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Abstract

Human Activity Recognition (HAR) is a fundamental building block in many Internet

of Things (IoT) applications. Although there has been a lot of interest in HAR,

research in non-intrusive activity recognition is still in nascent stages. This research

investigates the capability of Ultra-Wideband (UWB) communication technology to

be used for HAR. In this work, UWB radio devices are placed in the periphery of a

monitored area. This setup infers user activities without the need of any additional

sensors or physical device. Packets are exchanged between these UWB devices, and

received packets are used to obtain information of the environment. The key idea

is that these received packets are affected by environmental modification due to the

human activities. We collect Channel Impulse Response (CIR) data from the received

packets of the UWB signals. We then use machine learning algorithms to classify

the activity (standing, sitting, lying) being performed. The experiments show that

by using CIR data as features we can classify simple activities such as standing,

sitting, lying and when the room is empty with an accuracy of 95%. To compare this

performance, we trained classification models using Wi-Fi Channel State Information

(CSI). We found that for all the models UWB CIR significantly outperformed Wi-Fi

CSI in activity classification. This study also includes an application for this system.

We used the HAR system for caloric expenditure estimation during a time period.

We use HAR to infer the pose and time spent at each pose and use models from the

literature to estimate the caloric expenditure for each pose. Our approach reports

32% more calories than what is reported by commercial devices, which are known to

severely under-report calories when the subjects are not very active.
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Chapter 1

Introduction

There has been an increase in the research activities in the field of Human Activity

Recognition (HAR). The primary goal of activity recognition is to generate informa-

tion about the users behavior to assist in their tasks. There are various applications

to it [19], including healthcare, elderly care, and energy expenditure estimation.

Most current practices to recognize human activity require subjects to either

carry sensors [18, 6, 21, 12, 29] or use sophisticated camera equipment [20, 13, 33, 7].

These come with the limitations of installing and maintaining sensors and cameras

that breach subject privacy and require very strict lighting conditions. Further,

existing vision-based systems have the known drawback of failing across all significant

obstructions (such as walls).

One interesting approach for activity recognition is device free activity recogni-

tion using radio signals [25, 22]. In this approach, radio devices are placed in the

1



periphery of a monitored area. Packets are sent and received by these radio devices

continuously, the received packets are used to obtain information about the environ-

ment. The key idea here is that the environment is being affected by the activity

taking place in the observed area.

Measurements such as radio signal strength indicators (RSSI) have been success-

fully used for localization [30, 27] but are not informative in activity recognition.

Recent studies have therefore used Channel State Information (CSI) or Channel Fre-

quency Response (CFR) for activity detection in a Device-free setting. However, CSI

signals are noisy and thus have poor accuracy. This solution uses Channel Impulse

Response (CIR) which is time domain CFR.

In this study, we use Ultra-Wide Band (UWB) signals for recognition. UWB

waves are structurally different and can be measured more precisely as compared

to Wi-Fi or Bluetooth waves. Moreover, UWB consumes significantly less power

than Wi-Fi. To the best of our knowledge, there has been no research in activity

recognition using UWB signals.

In our research we mainly focus on activities in which the subject is still, these are

activities such as standing, sitting and lying. Since we can classify these activities

accurately, this gives us an upper hand in applications such as device free calorie

estimation. Most fitness devices cannot classify activities and hence can’t estimate

calories used. They either do not count calories when the user is not in motion

(standing, sitting, lying) or use basal metabolic rate (BMR) to estimate overall

calories when the user is stationary. The BMR is calculated using HarrisBenedict

equation which is based on subjects weight, height, and age. This approach suffers
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inaccuracy because calorie expenditure varies as per the activity. Our method does

not suffer from this drawback and will be very useful for patients who are restricted

to an indoor environment due to illness/injury. The main contributions can be

summarized as follows:

• We present the first method to use UWB signals as an efficient candidate to

recognize human activity.

• We compare the performance of different machine learning algorithms for the

purpose of HAR.

• We explore the application of UWB HAR for estimation of Caloric Expenditure.

3



Chapter 2

Related Work

In this chapter, we explore previous research works in the field of HAR. While there

has been a lot of study in this domain, there is no previous work that uses UWB

for HAR. Accurate caloric Expenditure Estimation is also an open problem and has

attracted a lot of research. We explore Caloric Expenditure Estimation using HAR.

2.1 Human Activity Recognition

The goal of activity recognition is to recognize common human activities in real

life settings. All existing Human activity recognition systems can be classified into

four broad categories: RSSI based, Radar based, and CSI based, and other wireless

techniques.
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2.1.1 RSSI Based

Received Signal Strength Indicator (RSSI) based activity recognition relies on the

fluctuations in the received signal strength to classify the activity.

WiGest leverages changes in Wi-Fi signal strength to sense in-air hand gestures

around the user’s mobile device [1]. They classified primitive hand gestures like move

up-down, down-up, up-pause-down with an accuracy of 87% for a single Access Point

(AP). [22, 23] uses RSSI based signal features to classify activities such as standing,

lying, walking, and crawling. These use software radios and report an accuracy

of 86.4%. Thus, accuracy and coverage of RSSI based systems is lower than the

proposed system.

2.1.2 Radar Based

In some notable works, radar has been used for activity recognition. WiZ is a proto-

type that can localize up to five users with median accuracy of 8-18 cm [3]. Where

as, WiTrack can detects 3D pointing gestures with an orientation error of 11.2◦ [2].

Radar based systems have a much higher bandwidth and can extract micro-Doppler

information. There has been some work to estimate the human motion parame-

ters from radar spectrograms. [24]. However, even these require very specific and

expensive hardware.
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2.1.3 CSI Based

More recently, CSI information extracted from Wi-Fi network interface cards (NICs)

are being used for human activity recognition. Research has been done for several

applications such as fall detection, presence detection, human crowd counting [28].

Some work for classifying human micro-movements includes classifying lip-movement

[34], keystrokes [5], and heartbeat [32].

WiFall [26] can detect fall scenario of a single person with 90% precision and 15%

false alarm rate by using one-class SVM classifier and 94% fall detection precision

and 13% false alarm rate with Random Forest classifier. CSI has also been used for

presence detection [35] with average false positive of 8% and false negative of 7% in

four directions.

2.1.4 Other Wireless Techniques

Many activity recognition systems use hardware that has been specifically designed

to serve the purpose. For example, WiSee uses USRP and measures Doppler shift

in wireless signals [31]. Allsee uses a custom low-power circuit to extract received

signal to recognize hand gestures [17]. It classifies gestures such as flick, zoom in,

zoom out, push, pull etc. with an accuracy of 97%. All these usually report very

fine-grained signal measurements [14, 15].
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2.2 Caloric Expenditure Estimation

Although there has been a lot of interest in HAR, to the best of our knowledge no

research has been done for Caloric expenditure estimation in a device-free setting.

Calorie estimation using devices/sensors has been extensively studied. A lot of de-

vices such as fitness trackers, smart watches, and body sensors are available for this

purpose. There have been various studies to compare these devices [9], [16]. The

inaccuracy for sitting tasks (resting calories) was found to be as high as 52.4%. We

believe to have an accurate calorie estimation in a device free setting, we need precise

HAR.
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Chapter 3

Background

Ultra-Wideband radio technology uses a very low energy level for short range, high-

bandwidth communication, over a large spectrum of the radio spectrum.UWB signals

are sent in short bursts of pulses (1 ns). This enables in signal echo from different

paths at different time intervals. This unique feature leads to accurate distance

measurements with associated time stamps. The methodology to collect CIR data

is depicted in figure 3.1.

3.1 Hardware Specifications

The DecaWave EVB1000 allows the development of applications in real-time location

systems (RTLS) and wireless sensor networks (WSN).Figure 3.2 contains the layout

of a standard EVB1000 node.
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Figure 3.1: Key Idea

The evaluation board incorporates DecaWave’s DW1000 IEEE 802.15.4-2011

UWB compliant wireless transceiver IC, STM32F105 ARM Cortex M3 processor,

USB interface, LCD display and off-board antenna. The DW1000 IC supports 6

frequency bands with center frequencies from 3.5 GHz to 6.5 GHz with a bandwidth

of 500 MHz or 900 MHz. It supports packets up to 1023 bytes. EVB1000 has De-

caRanging pre-installed which was modified for collecting CIR data. This chip can

estimate and report CIR.
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Figure 3.2: EVB 1000 Node [8]

3.2 Channel Impulse Response

CIR is the response of the wireless links to the impulses. It can be formulated as

follows:

h(τ) =
N∑
i=1

aie
−jθiδ(τ − τi) (3.1)

where ai,θi, and τi are the amplitude, phase, and time delay of the ith path respec-

tively

As per equation 3.1, CIR is a good indicator of reflected multipath components

which are being used in this experiment for activity recognition. Figure 3.3 illustrates

the CIR raw data collected for two different activities. The first path, marked with

a peak is at around 45 ns. In this experiment we consider the data between the first

peak and subsequent 100 ns to reduce the effect of noise in the results.
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Figure 3.3: CIR collected for 2 different activities

3.3 Feature Selection

We used the raw CIR values that were obtained during communication between

the EVB1000 nodes to build feature. The communication consists of a sender that

is sending messages every 50 ms. The receiver, constantly monitoring the channel,

records CIR information upon receiving a packet from a sender. EVB nodes estimate

the components of channel’s CIR every 1 ns. It reports the component in polar

coordinates. We used the raw values of samples as features in our machine learning

algorithm. After careful analysis of our data, we realized using 200 samples starting

from the first path will generate accurate enough results.

11



Chapter 4

Methodology

The proposed approach consists of processing UWB signals to determine the pose of

a subject and the time spent in each pose. Our methodology is specially designed

to identify the poses of standing, sitting and lying. According to the Compendium

of physical activities [18] these poses are classified as ”Light inactivity”. Figure 4.1

shows the proposed methodology for our approach.

CIR Extraction UWB signals are sent in short bursts of pulses by the sender

(every 50 ms). This enables in a signal echo from different paths at different time in-

tervals. This unique feature leads to accurate distance measurements with associated

time stamps. We use the raw CIR values that were obtained during communication

between the nodes. The receiver, constantly monitoring the channel, records CIR

information upon receiving a packet from a sender. The receiver node estimates

the components of channels CIR every 1 ns. It reports the component in polar

coordinates. We treat this as our raw data.
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4.1 Pre Processing

We process the raw data in two steps. For the packets that are received we determine

the first path and use only a part of it to eliminate noise.

4.1.1 First Path

The collected CIR data contains the information about the first path delay. This

is the channel's delay to receive the first path. The CIR values that are reported

are inherently noisy. But, to train models for activity recognition, it is important to

remove this noise prior to data model creation. All signal measurements before the

first path are considered as noise and eliminated. Noise elimination is an important

step to reduce the impact of environmental factors in the monitored area. This

includes any disturbances by other human beings in the vicinity of the monitored

area, movement/ activity of other objects. To incorporate this we remove the samples

before the first path component using the first path delay information.

4.1.2 Filtering Noise

We tested the data after the first path to determine, the amount of data that is useful

after the first spike in amplitude. Once a signal is pre-processed the available data

which is in the form of polar coordinates. We then find the most optimal number

of features that give highest accuracy. For all models trained, 200 features are used.

Figure 3.2 shows that this is observed at around 50 ns for the depicted experiment.
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The feature set so derived is used in combination with four classification algo-

rithms to predict the pose of a subject. We perform the experiment for a set of 13

subjects. We used 10-fold cross validation technique for this purpose.

4.2 Algorithm Selection

We trained models based on some common machine learning classification algorithms.

Naive Bayes: Our first model was trained based on the Naive Bayes classifier.

However, it has a strong independence assumption between the features. This is not

true in our case. We still use it as it is a popular algorithm for classifying problems.

We are using the Gaussian Naive Bayes classifier for our experiment.

Neural network Multi-Layer Perceptron (MLP): MLP is a feed forward

artificial neural network model that maps sets of input data onto a set of appropriate

outputs. It consists of multiple layers and each layer is connected to the next one.

MLP has shown some promising results with classification of activities using cell

phone accelerometer data [18].

Nearest Neighbors: The principle behind nearest neighbor methods is to find

a predefined number of training samples closest in distance to the new point and

predict the label from these. The number of samples can be a user-defined constant

(k-nearest neighbor learning) or vary based on the local density of points (radiusbased

neighbor learning). Previous efforts to classify human activities using the common

k-nearest neighbors classifier had an accuracy of 75% [11].
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Random Forest: Random Forest Classifier is ensemble algorithm. It creates a

set of decision trees from randomly selected subset of training set. It then aggregates

the votes from different decision trees to decide the final class of the test object.

Previous studies that used multi sensor data have shown to have high accuracy for

HAR [10].

The trained models can be used in application for activity recognition. The

accuracy’s of these models are recorded and the model with the highest accuracy is

chosen to determine calorie expenditure of subjects based of the predicted pose.

The detailed description, methodology, and results of this application are covered

in Chapter 6.

15



Figure 4.1: System Flowchart for Activity Recognition using UWB
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Chapter 5

Evaluation

To evaluate the accuracy of activity detection, we try to classify CIR signals to

predict the activity performed by a subject. We then leverage this information for

calorie estimation. Similar, experiments were carried out using WiFi CSI for HAR.

Additionally, we compared the results of both experiments in our evaluation process.

Following sections describe the evaluation process in detail and the results for the

same.

5.1 Experiment Design

The experiments have been performed in different indoor settings such as in a couple

of different apartments, and a conference room in our institution. For each of the

locations multiple subjects have performed three activities, i.e. standing, sitting,

17



Table 5.1: Subject Details
Subject Height (cm) Weight (cm) Girth (cm) Gender

1 178.0 154.0 83 male
2 172.5 158.5 85 male
3 175.1 159.0 89 male
4 147.0 105.0 72 female
5 190.5 270.0 120 male
6 188.0 155.0 85 male
7 172.0 176.4 95 male
8 156.0 125.6 77 female
9 185.4 207.0 100 male

10 172.7 185.0 98 male
11 184.0 174.0 96 male
12 180.5 163.0 92 male
13 165.0 137.8 79 female

and lying. Additionally, the empty room has been considered as the baseline activ-

ity. Table 5.1 lists some basic information for all the subjects that performed the

activities.

Note that we have taken multiple subjects into consideration. This has been done

so that our system gets trained to identify different subjects performing the same

activity. This makes our system more robust for user related applications.

To enhance the CIR altercation and improve the recognition accuracy, some spa-

tial restrictions have been employed and all the activities are performed between the

two nodes. Moreover, to ensure a stable environment, 10 meters of area around the

nodes was cleared. This was done to exclude any potential external interference like

passing by subjects.

For the purpose of our experiment we have used 200 i/q values. Figure 5.1 shows

the accuracy of a Random Forest classifier for different number of samples including

18



50,100,150 and 200. The accuracy consistently improves up to 200 samples as features

and shows no improvement after it. Thus, 200 samples are selected as features for

the models.
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Figure 5.1: Accuracy comparison for different number of features

5.2 Experimental settings for UWB signals

Our system consists of a pair of EVB1000 boards which have been placed 2 m apart.

One of the node (transmitter) is configured to continuously send packets to the

receiver. When there is a human present near the setup, the human body reflects the

packets. By monitoring the channel, the receiver can measure the change caused by

the human movements and this is used to recognize the surrounding human activity.
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5.3 Activity prediction using UWB signals

The packet capture by EVB 1000 was analyzed and used to train models using dif-

ferent machine learning algorithms mentioned in Algorithm selection in Background

(Chapter 3). The CIR values that are reported by the EVB1000 nodes are inherently

noisy. However, to train models for activity recognition it is important to remove

this noise prior to data model creation. To incorporate this we remove the samples

before the first path component as a pre-processing step to model training.

The first algorithm used to model the data was Naive Bayes. The accuracy of

Naive Bayes is reported at 65.6%. The confusion matrix for prediction accuracy is

mentioned in table 5.2 . This accuracy is significantly low due to the independence

assumption between features.

Table 5.2: Naive Bayes Confusion Matrix

Empty Standing Sitting Lying
Empty 0.856 0.004 0.086 0.054

Standing 0.018 0.308 0.343 0.33
Sitting 0.013 0.088 0.57 0.329
Lying 0.002 0.006 0.127 0.865

The second algorithm used to model the data was Neural Network MLP. The

accuracy reported for classification of HAR is 93.9%. The confusion matrix for NN

MLP is shown in Table 5.3.

The third classification algorithm used for data modelling is Nearest Neighbors.

The overall accuracy reported is 94.5%. The confusion matrix for nearest neighbors

is reported in table 5.4.
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Table 5.3: Neural Networks MLP Confusion Matrix

Empty Standing Sitting Lying
Empty 0.995 0.002 0.002 0.001

Standing 0.001 0.913 0.037 0.049
Sitting 0.001 0.021 0.921 0.057
Lying 0.001 0.009 0.009 0.981

Table 5.4: K Nearest Neighbors Confusion Matrix

Empty Standing Sitting Lying
Empty 0.996 0.002 0.002 0

Standing 0.001 0.881 0.052 0.066
Sitting 0.002 0.02 0.938 0.04
Lying 0.003 0.014 0.008 0.975

The final algorithm used to model data is Random Forest with an accuracy report

of 95.6%. The confusion matrix of random forest is shown in Table 5.5. Random

Forest reports the highest accuracy amongst all algorithms.

Table 5.5: Random Forest Confusion Matrix

Empty Standing Sitting Lying
Empty 0.993 0.003 0.001 0.003

Standing 0 0.929 0.027 0.043
Sitting 0 0.018 0.929 0.053
Lying 0 0.005 0.007 0.987

5.4 Experimental settings for WiFi CSI signals

To compare the performance of UWB CIR, we use Linux 802.11n CSI Tool. The

CSI Tool is built on the Intel Wi-Fi Wireless Link 5300 802.11n MIMO radios, using

21



a custom modified firmware and open source Linux wireless drivers. WIFI NICs

continuously monitor variations in the wireless channel using CSI, which characterizes

the frequency response of the wireless channel. In this experiment we use one wireless

Access Point (Buffalo WZR-HP-G300NH2) under 802.11n(2.4GHz) and one laptop

(Dell, Ubuntu 12.10). Experiments described in Experiment design are performed

using the CSI tool.

5.5 Activity prediction using WiFi CSI signals

To compare the performance of UWB CIR, we perform the same experiments using

Linux 802.11n CSI Tool. The output of the experiment is then modelled using the

same four algorithms.

Naive Bayes is the first algorithm used for data modelling. Its average accuracy

is 46.8%. The comparison for CSI based Naive Bayes is depicted in figure 5.2. The

low accuracy of Naive Bayes is attributed to its Independence assumption.

The second algorithm used to train a model is Neural Network MLP. The average

accuracy for it is 69.6%. The comparison for NN MLP is shown in figure 5.3. As

compared to Naive Bayes, NN MLP performs better in prediction of all classes. This

improvement can be attributed to the fact that NN MLP does not assume feature

independence.

The third algorithm for modelling data is Nearest Neighbors that gives an accu-

racy of 61.1%. The comparison for NN is depicted in figure 5.4.
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Figure 5.2: Naive Bayes Comparison

The final algorithm for to train the CSI data is Random Forest with an accuracy

of 74.1%. The comparison for a Random Forest is shown in figure 5.5.
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Figure 5.3: Neural Network Comparison
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Chapter 6

Application

An application of UWB for Human Activity Recognition (HAR) is in calculating

caloric expenditure. Once an activity is classified, these results are used to find the

energy expenditure based on MET values. Metabolic Equivalent (MET value) is the

amount of Oxygen a person consumes per unit of body weight while performing a

certain activity. We use metabolic equivalent (MET) for each activity reported in

the Compendium of Physical Activities [4].

Calories = METS(kcal/kg ∗ hr) ∗ weight(kg) ∗ time(hours) (6.1)

In our experiment, we asked 13 subjects to perform the three activities (stand-

ing, sitting and lying) for three minutes each, this is the ground truth. We then

classify these activities using the proposed HAR system. We use equation 6.1 with

corresponding MET values of the activities to estimate caloric expenditure for both
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the base condition and for our HAR system. We compare both these values to the

caloric estimate found using the Basal Metabolic Rate (BMR). BMR is defined as

the rate at which your body uses energy when you are resting in order to keep vital

functions going. Most commercial devices that are available in the market use BMR

in order to count calories. Equation 6.2 and 6.3 is used by most of these devices.

Women : BMR = 655+(4.35∗weightInPounds)+(4.7∗heightInInches)−(4.7∗ageInY ears)

(6.2)

Men : BMR = 66+(6.23∗weightInPounds)+(12.7∗heightInInches)−(6.8∗ageInY ears)

(6.3)

The results of Calorie Expenditure for the 13 subjects involved in this experiment

are shown in table 6.1 The table also shows the corresponding Basal Metabolic

Rate(BMR) values for the same subjects.

By using UWB HAR we are able to count calories with an error of less than 1%

for stationary subjects. This is significant improvement over fitness devices which

either do not count calories for inactive subjects or use BMR which is suffers from

high inaccuracy. Our approach reports 32% more calories than the BMR approach

which iis known to under reports calories.
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Table 6.1: Calorie Estimation Results

Subject Perfect Recognition (Kcal) UWB HAR (Kcal) BMR (Kcal)
1 16.07 15.95 10.99
2 16.54 16.42 11
3 16.59 16.47 11.1
4 10.95 10.88 8.12
5 28.17 27.98 15.9
6 16.17 16.07 11.35
7 18.4 18.26 11.68
8 13.1 13 9.2
9 21.6 21.43 13.29
10 19.3 19.16 12.04
11 18.15 18.01 11.96
12 17.01 16.87 11.42
13 14.38 14.28 9.96
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Chapter 7

Conclusion

The proposed approach for Human Activity Recognition provides a high accuracy for

indoor settings at 95%. The focus of this approach is to classify activities where the

subject is stationary.We only use one UWB transmitting node and a UWB receiver

node. We use four common machine learning algorithms namely, Naive Bayes, Neural

Networks MLP, Random Forests, and K Nearest Neighbors.To evaluate our system,

we perform the same experiments using WiFi CSI and show that our results have an

accuracy 20% higher than WiFi CSI.

It is important to note that this performance is recorded for experiments with sin-

gle subjects. Effects of multi-subject settings including public spaces have not been

studied. Also, the proposed system is not resilient to changes in the environment,

which means if big pieces of furniture are moved in the room, user will be required

to train the system again. A fingerprinting approach can be used to notify the user

whenever there is a need to train the system. Another important aspect of such
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studies will be cross channel communication handling. However, a lot of single sub-

ject settings such as patient monitoring in intensive care, athletic training, etc can

most effectively make use of the proposed system to estimate Caloric Expenditure.

Current devices which are commercially available to measure Caloric Expenditure

for a subject at rest focus only on the BMR (Basal Metabolic Rate). This leads to

a generic calorie estimation for all activities. We investigated prediction of Caloric

Expenditure using the results of activity classification. It makes use of the Metabolic

Equivalent (MET) of each activity, physical attributes of a subject and the duration

of each activity. We were able to estimate the resting caloric expenditure with an

error of 1% which is 32% improvement over fitness trackers. This approach is being

developed as an important application of HAR using UWB.
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