cells in the Chi-square and Pairs Test, the initial seed, NSEED,
and the length of the random vector. These factors would obviously
have a direct bearing on the meaningfulness of the tests in relationship
to the validity of the simulation.

Intentionally Biased Generators

As mentioned above, the evaluation program was also run using three
biased random number generators. The function RAN referred to
earlier in this chapter was modified to produce non-random sequences
of length 5000. The three biased generators can be characterized as
follows:
1. Correlated random numbers - each generated pseudo-random
‘ number in the sequence was correlated with the previously .
generated number using the relationship
xi+1=.3xi + .7 RAN (NSEED) i=1,2,... 4999
where
RAN (NSEED) is the call to the function RAN described
in Section B of this chapter.
2. Gap between .8 and .85 - random values were generated by RAN
with all values in the interval (. 8, .85) ignored. The resultant

vector thus consisted of 5000 values of which none were in the

mentioned interwval.

3. Periodicity length of 1000 - RAN was used to generate 1000
pseudo-random values. This sequence was then replicated four
times and appended to itself to yield a vector of 5000 pseudo-

random values having a periodicity or cycle length of 1000.

The summarized results of these three tests are shown in Table IV. 3.

Critical values are not shown in this Table, but are identical to the

critical values shown in Table IV. 2 for the sequences of length 5000.

The program does quite well in the detection of the aberrated pseudo-
random number generators. The correlated random number generator
shows significant differences in all tests, except the Moments Test

Z - score for the mean. However, although not shown in Table IV. 3,
the variance and second and third moments of this sequence are showing
substantial difference from their respective expected values. With 8% of
the autocorrelations significant, it is also interesting to note the value
of the autocorrelation for the first lag is .296. The values for lags two
and three are . 098 and . 019 which exhibit the pattern of autocorrelations
_from an autoregressive time series. The ""gapped' generator shows its
aberrations exceptionally well in the Pairs Test and Chi-square Test,
The gap in the interval (.8, . 85) lowers the mean significantly and also
causes suspicious results in the Runs Above/Below the Mean and the
Kolmogorov-Smirnov Tests. The cycled generator shows significant

X2 values in all Gap Tests, the Runs Test, Pairs Test, Chi-square Test

and Runs Above/Below the Mean, It also shows statistical significance

TABLE IV, 3

RESULTS OF TESTS ON BIASED GENERATORS

GENERATOR
Correlated Gap at (.8, .85) Cycle length 1000
g 2
1) % significant X values for maximum
of 10 Gap Tests (e = .05) 100% 10% 100%
(<= .10) 100% 30% 100%
2) Runs Test - X 2 118, 9k 2.9 25, 4%
3) Runs Test - Z - score -8, 6%% -1.0 1.4
2
4) Pairs Test - X 1939, 23k 234, Tx% 570, ** .
n
5) Chi-Square Test - X 2 1531, 8%* 341, 7%% 626, 3%k ':;
6) Moments - Z - score of mean .50 -4, 96%% 1. 34
7) Runs Above/Below Mean - X 2 134, 2%% 24, 1% 48, 9%*
8) Autocorrelations - % outside T 959 limits g 14% 28%%
9) KOMOgorOV-SmirnOV Test - Max (PrOb (ZP), 1. 00%% 1, Q0% . 99%%
Prob (ZM))
* statistically significant difference at 90% level
*% statistically significant difference at 95% level

- 65 -

with the high proportion of non-zero autocorrelations and a very small
K-S probability of actually representing its supposed theoretical dis-
tribution.

Conclusions

The subject program to evaluate uniform pseudo-random number gen-
erators provides a consistent yet flexible tool for the analysis of
computer generated random sequences, Additional areas of study re-
lating to and expanding upon the work done to this point could prove

to be interesting and informative,

The program might be used to evaluate additional uniform random number
generators that are frequently used. This could be done as a general
comparative test, similar to the ones described in this paper, or as a

specific test with a particular application of the random number generator

in mind and the tests parameters selected for that one application.

A study to determine the sensitivity of the progra.m and define its discrim-
inatory ability with regard to valid and invalid generators would be useful.
This study could proceed by sequentially altering a valid pseudo-random
number generator with more subtle aberrations until the program was

no longer able to distinguish the biased generator from the presp.rnably
unbiased one. The various tests included in the program could be ranked
according to their ability t'o detect defective gene:'rators and which tests

are most likely to detect certain common deficiencies (e. g. autocorrelation,

cycling, subtle patterns in the generated sequence).

- 56 -

The area of pefiodicity is one in which additional study might prove to
be especially revealing. The theory presented in Chapter 1 detailing
the relationships between multipliers, seeds and various congruential
methods could be taken further, using the subject program as a means
of evaluating possible alternatives. Along the lines of the cycling gen-
erator presented earlier in this chapter, the ratio of cycle length to
length of the evaluated sequence might be varied to determine at what

point cycling becomes apparent.

All of the above areas of additional study propose use of the subject
program as it now exists, There are of course, a number of possible
enhancements to the program which might also be considered. There

are a number of additional tests which could be included in the program
such as the maximum test, minimum test, poker test, triplets test and
distance test. An option for the user to code his own test (called UTEST,
for example) and link edit the code to the main program in a manner like
RAN is now handled would be a valuable feature and would give the program

virtually total flexibility.

10.

11.

12,

- 57 -
BIBLIOGRAPHY
Coveyou, R. R. and Macpherson, R. D. 'Fourier Analysis of

Uniform Random Number Generators'', Journal of the ACM, Vol. 14,
No. 1 (Jan. 1967), pp. 100-119.

Cunningham, S. W. "From Normal Integral to Deviate', Applied

Statistics, Vol. 18, Royal Statistical Society, 1969, pp. 290-293.

Goldstein, Richard B. ''Chi-square Quantiles'', Comm. of the ACM,
Vol. 16, No. 8 (Aug. 1973), pp. 483-485.

Gorenstein, Samuel, ""Testing a Random Number Generator', Comm.

of the ACM, Vol. 10, No. 2 (Feb. 1967), pp. 111-118,

Hastings, Cecil, Jr. Approximations for Digital Computers, Princeton
University Press, Princeton, N, J., 1957, p. 192.

IBM Corporation. System/360 Scientific Subroutine Package
(360A-CM-03X) Version III Programmer's Manual, H20-0205-3,
IBM Technical Publications Department, White Plains, N. Y., 1968.

Kendall, M. G. and Babington-Smith, B. '"Randomness and Random
Sampling Numbers', Journal of the Royal Statistical Society,
Vol. 101 (1938), pp. 147-166.

Kendall, M. G. and Babington-Smith, B. ''Second Paper 6n Random
Sampling Numbers', Supplement to the Journal of the Royal Statistical
Society, Vol. 6 (1939), pp. 51-61.

Knuth, Donald E. The Art of Computer Programming, Addison-Wesley,
Reading, Mass., 1969.

Levene, H. and Wolfowitz, J. '"'The Covariance Matrix of Runs Up
and Down'', Ann. Math, Stat., Vol. 17 (1944), pp. 58-69.

MacLaren, M. Donald and Marsaglia, G. !'Uniform Random Number
Generators'!, Journal of the ACM, Vol. 12, No. 1 (Jan. 1965), pp. 83-89,

Mann, H. B. and Wald, A. '"On the Choice of the Number of Class
Intervals in the Application of the Chi-square Test'", Ann. Math, Stat.,
Vol. 13 (1942), pp. 306-317,

13,

14,

15,

16.

17.

18.

- 58 -

Marsaglia, G. !'"Random Numbers Fall Mainly in the Planes',
Procedures of the National Academy of Science, Vol, 60 (Sept. 1968),

Pp. 25-28,

Marsaglia, G. and Bray, T. A. '"One Line Random Number Generators
and Their Use in Combinations!, Comm, of the ACM, Vol. 11, No. 11
(Nov. 1968), pp. 757-759.

Naylor, Thomas H. Computer Simulation Experiments with Models of
Economic Systems, John Wiley & Sons, Inc., New York, 1971.

Olmstead, P. S. '"Distribution of Sample Arrangements for Runs Up
and Down'!, Ann, Math, Stat., Vol. 17 (1946), pp. 24-33,

Tippett, L. H. C. '"Random Sampling Numbers', Tracts for Computers,
Vol. 15 (1927), Cambridge University Press.

Westlake, W. J. "A Uniformm Random Number Generator Based on the
Combination of Two Congruential Generators', Journal of the ACM,
Vol. 14, No. 2 (April 1967), pp. 337-340.

- 59 -

APPENDIX A

Source Code for the Program

- 60 -

RAN IV G LEVEL 21 MAIN DATE = 74160 11707,

~N W, g

~NrVMAUNRO Yo o

MDD DD

MW :OoOovw-o

c

(alaleNsEoNalalaXalaXalaNaXa e e NeN e

OO

9

900

9001

9002

S009
co91
9003
9004
9005
9006
9007
G008

DATA SET MSHOAEVRAN AT LEVEL 03° AS OF 06/09/74
DIMENSION X{10000)KOUNT(10),CELLS(500),EXPCT(500),ANS(4)
DIMENSICN A{50,50)sIND(10),IFOMT(20)

DIMENSION CELLG(10)RUNS(8)

DIMENSION KNTMN(10)4yAC(50)4+ZP(20)4ZM(20)
DIMENSION CELGP(10,10),CAG(10),CBG(10)4MEG(10)
DIMENSION KNTSV(10)},TITLE(9)

DATA IFOMT /' (20F'4%8,5)%,18*" L4

WHICH TESTS ARE TO BE PERFORMED ARE SPECIFIED
BY IND(I) = 0 OR 1 WHERE

I =1 GAP TEST

I-= RUNS TEST

I = 3 PAIRS TEST

I = & CHI-SCUARE TEST

I = 5 MOMENTS

I = 6 RUNS ABOVE/GELOW MEAN (GAP TEST ON (04.5))
I = 7 AUTOCCRRELATICNS

I = 4y KOLMOGOROV -~ SMIRNOV TEST

IFILE

UNIT NUMBER OF DATA SET WHERE RANDOM VALUES
ARE LOCATED

0 FOR NUMBERS TO BE GENERATED BY USER
SUPPLIED FUNCTICN RAN

READ(54900,END=89000) NT,NSEED,IND,IFILE,NPRNT,TITLE
FORMAT(211041212,9A4%)

SET SYSTEM LIMITS

MAXRN=10000

KIN=5

KQUT=6

MYCLS=£00

MAXA=50

MAXKN=10

WRITE(KCUT,9001) TITLESNT,NSEFED
FCRMAT(*1RANDCM NUMBER EVALUATION?® ,SX,9A4///" NT =%,110/" NSEE
1 =%,110)

WRITF(KOUT,2002)

FCRMAT(////7/7% TESTS REQUESTED?')

IF (IND{1) .GE. 1) WRITE(KOUT,°2003) IND(1)
IFCIND(2) .EQ. 1) WRITE(KOUT,9C04)
IFCINC(3) .EOQ. 1) WRITE(KCUT,9005)
IF(IND(4) oEQ. 1) WRITE(KOUT,9006)
IF(IND(S5) .FGe 1) WRITE(KOUT,9007)
IF(IND(E) <EQ. 1) WRITE(KOUT,9009)
IF(IND(7) JEQ. 1) WRITE(KCUT,90091)
IFCIND(8) +EO0. 1) WRITE(KCUT,9008)
FORMAT(? RUNS ABOVE/SELOW MEANT')
FORMAT(® AUTOCORRELATIONS)

FOPMAT(? GAP TESTS -~ ',12)

FORMAT(?® RUNS TEST?®)

FORMAT(? PAIRS TEST®*)

FCRMAT(? CHI - SQUARE TEST®*)

FORMAT(? MCMENTS®)

FORMAT(KCLMOGOROV ~ SMIRNOV TEST'Y)

WILL ALL RANDOM NUMBERS FIT IN CORE?

RAN IV G LEVEL

c
c
1.y
' C
C
(o
o
c
c
-
8
Q
0
1
2 10
3
4
S 20
6 9010
7 40
8
Q 45
0 901
1
2 902
3 50
c
o
.' o
5
5
7
3
7
C
c
C
) 60
]
4
3
3 61
> 903
3
65
S04
905
70

- Vil -

21 MAIN DATE = 74160
ESTABLISH NUMBER OF ITERATIONS NECESSARY

NITER= (NT-1)/ MAXRN + 1

IS DATA GENERATED BY RAN, IF SO PLACE
ON UNIT 2, PRINT DATA IF REQUESTED

IEND=MAXRN

CO 50 I=1,NITER"

IF(I .EQ. NITER) TIEND= NT- (I-1) * MAXRN
IF(IFILE .NE. 0) GO TO 20

DO 10 J=1,1END

X{J)=RAN(NSEED)

WRITE(2 SIFOMT) (X(J)eJ=1,TEND) A
GC TO 40 '
IF(I .EQ.1) READ(KIN,9010) IFOMT
FORMAT(20A4)

IF(NPRNT .EC. 0) GO TO 50

IF(IFILE .GY. O) READ(IFILE,IFOMT,END=45) X
IF(T1.EQe 1) WRITE(KQUT,S01) NT
FORMAT(1H1,110," RANDOM VALUES?}
WRITE(XKOUT,902) (X{K)4K=1,IEND)
FORMAT(1Xs15F8,5)

CONTINUE

BEGIN TESTS

IF(IFILE .EQ.O0) IFILE=2

REWIND IFILE

N=MAXRN

DO 1000 I=1,NITER

IF(I JEQ.NITER) N=NT-{I-1)*MAXRN
READ(IFILE,IFOMT) (X(K),K=1,N)

GAP TEST

IF(IND(1) .LE. O) GO TO 100

IF(T.GT. 1) GO TO 65

NGT=IND(1)

DC 61 J=1,NGT

READ(KIN$903) CAG(J),CBG(J),MBG(J)
FORMAT(2F5.,0,15)

DO &3 K1=1,10

DO 63 K2=1,10

CELGP(K1,K2)=0,

D0 90 KK=1,NGT

CA=CAG(KK)

CB=CRG(KK}

MXGAP=MBG (KK

IF(CA .LT. CB) GO TO 70
WRITE(KOUT,904)

FORMAT(®*1GAP TEST',/' * * % INPUT ERROR * % %¢)
WRITE(KOUT,905) CA,LCB

FORMAT(* CA +GT.CB'//*' CA =',F8.5,' CB =1,F8,.5)
IND(1)=-1

GO TO 100

IF (MXGAP .LE. 10) GO YO 80
WRITE(KOUT,904)

11707,

- e -

TRAN IV G LEVEL 21 MAIN DATE = 74160 11707

82 WRITE (KQUT ,906)

83 906 FORMAT(® MXGAP .GT. 10 —==SET TO 10%)

JA MXCAP=10

80 DO 82 K=1,MXGAP

86 82 KOUNT(K)=0

87 CALL GAP2(N KOUNT4MXGAP 3XoCAsCBoI4KNTSVIKK))

88 DO 83 K=1,MXGAP

) 83 CELGP (KK ¢K)=CELGP (KK K)+KOUNT(K)

50 IF(I.NE. NITER) GO TO 90

91 XT0T=0.

92 DO 84 K=1,MXGAP

93 XTOT=XTOT+CELGP (KK ,K)

94 84 CELLGIK)I=CELGP (KK ,K)

95 WRITE(KOUT,9061) CA,CB

96 9061 FORMAT('IGAP TEST'//' GAP INTERVAL =(?oFTeby"y?sFTebyot)?)

97 WRITE (KCUT,90621

98 9062 FORMAT(//5Xys'GAP LENGTH® ,7X,'OBSERVED?,4X, *THEORETICAL®)

09 CBA=CB-CA

00 PROR=CBA

01 TP=0.

02 DO 87 K=1,MXCAP

03 Kl=K-1

04 IF({ K.LT. MXGAP) GO TO 85

05 PROB=1.-TP

06 85 TP=TP+PROB

07 EXPCT(K)Y=XTOT%PRO8

08 WRITE(KOUT,9063) K14CELLG(K}EXPCT(K)

09 9063 FORMAT{I15,F15.0,F15.3)

p) IF(K.EQ.MXGAP) WRITE(KOUT, ©064)

1 9064 FORMAT(T+ ,T16,%41)

12 PROB=PROB*(1.-CEA)

13 87 CCONTINUE

14 WRITE(KCUT,2065) XTOY

15 9065 FORMAT(10Xs*TOTAL®yF15.0)

16 CALL CHISO(CELLGEXPCTyMXGCAP4CS,1DF)

17 CVO5=CHSOD(.05, IDF)

18 CV10=CHSOD(+10,IDF)

19 WRITE(KCUT,90£66) IDF,CS

20 WRITE(KOUT 9067) CVO5,LV10

21 9066 FORMAT(//% CHI — SQUARE(*,14,% DF) =%,FG.2)

22 9067 FORMAT(//' CRITICAL VALUE (ALPHA=.05) =',F9,2,
1 /% CRITICAL VALUE (ALPHA=,10) =',F9,2)

23 IF(IDF Q. 0) WRITE(KOUT,9068)

24 9068 FORMAT(///' * % % % NO CHI - SQUARE TEST CALCULATED % * =% %x°
1 /' ONE EXPECTED CFLL COUNT .LT. 1 OR THREE EXPECTED COUNTS .LT.
2¢)

25 90 CONTINUE

c
c RUNS TEST
c

26 100 IF({IND(2) .EQ. O) GO TO 200

27 IF{ I .GT. 1) GO TO 110

28 NVAL=4

ig IFt NT .GT. 500) NVAL=S

IF{ NT .GT. 1000) NVAL=6

31 IF(NT .CT. 25000) NVAL=7

32 110 CALL RUNTL (X NsRUNS,TI+NVAL)

33 IF{I .NE. NITER) GO TO 200

34 CALL RUNTS (RUNS,NTEXPCT,CS,IDFyNVAL)

3% WRITE(KOUT 9071}

RAN IV G LEVEL

6

NMPUNFHOORINONDWNEOWO®D

M OOVO~NOOMPUWNFROOIBRNIITINPUWUNMMOOSINOITUDWONROOON

OO0

3071

9072

9073
120

9074

200

907

908

q0¢9

220

9091

240
9092

G093

250

2094

21 MAIN DATE = 74160 11/07,

FORMAT(*1IRUNS TESTY//5Xy 'RUN LENGTH® ,7X s "OBSERVED Y 44Xy "THECRETIC,
1)

XT0T0=0.

XTOTT=0.

DO 120 K=1,NVAL

XTOTO=XTQTO+RUNS (K)

XTOTT=XTOTT+EXPCT(K)

WRITE(KOUT 90721 KeRUNSIK) EXPCT(K)
FORMAT(I15,F15.04F15.3)

IF (KeEQo NVALY WRITE(KOUT¢073) XTIOTOLXTOTT
FORMAT(9+® ,T16,%+' /10X *TOTAL®yF1E.0,F15.3)
CONTINUE

CVO5=CHSCD (,05,41DF)

CV10=CHSCD (.10,1IDF)

WRITE(KOUT,9066) IDF,.CS

WRITE(KOUT,9067) CV0O5,CV10

IF(IDF 4.EQ. 0) WRITE(KQUT,9CCE)

VAR=(léo*NT“Zgo)/90.
2=(XTOTO~-XTOTT}/SQRT(VAR)

WRITE(KOUT,9074) Z

FORMAT(///' Z -~ SCCRE (TOTAL RUNS) =*4F8.2)

PAIRS TEST

IF(IND(3) .FQ. O) GO TO 300

IF(I +EQ.1) READ(KIN,907) NCP
FORMAT(I3,2F10.0)

IFINCP oEQ. O) NCP=SORT(FLOAT {MWALD(NT}))
IF(NCP LLE,50) GO TO 220

WRITE(KOUT,908}

FORMAT('IPAIRS TEST',/' % % % INPUT ERROR * * %)
WRITE(KOUT,909)

FORMAT(? NCP .GT. 50 --= SET TO 50°')

NCP=50

CALL PARTL(X NYJNCPLA,MAXA,T)

IF(I .NE. NITER) GO TO 36O

CALL PARTS(AMAXAYWNCPH4CS,STDCS)
WRITE(KCOUT,9091) NCP)
FORMAT(*IPAIRS TEST*//' NO. OF INTERVALS =1,13)
XST=0.

XINT=1./NCP

LS=1

LF=NCP

IF(NCP .GE. 11) LF=10

WRITE(KOUT ,0092) (JP,JP=LS,LF)

FORMAT(' INTERVAL FROM - 70 *,1018)

DO 250 K=1,NCP

XFEN=XST+XINT

WRITE(KOUT ¢9093) KeXSTeXFNo(A(KeJ)gJ=LS,LF)
FORMAT(I941X,42F7.4410F8.0)

XST=XFN

CONTINUE :

IF(LF JEQ. NCP) GO TO 270

LS=LF+1

LF=LF+10

IFILF JGT.NCP) LF=NCP

XST=0.

WRITE(KOUT,9094)

FORMAT("1")

GO TO 240

- Wz -

AN IV G LEVEL 21 MAIN DATE = 74160 11707/
2 270 IDF=NCP*NCP-1
3 WRITE(KOUT9066) IDF,CS
CV10=CHSQD(.10,IDF)
i CV05=CHSOD (.05, IDF)
b WRITE(KOUT,9067) CVO05,CV10

&
c
7 300 IF (IND(4) .LE. O) GO TO 500
c
C CHI-SQUARE TEST
C :
8 IF (I .FQ. 1) READ(KIN,G07)} NC
9 TF(NC oFEQ. 0) NC=MWALLC(NT)
0 IF(NC .LE. MXCLS) GO YO 310
1 WRITE(XOUT 910}
2 910 FORMAT('1CHI-SCUARE TEST'/' * * * INPUT ERROR * * %?)
3 WRITE (KQOUT,911)
4 911 FORMAT(® NC .GT. 500 ——— SET 70 £00°?)
5 NC=MXCLS
6 310 XM=1.,/NC
7 XD=XM
8 CALL TALLY(XsNSJCELLSyNCyXM4XD,I)
9 IF(TI .NE. NITER) GO TO 400 .
0 DO 330 KK=1,NC
1 330 EXPCT(KK)=NT*XD
c

CALL CHISQ(CELLS,EXPCT4NC,CS,IDF)

WRITE(KCUT,9111)
9111 FORMAT('ICHI — SQUARE TEST'//' INTERVAL FRGM - TO CBSERVED

1HECRETICAL®)

XST=0.

XINT=1./NC

XT07=0.

DO 360 K=1,4NC

XTOT=XTOT+CELLS(K)

XFN=XST+XINT

WRITE(KCUT$9112) KyeXSToXFNyCELLS(K),EXPCT(K)
9112 FCRMAT(19:2F7+44F10.04F12.2)

XST=XFN
360 CONTINUE

WRITE(KOUT,9113) XTOT
9113 FORMAT(4X,*'TOTALYy14X,F8.0)

WRITE (KCUT ,9066) IDF,CS

CV05=CHSCD (.05, 1IDF)

CV10=CHSCD(.10,1IDF)

WRITE(KBUT,9067) CVG5,CV10

IF(IDF .EQ. 0) WRITE(KOUT,9068}

B Al

=MOVOJOMBWN=OODNOWM

400 IF(IND(5) .FQ.0) GO TO 500
1€=2
IF(I .EQ.NITER) 1C=3
IF(YI .EQ.1) IC=1
IF(NITER .EQ.1) IC=4
CALL MOMNTI(XyN,ANS,IC)
IF(IC .LT.3) GO 70O 500
WRITE(KOUT,9212)
912 FORMAT(' 1MOMENTSY//22X*OPSERVED THFORETICAL')
WRITE(KCUT,913) ANS
913 FORMAT(O16X 9 *MEAN? 3F10.4¢8X9*.5000%/10X9*2ND MOMENT*4F10.44+8Xs %,

- 65 -
RAN IV G LEVEL 21 MAIN DATE = 74160 11707/

133%/10Xy *3RD MOMENT?'3F10.448X4'.2500°/12Xy *VARIANCE® yF10.4498Xy
2 °*.0833%)

i ADJSD=SCORT(.0833333/NT)
Z= (ANS(1)-.5)/ADJSD
5 WRITE (KOUT,2131) Z
6 9131 FORMAT(///" 2 - SCORE (XBAR=MU) = ',F8.2)
c
(ol RUNS ABOVE / BELOW MEAN
C
500 IF (IND(6) .EQ.0) GO TO 600
C0=0.
C5=.5
MABMN=10

IF (NT .LE. 3000) MABMN=9
IF (NT .LE. 1000) MABMN=7
IF (NT .LE. 500) MABMN=6
CALL GAP2(N¢KNTMN MABMN,3X3C04C541,4KTMSV])
IF(I. NE. NITER) GO TO 60O
XT07=0.
DO 520 K=1,MABMN
XTOT=XTOT+KNTMN(K)
520 CELLG(K)Y=KNTMN(K}
WRITE(KQUT,9150)
9150 FORMAT(*IRUNS ABOVE/BELOW MEAN (.5)')
WRITE(KCUT,9151)
6151 FORMAT(///5Xy*RUN LENGTH',7X,*0BSERVED TRECRETICAL?®)
PROB=,5
TP=0.
DO 540 K=1,MARMN
K1=K~1
IF(K .LT. MABMN} GO TO 535
PROR=1.0~-TP
S35 TP=TP+PRCB
EXPCT (K)=XTOT*PROB
WRITE(KCUT,9063) K1,CELLCG(K) JEXPCT(K])
IF(K .EQ. MABMN) WRITE(KOUT,9064)
PROB=,5*PR0OB
540 CONTINUE
WRITE(KOUT,9065) XTOT
CALL CHISQ(CELLG.EXPCT,MABMN,CS,IDF)
CV05=CHSOD(.05, 1IDF)
CV10=CHSCD(.10,IDF)
WRITE(KOUT 49066) IDF4CS
WRITE(KQUT9067) CVO5,CV10
IF(IDF EQ. 0) WRITE(KOUT,9068)
600 IF(IND(7) .EQ.0) GO TO 700
NLAC=S0
IF(NT/10 .LT. NLAG) NLAG=NT/10
CALL AUTOC(X N NLAGsACsINITER)
IF{I.NE. NITER) GO TO 700
WRITE(KQUT,9152)
9152 FORMAT('I1AUTOCCRRELATIONS'//TXs'LAC®,8Xs%AC")
KAC=0
SD=SQRT(1./NT)*2,
PO 620 K=1,NLAG
WRITE(KOUT,9153) K,AC(K)
IF(ABS(ACI(K)) .GT. SD) KAC=KAC+1
620 CONTINUE
Q153 FORMAT{I10+,F10.3)

COOYCONMPUNROOVBNITURDIWNRODID-PEFIPUNHOONNOVMPUN=SO DR

TRAN IV G LEVEL 21 MAIN DATE = 74160 11/0T7.

58 WRITE (KOUT,9154}% SDsKAC

99 9154 FORMAT(//% 95% LIMITS ON AUTCCORRELATIONS= (+/-)*,F6.3/' NO. AC
1SERVED OUTSIDE LIMITS= *,14)

’ 700 IF(IND(E) .FQ.0) GO TO 1000

1 1F(1 .GE. 21) GO TO 790

02 CALL KDLMO(XyN9ZP(I)oZM(I))

03 XN=N

04 ZP(I)= SORT(XN)*ZP(I)

0% ZMUT) =SQRT(XN)*ZM (1)

06 IF(I .NE. NITER) GO TO 1000

07 710 WRITE(KCUT,914)

08 914 FORMAT('1KOLMOGOROV — SMIRNCV TEST//% ITER NOo '98X,%ZP*,8X,'2Z
1, PROB(ZP) PROB(ZM)')

09 DO 720 K=1,NITER

10 CALL SMIRN(ZP(K)4PZP)

11 ZMA=ABS (ZM(K))

12 CALL SMIRN(ZMA,PZM)

13 WRITE (KOUT 49141} KoZP(K) 4ZM(K)4PZP,PZM

14 720 CONTINUE

15 9141 FORMAT(I10,4F10.4)

16 G0 TO 1000

17 790 IF(1 .EQO.NITER) GO TG 710

18 1000 CONTINUE

19 REWIND IFILE

20 6o 70 1

21 89000 CALL EXIT

22 END

AN IV C LEVFL

WY

ey

A7 WM WE W T e e N

c

OO0

10

20

21 MAIN DATE = 74158 22/4¢L /'

DATA SET MSHQLGAP? AT LEVEL 004 AS OF 05/24/74

SUBRCUTIME GAP2(NJKNT JMXGAP 3 X 3A454,IC4¥EV)

DIMENSICN KNT(1).X(1)

THIS RCOUTINF FINDS GAPS COF THEE LFENCTHS 091979 e s MXGLEP-T,

>=MXGAP-1 IN A SECUENCE rF tM' INPUTS NUIMEBERS,

A GAP IS THE LFMGCHT CF CRSFRVASTICNS WHERFE NGO CCPSERVATICN

IN THE RANCE (A,%) IS RECCRDED.

IF(IC .CT.1) GO TO 20

CO 10 I=1,MXCAP

KNT(I)=0

KEv=1

KR=KEV

B0 E0 J=1,N

IF(X(J) LT. A) GO 7O 20

TF(¥(J) .LT. =) GO TO 40

KR=KR+1

¢tC TC =C

TF(KR GTa MXNAP) KR=MYGAP

KNT(¥K)=%NT(KR)+1

Ke=1

CONTINUF

KSV=KR

RETUPN

ENPC

-V

AN IV G LEVEL 21 " MAIN DATE = 74158 22746/
c DATA SFT MSHOACHISO AT LEVFL 00% AS NF 05/18/74

L SURRCUTINS CHISC{CFLLSyEXPyK4CSyIPF)
c THIS PROMFAM CALCULATES TWE CHI-SCUARF STATISTIC OF K CFLLS

. C WITHCESERVED FREQUINCY CPUNTS IN VECTFF CELLS AND THFCFETICAL
c VALUES IN *cXP°*, 4

z DIMENSICN CELLS(1)4EXP(1)

3 KADJE=0 '

A €S=0C.

5 L0 20 1=1,K

5 IF (FXP(I) .GF. 5) GO TN 10

7 IF(EXP(T) JLS.1) 60 T £0

2 KADJE=KANJE+1

) IF(KACJS .EC. 3) G0 TO 50

) 10 CS=CS+(CELLS(I)=EXP(I))*%2/7XP(1)

] 20 COMTIMUE

> ICF=K-1

3 PETUFN

A 50 CS=C.

5 IDF=C

3 RETUPN

7 END

AN IV = LFVEL

W N P (D DT~ B 47\

C

OO0

100

- 07 -
21 , MAIN DATF = 741°%¢ 22/4¢/

CATA SET MSHRATALLY AT LEVEL 002 AS CF 03/18/74
SURRCUTINS TALLY (X NyCELLS 3K, XMINGXDFLT,ICALL)
DIMENSICN X(1),CFLLS(Y)
TALLIES VECTCP X CF LENGTH N INTC CFLLS <XMINGXYXMIN TO XMIN+XOFLT,
XMIN+XDELT TN XMIN42 (XNELT) geae o XMIMF(K-Z)XDFLT TO XMIN+ (K-1)XD<
AND >(K-1)XDELT
ICALL =1 CN FIRST CALL
ICALL #1 OGN SUEBSFEQUENT CALLS
IF(ICALL .N%R. 1) GG TC 10
O £ 1I=1,K
CELLS(I)=C.
CC 100 I=1,N
ISUP=(X(I)-XUMINVI/XDELT+2,
IF(ISUE JGT.K} ISUE=K
IF{ISUE LF.O) ISUE=1
CELLS(TISUS)=CRLLS(ISUB)+1
CONT INUF
PETURN
END

- 70 -
AN IV G LEVEL 21 MAIN DATE = 741%E 22/74¢/

c CATA SET MSHOAMOMNT AT LEVEL 004 AS NF 03/20/74
1 SUSRAOUTINGS MOMNT (XeNgANS,ICALL)
. DIMFENSICN X(1)4ANS(1)
C THIS SUBRCUTINF CALCULATES 15T, 2ND, 2RO MCMENTS AND
c THE VARIANCE CF A VECTCF CF LONGTH N
c ANS{1) = M©=AN
c ANS(2) = 2N MOMENT
c ANS(Z) = 2RD MOMENT
C ANS(4) = VARIANCE
C
c ICALL = 1 FIRST PASS
C TCALL = 2 SUCCFFCING PASSES EXCEPT LAST PASS
c ICALL = 2 LAST PASS
C
c SFRC ANS ON 1ST PASS
IF(ICALL .G5T.1 JAND. ICALL JNF. 4) GT T2 10
PO 5 I=1,4
‘ 5 ANS(I)=0.
| NTCT=0
| 10 DD 100 K¥“=1,N
XI=X(KK)

3
4L
5
6
7
e
Q
0
1
2
3
rA

ANS{LI)=EANS(1)+XI
AMS(2)=pANS(2)+XTI*X]
ANS{Z)=pMNS(Z)+XT%*%3
100 CONTINUS
NTOT=NTCT+N
IF (ICALL LT« 2) R=ETURN
C CALCULATE FETSULTS
ANS{YIY=ANS{(1) /NTOT
ANS(2)Y=2MS(Z2)Y/NTT
ANS({2)=pANS(Z}Y/NTCT
COANS{4)=2ANS{2)-ANE{]) &%D
- PETURN
£NN

RAN IV G LEVEL

WNHOOVONOWMPW

OO0 O

[aNaNe]

OOON

20

41
49

&0

40

- (L -
21 MAIN DATE = 74158

CATA SET MSHTAKCLMC AT LFVFL CO? AS 0F 0&8/22/74
SURROUTINSG KOLMD (X4 NyZPLUS,7MIN)
THIS SUFRCUTINE TESTS THE CIFFFRENCF BFTWEFN AN
EMPIRICAL AND THECRECTICAL TISTRIFUTICN USING THE
KCLMCCORCV—-SMIRNNY GCCONESS CF FIT TFST.

REFERENCE T8M — SSP (CPYPICHT 1062 PP, €3-¢4
DIMENSICN X(1)

SORT X INTC ASCENDING CORDER

M=N

M=M/2

IF(M .F0, C) G2 TO 40
K=N—M

J=1

1=J

L=T+M

IF(Y(I)=X{L)) £C46C,450
XS=X{1)

X(1)=X(L)

X{LY=¥S

I=1-™

IF(TI-1) 60,49,40
J=J+1

IF(J-K) &61,41,20
COoNTINL

FIND MIN AND MLX DEVTATICN

NMI=N-1
XN=N

- IPLUS=-100C.

0 M~

23

2%
27

ZMIN=+1C00.

IL=1

DO 7 I=TL M)

Jd=1

IF(C X(J) ME, X(J+1)) CC TC o
CONTINUF

J=\

IL=J+1

FE=FLCATIIY /XN

IF (X{J) .&T. 0) GO TC 23
Y=0,

CC TC 27

IF(X(J) .LT. 1.} GC TCO 25
Y=1.

GO TC 27

Y=%X{J)

DIFF=Y-FS

IF(DIFF JCT. ZPLUS) ZPLUS=DIFF
IF(DIFF JLT. ZMIN) 7MIN=DIFF
IFLIL-N) &,8,28

» RETURN

END

22/64/

RAN 1V G LeEVEL 21 MAIN DATE = T41%E 22/LE/

c DATE SFT MSHOAPUNTL AT LFVFL OCK AS OF 05/23/74

SURRQUTINE RUNTL (XaNsRUNS,ICALL,NVAL)

CIMENSICN X(1),FUNS(1)

THIS SUPRPUTINE TALLIES THE NUMEFP CF RUNS CF

LENGTH T, I=1,8 . RUNS CF LENCGCTH >= TO & ARF TALLIFD IN PUNS(F)
THE FIRST AND LAST PUN TOF THE TOTAL SEOQUENCE ARE NOT TALLIFT.

1
>
D

OO0

3 IF(IC2LL .NF.1) GC 70 &
Z5R0 CUT RUNS
D0 & I=1,¢
5 RUNS{I)=C.
C ICGNOPE 1ST RUN
C 1S FIFST FUM UF (R [CCWN
IyPS=+1
IF(X(2)-%(1) LT.C) TUPS=-1
L3 1C I=Z,N
IUP=+1
IF(X(I)-Y(I-1) .LT. O) Tup=-1
IF(IUPS .SC. 1UP) GC TO 10
TuUpPS=1UF
NESTART=T+2
co 70 20
1C CONTINUE
€Tro co
20 KNT=1
XSAVE=X{MSTART-1)
Gr 10 1CG
50 1UP=+]
NSTA?T=2
IF(X(NSTAFT~1)=XSAVE LT7.0) 1UP=-1
IF(IUPS .F(. IUP) CC TC 80
TyrS=1UP
I (KNT ,GT. NVAL) KNT=NVAL
RUMS(VNT)=FURS(YNT)+1
YNT=1
G0 TN 1460
FC KNT=KNT+1
100 CO 200 I=NSTARTLN
Ite=+1
IF(Y(I}-Y(I-1) .L7.C) IUP=-1
IF(TIYPS FQ.TIUP)Y CO TO 1ECQ
Jupc=1UP
IF (XNT .GT. NVAL) KMT=NVAL
RUNS (KNT)I=RUNS(KNT}+1 '
KNT=1
GO TC 200
180 KNT=KNT=+1
200 CCNMTINUCE
XSAVE=X(N)
RETURN
END

ASAE
o

SN0 D0 N0

3
4
b
[
7
8
C
0
1
2
3
4
5
&6
7
8
9
¢}
1
2
2

- 73 -
AN IV G LEVEL 21 MAIN DATE = 74158 22/74¢/

C DATA SET MSHOARUNTS AT LEVFL CO7 AS 0OF C5/24/74
1 SURRCUTINE RUNTS (RUNSsNsE+CS oI1CF,NVAL)
THIS SUEROUTINF COMPUTES THF CHI-SOUARF STATISTIC FCR THE FUNS
TALLIEC IN SUSRGUTINE RUNTL. :

REFERENCE ISM SYSTEMS JOURNAL 1969 PP. 126-46
DIMFNSICN RUMNS(1),E(1)

FXPECTED NUM3ER OF RUNS

DENTM=6.

NVI=NVAL-1

OO0 100 I=1,NV1

SUMI=N*(T*I+2%I+1)

SUM2=T**243%T*]-1-4

TINCM=DRENOMX(I+2.)

100 F(1)=2.%(SUM1I-SUMZ)/DENDM
E(NVAL)=24% (Nx (NVAL+1. Y- (NVAL*R2+NVAL-1.))
C(NVAL)=F(MVAL)/TENCM
CALL CHISO(ZUNS,E4NVAL,CS,ICF)

RETUERN
END

LA
] aEaNalel

PUVWN=Q OS] W

-74_

RAN IV G LEVEL 21 MAIN DATF = 741F¢ 22744/
c DATA SET MSHOAPARTL AT LEVEL 001 AS NF 02/11/74

1 SUPPCUTINE PARTL (X NyKehpysTAL,ICALL)

> CIMENSICN X(1) 2 {TA,IA)

THIS PRCOGRAM TALLIES THE CCCURFMCE 0OF THE PAIRED CCPROINATFS
X(I)X(T+1) CF A SEDUENCF OF PSFUDO-RANTOM
NUMEERS ON (Gy1) INTC A X X K ARRAY
IF ICALL = = 1 ROUTINF INITIALIZES A MATRIX,

[aXeEalaNe]

IF(ICALL JMF.1) €GO 7O 1CO
CO 16 I=1,12
DC 10 J=1,1#
10 A(I.J)=".
100 DO 15C I=1.N,2
J=KEX{T)+1
M=KxX({I+1)+1
15C A(J,™) =a(JyM)+1.
RETURN
END

3
A
&
6
7
&
9
0
1
2

RAN IV G LEVEL 21 MAIN DATF = T41°°F 22746/

c DATA SFT MSHLAPARTS AT LFVEL 00F AS NF 023/23/74
SURPNUTINE PARTS(AsTA,KsCSEHSTECS)
DIMENSICN A(IA,TA)
c THIS PROGPAM PERECRMS THE PAIRS TEST CN A PRFEVINUSLY
C TALLISD SECUFRNCE CF PSFUCC-RANDCM NUMPEP (USING PAPTL).
T0T=0.
DO 0 I=1,K
DO 580 J=1,4XK
50 TCT=TO0T+A(I,J)
E=TOT /X*%2
cs=0,
D0 100 I=1,K
e 100 J=1,K
100 CS=CS + (A(1,J)-F)%x*2/F
F=K®xK~-1
STRCS=(LS-F)/SCRT(2.%F)
RETURN
END

M PR O N0 ‘.Nrd

- 76 -

RAN IV G LEVEL 21 MAIN : DATE = 74160 11707/

(=]

O‘U\#NN':) Q04O

c

OO0

DATA SET MSHOACHSOD AT LEVEL 002 AS OF 06/09/74
FUNCTION CHSQD (PyN)
THIS FUNCTICN IS USED TO EVALUATE THE QUANTILE
AT A GIVEN PROBRABILITY LEVEL, P, FOR THE CHI-SQUARE
DISTRIBUTION WITH N DEGREES OF FREFDOM.

REFERENCE COMM, OF THE ACM VOL 16 NO 8 PP, 483-5

DIMENSICON C(21},A(19)

DATA C/1.565326E-3,41.060438F-3,~6.,950356E-3,
=1e323292E=242.2TT6T9E~24=8.086007E~3,
=1e513904E~242.530010E-39y-1.450117E-3,

S elb69654E-2,~1,153761E-2,1,128186E-2,
2.607083E=2 3=0.223736849.T80499E~5,

=B eab26812E~443,125580F~34-8,5520609F~3,
1.348028E-44,0,4713941,1.0000€86/

DATA A/1.264616E~24~1.42529€6E-241.400483F~2,

* =5 ,886090FE~39=~1.001214E-29-2.304527F-2,
X 3,135411E=34-2.7284B4E~4,-9,699681E-3,
¥ 1,316872E-292.618914FE=24-0,2222222+5.4066T74E-5,
¥3 4B3789F~54=T,2T4T61E~44,3,292181E-3,
¥ =84729713€-340.,471404%41./
IF(N-2)} 10,20,30
10 CHSOD=GAUSD(.5%P)
CHSQD=CHSQD*CHSQD
RETURN
20 CHSCD= ~2.%ALCG(P)
RETURN
30 F=N
Fl=1l./F
T=GAUSD(1.~-P)
F2=SORT(F1)xT
IF(N GEe (2+INT(4.*ABS(T))}) GO TO 40
CHSOD=(((({({CULYXF2+4C(2))*F24C(3))%xF24C(4) V%*F2
1 4C(5))Y%F24C(6))Y%F24C(TYIYI%FL + (((CC(C(8B)+C(Q)*F2)%F2
2 +C{10)M)Y%F2+4CC11))%F24C(12))%F2+C(13))*xF2+Cl14)))1%F1 +
3 (((L(C15)¥F24CUYI6Y)YXF24C{YIT)VI%XF2+C(18))Y%F2
4 +C(19))*F24C(20))*F2+4C(21)

. GO TO 50

40 CHSOD={((A{L)+A(2)%F2)%F1+(((AL3)+A{4)%F2)%*F2
1 HA(S))%RF2+A16))IXFI+((({T{ALT)+A(B)XF2)*F2+A(Q))%F2
2 +A(10)})*F2+4A(11)IRF24+A(12)))1%FI+(({{(A(12)%F2
3 4A(14))*F2+AL15))%F2+A(16) V*F2+A(17))%F2%xF2
4 +2(18))%F2+A(19)

50 CHSCD=CHSCD*CHSQD*CHSQD*F

RETURN
END

% % 3 * #

AN IV G LEVEL 21 MAIN

b

WNHeODONOUIMPUN

AOOOO

- 77 -]
DATE = 74160 11707/

DATA SET MSHOAGAUSD AT LEVEL 003 AS OF 06/09/74
FUNCTION GAUSD(P)
THIS FUNCTION CALCULATES THF NORMAL DEVIATE FOR THE VALUE
P O©OF THE CUULMULATIVE PROBABILITY DISTRIBUTION.

ALGORITHM FROM HASTINGS, CECIL,JR. APPRCX FOR DIGITAL COMPUTERS
1957, P. 192, -

DATA AG9A1,A2/2.515517,.802853,.010328/

DATA B1,B2483/1.432788,4.189269,.001308/

B=p

IF(B oGTo 05, B=10“B

Ul=-ALOG(B)}

U=SORT(2.*U1)

U2=u*U

U3=u2%y

GAUSD=U-(AO+A1*xU+A2%U2)/(1.+B1*U+B2*U2+B3%U3)

IF(P .LT. +5) GAUSD=~CAUSD

RETURN

END

- 78 -

RAN IV G LEVEL 21 MAIN DATE = 741¢%¢ 22/46/
C DATA SET MSHNAAUTNC AT LEVEL 004 AS °F GC5/18/74

SURPOUTINT AUTCCIX NyLAGACyIC,NITFEP)
DIMFNSICN X{1) -
DIMEMSINN AC(1),XSAVE(EO)
XRAR= .5
IF(IC .GT. 1) GC TO £0
NT=N
Co=n.
e 10 I=1,LAG

10 AC(I)=C.
Co TC 200

50 NT=NT+N
B0 1C0 K=1,LAG
NK=LAC-K+1
DN BC T=1,4K
ACIKY=AC{M I+ XSAVEIMK)=XZAR)IX(X(I)-XEAR)
80 NK=MK+1
100 CONTINUE
200 0C 200 K=1,LAG

\omq'@\,npwmwo\om-qmmp'w

NK=N-K
0 EC 200 I=1,NK
1 NKI=T+¥ .
2 PCIKY=2C{XI+(X{T)=-XZAR)% (¥ (MKT)=-XEAR)
'3 IF(K.FQ.1) CO=CO+X({I)*X(I)
4 300 CCONTINUE
5 CO=CO+X{NIFX(N)
6 DD 4C0 I=1,LAG

' MLI=N-LAG+T
400 XSAVE(T)=X(NLI)

G IF(IC NF. NITER) FETUEN
0 CO=(CO-NT*XEARRXPAR) /NT
1 . CN 450 K=1,LAG

2 450 ACIK)=AC(K)Z(NT*CC)

3 FETUPN

4 END

RAN IV G LEVEL

-NHOOMQO‘U“#‘NNHOO(DNIO*‘J!PU)N

o

aNeaNeNaNe]

- (Y -
21 MAIN DATE = 741F°€

DATA SET MSHCASMIPN AT LFVIL 0032 AS NF 05/11/74
SUBRQUTINE SMIRN(X,Y)

THIS SUPRCUTINE COMPUTES THF LIMITINC DISTRIRUTICM
FUNCTICON CF THE KCLMOGORCV-SMIFNIV STATISTIC.
RFF. I B M SSP PP, 66-67

IF(X=e27) 1,142

Y=0.

FETURN

IE(X-I.) 3,6 9{‘
Cl=EXP(~1.2227C1/X%*2)
G2=Q1%01

CL=Q2%02

Ce=04*04

IF(GE LTe 1.E-25) 0OE=0.
Y=(2.5066728/X1%01%(1408%X(1.+06%08))
PETURN

IF(X =2.1) E4747

Y=1.

PETURN

C1=FXP{=2%X%X)

€2=01%C1

C4=C2%C2

QE=0LE0L
Y=1.-2.%(01-04+CEXx(01-08))
RETURN

FND

2274667

TRAN IV G LEVEL

01

102
03
04
05
06
07

c

OO0

- 80 -

21 MAIN DATE = 741FE

CATA SFT MSHOAMWALD AT LEVEL 001 AS OF 05/25/74

FUNCTICN MWALLC (N)

THIS FUMCTICN CCMPUTES THE CRTIMAL NUwPEPR -CF CLASS

FCR A CHI-ALQUARE TEST ACCOPTING TO THE

8=4,

CCRIT=1.64F

XN=N-1
MUALD=ER (2 S YNRXN/LZCRITH%2) %%, 2
RETURN

END

MANN-WALD CPTITEPIA

22/74¢€

- 81 -

AN IV G LEVEL 21 RAN DATE = 741F8 22/4¢€/7]
1 FUNCTION RAN(NX)
) RANM=Q,.0
. RETURN
END

- 82 -

APPENDIX B

Sample Output Listing

- 83 -

RAN

NT = 5000

- 84 -

RANLGCM NUMERR EVALUATICON NRe DCNACGHFY'S FUNCTICON vEANS
. NT = 5000
NSEED = 95605

TESTS RFCUFSTED
CAP TESTS - 10
RUNS TECT
PATRS TEST
CHI - SCUATE TEST
MOFENTS
RUNS ABCVE/EELON MEAN
AUTCCCRF SLATIONS
KCLMCGOROV = SHIPNOV TFET

- 85 -
GAP TFST

GAP INTERVAL =(0.7 y Co1000)

GAP LENCTH QREFOVET TEFORETICAL
0 T £1.90600
1 FL. 46,710
z T, 42.0729
z e, 2T.835
4 0. 24,0572
5 28 . 30.F4E
€ 21, 2T.5€2
T 27« 24,824
¢ 1¢. 2203"1
O+ 201, 201.072
TOTAL £1i%e.
CRI - Sscuar=(o pER) = - Coll

CRITICAL ViLUE (ALPFA=LCT3
Lok . 14,62

CRITICAL VALUER (4

{{I |

GAP TEST - 86 -

GAP INTERVAL =(0.1CC0, 0.2000)

GAP LENGTH CESFRFVED TREGRETICLL
¢ £4, 45,700
1 4o, 43,820
2 39, 26,447
3 21, 28,502
4 76, 31.952
5 2%, 20,787
& 23, ZELEF]
7 1€. 22,292
& r, 20,564
G+ 161. 186,674
TOTAL Le,
CHI - SCUARE({ © DE) = 4,58

CRITICAL VALUE (ALPHFA=.05)
CRITICAL VALUF (ALPFRA=,1C)

16,62
14,68

non

GAP TESTY

- 87 -

GAP IMTERVAL =(0.20C0, C.2000)

GAP LENMGTH

NN = O

&
-
£
a4
TCTAL

CHI - SOUAREL

CRITIC!L VALUF
CRITICAL VELUE

peSrRvVED TRECCETICAL
47. £E0.200
41, 4R .1B0
47 . 4CF62
KX Z6.596
2. 32.93¢
0. 2Q,643
28, 26.E7E
22 24,010
e 21.609
2C2. 194.4F¢6
Q2.
¢ OFY = feE0

(4LPHA=.CR) = 1¢.62
(ALPHA=.10) = 14.€L

GAP TFST ' - 88 -

GAP INTERVAL =(0.2C0C,; 0.4CCO)

GAP LENGTH NESIRVED THENRETICAL
O 5G. 52,500
1 4t 47.520
2 47. 42,768
3 38. 28,491
“ 432, 24,642
- 29. 31.17¢
€ 26 26,060
’ 1. 2t ., 7€
e 21. 22.729
o+ 1c2. 204.55¢

TO72L 528 .
CHI -~ SOUAFE(g DFY = PN

CRITICAL VALUE (*LPPA=,CH) = 14.92
CRITICAL VALUS (LLFHA=.1C) = 14%.€¢

GAP TEST

GAP INTEEVAL =

GAP LENCTH

DOV BWN O

,—,

~=f

>

| o
+

CHI - SGUARKH(

CRITICAL VALUE
CRITICAL VALUT™

(0.4G00,

- 89 -

0.5000)

CESERVED

© OF)

(sLPvA=,
{ALPHA=,

TR
L,
26.
32.
22.
21.
26,
20 .

183.

471,

nou

THECPETICAL

16.62
1"‘- 6&'

47.,1C0
42 ,50C
A8L.1°1
24,3726
30.902
27.E12
25.021
22.52¢
20.27°%

152.475

GAP TEST - 90 -

GAP INTEFRVAL =(0.5C00y CL€CC0)

CAP LENCTH CESEFVED THEQRETICAL
0 44, 5C.100
1 64E T LE,090
2 39. 4G6.521
3 47, 3€.522
4 3Ce. 32.871
5 €, 29,583
6 26 . 2¢.625
7 22 23.963
& 25. 21.5¢6
G+ 1°e, 194 ,00¢
TOTAL 501.
CHI — SCUARE(=~ ¢ ©F) = £.57
CRITICAL VALUE (ALFHA=.0F) 16,92

CRITICAL VALUT (ALPHA=,1C) 14,68

CAP TEST - 91 -

GAP INTFRV2L =(C.¢&00C, 0.700C)

CAP LENCTH . CRSERVED THECRETICAL
0 £l. 52.3200
1 57. 47,070
2 S 42,362
3 43, 2E.127
4 3¢. 324,714
£ Z2. 20.883
6 20. 2T7.724
7 23, 25.015
e 16. 22.51%2
O+ 1¢9. 7C2.621
TOTEAL 523.
CHI -~ couARE(@ nr} = 6.54
CRITICAL VALUT (ALPHL=,0F) = 16.92
CRITICAL VaLUT (ALDRHZ=,1C) = 14,68

GAP TEST - 92 -

GAP INTERVAL =(C.70060, 0.80CC)

GAP LENCTH CESEPVED THECRETICAL
e | El. 52.200
1 €. 47.070
z 42 42.563
3 &, 2E.127
4 24 . 34.314
> 27. 30,852
€ 22, 21.794
7 32, 25.01%
£ 29, 22.512
G4 icl. 202.621
TCTAL 522
CHI = SCLAR=(S OF) = 11.74
CRITICsL VALUT (£LPHA=,OR) = 1€.62
CRITICAL VALUE (ZLPHEA=.1C) = 14.€8

GAP TEST - 93 -

GAP INTERVAL =(0.20G60, 0.°0CC0)

GAP LENMCTH CRSEFVED THEQOFETICAL
c 3&. 45,400
1 av7. 40.860
2 27. Rb.T7T4
K 24, 32.0¢7
4 27, 28,787
5 20. 2¢€ 508
& 70. 244127
7 26. 21.715
& 22. 1¢.543
S+ 162. 175.€€9
TCTAL 454,
CHI - sSeouasce(¢ DF) = 723

CRITICAL VALUF (ALPHA=_0OF)
CRITICAL VALUF (ALPHA=,1C)

16.92

14.6¢.

inon

GAP TFST - 9%-

GAP INTERVAL =(0.2060, 1.0000)

CAP LENCGTH CSTERVED THECRETICAL
C 6C. 4,200
1 414 46,2¢0
2 42, 39.852
2 22. 35,267
4 31. 32.2°0
£ 25 294,052
6 21l. 26,147
7 17. 23,532
£ 15, 21.17¢
O+ 2Ca. 1eQ.611
TCTAL 402,
CHI — SOUAFRE(9 CF) = 9.%%

CRITICAL VALUE (ALPHA=.05)
CRITICAL VALUF (ALPEA=.1C)

16.¢2
14468

"non

RUNS TEST
RUN LFNCTH CBSEPVED
1 20¢<7.
2 BEL.
3 277.
4 ¢G.
5 1G.
6+ 0.
TOTAL 23z2.
CHI - seuase(5 OF) = 2,48

CRITICAL VALUF (ALPHA=,CH)
CRITICAL VALUE (£LPHA=.1C)

Z — SCCRF (TOTAL FUNS) =

_0003

- 95 -

THFCRFTICAL
20€3.,417
¢l6.422
262,758
£E7.458
10.159
1.734
3322.0999

11.C7
C.24

PAIPS T @@

NC. OF INTERVALS = 10

INTERVRAL FRCM = T0 1 2 3 4 5 & T 8 @
1 ¢cC.cC 0.1000 228, 21. 27, 2T 244 2% . 22, lé. 20.
2 « 10CC e 2000 1°0. 25. 20 2L . 24, 12. 26, 30. 14,
2 0.2000 0.73000 24, <€ 2l 22 7% 2F o 21. 2. 20,
4 003000 Q.ancon .?Oo 23. 22 ?Qo 22 2;:. 2% 2% . 250
E C.alND QLFECC 1C. 7. 1¢. 2% 71l 27 26 32 2¢€.
& D000 0.6000 2l 23, 0. 27. 27. 24 17, 2C. 22
7 Oof(ICC Ue7C00 34. 24. 26'0 ?60 ?Eo 200 .?2‘0 ?2; 310
e C.7000 0.E80N0 e 24 21. 20, 25, 1. 24, 23, 19.
o 0.00C0 0.6000 €. 2% 1. 2% . 21 21e. 27 2% 21,

1¢ Q.50C0 1.000C 7t 2b, 27 17. 1€. AT 27 1%, 1¢.

CHI - SCUARE(©o [CF) = 109.20

CRITICAL VALUE (ALPHA=.0F)
CRITICAL VALUE (ALPHA=.1C)

BN
| and
pod
i
»
=

-96-

CH1 - SQUAFRH

INTERVAL

D6 d AU DN e

~ 1"

TEST

FROM — TQ
0.0 0.00868
0.CCEE Co0177
C.C177 CL.02¢E
C.07¢5 0.03F4
N0.03%4 (048462
0.C442 CL.CE3)
0.n521 0.0616
C.C61¢ §.07C8
0.07CE 0.07¢¢
0.C79¢ C.OFfEE
0.CEPE 0.0G7%
0.Ce7: 0.1C¢2
0.1062 0.1150
- Ce115C C.12Z°¢
0.122% 0.1%27
0.1227 0.141¢
Qe141¢ D.15C4
0.15C4 0,15€3
0.1563 0.1€t1
0.1681 D.1770C
0.1770 Q.18EE
0.1EF¢ D.1G47
0.1947F G.202F
0.2C28 0.2124
C.?124 C.2217
0.2212 0.2701
0.2201 0.2z¢¢@
236G 0.2478
Q.247¢ 0.25¢6
C.25€¢6 G.2¢E85
0.2655 0.2742
C.2742 0.2822
0.2822 0.2926
0.292C C.200°
C.20C9 0.2097
0.,20¢7 C.21t6
'e2186 Q3274
0.3274 $.32£E2
C.226% Go3401
0.2451 (.2540
C.%254C (.2€28
0.2628 C.3717
«2T1T Q.3ECE
C.20lF C.ob%4
0.286C4 Q.2682
fZCEZ2 CLLCTY
0.4C71 C.415¢
D.41FC Q.424E
0.,474F G436
Deb4328 ToLL2%
Coob2h 0D.4F17
Cobf13 CL2€CT
Cat02 0QoLbeC
COA(T('U 00"770
Cea?7¢ o80T
QoaaftT NLtlt
CoalCCt C.ETLG
CeB04s GoB1Z2

r« L™ 9

THECFETICAL
44,25
44,25
44,25
44,25
44,25
44425

44,25
L 28
44,25
44,25
44,25
44,25
L 28
44,25
4LL,25
44,2°¢
44 , 2%
44,25
L4 ,2F
6L, 25
44,25
44,25
44 ,2%
4H4,25
44,25
L4 G285
L4 ,25
L4 ,25
L4 .28
L4, 25
446 ,2°%
L4 ,7F
44,25
L4 28
44,25
L4 ,2%
L4 ,2F
L4 ,25
44,25
4HeE G 28
LL 2%
44,25
44,25
L4 2%
Ll o 25
44,25
L6425
4L4 ,25
44,25
L4 25
44 4,25
L4 ,2E
44,25
46,25
L4, 2%
L4 .25
L4 5
L4 .75
WL IFE

2

£2
63
&4
65
€6
67
¢®
€9
70
71
72
72
74
75
76
77
78
70

ec

€1
£?
83
84
g%
8¢
e7
ge
£Eg
GO
Gl
Q2
Q2
. 94
ot
96
97
o8
Go
160
101
102
1C2
1G4
105
1G¢
1067
108
109
110
111
112
112
TOTAL

CHI — SOUAFRE(

CRITICAL
CRITICAL

e AN

.- - - -

0.53C8 05487 Ly,
0.5487 C.5ETS 56,
G.E575 C.5€44 432,
G ECEL C.5T52 38,
C.R752 C.5%41 47.
0.ES41 C.5GZ9Q 4%,
0.592¢ C.6018 26.
C.EC1E N.£106 53,
0.610£ 0.£19%E £s,
G.619E C.6283 26,
0.6782 0.6772 56.
Cob6272 (GablLED 39.
O eLbld CoFFLY 41,
G.EELG 0.6637 29,
0.£637 0.672¢ 2q.
G.ET26 G.EE1& 52,
0.6014 G.6S0% 48 .
0.65G3 0.£001 5.
0.6091 0.70S0 29,
0.TCE0 C.716E L,
0.716¢ 0.7057 3,
0. 7257 0.734F £1.
C.7245 G.7434 52.
C.742%4 5.7522 60.
0.7522 C.7é11 £3,
0.7¢11 0.7¢&c© g3,
0.760¢ 0.TTEP 32
0.770¢ (C.787& 7.
0.7876 (.7965 48,
0.7965 (.9052 s,
G.POE2 G.E142 18,
0. E1L2 0.£22C 27.
0.£230 0G.2219 37,
C.EZ1C £.8407 2.
0.B4CT 0.0406 40,
C.E4CE Q.E5T4 42,
0 E5EL C.ibT2 4G.
0.6673 C.E7€1 51.
0LETEL DLEFEG 4t
C.EE50 C.292E 62,
L£G2S (.O0Zz6 4G,
C.cC2¢ 0.011°€ L3,
0.C11% G.CZG3 Lo,
G.C202 0.Gz@? £1.
G.02G2 0.OZEC 4e .
0.939C (.04&C P ag,
0 CaEO (U557 40.
O.GEET Q,G646 £0.
C.0tLE (,0T734 41,
0.C734 (L9823 49,
G.GE2% (.C011 t3.
C.%S11 1.00CC 26 .
5000 .

11z CF) = 11£.01
VALUS (2LFHE=.CE) = 1
VALUT (ALPFA=.I0) = 1

G)

' ‘J

N

H44,25

446,25
L1 25
44,25
L4 25
44,25
44,28
44,25
44,25
L4 ,25
44,25
44,25
L4 25
L4 28
44425
444,25
44 4,25
L4 ,25
44,25
411.25
44,25
44,25
L4 ,25
44,25
44,25
44,25
44,25
44,25
L4425
44,25
44,25
L4 .28
44,25
44,25
L4 .25
L4 .25
44,28
L4 D5
44,25
44425
Ly W25
44,25
44,25
44,2

L4 ,25
44,25
L4 258
44,25
44,25
44,25
44,25

MOMENTS

MEAN
2ND MCMENT
3R MOMENT

VARTANCE

Z - SCORE (XEpR-MU)

1l

- 99 -

nRSERVED
NJ40aY
G.220¢
0.2661
0.0e27

THEPCPETTCAL
« 5000
.32323
2500
0833

RUNS AEFVE/mELMY MEAN (,5) =~ 100 -

RUN LFEMETH CESERVYET JHEORFTICAL
0 124¢a. 1253.700
1 &39. £26.750
2 321. 313.375
3 144. 156.6¢€F¢
4 &5. T18.244
s 42, 26172
é 24 . 19.586
7 Te Q.,7G2
8 7. 4,806
a+ 4, 4,896
TOTAL 2507.
CHI - SQUARE(e DF) = £.82

CRITICAL VALUS (ALPHA=,NE) = 16,92
CRITICAL VELUF (ALPHA=.10) = 14.¢8

AUTOCNFRELATIONS

LAC
1

bt b
HMOOVUMAIT™TUID™WN

tead pood pod ek
22300, I S FVI N)

N b bt et b
(@ 2N Bl « JE N Y Y

W W MWW NN N NN NN
S DU O DD W TN

38
20
40
© 41
42
43
44
4%
46
47
48
40
50

AC
C.CO*"
-O.COL
-C 0002
0.01°%
-0.00?
-0.0C11
0.004
C.016
c.c12
=C.025%
G.CCn
-0.C20
-0.C11
} o S04
0.CCA
0.01¢
_0.('\,‘ >
-0.012
0.006
G.008
-0.01°%
C.013
0.000
G.C05
-0.022
-0.02F
0.C0s
~0.00¢
0.00546
c.012
0.021
~0.004
-0.022
-C.01¢
-0.022
’0.0IC‘
C.00%
~0.014
-0.C22
0.026
0.C132
-G.Olf.
~0.00¢
0.012
c.C1lC
-C.014
0.C1l4
OCCC'4‘

- 101 -

95% LIMITS N AUTRCCRTDILATIANG= (+/-)
NO. #C CRSEDVED CUTSILFE [IMITC= 4

0.02¢

o Mak-o o e

KOLMCGCPCY - SMIONCV TEST - 102 -

ITER NC. P IM FRCE(ZP) PRNB(7M)
. 1 Celé32 ~1.0032¢ 0.0 0.7241

