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Summary. — A classical theory of the electron, proposed by one of us
several years ago and based on finite-difference equations, is discussed by
considering the three possible following cases: radiating electron, absorbing
electron and nonradiating, nonabsorbing electron. In particular the
so-called trasmission laws necessary to determine, in conjunction with
the dynamical equations, the motion of a charged particle corresponding
to given initial values of position and velocity are critically reconsidered.
The general characteristics of the one-dimensional motion in the non-
relativistic approximation are discussed in detail. It is found that in
the case of the radiating electron the particle position tends asimptotically
to the point of stable equilibrium. The present theory is, therefore, free
from the unphysical phenomenon of runaway solutions. These general
results are illustrated by studying the motion of a particle under the
action of a restoring elastic force and under the action of purely time-
dependent forces.

1. - Introduction.

A geries of recent papers (%) is witness to the continued interest that the
classical theory of charged particles arises even after the brilliant success of
quantum electrodynamies. Many reasons for this state of affairs can be found

(1) C. TEITELBORN: Phys. Rev. D, 1, 1572 (1970).

() T. C. Mo and C. H. Paras: Phys. Rev. D, 4, 3566 (1971).

() M. Soma: Zeits. Naturf., 29 a, 1671 (1974); 31 a, 644, 1133 (1976); 32a, 101,
659 (1977).

() I. PerzoLp and M. Sorg: Zeits. f. Phys., 283 A, 207 (1977).

(®)) H. LeviNg, E. J. MoxN1z and D. H. 8uHAPP: Amer. Journ. Phys., 45, 75 (1977).
(®) G. H. GOoEDECKE: Nuovo Cimento, 28 B, 225 (1975).
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in the books by ROHRLICH (?) and ARZELIES (®). To these reasons we add that
it may be easier to get a valuable insight info the consequences of some deep
modifications of fundamental physical assumptions in a classical rather than
in a quantum context. The present paper deals exactly with one such modifi-
cation, in so far as the dynamical equation for charged particles that we ex-
amine is a finite-difference rather than a differential equation. This equation,
which was put forward by one of us some time ago, is studied here in the non-
relativistic limit. We present several elosed-form solutions for simple one-
dimensional motions and we consider some properties of the solutions in more
general cases. It is found that the solutions of the equation in question exhibit
a physically reasonable behaviour and are free from the difficulties besetting
other classical theories of charged particles. In addition, the importance of
the so-called « transmission law », i.e. of the relation between position and veloe-
ity in the elementary interval of time fypical of the theory considered, is
illustrated, and a new form of it is presented. With this modification of the
transmission law it is found that our theory goes over into the Lorentz-Dirac
one (also when the force acting on the particle depends explicitly on the posi-
tion variables) as the elementary interval of time, the chronon, is made van-
ishingly small.

2. — The Dirac classical equation.

In his theory LORENTZ (°) represented the electron as a small sphere con-
tractile in the direction of its veloeity: by calculating the reaction force using
the Wiechert and Liénard potentials, he derived an equation of motion that
in the nonrelativistic approximation reads

dv
mo—(-ﬂZF—{—I'.

The coefficient m,, which has the physical meaning of a rest mass, is given by

(") F. Romruricu: Classical Charged Particles (Reading, Mass., 1965).

(®) H. Arzerths: Rayonnement et dynamique du corpuscle chargé fortement accéleré
(Paris, 1966).

(®) H. A. LoreNtz: The Theory of Electron (Leipzig, 1916).
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where R is the radius of the electron at rest, F is the external force and

2 e? d2v
=goage T OE+OE A+ ..
is the reaction force.

Notice that the coefficients of the powers of E contain higher-order deriva-
tives of v and furthermore their expression would change if one assumed a differ-
ent model for the electron. In any case, in the limit B = 0, corresponding to
a point electron, only the first term on the right-hand side contributes. However,
in this limit, m, is infinite. This result is obviously absurd. Furthermore, other
serious difficulties are connected with the Lorentz theory (%2).

To avoid these difficulties DIRAC (*°), starting from Maxwell’s equations,
evaluated the flux of the energy-momentum vector through a small tube of
radius ¢ < R surrounding the world-line of the electron. In this way he ob-
tained the following exact equation:

d
mo‘au"s““=Fg;+ I‘a (’u/opuo;=—02),

where the rest mass

is the difference of two quantities, each of which becomes infinite for ¢-—0
in such a way that m, remains finite. The terms on the right-hand side are
given by

e 2 (APus | waug dPug
w=genvey  To=gz3 (ds2 T dsz)

and are the four-vectors representing the external force and the radiation reac-
tion, respectively. The Dirac «exact » equation for the classical radiating
electron is therefore the following:

1) m

dus, 2 e (d2us = Uuams d2ug
ds2 ¢z ds?

e
% 3o\de T )-5""%“%
which in the nonrelativistic approximation becomes

(@) My e = F

() P. A. M. Dirac: Proc. Roy. Soc., 161 A, 148 (1938).

9 —~ Il Nuovo Cimenlo A.
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with
v
F=e (E -+ py XB) .

But, also adopting equations of the type (1) or (2), we stillmeet many difficulties
connected expecially with the fact that their solutions contain more than two
arbitrary constants, since the equations involve second-order derivatives of
the velocity. For a detailed discussion of such difficulties we refer the reader
to some review papers (1'1%) and to the already-menfioned books (%9).

3. — Relativistic finite-difference equations.

A way to overcome the difficulties presented by the Dirac classical equations
has been indieated by one of us (®) about twenty years ago by proposing the
substitution of eq. (1) by the following relativistic finite-difference equation for
the radiating electron:

Ua(T) Us(T)
02

(3) % {ua(r)-ua(r——r.,) -+

0

[ws(T) — us(r — To)]} = ZFaﬂ(T) %us(7) ,

that can also be written in the equivalent form

Ua(T) up(7)
02

@ _ [u«(rﬂo) +

- ug(t — 1:0)] = SFaﬂ(T)uﬂ(T) .

Here v = s/c is the proper time of the particle and 7, is an invariant interval
of time given by

(5) To = 20, ,
where

2 e?
(6) b =3 et

is the so-called chronon.
Let us observe that in the nonrelativistic approximation eq. (3) reduces to

(") 2 [o(t) —v(i— )] = F(r@); v(); 1) -

(**) T. ERBER: Forts. der Phys., 9, 343 (1961).
(12) G. N. Prass: Rev. Mod. Phys., 93, 37 (1961).
(13) P. Carpirora: Suppl. Nuovo Oimento, 3, 297 (1956).
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This equation coincides with that obtained by many authors (%4¢) consider-
ing an extended electron, the charge of which is distributed on a spherical shell.

Another equation already considered by one of us (%) is the following
(equation for the absorbing electron):

® 2t o=t + "D e+ 1) — () = Py

(]
equivalent to

Ua(T)s(7) |
02

9) Lo [w(r + ) +

oz + n)] = % Fap(t)us(s) .
Ty ¢
As will be shown below, this equation may be interpreted as describing the
motion of an ordinary particle of charge ¢ absorbing energy from the ex-
ternal space.
The corresponding- nonrelativistic approximation is

(10) 20 ot 4 ) — o] = F(r(); v(0); 1) -

0

Finally let us recall that for a nonradiating and nonabsorbing electron it is pos-
gible (13) to assume a symmetrical finite-difference relativistic equation )

My

ay M {ua(z - 6)— tialr—00) +

o T) p(7T)
26, 2

[uﬁ(T + 60)_"“;3('5—'60)]} =

[~

szﬁ(T) uﬁ(f) ’

which in the nonrelativistic approximation becomes

My

(12) 5,

[(t + 6,) —v(E—0,)] = F(r(t); v(t); ?) .

Let us mention that this last eqnation suggested to one of us the starting point
for the introduction of the chronon in quantum mechanics writing a suitable
finite-difference Schrodinger equation (7).

(14} L. Page: Phys. Rev., 9, 376 (1918).

(%) D. Boam and M. WEINSTEIN: Phys. Rev., 74, 1789 (1948).

() C. J. ELiezER: Proc. Camb. Phys. Soc., 46, 198 (1950).

(*) This equation is slightly different from the equation proposed before ('3).
(") P. Carpirora: Lett. Nuovo Cimento, 16, 151 (1976); 17, 461 (1976).
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4. — Initial conditions and the transmission law.

In the general case, Fas or F depend explicitly on the positional variables
%y or r. The dynamical law (3) (and the analogous (8) and (11)), therefore, is
not sufficient by itself to calculate ua(nt,), @a(nt,) (or, in the nonrelativistic
approximation, v(nt,) and r(nz,)). A further finite-difference equation is
necessary to close the system. To this equation we shall refer as to the {rans-
mission law. The importance of this point was already stressed in our original
paper (*2).

Changing slightly our original assumption, we shall assume the following
form for the transmission law agsociated to eq. (3) for the relativistic radiating
electron :

(13') (7o) — Ba[(n— 1) 7o) = FTe{Ua(nTo) + wal(n— 1) 7]} .
The reason for the choice of this particular transmission law will be discussed

below.
The nonrelativistic approximation of (13’) is given by

(13") r(nt) — rli(n— 1) 7] = 7 {v(nv,) + vi(n—1)%]} .

In a similar way we shall associate to eq. (8) for the absorbing electron the
relativistic transmission law

(14") al(n + 1) 7] — wa(n76) = $7{tial(m + 1)76] + Ua(nzy)} ,

which in the nonrelativistic approximation reduces to

(14") rl(n 4 1) %] — r(nt) = §7{vl(n + 1) 7]+ v(n70)} .

Finally we recall also that the transmission law associated to the relativistic
symmetrical equation (11) for the nonradiating and nonabsorbing electron is
agsumed to have the following form:

(15%) wal(n + 1)00] — @al(n — 1)0,] = 20,%a(nbo) ,

which in the nonrelativistic approximation becomes

(15") r{(n + 1)6,] — r{(n— 1)0,] = 20,v(nf,) .

By means of the equation of motion and of the transmission law, it is now
possible to evaluate x,(t) and u«(t) at any time 7 = nt,.
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The resulting motion, defined in a succession of discrete instants of time
separated from each other by the interval =,, will be called macroscopical motion
of the electron. We remark that this motion remains unaltered if, instead of a
constant value of wa(7) in the interval (n— 1)r,<7T<n7,, W€ assume any
other velocity satisfying the transmission law; in other words, we may take
for ua(7) any function variable in the interval considered in such a way that
its average value is equal to L ua((n — 1) 75) + ua(nty)] for the radiating elec-
tron. Similar assumptions may be taken for the absorbing electron and for
the neither radiating nor absorbing electron. This means in particular that
the macroscopical motion remains unaltered by the superposition on the uniform
motion, involved in the transmission law, of any other internal or microscopical
motion, provided the average velocity of the latter is zero in an elementary
interval of duration 7, and the conditions #™(nz,) = 0 and 2™ (nz,) = 0 are
satisfied. These conditions ensure that, at any instant v = nt,, the effective
position #,(7) = 2”(z) 4 2™ (7) and the effective velocity u,(7) = u2"(7) +
-+ u”(7) of the electron are equal to the corresponding gquantities for the
macroscopical motion only.

In any case, even if we are interested in the macroscopical motion only,
the condition

(16) U T)Ua(T) = — €2

is still to be considered verified for any v = nv,.

Of particular interest seem to be the periodical internal motions (**) and the
random internal motions (*¥). We shall recall also that all the internal motions
are nonradiating and nonabsorbing motions.

The solutions of eq. (3) and eq. (7) for the radiating electron (which is the
case of direct physical interest) are easily obtained (1) for some problems con-
cerning motions under the action of constant (*) or of time-dependent forces
(4.e. when Fyp is a funection of 7 only or F of ¢ only). In these cases, given the
initial value of the velocity, it is possible to evaluate without any ambiguity,
by means of the equation of motion only, the values of the same quantity at
any other ingtant. The successive and independent application of the transmis-
sion law leads to the determination of the position. The results are completely
satisfactory: in particular the strange behaviour of an electron according to the
Dirac classical equation is no longer present. The situation is more compli-
cated when the external forces depend explicity on the positional variables
of the electron. In this case the possibility of evaluating the velocity and the

('8) P. CaLpiroLA: Leti. Nuovo Oimento, 15, 489 (1976).

(*) See in particular the detailed discussion of our relativistic finite-difference equation
tor the radiating electron in the case of hyperbolic motion carried out by Laxz (%®).
(**) L. Lanz: Nuovo Cimento, 23, 195 (1962).
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position is elearly related to the simultaneous solution of the equation of motion
and of the equation expressing the transmission law.

5. — General properties of the rectilinear motion in the nonrelativistic
approximation.

In this section we wish to elucidate some general features of the dynamical
equations (7) and (10) and the associated transmission laws (13") and (14”) for
the simple cases of nonrelativistic, rectilinear motion, respectively for the ra-
diating and for the absorbing electron, under the action of forces independent
of time.

The dynamical equations under investigation are, therefore,
My
(a7) 7 [0 — 0t — )] = F(a(2); v(1)) (b= n7o)
0
for the radiating electron, and

(18) 220l + %) —v(B)] = F(a(t), (1) (t = nry)

for the absorbing electron.
We can carry both cases at the same time by writing

(19) %g[v(t + 7)) —o()] = AF (2(t + ), v(t + 7)) + uF(@(t); v(0) ,

0

where

A=1, pu=0 for the radiating electron,
20
(20) A=0, pu=1 for the absorbing electron.

To eq. (19) we add the transmission law, (13") and (14"), in the generalized form
(21) @t + 7o) — #(t) = To[av(t + 7o) + ()] .

Incidentally we remark that the original form of the transmission law given
in our old paper (%) corresponds to o = 1, § == 0, whereas eqs. (13") and (14")

are obtained from (21) by putting

(22) o=

o=

’ B =

o=t

Notice that, for eq. (19) and eq. (21) reduce to the ordinary form of Newtonian
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mechanics in the limit 7,—0, it is necessary that
(22') Atp=1, at+pf=1.

We shall consider the behaviour of the solutions of the system of equations (17)
and (21) in a neighborhood of a point of stable equilibrium (Z, 0), .¢. a point
such that

(23) F@,0)=0.

Stability of equilibrium requires also the existence of a region %, of positive
measure containing (z, 0) as an interior point and such that

oF (z, v)

oF (z, v)
o <

(24) o

<0, 0 for (@, v)e%;

we shall further assume these derivatives to be continuous in %,.
For our purpose it is expedient to consider eqs. (19) and (21) as defining a
transformation (mapping) of the phase space (x, v) into itself:

(25) (w” 'Dl) = T(w’ /0) ’

according to the following law:
7,
(26) o' =0v+ W"[ZFW, ) + pF (@, v)], &= x4 vl + fv).
0

Consider now all the points of a region # C %,, and apply the transformation (25)
to obtain the set of points #'= T%. Itis well known (%) that, if the Jacobian

_ o, v')
J= o(w, v)

of the transformation T is less than 1 at all points of %, the mapping is a
contracting mapping having as fixed point the equilibrium point (%, 0). Under
these circumstances all the solutions of (26) having initial conditions within %
will tend asymptotically to the equilibrium point, which is the behaviour that
one would expect from a particle losing energy by radiation. Conversely, if
J>1 in %, then the solution will move away from the equilibrium point, a
behaviour appropriate for a particle absorbing energy.

() Bee, for example, I. G. MALKIN: Theory of stability of motion (United States
AEC-tr-3352).
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From (26) it is a simple matter to establish that

1 —(7y/mo) p(Bo(OF [Ox) — OF [Ev))
11— (To/me) A(aTo(RF[Ox’) + OF[0v')

(27) J

Let us take the region # small enough that #' C %,. Then all the partial deri-
vatives appearing in (27) have the sign specified by (24). It is evident therefore
that, in order to have J << 1 for any force satisfying (23) and (24), it is neces-
sary to take y = 0 in agreement with (20).

The situation for absorbing particles is slightly more complicated. Consider
a velocity-independent foree first. Then, as before, in order that J > 1 irre-
spectively of the particular structure of the force, one must take 2 = 0, as had
been anticipated. If the force now depends on the velocity, then eq. (26) implies
that the rate of energy absorption is not sufficient to overcome the dissipative
influence of the force, unless ft,|0F/dx|> [0F[ov|. All these characteristics
are quite reasonable and confirm the physical interpretation of eq. (7) and
eq. (10) given above.

The extension of these considerations to the three-dimensional case is
straightforward and need not be pursued here.

A similar discussion may be performed for the symmetrical equations (12)
and (15”). Here it is necessary to introduce the auxiliary variable u(f) =
= p(t— O) and y(t) = x(t— 6,). The transformation of the space into itself
defined by (12) and {15") is then

, 7,
v :u—}—,’—n%F(m,v),
=9y 4 1.

A straightforward computation leads then to

a(y” u” ﬂ'/'” ’Dl) —
a(y’ %? x? Q))

b

in agreement with the physical interpretation of these equations.

6. — Example: linear restoring force.

The preceding considerations can be illustrated with the aid of some specific
examples. In the first place we will consider the case of the linear restoring
force F = — mywjz. Equation (17) becomes

(28) () — v(f— 7o) = — TWa(t)
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which is to be solved simultaneously with eq. (13") under the initial conditions
#(0) = @,, v(0) = »,. The solution is readily found by standard techniques to be

(28a) B(nT,) = 0~ "(@, cosnY 4 A sinnd),

(28b) v(nT,) = "N, cOSNY + Bsinnd),

where the amplitude factor ¢ and the angle ¢ are defined by

—3
(29) 0= (1 =+ _‘To) )

14 Lws 2\t
(30) g = tg—l [wo To (iizﬁ) ]

and the two constants A, B are given by

700+ [1— (1 + }373)} cos#]a,
1+ }witd)isind !

A =

(1 4 wivd— (1 + Foiri)t cosd]v, — w7,

B= (1 + wid)sind

By putting » = /7, eq. (28a) can be put in the standard form of a damped
oscillatory motion

#(t) = exp [—g t] (@ cOs 0t + A sinot) ,
where the damping coefficient ¢ and the natural frequency w are given by (*)
1 1
Yy = ;;ln(l -+ 56031‘2,) ,

1 1+ }osvi\f
=-—t —1 —_— .
® To g [wOTO (1—%60%13

In the limit 7,->0 these quantities reduce to the well-known form given by
the classical Lorentz theory, since

(310) y =5 mowd + Oeh) = 3 -0} + 0,
(32a) W = w,+ 0(73) .

(*) It is obvious from these equations that the motion is truly periodic only for
wy > 2751, A change to aperiodic behaviour occurs for w,= 273"
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A similar limit operation performed on the constants 4 and B yields the clas-
sical values (vo—l—g—mo) / oy and — w,x, , respectively.

It may be of some interest to consider the solution of the more general set
of equations (19) and (21) of an absorbing or a radiating electron for the simple
elastic force under consideration. This solution is still of the form (28), but
the quantities ¢ and ¢ are now given by

1 + Buwite\t
2) o= (o)

o Tol (o + YA + u) — % (“ﬂ_ﬂl)zwo'fg]}
1—3(xp + pA)wgTs )

(33) D = tg1

It is clear from (31) that in the case of eq. (18) (¢.e. A = 0, u = 1) the ampli-
tude of the oscillatory motion increases with time in agreement with the inter-
prefation of eq. (18) as describing an absorbing, rather than a radiating, electron.

It is interesting to consider the limit 7,—0 of eqs. (32) and (33) to ob-
tain the natural frequency and the damping coefficient. The result is

y = (eh— Bu)T,08 + O(73) ,
o = [(« + B4 + o, -+ O(d) .

Therefore, in order to recover the Lorentz result (31) for the radiating electron
(A=1,u=0), it is necessary to set o = f = 1.

For the absorbing electron(i = 0, 4 = 1) we require y = — lw}z,, which
again implies ¢ = § = 1. Thus we verify in this particular example what
was said above, namely that the form of the transmission law (147) is the
only one eapable of yielding the results of the Lorentz theory of the radiating
electron in the limit v, — 0.

For completeness let us note here that in this case the solution of eq. (12)
and eq. (15”), corresponding to an electron which neither radiates nor absorbs,

iy given by
x(nly) = x, cos (nny) -+ Csin (ny)
with a similar expression for v(n1,/2). The angle % is given by

Bo 0,

= arctg ——
7 VI—Gws’

and the eonstant C is determinaed by imposing the initial condition on the
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velocity. This result clearly corresponds to an oscillatory motion of fixed
amplitude.

Perhaps a further comment should be added on eq. (32). It is clear from
this expression that, if «d = fu, then g = 1 and the oscillatory motion main-
tains a fixed amplitude. This result corresponds to a particle of fixed energy
and, therefore, it may appear that other equations might describe a nonradiating,
nonabsorbing electron in addition to eq. (11) or eq. (12). In reality this is not
true, as a consideration of eq. (27) readily shows. What we find here is purely
a consequence of the particular form of the force under investigation, for which

oF _ oF
dw o

= —Mmyws .

7. — Example: time-dependent forces.

For the case of forces dependent on time, but not on positional variables,
one can obtain the general solution of eqs. (19), (21) subject to the initial con-
ditions #(0) = ®,, v(0) = v,; the result is

(34) D(NT) = Dy — f; [AF(0) 4+ pF(ny)] + ;’n- @+ w) 3 Fhr,)

k=0

(35) 2(T0) = By — Taloty + Br(nT)] + (o + B) 70 S 0(kTs) -
i~0

The extension of these results to three-dimensional motion is straightforward.
For purposes of illustration we consider here two specific examples.
In the case of a constant force, F(nt,) = K, eqs. (34), (35) give

(36) 7)(”70) =0+ (1 + ﬂ)g"“’o ’
67 alw) = tot @+ f) vt 3 O+ ) 3wl + Him -+ @—p)].

For the case of constant acceleration the nonrelativistic Lorentz equation
does not differ from Newton equation and we, therefore, must require that
egs. (36) and (37) reduce to the law of uniformly accelerated motion for 7, — 0
with nv,=1 fixed. Clearly this can only happen if A4+ u=1, «a + =1
and ¢ — f = 0. Thus we find again « = f§ = 1, as was assumed in (14). No-
tice that for this case we cannot discriminate between radiating (1 =1,
# = 0) or absorbing (1= 0, u = 1) electrons, because these effects are con-
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nected with the sign of the term containing the second derivative of the ac-
celeration, which vanishes identically. Hence, the only requirement to be
satisfied is A + p4 = 1 with no separate conditions on 1 and u.

A more interesting example is that of an exponential time dependence of
the force

F(nt,) = Aexpont,].
In this case eq. (34) reduces to

Avy 2 + u exp [—o1]
my, 1—exp[—o7,]

V(NTy) = 0y -+ (exp [onT,] —1) .

The expansion for small 7, with nr,=={ fixed gives

A A+ p—pov,
Mes 11— 37,0

o(t) = v+ (exp [ot] —1) ,

to be compared with the solution of the Lorentz equation

A explor] —1
myc 1—1Llor,

(38) o(t) = v+

For the two results to coincide one must require A-4}-pu=1, y =0 as ex-
pected. With this choice for 1 and u eq. (35) gives for the position

Z(nTo) = T+ (& -+ B)vynty+
A2 {oc exp [07,] 4 f

my(1 —exp [—o7,]) | exp [o7,] —1

[exp [onTe] —1]— (o + ﬁ)n} .

For this expression to be identical with the integral of eq. (38) in the small
7, limit, it is readily shown that one must require « +f =1, a =1 in
full accord with:;our preceding rusults.

8. - Conclusions.

The results presented so far justify the form of the transmission laws (13"),
(14"), (15") which we have associated to the different equations of the electron
deriving from our theory in the nonrelativistic approximation. It seems quite
reasonable to assume that their immediate generalizations (13'), (14'), (15')
give the correct form of the transmission laws in the relativistic case.

Therefore, as already anticipated in seet. 4, the complete fundamental
equations of our classical theory of the electron may be written:
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a) for radiating electron, the equation of motion

Ua (7o) Up(

? {ua(’n‘ro) —ua((n—1)7) + - ") Lo (n70) — s (10— 1) TO)]} _

]

¢
= Ethﬂ(”To)uﬂ(”To)
and the transmission law

@a(n7) — a((n—1)70) = 22 [a(n70) + a((n—1)7)];

b) for absorbing electron, the equation of motion

UaNTo) Ug(NT,)
02

7:—; {“zx((’n -+ 1)10) — Ua(NTy) + [uﬁ((n + 1)1:0) _uﬁ(%%)]} -

[ I

Fag(nty) us(nt,)
and the transmission law

T
Ta((n + 1) 7o) — @a(nty) = 5" [ua((n 4+ 1)75) + %alnz,)];
¢) for nonradiating, nonabsorbing electron, the equation of motion (6,=17,/2)

5”;—2 {“a((n + 1)60) —uzx(('"/_l)eo) -+

a(nBo) ug(

+ X 1) [uﬁ((n + 1)90) _uﬁ((n—l)eo)]} = —ZFaﬂ(neo)uﬂ(neo)

and the transmission law
@ (0 1)0,) — @a((n— 1)00) = 200ua(nb,) .

The univocally determined solutions in the points 7 = n7, of the different
equations considered give the so-called macroscopical motion of the electron.
To this motion an arbitrary internal motion, which gives the behaviour of
us(7) and @4(7) in the interior of any elementary interval of time (n—1)-
Ty, <T<MNT,, May be superposed. This possibility seems particularly attractive
because it may allow the description of families of particles the members of
which differ in intrinsic characteristics such as mags, magnetic moment, etc.
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® RIASSUNTO

8i discute una teoria classica dell’elettrone proposta qualche anno fa da uno degli autori
¢ basata su equazioni alle differenze finite, considerando i tre casi possibili: elettrone
irraggiante, elettrone assorbente, elettrone né irraggiante né assorbente. In particolare
si riconsiderano, attraverso un’analisi critica, le cosidette «leggi di trasmissione » neces-
sarie per determinare, unitamente alle equazioni dinamiche, il moto di una particella
carica in corrispondenza di determinati valori iniziali della posizione e della velociti.
8i discutono poi particolareggiatamente, nella approssimazione non relativistica, le
caratteristiche generali del moto unidimensionale. 8i trova, in particolare, che nel caso
dell’elettrone irraggiante la posizione della particella tende asintoticamente a un punto
di equilibrio stabile. La presente teoria & pertanto esente dal fenomeno non fisico delle
cosiddette « runaway solutions». Questi risultati generali si illustrano studiando il
moto di una particella sotto ’azione di una forza elastica di richiamo e di una forza
che dipende dal solo tempo.

Kiaccaveckas Teopusi 3J1eKTPOHA.

Peszome (*). — OO6cyxpmaeTcsi KilaccHYeckasi TEOPHUS JJIEKTPOHA, NPEANIOXEHHAA OIHIM
U3 aBTOPOB HECKOJIBKO JICT HAa3aX M OCHOBAHHAS HA YPAaBHCHHAX B KOHCYHBIX PA3HOCTAX.
PaccMaTpBaloTCs TPU BO3MOXKHBIX CIIydasi: H3LyYalolTuii 3JIEKTPOH, MOTIOINAIOMH JIeK-
TPOH M He MOTJIONAIONIn — He M3inydaromuil 3JeKTpoH. B YacTHOCTH, 3aHOBO pac-
CMAaTPHUBAOTCS TAaK HA3bIBACMBbIC 3aKOHEI IPOXOXKACHUS, HeOOXOMUMEIE BMECTE C THHA-
MHYECKHMHE YPaBHCHHSIMHE IJIsI OIPEAeIICHHS NBUKEHHS 3aPSKCHHON YaCTHIEI, KOTOpOoe
COOTBETCTBYET 3aJaHHBIM HAYAILHBIM 3HAYCHHSM KOOPIMHAT W CKopocTH. IloapobHO
00CyXmaroTcd oOIyc XapaKTePUCTHUKH OIHOMEPHOIO IBHXXEHUS B HEPEIIATUBUCTCKOM
npubnuxenun. IToy4yeHO, YTO B CIyYae M3JIy4YaloIlero 3JIEKTPOHA IONOXKECHHAES YACTHIEL
CTPEMHTCST ACHMOTOTHYECKHM K TOYKE YCTONMYHBOTO paBHOBecus. Takum obpasoM,
IpeNIOKEHHas Teopus CBOGOAHZ OT HedU3WYECKOro sBICHHS OBICTPO pacTyIMX pe-
urennii, OOuIme pe3ynbTaThl UINIOCTPUPYIOTCA HA IPHMEPE ABUKECHUS YACTHIBL HOM
OeficTBHEM BO3Bpallalolliel ynpyroil cmnekl W HOA IOEHCTBHEM CHJI, 3aBUCAIIHX OT
BpPEMCEHH.

(*) Iepesederno pedaxyueil.



