
A PROGRAM TO EVALUATE

UNIFORM RANDOM NUMBER GENERATORS

A Thesis Presented to the Faculty

of the

Department of Industrial and Systems Engineering

University of Houston

In Partial Fulfillment

Of the Requirements for the Degree

Master of Science

in Operations Research

by

Andrew J. Sacks

August 1974

ACKNOWLEDGMENTS

I wish to express my appreciation to the members of my

committee, Dr. Donaghey, Dr. Rhodes and Dr. Motard, for their

assistance. I also wish to express my appreciation to Gulf Oil Corpor­

ation for permitting me to avail myself of their facilities while completing

requirements for the Master of Science degree. Finally, to my wife,

Barbara, and son, Jonathan, a sincere thanks for their patience and

understanding.

ABSTRACT

This thesis presents a program to evaluate uniform pseudo-random

number generators. It presents various methods of generation and the

tests available to test the adequacy of the methods. The program is

employed to test a number of frequently used generators and the results

are reported. The strengths and weaknesses of the programmed tests

are also discussed.

TABLE OF CONTENTS

CHAPTER PAGE

1. Random Number Generators 1

2. Statistical Tests for Evaluating
Random Number Generators 17

3. A Program to Evaluate Uniform
Random Number Generators 30

4. Evaluating Selected Uniform Random
Number Generators 45

Bibliography 57

Appendix A - Source Code for the Program 59

Appendix B - Sample Output Listing 82

- 1 -

CHAPTER 1

RANDOM NUMBER GENERATORS

A. Introduction

There have been many words written and spoken on the relative

merits and shortcomings of various types of uniform random number

generators. As soon as a new algorithm or procedure is presented

as being totally random and unbiased a critic of the new method dis­

covers an area where the performance of the procedure is less than

ideal. This type of banter has been going on for years and with the

emergence of the digital computer and the availability of a high-speed

means of generating these numbers the arguments are becoming more

and more frequently found than ever in the journals of computer and

statistical methodology. One point, however, is not argued; that is

the statistical importance of random number generators in a wide

variety of applications.

Random numbers are useful in many areas. For example:

a. Simulation - when a computer is used to simulate natural phenomena,

random numbers are required to make things realistic. The term

simulation is rather broad and covers studies from nuclear physics

and space technology to queuing theory (for example, people entering

a bank or cafeteria at random intervals expecting services) and

computer software simulation (analysis of various types of software,

hardware, peripherals and job streams to optimize throughput).

b. Sampling - in many statistical analyses it is often impractical to

examine all possible cases due to the large number of possibilities.

A well chosen random sample, will, however, allow the

statistician to draw meaningful conclusions from the data and gain

insight into the problem from a substantially smaller subset of

observations.

c. Numerical analysis - many techniques for solving complicated

numerical problems have been devised using random numbers.

d. Computer programming - random values make a good source of

data for testing the effectiveness of computer algorithms.

e. Decision making - random numbers are becoming increasingly

more important in association with corporate and industrial

decisions. Techniques such as decision theory and risk analysis

employ random numbers in a simulation type application to aid

managers in evaluating various alternatives.

f. Recreation - rolling dice, shuffling cards, playing roulette are all

every day occurrences which involve random number theory. This

commonplace use of random numbers has had the name "Monte Carlo

Method" devised as the general term used to describe an algorithm

that employs random numbers.

Although we have been and will probably continue to talk about random

numbers, there really is no such entity as a random number. We

cannot, for example, say 21 is a random number or 21 is not a random

number. What we are actually saying is that we really are speaking

about a sequence of independent random numbers with a previously

- 3 -

specified distribution and that each number observed by us was obtained

by chance, having nothing to do with other numbers in the sequence.

Uniformly distributed variables in the range zero to one (denoted

(0, 1)) play an important role in the generation of random variables

drawn from other probability distributions such as the exponential,

normal, Poisson and binomial distributions. In fact, random variables

from these distributions are often derived by transforming one or

more uniform (0, 1) random variables. For example, -ln(r) where r

is a random variable from a uniform (0, 1) yields an exponentially

distributed random variable with mean 1. For this reason, we will

concern ourselves primarily with the uniform distribution and the

distributions referred to should be understood to be uniform unless

some other distribution is explicitly stated.

A uniform distribution is one in which each possible number is equally

probable. In other words each of the ten digits 0 through 9 will occur

about 1/10 of the time in a (uniform) sequence of random digits. Each

pair of two successive digits (00 through 99) should occur about 1/100

of the time and so on. Yet if we take a truly random sequence of 1000

digits, it will not always have exactly 100 zeros, .100 ones, etc. In

fact, the probability of this actually occurring is quite small; however,

a sequence of such sequences will have this character on the average.

Another quality of a random number generator besides the frequency

of the appearance of the digits, is the actual sequence of the digits.

- 4 -

A sequence such as

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

or

0,0, 1, 1,2, 2, 3, 3, 4, 4, 5,5, 6, 6, 7, 7, 8, 8, 9, 9

might have each digit appear with the same frequency but indeed there

is a suspicious ordering to the digits which would cast doubt on the

validity of the generator.

There are several ways to formulate a good abstract definition of a

random sequence but perhaps we should begin with an intuitive

approach to the concept.

One of the first published accounts of random digits appeared in 1927

as a table of over 40,000 random digits taken at random from census

reports. This table was compiled by L. H. C. Tippett (17). Since then

a number of machines were built for mechanically generating random

numbers. M. G. Kendall and B., Babington-Smith (7, 8) describe such

a machine in their papers in the Journal of the Royal Statistical Society.

The machine essentially consisted of a spinning disk divided into

ten equal sections, each having a digit from 0 to 9 on it. The disk

was caused to spin at a relatively high speed in a dark room. The

operator would at unequal intervals press a button to flash a light on

for an instant which would illuminate the spinning disk, making it

appear motionless and noticing the digit at which a previously mounted

pointer was indicating. Statistical analyses of the sequences generated

by the above method proved it to be a reasonable means of random

number generation.

Shortly after computers were introduced people began to search for

efficient ways to obtain random numbers in computer programs. One

obvious way is to read in tables of already known random sequences.

This method, however, is of limited utility because of memory

available, input time requirement, the table may be too short for the

application and it certainly seems like it would be a nuisance to prepare

and maintain the table. Obviously, the computer should be programmed

to generate its own random number sequences.

B. Random Numbers by Computer

The idea of using the computer and its inherent high speed for generating

random numbers was suggested in the 1940's by John von Neumann.

His method was called the "middle square" method and consisted of

using the previously generated random number, squaring it and extracting

the middle digits as the new random number. So, for instance, if we

were generating 10-digit numbers and the previous value was 5, 772, 156, 649

the new random number would be 7923805949 (the middle ten digits of

33317792380594909291).

One obvious objection to this technique is how can a sequence generated

in such a way be random since each number is completely determined by

its predecessor. The answer, of course, is that the sequence is not

random, but it appears to be. For this reason such deterministically

- 6 -

generated sequences are called pseudo-random or quasi-random

sequences. Although they are derived from a fully specified formula

by a digital computer, their statistical properties coincide with the

statistical properties of numbers generated by an "idealized chance

device" that selects numbers from the unit interval independently

and with all numbers equally likely. Provided that these pseudo-random

numbers can pass the set of statistical tests (frequency tests, auto­

correlation tests, lagged product tests, runs tests, gap test and others

all of which will be fully detailed in this paper) implied by an idealized

chance device, then these pseudo-random numbers can be treated as

"true" random numbers even though they are not.

Naylor (15) proposes several criteria that should be satisfied by an ideal

pseudo-random number generator. An ideal pseudo-random number

generator should yield sequences of numbers that are 1) uniformly dis­

tributed, 2) statistically independent, 3) reproducible and 4) nonrepeating

for any desired length. Furthermore, such a generator should also be

capable of 5) generating random numbers at high rates of speed, yet of

6) requiring a minimum amount of computer memory capacity. He also

states that congruential methods of random number generation come

closer to satisfying all of these criteria than any other known method.

Congruential Methods

The congruential methods for generating pseudo-random numbers are

based on the mathematical concept of congruence which basically states

- 7 -

that two numbers a and b are congruent modulo m if their difference

is an integral multiple of m. The congruence relation is expressed

by the notation a E b (mod m) and is read "a is congruent to b modulo m. "

In other words a-b is exactly divisible by m which also implies that a/m

and b/m have the same remainders.

The following recursive formula is basic to all congruential methods.

= (aX^ + c) mod m n> 0 (I- 1)

where XQ, a, c, and m are all non-negative integers. Expanding (I- 1)

for i = 0, 1, 2. . . we obtain

Xj = (aXQ + c) mod m

= (afaX^ + c) mod m

2
= a Xq + (a + 1) c mod m

3 2Xo = a X + (a +a+l) c mod m■5 o

3 (a3 - 1) ,= a xo + (T-'i) c modm
i (a1 - 1)

Xi = a Xo + (a 1'1) c mod m (1-2)

Given an initial starting value XQ, a constant multiplier a, and an additive

constant c, then (1-2) yields a congruence relationship (modulo m) for

values of i, i=0, 1,2...

This sequence is called a linear congruence sequence. For example, the

sequence obtained when XQ = a=c=7, m=10, is 7, 6, 9, 0, 7, 6, 9, 0, As

this example shows, the sequence is not always "random" for all choices

of the initial parameters; in fact the choice of these values is extremely

- 8 -

critical in producing useful random sequences.

The above example illustrates another characteristic of congruential

sequences: they always get into a loop or begin repeating themselves.

This repeating cycle is called the period; the sequence above having a

period of 4. Obviously a useful sequence will have a relatively long

period.

Two types of congruential methods have been derived from Equation (1-2).

When c = 0 the term multiplicative congruential generator is often used

and when c / 0 often the term mixed congruential method is employed.

The case c = 0 generally proceeds a little faster than when c / 0.

However the restriction c = 0 cuts down the length of the period of the

sequence although careful selection of the other parameters still allows

for a reasonably long period.

Far and away, the most widely used method of generating random numbers

by computer employs in one variation or another a congruential method.

In almost all of these cases the method used is a multiplicative congruential

method or a mixed congruential method. These two methods and two

variations of them are discussed below.

The Multiplicative Method

The multiplicative congruential method computes a sequence {X.} of

non-negative integers less than m by means of the congruence relation

X^j=aX^ mod m (1-3).

- 9 -

This method is a special case of the congruence relation (1-1) where

c = 0. This method has been found to behave quite well from a

statistical point of view. Given a prudent choice of the multiplier a

and starting value (or seed) Xo, it is possible to generate sequences

of numbers that are uncorrelated and uniformly distributed.

Additionally, careful choice of the two above-mentioned parameters

guarantees a maximum period for sequences generated by this method.

Knuth (9) states the following theorem concerning multiplicative congruential

generators and cites the proof by R. D. Carmichael, Bulletin of the

American Math. Society, Vol, 16, (1910), pp 232-38.

Theorem

The maximum period possible when c = 0 (a multiplicative congruential

method) is achieved if

1) X is relatively prime to m
o

2) a is a primative element modulo m.

To clarify the above theorem it is also necessary to note that when a is

relatively prime to m, the smallest integer X for which a^ = 1 (mod m)

is called "the order of a, modulo m". Any value of a which gives the

maximum possible order modulo m is called a "primative element,

modulo m. "

If we let A(m) denote the order of a primative element, i. e. , the

maximum possible order, modulo m, we can show (Knuth) that X(pe),

e
where p is a prime number and e a positive integer, p > 2, is a divisor

- 10 -

e-1 \of p (p-1). The precise value of A(m) for all cases can then be

given as

X(2) = 1
X(4) =2

A(2e) = 2e-2, e> 3
A(pe) = pe‘* 1 ii) iii)(p-i), P> 2-

a is a primative element modulo pe if and only if

i) pe = 2, a is odd;

pe = 4, a mod 4 = 3; or

pe = 8, a mod 8 = 3,5, 7; or

p = 2, e > 4, a mod 8 = 3,5;

or

ii) p is odd, e = 1, a £ 0 (mod p) and

a(P~l)/<I £ i (mod p) for any prime divisor

q of p-1;

or

iii) p is odd, e >1, a satisfies ii) and

aP~l ¥ 1 (mod p^)

This theory simplifies somewhat when we note that as applicable to

computer generated random numbers p represents 2 or 10 depending

on whether the generator is to be run on a binary or decimal computer

and e represents the number of bits per word available for computation.

For the IBM 360 then p = 2, e = 31.

Knuth then presents another theorem as follows:

Theorem

- 11 -

Once again this theory simplifies in the common case where m = 2e, e > 4

and our sole requirement is that a = 3 or 5 (modulo 8).

The Mixed Method

The mixed congruential method computes a sequence of of non­

negative integers less than m by means of the congruence relation given

by
= aX^ + c (mod m).

This method differs from the multiplicative procedure in that c is not

assumed to be zero. The advantage of this method is that it is possible

to obtain sequences with a period that covers the full set of m different

numbers (the multiplicative method has a maximum period of m-1).

From a computational and speed standpoint this method requires an

extra addition operation compared to the multiplicative method.

The theorem concerning the maximum period for a linear congruential

sequence is as follows:

Theorem

The linear congruential sequence has a period of length m if and only if

. i) c is relatively prime to m

ii) a = 1 (mod p), p is a prime factor of m

iii) a E 1 (mod 4) if 4 is a factor of m.

The practical considerations of this condition, when dealing with binary

computers, is relatively straightforward. To achieve a full period

h = m = 2e the parameter c must be odd and a must satisfy the congruence

relationship

a = 1 (mod 4)

which can always be achieved by setting a = 2^ + 1 for k > 2. Any

positive integer can be selected for the starting value XQ. However

the above-mentioned conditions are not in themselves sufficient for

assuming that sequences generated by the mixed congruential method

will be statistically satisfactory. Naylor states that only by empirical

testing can we have confidence in the statistical properties of sequences

that are produced.

The Combination Methods

Within a few years after their discovery, congruential methods came

under attack in the literature on the grounds that the sequences generated

were not statistically satisfactory especially with respect to autocorrela­

tion (a measure of the tendency of numbers in the sequence to show a

linear functional relationship to other numbers in the sequence a given

but constant distance away). As a result of these findings, several new

versions of congruential methods were suggested in the literature.

MacLauren and Marsaglia (11) suggested two combination methods. The

first method, to be used on computers with buffered input, reads in a

tape of p previously stored random numbers. Then, a congruential

generator computes an index that determines which random number is

selected from the inputted sequence. This process is continued until

all the inputted numbers are exhausted at which time a new tape is

read and the process continues. The second method suggested by

these two men uses two random number generators. To begin, a table

of 128 locations in core was filled with numbers generated by the first

- 13 -

generator. To output random numbers the second generator computed

an index to determine the location in the table of the random number

to be used. The location in the table was refilled with a new number

generated from the first congruential generator. MacLauren and

Marsaglia recognize that the time required using this method is about

twice the time required in a non-combination method but they strongly

feel the time penalty is worth suffering to obtain a sequence of numbers

with better statistical properties. In fact an article written three years

later by Marsaglia and Bray (14) presents a combination method that involves

three congruential generators. They state "short and fast programs

will result even if three generators are mixed. One to fill, say 128

storage locations, one to choose a location from the 128 and a third

thrown in just to appease the gods of chance. Why be half (or two-thirds

safe)? 11

Another method of generating pseudo-random numbers based on the

combination of two congruential generators has been proposed by

Westlake (18). It retains two of the desirable features of congruential

generators, namely, the long cycle and the ease of implementation with

a digital computer. Unlike the combination method of MacLauren and

Marsaglia, Westlake’s method does not require the retention in memory

of a table of generated numbers. Westlake, instead, uses the two

generators and does bit-wise addition followed by division. To further

insure randomness, Westlake also adopted the procedure of modifying

- 14 -

one random number by permuting its bits in a random manner determined

by the other random number. Like the generators of MacLauren and

Marsaglia, this procedure yielded completely satisfactory results on a"

fairly stringent series of statistical tests.

The combination methods are so prevalent as to be too numerous to

describe. More recently, however, the enthusiasm has been dampened

somewhat by the paper by Coveyou and MacPherson (1). They conclude,

through Fourier analysis, that any multiplicative generator is statistically

satisfactory if its multiplier meets certain requirements. On the other

hand Marsaglia (13) still maintains that every multiplicative generator has

a defect which makes it unsuitable for certain Monte Carlo problems

namely - points produced in the n-cube fall in a relatively small number

of parallel hyper-planes.

Other Methods

Of course, linear congruential methods of pseudo-random number

generating are not the only methods ever suggested for computer use.

There are a number of other methods which should be briefly discussed.

One of the common fallacies encountered in connection with random

number generation is that a good generator can be modified slightly

to yield an even better generator. Actually this is not so and in fact

the new generator is oftentimes less random than the original one.

Knuth expresses this idea as a moral to an episode where he thought

he was creating a fantastically good random number generator using

- 15 -

a rather complicated and peculiar algorithm, without actually examining

the theory behind the algorithm. The algorithm when implemented proved

deficient in many areas and led Knuth to state "random numbers should

not be generated with a method chosen at random. "

Two additional methods of generating random numbers are quadratic con-

gruential methods of the form

2
X ,. = (dX + aX + c) mod m (1-4)n+1 ' n n ' ' *

and

X , . = X (X +1) mod 26, X., mod 4 = 2. (1-5)
ut inn u

In the case of (1-4) the sequence has a period of length m provided parameters

a, c and d are properly chosen. Case (1-5) involves less computation time

than (1-4), in fact just slightly more time than the linear congruential form

of (1-1).

One other nonlinear congruential method of generating random numbers

involves using the Fibonacci sequence, X = Xn + X This sequence,

which in itself is important in describing many natural phenomena can be

modified by division modulo m to produce a random sequence of a relatively

long period. However, recent studies of such sequences have proved them

not to be satisfactorily random. A slight modification to the Fibonacci

sequence to the form

Xn+1 = (xn + xn _ k > mod m

when k is comparatively large has been shown to produce acceptable

sequences of random numbers (k = 16).

- 16 -

There are therefore different and varied methods of generating random

numbers by computer. Without knowledge of the particular application

however it would be indeed difficult to recommend one over any other.

Chapter 2 deals with various statistical tests to aid in selecting a satis­

factory generator.

- 17 -

CHAPTER 2

STATISTICAL TESTS FOR EVALUATING
RANDOM NUMBER GENERATORS

The statistical properties of pseudo-random numbers generated by

methods such as those described in Chapter 1 should of course coincide

with the statistical properties of numbers generated by an idealized chance

device that selects numbers from the unit interval (0, 1) independently and

with all numbers equally likely. Obviously, as we have previously

mentioned, the numbers generated by computer are not random because

they are completely determined by a number of initial parameters and

have their precision limited to the accuracy of the computer. However,

we will agree that as long as our pseudo-random numbers can pass a rigid

set of statistical tests that the idealized generator would theoretically also

pass, the pseudo-random numbers will be treated as "truly" random

numbers.

Because random number generators are frequently used in the simulation

of nondeterministic or stochastic systems the importance of the statistical

agreement described above becomes evident. For example, if the probability

of the occurrence of a physical event at a given point in time is . 60,

then if the generated random number assigned to that event at that point

in time is less than or equal to . 60 the event is assumed to have occurred.

A generated random number between . 60 and 1. would imply the event at

this point in time did not occur. Generally, in this manner the entire

- 18 -

course of events of a given case are run or simulated and the final outcome

along with relevant intermediate results are reported. Obviously a poor

or biased random number generator would tend to cast suspicion as to the

accuracy of the simulation. A number of statistical tests are available to

examine pseudo-random sequences and which allow the analyst or statistician

to make statements concerning the apparent randomness or lack of it in a

given sequence. There is literally no end to the number of tests that can

and have been conceived and, in fact, for specific applications oftentimes a

specific test need be developed to protect against biased introduced by the

peculiarities of the application itself. In general there are a number of more

common tests and these are described below.

A. Moments

An obvious and desirable characteristic of a pseudo-random number

generator on the unit interval is agreement between the observed

moments and the known theoretical ones. The first moment, or

average, is calculated as

1 N
X= N.^ X.. (II-1)

(H-2)

(II-3)i

3is 1/3. The third moment, or X is expressed asand its theoretical value

-3 -1x = N
i=l

The expected value for this quantity would be 1/2. The second

2
moment, denoted X , is expressed as

N
~ A X 2
x =N i = i ""

and it has a theoretical value of 1/4. Another quantity directly

related to moments, and in the case of a 0 mean distribution identical

2
to the second moment is the variance, denoted S , and calculated as

- 1 n —2~2 - 2 - x- (X. - X) (U-4)
S=X -X=N2,xi ' 1

i=l

The variance of a uniform distribution on the unit interval (0, 1) is

1/12.

2
B. Chi-Square (X) Tests

v 2The X test is perhaps the best known of all statistical tests and it

is a basic method which is often used in connection with many other

tests. To apply this test we divide the range (0 to 1) of the N samples

into r classes and determine the number of samples, V., which fall

into each class. From the assumed theoretical distribution we

compute pp the probability of being in the ith class. Then Np^ is the

expected number in the ith class and a statistic X is defined as

■r 22 V <Vi - NPi>

i=l NPi

and represents a measure of dispersion between the data and the

assumed distribution. A comparison can then be made with the

2 2
computed value of X and a known value of X such that if the

calculated value is larger than the known value from a table a very

small probability can be attached to the conclusion that the observed

observations were actually drawn from the assumed distribution.

Also, if we have k-independent sets of N observations we can perform

2
similar tests on the k calculated values of X .

- 20 -

The selection of class width is somewhat arbitrary. Generally speaking

class width should be chosen so that all Np. are at least 5 and probably

should be nearer to at least 10. The lengths of the class intervals

need not all be the same but except for the endpoints of some distri­

butions where larger class widths are needed to satisfy the requirement

of Np^> 5, there is not much to be gained by unequal interval sizes.

Mann and Wald (10) suggest using k intervals where

5/ 2 T"
k = 4V 2(n-l) to

and c is related to the size of the critical region (the probability

associated with the critical region under the null hypothesis or signi­

ficance level). Some values of c for different significance levels are

shown below in Table II-1.

TABLE H- 1
Mann-Wald Values of c for Some

Significance Levels

Significance Level c

.001 3.09

• 01 2. 327

. 025 1. 960

.05 1. 645

. 10 1.282

. 15 1. 037

.20 . 842

- 21 -

Another consideration might lead to a different number of classes.

For example, if many times in the simulation model using the

pseudo-random number generator under scrutiny a choice is made

between n equally likely alternatives it might be expeditious to

choose k = n. As Gorenstein (4) points out, in the final analysis it is up

to the user to design tests to suit the needs of his simulation. There

can be no general method that will guarantee good results.

C. The Kolmogorov-Smirnov Test
2

The X test applies to the situation where observations fall or are

arbitrarily placed in a finite number of categories. It is commonplace

however to consider random quantities which may assume infinitely

many values, e. g. , random variables on the (0, 1) interval, and for

some reason be unwilling to set up arbitrary classes. By examining

the cumulative distribution function we can eliminate the need of setting

up arbitrary class sizes and use the Kolmogorov-Smirnov Test (K-S test).

The cumulative distribution function, denoted F(X), where

F(X) = Pr {x<X}

indicates the probability that a random variable x is less than or

equal to some given value X. In the case of a uniformly distributed

variable on the unit interval (0, 1), Pr{x<X} = X. For example

Pr{x^2/3} = 2/3. If we made N independent observations or

- 22 -

samplings of the random variable x, obtaining the values x,, x , . . . x
1 2 N

we can form the empirical cumulative distribution function

number of x- < X
F (X) = ------------------- LZ—

N N

As Nincreases F^(X) should be a better and better approximation of

F(X).

The K-S test may be used when F(X) has no jumps. It measures the

concordance between F(X) and F^(X). A poor random number generator

will yield an empirical distribution function which will not approximate

F(X) very well.

To apply the K-S test to the unit interval (0, 1) where we have a sequence

of N random observations we form the following two statistics:

K* = v^F Max (Fn(X) - F(X))

0 < x < 1

K = /N Max (F(X) - F (X)).
N N

0 <x < 1

II-6

+
Here K measures the greatest amount of deviation when F is

N N

greater than F, and K represents the maximum amount deviation

when F is less than F.
N

- 23 -

2 +As in the X -test, we may now look up critical values of K

in a table to determine if they are significantly high or low and thus

decide if our sampled distribution does, in fact, resemble the hypothesized

distribution.

Although the Kolmogorov-Smirnov test is a more statistically accurate

2test than the X -test, there are a number of disadvantages associated

with it. Some of the main disadvantages are 1) all N observations must

be available during the test 2) the observations, although obtained in a

random order, must be sorted in ascending order and 3) there are a

considerably greater number of calculations involved in the K-S test

2
as compared to the X -test.

Runs Tests

D. The expected random oscillatory nature of sequences of pseudo-random

numbers can be tested by "runs tests". Two standard types of runs tests

are runs up and down and runs above and below the mean.

Runs up and down - Let x^, x^, . . . x^ be a sequence of N unequal

numbers. Consider a sequence of N-l signs, a^, where a^ is the sign

of x^j-x^. A sequence of p consecutive plus signs not immediately

followed or preceded by a plus sign is called a "run up of length p".

An analogous sequence of minus signs is called a "run down of length p".

For example the sequence

1 5 19 15 13 12 18 2 4 9 11

gives ++--- + -+ + +

which has a run up of 2 followed by a run down of 3, up of 1, down of 1, and

- 24 -

up of 3.

If we let

r = number of runs in the sequence

Tp = number of runs of length p in the sequence

r = number of runs of length p or more in sequence
P

then

E(r) = 1/3 (2N-1); Var (r) = (16N-29)/90, (II-7)

2 3 *>
E(rp) = 2N(p +3p+l)-2(p +3p -P-4) /(p+3)!

for p<N-2, (n-8)

+ 7E(rp)= 2N(p+l) - 2(p^+p-l) /(p+2)! forp^N-1 (H-9)

and

r-E(r)
/Var (r) (II-10)

is asymptotically normally distributed as N+oo with mean 0 and variance 1.

We, therefore, can easily test the hypothesis H :r=E(r) by calculating
o

(II-10) and comparing it to the value in the appropriate table of the
2

normal distribution. Likewise, the X goodness of fit test may be used

to check whether a pseudo-random number generator is acceptable based

on the distribution of length of runs. A common characteristic of nonrandom

sequences of numbers is an excess of long runs.

Runs above and below mean - The expected number of runs above and

below the mean is

E(r(m)) =7+1 (II-11)

- 25 -

where r' ' is the number of runs above and below the mean. These

runs are counted by constructing a sequence of N signs with the plus

or minus depending on whether X is greater or less than the mean of
i

the distribution (1/2 in our case). The expected total number of inns

-k-1 2
of length p is (N-p+3)2 . A X -test may be used to check whether

a given pseudo-random number generator is acceptable.

E. Serial Tests

1) Pairs Test

For a locally random series no number shall tend to be followed by

any other number. If we, therefore, construct a table with the rows

representing a frequency distribution of the first number of a pair

of uniform random values and the columns representing a frequency

distribution of the second number of the pair we would expect the

frequencies to be approximately equal in all cells after N pairs had
2

been examined. To test this hypothesis we could apply the X test

to these cells of the table with the theoretical or expected number

of observations in each cell equal to N/number of cells. Clearly

it would be possible to extend this test to triples, quadruples, etc. ;

however, the size of the table increases rapidly and to insure an

expected theoretical value of at least five or ten the total number of

observations needed begins to get quite large. Also, the calculations

v * 2required to compute X begin to use substantial computer time.

It would be appropriate to note here that it would be a mistake to

perform the serial test on the pairs (x.,x9), (x xq) . .. (x_ ., x

- 26 -

because the chi-square test requires independence of the observations.

Rather, for this particular test we should use the pairs (x^,

(x3, x4) .. . (x2N_ j,x2j^) which yields approximately half as many

observations as the incorrect former method.

2) Autocorrelation

The autocorrelation function is a measure which is widely used

in the study of stochastic processes. If we let Xp i = 1, 2, . . .

be a sequence from the unit interval (0, 1), then we may define

the autocorrelation function of a sample of length N from this

sequence as
N-t

R(t) = 1/12 (Xi - 1/2) (xi+t - 1/2) (H-I2)

where t is commonly referred to as the length of the lag and R(t)

as the autocorrelation at lag t.

The correlation coefficient always lies between -1 and +1. When it

is zero or near zero, it indicates that the sequences {x.J. and

are (statistically speaking) independent of each other. When the

correlation coefficient is near - 1 (it indicates a high degree of linear

dependence between the two sequences. A value of - 1 would indicate

total dependence and, in fact,

Xi+t = ^i + b

for some constants and and b.

A satisfactory random sequence would have autocorrelations near zero

for all lags tested.

- 27 -

F. Gap Test

All of the preceding tests have been conceived for randomness of

numbers where each number consisted of some fixed or finite number

of digits. The gap test for digits is concerned with the randomness

of the digits in a sequence of numbers. For any given digit d, we can

examine the lengths of the gaps of "non-d" digits between any two

"d-digits". In other words, a gap of length k occurs when k "non-d"

digits occur between two "d-digits". Two consecutive d's produce a

zero gap.

The theoretical probability of obtaining a gap of length k is

Pr {gap = k} = (,9)k (. 1) (n-13)

For a given sequence of digits, tallies are made of the number of

gaps occurring for each length. A chi-square goodness of fit test

can be used to compare expected and theoretical number of gaps.

A second type of gap test does not examine digits but examines the

actual random number. In this case, a gap is the number of consecutive

observations in the sequence that do not fall between a specified a and b.

Generally, a tally is kept as to gaps of lengths 0, 1, 2 . . . t-1, and the

number of gaps of length t or greater.

In the case of examining pseudo-random numbers between zero and one,

we would have the following relationship

0 < a < b < 1

and the following probabilities associated with the gap lengths

Pr {gap = 0} = b-a

Pr (gap = 1} = (b-a) (l-(b-a))

, 2
Pr {gap = 2} = (b-a) (l-(b-a))

Pr {gap = t-1} = (b-a) (l-(b-a) / 1

Pr {gap>=t} = (l-(b-a))t

Chi-square tests can also be applied here as in the digit gap test.

G. Maximum Test

For a set of N independent uniform random numbers, x^, x^, . . . x^.

in the unit interval (0, 1), we can define a random variable

(11-14)

W = Max (x^, . x^) and the distribution of W is given by

x NF (W) = max (x^, X2, . . . x^)

NSince Pr {W <a} = F(a) = a for 0<a<l, F (w) as defined in (11-14)

is distributed over the unit interval with a cumulative distribution function

N
F(W< w) = W . By sampling several sets of N independent random

numbers we can use the X -test on the distribution of W.

H. Minimum Test

This test is the same as the maximum test of N except that the minimum

of (Xp X2, . . . x) are taken and the corresponding distribution function

used.

At this point it might be wise to close by answering the question as to

why are so many tests necessary. It seems like more time is spent

testing the numbers than in using them. This is probably not true but the

importance of knowing the shortcomings of a particular random number

generator cannot be understated. This is because the simulation, risk

analysis or other models using the particular random number generator

are highly dependent on the accuracy and unbiasedness of the generator for

their value as viable tools. If confidence cannot be established in the random

number generator of these models, there is little likelihood of people

believing in the models that employ these generators. With confidence

established in the random number generator the question of confidence in

the actual model is at least reduced to the assumptions and relationships

developed therein.

- 30 -

CHAPTER 3

A PROGRAM TO EVALUATE
UNIFORM RANDOM NUMBER GENERATORS

A. Introduction

The computer program described in this section performs eight

standard statistical tests on a vector of random numbers. The vector

can be input to the program or the subroutine which generates the

vector can be linked to the main program and the random numbers

generated at execution time. The eight tests available are:

1. Gap test

2. Runs test

3. Pairs test

4. Chi-square test

5. Moments

6. Runs above/below mean

7. Autocorrelations

8. Kolmogorov-Smirnov test.

The program is written in FORTRAN IV and was compiled using the

IBM FORTRAN G compiler on a System 360 Model 65. The program

runs in approximately 120 K bytes of core and uses a temporary disk

file to store the vector of random values. The maximum length of this

vector is essentially unlimited as the program reads the random numbers

into core from the temporary file in blocks of 10, 000.

- 31 -

B. System Control Cards

The user documentation contained herein assumes that the program is

available in a load module form, i. e. it has been compiled and link

edited. To execute the program, therefore, the function RAN need only

be compiled and linked to the main program. Although RAN will be

called only if the user specifies that random numbers will be generated

during execution, its module must always exist, therefore the load

module contains a dummy function RAN. This function is as follows:

FUNCTION RAN (NX)

RAN = 0. 0

RETURN

END

If the user is to read his random vector from an already created file

the above dummy function will allow the load module to execute. If the

user wishes to generate his vector of random values during execution

he must compile his random number generator as a function named

RAN (NSEED) and link edit this function into the load module in place of

the existent dummy function. The mechanics of this procedure will of

course vary from computer to computer. For an IBM/360 computer

with the program load module located in an accessible library the

following sequence of instructions will suffice. FORTGCLG is a

catalogued procedure to execute a FORTRAN compile, link edit and go.

It is comprised of three steps - FORT, LKED, and GO. TABLE III. 1

shows this procedure.

- 32 -

TABLE III. 1

FORTGCLG - A Procedure to Execute FORTRAN
Compile, Link Edit and Go

♦♦♦ PROCEDURE FORTGCLG »»* *♦* PROCEDURE FORTGCLG ***
//FORTGCLG PROC FORMS=*A ,,0001•,CPRM=SOURCE,LPRM=LIST,
// LIBR=*UTCC.DUMMYLIB*
//**** FORTRAN G COMPILE LINK EDIT AND GO
//FORT EXEC PGM=IEYFORT,REGION=104KtTIME=10,PARM=,CCPRM»
Z/SYSPRINT DC SYSOUT=(LFORMS),DCB=(LRECL=120,BLKSIZE=3120,RECFM=FBSA),
// SPACE=(3120,(40,40))
//SYSL1N DD DSN=L&LOADSET,SPACE=(3120,(12,12)),DCB=BLKSIZE=3120,
// UNIT=SYSCA,CISP=(MOD,PASS,DELETE)
//SYSIN DO DSN=GLSOURCE,DISP=(OLD,DELETE,DELETE)
//LKED EXEC PGM=IEWLF880,REGION=114K,CCND=(4,LT,FORT),
// TIHE=2,PARM=«XREF,LIST,LET,CLPRM,SIZE=(114K,24K)•
//SYSPRINT DC SYSOUT=(&FORMS),DCB=BLKSIZE=6C5,SPACE=(605,(17,34))
//SYSLIN DD DSN=LLLCADSET,DISP=(OLD,DELETE,DELETE)
// DC DDNAME=SYSIN
//SYSLMOD DD UNIT=SYSDA,DSN=LLGOOATA(RUN),DISP=(,PASS,DELETE),
// SPACE=(TRK,(19,10,1))
//SYSLIB DC DSNAME=SYS1.FORTLI8,DISP=SHR
// DD DSN=LLIBR,DISP=SHR
// DD DSNAME=TEHO.LOADLIB,DISP=SHR
// DD DSN=SYS1.GULFMQD,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(19,10))
//GO EXEC PGM=*.LKED.SYSLMOD,COND^t 44,LT,FORT),(4,LT,LKED))
//SYSUDUMP DD S YSOUT^= (LFORMS) , SPACE = (TRK , (1,19))
//FT05F001 DC DDNAME=SYSIN
//FT06F001 DD SYSCUT=(LFORMS),SPACE=(TRK,(1,19)),
// DCB=(RECFM=VBA,LRECL=137,BLKSIZE=1100)
//FT07F001 DD SYSOUT=B,SPACE=(TRK,(1,19)),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800)

- 33 -

ccl 7

// EXEC FORTGCLG, REGION. GO=120K, LIBR='libr*

//FORT.SYSIN DD *

FUNCTION RAN (NSEED)

FORTRAN Source

code for function RAN

RETURN

END

/*

//LKED.SYSIN DD *

INCLUDE SYSLIB (progname)

ENTRY MAIN

/*

//GO. FT02F001 DD UNIT=SYSDA, SPACE = (TRK, (50, 10)), DISP=NEW,

// DCB=(RECFM=FB,LRECL=160,BLKSIZE=3200)

//GO.SYSIN DD *

Program control

cards

/*

where in the above deck listing:

libr denotes the library where the program load module

can be found,

progname denotes the name of the program.

In the Gulf Houston Datacenter, libr would be MSDC.LOADLIB and progname

would be MSHC0074.

- 34 -

To run the Uniform Random Number Evaluation Program where the vector

of random numbers is already on a file the following sequence of cards

would be used. Once again we assume the program resides on an accessible

library.

ccl 6

H EXEC PGM =progname,REGION=120K

//STEPLIB DD DSN=libr, DISP=SHR

//FTnnFOOl DD UNIT=SYSDA, DSN=filename, DISP=OLD

//FT06F001 DD SYSOUT=A

//FT05F001 DD *

Program control

cards

/*

where in the above deck listing

progname denotes the name of the program

libr denotes the library where the program

load module can be found

nn denotes the unit number of the file where

the vector of random numbers is located

filename denotes the name given to this file

C. Program Control Cards

The program will evaluate, sequentially, an unlimited number of

pseudo-random numbers. Each vector to be analyzed requires a single

header card and then, depending on which tests are to be performed and

- 35 -

whether or not the pseudo-random numbers have already been generated,

a variable number of additional control cards.

1. Header Card

This card specifies the length of the vector to be analyzed,

provides a seed if the pseudo-random numbers are to be

generated during execution or the file number where the

previously generated vector resides, specifies which tests

are to be executed, and provides the user the option to print

the vector of pseudo-random numbers. The format for the

= 1 perform runs test

header card is as follows:

Card Column Label Description

1-10 (right justified) NT Number of random values in the vector

if it is located on an already existing

file or the number of values to be

generated during execution using the

supplied function RAN.

11-20 NSEED Initial seed for random number

generator if vector is to be generated

during execution. May be left blank

if vector already exists on a file.

21-22 IND(l) Number of gap tests to be performed

max=10

24 IND(2) =0 do not perform runs test

- 36 -

26 IND(3) = 0 do not perform pairs test

= 1 perform pairs test

28 IND (4) = 0 do not perform chi-square test

-1 perform chi-square test

30 IND(5) = 0 do not calculate moments

= 1 calculate moments

32 IND(6) = 0 do not perform runs above/below

mean test

= 1 perform runs above/below mean test

34 IND(7) =0 do not calculate autocorrelations

= 1 calculate autocorrelations

36

37-40

IND(8) = 0 do not perform Kolmogorov-

Smirnov test

= 1 perform Kolmogorov-Smirnov test

not presently used

41-42 IFILE Unit number of file where previously

generated vector of pseudo-random

numbers resides. Should be 0 or

blank if numbers are to be executed

at run time.

44 NPRNT = 0 do not print pseudo-random vector

= 1 print pseudo-random vector

45-80 TITLE(l)-

TITLE(9)

A user-supplied title which will be

printed on the first page of output

- 37 -

2. Variable Format Card

The variable format card is only read if the vector of pseudo­

random numbers is to be read from an existing data file. If

such is the case, this card is the FORTRAN FORMAT state­

ment, without the statement number and word FORMAT that

was used to write the previously generated vector to its data

file. For example, if the file generated contains 50,000 random

numbers in records of length 20 the statement that wrote these

to the data file might have been

cc3 7 21

900 FORMAT(20F10.5)

In this instance, the variable format card would be

ccl 9

(20F10. 5)

No card should be inserted in this position if the pseudo-random

vector is generated at execution time.

3. Test Parameter Cards

Certain of the statistical tests available require a control card

to provide user specified parameters needed for the test. These

tests are

a) the gap test

b) the pairs test

c) the chi-square test

Each time one of these tests is to be performed its parameter

card is read. For the tests specified in the header card, the

respective parameter cards must therefore be present. The

format of these cards for each of the above tests is as follows:

Gap Test

The gap test performed by the program is the second one

mentioned in Chapter 2, Section F. It tallies the number

of consecutive observations in the sequence that do not

fall between a user specified interval from a to b. The

program has the capability of performing up to 10 simul­

taneous gap tests as indicated by IND(l). This number

of cards (IND(l)) is needed. The format is as follows:

Gap Test Parameter Card

Card Column Label Description

1-5 CA Lower end of gap interval

6-10 CB Higher end of interval

14-15 MXGAP Maximum number of cells to

record gap length; 0, 1, 2, . . . MXGAP- 1.

MXGAP <10

CA must be less than CB. Also, to insure a meaningful chi-square

test on the distribution of gap lengths

nt*(cb-ca)2(1-(cb-ca))MXGAP >5.

- 39 -

Pairs Test

The pairs test tallies adjacent pairs of pseudo-random

numbers in a two-dimensional frequency table where

the horizontal and vertical axes are divided into a user

specified number of categories, say NCP. Thus there

2
are NCP total cells. The user can specify NCP or the

program will calculate a desirable value using the

Mann-Wald criterion described earlier. In either

instance, however, a Pairs Test Parameter Card must

be present if the Pairs Test has been specified. Its format

is as follows:

Pairs Test Parameter Card

Card Column Label Description

1-3 NCP Number of cells to appear on

horizontal and vertical axes.

Maximum 50.

=0 program will calculate NCP

using Mann-Wald criterion.

Chi-Square Test

The user must provide the number of cells for the tallying

of the frequency distribution for the Chi-square test. As

with the pairs test mentioned above, if no explicit specifica­

tion is made the program will calculate the number of cells

using the Mann-Wald criterion. The format for the Chi-square

- 40 -

Test Parameter Card is as follows:

Chi-Square Test Parameter Card

Card Column Label Description

1-3 NC Number of cells for tally of

frequency distribution.

Maximum 500.

=0 program will calculate NC

using Mann-Wald criterion.

If the gap test, pairs test or chi-square test is not requested

on the header card by the appropriate IND(i), its corresponding

parameter card must not appear.

D. Output

The standard output from the Uniform Random Number Evaluation

includes the following:

1. the number of observations in the vector of pseudo-random

numbers

2. the user supplied seed if the sequence was generated

during execution

3. a listing of the random sequence (optional).

Output for each of the tests available in the program is as follows:

Gap Test

- the user specified gap interval

- the frequency distribution of observed and theoretical gap

lengths from length 0 to MXGAP-1 and over

- 41 -

v2- the calculated X statistic and associated degrees of

freedom

2
- the critical X value for 90% and 95% confidence levels

Runs Test

- the frequency distribution of observed and theoretical run

lengths

- the calculated X statistic and associated degrees of freedom

2
- the critical X value for 90% and 95% confidence levels

- the Z-score for the test of the hypothesis H : r = E(r)
o

Pairs Test

- the number of intervals the horizontal and vertical axes have

been divided into

- the end points of each interval and the frequency count of

adjacent pairs in each grid

v2
- the calculated X value and its associated degrees of freedom

2
- the critical X value for the 90% and 95% confidence levels

Chi-Square Test

- for each cell the interval end points, observed and theoretical

frequency counts

v2

2
- the critical X value for the 90% and 95% confidence levels

Moments

- the calculated and theoretical mean, second moment, third

moment and variance

- the calculated X value and its associated degrees of freedom

- 42 -

- the normalized deviate of the observed mean from the

theoretical mean of . 5

Runs Above/Below Mean

- the frequency distribution of observed and theoretical mm

lengths

v2- the calculated X statistic and its associated degrees of

freedom
2

- the critical X value for 90% and 95% confidence intervals

Autocorrelations

- the calculated autocorrelations of the series for all lags up to

the minimum of 50 and NT/10

- the 95% confidence interval for the theoretical autocorrelations

of zero

- the number of observed autocorrelations which fall outside

the 95% limits

Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov test involves sorting the vector of pseudo­

random numbers. Since the vector is handled in blocks of 10, 000,

each block of 10, 000 is sorted and the test performed on the

sorted vector of length 10, 000. The results are shown for each

block up to twenty, or 200, 000 random numbers and are as follows

- the maximum and minimum (ZP and ZM) deviations of

the observed and theoretical distributions

- the probability of observing a ZP less than the one realized

- the probability of observing a ZM greater than the one realized

45

E. The Program and Necessary Subroutines

The Uniform Random Number Evaluations Program consists of a main

program and fifteen functions and subroutines. It requires 114 K

bytes of core on an IBM/360 Model 65. A run to generate 50, 000

uniform random numbers and perform all eight tests uses approximately

4 1/2 CPU minutes of which the generation of the random numbers uses

about half of the total time.

The main program acts as a control module among the subroutines.

It performs necessary bookkeeping as well as all input/output. The

subroutines are the modules that perform all the statistical tests and

they are called by the main program and by other subroutines. A list

of the functions and subroutines, their calling sequence and a brief

description are shown below.

GAP2 (called by MAIN) - tallies gap lengths in the random

vector and records results in appropriate table.

CHISQ (called by MAIN, RUNTS) - calculates the chi-square

statistic and degrees of freedom for a pair of observed and

theoretical frequencies.

TALLY (called by MAIN) - tallies vector of observations into a

frequency distribution.

MOMNT (called by MAIN) - calculates mean, variance, second

and third moments of a vector.

KOLMO (called by MAIN) - sorts vector into ascending order and

finds the maximum and minimum deviations between the

empirical and theoretical distributions.

RUNTL (called by MAIN) - tallies the number of inns up and

down in a vector.

RUNTS (called by MAIN) - computes the theoretical frequencies

2
of runs up and down and calculates the X statistic (using

CHISQ).

PARTL (called by MAIN) - tallies the occurrence of the adjacent

paired coordinates in a vector.

PARTS (called by MAIN) - performs the Pairs Test on the frequency

of pairs tallied in PARTL.

CHSQD (called by MAIN) - calculates the critical chi-square value

for an alpha level and a given degrees of freedom

GAUSD (called by CHSQD) - calculates the deviate associated with

the cumulative probability of a normal distribution.

AUTOC (called by MAIN) - calculates autocorrelations in a vector

for up to fifty lags.

SMIRN (called by MAIN) - computes the limiting distribution function

of the Kolmogorov-Smirnov statistic.

MWALD (called by MAIN) - computes the optimal number of classes

for a chi-square test according to the Mann-Wald criterion.

RAN (called by MAIN) - a user supplied function to generate uniform

pseudo-random numbers.

A listing of the entire program and all functions and subroutines is shown in

Appendix A.

CHAPTER 4

EVALUATING SELECTED UNIFORM
RANDOM NUMBER GENERATORS

A. Introduction

In this chapter, the results of applying the subject program to a number

of frequently used uniform pseudo-random number generators are

presented and discussed. Additionally the subject program was run on

"random" sequences from three intentionally biased generators. A

summary of the output from these tests is presented, along with relevant

remarks. A complete set of the output reports is available upon request.

A sample output report is shown in Appendix B.

B. The Tested Random Number Generators

As previously mentioned, four frequently used uniform pseudo-random

number generators were tested. The four selected and a brief description

of each is shown below:

1. RAN - A function coded in FORTRAN supplied by Dr. C. E. Donaghey

in the class I. E. 670, Operations Research - Digital Simulation,

Fall 1972. The validity of the generator is supposedly machine

independent. The code for RAN is as follows:

FUNCTION RAN (NSEED)

NSEED = IABS (NSEED 655393)*

RAN = FLOAT (MOD(NSEED, 33554432)) / FLOAT (33554432)

RETURN

END

- 4b -

2. RANDU - A FORTRAN subroutine presented in the IBM Scientific

Subroutine Package, p. 77. RANDU is used in PETROS, originally

an IBM simulation game of the oil industry, which has since been

substantially modified and improved by Gulf and is periodically

presented to Gulf management as part of an executive training

seminar. The subroutine coding for RANDU is as follows:

SUBROUTINE RANDU (IX, IY, YFL)

IY = IX * 65539

IF (IY) 5,6,6

5 IY = IY + 2147483647 + 1

6 YFL = IY

YFL = YFL * .4656613E-9

RETURN

END

In its above form as a subroutine, RANDU, when used in conjunction

with the evaluation program, would have to generate its sequence

of random values externally to the test program. It would be

appropriate to note here that with a few minor changes however,

RANDU could be converted to a function program and the random

sequence generated during execution of the test program. The

converted subroutine (renamed RAN, as required) would be as

follows:

FUNCTION RAN (IX)

IY = IX * 65539

IF (IY) 5,6,6

5 IY = IY + 2147483647 + 1

6 RAN = IY

IX = IY

RAN = RAN * . 4656613E-9

RETURN

END

3. GGU1 - An assembler language uniform pseudo-random number

generator developed and distributed by IMSL (International

Mathematical and Statistical Libraries, Inc.). GGU1 generates

a sequence, |R| of uniformly distributed numbers using a mul­

tiplier and a seed

where:

R. = A * R i = 0, 1,2. . .
i+l i

where:

A is a constant initialized in GGU1,

Rq is the input seed, a floating point number in the

interval (0, 1).

4. GGU2 - An assembler language uniform pseudo-random number

generator developed and distributed by IMSL. GGU2 is similar to

GGU1, except that two multipliers and two seeds are used in the

former whereas GGU1 uses a single multiplier and seed. In GGU2,

- 48 -

each seed-multiplier continuation is used to produce a floating

point deviate. The resulting random deviate is built using the

characteristic (exponent) of one of the original deviates and

"Exclusive OR" ing the two mantissas, securing, in a random

manner that the resultant lies in the interval (0, 1).

Each of the above random number generators was used to generate

random sequences of length 1000, 2500 and 5000. The initial seed(s)

for each of the twelve runs (4 generators, 3 runs each) were selected

from a table of random numbers. All tests available in the program

were executed on each sequence. The results are summarized in

Tables IV. 1 and IV. 2.

Generally speaking, all the generators did fairly well with respect to

2
these tests. The one or two significant X. values for the gap tests is

not abnormal for the 30 tests on each generator as it only represents

about a 5% incidence of failure. Both JMSL routines fa.red poorly on

the Runs Test, exhibiting an excessive number of runs in the sequence

of length 1000. RANDU revealed a poor distribution of run lengths above

and below the mean for its sequence of length 1000.

All of the tests were identically specified with respect to the available

user parameters. The Mann-Wald criterion was used for selecting

the number of cells in the Pairs Test and Chi-square Test. The gap

tests evaluated ten gap intervals from (. 0, . 1) through (. 9, 1.) It would

be advisable for an analyst considering using one of these pseudo-random

TABLE IV. 1
RESULTS OF GAP TESTS

GENERATOR

GGU1 GGU2RAN RANDU
Length of Sequence (M) _1 2.5 5, _1 2. 5 5 _1 2. 5 5 J. 2, 5 5

Gap Interval
(.0 - . 1) .6 8. 5 5.4 5. 6 14. 9* 3.9 2. 0 7. 1 14. 5 4.6 9. 6 6. 6

(.1 - .2) 1. 7 11. 5 4.6 4. 0 9.3 3. 7 2. 7 8.4 8. 1 5. 8 8. 3 9. 9

(.2 - .3) 3. 6 8. 7 6. 5 3. 5 11. 3, 6. 1 2. 1 7. 1 10. 7 2. 1 9. 1 10. 7

(.3 - .4) 3. 5 5. 5 6.4 3. 6 6. 6 4. 8 . 9 16. 5* 5. 9 5.2 13. 8 8. 2

(.4 - .5) 4. 7 7.4 3.9 . 6 10. 0 8. 6 4. 5 2. 0 4. 1 8. 3* 7. 1 7. 1

(.5 - .6) 2. 1 6. 7 5. 6 3. 3 8. 2 15. 2* 3. 5 10. 3 13. 6 3.4 5. 7 13. 5

(.6 - .7) 2. 3 12. 0 6. 5 . 0 12. 5 6. 8 9. 0* 8.2 5. 6 3. 1 9. 7 6. 2

(.7 - .8) 2. 4 8.4 11. 7 4. 9 4. 5 7. 6 2. 1 3. 2 13. 3 2. 6 6. 1 4. 9

(.8 - .9) 8. 1* 5.7 7.2 5. 1 10. 5 10. 6 2. 6 9. 6 8. 4 2. 1 16. 8* 6. 3

(.9 - 1.0) 3. 0 4. 3 10. 0 5.3 7. 4 11. 0 3.7 7. 6 13. 0 2. 8 6.4 3. 6

2
Critical X

Alpha = . 05 9.49 16. 92 16. 92 9.49 16. 92 16. 92 9.49 16. 92 16. 92 9.49 16. 92 16. 92

Alpha = .10 7. 78 14. 68 14. 68 7. 78 14. 68 14. 68 7. 78 14.68 14. 68 7. 78 14. 68 14. 68

* Significant X value at 90% confidence level

TABLE IV. 2

SUMMARY OF STATISTICAL TESTS ON FOUR UNIFORM
PSEUDO-RANDOM NUMBER GENERATORS

GENERATOR

RAN RANDU GGU1 GGU2
Length of Sequence 1 2. 5 5 1 2. 5 5 1 2. 5 5 1 2. 5 5

1)

(M)
Test

2Runs Test - X 1. 0 3. 5 1. 5 6. 5 12.8** 3. 7
*

8. 9 4. 3

2)

Critical values
(»<= . 05)
(=*= . 10)

Runs Test -
Z-score

9. 5
7. 8

-.6 -1.2

11. 1
9.2

. 0

9.5
7.8

. 5 -. 6

.11. 1
9.2

. 1

9.5
7. 8

-1. 3 -.2

11. 1
9.2

. 8

9. 5
7. 8

1. 5 . 17

11. 1
9.2

-1. 0
Critical values

(=<= . 05) 1. 96 1. 96 1. 96 1. 96 1. 96 1. 96 1. 96 1. 96 1. 96 1. 96 1. 96 1. 96
(=x= . 10) 1. 65 1. 65 1. 65 1. 65 1. 65 1. 65 1. 65 1. 65 1. 65 1. 65 1. 65 1. 65

3)
2

Pairs Test - X 54. 1 94.2 109.2 45. 5 91. 2 100. 1 36. 7 91. 6 104. 6 40. 4 80. 1 82. 7
Critical values

(o<= . 05) 65.2 101. 8 123.2 65.2 101. 8 123. 2 65. 2 101. 8 123. 2 65.2 101. 8 123. 2
(=x= . 10) 60. 9 96. 6 117.4 60. 9 96. 6 117. 4 60. 9 96. 6 117. 4 60. 9 96. 6 117. 4

4) Chi-Square
Test - X 2 42. 7 65.4 115. 0 45. 5 88. 1 73. 6 53. 3 72. 8 98. 6 48. 4 94. 3 130. 0
Critical values

(o<= .05) 76. 8 107. 5 137.7 76. 8 107. 5 137. 7 76. 8 107. 5 137. 7 76. 8 107. 5 137. 7
(cx= . 10) 72. 2 102. 1 131. 6 72.2 102. 1 131. 6 72.2 102. 1 131. 6 72. 2 102. 1 131. 6

TABLE IV. 2 (Cont'd)

SUMMARY OF STATISTICAL TESTS ON FOUR UNIFORM
PSEUDO-RANDOM NUMBER GENERATORS

GENERATOR

Length of Sequence
(M)

Test

RAN RANDU GGU1 GGU2
1 2. 5 5 1 2. 5 5 1 2. 5 5 1 2. 5 5

5) Moments - Z - *
score of mean
Critical values

. 7 .6 -.8 5 1. 24 -.3 1. 19 1. 12 . 3 . 3 -1. 8 . 2

(=x= . 05) 1. 96 1. 96 1. 96 1. 96 1. 96 1. 96 1. 96 1. 96 1. 96 1. 96 1. 96 1. 96
(<x= . 10) 1. 65 1. 65 1. 65 1. 65 1. 65 1. 65 1. 65 1. 65 1. 65 1. 65 1. 65 1. 65

6) Runs Above/
Below Mean - X 10.4 2.9 5. 8

*
11. 8 5. 0 9.7 4. 1 7. 3 6.4 5. 1 9. 1 4. 0

Critical Values
(o<= . 05) 12. 6 15. 5 16.9 12. 6 15. 5 16. 9 12. 6 15. 5 16. 9 12. 6 15. 5 16. 9
(=<= . 10) 10.7 13.4 14. 7 10. 7 13. 4 14. 7 10. 7 13. 4 14. 7 10. 7 13. 4 14. 7

7) Autocorrelations -
% Outside i 95%
limits 8* ** 2 8* 2 0 2 6 2 4 12* 6 4

8) Kolmogorov-
Smirnov Test -
Max (Prob (ZP),
Prob (ZM)) .74 . 18 .73 . 34 . 77 . 02 .49 . 82 . 07 . 32 . 88 . 24

* statistically significant difference at 90% level
** statistically significant difference at 95% level

number generators for a specific application, to retest the generator

with the characteristics of that application in mind. Particulars to

consider would be the number and length of gap intervals, the number

of cells in the Chi-square and Pairs Test, the initial seed, NSEED,

and the length of the random vector. These factors would obviously

have a direct bearing on the meaningfulness of the tests in relationship

to the validity of the simulation.

C. Intentionally Biased Generators

As mentioned above, the evaluation program was also run using three

biased random number generators. The function RAN referred to

earlier in this chapter was modified to produce non-random sequences

of length 5000. The three biased generators can be characterized as

follows:

1. Correlated random numbers - each generated pseudo-random

number in the sequence was correlated with the previously

generated number using the relationship

Xi+1 = '3xi + •7 (NSEED) i = 1,2, ... 4999

where

RAN (NSEED) is the call to the function RAN described

in Section B of this chapter.

2. Gap between . 8 and . 85 - random values were generated by RAN

with all values in the interval (. 8, . 85) ignored. The resultant

vector thus consisted of 5000 values of which none were in the

mentioned interval.

3. Periodicity length of 1000 - RAN was used to generate 1000

pseudo-random values. This sequence was then replicated four

times and appended to itself to yield a vector of 5000 pseudo­

random values having a periodicity or cycle length of 1000.

The summarized results of these three tests are shown in Table IV. 3.

Critical values are not shown in this Table, but are identical to the

critical values shown in Table IV. 2 for the sequences of length 5000.

The program does quite well in the detection of the aberrated pseudo­

random number generators. The correlated random number generator

shows significant differences in all tests, except the Moments Test

Z - score for the mean. However, although not shown in Table IV. 3,

the variance and second and third moments of this sequence are showing

substantial difference from their respective expected values. With 8% of

the autocorrelations significant, it is also interesting to note the value

of the autocorrelation for the first lag is .296. The values for lags two

and three are . 098 and . 019 which exhibit the pattern of autocorrelations

from an autoregressive time series. The "gapped" generator shows its

aberrations exceptionally well in the Pairs Test and Chi-square Test.

The gap in the interval (. 8, . 85) lowers the mean significantly and also

causes suspicious results in the Runs Above/Below the Mean and the

Kolmogorov-Smirnov Tests. The cycled generator shows significant

2
X values in all Gap Tests, the Runs Test, Pairs Test, Chi-square Test

and Runs Above/Below the Mean. It also shows statistical significance

TABLE IV. 3

RESULTS OF TESTS ON BIASED GENERATORS

GENERATOR

Correlated Gap at (. 8, . 85) Cycle length 1000

2
1) % significant X values for maximum

of 10 Gap Tests (o< = . 05) 100% 10% 100%
(o< = .10) 100% 30% 100%

2) Runs Test - X 118.9** 2.9 25. 4**

3) Runs Test - Z - score -8. 6** -1. 0 1. 4

2
4) Pairs Test - X 1939.2** 234.7** 570.** ,

2
5) Chi-Square Test - X 1531. 8** 341. 7**

in
626.3**

6) Moments - Z - score of mean . 50 -4.96** 1. 34

2
7) Runs Above/Below Mean - X 134.2** 24. 1* 48.9**

8) Autocorrelations - % outside f 95% limits 8* 14* 28**

9) Kolmogorov-Smirnov Test - Max (Prob (ZP), 1. 00** 1. 00** . 99**
Prob (ZM))

* statistically significant difference at 90% level
** statistically significant difference at 95% level

- 55 -

with the high proportion of non-zero autocorrelations and a very small

K-S probability of actually representing its supposed theoretical dis­

tribution.

D. Conclusions

The subject program to evaluate uniform pseudo-random number gen­

erators provides a consistent yet flexible tool for the analysis of

computer generated random sequences. Additional areas of study re­

lating to and expanding upon the work done to this point could prove

to be interesting and informative.

The program might be used to evaluate additional uniform random number

generators that are frequently used. This could be done as a general

comparative test9 similar to the ones described in this paper# or as a

specific test with a particular application of the random number generator

in mind and the tests parameters selected for that one application.

A study to determine the sensitivity of the program and define its discrim­

inatory ability with regard to valid and invalid generators would be useful.

This study could proceed by sequentially altering a valid pseudo-random

number generator with more subtle aberrations until the program was

no longer able to distinguish the biased generator from the presumably

unbiased one. The various tests included in the program could be ranked

according to their ability to detect defective generators and which tests

are most likely to detect certain common deficiencies (e. g. autocorrelation,

cycling, subtle patterns in the generated sequence).

- 56 -

The area of periodicity is one in which additional study might prove to

be especially revealing. The theory presented in Chapter 1 detailing

the relationships between multipliers, seeds and various congruential

methods could be taken further, using the subject program as a means

of evaluating possible alternatives. Along the lines of the cycling gen­

erator presented earlier in this chapter, the ratio of cycle length to

length of the evaluated sequence might be varied to determine at what

point cycling becomes apparent.

All of the above areas of additional study propose use of the subject

program as it now exists. There are of course, a number of possible

enhancements to the program which might also be considered. There

are a number of additional tests which could be included in the program

such as the maximum test, minimum test, poker test, triplets test and

.distance test. An option for the user to code his own test (called UTEST,

for example) and link edit the code to the main program in a manner like

RAN is now handled would be a valuable feature and would give the program

virtually total flexibility.

- 57 -

BIBLIOGRAPHY

1. Coveyou, R. R. and Macpherson, R. D. "Fourier Analysis of
Uniform Random Number Generators", Journal of the ACM, Vol. 14,
No. 1 (Jan. 1967), pp. 100-119.

2. Cunningham, S. W. "From Normal Integral to Deviate", Applied
Statistics, Vol. 18, Royal Statistical Society, 1969, pp. 290-293.

3. Goldstein, Richard B. "Chi-square Quantiles", Comm, of the ACM,
Vol. 16, No. 8 (Aug. 1973), pp. 483-485.

4. Gorenstein, Samuel. "Testing a Random Number Generator", Comm,
of the ACM, Vol. 10, No. 2 (Feb. 1967), pp. 111-118.

5. Hastings, Cecil, Jr. Approximations for Digital Computers, Princeton
University Press, Princeton, N. J. , 1957; p. 192.

6. IBM Corporation. System/360 Scientific Subroutine Package
(360A-CM-03X) Version III Programmer's Manual, H20-0205-3,
IBM Technical Publications Department, White Plains, N. Y. , 1968.

7. Kendall, M. G. and Babington-Smith, B. "Randomness and Random
Sampling Numbers", Journal of the Royal Statistical Society,
Vol. 101 (1938), pp. 147-166.

8. Kendall, M. G. and Babington-Smith, B. "Second Paper on Random
Sampling Numbers", Supplement to the Journal of the Royal Statistical
Society, Vol. 6 (1939), pp. 51-61.

9. Knuth, Donald E. The Art of Computer Programming, Addison-Wesley,
Reading, Mass. , 1969.

10. Levene, H. and Wolfowitz, J. "The Covariance Matrix of Runs Up
and Down", Ann. Math, Stat, , Vol. 17 (1944), pp. 58-69.

11. MacLaren, M. Donald and Marsaglia, G. "Uniform Random Number
Generators", Journal of the ACM, Vol. 12, No. 1 (Jan. 1965), pp. 83-89.

12. Mann, H. B. and Wald, A. "On the Choice of the Number of Class
Intervals in the Application of the Chi-square Test", Ann. Math, Stat. ,
Vol. 13 (1942), pp. 306-317.

- 58 -

13. Marsaglia, G. "Random Numbers Fall Mainly in the Planes",
Procedures of the National Academy of Science, Vol. 60 (Sept. 1968),
pp. 25-28.

14. Marsaglia, G. and Bray, T. A. "One Line Random Number Generators
and Their Use in Combinations", Comm, of the ACM, Vol. 11, No. 11
(Nov. 1968), pp. 757-759.

15. Naylor, Thomas H. Computer Simulation Experiments with Models of
Economic Systems, John Wiley & Sons, Inc., New York, 1971.

16. Olmstead, P. S. "Distribution of Sample Arrangements for Runs Up
and Down", Ann. Math. Stat. , Vol. 17 (1946), pp. 24-33.

17. Tippett, L. H. C. "Random Sampling Numbers", Tracts for Computers,
Vol. 15 (1927), Cambridge University Press.

18. Westlake, W. J. "A Uniform Random Number Generator Based on the
Combination of Two Congruential Generators", Journal of the ACM,
Vol. 14, No. 2 (April 1967), pp. 337-340.

- 59 -

APPENDIX A

Source Code for the Program

RAN

1

4
-5
6
7

8

0
1
2
3
4
5
6
7

8
9
0
!i
2
3
4
5
6
7
8
9
0

I
3
4

- 60 -

TV LEVEL 21 MAIN DATE = 74160 11/07?

C

C
C
C
C
C
C
C
C
Cc cc cc c c c c

1
900c c c

9001

DATA SET MSHOAEVRAN AT LEVEL 039 AS OF 06/09/74
DIMENSION X(10000),KOUNT(10),CELLS(500),EXPCT(500),ANS(4)
DIMENSION A(50,50)fIND(10),IF0MT(20)
DIMENSION CELLG(IO),RUNS(8)
DIMENSION KNTMN(10),AC(50),ZP(20),ZM(20)
DIMENSION CELGP(10,10),CAG(10),CBG(10),MEG(10)
DIMENSION KNTSV(10),TITLE(9)
DATA IFOMT /•(20F•,•8.5)•,18*• •/

WHICH TESTS ARE TO BE PERFORMED ARE SPECIFIED
BY IND(I) = 0 OR 1 WHERE

1=1 GAP TEST
1=2 RUNS TEST
1=3 PAIRS TEST
1=4 CHI-SCUARE TEST
1=5 MOMENTS
1=6 RUNS ABOVE/BELOW MEAN (GAP TEST ON (0,.5))
1=7 AUTOCORRELATIONS
I = , KOLMOGOROV - SMIRNOV TEST

IFILE = UNIT NUMBER OF DATA SET WHERE RANDOM VALUES
ARE LOCATED

= 0 FOR NUMBERS TO BE GENERATED BY USER
SUPPLIED FUNCTION RAN

READ(5,900,END=89000) NT,NSEED,IND,I FILE,NPRNT,TITLE
FORMAT(2110,1212,9A4)

SET SYSTEM LIMITS

MAXRN=10000
KIN=5
K0UT=6
MXCLS=500
MAXA=50
MAXKN=10
WRITE(KCUT,9001) TITLE,NT,NSEED
FCRMAK’IRANDOM NUMBER EVALUATION*,5X,9A4///» NT =»,I10/» NSEE

1 =,110)*
WRITE(KOUT,9002)

9002 FORMAT(/////• TESTS REQUESTED*)
IF (IND(l) .GE. 1) WRITE(KOUT,°OO3) IND(l)
IF(IND(2) .EQ. 1) WRITE(K0UT,90O4)
IF(IND(3) .EQ. 1) WRITE(KOUT,9005)
IF(IND(4) ,E0. 1) WRITE(K0UT,9006)
IF(IND(5) .EQ. 1) WRTTE(KDUT,9007)
IF(IND(6) .EQ. 1) WRITE(K0UT,9009)
IF(IND(7) .EQ. 1) WRITE(KOUT,90091)
IF(IND(8) .EQ. 1) WRITE(KCUT,9008)

C
C WILL ALL RANDOM NUMBERS FIT IN CORE?

9009 FORMATt* RUNS ABOVE/BELOW MEAN*)
90091 FORMATt* AUTOCORRELATIONS*)

9003 FOPMAK* GAP TESTS - *,I2)
9004 FORMATP RUNS TEST*)
9005 FORMATt* PAIRS TEST*)
9006 FORMATt* CHI - SQUARE TEST*)
9007 FORMATt* MOMENTS*)
9008 FORMATt* KOLMOGOROV - SMIRNOV TEST*)

- O1 -

"RAN IV G LEVEL 21 MAIN DATE = 74160

6

7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3

5
5
7
3
9

)
L
>
3
t
>
>

C ESTABLISH NUMBER OF ITERATIONS NECESSARY
C

NITER= (NT-l)Z MAXRN ♦ 1
C
C
C
C IS DATA GENERATED BY RAN, IF $0 PLACE
C ON UNIT 2, PRINT DATA IF RECUESTED
C

IEND=MAXRN
DO 50 1=1,NITER
IF(I .EQ. NITER) IEND= NT- (1-1) * MAXRN
IF(IFILE .NE. 0) GO TO 20
DO 10 J=1,IEND

10 X(J)=RAN(NSEED)
WRITEt 2 ,IFOMT) (X(J),J=1,TEND)
GO TO 40

20 IF(I .EO.l) READ(KIN,9010) IFOMT
9010 F0RMAT(20A4)

40 IFfNPRNT .EQ. 0) GO TO 50
IFtlFILE .GT. 0) READtIFILE,IFOMT,END=45) X

45 IFd.EQ. 1) WRITE(KOUT,901) NT
901 FORMATdHl,I10,» RANDOM VALUES’)

WRITE(KOUT,902) (X(K),K=1,IEND)
902 FORMAT(1X,15F8.5)

50 CONTINUE
C
C BEGIN TESTS
C

IFtlFILE .EO.O) IFILE=2
REWIND IFILE
N=MAXRN
DO 1000 1=1,NITER
IFd .EO.NITER) N=NT-d-l)*MAXRN
READ(IFILE,IFOMT) (X(K),K=1,N)

C
C GAP TEST
C

60 IF(INDd) .LF. 0) GO TO 100
IF(I.GT. 1) GO TO 65
NGT=IND(1)
DO 61 J=1,NGT

61 READ(KIN,903) CAG(J),CBG(J),MBG(J)
903 F0RMAT(2F5.0,I5)

DO 63 Kl=l,10
DO 63 K2=l,10

63 CELGP(Kl,K2)=0.
65 DO 90 KK=1,NGT

CA=CAG(KK)
CB=CBG(KK)
MXGAP=MBG(KK)
IF(CA .LT. CR) GO TO 70
WRITE(K0UT,904)

904 FORMATC’IGAP TEST’,/’ INPUT ERROR »)
WRITE(K0UT,905) CA,CB

* * * * * *

905 FORMATP CA .GT.CB’//’ CA =’,F8.5,» CB =’,F8.5)
IND(1)=-1
GO TO 100

70 IF (MXGAP ,LE. 10) GO TO 80
WRITE(KOUT,904)

11/07^

FRAN IV

82
83
^4

86
87
88
89
90
91
92
93
94
95
96
97
98
99
00
01
02
03
04
05
06
07
08
09

K
12
13
14
15
16
17
18
19
20
21
22

23
24

25

26
27
28

K
31
32
33
34
35

G LEVEL 21 MAIN DATE = 74160 11/07.

WRITE(K0UT,906)
906 FORMATt* MXGAP .GT. 10 ------SET TO 10*)

MXGAP=10
80 DO 62 K=1»MXGAP
82 KDUNT(K)=0

CALL GAP2(N,K0UNTfMXGAPtX,CA,CB,I,KNTSV(KK))
DO 83 K = l,MXGAP

83 CELGP(KK,K)=CELGP(KK,K)+KOUNT(K)
IFd.NE. NITER) GO TO 90
XT0T=0.
DO 84 K=l,MXGAP
XTOT=XTOT+CELGP(KK,K)

84 CELLG(K)=CELGP(KKtK)
WRITE(K0UT,9061) CA,CB

9061 FORMATCIGAP TEST// GAP INTERVAL =(• ,F7.4, »♦ • ,F7.4, ») •)
WRITE(KCUT,9062)

**

9062 F0RMAT(//5Xf»GAP LENGTH•f7X,•OBSERVED•,4X,‘THEORETICAL•)
CBA=CB-CA
PROB=CBA
TP=O.
DO 87 K=l,MXGAP
K1=K-1
IF(K.LT. MXGAP) GO TO 85
PROB=1.-TP

85 TP=TP+PROB
EXPCT(K)=XTOT*PROB
WRITE(KOUT,9063) K1,CELLG(K),EXPCT(K)

9063 FORMAT(I15tF15.O,F15.3)
IFfK.EO.MXGAP) WRITEtKOUT, 9064)

9064 FORMATf,T16,•+»)
PROB=PRDB(1.-CBA)*

87 CONTINUE
WRITEtKOUT,9065) XTOT

9065 FORMATtlOX,•TOTAL,F15.0)*
CALL CHI SO(CELLG,EXPCT,MXGAP,CS,IDF)
CV05=CHS0D(.05,IDF)
CV10=CHS0D(.10,IDF)
WRITE(KCUT,9066) IDF,CS
WRITE(KOUT,9067) CV05,CV10

9066 FORMATt// CHI - SQUARE(»,14,• DF) =»,F9.2)*
9067 FORMATt// CRITICAL VALUE (ALPHA=.O5) =»,F9.2,*

1 /• CRITICAL VALUE (ALPHA=.1O) =,F9.2)*
IFtIDF .EQ. 0) WRITEtKOUT,9068)

9068 FORMATt/// NO CHI - SQUARE TEST CALCULATED •* * * * * * * * *
1 /• ONE EXPECTED CELL COUNT .LT. 1 OR THREE EXPECTED COUNTS .LT.
2»)

90 CONTINUE
C
C RUNS TEST
C

100 IFtINDt2) .EQ. 0) GO TO 200
IFt I .GT. 1) GO TO 110
NVAL=4
IFt NT .GT. 500) NVAL=5
IFt NT .GT. 1000) NVAL=6
IFt NT .GT. 25000) NVAL=7

110 CALL RUNTL tX,N,RUNS,I,NVAL>
IFtI .NE. NITER) GO TO 200
CALL RUNTS tRUNS,NT,EXPCT,CS,IDF,NVAL)
WRITEtKOUT,9071)

G LEVEL 21 MAIN DATE 74160

9071 FORMATCIRUNS TEST V/5X, »RUN LENGTH ’ , 7X » •DBS ERVED ’
1»)
XTOTO=O.
XTOTT=O.
DO 120 K=1,NVAL
XTOTO=XTOTO+RUNS(K)
XTOTT=XTOTT+EXPCT(K)
WRITE(KOUT»9072) KtRUNS(K)tEXPCT(K)

9072 FORMAT(115vFl5.01F15.3)
IF (K.EO. NVAL) WRITE(KOUT,9073) X70T0,XT0TT

9073 FORMAT! ,T16, t + V10X,‘TOTAL ,F15.0 ,F15.3)
120 CONTINUE

*

CV05=CHSCD (e05tIDF)
CV10=CHS0D (.10,IDF)
WRITE(K0UT,9066) IDF,CS
WRITE(K0UT,9067) CV05,CV10
IF(TDF .EQ. 0) WRITE(KOUT,9068)
VAR=(I6e*NT-29.)/90.
Z=(XTOTO-XTOTT)/SORT(VAR)
WRITE(K0UT,9074) Z

9074 FORMAT(///‘ Z - SCORE (TOTAL RUNS) =‘,F8.2)
C
C PAIRS TEST
C

200 IF(IND(3) .EQ. 0) GO TO 300
IF(I .EQ.l) READ(K1N,9O7) NCP

907 FORMAT(I3,2Flp.O)
IF(NCP .EQ. 0) NCP=SQRT(FLOAT(MWALD(NT)))
IFtNCP .LF.50) GO TO 220
WRITE(KOUT,908)

908 FORMAT(1PAIRS TEST,/ INPUT ERROR •)
WRITE(K0UT,909)

* * 1 * * * * * *

909 FORMAT!» NCP .GT. 50 ------ SET TO 50‘)
NCP=50

220 CALL PARTL(X,N,NCP,A,MAXA,I)
IF(I .NE. NITER) GO TO 300
CALL PARTS(A,MAXA,NCP,CS,STDCS)
WRITE(K0UT,9091) NCP

9091 FORMAT!‘1PAIRS TEST// NO. OF INTERVALS =‘,I3)
XST=0.

* 1

XINT=1./NCP
LS = 1
LF=NCP
IFfNCP .GE. 11) LF=10

240 WRITE(K0UT,9092) (JP,JP = LS,LF)
9092 FORMATP INTERVAL FROM - TO »,10I8)

DO 250 K=1,NCP
XFN-XST+XINT
WRITE(KOUT,9093) K,XST,XFN,(A(K,J),J=LS,LF)

9093 F0RMAT(I9,lX,2F7.4,I0F8.0)
XST=XFN

250 CONTINUE
IF(LF .EQ. NCP) GO TO 270
LS=LF+1
LF=LF+10
IF(LF .GT.NCP) LF=NCP
XST=O.
WRITF(KOUT,9094)

9094 FORMAT!•!»)
GO TO 240

-

IV G LEVEL 21 MAIN DATE = 74160

b

2
3

7

8
9
0
1
2
3
4
5
6
7
8
9
0
1

2
3

5
6
7
8
9
0
1
2

5
6
7
8
9
0
1

2
3
14
3

I
18
19
.0
► 1
>2

270 IDF=NCP*NCP-1
WRITE(KOUT,9066) IDF,CS
CV10=CHS0D(.10,IDF)
CV05=CHS0D(,05tIDF)
WRITE(KOUTt9067) CV05»CV10

C
C

300 IF (IND(4) ,LE. 0) GO TO 500
C
C CHI-SOUARE TEST
C

IF (I .EQ. 1) REA0(KIN,907) NC
IF(NC .EQ. 0) NC=MWALD(NT)
IF(NC .LE. MXCLS) GO TO 310
WRITE(KOUT,910)

910 FORMATt•ICHI-SGUARE TEST/ INPUT ERROR ♦ •
WRITE(K0UT,911)

** * * * * *

911 FORMATt NC .GT. 500 ------ SET TO 500)* *
NC=MXCLS

310 XM=1./NC
XD=XM
CALL TALLY(X,N,CELLS,NC,XM,XD,I)
IF(I .NE. NITER) GO TO 400
DO 330 KK=1,NC

330 EXPCT(KK)=NT*XD
C

CALL CHI SO(CELLS,EXPCT,NC,CS, IDF)
WRITE(KCUT,9111)

9111 FCRMAT(«1CHI - SQUARE TEST //' INTERVAL FROM - TO
1HF0RETICAL)

1
1

XST=O.
XINT-l./NC
XTOT=O.
DO 360 K=1,NC
XTOT=XTOT+CFLLS(K)
XFN=XST+XINT
WRITE(KCUT,9112) K,XST,XFN,CELLS(K),EXPCT(K)

9112 FORMAT(19,2F7.4,F10.0,F12.2)
XST=XFN

360 CONTINUE
WRITE(K0UT,9113) XTOT

9113 FORMAT(4X,•TOTAL ,14X,F8.0)
WRITE(KOUT,9066) IDF,CS
CV05=CHSOD(.05,IDF)
CV10=CHSGD(.10,IDF)

1

WRITE(KOUT,9067) CV05,CV10
IF(IDF .EQ. 0) WRITE(KOUT,9068)

C
c

400 IF(IND(5) .FQ.O) GO TO 500
IC=2
IF(I .EQ.NITER) IC=3
IF(I .EO.l) IC=1
IF(NITER .EQ.l) IC=4
CALL MOMNT(X,N,ANS,IC)
IF(IC .LT.3) GO TO 500
WRITE(K0UT,912)

912 FORMATt •1MOMENTSV/22X,•DESERVED THEORETICAL)
WRITE(KCUT,913) ANS

1

913 FORMAT(016X,•MEAN•,F10.4,8X,•.5000•/10X,•2ND MOMENT.*

11/07/

)

OBSERVED

F10.4,8X,».

- 65 -

IV G LEVEL 21 MAIN DATE = 74160 11/07/

133V10X, »3RD MOMENT SF10.4,8Xt«. 2500 V12X, ’VARIANCE* tF10.4,8Xt
2 ’.0833*)

ADJSD=SORT(.0833333/NT)
Z= (ANS(1)—e5)/ADJSD
WRITE(KOUT,9131) Z

9131 FORMATC///* Z - SCORE (XBAR-MU) = ’,F8.2)
C
C RUNS ABOVE / BELOW MEAN
C

500 IF (IND(6) .EQ.O) GO TO 600
C0=0.
C5=.5
MABMN=10
IF (NT .LE. 3000) MABMN=9
IF (NT .LE. 1500) MABMN=8
IF (NT .LE. 1000) MABMN=7
IF (NT .LE. 500) MARMN=6
CALL GAP2(N,KNTMN,MABMN,X,C0,C5»I,KTMSV)
IF(I. NE. NITER) GO TO 600
XTOT-O.
DO 520 K=1,MABMN
XTOT=XTOT+KNTMN(K)

520 CELLG(K)=KNTMN(K)
WRITE(KOUT»9150)

9150 FORMAT!’1RUNS ABOVE/BELOW MEAN (.5)’)
WRITE(KCUTf9151)

9151 F0RMAT(///5X,’RUN LENGTH•,7X,’OBSERVED THEORETICAL’)
PR0B=.5
TP=O.
DO 540 K=1,MABMN
K1=K~1
IF(K .LT. MABMN) GO TO 535
PR0B=1.0-TP

535 TP=TP+PRCB
EXPCT(K)=XTOT*PROB
WRITE(KCUTt9063) KI,CELLG(K) ,EXPCT(K)
IF(K .EO. MABMN) WRITE(KOUT,9064)
PROB=.5*PROB

540 CONTINUE
WRITE(KOUT,9065) XTOT
CALL CHISQtCELLG,EXPCT,MABMN,CS,IDF)
CV05=CHS0D(.05,IDF)
CV10=CHSCD(.10,IDF)
WRITE(K0UT,9066) IDF,CS
WRITE(KOUT,9067) CV05,CV10
IF(IDF .EO. 0) WRITE(K0UT,9068)

600 IF(IND(7) .EO.O) GO TO 700
NLAG-50
IF(NT/10 .LT. NLAG) NLAG=NT/10
CALL AUTOC(X,N,NLAG,AC,I,NITER)
IFtl.NE. NITER) GO TO 700
WRITF(K0UT,9152)

9152 FORMAT(’1AUTOCORRELATIONSV/7X,’LAC•,8X,’AC’)
KAC=O
SD=S0RT(l./NT)*2.
DO 620 K=1,NLAG
WRITE(K0UT,9153) K,AC(K)
IF(ABS(AC(K)) .GT. SD) KAC=KAC+1

620 CONTINUE
9153 FORMAT(I10,Fl0.31

01
02
03
04
05
06
07
08

09
10
11
12
13
14
15
16
17
18
19
20
21
22

IV G LEVEL 21 MAIN DATE = 74160 11/07,

WRITE(KnUTf9154> SD,KAC
9154 F0RMAT(//» 95S LIMITS ON AUTCCORRELATIONS= (♦/-)•,F6.3/e NO. AC ’

1SERVED OUTSIDE LIMITS^ •,I4)
700 IF(IND(8) .FQ.O) GO TO 1000

IF(I .GE. 21) GO TO 790
CALL KOLMO(X,N♦ZP(I)tZM(I))
XN=N
ZP(I)= SQRT(XN)*ZP(I)
ZM(I)=SQRT(XN)*ZM(I)
IF(I .NE. NITER) GO TO 1000

710 WRITE(KCUT,914)
914 FORMATt»1KOLMOGOROV - SMIRNOV TEST// ITER NO. »,8X,»ZP»,8X,'1

!,• PROB(ZP) PROB(ZM)')
**

DO 720 K=l,NITER
CALL SMIRN(ZP(K),PZP)
ZMA=ABS(ZM(K))
CALL SMIRN(ZMAtPZM)
WRITE(K0UT,9141) K,ZP(K),ZM(K),PZP»PZM

720 CONTINUE
9141 F0RMAT(I10,4F10.4)

GO TO 1000
790 IF(I .EO.NITER) GO TO 710

1000 CONTINUE
REWIND IFILE
GO TO 1

89000 CALL EXIT
END

O I
IAN IV G LFVFL 21 MAIN DATE = 74158 22/46/1

I
t-

r

>
)
।
>
j
»-
>

r
i

C DATS SET MSH0AG4P? AT LEVEL 004 AS OF 05/24/74
SUBRCUTImE GAP2(N,KNTtMXGAP,X,A,F,IC»KSV)
niMFNSICN KNT(1),X(1)

C THIS ROUTINE FINDS GAPS OF THE LENGTHS 0,l»?, ...,MXGAP-G,
C >=MXGAP-1 IN A SEQUENCE rP *N» INPUTS NUMBERS..
C A GAP IS THE LFNC-HT OF CBS^RVASTICNS NO OPSE^VATICN
C IN THE RANCE (A,F) IS RECORDED.

IF(IC .GT.l) GO TO 20
DO 10 I=1,MXGAP

10 KNT(I)=0
KSV=1

20 KR=KSV
DO 50 J=1,N
IF(X(J) .LT. A) GO TO 30
IFtXfJ) .LT. =) GO to 40

30 KR=KR+1
GO TO EC

40 JF(KR .GT. MX^AP) KR=MXGAP
KNT (*< R) =KNT (KR) + !
KD = 1

50 CONTINL'F
KSV=KR
RFJUPN
END

r>
 n

 r>

IV G LEVEL 21 MAIN DATE = 741^8 22/46/:

c DATA SET MSHCACHISO AT LEVPL 005 AS OF 05/18/74
SUPRCUTINE CHISQ(CELLS,EXP♦K,CS,irF)
THIS PRCGFAM CALCULATES T^P CHI-SOUAPP STATISTIC K CCLLS

WITHCSSPRVFD PRPOUENCY COUNTS IN VECTrF CELLS AND THFDFETICAL
VALUES IN 'EXP*.
DIMENSION CELLSd) ,EXP(1)
KADJ5=0
CS=O.
DO 20 1=1,K
IF (PXP(I) .GF. 5) GO TO 10
IF(EXP(I) .Lc.l) GO TO 50
KADJc=KAnJ5+l
IFCKACJ5 .ED. 3) GO TO 50

10 CS=CS+(CCLLS(I)-PyP(I))**2/~XP(I)
20 CONTINUE

IDF=K-1
PETUPN

50 CS=G.
IDF = C
RETUDN
END

n
r>

 n
 n

 n

- oy -

IV r- L^VEL 21 MAIN DATE = 7415? 22/46/

C DATA SET MSHCATALLY AT LEVEL 003 AS CF 03/13/74
SU^RCUTINE TALLY (X , N , CFLLS ,K,XMIN,XO^LT,ICALL)
DIMENSION X(1),CFLLS(1)
TALLIES VECTOR X CF LENGTH N INTO C^LLS <XM1N1XMIN TO XMIN+XF^LT,

XMIN + XDcLT TO XMIN + ?(XOFLT) t...«XMIhf+(K-2)XDcLT TO XMIN+ (K—1)XDCI
AND XK-DXDELT
ICALL =1 CN FIRST CALL
ICALL ON SUPSEQUFNT CALLS
IFdCALL .NE. 1) GO TO 10
CO 5 1 = 1 ,K

5 CELLS(I)=C.
10 CO 100 1=1,N

IS'Jp= (X(I)-XMJN)/XDFLT+2 .
IFdSl'E .GT.K) ISUF=K
IFdSUF .LF.O) ISUc = l
CELLS(I SUE)=CELLS dSUB)+1

100 CONTINUE
RETURN
END

- 70 -

IV C- LEV'LL 21 MAIN DATC = 7^158 22/46/

C DATA SET MSH9AMPMNT AT LEVCL 004 AS OF 0?/20/74
SUBROUTINE MOMNT (X»N,ANS♦ICALL)
DIMENSION X(1)»ANS(1)

C THIS SUBROUTINE CALCULATES 1ST, 2ND, MOMENTS AND
C THE VARIANCE OF A VECTOR OF LrNGTH N.
C ANS(l) = MCAN
C ANSI 2) = 2ND MOMENT
C ANS(3) = 3RD MOMENT
C ANS(4) = VARIANCE
C
C ICALL = I FIRST PASS
C ICALL = 2 SUCCFFCING PASSES CXC-PT LAST PASS
C ICALL = ?■ LAST PASS
C
C SFPC ANS ON 1ST PASS

IFdCA.LL .GT.l .AND. ICALL .NF. 4) GO TC 10
DO 5 1=1,4

5 ANS(I)=O.
NT0T=0

10 DO 100 K>< = 1,N
XI=X(KK)
ANS(1)=ANS(1)+XI
AMS(2)=ANS(?)+XI*XI
ANS(3)=AMS(3)+XI**3

100 CONTINUE
NTOT=NTOT+N
IF (ICALL .LT. 3) RETURN

C CALCULATE RESULTS
AMS(I)=ANS(I)/NTOT
ANS (2) = AN'S (2)/NT0T
ANS(3)=ANS(3)/NTOT
ANS(4) = ANS(2)-ANS(1)**2
RETURN
END

IV G LEVEL 21 MAIN DATE = 74158 22/46/

C DATA SET MSH3AK0LMD AT LF'^L CO? AS OF 05/28/74
SUFROUTINF KOLMD (X,N,ZPLUS,?MIN)

C THIS SUFRCUTINE TESTS THE DIFFERENCE B^TWEFN AN
C EMPIRICAL AND THEORECTICAL DI STR IF L'TTCM USING THE
C KOLMCCORCV-SMIRNDV GCrDNcSS CF FIT T^ET.
C
0 RFFFFFNCE IBM - SSP CDPVPJCHT]C6P PR. 63-64

DIMENSICN X(l)
C
C SORT X INTO ASCENDING ORDER
C

M = N
20 M.=M/2

IF(M .ED. 0) GO TO 40
K = N-M
J=I

41 I = J
49 L=I+M

IF(X(I)-x(L)) 6C,6C,50
50 XS=X(I)

X(I)=X(L)
X(L)=XS
I = I-M
IF(I-l) feO,49,4o

60 J=J+1
IF(J-K) ^-1,^1,20

40 CONTir:UTc
C PIND MIN AND MAX DCVTATION
C

NM1-N-I
XN=M

■ ZC’LUS=-1000.
ZMIN=: + 1COO .
IL^l

6 DO 7 I=IL,NM1
J=I
IF(X(J) .No. X(J+1)) GO TO o

7 CONTINUE
8 J=N
9 IL=J+1

FS. = riCAT(J)/XM
IF (X(J) .GT. 0) GO TO 23
Y=0.
CO TC 27

23 IF(X(J) .LT. 1.) GC TO 25
Y=I .
GO TO 27

2^ Y=X(J)
27 DIFF=Y-FS

IF(DIFF .GT. ZPLUS) ZPLUS=DIFF
IF(Dipf .LT. ZMIN) 7MIN=DIFF
IF(IL-N) 6,8,28

28 RETURN
ENO

n
n

r>
 r>

G LEVEL 21 MAIN DATE = 74158 22/^6/

C DAT/ SET MSHOAPUNTL AT L^VPL OC^ AS DE 05/23/74
SUPRDUTINE RUNIL (X ,N ,RUNS,ICALL,NVAL)
DIMENSICN X(l),FUNS(1)

THIS SU8RDUTINE TALLIES THE ML,fV!8cP GF RUNS CF
LENGTH I, 1=1,6 . RUNS CF LENGTH >= TD 8 ARP TALLIED IN PUNSfF)

THE FIRST AND LAST PUN TDF THE TOTAL SEQUENCE ARE NCT TALLI^r.

IFtlCALL .NE.l) C-C TO 50
C ZrP.D CUT RUNS

DO 5 1=1,8
5 RUNS(I)=O.

C IGNOPR 1ST RUN
C IS FIRST PUN UP OR DOWN

IUPS=+1
IF(X(2)-X(1) .LT.O) IUPS=-1
DO 1C I=3,N
IUP=+1
IF(X(I)-X(I-1) .LT. 0) IUD=-1
IFdUPS .CC. IUP) GO TO 10
iups-iup
NSTA.RT = I + 2
CO TO 20

10 CONTINUE
£TOd 59

20 KNT-]
XSAVP=X(NSTART-1)
C-r TO IGO

50 1UP=+1
NSTAPT=2
IF(X(NSTAFT-1)-XSAVE .LT.O) IUP=-1
IFdUPS .FC. IUP) GO TO 80
IUPS=IUP
IP (KNT .GT. NVAL) KNT=NVAL
RUNS(KNT)=FUNS(KNT)+1
KNT=1
GO TO ICO

PC KNT=KNT+1
100 CD 200 I=NSTART,N

IUP=+1
IF(X(I)-y(I-I) .LT.O) IUP=-1
IFdUPS .FO.IUP) GO TO 180
IUPS=IUP
IF (KNT .C-T. NVAL) KNT=NVAL
RUNS(KNT)=RUNS(KNT)+1
KNT = 1
GO Tn 200

ICO KNT=KNT*1
200 CONTINUE

XSAVP=X(N)
RETUCN

*AN

2

3
4

6
7
8
9
0
1
2
3
L

»

»

n
n

n
n

- 73 -

IV G LEVEL 21 MAIN DATE = 74158 22/^6/

DATA SET MSHOARUNTS AT LEVEL 007 AS OF 05/24/74
SUBROUTINE RUNTS (RUNS»N,EtCS ,ICFtNVAL)

THIS SUEROUTINF COMPUTES THE CHI-SOUAPE STATISTIC FOR THE rUNS
TALLIED IN SUBROUTINE RUNTL.

RcFfrEncf ICM SYSTEMS JOURNAL 1969 PP. 136-46
DIMFNSICN RUN'St 1) »E (1)

C EXPECTED NUMBER Dr RUNS
DFN0M=6.
NV1=NVAL-1
DO 100 1=1,NV1
SUM1=N*(I*I+?*I+1)
Sl'M2 = I**3+3*I*I~I~4
r,MCm, = DFNOM*(1+3 .)

100 F(I)=2.*(SUM1-SUM2)/DFNOM
E(NVAL)=2.* (N* (NVAL+1.)-(NVAL**/+NVAL-1 .))
E(NVAL)=E(NVALJ/DENnM
CALL CHIS O(RUNS,E,NVAL,CS , IOF)
RETURN
END

- 74 -
IV G LEVEL 21 MAIN DATE = 2?/Aic,/

C DATA SET MSHDAPARTL AT LEVEL 001 AS nF 03/11/74
SUPPGL'TINE PARTL (X , N, K , A » I A , IC A LL)
DIMENSION X(l).AdAtlA)

C THIS PROGRAM TALLIES THE CCCURFNCE PF THE PAIRED COrpriNATFS
C X(I)tX(T+l) OR A SEDUFNCE OF PSFUDO-RAN^ry
0 NUMDFPS ON (0,1) INTO A K X K ARRAY
C IF ICALL = - 1 ROUTINE INITIALIZES A MATRIX.
0

IF(ICALL .MF .1) GO TO ICO
DO 10 1 = 1, IA

DO 10 J=1,IA
10 A(I,J)=n.

100 DO 15G 1=1,N,2
J=K*X(I)+l
M=K*X(I+1)+l

15 0 A(J,M) =A(J,M) + 1.
RETURN
END

1

i
4
5
6

8
9
0
1

3
4
5

IV G LEVEL 21 MAIN DATE 741=;E 22/46/

C DATA SET MSHDAPARTS AT LEVEL 00° AS nF 03/23/74
SURPnUTINc PARTS(A,IKtCStSTDCS)
DIMENSION A(IArlA)

C THIS PROGRAM PERFORMS THE PAIRS TEST ON A PREVIOUSLY
C TALLIED SECUFNCe Or PSEUDO-RANDOM NUM? 0** (US ING PAPTL).

TOT=0.
DO c0 1=1,K
DO 50 J=1,K

50 TOT=TOT+A(I,J)
E=T0T/K**2
cs=o.
DO 100 1=1,K
r-0 100 J = 1,K

100 CS=CS + (A(I,J)-E)**2/E
F=K.* 1K-1
STDCS=(CS-F)/SCRT(2.* e)
RETURN
END

- 76 -

IV G LEVEL 21 MAIN DATE = 74160 11/07/

C DATA SET MSH0ACHS0D AT LEVEL 002 AS OF 06/09/74
FUNCTION CHSQD (P,N)

C THIS FUNCTION IS USED TO EVALUATE THE OUANTILE
C AT A GIVEN PROBABILITY LEVEL, P, FOR THE CHI-SQUARE
C DISTRIBUTION WITH N DEGREES OF FREEDOM.
C
C REFERENCE COMM. OF THE ACM VOL 16 NO 8 PR. 483-5
C

DIMENSION C(21),A(19)
DATA C/1.565326E-3,1.060438F-3,-6.950356E-3,

* —1.323293E—2,2.277679E—2,—8.986007E-3,
* -1.513P04E-2,2.530010E-3,-1.450117E-3,
* 5.169654E-3,-1.153761E-2,1.128186E-2,
* 2.607083E-2,-0.2237368,9.780499E-5,
* —8.426812E—4,3.125580E—3,—8.553069E—3,
* 1.3480286-4,0.4713941,1.0000886/

DATA A/1.264616E-2,-1.425296E-2,1.400483F-2,
* -5.8860906-3,-1.0912146-2,-2.3045276-2,
* 3.1354116-3,-2.728484E-4,-o.699681E-3,
* 1.3168726-2,2.6189146-2,-0.2222222,5.4066746-5,
*3.4837896-5,-7.274761E-4,3.2921816-3,
* -8.7297136-3,0.4714045,1./
IF(N-2) 10,20,30

10 CHS0D=GAUSD(.5P)
CHSOD=CHSQDCHSQD
RETURN

20 CHSC'D= -2.ALCG(P)
RETURN

30 F=N
Fl=l./F
T=GAUSD(1.-P)
F2=SORT(F1)T
IF(N .GE. (2+INT(4.ABS(T)))) GO TO 40
CHSOD=(((((((C(1)F2 + C(2))F2-tC(3))F2+C(4))F2

*
*

*

*
*

* ** *
1 +C(5))F2C(6))F2C(7))F1 + ((((((C(8)C(9)F2)F2***** ***
2 +C(10))F2+C(ll))F2+C(12))F2+C(13))F2+C(14)))F1 ***** *
3 (((((C(15)F2+C(16))F2+C(17))F2+C(18))F2** **
4 +C(19))F2+C (20))F2+C (21)

GO TO 50
* *

40 CHSCD=(((A(l)+A(2)*F2)*Fl+(((A(3)*A (4)*F2)*F2
1 ♦A(5))F2+A(6)))Fl+(((((Af7)+A(8)F2)F2+A (9))F2** ** *
2 +A(10))F2+A(11))F2+A(12)))Fl+(((((A(13)F2** * *
3 ♦A(14))F2+A(15))F2+A(16))F2+A (17))F2F2*** **
4 +A(18))F2+A(19)*

50 CHSOD=CHSCD*CHSQD*CHSQD*F
RETURN
END

*AN IV G

b

2
3
4
5
6
7
8
9
0
1
2
3

- 77 -

LEVEL 21 MAIN DATE = 74160 11/07/

C DATA SET MSHOAGAUSD AT LEVEL 003 AS OF 06/09/74
FUNCTION GAUSD(P)

C THIS FUNCTION CALCULATES THE NORMAL DEVIATE FOR THE VALUE
C P OF THE CUULMULATIVE PROBABILITY DISTRIBUTION.
C
C ALGORITHM FROM HASTINGS, CECIL,JR. APPROX FOR DIGITAL COMPUTERS
C 1957, P. 192.

DATA AO,Al,A2/2.515517,.802853,.010328/
DATA Bl,62,63/1.432788,.189269,.001308/
B=P
IF(B .GT. .5) B=l.-B
U1=-ALOG(B)
U=SORT(2.*U1)
U2=U*U
U3=U2*U
GAUSD=U-(AO+A1*U+A2*U2)/(I.+B1*U+B2*U2+B3*U3)
IF(P .LT. .5) GAUSD=-GAUSD
RETURN
END

G LEVEL 21 MAIN DATE = 7415P

C DATA SET MSHDAAUTDC AT LEVEL 004 AS nF G5/1P/74
SUBROUTINE AUTCC(X,N,LAG,AC11C,NITER)
DIMENSION X(l)
DIMEMSir'N AC (1) ,XSAVE (SO)
X?AD=.5
IF(IC .GT. 1) GC TO 50
NT=N
C0=0.
DC 10 1=1,LAG

10 AC(I)=O.
GO TO 200

50 NT=MT+N
DO ICO K=1,LAG
NK=LAC— K+l
DO 60 1 = 1,K
AC(K)=AC(K)+(XSAVE(NK)-XEAR)*(X(I)-XEAP)

SO NK=NK+1
100 CONTINUE
200 DO BOO K=1,LAG

NK=N-K
DC BOO 1=1,NK
NKI=I+K
AC(K)=AC(K)+(X(I)-X?AP)*(X(NKI)-XcAR)
IF(K.EQ.l) CO = CO + X(I)*X(I)

300 CONTINUE
CO=CO+X(N)*X(N)
pn ago 1 = 1,LAG
MLI=M-L AC-+1

400 XSAVF (I)=X(NLI)
IFIIC .NF. MITER) RETURN
C0=(CO-NT*XF AR*X cAR)/NT
CP 450 K = 1,LAC-

" 450 AC(K)=AC(K)/(NT*CC)
FETUPN
ENO

SAN IV

1

B

2
3
4
5
6
7
p
Q
0
1
2
3
4
5
6
7
8
9
0
1
2

- -

C- LEVEL 21 MAIN DATE - 741EP

C DATA SET MSHOASMIPN AT L-VEL 003 AS OF 05/11/74
SUBROUTINE SMIRN(X,Y)

C
C THIS SUBROUTINE COMPUTES THE LIMITING DISTRIFUTICN
C FUNCTIDN PF THE KCLMOGPFPV-SMIFNIV STATISTIC.
C RFF. IBM SSP PR. 66-67
C

IF(X-.27) 1,1,2
1 Y=0.

RETURN
2 IC(X-1.) 3,£,6
3 C-1 = RXP(-1.233701/X?)

02=0101
**

*
C4=02*G2
09=04*04
IF(08 .LT. l.E-25) 08=0.
Y=(2.5O66?C/X)*P1*(1.+O8*(1.+PF*P8))
PFTURN

6 IF(X -3.1) 8,7,7
7 Y = l.

PFTURN
8 C1=FXP(-2XX)**

0'2=01*01
0'4=02*02
08=0^*04
Y=1.-2.*(01-04+08*(01-08))
RETURN
FND

22/46/

21 MAIN DATE = 741rE

DATA S^T MSHOAMWALD AT LCVFL 001 AS OF 05/2c/74
FUNCTION MWALC(N)

THIS FUNCTION COMPUTE THC OPTIMAL MI'^FP'CF CLASS
FOR A CHI-AQUARE TEST ACCO-DING TO TPC MANN-WALD CFITEPIA

5-4.
CCRIT=1.645
XN=N-1
MWALD=E* (2.*XN*XN/CC DIT**2)**,2
RETURN
END

-SI­

AN IV G LEVEL 21 RAN

FUNCTION RAN(MX)
RAN=0.0
RETURN
END

DATE = 74158 22/46/1

- 82 -

APPENDIX B

Sample Output Listing

- 83 -

RAN

NT = 5000

RANLCM NUMErt? EVALUATirN
- 84 -

PR. rCNAC-HFY«S FUNCTICN »RAM»

. NT =
NSEED =

5000
95605

TESTS RFCli^STEP
GAP TESTS -10
RUNS TEST
PAIRS TST
CHI - SCUACE TEST
MPF=NTS
RUNS AcCiVF/FcL0W NS AN
AUTCCCPF^LATITNS
KCLMUGCRCV - SNI-MOV T^SI

- 85 -
GAP I?ST

GAP INTERVAL =(0.0 , C.1CCC-)

GAP LENGTH
0

riper I? V7.7
E7.

THpC?rTICAL
51 .Q00

1 FZ, . 46.710
2 ■7 "i 42.039

37.B35
4 7 0. 34.052
r O F 30.646

6 ? 1 , 27.562
7 27 . 24.624
R 1°. 22.341
c>+ 2 01. 201.072

TOTAL c19.

CHI - SCUAREt o r-F) - ■ 5 .44

CRITICAL VALUE (ALP**-'A C71 -
CRITICAL VALUE. (ALPHA--,.! '? -

16.c'2
14.68

GAP TEST
- 86 -

GAP INTERV/L =(0.1CC0, O.2OGG)

GAP LENGTH CFS^PVED THFGPETICAL
0 FA. 48.700
1 49. 43.830
2 39. 30,447

31 . 35.602
4 26. 31.952
F, 29. 28.7C-7
6 23 • 25.881
7 IE. 23.293
E 2F. 20.964
9 + 191. IP8.674

TGTAL t E:7.

CHI - SCUAREt o Dc) = 4,

CRITICAL V/'LUF
CRITICAL VALUE

(ALPl-’A = .O5) -
(ALPHA-.10) -

16.C-2
li.68

GAP IFST
- 87 -

GAP INTERVAL = (0.2CC0» O.Z'OCO)

GAP LENGTH pp.$rp vrr THEORETICAL
0 A7. 50.200
1 41. ^5.180
2 4? . 40.662
3 :-.4. ?6.5C>6
4 24. 32.436
c 30. 2Q.643
6 28 . 26.678
7 32. 24.010
8 15. 21.609
o+ 203. 1Q4.486

TCTAL 5 02.

o pc)CHI - SOUARE(

CRITICAL VALUE (ALPUA=.C5) -
CRITICAL VALUE (ALPHA=.10) =

16. R2
1 A. 6 £■

GAP TEST - 88 -

GAP INTERVAL =(0.3000, 0.4000)

GAP LENGTH OF SERVED theoretical
0 59 . 52.600
1 4^. 47.520
2 A7. 42.768
3 38. 38.491
4 43. 34.642
F 29. 31.178
6 24. 28.060
7 31. 25.254
e 21 . 22.72°
9+ lc2. 204.558

TOTAL 526 .

CHI - SOUAFEt 9 DF) - 6.36

CPITICAL VALUE (ALPHA = .C5) = 16.9?
CRITICAL VALUE (ALPHA = . 1G) *- 14.66

GAP TEST
- 89 -

GAP INTERVAL =(O.^CCOt 0.c000)

GAP LENGTH GES ER VEG' THcr?cTICAL
C A4 . 47.IGO
1 44. 42.3CjC
2 36. 38.151
a 32. 34.336
L *1 *. e 30.°C?
F 22. 27.612
6 31. 25.031
7 26. 22.528
P 20. 20.275
9 + 1E3. 182.475

TGTAL 471.

CHI - SGUARE(° OF) = 3.?7

CRITICAL VALUE (ALPUA=.O7) = 16.^2
CRITICAL VALUC (ALPHA=.1O) - 1-.6E

GAP TF5T - 90 -

GAP INTERVAL =(0.5C00, 0.6GC0)

GAP LENGTH CESEFVEC THEORETICAL
0 44. 50.100
I Ar' . ^5.090
2 39. 40.581
5 47. 36.523
4 30. 32.871
5 25. 29.c83
6 26. 26.625
7 22. 23.^63
£ 25 . 21.566
9+ 1°P . 194.0°8

TOTAL 501 .

CHI - SCUARFl • c’;tF) = 5.57’

CRITICAL VALL'C
CRITICAL v*LU-

(ALPHA-.OF) =
(ALPHA=.1C) =

16. ^2

GAP TEST - 91 -

GAP INTFE.V/L =(0.6GGC. 0.7000)

GAP LENGTH
0
1
?
3
4

CpSERVE?
51.
57.
35.
43.
36 .

30.
23.
16.

199.
523.

THEORETICAL
52.300
47.070
42.363
3E.127
34.314
30.883
27.7C‘4
25.015
22.513

702.621

CHI - SOL'APEt 9 OF) = 6.54

CRITICAL VALVE
CRITICAL VALl’6 c

6
7
e
O+

TPTAL

(ALPHA = 4C.r) =
(ALDHA=.1C) =

16.92
14.68

GAP TEST - 92 -

GAP INTERVAL =(0.7000» 0.80CC)

GAP LENGTH rFSEPVF'"' theoretical
0 51. 52.300
1 58 . 47.070
2 42. 42.363
3 ?6. 33.127
4 24. 34.314
r 27. 30.83?
6 •an e 27.704
7 32. 25.015
f 20. 22.513

191. 202.621
total 523.

CHI - SCUAR-(° OF) 11.74

CRITICAL VALUE
CRITICAL VALUE

(ALPHA=.0c) =
(ALPHAS.1C) =

16 .S2
1A . 63

GAP TEST - 93 -

GAP 1KTFRVAL =(O.POOO, O.c'OCG)

GAP LENGTH cp.srrvEO THEOFFTICAL
0 38. 45.400
1 37. 40.860
2 37. 36.774

34. 33.097
4 27. ?t?.7R7
c 20. 26.FOR
6 20. 24.127
7 26. 21.715
R 7* 19.543
c» + 192. 175.FE9

TOTAL 4 54 .

CHI - SCUAPC(9 DF) = 7.23

CRITICAL VALUF (ALPHA-.OF) = 16.92
CRITICAL VALLT (ALPHA=.1D) = 14.68-

GAP T^ST
- 94 -

GAP INTERVAL =(0.90G0, 1.0000)

CAP LENGTH 05SERVED THEORETICAL
C 60. 49.200
1 47. 44.260
2 42. 39.852
*. ?2. 35.867
lv 31 .

o

0. (M
(Xj
M

c 23. 29.052
6 21. 26.147
7 17. 23.532
F 15. 21.170
9+ 2 04. lo0.611

TCTA L 402.

CHI - S0UAF.E(9 OF) = 9.95

CRITICAL VALUE
CRITICAL VALUE

(ALPHA=.O5) =
(ALPHA=.1C) -

16.02
14.68

RUNS TEST - 95 -

RUN LENGTH 08 SERVE? THEORETICAL
1 20«-7. 2083.417
2 8 EE. 916.43?-
3 277. 263.758
4 60. 57.^98
5 10. JO.159
OH- 0. 1.734

TOTAL 333.2. 3332.°99

CHI - SOUA.RF(5 DE) = 3.48

CRITICAL VALUE
CRITICAL VALUE

(ALPHA-.05)
(ALPHA=.ie)

11.07
P. 24

Z - SCORE" (TOTAL PUNS) = -0.C3

PAIRS TF^

ND . GF INTERVALS = 10
interval FRCM - TG 1 2 3 Z, 5 6 7 a 0 10

1 C.C 0.1000 22. 21. 27. 27. 24. 25 . 22. 16. 20. 25.
2 o.loro 0.2000 12. 25. 20. 24. 24. 12. 26. 30. 14. 25 .

0.2000 0.3000 34. 28. 2] . ?..? . 25. 20 . 21. 31 . 20. 27,
A 0.3000 0.4000 30. 33 . 23 . 2C'. 22. si L- • 2 °. 25 . 25 . 24.
F C.A CTO O.CCGO 10. 27. I1’. 23 . 21. 2’. 26. 32. 26. 25 .
6 o.cooo 0.6GUO 31. 33. 30. 27 . *> *7 24 . IP. 20. 22. 24.
T O.C GCG 0.7 G 0 0 34 . 24. 26. 26 . 25 . 20. 23. 3 2 . 1 o
D C.7GG0 0.E0OO 33. 24. 21. 30. 3 6 31. 24. 23. 19. 34.
O O.COOO O.ROOO 3 6. 2 5. 21 . 25 . 21. 21 . 22. 2 3. 21. 4 - •

10 O.EOCO 1.0000 ?f- . 26. 27. 17. 16 . < • 27. 15 . 16. 26.

CHI - SCUAREt oc> CT) = 100.20

CRITICAL VALUE (ALPHA=.0F) - 123.23
CRITICAL VALUE (ALOHA=.1C) = 117.^1

i
xO
CT'
I

- 97 -
CHI - SOUAFI- TEST

INTERVAL FROM -- TO PRS9RV~D THE0EETTC4L
1 0.0 10.0088 45 . 44.25
2 1D.CCf F. 0.0177 c7. 44.25
3 lD.C177 0.0265 46 . 44.25
A ID.0765 0.03c4 42. 44.25
5 10.03^4 0.044? 37 . 44.25
6 0.0442 0.0531 42. 44.25
7 0.0531 0.0619 38. 44.25
8 C.C61C 0.0708 c 2 44.25
9 0.0708 0.0796 53. 44.2 5

TO 0.C796 C.0EE5 56. 44.2 5
11 0.0885 0.0973 36 . 44.25
12 O.C'C’73 0.1062 42. 44.25
13 0.1062 0.1150 44. 44.25
14 C.115G 0.123° 44. 44.25
15 0.17?° 0.1327 39 . 44.25
16 0.1 2 ?7 0.1416 40. 44.25
17 0.1416 0.1c04 39. 44.25
IE 0.15C4 0.15c3 c o 44.25
19 0.1593 0.16E1 37. 44.2 5
20 0.16P-1 0.1770 41. 44.25
21 0.1770 0.1858 45. 44.25
22 0.1E c f 0.1947 48. 44.25
23 0.1947 0.2035 46. 44.25
24 0.2C35 0.2124 34 . 44.25
25 0.7174 0.2212 36. 44.25
26 0.Z212 0.2301 45. 44.25
27 0.7301 0.2289 47. 44.25
28 0.2389 0.2478 39. 44.25
29 0.247S 0.2566 56. 44.25
30 0.2566 0.2655 39. •^4. 2 5
31 0.2'655 0.2743 54. 44.25
32 0.2743 0.2822 44 . 44.25
33 0.283? 0.2o2G A* 2' . 44.2 5
34 0.2970 0.3009 36 . 44.2 5
35 0.3009 0.309? ’ A . 44.25
36 0.2 Cc'7 0.3186 ■J ■ . 44.25
37 0.3186 0.3274 45. 44.25
38 0.3274 0.3363 55. 44.25
39 0.3363 0.3451 48. 44.25
40 0.-451 0.3c40 52. 44.25
41 0.3c4C 0.3628 ' 37. L.L. . 2C
42 0.2628 0.3717 36. 4^.2 5
43 0.3717 0.3805 58. 44.25
44 0.3805 G.38-94 c 7 e ■^4.25
45 0.?8°4 o 3 '.0

K

' 48 . 44.2 5
46 0.3°E2 0.4071 £v e 44.25
47 0.4071 0.41^9 41 . 44.25
48 0.41re 0.4248 ?1. 44.25
49 0.4748 0.4336 36 . 44.25
50 0.4336 0.44?5 41 . 44.25
51 0.4425 0.4^l? 46. 44.25
52 0.4 51.3 0.4602 44 . 44.2 5
53 0.4 6 02 0.4 6 9 0 36. 44.25
54 C.46CC. 0.4-770 47. 44.25
5 5 0 ,477c 0.486/ 53. 44.2 5
56> 0.4 8 6 7’ 0.4cr^ 46. 44. 2 5
57' C.4<'r6.. C.c044 48 . 44 . ?5
58 0.5044• 0.9133 4?. 44.25

- 98 -

62 0.53c8 0.5A57 44. 44.25
63 0.5AF7 0.5575 56. -■ 44.25
64 O.c575 0.5664 43 . 44.25
65 0.5 664 G .5752 38. 44.25
66 0.5752 C.cq41 47. 44.25
67 0.5S41 C.KC29 45. 44.25

68 0.592° C.c018 36. 44.25
69 0.6018 0.6106 53. 44.25
70 0.6106 0.6195 54. 44.25
71 0.6195 0.6283 36. 44.25
72 0.6783 0.6■’72 56. 44.25

LU
 o » O
'

O
' o 39. 44.25

74 0.6460 0.6c49 41. 44.25
75 0.6549 0.6637 39. 44.25
76 0.6637 0.6726 39. 44.25
77 0.6726 C.6814 52 . 44.25
78 0.6814 0.6°03 48 . 44.25
79 0.6903 0.6°91 55 • 44.25
80 0.6°91 O.^OSO "’9 . 44.25
El 0.70E0 0.7168. 44. 44.25
E2 0.7168 0.7757 35 . 44.2 5
83 0.7257 0.7345 51. 44.25
84 0.7?45 0.7434 52 . 44.25
85 0.74?4 0.7522 60. ' 44.25
86 0.7522 0.7611 C" 44. 25
87 0.7611 O.^F^P C.O 44.25
88 0.7699 0.7788 32 . 44.25
89 0.7788 0.7876 37. 44.25
90 0.7876 0.7965 4G. 44.25
91 0.7965 0.3053 44 , 44.25
92 0.8053 G.S142 38. ^4.25
93 0.8142 0.8230 "’7 . 44.25
94 0.8230 0.3319 37. 44.250

si a>
O

0i•
O

U
1

0 32. 44.25
96 0.8407 O.BAOft 40. 44.25
97 0.840 6 42. 44.25
98 0.8584 C.867? 40. 44.25
99 0.E673 0.8761 51. 44.25

100 0.8761 0.8850 44. 44.25
101 G.E 8 50 C.8°3 8 42. 44.25
102 0.89?? G.CC26 40. 44.25
103 C.CC26 O.°llr 43 . 44.25
104 0.9115 O.°2C3 49 . 44.25
105 G.c20? 0.9?°? 41 . 44.2 5
106 G.°292 O.°3EC 44 . 44.25
107 0.9390 0.9469 44 • 44.25
108 0.946° G.9557 40. 44.25
109 0.9557 0.9646 50. 44.25
110 C.°646 0.9734 41. 44.25
111 O.°734 0.9823 49. 44.25
112 G.9E23 0.9911 43. 44.25
113 0.9511 1.000C 36. 44.25

TOTAL 5 000.

CHI - SC'UAFFt 112 OF) = 115.01

CRITICAL VALUF (A L PH/- = . C5) - 137.71
CRITICAL VALl,r (ALPHAS.10) = 131.56

MOMENTS
- 99 -

MEAN
2NO MCNCNT
3RD MOMENT

VARIANCE

pcccPvcD
0.4Q69
0.2296
0.2461
0.0827

2500
0833

THcr'DETICAL
.5000

Z - SCORE (XEAR-fU) = -C.77

RUNS AETVE/^ELnw MEAN (.5) 100 -

RUN LpMFTH OESERV13 C THFORCTICAL
0 1249. 1253.rOO
1 639. 626.750
2 321. 313.375
3 144. 156.688
4 69. 78.344
5 43. 39.172
6 24. 19.586
7 7. 9.793
8 7. 4 . P.-9 6
o+ 4. 4.896

TOTAL 2507.

CHI - SCUAREt 9 PF) = 5.82

CRITICAL VALl'F (ALPHA = .n5) = 16.92
CRITICAL VALUC (ALPHA^.10) = 14.68

AUTOCnPRFLATir'MS: - 101 -

NO. AC CUTS IDF LI PITS =

LAG AC
1
2

0.008
-o.co^

4
-0.002

0.01 5
5
6
7
8
9

10
11
12
13
14
15
16

-0.00?
-0.011
0.004
0.016
0.01?

-0.028
O.COR

-0.030
-0.011
0.00^
0.006
0.015

17
18
19
20
21
22
23
24
25
2 6
27
28
29
30
31
32
33
?A
35
36
37
38
3°
40
41
42
43
46
45
46
47
48
40
50

-0.00-
-0.012
0.006
0.008

-0.015
0.013
0.000
0.005

-0.022
-0.035

0.C09
-0.006
0.006
0.01?
0.02 1

-0.004
-0.02?
-0.016
-0.02?
-0.010
0.00p

-0.014
-C.0C2
-0.022
0.020 i
0 . C1 3

-0.016
—0.006
0.012
0.G1C

-0.016
0.014

-0.005
0.004

952 LIMITS ON 4!nr'CCR8-LATl'-VS= (+/-) 0.026

KOLMCT-CPCV - SMl^NCV TrST “ ""

NO.
1

ZP ZM PROR(7P)
0.1632 -1.003? 0.0

PROD(ZM)
0.7341

