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Abstract

In this research, two novel algorithms are developed to facilitate quantitative eval-

uation of breast aesthetics for preoperative planning and postoperative outcome as-

sessment in breast reconstruction surgery in cancer patients. First, an algorithm

is presented for registering 3D images of individual patients from multiple clinical

visits. Registration is performed to eliminate differences in object coordinate sys-

tems between images due to variations in patient positioning and posture, thereby

facilitating longitudinal comparison of morphological changes in the reconstructed

breasts. Second, an algorithm to detect from 3D images the lowest breast contour,

an important attribute for breast aesthetics, is presented. The algorithm allows

detection of the lowest breast contour, for ptosis grades of 0, 1, 2, and 3. Most im-

portantly, the algorithm operates independent of the presence of fiducial points such

as the nipple, making it robust for applicability to images of breasts at intermediate

time points during reconstructive surgery that are devoid of nipples.

The applicability of the two algorithms is demonstrated in a multi-view 3D data

fusion technique for visualization of the inframammary fold (IMF) in upright images

from women with ptotic breasts. The IMF, a critical landmark for breast surgery

and morphometry, is typically occluded for ptotic breasts in upright images, which

is conventionally used for evaluation of breast aesthetics. Multi-view 3D images

taken at two different positions (upright and supine) are employed in a data fusion

approach to superimpose the IMF position, on 3D images of women with ptotic

breasts wherein only the lowest breast contour is visible.

Contributions of this research: (1) The registration algorithm is more effective

v



for multiple-visit images than traditional registration methods. This algorithm out-

performs existing ICP algorithms and is robust to variations in body mass index

(BMI). (2) The lowest breast contour detection algorithm, which computes contours

in 3D images directly, is more effective than current methods, which detect contours

in 2D images. (3) Multi-view 3D data fusion technique is a first attempt to visualize

the IMF in upright images for women with ptotic breasts, which enables physicians

to visualize the IMF position in upright images of women with high breast ptosis

degrees (≥ 2).
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Chapter 1

Introduction

1.1 General Introduction

Breast reconstruction is an important surgical component for many women under-

going breast cancer treatment [1]. Breast cancer remains one of the most common

malignancies in women and is one of the leading causes of cancer-related mortality.

Despite the current emphasis on breast conservation, mastectomy rates remain at

30%. Mastectomy is often associated with significant psychological stress due to dis-

torted body image. The purpose of breast reconstruction is to recreate a breast form

that is satisfying to the patient, facilitating her psychosocial adjustment to living as

a breast cancer survivor [2, 3].

Breast reconstructive surgery encompasses a range of surgeries performed imme-

diately after mastectomy, or as separate procedures at a later date. The reconstructed

breast can be formed using a breast tissue expander/implant [4, 5], autologous tis-

sue [6] (i.e., living tissue from another part of the patient), or a combination of the
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two. In addition, surgical modifications are typically made to both breasts, even if

only one breast had cancer, in order to maintain a symmetrical appearance. Thus,

breast reconstruction is a complex process usually not achieved in a single procedure,

and can take up to a year or longer, depending on the type of reconstructive proce-

dures selected and other factors affecting surgical outcome, including postoperative

complications and adjuvant cancer treatment.

Breast aesthetic assessment plays an important role in evaluating the final out-

come of breast reconstruction surgery. Subjective, qualitative assessment of breasts

morphology is measured by human observers. This methodology is primarily based

on the evaluator’s experience and his/her visual assessment and evaluation. The

main problem of subjective and qualitative assessment is that it has inherent low

inter- and intra-rater agreement which decreases the accuracy of breast aesthetic

measurement. A quantitative assessment, direct anthropometry, is performed on the

patient’s body using a measuring tape which is both time consuming and invasive

to patients. Photogrammetry involves measurements on two-dimensional (2D) clini-

cal photographs which is less invasive. However, 2D photographs cannot capture the

three-dimensional (3D) nature of the human torso. To address these issues, a reliable

and reproducible method is needed to objectively and quantitatively analyze breast

morphometry (preoperatively and postoperatively) causing minimal discomfort to

the patient.

Recently, stereophotogrammetry has emerged as a strong new alternative for

breast morphology analysis. This methodology can capture the entire breast surface

topology in human torso virtually in a single snapshot and without any direct contact

with the patient, thus causing minimal discomfort. A 3D torso image enables a 360-

degree panoramic visualization of the actual 3D breast morphology by permitting

2



rotation of the imaged torso about the three coordinate axes. With the 3D torso

images, it is now feasible to obtain accurate quantitative 3D breast measurements [7].

Objective and quantitative analysis (morphometry) of the patient’s breast is crit-

ical for preoperative planning and postoperative assessment of outcomes in breast

reconstruction for a variety of reasons, a few of which are [1, 7]:

• Preoperative evaluation of breast morphology is essential to determine the cor-

rect type and size of implant and tissue expander.

• Preoperative determination of the amount tissue to be recruited from the donor

sites is required in the autologous tissue-based breast reconstruction.

• Preoperative evaluation of the degree of breast ptosis is required for planning

the procedure of mastopexy.

• Postoperative assessment of the breast symmetry is needed to evaluate the

success of the surgery and to subsequently plan for a corrective procedure if

necessary.

• Postoperative tracking of the changes in breast morphology after breast surgery

is essential for subsequent detection and quantification of complications.

1.2 Current Problems

Many methods for assessing breast aesthetics using 3D images of patients have

emerged [7–17]. In this study, two novel algorithms for semi-automated analysis of

3D images are presented with the ultimate goal for facilitating computerized breast

morphometric analysis.
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1. Current quantitative assessments of breast morphology provide a global evalua-

tion of breast morphology at a given time point such as breast ptosis [8], breast

symmetry [9,10], and breast volume [7,11–17]. But few works are available to

correlate local morphological changes in breast over time, which is valuable

to better assess the surgical outcomes. In order to compare changes in breast

morphology occurring during the time course of several reconstructive proce-

dures, one needs to longitudinally analyze 3D multiple-visit images (Fig. 1.1)

acquired at successive time points from the same patient undergoing the mul-

tiple surgeries of her breast reconstructive course. The multiple-visit images

acquired at different clinical visits may not be in the same coordinate system

due to differences in patient positioning and posture. The coordinate system

difference should be removed by registering the multiple-visit images before

analyzing breast morphology changes caused by breast cancer treatments and

reconstruction.

(a) (b)

Figure 1.1: Example of 3D multiple-visit images. (a) Image from initial visit (pre-

operative). (b) Image from subsequent visit (post-operative).

2. Breast contour is an important component in breast aesthetic evaluation. It
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enables computation of morphological measures such as volume [7, 18–20] and

ptosis. Current contour detection methods focus on searching for the breast

boundary in 2D planes, which do not directly mirror the 3D breast contours

in the 3D images of patients. This work presents a novel algorithm for the

detection of the lowest breast contours in 3D images of the female torso.

1.3 Objectives

Work completed as a part of this research is described below:

1. Multiple-visit images registration: Register 3D surface scans of individ-

ual patients from multiple-visits to achieve correspondence between the im-

ages. In addition to breast surgery related anatomical changes (see Fig. 1.1),

the multiple-visit images from the same patient acquired at different clinical

visits may also change as a result of variations in the (a) object coordinate

systems due to differences in patient positioning and posture; and (b) patient’s

BMI due to physiological weight changes. Registration of the multiple-visit im-

ages can remove the differences in object coordinate systems between images,

thereby facilitating longitudinal quantification of morphological changes in the

operated breasts during breast reconstruction.

2. Lowest breast contour detection: Detect the lowest contour where breast

touches abdomen. This facilitates other measurements such as volume, and

identification of relevant features such as IMF.

The above two algorithms were applied to achieve multiple-view 3D data fusion

as described below:
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3. Multiple-view 3D data fusion: Conventionally, upright view images are

used for surgical planning and outcome assessment in breast reconstruction.

An inherent limitation of stereophotography is the inability to capture areas

that are occluded. For example, the IMF is occluded and cannot be visualized

in the upright position when acquiring images of patients with large and ptotic

breasts (Fig. 1.2a). Delineation of the anatomical IMF on the upright view

image is critical since the IMF is a defining element in the shape and structure

of the female breast. Evaluation of the IMF and its position in 3D upright

images is an important aesthetic consideration for breast reconstruction.

(a) (b)

Figure 1.2: Example of 3D multiple-view images for patient with ptotic breast (grade

2). (a) Upright image (anatomical IMF not visible). (b) Supine image (anatomical

IMF visible).

The image registration and lowest breast contour detection algorithms devel-

oped in this study were combined to design a data fusion technique with 3D

multiple-view (upright and supine) images to visualize the anatomical IMF

which is typically occluded from the upright view for women with large and
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ptotic breasts. The detected lowest breast contours from the supine image

(Fig. 1.2b) are transformed and superimposed onto the upright image. The

anatomical IMF is visible in the supine position for breasts which are ptotic

in the upright position. So the detected lowest breast contours in the supine

images correspond to the anatomical IMF and the superimposed contours from

the supine image represent IMF position in the upright image.

1.4 Layout of the Dissertation

The dissertation is composed of a total of 7 chapters. Chapter 2 briefly introduces

the background information on the use of mastectomy for breast cancer patients,

followed by breast reconstruction. Then, the literature on the various aesthetic

assessment methods for breast reconstruction is reviewed. Chapter 3 describes the

3D image acquisition system for multiple-visit images from the same patient taken

at different clinical visits and multiple-view (upright and supine) images used for

data fusion. Chapter 4 gives our proposed algorithm that allows registration of 3D

multiple-visit images, such that the differences in image-coordinate systems between

images are removed. In Chapter 5, we present an approach for the detection of

the lowest breast contour in 3D images which employs shape index and minimum

principle curvature analysis of the 3D surface. Chapter 6 describes our data fusion

technique with 3D upright and supine images to visualize the anatomical IMF which

is typically occluded from the upright view for women with ptotic breasts. The

summary and future work for this research are given in Chapter 7.
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Chapter 2

Background

2.1 Mastectomy

Mastectomy is a surgery to remove breast tissue from a breast as a way to treat or

prevent breast cancer. During the procedure, not only the known tumor but also

some of the surrounding breast skin and tissue are removed to ensure that all cancer

cells are removed. Currently, there are several surgical approaches to mastectomy

such as simple mastectomy (or “total mastectomy”), radical mastectomy (or “halsted

mastectomy”), skin-sparing mastectomy, nipple-sparing mastectomy and prophylac-

tic mastectomy. The difference between the mastectomy types is the amount of

breast tissue removed during the procedure. The mastectomy type that a patient

decides to undergo depends on factors such as the size, location, and behavior of the

tumor [21–24]. Fig. 2.1 shows a sample of patient undergoing mastectomy. The right

breast tissue of the patient is removed during the mastectomy surgery.
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Figure 2.1: 3D sample image of mastectomy. The right breast tissue of the patient
is removed

2.2 Breast Reconstruction

Breast reconstruction is an integral part of the breast cancer treatment for women

who must undergo mastectomy. The surgery physically restores the entire excised

breast, or the portion of the breast removed. The goal of breast reconstruction is

to restore the patients body to normal or as close to their original physical state

as possible. After breast reconstruction, the patients who underwent mastectomy

can regain their quality of life by improving their psychosocial well-being such as

self-confidence and self-esteem [2,25].

Breast reconstruction surgery can be performed either at the time of mastectomy

or at some point after the initial mastectomy is completed, according to the pa-

tient factors and the need for post-mastectomy radiation therapy. For patients with

low risk of needing post-mastectomy radiation, immediate reconstruction is prefer-

able to achieve the optimal aesthetic outcome. For patients with high risk of needing

post-mastectomy radiation, delayed reconstruction is typically used to optimize both
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radiation delivery and aesthetic result. If the risk of needing post-mastectomy radi-

ation is increased, “delayed-immediate” reconstruction is a suitable approach, which

involves placing a tissue expander at the time of mastectomy and awaiting pathology

results to determine the need for radiation and guide reconstruction scheduling [26].

Breast reconstruction surgery is categorized as follows: implant reconstruction,

flap (autologous) reconstruction, or a combination of both. Decision of reconstruction

type depends on patient’s factors such as overall health, the stage of breast cancer,

the size of natural breast, and the amount of tissue available (for example, very thin

women may not have enough extra body tissue to make flap grafts) [27].

In implant reconstruction, one-stage immediate breast reconstruction may be

performed with direct placement of an implant at the time of mastectomy. The

implant may be put in the space created during the breast tissue removal with

extra support. Two-stage reconstruction or two-stage delayed reconstruction is the

most commonly used implant reconstruction. It typically involves the placement

of a tissue expander at the time of mastectomy. The tissue expander is gradually

filled with fluid over 4 to 6 months to stretch the skin and create a pocket for

the implant. Once this process is complete, the expander is removed in a second

step and the permanent gel/saline implant is placed. Sometimes, the two-stage

reconstruction is called delayed-immediate reconstruction because it allows time for

other treatments. If radiation is needed, the next operations may be delayed until

after radiation treatment is complete. If radiation is not needed, the surgeon can

start immediately with the tissue expander and second surgery [4, 5, 27].

Flap (autologous) reconstruction involves using patient’s own tissue from the

abdomen, back, thighs, or buttocks to reconstruct the breast. The tissue is called a

“flap” and the area it is taken from is called the “donor site”. This type of breast
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reconstruction is very natural and is also the preferred technique for patients who

require radiation as part of their therapy. However, the surgery is more involved,

and the recovery is usually longer.

The two most common types of flap reconstruction are the TRAM flap (trans-

verse rectus abdominis muscle flap) and the latissimus dorsi flap. The TRAM flap

procedure uses tissue from the lower abdominal area. The skin, fat, blood vessels,

and at least one abdominal muscle are moved from the abdomen to the chest. The

tissue from this area alone is often enough to rebuild the breast, so that an implant

may not be needed. The latissimus dorsi flap uses tissue from the upper back. The

flap consists of skin, fat, muscle, and blood vessels. It’s tunneled under the skin to

the front of the chest to create a pocket for an implant [6, 27].

Usually, breast reconstruction cannot be achieved in a single procedure. It is a

complex process which can consist of multiple procedures and take up to a year or

longer for completion, depending on the type of reconstructive procedures selected

and other factors affecting surgical outcome, including postoperative complications

and adjuvant cancer treatment. Fig. 2.2 shows a sample of 3D images for a patient

undergoing multiple-visit breast reconstruction. In the image of visit 1 (Fig. 2.2a),

the left breast tissue of the patient is removed during the mastectomy surgery. In

the images of visits 2-4 (Fig. 2.2b-d), the left breast is reconstructed in a multiple

procedures. The scar in the abdomen shows that tissue from the lower abdominal

area is used to reconstruct the left breast.
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(a) (b)

(c) (d)

Figure 2.2: Representative 3D images for a patient undergoing multiple-visit breast

reconstruction. (a) Visit 1, the left breast tissue of the patient is removed. (b) Visit

2. (c) Visit 3. (d) Visit 4. (b)-(d) show that the left breast is reconstructed in a

multiple procedures using tissue from the lower abdominal area.
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2.3 Aesthetic Assessment of Breast Reconstruc-

tion

Breast reconstructive surgery starts with a deformed or completely absent breast

as following mastectomy, and restores a breast shape that is close to normal in ap-

pearance. Patient’s satisfaction with breast appearance is without doubt the key

factor in determining the success of breast reconstruction. Breast aesthetic assess-

ment can facilitate: (1) preoperative patient education [28]: women who are well

informed preoperatively about the surgery may report greater postoperative satis-

faction and perceive better quality of life; (2) surgical planning for surgeon [29]:

three-dimensional outcome simulation and assessment can be used to predict and

plan the operation which aims to achieve a successful reconstructive surgery; (3)

documentation of breast metrics for outcomes analysis [7,30]: tracking of the changes

in breast morphology after breast reconstruction is essential for subsequent detec-

tion and quantification of complications, and for meaningful comparisons between

competing surgical techniques.

Breast aesthetics evaluates breast factors such as size, shape, proportion, pto-

sis, symmetry, skin quality, and nipple location [31, 32]. Current assessment ap-

proaches of breast aesthetics can be divided into six categories: subjective assess-

ments by human observers [33–36]; measurements on the patient’s body (anthropom-

etry) [7, 37–41]; measurements on 2D photographs (photogrammetry) [8, 42]; mea-

surements using 21
2
D images (depth-map) [43–49]; measurements using 3D images

of the breasts (stereophotogrammetry) [10, 12–17, 29, 33, 50, 51]; and measurements

using other multi-dimensional imaging approaches [52–55].
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2.3.1 Subjective Assessment of Breast Aesthetics

Traditionally breast assessments are conducted by subjective methods, which in-

clude visual assessment and typically employ a crude gradation scale. Subjective

assessments are inherently qualitative and lack accuracy and reproducibility. How-

ever, subjective assessments of breast aesthetics are still widely used in the clinical

applications, due to its simplicity and the low cost [33].

Global scales of four gradations (i.e., rating the overall cosmetic results into four

scale scores such as excellent, good, fair, and poor) of aesthetic changes are commonly

used in subjective assessment of the breast [35]. It has been argued that global

scales suffer from vague terminology. Subscales with more explicit criteria for each

aesthetic component (e.g., size, shape) have been recommended [34]. However, the

concordance between observers was still reported to be low when such subscales

were used [35]. In [35], subscales of four gradations have been employed to rate the

difference between treated and untreated breasts in terms of size, shape, skin color

and firmness, as well as the visibility of surgical scar. Changes in each aesthetic

component are graded as none, mild, moderate, and severe. It shows that low to

moderate concordance between observers (k = 0.24 ∼ 0.40), where k is the Cohen’s

Kappa statistical measure. k = 1 means “perfect agreement” and k = 0 means

“chance agreement only”. The authors also show that the different observer groups

also lack concordance. The levels of correspondence were found very low between

patients’ and professional observers’ ratings (k < 0.10).

Cohen et al. [36] applied a global five-point scale (i.e. rating the overall cosmetic

results into five scale scores: excellent, good, satisfactory, poor, and unacceptable)

on assessment of the breast aesthetic appearance using 2D photographs of autologous
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breast reconstruction patients. In their study, higher reliability was reported among

patients (α = 0.92) than professional observers (α = 0.74 ∼ 0.89), where α is the

Cronbach’s alpha statistic which ranges in value from 0 to 1. The higher the score,

the more reliable the assessment is. Inter-rater agreement was poor among both

patients and professional observers (k = 0.0 ∼ 0.39). And weak correlation was

found between professional observers and patients (ρ = 0.36 ∼ 0.53), where ρ is the

Spearman’s Rho in statistic, wherein a value of 1 means a perfect positive correlation.

To overcome the low intra- and inter- observer agreement, data averaged from a

panel rather than individual observers are often employed. In this method, four to

six 2D photographs are usually taken of the patient from different angles and then

shown to an expert panel. The panel usually consists of healthcare professionals

familiar with breast reconstruction. This approach is time and labor consuming,

and although calculating an average between observers may reduce variability, it is

not necessarily improve accuracy. In Henseler’s study [33], the panel of six experts

accessed the symmetry of breasts underwent latissimus dorsi flap reconstruction using

the four-point grading scale (i.e., giving a mark of 1-4 for a poor to excellent result).

They obtained the inter-observer reliability of k = 0.646. The agreement between

observers is improved but still not optimal.

The subjective assessment of breast reconstruction highlights two major disad-

vantages. The first one is low intra- and inter-observer agreement which indicates the

lack of accuracy and reproducibility. The second one is the lack of a standardized,

explicit scale. A crude scale with four or five categories is imprecise for identifying

individual aesthetic components. Quantitative, objective measures with high relia-

bility are needed in order to meaningfully analyze the aesthetic outcomes of breast

reconstruction [34].
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2.3.2 Anthropometry

Direct anthropometry refers to measurements performed on the patient’s body using

a measuring tape. It is based on linear measurements between surface landmarks

such as the sternal notch, nipple, inframammary fold, and the lowest visible point

of the breast mound. Anthropometry usually measures breasts scaled “normal” or

“aesthetically perfect” to provide a useful tool to appraise breast aesthetics, facilitate

planning preoperatively, and assess the outcome of surgical procedures to the breast.

Aesthetically perfect breast is defined as a non-ptotic breast in which no common

aesthetic procedure would be considered appropriate (excluding augmentation) to

enhance the breast’s form [37].

In Penn’s classic article [38], “aesthetically perfect” breasts of 20 women were

studied, which has been adopted by many as normative. The parameters studied

by Penn are “ideal nipple plane”, midclavicle to “ideal nipple plane”, midclavicle to

nipple, nipple to nipple, nipple to submammary, and manubrium to nipple distances.

Many techniques for breast surgery base their preoperative measurement plans and

nipple positioning on the distances published by Penn [39].

In another study [40], anthropometry was performed to measure breast values

in Turkish female students in order to help in comparing the anthropometric breast

values of young Turkish women with those of women in other countries, and also

to help either in planning aesthetic and reconstructive breast surgery or in design-

ing breast augmentation accessories. The study included 385 female undergraduate

student volunteers between the ages of 18 and 26 years with no physical or develop-

mental deformity. A total of 19 parameters such as sternal notch to nipple, nipple

to nipple distances, and breast volume were measured in a standing position. The
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ideal external view of the breasts with equal volume for both sides and no ptosis was

observed in 35.1% of the volunteers.

Liu et al. [41] determined ideal anthropomorphic values of the female breast

by measuring the normal breasts of 109 female volunteers to try to obtain useful

values in achieving quantitative breast surgery. The ideal sternal notch to nipple,

nipple to base, base to inframammary fold distances and other ideal anthropomorphic

measurements were calculated and compared with previously published values. For

each volunteer, five standardized upright 2D photographs were taken and arranged

into a computerized survey, and plastic surgeons, cosmetic breast surgery patients,

and reconstructive breast surgery patients were interviewed for aesthetic feedback.

Their results show that ideal anthropomorphic values were similar among plastic

surgeons and patients.

Anthropometry can be a useful tool for quantifying and interpreting the desired

outcomes by establishing standard values of breast. However, this method has several

limitations. First, studies to determine ideal anthropometric values of the female

breast have relied on subjective aesthetic judgments of one surgeon alone or have

conveyed no aesthetic judgment and instead used average linear measurements of

the breast [41]. Second, Anthropometry is complicated and time consuming. To

establish the standard values of “aesthetically perfect” breast, a considerable number

of patients are required and a large number of measurements are needed on each

patient. Third, anthropometry is invasive to patients since it is directly performed

on patient’s body, which can cause discomfort to the patients [7].
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2.3.3 Photogrammetry (2D)

Photogrammetry makes measurements from photographs of the breasts. Photographs

are captured using a single digital camera and contain 2D information of the breasts

for the patients.

Limbergen et al. [42] calculated four measurements on anterior-posterior pho-

tographs of 142 patients who were treated with tumor excision and external radio-

therapy. The four measurements for each breast were: the vertical distance from the

level of the sternal notch to the nipple, the vertical distance from the level of sternal

notch to the inferior pole of the breast, the horizontal distance from the midline to

the nipple, and the horizontal distance from the midline to the lateral breast contour.

The differences in each measurement between the left and right breasts were used to

determine the symmetry of the two breasts.

Kim et al. [8] investigated quantitative, objective measurements of breast ptosis

for patients who underwent breast reconstruction. Their study based on ratios of

distances between fiducial points manually identified in oblique and lateral clinical

photographs. Breast ptosis refers to the extent to which the nipple is lower than

the inframammary fold. Vertical displacements from lateral terminus and the nipple

to the sternal notch (or the lowest visible point) of the breast were calculated and

used to estimate breast ptosis. They compared their results to ratings made using an

existing subjective four-point scale. The intra- and inter-observer variability in the

objective measurements related to marking fiducial points was shown to be equivalent

to less than one point on the subjective ptosis scale.

Photogrammetry has advantages over anthropometry since a photograph is more
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efficient and less invasive to the patient. It is possible to make a variety of measure-

ments manually or automatically on digital/digitized photographs. The disadvan-

tages are that some fiducial points may not be visible and the measurements that

involve these points cannot be obtained. The fiducial points which have same po-

sition in 2D photographs may vary in real 3D space, thus the aesthetic assessment

of breasts based on fiducial points measurements in 2D photographs may introduce

some error.

2.3.4 Depth-map (21
2D)

Cardoso’s group [43–49] performed breast measurements using 21
2
D images (depth-

map) acquired from Kinect. Kinect is a motion sensing device developed by Microsoft

and includes one RGB camera and one depth sensor. In depth-map images, the pixels

are in color or gray scales which represent depth information. They automatically

calculated nipple height (i.e., distance between nipple and chest) and ratio of left and

right nipple heights. The measurements showed less error than real ratios manually

obtained by physician. This group also presented a method simultaneously detecting

breast peak point and contour in depth-map images [47,48]. Peak point is the area in

breast closest to camera and was determined based on the gradient vector field and

convergence filter. Breast contour was found as the solution to the shortest-path

problem in the graph theory framework, after modeling the image as a weighted

graph using gradient.

Beside the 2D information, depth-map also contain depth information for each

pixel, thus some 3D measurements can be performed in depth-map images. However,

depth-map still cannot capture the overlapped regions in the patient, e.g., the area
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beneath the breast with high ptosis degree. In fact, Cardoso’s group detected a

breast boundary same as in (2D) photographs, rather than the 3D breast contour in

the surface image.

2.3.5 Stereophotogrammetry

Stereophotogrammetric assessment of breast aesthetics relies on the simultaneous

capture of the breast surface by two or more pairs of cameras, followed by build-

up of a natural life-like 3D image that has advantages in the analysis of breast

3D structures [33]. 3D images permit accurate and objective assessment of breast

aesthetics such as volume, surface area, shape, and symmetry. A single 3D image

yields more information regarding breast structures than multiple conventional 2D

photographs, thus allowing better assessment of some measures such as volume and

surface area which cannot be accurately assessed using 2D photographs [50].

Kawale et al. [10] evaluated symmetry of breasts in 3D images using the Per-

centage Breast Retraction Assessment (3D pBRA) index in two different poses: (1)

hands-on-hip and (2) hands-down. Three fiducial points, sternal notch and left and

right nipples were annotated by naive observers in both 3D image and 2D pho-

tographs. Two reference points were automatically calculated based on the coordi-

nates of the three fiducial points. Geodesic distances along surface (or Euclidean

distances) between the fiducial point and reference points were used to calculate 3D

(or 2D) pBRA index. They validated that the 3D pBRA index is linearly correlated

with the 2D pBRA for both of the poses, and is independent of the localization of

fiducial points within a tolerance limit of 7 mm. The quantitative assessment of 3D

symmetry was found to be invariant of subject pose, while problems with pose were
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inherent in 2D photographs. Their study further corroborates the advantages of 3D

stereophotogrammetry over 2D photography.

Breast volume is an extremely useful component for the correction of breast

asymmetry in breast reconstruction. For example, the calculated volumes of the two

breast for a patient could facilitate the selection of the amount of implant/tissue that

would provide improved symmetry. Many methods have been proposed to determine

breast volume: water displacement, the Grossman-Rounder device, biostereometric

analysis, thermoplastic casting, and radiographic techniques [12–16]. Most of them

are inaccurate, time consuming, or expensive. Stereophotogrammetry overcomes

these limitations, permitting semi-automated and automated calculation of breast

volume. Passalis et al. [17] developed an automated measurement of breast volume

from 3D image. Four landmarks near the boundary of the breast were automatically

identified and connected to create the optimum path along the surface. The breast

lies inside these four optimum paths. The optimum path is the geodesic path along

the surface between two landmarks and created by determining the shortest path

in weighted 3D mesh using Dijkstra’s algorithm. An interpolating “Coons Patch”

surface was built using the four optimum paths. This surface represents the chest

wall that is beneath the breast. The breast volume was then computed as the volume

from the Coons patch to the skin surface of the breast by integration.

Galdino et al. [29] analyzed 3D images of over 50 patients who underwent breast

reconstruction. They estimated the expander and implant volumes to preoperatively

decide the type of breast reconstruction surgery, and assessed breast asymmetry to

postoperatively plan subsequent revisions. Their application demonstrated that 3D

imaging is very helpful in providing objective information about the breast for use

in preoperative planning and postoperative outcome assessments.
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Stereophotogrammetry has tremendous potential for analysis of breast aesthet-

ics. The fiducial point identification is made easier by being able to panoramically

rotate the 3D surface enabling views from any desired angle. Breast volume can be

estimated accurately and non-invasively. However, the technique does have limita-

tions, particularly, 3D images acquired form patients with large and ptotic breasts

may have occluded area, and the inability to visualize and capture these areas can

adversely affect measurements. Nevertheless, 3D systems may offer the most accu-

rate of currently available approaches to quantify numerous components of breast

aesthetics [51].

2.3.6 Other Multi-Dimensional Imaging Approaches

4D imaging [52–55] is used to refer to the mechanism of 3D imaging plus automation.

This automation was accomplished by the following methodology: A point cloud

arising out of the structured light-based image capture system was converted to a

3D mesh reconstruction of the form of the patient. Onto this mesh, the individual

texture images were registered to generate a life-like and recognizable rendering.

Besides point cloud, 3D mesh, and texture which are same as the widely-used 3D

images, a separate color contour map was generated from the relationships between

adjacent minima and maxima of the 3D mesh contour. Key fiducial points were

recognized by virtue of being minima and maxima within this color contour map

using the proprietary software developed specifically for breast imaging.

Based on the key fiducial points, the point-to-point (Euclidean) distance mea-

surements and surface (geodesic) distance measurements were calculated. Point-

to-point distance measurements are: midline of torso; breast base width; nipple to
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midsternal line; nipple-to-nipple distance; intermammary distance; inferior breast

radius; midclavicle to nipple distance; and breast height. Surface (contour) distance

measurements are: sternal notch to nipple distance; nipple to inframammary fold

distance; and midclavicle to nipple distance. Breast asymmetry was measured based

on sternal notch to nipple distance and nipple to inframammary fold distance [52,54].

The volume of the soft tissues of the breast can also be measured based on

the previously described key fiducial points. The boundaries of what constituted

the breast were automatically determined based on the key fiducial points IMF,

midpoint, armpit, mid clavicle, and nipple. A construction of the underlying chest

wall was rendered on the basis of peripheral boundaries, with a spline interpolation

method. The breast volume was calculated as the 3D integral between the 3D breast

surface and the underlying chest wall [52].

To demonstrate their software, the authors compared manual and 4D automated

measurements. The overall correlation of manual to automated measurements was

91%. The repeatability of the automated measurements (R = 0.996) compared

favorably to inter-observer variability with manual measurements (R = 0.993). R

is the Pearson correlation coefficient, where 1 is total positive correlation, 0 is no

correlation, and −1 is total negative correlation [52].

The 4D imaging system also provided algorithm to simulate the postoperative

breast appearance. They constructed the chest wall based on the fiducial points

IMF, midpoint, armpit, mid clavicle, and nipple. After calculating the volume of the

breast form’s soft tissue, the volume of the breast implant was added and, to a varying

degree, a percentage of volume was subtracted, depending on the existing volume of

breast and the size of implant chosen. The original breast form was removed from

the image and the breast mound with modified volume was added on to the chest
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wall [53,55].

The 4D images include 3D point cloud, mesh, and texture information, similar

to the 3D images. This method has same limitations as 3D imaging. For example,

the measurements will be influenced due to occluded area in images from patients

with large and ptotic breasts. Nevertheless, 4D imaging is more convenient to use

due to its proprietary software which can automatically identify key fiducial points,

measure Euclidean distances and geodesic distances between two key fiducial points,

measure breast asymmetry, and estimate breast volume.

2.4 Summary

The goal of breast reconstruction is to improve the breast morbidity due to deformity

caused by mastectomy and to maximize the life quality of the breast cancer survivors.

Developing objective, quantitative methods to assess breast aesthetics is important

to understand the impact of deformity on patients’ life quality, guide selection of

breast reconstruction type, and evaluate reconstructed breast form.

Current subjective assessments of breast aesthetics are plagued with poor re-

producibility and are influenced by observer rating interpretations. Anthropometry,

which yields more objective data based on physical measurements, is time consum-

ing and invasive to patients. 2D photogrammetry is time and labor intensive. And

many measurements cannot be conducted on 2D photogrammetry due to its lack of

3D information.

Stereophotogrammetry and 3D imaging offers clinical potential for assessment of

breast aesthetics due to reproducibility and accuracy. Some important elements such
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as anatomical IMF cannot be visible in the 3D upright views acquired from patients

with large and ptotic breasts. In this case, measurements related to anatomical IMF

will not be conducted in the upright images which are conventionally used in breast

aesthetic assessments. Thus, new methods on breast aesthetic measurements should

be developed to overcome these problems and to make sereophotogrammetry have

better performance.
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Chapter 3

Image Acquisition

The 3D images used in this research are captured using a custom-designed imaging

system. This imaging system is composed of two parts. The first part is a commer-

cially available system, namely, 3dMDtorsoTM Imaging System [18] manufactured

by 3dMD Inc., Atlanta, Georgia. The second part is a Tri W-G TG2732 bariatric

motorized tilt table manufactured by Tri W-G, Valley City, North Dakota. The tilt

table is mounted to enable acquisition of 3D images of the patient’s breasts in a range

of positions from standing upright to supine, and any reclining angles in between.

3.1 3dMDtorsoTM Imaging System

The 3dMDtorsoTM imaging system incorporates four Modular Camera Units. Each

Modular Camera Unit incorporates a pair of stereo cameras to serve as the foundation

for generating the 3D surface shape information. The pair of stereo cameras is

synchronized using a random white light projector. A color camera located in the

center of each Modular Camera Unit, which is fired by the external white light flash
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unit, is used to capture the 2D texture photograph.

When acquiring a 3D image, the four Modular Camera Units are positioned

around the patient’s frontal torso region at four viewpoints to achieve optimal pa-

tient’s torso surface coverage. All four of the Modular Camera Units are synchronized

at a 1.5 millisecond capture speed in that the four random white light projectors si-

multaneously trigger all of the four pairs of stereo cameras to start together. A half

millisecond later the four color cameras are triggered simultaneously to capture the

photographs from the four viewpoints.

The 3dMDtorsoTM imaging system utilizes a sophisticated software-driven tech-

nique to create a unique 3D surface feature by integrating a series of individual

features from the four pair of stereo cameras simultaneously. Once the 3D surface

shape information has been generated, the software algorithm maps on the color

texture information. The system automatically generates a single highly precise 3D

surface image which has the following structure: (a) Point cloud: the set of vertices

on the 3D surface. All points have x, y, and z coordinates in a single coordinate

system (Fig 3.1a); (b) Polygon surface mesh: the points are connected to create a

polygon (usually triangular) surface mesh (Fig 3.1b); (c) Texture information: the

2D texture photographs are mapped onto the 3D surface mesh (Fig 3.1c).

3.2 Tilt Table

The width, length, and height of the bariatric motorized tilt table are 31 inches, 81.5

inches, and 34.5 inches respectively when the table is at 0 degree (with the patient

in the supine position). A footplate is attached to the table for standing when the

table is tilted to the 90 degree (with the patient in the standing upright position)
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(Fig. 3.2a).

In order to acquire images of the patient’s torso at various inclines without need-

ing to recalibrate the tilt table after each change in table position, a 3 inch tubular

steel frame was designed, fabricated, and installed on the table (Fig. 3.2b). The

Modular Camera Unit is positioned and adjusted at each corner of the frame so that

the patient’s breasts could be optimally viewed and imaged from viewpoints of the

stereo cameras.

The customized imaging system can change the patient’s position before image

capture from supine (0 degrees) to standing upright (90 degrees) and any position

in between. Changes in tilt table position are controlled by a handheld switch that

activates an electric motor to tilt the table through a range of angles, and indicated

with the tilt angle indicator (Fig. 3.2c).

The multiple-visit images are captured from the individual patient with upright

position at different clinical visits. The multiple-view images are acquired from the

individual patient with upright and supine positions at the same clinical visit by the

aid of the tilt table.
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(a) (b)

(c)

Figure 3.1: Example of a 3D surface image. (a) Underlying 3D point cloud. (b)
Underlying 3D triangular mesh surface geometry. (c) 2D texture photograph overlaid
onto the 3D triangular mesh surface geometry.
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(a) (b)

(c)

Figure 3.2: Custom designed 3D imaging system from 3dMD Inc. (Atlanta, Georgia).
(a) Tri W-G TG2732 bariatric motorized tilt table. (b) Tubular steel frame, the
Modular Camera Unit is positioned at each corner of the frame. (c) Customized
imaging system can position the patient from supine (0 degrees) to standing (90
degrees), and any angles in between.

30



Chapter 4

3D Registration of Multiple-visit

Images

4.1 Introduction

In addition to breast-cancer treatment or surgery related anatomical changes (see

Fig. 4.1a and Fig. 4.1b), the multiple-visit images for a patient acquired from different

clinical visits may also change as a result of variations in the (1) object coordinate

systems due to differences in patient positioning and posture; and (2) patient’s BMI

due to physiological weight changes. As a first step, registration of the multiple visits

images is thus required in order to remove spatial variations between images and to

monitor and quantify the morphological changes occurring in the breasts.
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(a) (b)

Figure 4.1: 3D multiple-visit images. (a) Image from the initial clinical visit (pre-
operative). (b) Image from a subsequent clinical visit (post-operative).

4.1.1 Introduction to Registration

Image registration is a process that seeks to achieve the best correspondence to

map or transform one image (target) to the other image (reference) [56]. Image

registration methods are broadly classified into two main categories: rigid registration

and non-rigid registration.

Rigid registration encompasses linear transformation, wherein the coordinates

of points in the target image are linearly transformed to achieve correspondence

with those in the reference image. Rigid registration is categorized into rigid (body)

registration and affine registration. Rigid (body) transformation includes only trans-

lations and rotations, while affine transformation involves the combination of trans-

lations, rotations and scaling.

Non-rigid registration constitutes a deformable transformation. The deformation

is shaped either through biological differences or image acquisition or both. Corre-

spondence between structures in two images cannot be achieved without some local-

ized stretching of the images. The non-rigid transformation can include either linear
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elastic transformation, viscous fluid transformation or other complicated forms.

Our objective is to use the torso correspondence achieved between the multiple-

visit images to view and analyze images in the same coordinate system. Our overarch-

ing goal is to use multi-visit registration to facilitate quantification of morphological

changes in breast appearance over time in an individual. Non-rigid registration may

introduce warping changes, which would introduce artificial changes in surface ge-

ometry and lead to artifacts in quantification of the local breast morphology. The

3D image reflects the real size of the patient’s torso, so an affine registration is not

necessary. Thus, we use a rigid registration procedure, which only includes transla-

tions and rotations to implement 3D torso surface scan correspondence in order to

remove coordinate system differences between the multiple-visit images.

4.1.2 Related Work

Rigid registration of 3D surface images has been extensively studied in computer

graphics and depending on the driving application, many different automated, semi-

automated, and interactive approaches exist for registering two surfaces with each

other [57, 58].

The Iterative Closest Point (ICP) algorithm is most commonly used for regis-

tration [59–61], and for the integration of multiple range images for generating a

3D surface model [62, 63]. ICP methods determine a set of rigid transformation pa-

rameters by minimizing the cost function between the corresponding points in the

target image to a given set of control points from the reference image obtained using

random or uniform sampling.

Besl et al. [59] proposed a method that found the corresponding points in the
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target image by first creating a simplex-based approximation, and then computing

the exact corresponding points using the approximate corresponding points estimated

from solving point-to-triangular set distance problem. Blais et al. [60] determined the

corresponding points based on reversing the rangefinder calibration process. Dorai et

al. [62] calculated the corresponding points by finding the intersection of the target

image and the surface normals for the control points in reference image. In [59], [60],

and [62], the transformation parameters were optimized by iteratively minimizing the

cost functions-mean squared Euclidean distance, the sum of Euclidean distances, and

the sum of squared Euclidean distances between control points and corresponding

points respectively. Masuda et al. [61] defined the corresponding points in target

image as the points with the shortest Euclidean distances to the control points from

the reference image, which were found using a brute-force search. In other work

of Masuda’s group [63], the corresponding points were determined by searching the

closest triangle in the reference image using kDtree. Both [61] and [63] achieved the

optimization of the transformation parameters by finding the least median of squared

Euclidean distances between control points and corresponding points.

The ICP method is useful and efficient for registration, but one of its major draw-

backs is that it may report convergence to an incorrect local minimum. To address

the local convergence problem of ICP, close initialization using feature extraction

and matching techniques is usually required before refinement using ICP-based al-

gorithms.

Many methods have been designed for feature extraction which can be used as

close initialization for ICP algorithms. Sun et al. [64] generated a feature carrier, a

2D point fingerprint by projecting geodesic circles on the tangent plane. The point

fingerprint was able to carry curvature, color, and other information. Corresponding
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points on images from different views were then found by comparing their finger-

prints. Zou et al. [65] developed a salient point-based shape description wherein

the saliency-driven key points were extracted as local extrema of the difference of

Gaussian function defined over a curved surface in geodesic scale space and used to

achieve correspondence. Similarly, Wen [66] suggested a medical image registration

method using points, contours and curves. The features were extracted from the

images semi-automatically. In [67], salient points, which were identified as corners,

were used to estimate the transformation parameters.

All the above methods extracted features from image areas where salient changes

are observed. Our multiple-visit image registration focuses on matching the 3D torsos

along the chest wall, which is relatively smooth and anatomically does not exhibit

salient features that can be extracted. Although anatomically the breast mounds

exhibit characteristic morphology, such as nipples that can be used as features for

surface mapping, in our study the multiple-visit images differ in the region of the

breast mounds due to surgical deformations, thereby eliminating the possibility of

using algorithms that rely on features extracted from images.

Boughorbel et al. [68–71] developed a rigid registration method based on Gaussian

fields which was used to measure both the spatial proximity and visual similarity of

points belonging to two multiple-view range images. This method can extend the

size of the convergence region such that a close initialization is not needed, thus

overcoming local convergence problems of ICP algorithms. Extending the width of

the convergence region was done by increasing a parameter σ, which controls the

decay with distance between points. However, this relaxation comes at the price of

decreasing the localization accuracy of the criterion. And also, this method is not

robust when considering high level of noise. Li et al. [72] proposed a rigid registration
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method, which can provide global matching. They introduced a Gauss map of the

surface and measured the distribution of surface curvature by projecting spherical

surface texture to a bifacial plane. The shortcoming of this method is that it is not

robust and can only solve the rotation parameters.

Most of the existing rigid registration algorithms have drawbacks that preclude

their application to our multiple-visit images from breast reconstruction surgery.

Thus we previously reported a registration method for multiple-visit images [73], in

which two fiducial points, the sternal notch (SN) and umbilicus (UM) were manually

identified as two control points and other thirteen control points were automatically

selected based on the location of SN and UM. Registration was achieved by max-

imizing the correspondence between the fifteen pair of control points from the two

images. This method solved the local convergence problem of ICP algorithms. How-

ever, any operator bias caused by manual fiducial point selection, and anatomical

location change of the UM between multiple-visit images caused by breast recon-

struction surgery would likely introduce registration error. To address this problem,

we improved our previous registration method in [73] by optimizing the best locations

of SN and UM, and thereby the selection of the remaining thirteen control points in

the target image. The new rigid registration algorithm for 3D multiple-visit images

is described in section 4.2.
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4.2 Algorithm

4.2.1 Assumption

Our approach builds on the assumption that while the soft tissues of the patient’s

body may change over time due to BMI variation or breast reconstruction surgery, the

skeleton is relatively stable. Thus the skeletal frame can be treated as being rigid,

i.e., involving only translational and rotational transformations. Selecting points

with reference to the skeletal frame in the torsos of the two images and maximizing

the correspondence between these points can then achieve 3D image registration.

4.2.2 Overview

The overview of our algorithm is illustrated in Fig. 4.2. In the reference image (image

from the initial clinical visit), we select fifteen control points, in which two fiducial

points SN and UM are manually identified, and other thirteen control points are

automatically calculated from the surface of the 3D image based on the coordinates

of SN and UM. The thirteen control points are selected from the area of the patient’s

torso where bony structures corresponding to the skeletal framework are perceptible,

while the presence of soft tissue is minimal.

In the target image (image from a subsequent clinical visit), we also manually

identify SN and UM. But instead of directly serving as the corresponding points in

the target image, the two fiducial points are used as the initialization for optimizing

the selection of the SN and UM location in the target image. The SN and UM

locations corresponding to those in the reference image are searched around the

initialized SN and UM locations (i.e., manually identified fiducial points locations)
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in the target image in the pre-specified regions. In this research, we use the region size

as 50mmX50mm. It is large enough to avoid operator bias since the reported intra-

and inter- variation for manual fiducial point identification is less than 15mm [10].

For each selection of a new pair of candidates locations for the SN and UM,

the remaining thirteen control points are automatically calculated from the target

image. We iteratively register the fifteen pair of control points from the two images

by minimizing the value of a cost function (described in subsection 4.2.7), to obtain

the optimized transformation parameters. The final cost value from each iteration

is compared with that from all others. The iteration with the minimum final cost

value will be the optimized output.

Figure 4.2: Overview of the 3D registration algorithm for multiple-visit images
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4.2.3 Control Points Selection

Based on the locations of SN and UM in the surface image, the other thirteen control

points are automatically selected in the y-direction along a vertical (midline) axis

and in the x-direction along the horizontal axis perpendicular to the midline, from

the two fiducial points giving a total of fifteen control points in each image (see

Fig. 4.3). Let d represent the straight-line distance between SN and UM after image

alignment (image alignment is described in subsection 4.2.4). The other thirteen

control points are equally spaced (0.1d) along x and y directions (Fig. 4.3). The x

and y coordinates of the ith control point (xi,yi) are:
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Interpolation is used to determine the zi coordinate for each of the thirteen- ith

control point (subsection 4.2.5). 0.1d is used to uniformly select the five points in

the area of the sternum, and four points above each breast and in the area near

the sternum and the clavicle. These areas have underlying bony structures with

minimal soft tissues. Although three points, which are not in a line, are enough

to determine the position of torso in 3D coordinate system, we need more points

to obtain the optimal transformation parameters due to the variation of patient’s

posture and BMI. Considering the running time, we choose fifteen control points.

The algorithm is robust to operator bias caused by manual fiducial points identi-

fication and location change of UM between multiple-visit images caused by breast

reconstruction surgery, due to the optimization process employed during the reg-

istration algorithm described in subsection 4.2.6. We used mannequin images to
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demonstrate the robustness of the optimization (subsection 4.6.1). To improve pre-

cision in the automatic selection of the control points, we initially adjust the surface

image to be forward facing upright position as described in the next subsection.

Figure 4.3: Control points selected on the torso for 3D correspondence.

4.2.4 Image Alignment

The 3D images acquired from participants typically vary from the forward facing

upright position (i.e., alignment along the X and Y-axis) ranging anywhere from

0 − 90◦ due to variations in patient positioning across the multiple clinical visits.

These variations tend to introduce large discrepancies in the automatically selected

thirteen control points. To mitigate this effect, for both the images to be registered,

we initially align the median (midsagittal) axis of the torso along the line joining

SN-UM to be coincident with Y-axis of the 3D image coordinate axes, and the 3D

torso to be forward facing upright position (Fig. 4.4) as follows.

40



Figure 4.4: Image alignment: align the median (midsagittal) axis of the torso along

the line joining SN-UM to be coincident with Y-axis of the 3D image co-ordinate

axes, and the 3D torso to be forward facing upright position

First, we transform the image such that SN and UM have the same x coordinate,

i.e., the image is translated such that the SN is at the origin and then rotated about

the Z-axis. The rotation angle γ about the Z-axis and the transformation matrix are

given as:

γ = sin−1
(

−x2√
x22 + y22

)
(4.1)



1 0 0 0

0 1 0 0

0 0 1 0

−x1 −y1 −z1 0





cos γ sin γ 0 0

− sin γ cos γ 0 0

0 0 1 0

0 0 0 1


(4.2)

where x1, y1, z1 represent the x, y, and z coordinates of SN (before translation);

x2 and y2 represent the x and y coordinates of the UM (after translation).

Next, we rotate image about the X-axis such that median axis along SN-UM coin-

cides with the Y-axis. The rotation angle α about the X-axis and the transformation
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matrix are:

α = sin−1
(

z
′
2√

y
′
2
2

+ z
′
2
2

)
(4.3)



1 0 0 0

0 cosα sinα 0

0 − sinα cosα 0

0 0 0 1


(4.4)

where y
′
2 and z

′
2 represent the y and z coordinates of UM (following rotation

about the Z-axis in the previous step).

Finally, we rotate the image about the Y-axis to achieve surface forward facing.

Two symmetric points Sr(−xm, ym, zr) and Sl(xm, ym, zl) (Fig. 4.5) are determined

on the surface based on the predefined xm and ym values. zr and zl are calculated

using the interpolation method described below in subsection 4.2.5. Let two vectors

−→a and
−→
b be the projections for vectors

−−→
OSr and

−→
OSl on the XZ plane, where O is the

origin of the image’s coordinate system. Then −→a = (−xm, 0, zr) and
−→
b = (xm, 0, zl).

The internal angle bisector between −→a and
−→
b is defined as −→c =

−→a∣∣−→a ∣∣ +
−→
b∣∣−→b ∣∣ . The

angle of rotation about the Y-axis and the transformation matrix are determined as:

β = tan−1
(
− xc
zc

)
(4.5)



cos β 0 − sin β 0

0 1 0 0

sin β 0 cos β 0

0 0 0 1


(4.6)
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where xc and zc represent the x and z components of −→c .

Figure 4.5: Illustration for calculation of rotation angle β (top-down view)

4.2.5 Coordinate Interpolation

To improve the accuracy of registration, we use interpolation in triangular mesh of

3D image to compute the coordinates of the other thirteen control points based on

the location of SN and UM, for both the images to be registered.

To determine the zi coordinate for ith of the thirteen control point. The surface

triangles of the 3D mesh (Fig. 4.6a) are first projected onto the XY plane, i.e., only

x and y coordinates for the vertices of the triangles are considered. For all projected

triangles, we next determine the triangle that encloses the point (xi, yi) as follows.

In a 2D plane, if a point D is in a triangle ∆ABC (see Fig. 4.6b). then the area of

∆ABC equals the sum of areas of ∆ABD, ∆BCD, and ∆ADC. Otherwise, point D

is not in ∆ABC. For a point D that is enclosed in ∆ABC, we determine zi using

linear interpolation based on the corresponding 3D coordinates of 3 vertices of the

triangle and xi and yi values for point D:

zi = zp1 + (zp2 − zp1)
xi − xp1
xp2 − xp1

(4.7)
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where

xp1 = xA + (xB − xA) yi−yA
yB−yA

zp1 = zA + (zB − zA) yi−yA
yB−yA

xp2 = xA + (xC − xA) yi−yA
yC−yA

zp2 = zA + (zC − zA) yi−yA
yC−yA

where xA, yA, zA, xB, yB, zB, xC , yC , zC are coordinates of vertices A, B, and C

respectively.

(a) (b)

Figure 4.6: (a) Triangular surface mesh for 3D image. (b) A point enclosed within a

triangle in a 2D plane.

4.2.6 Optimization of SN and UM

To avoid operator bias introduced by manual fiducial points identification and lo-

cation change of UM between multiple-visit images caused by breast reconstruction

surgery, we optimize the registration of the SN and UM by searching for the most op-

timal corresponding points within a pre-determined neighborhood of 50mmX50mm.

The search region is 50mm along x and y directions respectively (Fig. 4.7). We

select the size of the search region based on the reported intra- and inter- variation

for manual fiducial point identification less than 15mm [10]. 50mmX50mm is large
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enough to avoid operator bias caused by manual fiducial points identification. The

control points in the reference image are unchanged during optimization, whereas

the thirteen control points in the target image are reselected based on the candi-

date locations of SN and UM in each iteration. For optimization, the SN and UM

locations are updated synchronously. For each iteration, the 3D correspondence is

determined by minimizing the cost function between control points from two images.

The final SN and UM locations and transformation parameters are obtained from

the iteration with the minimum cost value.

Figure 4.7: Search regions (shown by blue square frames, 50mmX50mm) for SN and

UM optimization in the target image

4.2.7 Rigid Registration

In rigid registration without scaling, only six transformation parameters are consid-

ered: (θx,θy,θz,tx,ty, tz), where θx, θy, and θz are rotation angles about X-, Y-, and

Z-axes, respectively; and tx, ty, tz are the displacements (i.e., translation) along X-,

Y-, Z-axes, respectively. During the registration, the transformation parameters are

optimized iteratively.

Let (xi, yi, zi) and (x
′
i, y

′
i, z

′
i) be the coordinates for the ith point in the 3D images
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before and after transformation, then the transformed coordinates are determined as

the product of matrices:[
x′i y′i z′i 1

]
=

[
xi yi zi 1

]
M1M2M3M4 (4.8)

where

M1 =



cos θz sin θz 0 0

− sin θz cos θz 0 0

0 0 1 0

0 0 0 1



M2 =



1 0 0 0

0 cos θx sin θx 0

0 − sin θx cos θx 0

0 0 0 1



M3 =



cos θy 0 − sin θy 0

0 1 0 0

sin θy 0 cos θy 0

0 0 0 1



M4 =



1 0 0 0

0 1 0 0

0 0 1 0

tx ty tz 1


For the fifteen control points selected from each image, we create a complete

graph in which each pair of points is connected by an edge (see Fig. 4.8b). Images

from multiple clinical visits are then registered by determining the parameters for
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rigid transformation using the following cost function:

f =
n∑
i=1

d2i +
2

(n− 1)

m∑
j=1

(θj ∗ l)2 (4.9)

Where di is the Euclidean distance between the ith pair of control points in the

two images. θj is the angle between jth pair of edges in two complete graphs. n = 15,

is the total number of control points, m = C2
n, which is the number of edges in one

complete graph, and l is the average edge length for all edges in two complete graphs.

In the cost function, θj ∗ l is the arc length. There are n − 1 edges in the complete

graph for each point and two points share one edge, so the second term is normalized

by a coefficient 2
(n−1) . The second term represents the arc length of the angle between

the corresponding edges in two images.

(a) (b)

Figure 4.8: (a) Control points selected on the torso for 3D correspondence. (b)
Complete graph illustrating the fifteen selected control points.

The transformation parameters are optimized when the cost function is mini-

mized. The optimization of the cost function is performed using the built-in opti-

mization function fminunc which is a unconstrained nonlinear multivariable function

in Matlab (Mathworks, Natick, MA). Since the Matlab functions may return a local
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optimum value, two methods are used to find the global optima: (1) Implementation

of an iterative optimization process, by using the result of the previous iteration

as the initial value for the next iteration, and (2) Implementation using the large

scale option in Matlab for determining the next value during optimization, by com-

puting the gradient, i.e., the partial differential for the 6 transformation parameters

[ ∂f
∂θx
, ∂f
∂θy
, ∂f
∂θz
, ∂f
∂tx
, ∂f
∂ty
, ∂f
∂tz

].

4.3 Evaluation Metrics

To assess the performance of the proposed rigid registration algorithm for 3D multiple-

visit images, we use the following evaluation metrics: (1) standard deviation to eval-

uate the convergence of SN and UM optimization; (2) root mean squared (RMS)

distances; (3) angle between surface normal; (4) mutual information; (5) point fin-

gerprint; and (6) t-test. The evaluation metrics are described as follows:

4.3.1 Standard Deviation

Let {xi : i = 1, ...q} be a collection of data. Then the mean µ and standard deviation

σ of the data set are defined as:

µ =
1

q

q∑
i=1

xi (4.10)

σ =

√∑q
i=1(xi − µ)2

q − 1
(4.11)
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4.3.2 Root Mean Squared (RMS) Distance

The RMS distance E1 between a set of points from the reference image and the set

of corresponding points from the target image can be calculated using equation 4.12:

E1 =

√√√√1

p

p∑
i=1

d2i (4.12)

where p is the number of points in the point set from one image, di is the Euclidean

distance between ith pair of points from the two point sets.

Given a point P0(x0, y0, z0) from the reference image, its corresponding point

in the target image can be defined as the nearest perpendicular foot in the 3D

surface of the target image to P0. The perpendicular foot is the intersection of

the perpendicular passing through P0 and the 3D surface of the target image. We

determine the corresponding point by computing the perpendicular foot on the line,

which passes through P0 and is perpendicular to each triangle of the 3D mesh of

the target image. The perpendicular foot, which locates inside the triangle and is

nearest to P0 is identified as the corresponding point. The method is described as

follows:

LetA(x1, y1, z1), B(x2, y2, z2), C(x3, y3, z3) be the three vertices of a triangle ∆ABC

and (l,m, n) be the normal of the plane that ∆ABC lies in. Then:

l = (y2 − y1)(z3 − z1)− (y3 − y1)(z2 − z1)

m = (z2 − z1)(x3 − x1)− (z3 − z1)(x− x1)

n = (x2 − x1)(y3 − y1)− (x3 − x1)(y2 − y1)

(4.13)

Let Q(xq, yq, zq) be the perpendicular foot on the line passing through P0 and

perpendicular to the plane that ∆ABC lies in. Then the coordinates xq, yq, zq can
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be computed by equation 4.14: 

xq = x0 + tl

yq = y0 + tm

zq = z0 + tn

(4.14)

where t = l(x1−x0)+m(y1−y0)+n(z1−z0)
l2+m2+n2

We project the ∆ABC to the plane, which is perpendicular to the largest compo-

nent of normal (l,m, n), i.e., the plane that has the largest projected area of ∆ABC.

The perpendicular foot Q is checked inside or outside ∆ABC using method described

in subsection 4.2.5. If Q is inside ∆ABC, then the Euclidean distance between P0

and Q is calculated using equation 4.15 and compared to those from other triangles

of the mesh of the target image. The perpendicular foot, which lies inside the trian-

gle and has the shortest Euclidean distance to P0 is identified as the corresponding

point.

|P0Q| =
√

(xq − x0)2 + (yq − y0)2 + (zq − z0)2 (4.15)

4.3.3 Angle between Surface Normals

The angle between surface normals of two registered 3D images is also used to evalu-

ate the registration accuracy in this research. Given a set of points P{Pi : i = 1, . . . p}

from a 3D image and a radius R, the surface normal of the image can be calculated

as follows:

For each point Pi in the set P, we extract a patch Ti from the mesh of the 3D

image, in which all the points have Euclidean distances to Pi less than R. For each
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triangle ∆j in Ti, we calculate the normalized normal −→nj and area sj of the triangle.

Let A, B, and C be the three vertices of the triangle ∆j, then

−→nj =

−→
ABX

−→
AC

|−→ABX−→AC|
(4.16)

where ”X” means cross product of vectors, ”||” is the 2-norm, i.e., the length of

the vector.

sj =
√
u(u− a)(u− b)(u− c) (4.17)

where a, b, and c are length of the three edges of the ∆j, u = 1
2
(a+ b+ c).

The total normal of the patch Ti is the weighted sum of the normalized normals

for all triangles in the patch, where the weights are the triangle areas. The normalized

total normal
−→
Ni and the total area Si for the patch Ti are:

−→ni =

∑k
j=1 sj

−→nj
|
∑k

j=1 sj
−→nj |

(4.18)

si =
k∑
j=1

sj (4.19)

where k is the number of triangles in patch Ti.

The total normal
−→
N of the 3D image is the weighted sum of the normalized total

normals of all patches for points in set P , where the weight is the total areas of the

patches.

−→
N =

p∑
i=1

Si ·
−→
Ni (4.20)

where p is the number of points in set P .
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Let
−→
N and

−→
N ′ be total surface normals of two 3D images respectively, the angle

E2 between surface normals can be calculated using the dot product of them.

E2 = cos−1
−→
N · −→N ′

|−→N ||−→N ′|
(4.21)

4.3.4 Mutual Information

The mutual information [74] of the two images is computed to evaluate the corre-

spondence achieved following the registration of two 3D images. After registration,

the two 3D surface images are projected onto XY, XZ, and YZ planes respectively.

In each plane, two intensity-based 2D images corresponding to the two 3D images

are created as follows: First, the 2D projections of each of the two images in the

selected plane (i.e., XY, YZ, or XZ) are examined, and the dimensions of a bounding

box that entirely encloses both the 2D projections are determined. Next, two new

images at the size of the bounding box are created. For each pixel in the new image,

the projected points from the corresponding 3D image are counted and normalized

by the total number of the points in the 3D image. These normalized values are

the intensities of the 2D image. For each 2D image, the intensities are scaled to be

0 ∼ 255 so that the gray level intensities are integers. The mutual information for

the two intensity-based 2D images is computed using the following equation:

M(A;B) = H(A) +H(B)−H(A,B) (4.22)

where A and B represent the two 2D images, H(A) and H(B) are the marginal

entropies, and H(A,B) is the joint entropy of A and B. The 3 entropies for 2D

intensity-based images are defined as:

H(A) = −
255∑
i=0

PA(i) log2 PA(i) (4.23)
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H(B) = −
255∑
i=0

PB(i) log2 PB(i) (4.24)

H(A,B) = −
255∑
i=0

255∑
j=0

PA,B(i, j) log2 PA,B(i, j) (4.25)

where PA(i) and PB(i) are probabilities of pixels which contain the intensity value i

in image A and B respectively, and PA,B(i, j) is the probability of intensity pair (i, j)

where i is the intensity value for a pixel in A and j is the that for the corresponding

pixel in B. The total number of intensity pairs is 256X256. PA(i), PB(i), PA,B(i, j)

can be calculated as:

PA(i) =
f(i)

N
(4.26)

PB(i) =
g(i)

N
(4.27)

PA,B(i) =
f(i, j)

N2
(4.28)

Where N is the total number of pixels in image A (or B). f(i) and g(i) are

numbers of pixels with intensity value i in A and B respectively. f(i, j) is the

number of intensity pair (i, j), where i is the intensity value for a pixel in A and j is

that for the pixel in B.

The mutual information of the two 3D images can be calculated as:

M =
√
M2

xy +M2
xz +M2

yz (4.29)

where Mxy, Mxz, and Myz are mutual information for projections onto XY, XZ, and

YZ planes respectively.
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4.3.5 Point Fingerprint

A 3D surface representation scheme called point fingerprints is used to qualitatively

evaluate the results achieved from 3D image registration. A point fingerprint is a

set of 2D contours that are projections of geodesic circles onto a given tangent plane

in local/global coordinate system [64]. In this study, planes along Z-axis, which are

parallel to XY plane are used to cut the surface of the 3D image to get a series of

parallel circles. The point fingerprint contours are obtained by projecting the points

of circles onto the XY plane (Fig. 4.9). To compare the torso matching result, the

point fingerprints of two related images are overlaid in a single 2D graph. The z-

buffer algorithm is used to display overlapping points from the two point fingerprints,

whereby if two points in different images project onto the same pixel, the one with

larger z-coordinate is plotted [75].

Figure 4.9: Parallel planes spaced at equal intervals placed depth-wise (Z-axis) along

the surface of 3D image.
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4.3.6 t-test

A paired t-test can be used to compare two different registration algorithms that

applied to the same datasets and shows whether the registration errors from the two

algorithms are significantly different or not. The t value can be calculated by:

t =
d̄

Sd/
√
n

(4.30)

where d̄ is the mean of difference between registration errors for the two compared

algorithms , Sd is the standard deviation, n is the size of the dataset.

4.4 Existing Algorithm for Comparison

An ICP algorithm [76] is used as a control (i.e., current approach) in order to provide

a benchmark for comparison with the proposed algorithm. This ICP method took

root mean squared distances between a set of control points in the reference 3D

image and the set of corresponding points on the target one as the cost function,

and used the kDtree method for nearest neighbor search to find the corresponding

points during registration.

The nearest neighbor search using kDtree in [76] was done in the following algo-

rithmic way:

1. kDtree construction: Points cloud of the target image can be sequentially di-

vided into two equally sized sets based on their x, y and z coordinates in turn.

The point cloud is split by finding the median of all points’ x coordinates. The

median point becomes the root of the tree. Next, the two resulting subsets

are split based on the median of their y coordinates. Then, the four resulting
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subsets are split based on the median of their z coordinates, and so on. The

process, known as binary space paritioning, generates a balanced binary tree

containing all points of the points cloud in the target image.

2. Corresponding point search (nearest neighbor search): Locating the nearest

neighbor to a control point p from the reference image within points cloud of

the target image can be done as follows:

(a) Move down the kDtree starting at the root comparing coordinates accord-

ing to the actual splitting dimension until a leaf is reached.

(b) Mark the point at the located leaf node as current best, and calculate the

distance d between p and current best.

(c) Move up one level in the tree and determine the distance from p to the

current node. If the distance is shorter than d, update current node as

current best and the distance to it as d.

If the distance from p to the current nodes’ splitting plane is longer than

d, exclude current nodes’ other side branch and continue moving upwards.

Otherwise the nodes’ other side branch is searched through just like the

whole tree.

(d) When the root is reached and all necessary side branches have been

searched, choose the shortest of all candidates from the main search and

eventual sub branch searches.
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4.5 Datasets

The algorithm was validated using images of a plastic mannequin, and following

validation the algorithm was applied to multi-visit images acquired from patients

undergoing breast reconstruction surgery at The University of Texas MD Anderson

Cancer Center (MDACC). A representative mannequin image is shown in Fig. 4.10.

The mannequin was placed on the tilt table of the custom-designed imaging system

described in Chapter 3. The reclining angle of the tilt table was changed and five

images were acquired in positions upright (90 degrees), 60 degrees, 45 degrees, 30

degrees, and supine (0 degree). Since the cameras were fixed on the tilt table,

there is no angle change between the originally acquired mannequin images. The

only difference between them is the noise (Fig. 4.10b). We rotated the mannequin

images acquired at tilt table reclining angles 60 degrees, 45 degrees, 30 degrees,

and supine (0 degree) using BR software [77] to obtain the images at 60 degrees,

45 degrees, 30 degrees, and supine (0 degree) positions (Fig. 4.11) to validate our

proposed algorithm. Multiple-visit images from the same patient were acquired at

different clinical visits during their treatment process. Female patients undergoing

breast reconstruction surgery at the University of Texas MD Anderson Cancer Center

were recruited under an Institutional Review Board (IRB) approved protocol. 3D

images from 34 patients were used in this study. The ethnicity, race, age, and BMI

information for the 34 patients are listed in Table 4.1.
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(a) (b)

Figure 4.10: Example of mannequin images. (a) Mannequin image with original

texture. The color points were manually annotated by a plastic surgeon prior to

imaging. (b) Mannequin image with modified texture to display the noise (green

areas out of the boundary of mannequin)
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Figure 4.11: Lateral view of upright (90◦), 60◦, 45◦, 30◦, and supine (0◦) mannequin

images. Mannequin images with 60◦, 45◦, 30◦, and supine (0◦) were created using

BR software by rotating images acquired from the custom-designed imaging system

and only displayed the point clouds for better visualization.

Table 4.1: Demographics of 34 patients

No.
Patient

ID
Ethnicity Race Age

BMI

Visit1 Visit2 Visit3 Visit4

1 7 NotHispanic Latino White 54 21.5 20.6 NA NA

2 15 NotHispanic Latino White 55 33.7 33.8 NA NA

3 24 NotHispanic Latino BAA 51 34.7 33.3 NA NA

4 38 NotHispanic Latino White 36 26.9 19.6 NA NA

5 42 NotHispanic Latino White 49 28.2 27.7 28.4 28.4

6 48 NotHispanic Latino White 49 24.3 24.6 NA NA

7 52 NotHispanic Latino BAA 47 29.9 33.6 35.3 NA

8 56 NotHispanic Latino White 54 25.9 25.9 27.4 26.3

9 57 NotHispanic Latino White 63 24.8 25.6 26.4 NA

10 67 Hispanic Latino White 50 23.4 25.6 26.4 NA

11 68 NotHispanic Latino White 54 22.4 21.9 22.3 22.8
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12 70 NotHispanic Latino White 52 39.6 35.4 NA 35.1

13 76 Hispanic Latino White 43 20.6 19 NA NA

14 78 NotHispanic Latino White 40 21.9 21.8 21.8 NA

15 81 NotHispanic Latino White 46 38.4 39.2 NA NA

16 82 NotHispanic Latino White 59 31.6 32.4 33 NA

17 83 NotHispanic Latino White 51 23.3 26 NA NA

18 86 NotHispanic Latino White 53 32.9 35.7 34.3 NA

19 91 NotHispanic Latino White 41 21.1 19.1 NA NA

20 101 NotHispanic Latino BAA 40 25.3 24.9 NA NA

21 103 NotHispanic Latino White 52 30.2 30 NA NA

22 109 NotHispanic Latino White 52 30.7 31.1 NA NA

23 113 NotHispanic Latino White 54 35.2 25.9 25.8 NA

24 117 NotHispanic Latino White 58 30.2 31.6 28.7 NA

25 126 Hispanic Latino White 34 25.4 25.4 24 NA

26 127 NotHispanic Latino White 55 31.1 31.7 31.7 NA

27 131 NotHispanic Latino White 51 20.4 19.5 18.8 NA

28 133 NotHispanic Latino White 46 34.4 30.3 NA NA

29 139 NotHispanic Latino White 39 33.7 35.5 38 NA

30 159 NotHispanic Latino White 30 23.9 24.6 23.8 NA

31 163 NotHispanic Latino White 37 26.2 26.3 24 25

32 177 NotHispanic Latino White 55 25.5 NA 26.2 NA

33 182 NotHispanic Latino White 43 NA 25.7 23.9 NA

34 193 NotHispanic Latino White 54 32.7 32 32.4 NA

Note: BAA - Black AfricanAmerican
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4.6 Results

4.6.1 Convergence of SN and UM Optimization

The initial manual selection of the fiducial points, SN and UM can influence the

registration process due to: (1) operator bias introduced by manual fiducial points

identification, and (2) location change of UM between images caused by breast re-

construction surgery. The location of UM can change between preoperative imaging

and postoperative imaging for patients undergoing TRAM or DIEP flaps types of

autologous tissue breast reconstruction. We optimize the SN and UM locations in the

target image to avoid registration error caused by SN and UM location differences

in the two multiple-visit images.

To demonstrate the convergence of our optimization method, we simulate the SN

and UM location changes in mannequin images as follows: the target image of the

registration has significant changes, i.e., as large as 20mm in the locations of the

SN and/or UM. The location of UM is clear on the torso and it is in a small area.

Consider the size of the neck, the SN is not very difficult to identify. So 20mm is

large enough to simulate the largest possible operator bias in SN and UM. In the

simulation, each of the two points, SN and UM have five different relocations: original

location (manually identified location), up, down, left and right at a displacement of

20mm from the original location respectively (Fig. 4.12). One of the SN relocations

and one of the UM relocations are combined to be one simulation case. A total of

twenty-five cases are evaluated.
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Figure 4.12: Simulation of operator bias and breast reconstruction caused changes

on SN and UM. The intermediate points among the five points are original locations

of SN and UM respectively. The relocated places are up, down, left and right at a

20mm distance from the original location.

Registration was performed for each pair of the five mannequin images (upright,

60 degrees, 45 degrees, 30 degrees, and supine). There are C2
5 = 10 pair of images in

total. Experimental results for twenty-five cases are provided for each pair of images.

We use the manually identified SN and UM in the target image as the ground truth

to demonstrate the convergence of our SN and UM optimization method. Table 4.2

presents the means and standard deviations computed using equations 4.10 and

4.11. Mean represents the average Euclidean distance from the optimized SN/UM

locations to the ground truth for twenty-five cases. Standard deviation measures the

amount of variation to the mean based on the Euclidean distance. From Table 4.2,

we can see that the optimization error for SN is no more than 1.406 ± 0.0008mm,

and that for UM is no more than 1.0668±0.0021mm for all ten registrations. For all

250 cases of ten registrations, each of the 250 optimized SN (or UM) locations has a

distance to its ground truth. We computed the percentage of optimized SN (or UM)
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over 250 cases within different radius (distance) to the ground truth and displayed

in Fig. 4.13. In Fig. 4.13a, we can see that the percentage of optimized SN approach

1 when the radius is great than 1.4mm. In Fig. 4.13b, the percentage of optimized

UM approach 1 when the radius is great than 1.0mm.

Table 4.2: Mean and standard deviation for optimized SN and UM for twenty-five

simulation cases

Images for

Registration

SN UM

Mean (mm)
Standard

Deviation (mm)
Mean (mm)

Standard

Deviation (mm)

Upright vs Supine 1.406 0.0008 0.9541 0.0015

Upright vs 30o 0.1959 0.00089 0.5305 0.00073

Upright vs 45o 0.1793 0.00072 0.4582 0.00026

Upright vs 60o 0.4115 0.00125 0.6775 0.00044

30o vs 45o 0.1522 0.00089 0.1231 0.00043

30o vs 60o 0.3138 0.00071 0.4675 0.00253

30o vs Supine 1.233 0.00019 0.938 0.00146

45o vs 60o 0.2016 0.001 0.6067 0.00258

45o vs Supine 1.0274 0.00058 1.0668 0.0021

60o vs Supine 0.8864 0.05126 0.607 0.08295

4.6.2 Comparison with Existing ICP Algorithm

4.6.2.1 Results Comparison for Mannequin Images

The proposed algorithm is validated using the mannequin images. For each pair of the

five mannequin images (upright, 60 degrees, 45 degrees, 30 degrees, and supine), we

do the registration using our proposed algorithm and an existing ICP algorithm [76].
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(a) (b)

Figure 4.13: Percentage of optimized SNs and UMs within a radius of sphere centered
at ground truth. (a) Plot for SN.(b) Plot for UM. Where horizontal axis shows the
radius of a sphere centered on the ground-truth location, and the vertical axis shows
percentage of solution locations within the radius of a sphere for all 250 cases of ten
registrations

The torso transformation between mannequin images is rigid, but the noise in the

two images may not match and can cause registration error. Thus we run the ICP

algorithm for three different worst rejection rates: 0 (without worst rejection), 30%,

and 60%. The worst rejection means to reject a given percentage of the control point

pairs, which have large Euclidean distances between them, from the two images as

the outliers before computing the cost function.

Data for representative mannequin images (upright and 60 degrees) is presented

in Fig. 4.14- 4.17. Fig. 4.14 shows 3D torsos of the two images. Fig. 4.15- 4.17 shows

the data before registration and those achieved following rigid transformation using

our proposed algorithm and existing ICP algorithm respectively. The upright image

is reference image and untransformed, and the image with 60 degrees is the target

image and transformed to the reference image during the registration. To facilitate

viewing, the 3D torso images are cropped to display only the area of the upper torso

encompassing the breast mounds. The upright image is shown in red, and the image
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with 60 degrees is shown in blue. Fig. 4.15 represents the point clouds of the two

images (bottom-up-view of breasts). There are 108 surgeon-annotated points on the

mannequin (Fig. 4.14). We use this set of points to evaluate the registration error

for mannequin images. Fig 4.16 presents the surgeon annotated points (from up-

right image) and their corresponding points (calculated from 60 degrees image using

method described in subsection 4.3.2). Fig. 4.17 shows the 2D point fingerprints.

Original data for images before registration are displayed in Fig. 4.15- 4.17(a). Data

achieved following rigid transformation using our proposed algorithm are presented

in Fig. 4.15- 4.17(b). Those achieved from registration using existing ICP algorithms

with worst rejection rates 0, 30%, 60% are listed in Fig. 4.15- 4.17 (c)-(e) respectively.

As seen in Fig. 4.15- 4.17(a), the original surfaces from upright mannequin image

(red) and mannequin image with 60 degrees (blue) are not matched. Following the

implementation of the proposed registration algorithm, correspondence is achieved

between the two images (Fig. 4.15- 4.17(b)). The existing ICP algorithm without

worst rejection (Fig. 4.15- 4.17(c)) has much larger registration error than both with

worst rejection rates 30% (Fig. 4.15- 4.17(d)) and 60% (Fig. 4.15- 4.17(e)) due to

the noise in the 3D mannequin images. By visualization, the experimental results

in Fig. 4.15- 4.17(b), (d) and (e) show that our proposed algorithm and existing

ICP algorithm with both of worst rejection rates 30% and 60% can achieve perfect

registration due to the absolutely rigid transformation between torsos in 3D man-

nequin images. And by value, our proposed algorithm has less registration error: the

RMS distance E1 between surgeon marked points from the upright image and their

corresponding points from the transformed 60 degrees image for our proposed algo-

rithm, existing ICP algorithm with worst rejection rates 30% and 60% are 0.1515mm,

0.1942mm, and 0.1974mm respectively.

65



(a) (b)

Figure 4.14: Example of mannequin images used for algorithm validation. (a) Up-

right image. (b) Image with 60 degrees. The color points were manually annotated

by a plastic surgeon prior to imaging, which can be used to evaluate registration

error.
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(a) (b)

(c) (d) (e)

Figure 4.15: Example of registration for mannequin images (upright vs 60o, upright

image is in red, 60o image is in blue). (a) Original point clouds (bottom-up-view of

breasts) showing unmatched images (before registration). (b) 3D correspondence of

point cloud achieved following rigid transformation using the proposed algorithm. (c)

3D correspondence of point cloud achieved using the existing ICP algorithm without

worst rejection. (d) 3D correspondence of point cloud achieved using the existing

ICP algorithm with worst rejection rate 30%. (d) 3D correspondence of point cloud

achieved using the existing ICP algorithm with worst rejection rate 60%.
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(a) (b)

(c) (d) (e)

Figure 4.16: Example of registration for mannequin images (upright vs 60o), Sur-

geon annotated points from upright image are in red color. Corresponding points

from 60o image are in blue color. (a) Surgeon annotated points and corresponding

points from unmatched images. (b) Surgeon annotated points and corresponding

points from registered images achieved using the proposed algorithm. (c) Surgeon

annotated points and corresponding points from registered images achieved using

the existing ICP algorithm without worst rejection. (d) Surgeon annotated points

and corresponding points from registered images achieved using the existing ICP

algorithm with worst rejection rate 30%. (d) Surgeon annotated points and corre-

sponding points from registered images achieved using the existing ICP algorithm

with worst rejection rate 60%.
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(a) (b)

(c) (d)

(e)

Figure 4.17: Example of registration for mannequin images (upright vs 60o, upright

image is in red, 60o image is in blue). (a) 2D point fingerprints showing unmatched

images. (b) 2D point fingerprints for registered images achieved using the proposed

algorithm. (c) 2D point fingerprints for registered images achieved using the exist-

ing ICP algorithm without worst rejection. (d) 2D point fingerprints for registered

images achieved using the existing ICP algorithm with worst rejection rate 30%. (d)

2D point fingerprints for registered images achieved using the existing ICP algorithm

with worst rejection rate 60%.
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The average data of the ten registrations for the five mannequin images are shown

in Table 4.3. For each pair of registered images, E1 is the RMS distance between

108 surgeon annotated points from the reference mannequin image and their cor-

responding points from the transformed target mannequin image. E2 is the angle

between surface normals for two images calculated from surgeon annotated points

and their corresponding points using method described in subsection 4.3.3. The sur-

face normals are computed from patches around points with radius 10mm and 15mm

respectively, which are large enough to evaluate the orientation of the surface around

the points. The relative error Er, which is calculated by equation 4.31, is employed

to further observe the improvement of our proposed algorithm.

Er =
EICP − Eour

Eour
∗ 100% (4.31)

where EICP is the registration error of the existing ICP algorithm, and Eour is that

of our proposed algorithm for the ten registrations.

From Table 4.3, we can see that our proposed algorithm outperforms the existing

ICP algorithm with all of the three worst rejection rates: 0, 30%, and 60%. The

ICP algorithm without worst rejection has the worst performance: the relative error

of average E1 is 1592.86% comparing to the proposed algorithm. This is caused

by the noise in the mannequin images, which are used for registration. Without

worst rejection, all the image points and noise are considered for registration. The

registration results are similar when the worst rejection rates are 30% and 60%

(average E1 are 0.2227 ± 0.0467mm and 0.2219 ± 0.0439mm respectively), while

our proposed algorithm is a little better than ICP with both of these two rejection

rates: relative error of average E1 is 3.03% and 2.66%; improvement for average

E2 is between 8.91% and 18.91% with both patch radius 10mm and 15mm; and

also, the proposed algorithm has the largest mutual information value M . The
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negative relative error Er for M means that average mutual information value M

for our proposed algorithm is larger than those from ICP algorithm. Larger mutual

information value represents better registration.

Table 4.3: Registration error comparison for Mannequin images

Algorithms Average E1

Average E2
Average M

R = 10mm R = 15mm

Proposed Algorithm
(0.2162

±0.0588) mm

(0.0874

±0.0479)◦

(0.0762

±0.0286)◦

5.5736

±0.4381

Existing ICP

Algorithm

WR = 0
(3.6599

±5.7140) mm

(1.7804

±2.7310)◦

(1.7455

±2.6521)◦

5.3982

±0.6006

WR = 30%
(0.2227

±0.0467) mm

(0.0953

±0.0629)◦

(0.0840

±0.0350)◦

5.5600

±0.4349

WR = 60%
(0.2219

±0.0439) mm

(0.0952

±0.0659)◦

(0.0906

±0.0471)◦

5.5595

±0.4346

Relative

Error Er

WR = 0 1592.86% 1936.40% 2189.84% −3.15%

WR = 30% 3.03% 8.96% 10.18% −0.24%

WR = 60% 2.66% 8.91% 18.91% −0.25%

WR: worst rejection.

4.6.2.2 Results Comparison for Multiple-Visit Image

Following algorithm validation using mannequin images, the proposed algorithm was

tested using multiple-visit images from patients. Comparisons were performed for

each pair of multiple-visit images of the same patient. Images from 34 patients were

processed for a total of 83 registrations. Representative data for a pair of multiple-

visit images from one patient is presented in Fig. 4.18- 4.21. The image from the

initial visit (Fig. 4.18a) was the reference image and the image from the subsequent
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visit (Fig 4.18b) was the target image and registered to the image from the initial

visit. The reference image is shown in red, and the target image is shown in blue.

Fig. 4.19 represents the point clouds of the two images (bottom-up-view of breasts).

Fig 4.20 presents the fifteen control points (two manually selected fiducial points

SN and UM and thirteen automatically calculated control points) from the reference

image and their corresponding points from the target image. Fig. 4.21 shows the

2D point fingerprints. Original data for images before registration are displayed in

Fig. 4.19- 4.21(a). Data achieved following rigid transformation using our proposed

algorithm are presented in Fig. 4.19- 4.21(b). Those achieved from registration using

existing ICP algorithms with worst rejection rates 0, 30%, 60% are listed in Fig. 4.19-

4.21 (c)-(e) respectively.

As seen in the Fig 4.19- 4.21(b), the proposed algorithm achieved 3D correspon-

dence as is evident by the overlap of the chest walls. Note that the mismatches in

the poses of the patient can be visualized in the areas of the arms. Further the mis-

matches are noted in the region of the left breast due to the surgical deformations

present. The existing ICP algorithm (Fig. 4.19- 4.21(c)-(e)) show relatively poor

performance. From Fig. 4.20(c)-(e), we can see that the ICP with 30% rejection

achieved better registration than other two worst rejection rates. Comparatively,

our proposed algorithm can outperform the existing ICP algorithm with all three

worst rejection rates: the RMS distance E1 between the fifteen control points and

their corresponding points in the registered images using the proposed algorithm,

existing ICP algorithm with worst rejection rates 30% (showing best registration

result in all three worst rejection rates) are 0.7253mm and 1.4483mm respectively;

and the mutual information M are 5.9276 and 5.9175 respectively.
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(a) (b)

Figure 4.18: Example of multiple-visit images from individual patient used for algo-

rithm validation. (a) 3D torso from initial visit (reference image). (b) 3D torso from

subsequent visit (target image).
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(a) (b)

(c) (d) (e)

Figure 4.19: Example of registration for multiple-visit images from individual patient

(initial visit vs subsequent visit). Reference image (initial visit) is in red, and target

image (subsequent visit) is in blue. (a) Original point clouds (bottom-up-view of

breasts) showing unmatched images (before registration). (b) 3D correspondence of

point cloud achieved following rigid transformation using the proposed algorithm. (c)

3D correspondence of point cloud achieved using the existing ICP algorithm without

worst rejection. (d) 3D correspondence of point cloud achieved using the existing

ICP algorithm with worst rejection rate 30%. (d) 3D correspondence of point cloud

achieved using the existing ICP algorithm with worst rejection rate 60%.
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(a) (b)

(c) (d) (e)

Figure 4.20: Example of registration for multiple-visit images from individual patient

(initial visit vs subsequent visit). The fifteen control points (two manually selected

fiducial points SN and UM and thirteen automatically calculated control points) from

the reference image (initial visit) are in red color. Their corresponding points from

the target image (subsequent visit) are in blue color. (a) The fifteen control points

and their corresponding points from unmatched images (before registration). (b) The

fifteen control points and their corresponding points from registered images achieved

using the proposed algorithm. (c) The fifteen control points and their corresponding

points from registered images achieved using the existing ICP algorithm without

worst rejection. (d) The fifteen control points and their corresponding points from

registered images achieved using the existing ICP algorithm with worst rejection rate

30%. (d) The fifteen control points and their corresponding points from registered

images achieved using the existing ICP algorithm with worst rejection rate 60%.
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(a) (b)

(c) (d)

(e)

Figure 4.21: Example of registration for multiple-visit images from individual patient

(initial visit vs subsequent visit). Reference image (initial visit) is in red, and target

image (subsequent visit) is in blue. (a) 2D point fingerprints showing unregistered

images. (b) 2D point fingerprints for registered images achieved using the proposed

algorithm. (c) 2D point fingerprints for registered images achieved using the exist-

ing ICP algorithm without worst rejection. (d) 2D point fingerprints for registered

images achieved using the existing ICP algorithm with worst rejection rate 30%. (d)

2D point fingerprints for registered images achieved using the existing ICP algorithm

with worst rejection rate 60%.
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Table 4.4 shows the average data of the 83 registrations for the multiple-visit

images from the 34 patients. For each pair of the registered images, E1 (RMS

distance) and E2 (the angle between surface normals) are computed based on the

fifteen control points from the reference image and their corresponding points from

the transformed target image. The surface normals are computed from patches

around points with radius 10mm and 15mm respectively.

From Table 4.4, we can see that our proposed algorithm outperforms the existing

ICP algorithm with all of the three worst rejection rates 0, 30%, and 60% for multiple-

visit images. Comparing to our proposed algorithm, the relative errors of the existing

ICP algorithm with worst rejection rate 30% are: 102.62% for average E1, 15.47% and

16.92% for average E2 with radius 10mm and 15mm respectively. When the rejection

rates are 0 and 60%, the ICP even have worse performance: relative errors of average

E1 are 212.82% and 226.17%; improvements for average E2 are between 41.24%

and 68.28% with both patch radius 10mm and 15mm. The proposed algorithm

has the largest mutual information value M 5.3031 which also represents the best

performance. The experimental results demonstrate that our proposed algorithm

has obvious improvement comparing to the existing ICP algorithm.

we performed a two-way paired t-test with a 99% confidence interval to compare

the proposed algorithm and the existing ICP algorithm. Table 4.5 shows the p-

values for all 83 registrations. For each pairwise comparison, p-value < 0.01. We

reject the null hypothesis that the two means are equal. The paired t-test shows

significant difference between the results from the proposed algorithm and existing

ICP algorithm with all three rejection rates.
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Table 4.4: Registration error comparison for multiple-visit images from individual

patient for all 83 registrations

Algorithms Average E1

Average E2
Average M

R = 10mm R = 15mm

Proposed Algorithm
(2.3611

±1.7463) mm

(3.8084

±2.8119)◦

(3.4854

±2.6351)◦

5.3031

±0.5385

Existing ICP

Algorithm

WR = 0
(7.3860

±4.3093) mm

(5.4381

±3.4932)◦

(4.9225

±3.2102)◦

(5.2873

±0.5416)

WR = 30%
(4.7842

±2.5806) mm

(4.3977

±3.0099)◦

(4.0750

±2.8287)◦

5.2957

±0.5437

WR = 60%
(7.7012

±7.2115) mm

(6.1840

±5.9761)◦

(5.8652

±5.8785)◦

(5.1463

±0.6191)

Relative

Error Er

WR = 0 212.82% 42.79% 41.24% −0.29%

WR = 30% 102.62% 15.47% 16.92% −0.14%

WR = 60% 226.17% 62.38% 68.28% −2.95%

WR: worst rejection.

Table 4.5: p-values for paired t-test between proposed algorithm and existing ICP

algorithm for all 83 registrations

p-values E1

E2
M

R = 10mm R = 15mm

Proposed Algorithm

vs ICP/WR = 0
2.458X10−18 3.500X10−6 9.832X10−6 2.290X10−7

Proposed Algorithm

vs ICP/WR = 30%
4.023X10−24 6.683X10−18 1.408X10−14 4.752X10−7

Proposed Algorithm

vs ICP/WR = 60%
1.321X10−10 1.355X10−3 8.65X10−4 2.017X10−5

WR: worst rejection.
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4.6.3 Robustness for BMI Variation

The effect of patient BMI on registration performance is investigated using data from

34 patients. For each pair of multiple-visit images of the same patient, the average

BMI for the two images is used to classify the pair of images into four categories:

underweight (< 18.5), normal (18.5 ∼ 24.9), overweight (25 ∼ 29.9), and obese

(≥ 30). In the 83 registrations, 27 are normal, 25 are overweight, and 31 are obese.

Average registration errors of the tests for each BMI category are listed in Table

4.6. The proposed algorithm is compared with the existing ICP algorithm with 30%

rejection, which has the best performance in the three worst rejection rates.

In the Table 4.6, E1 and E2 for both the proposed algorithm and the existing ICP

algorithm have the similar variation trend that rise with the increase in BMI. How-

ever, in each BMI category, our proposed algorithm can outperform the existing ICP

algorithm based on average E1 and E2 . When BMI ≥ 30 (obese), the proposed algo-

rithm has the largest registration errors: averageE1 is (2.7232± 1.9759)mm, average

E2 with radius 10mm and 15mm are (4.2258± 3.9269) degree and (3.9947± 3.6867)

degree, which are extremely small. The mutual information M is not comparable

between BMI categories since the images in different BMI category have different

densities of point cloud and patient postures. However, the value of the mutual in-

formation in the same BMI category for different algorithm represents the accuracy

of the registration. The average mutual information values achieved from the pro-

posed algorithm are larger than those obtained from existing ICP algorithm in all

BMI categories.

we performed a two-way paired t-test with a 99% confidence interval to compare

the proposed algorithm and the existing ICP algorithm with worst rejection rate 30%
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for all BMI categories. Table 4.7 shows that the p-value < 0.01 for each pairwise

comparison, . We reject the null hypothesis that the two means are equal. The paired

t-test shows significant difference between the results from the proposed algorithm

and existing ICP algorithm with worst rejection rate 30% for all BMI categories.

Table 4.6: Average registration errors for each BMI group for 83 registrations

BMI

Categories
Algorithms Average E1

Average E2 Average

MR = 10mm R = 15mm

Normal

(18.5 ∼ 24.9)

Proposed Algorithm
(1.8332

±0.8983)mm

(3.5798

±1.7129)◦

(3.2372

±1.5170)◦

5.2995

±0.5592

Existing ICP Algorithm

(WR = 30%)

(4.2769

±2.0016)mm

(4.1775

±1.8587)◦

(3.7759

±1.7684)◦

5.2934

±0.5653

Overweight

(25 ∼ 29.9)

Proposed Algorithm
(2.4823

±2.0414)mm

(3.5376

±2.0494)◦

(3.1218

±1.9233)◦

5.3562

±0.4223

Existing ICP Algorithm

(WR = 30%)

(4.7227

±2.8849)mm

(4.3300

±2.5018)◦

(3.8559

±2.5073)◦

5.3488

±0.4264

Obese

(≥ 30)

Proposed Algorithm
(2.7232

±1.9759)mm

(4.2258

±3.9269)◦

(3.9947

±3.6867)◦

5.2635

±0.6123

Existing ICP Algorithm

(WR = 30%)

(5.2756

±2.7546)mm

(4.6440

±4.0807)◦

(4.5121

±3.7166)◦

5.2549

±0.6176

WR: worst rejection
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Table 4.7: p-values for paired t-test between proposed algorithm and existing ICP

algorithm (WR = 30%) for each BMI group

BMI

Categories
E1

E2

M
R = 10mm R = 15mm

Normal

(18.5 ∼ 24.9)
1.359X10−8 1.577X10−9 5.188X10−7 7.052X10−4

Overweight

(25 ∼ 29.9)
3.972X10−6 5.028X10−8 4.045X10−6 3.386X10−4

Obese

(≥ 30)
7.065X10−13 1.063X10−4 1.014X10−4 9.020X10−3

WR: worst rejection

4.7 Conclusions

A rigid registration algorithm of 3D images from multiple clinical visits for the same

patient has been developed and demonstrated using mannequin images and multiple-

visit images from the same patient acquired at two different clinical visits.

Registration is achieved by maximizing the correspondence between the fifteen

pair of control points from the two images. In the fifteen control points from each

image, two fiducial points SN and UM are manually identified, and other thirteen

control points are automatically calculated from the surface of the 3D image based

on the coordinates of SN and UM. To overcome operator bias caused by manual

fiducial points selection, we optimize the selection of SN and UM, and thereby the

locations of all other thirteen control points in the target image. The mannequin

images are used to simulate the location changes between SNs and UMs manually

selected from two images to evaluate the convergence of our optimization method.
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The simulation results show that our proposed algorithm can obtain convergence of

SN and UM optimization for mannequin images.

The registration accuracy of our proposed algorithm is demonstrated by com-

paring to an existing ICP algorithm. For the mannequin images, our proposed

algorithm outperforms the existing ICP algorithm with all of the three worst re-

jection rates: 0, 30%, and 60%. The improvement of 1592.86% for average E1 (RMS

distance) comparing to the existing ICP algorithm without worst rejection shows

that our proposed algorithm is robust for the noise in the 3D images. The average

E1 (0.2162 ± 0.0588)mm for all registrations and the improvement between 8.91%

and 18.91% for E2 (angle between the surface normals of the two registered images)

comparing to the existing ICP algorithm with worst rejection rates 30% and 60%

show that the proposed algorithm has good performance for registration of images

with exact rigid transformation. For multiple-visit images acquired from patients,

our proposed algorithm has significant improvement comparing to the existing ICP

algorithm. For the E1 of 83 registrations, our proposed algorithm has improvement

of 212.82%, 102.62% and 226.17% comparing to the ICP algorithm with three dif-

ferent worst rejection rates respectively. And also, the proposed algorithm has much

better E2 and largest mutual information value. Thus, the proposed algorithm can

obviously outperform the existing ICP algorithm and do not need to consider the

worst rejection rate, with strong evidence by t-test.

Patient’s BMI may vary over time. The effect of patient BMI on registration

performance is investigated using multiple-visit images from the patients. For our

proposed algorithm, the largest registration error occurs when the BMI ≥ 30 (obese).

The average E1 is (2.7232 ± 1.9759)mm for this BMI category, which is extremely

small. And also, in each BMI category, our proposed algorithm can outperform the
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existing ICP algorithm based on E1, E2, and mutual information M . Thus, our

proposed algorithm is robust to the BMI variation, with strong evidence by t-test.
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Chapter 5

Detection of the Lowest Breast

Contour in 3D Images of the

Female Torso

5.1 Introduction

5.1.1 Definition of the Lowest Breast Contour

The Lowest breast contour is the contour where the breast is touching the abdominal

wall (Fig.5.1). Fig. 5.1 (a) shows the breast of ptosis degree 0, in which the lowest

breast contour is visible in upright position. Fig. 5.1 (b) shows the breast of ptosis

degree 1, in which the lowest breast contour is slightly visible in upright position.

Fig. 5.1 (c) and (d) show the breast of ptosis degree 2 and 3, in which the lowest

breast contours are not visible and up under the breasts in upright position, but

are visible if the images are rotated so that the viewer is looking from below at the
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breasts.

(a) (b)

(c) (d)

Figure 5.1: The lowest breast contours are indicated with red arrows for breasts with

varying degrees of ptosis: (a) Ptosis grade 0. (b) Ptosis grade 1. (c) Ptosis grade 2.

(d) Ptosis grade 3.

The lowest breast contour is an important attribute for quantitative assessment

of breast aesthetics. The detected lowest breast contour enables computation of

morphological measures such as volume [7, 18–20], and facilitates the identification

of other characteristics of the breast morphology such as ptosis [8] and nipple [78].

This information is critical for pre-operative planning and post-operative assessment
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of outcomes in breast reconstruction.

5.1.2 Related Works

Previous studies on breast contour detection have been performed on 2D images

and 2D range images encoding depth (depth-map images). Cardoso et al. [79, 80]

described an automatic method for the detection of lower half of the breast contour

in 2D images. The position of the external endpoint of the lower half of the breast

contour was defined at the armpit of the body. The internal endpoint was estimated

simply as the mid-point between the two external endpoints. After modeling the

image as a weighted graph based on the gradient values in z direction and prior shape

information, the lower half of the breast contour was computed as the solution to the

shortest-path problem between the internal and external endpoints. In subsequent

studies [81, 82], this approach was extended to perform tracing of the lower half of

the breast contour in depth-map images. Both 2D images and depth-map images

cannot capture the overlapped regions, e.g. the underside regions of the breasts with

high ptosis degree. They detected a 2D outline of the lower half of the breast, rather

than the 3D breast contour in the 3D surface image. Lee et al. [83, 84] introduced

a measure of the lower half of the breast contour in 2D images which enforced a

mathematical shape constraint based on the catenary curve, a perfectly flexible and

inextensible string of uniform density supported by two distinct points. First, they

used a catenary curve to approximate the overall contour of the lower half of the

breast, and extracted a shape parameter, which is a measure of the lower half of the

breast contour representing the outlining catenary curve. The catenary-based shape

measure was used by Lee et al. to evaluate the contours of the upper and lower breast

in 3D images of patients [85]. The outlines of the upper and lower breast were first

86



obtained from coronal sectional views that were created from multiple parallel planes

to the chest wall, spaced at about 1cm intervals starting at the anterior most part

of the breast. Then the breast contour was extracted by fitting catenary curves to

the resulting outline in each sectional view. Although this method used 3D images

as input, the obtained breast contours are curves in 2D planes, and do not directly

mirror the 3D breast contours.

Due to the lack of the algorithms to directly compute the breast contour on

the 3D surface mesh. In this chapter, we describe a curvature-based lowest breast

contour detection algorithm in 3D images of the female torso [86], which employs

the shape index [87] and minimum principle curvature.

5.2 Algorithm

5.2.1 Overview

Before we detect the lowest breast contour, we manually crop the 3D image acquired

from the female torso and just keep the region below the neck and above the umbil-

icous. The regions which are automatically unlikely to contain breasts are removed

(Fig. 5.3a).

The overview of our algorithm for the detection of the lowest breast contour in

3D images is illustrated in Fig. 5.2. First, we calculate the two principle curvatures

for all points in the surface mesh of the 3D image. And then, we compute the

shape index [87] from the two principle curvatures. After that, the possible contour

points (sPP ) are detected as the points with negative shape indices (i.e. exhibiting

concave shape) and their minimum principle curvatures less than the mean of that
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for all points on the torso. The possible contour points include not only the points

lying along the lowest breast contour, but also points in the randomly scattered

regions (noise) on the torso that represent isolated incidences of low shape index and

curvature values due to mesh undulation. A reference point RP , a point located

at the breast mound area and roughly above the nipple position (the nipple is not

necessary for determination of the RP ), is determined for each breast to facilitate

separating the lowest breast contour points from the other points on the torso that

also display low curvature values. Then the cubic-spline curve fitting is applied to

the detected points and the curve is identified as the lowest breast contour.

Figure 5.2: Overview of the detection algorithm for the lowest breast contour in 3D

images of the female torso

5.2.2 Curvature Analysis

Curvature is defined as the amount that a surface deviates from being flat. At each

point p of a 3D surface one may find a normal plane, which contains the normal

vector of the point p. The intersection of the normal plane and the 3D surface is a
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plane curve. The plane curves from different normal planes at point p will generate

different curvatures. The principal curvatures, kmax and kmin, are the maximum and

minimum values of the curvatures at p.

To calculate the principal curvatures on 3D surface mesh, we used a toolbox

developed by Gabriel Peyre [88] based on the algorithms proposed by Cohen-Steiner

et al. [89,90]. The curvature tensor for each vertex was estimated using the following

expression [90]:

T (υ) =
1

|B|
∑
edges e

β(e)|e ∩B|ēēt (5.1)

where υ is an arbitrary vertex on the 3D mesh, |B| is the surface area around υ

over which the curvature tensor is estimated, β(e) is the signed angle between the

normals to the two oriented triangles incident to edge e (positive if convex, negative

if concave), |e ∩B| is the length of e ∩B (always between 0 and |e|), and ē is a unit

vector in the same direction as e. The tensor is evaluated at every vertex location

υ, for a neighborhood B that approximates a geodesic disk around this vertex. In

this study, we employed a 10-ring neighborhood for B, which is the author suggested

size. The two principal eigen values, kmax and kmin calculated for this tensor vector,

are the estimates of principal curvatures at υ.

5.2.3 Shape Index

Shape index S for each point on the surface mesh is given by equation 5.2 [87].

Table 5.1 defines the classification of different shaped regions of a surface based on

the shape index.

S =
2

π
tan−1(

kmax + kmin
kmax − kmin

) (5.2)
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Table 5.1: Classification based on shape index S

Shape Index Range

Concave Ellipsoid S ∈ [−1,−5/8)

Concave Cylinder S ∈ [−5/8,−3/8)

Hyperboloid S ∈ [−3/8, 3/8)

Convex Cylinder S ∈ [3/8, 5/8)

Convex Ellipsoid S ∈ [5/8, 1]

We employ a pseudo-color visualization method for viewing the shape index of

the 3D mesh. Fig. 5.3a presents a representative 3D image of the torso, and the

color-mapped shape index for the torso is presented in Fig. 5.3b. The region of the

lower breast mound exhibits red color (S > 0, convex shape) and the region of the

lowest breast contour exhibits blue color (S < 0, concave shape).
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(a) (b)

(c) (d)

Figure 5.3: (a) Representative 3D image of the female torso (X, Y, and Z axes

are displayed in the figure). (b) Color-mapped shape index of 3D surface mesh.

Black arrow illustrates the region eliminated from sPP by kmin < kmean. Colorbar

shows the correspondence between colors and shape index values. (c) Color-mapped

minimum principle curvature kmin of 3D surface mesh. The principle curvatures

are shifted so that the kmean to be 0, i.e., the values above kmean are shown to

be positive and the values below kmean are shown to be negative. Colorbar shows

the correspondence between colors and shifted minimum principle curvature values.

(d) Regions of possible contour points sPP (blue) in the surface scan. Red arrows

illustrate points on the torso that exhibit low curvature and thus are in the sPP set,

but do not lie along the lowest breast contour.
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5.2.4 Possible Contour Points

Before we detect the points along the lowest breast contour, we first obtain a set of

possible contour points sPP using a preprocessing step, which employs the shape

indices and minimum principle curvatures of the 3D mesh. We define a possible

contour point as a point which has the negative shape index S and the minimum

principle curvature kmin less than the mean of the minimum principal curvatures

kmean for all points on the torso, i.e.,

kmean =

∑num
i=1 (kmin)i
num

(5.3)

where num is the total number of points in the 3D mesh of the torso, and for a

point p, 
p ∈ sPP if S < 0 and kmin < kmean

p /∈ sPP otherwise

(5.4)

For points in some regions which are relatively flat and highly unlikely to be

points lying along breast contour, their kmax and kmin are near zero. However,

in these regions, kmax + kmin < 0 may be met, thereby S < 0. We use another

condition kmin < kmean to eliminate these points from sPP . In Fig. 5.3b, the region,

which black arrow points to, meets s < 0, but not meets kmin < kmean. Thus the

combination of s < 0 and kmin < kmean filters the set sPP such that it has fewer

points that have low curvatures and are not long the lowest breast contour.

Fig. 5.3c shows the color-mapped minimum principle curvature kmin of the 3D

surface mesh. In the figure, we shift the minimum principle curvatures so that kmean

to be 0, i.e., the values above kmean are shown to be positive and the values below

kmean are shown to be negative. The possible contour points (sPP ) are displayed in
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Fig. 5.3d.

5.2.5 Determination of the Reference Points for Each Breast

Mounds

After we obtain the possible contour points set sPP , we automatically locate an

estimate for the reference point RP (see Fig. 5.4b) for each breast using the shape

index. RP is located at the breast mound area and roughly above the nipple position

(the nipple is not necessary for determination of the RP ). It is used as a reference

point to calculate angles for points in set sPP .

The RP determination method is applicable to both breasts but for simplicity,

is discussed here in terms of the right breast. We use the weighted shape index for

each point to determine the RP , where weight is the z coordinate of the point. To

smooth the weighted shape index in case some points exhibit isolated shape change

in shape index, we divided the points on right half torso into blocks based on their

x and y coordinates (x, y, and z directions are displayed in Fig. 5.3a) and compute

the average of weighted shape index ave Si in each block. The block size we used

is 5mm X 5mm. The point cloud is dense in breast mound region in 3D images,

the distances between adjacent points in this region are usually no more than 2mm.

A 5mmX5mm block include about 9 points, it is enough to smooth the weighted

shape index for points. For each block i, the average of weighted shape index ave Si

is computed using equation 5.5:

ave Si =

∑ni

j=1 Sijzij

ni
(5.5)

where ni is the number of points in block i, Sij and zij are shape index and z

coordinate of point j in block i respectively. zij is a shifted value so that all points
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on the right half torso have non-negative z coordinate values:

zij = zoij − zmin (5.6)

where zoij is the original z coordinate value of point j in the block i, and zmin

is the minimum original z coordinate value for all points on the right half torso.

Fig. 5.4a shows the color mapped ave S for each 5mmX 5mm block of the torso. In

the right half torso, let the block with the largest ave S to be block A (marked as

black spot in Fig. 5.4a). Then we search a range 7X10 blocks (35mmX50mm, i.e.,

15mm from block A in left and right directions) above this block and let the highest

block (in y direction) with ave S > 0 in this range to be block B. The coordinates

of the RP can be estimated as follows (only x and y coordinates of RP are required

for angle calculation for possible contour points in set sPP ):
xRP = xAC

yRP = yBC

(5.7)

Where xRP and yRP are x and y coordinates of RP respectively, xAC is the x

coordinate of the center of block A, and yRP is the y coordinate of the center of block

B. The 15mm from block A in left and right directions is used to bound the RP

not far from block A in x direction. 50mm above A is used to avoid RP location

lower than the lowest breast contour in images of ptotic breasts. The automatically

estimated RP locations for two breasts are showed in Fig. 5.4b.
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(a) (b)

Figure 5.4: (a) Color-mapped ave S in 5mmX5mm blocks. The black arrow means

to search a range (7X10 blocks) above the block with the largest ave S in the half

torso. (b) Estimates of reference points RPs (red) for the left and right breasts.

5.2.6 Determination of the Lowest Breast Contour

5.2.6.1 Angle Calculation

For each point pi in the possible contour points set sPP from the right half of the

torso, we calculate the angle θi which is relative to RP and defined by equation 5.8:

θi = sign(xpi − xRP) cos−1
( −→υ1 · −→υ2
|−→υ1 · −→υ2 |

)
(5.8)

where −→υ1 is a vector along −y direction, −→υ2 = (xpi − xRP, ypi − yRP) in which xpi

and ypi are x and y coordinates of point pi in sPP and xRP and yRP are coordinates of

RP . All points in set sPP are sorted based on their angles to facilitate subsequent

computations.
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5.2.6.2 Intermediate Point Determination

We divide points in sPP into different sectors based on their angles and detect one

lowest breast contour point in each sector. The normal breast base width is no more

than 20cm [53]. The block with largest ave S is generally located the lower part

of the breast mound. The RP is no more than 50mm higher than the block with

largest ave S. So in the projection in XY plane, the distances from RP to the lowest

breast contour points are no more than 15cm. We divide points in sPP into different

sectors at angle interval 5◦, then the average distance between two adjacent detected

lowest breast contour points is no more than 13mm. It is dense enough to fit a

contour curve using cubic spline. If more accurate result is desired, a smaller angle

interval can be selected.

From the sector below RP , i.e. −2.5◦ ∼ 2.5◦ in sPP (Fig. 5.6a), we estimate an

intermediate point of the lowest breast contour which is used to locate the contour

position correctly. Points in this sector have x coordinates close to that of RP . The

intermediate point is determined using following three steps: (1) calculate normals

for all points in sector −2.5◦ ∼ 2.5◦ in sPP ; (2) find the possible contour point M

displaying the largest shape change. (3) estimate the intermediate point from M .

For each point in the sector −2.5◦ ∼ 2.5◦ in sPP , the normal is calculated as

the sum of the normalized normals of its one-ring triangles. One-ring triangles of a

vertex p in the triangular surface mesh are defined as all triangles which share vertex

p (Fig. 5.5). Let A, B, and C be the three vertices of a triangle, then the normalized

surface normal −→n of the triangle can be obtained by equation 5.9:

−→n =

−→
ABX

−→
AC

|−→ABX−→AC|
(5.9)

where “X” means cross product of vectors,“| |” is the 2-norm, i.e., the length of
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the vector. The normal
−→
Np of p is computed as:

−→
Np =

m∑
j=1

−→nj (5.10)

where m is the total number of one-ring triangles of p, and −→nj is the normalized

normal of jth one-ring triangle of p.

The possible contour points in set sPP include not only the points in the region

containing the lowest breast contour, but also points in the randomly scattered re-

gions (noise) on the torso that represent isolated incidences of low shape index and

curvature values due to mesh undulation (Fig 5.3d). However, below RP, only the

lowest breast contour area exhibits sharp change of the shape (Fig. 5.4b). In the

sector −2.5◦ ∼ 2.5◦, we find a possible contour point M displaying the largest shape

change in a range with radius 10mm around the point to locate the region containing

the lowest breast contour. We have tried 5mm, 10mm, 15mm and 20mm for radius

size. Since the point cloud is sparse in lowest breast contour region for some 3D

images, the distance between some adjacent points may be larger than 5mm. Ra-

dius size with 5mm cannot find accurate result for some breasts. In 20mm case, the

detected intermediate point may locate out of the lowest breast contour region since

this size is too large. 10mm and 15mm can obtain accurate intermediate point esti-

mation and results have no difference between them, we select 10mm as the radius

size.

The point M is estimated by angles between normals of points, i.e. the larger

the angle between normals of two points, the larger the shape change between them.

The angle between two normals can be calculated as:

A12 = cos−1
−→n1
−→n2

|−→n1 ||−→n2 |
(5.11)
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where −→n1 and −→n2 are the normals of the two points. For each point p in the sector

−2.5◦ ∼ 2.5◦ in sPP , we calculate the angles of normals between point p and all

other possible contour points within a range of 10mm in Euclidean distance to p,

and let the maximum angle be the normal angle (NOA) of p. M is selected as the

possible contour point which have the maximum NOA in the sector −2.5◦ ∼ 2.5◦.

The intermediate point (Fig. 5.6b) is selected based on that the lowest breast

contour is an inward curving crease below the breast and the points on the contour

exhibit low minimum principle curvatures. We determine the intermediate point as

the point in sPP which is in a range of 10mm in Euclidean distance to point M and

has the minimum kmin value.

Figure 5.5: One-ring triangles of a vertex p

5.2.6.3 Curvature Extension

From the estimated intermediate point of the lowest breast contour, we extend the

contour points along two directions. sPP points are divided into different 5◦ sector
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regions centered at RP (Fig. 5.6a). In each sector, we detect the contour point,

such that it has a minimum kmin value in all sPP points in this sector, and its

Euclidean distance to the previously detected contour point in the previous interval

< 2L, where L is the arc length of current interval and can be calculated using

equation 5.12. The distance 2L is the largest possible distance between the lowest

breast contour in the adjacent sectors. It is used to avoid selecting noise points as

the contour points which deflect from the lowest breast contour region.

L =
5◦π

180◦
R (5.12)

where R is the radius from RP to the contour arc of the current interval, which

is approximated as the Euclidean distance from RP to the detected contour point

in the previous interval since current interval has not yet undergone processing to

separate the lowest breast contour point from noise. If there is no sPP point in an

interval at distance < 2L, the detection is terminated in that direction. The detected

lowest breast contour points are displayed in Fig. 5.6b as green color. The resulting

fitted cubic-spline curve generated from the detected contour points is identified as

the lowest breast contour.
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(a) (b)

Figure 5.6: (a) sPP points (blue) are divided into different 5◦ sector regions based

on their angles θ relative to RP (red). (b) Set of possible contour points sPP (blue)

and detected points along the lowest breast contours (green) displayed on surface.

Red points are determined intermediate points.

5.3 Evaluation Metric

We demonstrate our proposed lowest breast contour detection algorithm for 3D im-

ages by comparing the automatically detected contours with manually selected con-

tours. The manually selected contours are used as ground truth. Average distance

and dice coefficient [91] between these two contours from the same breast are com-

puted for comparison.

5.3.1 Average Distance

The average distance between two contours is the average of the distances from

all points in two contours to the other one as follows. The automatically detected
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contour and manually selected contour from the same breast are not same in length.

To evaluate the accuracy of our proposed algorithm, we keep the same length for

comparison. For the end points of two contours, we calculate their angles relative to

RP . The contours are cut at each end based on the shorter one, i.e. the one which

has the smaller absolute angle value at this end.

We interpolate the same number of points from the automatically detected con-

tour points and manually selected contour points with the same length using cubic

spline method to obtain the interpolated point sets A and B, respectively. In this

research, 200 points are interpolated in each contour to provide enough points for

accurate result evaluation. The distance d(Ai) from a point Ai in set A to the other

contour, i.e. set B can be represented as:

d(Ai) = min
Bj∈B

‖Ai −Bj‖ (5.13)

where ‖ · ‖ is the Euclidean distance. And similarly, the distance d(Bi) from a

point Bi in set B to set A can be represented as:

d(Bj) = min
Ai∈A
‖Bj − Ai‖ (5.14)

Then, the average distance ave d between the automatically detected contour

and the manually selected contour is calculated by equation 5.15:

ave d =

∑|A|
i=1 d(Ai) +

∑|B|
j=1 d(Bj)

|A|+ |B|
(5.15)

where |A| and |B| are sizes of the set A and B respectively.
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5.3.2 Dice Coefficient

Dice coefficient is a similarity measure that can be used to evaluate the results of

our proposed algorithm for detecting the 3D lowest breast contour. We compute the

dice coefficient between the automatically detected breast contour and the manually

selected contour as follows. For each point in A (or B), we compute the distance to

the other contour point set B (or A). Let num be the total number of the points in A

and B with distances less than a given threshold, the dice coefficient Dc is computed

as num over the sum of the total number of points in A and B:

Dc =
num

|A|+ |B|
(5.16)

The dice coefficient is always in [0, 1] range. A dice coefficient of 1 indicates high

similarity (all points in A and B fall in the distance threshold), whereas 0 indicates

little to no similarity (all points in A and B fall out the distance threshold).

5.4 Datasets

3D surface images from 77 participants were used in this study. There are 154 breasts

in total. The lowest contours for 151 breasts of them were detected and evaluated.

For the other 3 breasts, the lowest contours are missed due to holes or data missing

on these areas in the 3D images. Since the two breasts for the same patient may

have different ptosis grades, we categorize the 151 breasts into 5 groups based on

breasts morphology, and not patients. Ethnicity, race, age, BMI, breast ptosis grade,

and previous breast surgery information for the participants with breast ptosis grade

0, 1, 2, and 3 are listed in Table 5.2- 5.5 respectively. Table 5.6 contains the

demographics for participants with breasts which cannot be rated (CR) due to the
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incomplete surgeries and no nipple reconstruction for these breasts. The stage of the

incomplete surgery for each breast is listed in the Table 5.6.

Table 5.2: Demographics and characteristics for participants with

breast ptosis grade 0

No.
Patient

ID
Visit

Race

/Ethnicity
Age BMI

Breast

(Right/Left)

Ptosis

Grade

Surgery

Type

1 7 V1 White/NH 54 21.5 Right 0 None

2 7 V1 White/NH 54 21.5 Left 0 None

3 48 V2 White/NH 49 24.6 Right 0 Implant/NR

4 67 V1 White/H 50 23.4 Right 0
Mastopexy

& Implant

5 67 V2 White/H 50 25.6 Right 0
Mastopexy

& Implant

6 67 V3 White/H 50 26.4 Right 0
Mastopexy

& Implant

7 68 V1 White/NH 54 22.4 Right 0 None

8 68 V1 White/NH 54 22.4 Left 0 None

9 68 V4 White/NH 54 22.8 Right 0 Implant/NR

10 68 V4 White/NH 54 22.8 Left 0 Implant/NR

11 70 V2 White/NH 52 35.4 Right 0
Mastopexy

& Implant

12 70 V4 White/NH 52 35.1 Right 0
Mastopexy

& Implant

13 70 V4 White/NH 52 35.1 Left 0 Flap/NR

14 76 V2 White/H 43 19 Right 0 Mixed

15 76 V2 White/H 43 19 Left 0 Mixed

16 78 V1 White/NH 40 21.9 Left 0 None

17 78 V2 White/NH 40 21.8 Left 0 None

18 103 V2 White/NH 52 30 Right 0 Flap/NR
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19 109 V1 White/NH 52 30.7 Left 0 Flap

20 113 V1 White/NH 54 35.2 Right 0 Implant

21 113 V2 White/NH 54 25.9 Right 0 Implant

22 113 V3 White/NH 54 25.8 Right 0 Implant

23 113 V3 White/NH 54 25.8 Left 0 Flap

24 126 V1 White/H 34 25.4 Right 0 None

25 126 V1 White/H 34 25.4 Left 0 None

26 126 V2 White/H 34 25.4 Right 0 Implant

27 126 V2 White/H 34 25.4 Left 0 Implant

28 126 V3 White/H 34 24 Right 0 Implant

29 126 V3 White/H 34 24 Left 0 Implant

30 127 V1 White/NH 55 31.1 Left 0 None

31 131 V1 White/NH 51 20.4 Right 0 Implant

32 131 V1 White/NH 51 20.4 Left 0 Implant

33 131 V2 White/NH 51 19.5 Right 0 Implant

34 131 V2 White/NH 51 19.5 Left 0 Implant

35 131 V3 White/NH 51 18.8 Right 0 Implant

36 131 V3 White/NH 51 18.8 Left 0 Implant

37 133 V2 White/NH 46 30.3 Right 0 Implant

38 159 V1 White/NH 30 23.9 Right 0 None

39 159 V1 White/NH 30 23.9 Left 0 None

40 163 V3 White/NH 37 24 Right 0 Mastopexy

41 163 V4 White/NH 37 25 Right 0 Mastopexy

42 193 V3 White/NH 54 32.4 Left 0 Reduction

43 A NA White/NH 21 19 Right 0 None

44 A NA White/NH 21 19 Left 0 None

45 B NA White/NH 53 19.8 Right 0 None

46 B NA White/NH 53 19.8 Left 0 Flap

Notes: NH: Non-Hispanic or Latino; H: Hispanic; NR: Nipple reconstruction.
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Table 5.3: Demographics and characteristics for participants with

breast ptosis grade 1

No.
Patient

ID
Visit

Race

/Ethnicity
Age BMI

Breast

(Right/Left)

Ptosis

Grade

Surgery

Type

1 42 V1 White/NH 49 28.2 Left 1 None

2 42 V3 White/NH 49 28.4 Left 1 Mastopexy

3 42 V4 White/NH 49 28.4 Right 1 Flap/NR

4 42 V4 White/NH 49 28.4 Left 1 Mastopexy

5 48 V1 White/NH 49 24.3 Left 1
Mastopexy

& Implant

6 48 V2 White/NH 49 24.6 Left 1
Mastopexy

& Implant

7 57 V3 White/NH 63 26.4 Right 1
Mastopexy

& Implant

8 103 V2 White/NH 52 30 Left 1 Flap/NR

9 117 V3 White/NH 58 28.7 Right 1 None

10 127 V1 White/NH 55 31.1 Right 1 None

11 193 V2 White/NH 54 32 Left 1 Reduction

12 205 V1 White/NH 57 29 Right 1 None

13 205 V1 White/NH 57 29 Left 1 None

14 515 V1 White/NH 55 22.4 Right 1 None

15 515 V1 White/NH 55 22.4 Left 1 None

Notes: NH: Non-Hispanic or Latino; H: Hispanic; NR: Nipple reconstruction.

Table 5.4: Demographics and characteristics for participants with

breast ptosis grade 2

No.
Patient

ID
Visit

Race

/Ethnicity
Age BMI

Breast

(Right/Left)

Ptosis

Grade

Surgery

Type

1 56 V1 White/NH 54 25.9 Right 2 None

2 56 V1 White/NH 54 25.9 Left 2 None
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3 56 V2 White/NH 54 27.4 Left 2 None

4 70 V1 White/NH 52 39.6 Right 2 None

5 72 V1 White/NH 47 27.3 Right 2 None

6 82 V2 White/NH 59 32.4 Left 2 Reduction

7 133 V1 White/NH 46 34.4 Right 2 None

8 133 V1 White/NH 46 34.4 Left 2 None

9 163 V2 White/NH 37 26.3 Right 2 None

10 208 V1 White/NH 60 29 Left 2 None

11 532 V1 White/NH 50 30.9 Left 2
Partial

Mastectomy

12 534 V1 White/H 40 33.9 Left 2
Partial

Mastectomy

13 D NA White/NH 44 27 Right 2 None

14 D NA White/NH 44 27 Left 2 None

15 E NA White/H 21 36 Right 2 None

16 E NA White/H 21 36 Left 2 None

Notes: NH: Non-Hispanic or Latino; H: Hispanic.

Table 5.5: Demographics and characteristics for participants with

breast ptosis grade 3

No.
Patient

ID
Visit

Race

/Ethnicity
Age BMI

Breast

(Right/Left)

Ptosis

Grade

Surgery

Type

1 58 V1 White/NH 31 33.2 Right 3 None

2 58 V1 White/NH 31 33.2 Left 3 None

3 72 V1 White/NH 47 27.3 Left 3
Partial

Mastectomy

4 177 V1 White/NH 55 25.5 Right 3 None

5 177 V1 White/NH 55 25.5 Left 3 None

6 215 V1 MA/H 49 37.4 Right 3 None
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7 215 V1 MA/H 49 37.4 Left 3 None

8 532 V1 Hispanic/H 50 30.9 Right 3 None

9 534 V1 White/H 40 33.9 Right 3 None

10 538 V1 White/NH 52 27 Right 3 None

11 689 V1 White/NH 66 27.6 Right 3 None

12 689 V1 White/NH 66 27.6 Left 3 None

13 C NA White/NH 45 27 Right 3 None

Notes: NH: Non-Hispanic or Latino; H: Hispanic.

Table 5.6: Demographics and characteristics for participants with

breasts cannot be rated

No.
Pat.

ID
Visit

Race

/Ethnicity
Age BMI

Breast

(Right/Left)

Ptosis

Grade

Surgery

Type & Stage

1 7 V2 White/NH 54 20.6 Right CR Implant/Stage 2

2 7 V2 White/NH 54 20.6 Left CR Implant/Stage 2

3 38 V2 White/NH 36 19.6 Right CR Implant/Stage 2

4 38 V2 White/NH 36 19.6 Left CR Implant/Stage 2

5 42 V1 White/NH 49 28.2 Right CR Flap/Stage 0

6 42 V3 White/NH 49 28.4 Right CR Flap/Stage 2

7 48 V1 White/NH 49 24.3 Right CR Implant/Stage 2

8 56 V2 White/NH 54 27.4 Right CR Implant/Stage 2

9 57 V3 White/NH 63 26.4 Left CR Flap/Stage 3

10 67 V1 White/H 50 23.4 Left CR Implant/Stage 3

11 67 V2 White/H 50 25.6 Left CR Implant/Stage 3

12 67 V3 White/H 50 26.4 Left CR Implant/Stage 3

13 68 V2 White/NH 54 21.9 Right CR Implant/Stage 1

14 68 V2 White/NH 54 21.9 Left CR Implant/Stage 1

15 68 V3 White/NH 54 22.3 Right CR Implant/Stage 2

16 68 V3 White/NH 54 22.3 Left CR Implant/Stage 2
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17 70 V1 White/NH 52 39.6 Left CR Flap/Stage 1

18 70 V2 White/NH 52 35.4 Left CR Flap/Stage 3

19 78 V1 White/NH 40 21.9 Right CR Implant/Stage 2

20 78 V2 White/NH 40 21.8 Right CR Implant/Stage 3

21 81 V1 White/NH 46 38.4 Right CR Flap/Stage 3

22 81 V1 White/NH 46 38.4 Left CR Flap/Stage 3

23 81 V2 White/NH 46 39.2 Right CR Flap/Stage 3

24 81 V2 White/NH 46 39.2 Left CR Flap/Stage 3

25 82 V2 White/NH 59 32.4 Right CR Implant/Stage 2

26 83 V1 White/NH 51 23.3 Right CR Implant/Stage 1

27 83 V1 White/NH 51 23.3 Left CR Implant/Stage 1

28 83 V2 White/NH 51 26 Right CR Implant/Stage 2

29 83 V2 White/NH 51 26 Left CR Implant/Stage 2

30 91 V1 White/NH 41 21.1 Right CR Implant/Stage 1

31 91 V1 White/NH 41 21.1 Left CR Implant/Stage 1

32 91 V2 White/NH 41 19.1 Right CR Implant/Stage 3

33 91 V2 White/NH 41 19.1 Left CR Implant/Stage 3

34 101 V1 BAA/NH 40 25.3 Right CR Implant/Stage 1

35 101 V1 BAA/NH 40 25.3 Left CR Implant/Stage 1

36 103 V1 White/NH 52 30.2 Right CR Flap/Stage 1

37 103 V1 White/NH 52 30.2 Left CR Flap/Stage 1

38 109 V1 White/NH 52 30.7 Right CR Flap/Stage 1

39 113 V1 White/NH 54 35.2 Left CR Flap/Stage 1

40 113 V2 White/NH 54 25.9 Left CR Flap/Stage 2

41 117 V3 White/NH 58 28.7 Left CR Implant/Stage 2

42 127 V2 White/NH 55 31.7 Right CR Implant/Stage 1

43 127 V2 White/NH 55 31.7 Left CR Implant/Stage 1

44 127 V3 White/NH 55 31.7 Right CR Implant/Stage 2

45 127 V3 White/NH 55 31.7 Left CR Implant/Stage 2
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46 133 V2 White/NH 46 30.3 Left CR Implant/Stage 1

47 159 V2 White/NH 30 24.6 Right CR Implant/Stage 1

48 159 V2 White/NH 30 24.6 Left CR Implant/Stage 1

49 159 V3 White/NH 30 23.8 Right CR Implant/Stage 2

50 159 V3 White/NH 30 23.8 Left CR Implant/Stage 2

51 163 V2 White/NH 37 26.3 Left CR Flap/Stage 1

52 163 V3 White/NH 37 24 Left CR Flap/Stage 3

53 163 V4 White/NH 37 25 Left CR Flap/Stage 3

54 177 V3 White/NH 55 26.2 Right CR Implant/Stage 1

55 177 V3 White/NH 55 26.2 Left CR Implant/Stage 1

56 182 V2 White/NH 43 25.7 Right CR Flap/Stage 1

57 182 V2 White/NH 43 25.7 Left CR Flap/Stage 1

58 182 V3 White/NH 43 23.9 Right CR Flap/Stage 1

59 182 V3 White/NH 43 23.9 Left CR Flap/Stage 1

60 193 V2 White/NH 54 32 Right CR Flap/Stage 1

61 193 V3 White/NH 54 32.4 Right CR Flap/Stage 3

Notes: BAA: Black AfricanAmerican; NH: Non-Hispanic or Latino; H: Hispanic.

CR: Cannot Rate.

Stage 0: Had mastectomy, no reconstruction;

Stage 1: Had tissue expander placement or flap procedure;

Stage 2: Had exchange procedure for either implant or flap;

Stage 3: Completed revision surgeries.

5.5 Results

We validate our proposed lowest breast contour detection algorithm using the 3D

surface images for 77 participants, 151 breasts. Data for three representative partic-

ipants are presented in Fig. 5.7. Cropped torsos for the three representative images
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are displayed in Fig. 5.7 (a), (c), and (e) respectively. For representative 1, both

breasts are ptosis grade 0, and left breast had flap surgery. For representative 2,

right breast has ptosis grade 2 without surgery, and left breast has ptosis grade 3

with partial mastectomy. For representative 3, right breast has incomplete implant

surgery (stage 2), this breast cannot be rated since the nipple has not been recon-

structed yet; left breast has ptosis grade 1 with mastopexy and implant surgery. The

lowest breast contour detection results for the three representatives are displayed in

Fig. 5.7 (b), (d), and (f) respectively. Blue points are manually selected contour

points, which are used as ground truth for comparison. Green points are the low-

est breast contour points detected using our proposed algorithm. The red curve is

obtained via cubic-spline fitting of the detected contour points in green. As seen

in Fig 5.7 (b), (d) and (f), high correspondence is achieved between the manually

selected points and the automatically detected breast contour.

Table 5.7 presents the average distance and dice coefficients for automatically

detected versus manually selected lowest breast contours for total 151 breasts. In the

151 breasts, 46 breasts have ptosis grade 0; 15 breasts have ptosis grade 1; 16 breasts

have ptosis grade 2; 13 breasts have ptosis grade 3. These breasts which have nipples

and can be rated are either pre-operative or have the following previous surgeries:

mastopexy, reduction, partial mastectomy, implant, flap, and combination of implant

and flap. And also, in the 151 breasts, 61 breasts have no nipples and cannot be

rated due to the incomplete implant or flap surgeries. The 61 breasts include 4

surgery stages: (1) stage 0: had mastectomy, no reconstruction; (2) stage 1: had

tissue expander placement or flap procedure; (3) stage 2: had exchange procedure

for either implant or flap; (4) stage 3: completed revision surgeries. The mean

of the average distances for the total 151 breasts between automatically detected
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(a) (b)

(c) (d)

(e) (f)

Figure 5.7: (a) 3D image showing the breast area for representative 1. Both breasts
are ptosis grade 0. Left breast had flap surgery. (b) Result for representative 1.
Detected lowest breast contour points (green) and manually selected contour points
(blue) displayed on surface. The contour (red) is obtained via cubic-spline fitting
of the detected contour points in green. (c) 3D image showing the breast area for
representative 2. Right breast has ptosis grade 2 without surgery. Left breast has
ptosis grade 3 with partial mastectomy. (d) Result for representative 2. (e) 3D
image showing the breast area for representative 3. Right breast has incomplete
implant surgery (stage 2). This breast cannot be rated since the nipple has not
been reconstructed yet. Left breast has ptosis grade 1 with mastopexy and implant
surgery. (f) Result for representative 3.
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and manually selected lowest breast contours is (1.642 ± 0.758)mm. The distance

threshold for dice coefficient represents the separation between the points on the two

contours. We tested dice coefficients using 6 thresholds: 0.5mm, 1.0mm, 2.0mm,

3.0mm, 4.0mm, and 5.0mm. The mean of the dice coefficients is the average value

for the 151 breasts at a given distance threshold. From Table 5.7 we can see that

as the distance threshold for similarity between two contours is increased, the dice

coefficient also increases. At a separation distance in the range of 4mm − 5mm

between the automatically detected and manually annotated breast contours, we

have very high dice coefficient values (0.943−0.971). At a resolution of 2mm−3mm

the similarity is around 0.715 − 0.872, and is reduced only for very low threshold

values of 1mm (40.5%), and 0.5mm (20.5%).

Table 5.7: Lowest breast contour detection error for total 151 breasts

Average

distance

(mm)

Dice Coefficient

Distance threshold

0.5 mm 1.0 mm 2.0 mm 3.0 mm 4.0 mm 5.0 mm

Mean 1.642 0.205 0.405 0.715 0.872 0.943 0.971

Standard

deviation
0.758 0.105 0.149 0.162 0.119 0.073 0.049

Table 5.8 present the average distance and dice coefficients for 46 breasts which

have ptosis grade 0. The mean of the average distances between automatically de-

tected contours and the ground truth is (1.727± 0.981)mm. At a distance threshold

in the range of 4mm− 5mm, high dice coefficient values 0.941− 0.967 are obtained.

At a separation distance of 2mm − 3mm the dice coefficient values are between

0.719− 0.883. At a low resolution of 1mm and 0.5mm, the similarity is reduced to

42.2% and 22.7%.
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Table 5.8: Lowest breast contour detection error for breasts with

ptosis grade 0 (46 breasts)

Average

distance

(mm)

Dice Coefficient

Distance threshold

0.5 mm 1.0 mm 2.0 mm 3.0 mm 4.0 mm 5.0 mm

Mean 1.727 0.227 0.422 0.719 0.883 0.941 0.967

Standard

deviation
0.981 0.11 0.148 0.144 0.105 0.071 0.047

Table 5.9 present the average distance and dice coefficients for 15 breasts which

have ptosis grade 1. The mean of the average distances is (1.403± 0.431)mm. Very

high dice coefficient values 0.962−0.989 are obtained at distance threshold in a range

of 4mm− 5mm. At a separation distance of 2mm− 3mm the dice coefficient values

are between 0.772− 0.900. At a low resolution of 1mm and 0.5mm, the similarity is

reduced to 44.8% and 21.9% respectively.

Table 5.9: Lowest breast contour detection error for breasts with

ptosis grade 1 (15 breasts)

Average

distance

(mm)

Dice Coefficient

Distance threshold

0.5 mm 1.0 mm 2.0 mm 3.0 mm 4.0 mm 5.0 mm

Mean 1.403 0.219 0.448 0.772 0.9 0.962 0.989

Standard

deviation
0.431 0.117 0.146 0.133 0.102 0.056 0.021

Table 5.10 present the average distance and dice coefficients for 16 breasts which

have ptosis grade 2. The mean of the average distances is (1.617 ± 1.089)mm. At

distance threshold in a range of 4mm − 5mm, dice coefficient values are between
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0.948−0.968. At that of 2mm−3mm the dice coefficient values are between 0.743−

0.893. At a low resolution of 1mm and 0.5mm, the dice coefficients are 44.6% and

21.7% respectively.

Table 5.10: Lowest breast contour detection error for breasts with

ptosis grade 2 (16 breasts)

Average

distance

(mm)

Dice Coefficient

Distance threshold

0.5 mm 1.0 mm 2.0 mm 3.0 mm 4.0 mm 5.0 mm

Mean 1.617 0.217 0.446 0.743 0.893 0.948 0.968

Standard

deviation
1.089 0.128 0.195 0.202 0.125 0.09 0.076

Table 5.11 present the average distance and dice coefficients for 13 breasts which

have ptosis grade 3. The mean of the average distances is (1.290 ± 0.279)mm. At

separation distance in a range of 4mm − 5mm, very high dice coefficient values

0.970− 0.984 are obtained. At that of 2mm− 3mm the similarity is around 0.823−

0.930. At a low separation distance of 1mm and 0.5mm, the dice coefficient values

are 46.8% and 21.3%.

Table 5.11: Lowest breast contour detection error for breasts with

ptosis grade 3 (13 breasts)

Average

distance

(mm)

Dice Coefficient

Distance threshold

0.5 mm 1.0 mm 2.0 mm 3.0 mm 4.0 mm 5.0 mm

Mean 1.29 0.213 0.468 0.823 0.93 0.97 0.984

Standard

deviation
0.279 0.062 0.101 0.09 0.069 0.046 0.037

114



Table 5.12 present the average distance and dice coefficients for 61 breasts which

cannot be rated due to the incomplete surgeries. The mean of the average distances is

(1.718±0.553)mm. At separation distance in a range of 4mm−5mm, dice coefficient

values are between 0.932 − 0.967. At that of 2mm − 3mm the similarity is around

0.667− 0.840. At a low separation distance of 1mm and 0.5mm, the dice coefficient

values are 35.8% and 18.0%.

Table 5.12: Lowest breast contour detection error for breasts

which cannot be rated (61 breasts)

Average

distance

(mm)

Dice Coefficient

Distance threshold

0.5 mm 1.0 mm 2.0 mm 3.0 mm 4.0 mm 5.0 mm

Mean 1.718 0.18 0.358 0.667 0.84 0.932 0.967

Standard

deviation
0.553 0.097 0.135 0.168 0.133 0.078 0.05

Fig. 5.8 shows the average distances between detected lowest breast contours

and ground truth for five categories. The average distances between automatically

detected contour and the ground truth for breasts in these five categories are in

a range 1.290mm ∼ 1.727mm. Fig. 5.9 shows the mean of the dice coefficients

for different distance threshold for five categories. For the 2mm − 3mm distance

threshold, the dice coefficient values for the five categories are around 0.667− 0.930;

for the threshold range of 4mm−5mm, the dice coefficient are 0.932−0.989; At a low

separation distance of 1mm and 0.5mm, the dice coefficient values are 0.180−0.468.
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Figure 5.8: Average distances between detected lowest breast contours and ground

truth for five categories.

Figure 5.9: Dice coefficients for different distance threshold for five categories.

5.6 Conclusions

We have developed a curvature-based automated lowest breast contour detection

algorithm for 3D images of the female torso. Our approach employs shape index and

the minimum principle curvature and can detect the lowest breast contour compare
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to the manually selected contour with an average accuracy of (1.642±0.758)mm, for

the 151 breasts which include breasts of ptosis grades 0, 1, 2, 3 and even those of not

being able to be rated due to incomplete surgeries and without nipples. The mean

of the average distances for the total 151 breasts between automatically detected

contour and the ground truth is (1.642 ± 0.758)mm, which is relatively small. For

the 2mm − 3mm distance threshold, the mean of the dice coefficients for the 151

breasts between automatically detected contours and the ground truth is around

0.715−0.872; for the threshold range of 4mm−5mm, the mean of the dice coefficient

is 0.943− 0.971, which is relatively high.

Our proposed algorithm also shows robustness for all five categories:

For ptosis grades 0, 1, 2, and 3, the breasts in these four categories have nipples

and are pre-operative or have previous surgeries as mastopexy, reduction, partial

mastectomy, implant, flap, and combination of implant and flap. The mean of the

average distances between automatically detected contour and the ground truth for

breasts in these four categories is in a range (1.290±0.279)mm ∼ (1.727±0.981)mm.

For the 2mm−3mm distance threshold, the mean of the dice coefficients for the four

categories is around 0.719−0.930; for the threshold range of 4mm−5mm, the mean

of the dice coefficient is 0.941− 0.989.

For the 61 breasts which have no nipples and cannot be rated due to the incom-

plete implant or flap surgeries, this category include all four intermediate stages of

surgeries. The mean of the average distances between automatically detected contour

and the ground truth for this category is (1.718± 0.553)mm. For the 2mm− 3mm

distance threshold, the mean of the dice coefficients is around 0.667− 0.840; for the

threshold range of 4mm− 5mm, the mean of the dice coefficient is 0.932− 0.967.
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Accurate detection of the lowest breast contour is important for breast esthetics

during breast reconstruction for woman with breast cancer. The detected lowest

breast contours facilitate computation of morphological measures such as volume,

and facilitates the identification of other characteristics of the breast morphology

such as ptosis and nipple, which are important information for pre-operative planning

and post-operative assessment of outcomes in breast reconstruction.
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Chapter 6

Multi-View 3D Data Fusion for

Visualization of the Inframammary

Fold in Women with Ptotic Breasts

6.1 Introduction

Inframammary fold (IMF) is the feature of human anatomy which is a natural bound-

ary of a breast from below, i.e., the boundary at which the breast meets the chest

wall (Fig. 6.1). It is a critical landmark for breast surgery and morphometry.

The last decade has seen a steady increase in the use of 3D imaging for vi-

sualization and quantification of breast aesthetics in cosmetic and reconstructive

breast surgery. 3D images of the female torso acquired in the upright position not

only enable a 180◦ panoramic visualization of the breasts, but also permit objective

evaluation of breast aesthetics related to symmetry, projection, ptosis and volume.
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Objective measurements typically involve the use of anatomical landmarks (fiducial

points) on the torso, such as the sternal notch, nipples, transition point and the IMF,

and are performed on images acquired in the upright position.

However, an inherent limitation of photography is the inability to image areas that

are occluded. Thus, when acquiring images of women with highly ptotic (sagging)

breasts (ptosis grade ≥ 2), the anatomical IMF is occluded and cannot be visualized

in the upright position which is conventionally used for surgical planning and outcome

assessment (see Fig.6.1a). Consequently, it is impossible to delineate the anatomical

IMF in the 3D images of women with ptotic breasts in an upright position, and we

can only detect the lowest contour of the breast touching the abdomen (i.e., the

contour delineation the boundary at which the breast is touching the abdominal wall

and is up under the breast in women with high degrees of ptosis).

Delineation of the anatomical IMF on the upright view image is critical since

the IMF is a defining element in the shape and structure of the female breast [92].

Evaluation of the IMF and its position is an important aesthetic consideration after

breast reconstruction or augmentation [93]. The IMF is an important landmark that

can be used to grade breast ptosis [94,95] and facilitate volume calculation [96–98].

The distances from the sternal notch, nipple, lowest visible point, and breast base to

the IMF are usually measured to evaluate the breast shape at a time point or to esti-

mate changes in shape over time [95–103]. The inframammary fold position change

is also quantified and compared at a time point or longitudinally along with analysis

of breast and chest wall asymmetries [99, 101, 102]. These estimates can be useful

in pre-operative planning of the surgical procedure, with potential for obtaining an

aesthetically acceptable breast shape, and ultimately, can serve to optimize patient
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satisfaction in cosmetic and reconstructive breast surgeries [100]. The IMF facili-

tates breast reconstruction [92, 93] and the inframammary incision is the simplest

and most straightforward access incision approach in breast augmentation [104]. It

provides the best access with surgical control and direct visualization to the subglan-

dular, subfascial, and subpectoral planes without violating the breast parenchyma

during augmentation.

However, in women with high degrees of ptosis (≥ 2), the anatomical position

of the IMF on the chest wall is occluded due to the sagging breast. In such cases,

the anatomical IMF cannot be visualized in the upright position, and the physician

has to manually lift the breast to localize the IMF. However, such manipulations are

impossible in static images of the torso acquired in the upright position, and this

limits the ability to perform a number of quantitative assessments involving the IMF

on images of women with ptotic breasts [99,103].

To overcome this problem, we proposed a data fusion technique with 3D multi-

view (upright and supine) images to visualize the anatomical IMF in an upright

image, which utilizes the visibility of IMF in supine images (Fig. 6.1b).
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(a) (b)

Figure 6.1: IMF (dashed yellow line) plotted in 3D images from women with highly

ptotic breasts. (a) Virtual IMF is plotted in upright image from women with highly

ptotic breasts. The real IMF is not visible in the upright 3D image. (b) Real IMF is

visible and coincides with the lowest breast contour in the supine image from women

with highly ptotic breasts

6.2 Algorithm

6.2.1 Overview

The overview of multi-view 3D data fusion technique for visualization of the IMF

in upright images from women with ptotic breasts is illustrated in Fig. 6.2. The

multi-view (upright and supine) images are processed as follows. First, we identify

the points along the lowest breast contour touching the abdomen on the surface

mesh in both the upright and supine images employing surface curvature analysis.

Cubic-spline fitting of the identified points is then used to estimate the lowest breast

contour. Next we register the upright and supine 3D images and employ the trans-

formation parameters obtained from registration to superimpose the detected lowest

breast contour from the supine image onto the upright image. The anatomical IMF
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is visible in the supine position for breasts which are ptotic in the upright position.

So the detected lowest breast contours in the supine images are the anatomical IMF.

Thus the fusion technique enables visualization of the anatomical IMF position for

ptotic breasts in the upright images.

Figure 6.2: Overview of multi-view 3D data fusion for visualization of the IMF in

upright images from women with ptotic breasts

6.2.2 Detection of Lowest Breast Contour

We apply our automated lowest breast contour detection algorithm for 3D images of

the female torso described in Chapter 5 to detect contours from multi-view images.

This approach employs shape index and the minimum principle curvature and can

obtain accurate lowest breast contour.

6.2.3 Registration of 3D Torso Images

In Chapter 4, we have described our registration algorithm for multiple-visit images

during breast reconstruction, in which two fiducial points, the sternal notch (SN) and

umbilicus (UM) were manually identified as two control points and other thirteen

control points were automatically selected based on the location of SN and UM.
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To overcome operator bias caused by manual fiducial points selection and location

change of UM between multiple-visit images caused by breast reconstruction surgery,

we optimize the selection of the locations of SN and UM, and consequently the

locations of all other thirteen control points in the target image.

In this multi-view 3D data fusion technique, we adapt our previously developed

registration algorithm for the transformation of 3D images taken in the supine posi-

tion to an upright position, i.e., from 0◦ to 90◦. In this study, the UM could not be

used as a control point, since movement of the torso from the upright to the supine

position is likely to result in the displacement of the soft tissues in the abdominal

region which can result in some displacement of the UM position between the up-

right and supine position. Thus due to the non-rigidity of the UM position across

the upright and supine position, in this study we use the midline point M positioned

along the medial axis at the midpoint of the line joining the left and right nipples

as the second control point (see Fig. 6.3). Let d represent the straight line distance

between SN and M. The other thirteen control points are equally spaced (d
6
) along

x and y directions. To improve precision, z coordinates of the thirteen points were

determined using linear interpolation in the surface mesh. Thus we obtained a total

of fifteen control points.

The fifteen control points obtained based on SN and M are used during reg-

istration instead of those obtained based on SN and UM in previously developed

registration algorithm. Image alignment is based on the coordinates of SN and M,

we translated and rotated image about Z, X, and Y -axes such that SN is at the ori-

gin, the line joining SN-M is coincident to Y -axis, and the surface is forward facing.

We optimize the registration of the SN and M by searching for the most optimal cor-

responding points between supine and upright images to overcome the operator bias
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introduced by manual fiducial points identification and discrepancies of identified M

between different images caused by, e.g., breast asymmetry in the same image and

breast shape changes in different images.

Figure 6.3: Control points selected on the torso for 3D correspondence

6.3 Datasets

Supine and upright images from mannequin and five participants were used for multi-

view 3D data fusion. Age, race/ethnicity, BMI, breast ptosis grade, and previous

breast surgery information for the five participants are listed in Table 6.1.

Table 6.1: Demographics and characteristics of participants

Participants Age Race/Ethnicity BMI
Weight

Status

Ptosis

Grade

Previous breast

surgery

A 21 White/NH 19 Normal 0 None

B 53 White/NH 19.8 Normal 0 Left breast flap

C 45 White/NH 27 Overweight 3 None

D 44 White/NH 27 Overweight 2 None

E 21 White/H 36 Obese 2 None

Notes: NH: Non-Hispanic or Latino; H: Hispanic.
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6.4 Results

Results for mannequin images are presented in Fig. 6.4. Fig. 6.4 (c)-(d) show

the detected lowest breast in the forward facing and backward facing views of the

3D upright images. Blue lines represent the lowest breast contours detected in the

upright images. Red contours are the detected lowest breast contours transformed

from the supine images and superimposed on the upright images. Fig. 6.4(e) shows

2D projections of detected contours displayed on the fingerprint projection of the 3D

upright images. Contours detected from the supine images are superimposed on the

upright images. Fig. 6.4(f) shows 2D fingerprint of 3D supine images with detected

contours. Contours detected from the upright images are superimposed on the supine

image. Morphology of breasts for mannequin has no change between upright position

and supine position. We can see that the detected lowest breast contours (i.e., IMF)

from upright image and supine image are exactly matched after transformation and

superimposition.

Results for five participants, (i) No ptosis, (ii) Ptosis grade of 2, and (iii) Ptosis

grade of 3 are presented in Fig. 6.5-6.9, respectively. The anatomical IMF is visible

in the supine position for breasts which are both not ptotic and ptotic in the upright

position. The detected lowest breast contours in the supine images are anatomical

IMF. So the red contours in Fig. 6.5-6.9, (c)-(d) are anatomical IMF transformed

from the supine images and represent the positions of the anatomical IMF in the

upright images.

As seen in Fig. 6.5-6.6, for non-ptotic breasts (ptosis degree <1), the anatomical

IMF is visible in both the upright (Fig. 6.5-6.6 (a)) and the supine (Fig. 6.5-6.6(b))

images, and coincides with the detected lowest breast contour. These data validate
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that the lowest breast contour detected in the supine image closely estimates the

position of the anatomical IMF.

For a ptosis grade of 2, the anatomical IMF is occluded in the upright images

(Fig. 6.7-6.8(a)), but can be visualized in the supine images (Fig. 6.7-6.8(b)). As

seen in Fig. 6.7-6.8, (c)-(f), the lowest breast contours, i.e., anatomical IMF (red),

detected from the supine image is higher than the lowest breast contour (blue) that

is detected from the upright image. These results demonstrate that 3D data fusion

of information from the supine images can be used to visualize structures that are

occluded from the upright images.

For breasts of ptosis grade 3 in Fig. 6.9, the anatomical IMF is also occluded

in the upright image (Fig. 6.9(a)), but can be visualized in the supine image (Fig.

6.9(b)). Due to data missing during image acquisition along the lowest contour area

of left breast for the upright image (Fig. 6.9(a)), we were unable to run the proposed

algorithm to estimate the left lowest breast contour for this image. But the detected

lowest contours of right breasts for both the upright and supine images are presented

in Fig. 6.9 (c)-(f), and demonstrate that the 3D data fusion technique can be used to

visualize the occluded IMF in the upright images of women with high breast ptosis.

6.5 Conclusions

We have designed a data fusion technique with 3D multi-view (upright and supine)

images to visualize the IMF which is typically occluded from the upright view for

women with ptotic breasts. The detected lowest contour of the breast touching the

abdomen in the supine image (that represents the anatomical IMF) is transformed

and superimposed onto the upright image. Our experimental results on mannequin
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images show that the IMFs from upright position and supine position can be exactly

matched using the data fusion technique. The results on participants with non-ptotic

breasts demonstrate that the lowest breast contour detected in the supine image can

closely estimate the position of the anatomical IMF in the upright image. And the

results on participants with breasts of ptosis grades 2 and 3 validate that the lowest

breast contour detected in the supine image (the anatomical IMF) can be used to

visualize the anatomical IMF position for ptotic breasts in the upright image.

The upright view image is conventionally used for surgical planning and outcome

assessment in plastic surgery, both for breast reconstruction after oncologic surgery

and for cosmetic augmentation/reduction procedures. An inherent limitation of the

3D upright view image is the inability to image areas that are occluded. Thus, some

important landmarks and structures (e.g., the anatomical IMF) are occluded and

cannot be visualized in the upright position. However, delineation of the anatomical

IMF is critical since its position is an important consideration for both outcome

esthetic evaluation and surgical planning in plastic surgery, and will ultimately serve

to optimize patient satisfaction in cosmetic and reconstructive breast surgeries. The

proposed data fusion technique with 3D multi-view (upright and supine) images to

visualize the IMF in the upright image is a critical landmark for breast surgery and

morphometry, and has potential for future clinical implementation.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.4: Mannequin images. (a) Upright position. (b) Supine position. (c)
The detected lowest breast contours displayed in the upright image (front). (d)
The detected lowest breast contours displayed in the upright image (back). (e) 2D
projection of detected contours displayed on fingerprint projection of the upright
image. (f) 2D projection of detected contours displayed on fingerprint projection of
the supine image. Blue lines represent the lowest breast contours (i.e., the anatomical
IMF) detected in the upright image, whereas red lines are the lowest breast contours
(i.e., the anatomical IMF) detected from the supine image.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.5: Subject with no ptosis. (a) 3D image in the upright position. (b) 3D
image in the supine position. (c) The detected lowest breast contours displayed in
the upright image (front). (d) The detected lowest breast contours displayed in the
upright image (back). (e) 2D projection of detected contours displayed on fingerprint
projection of the upright image. (f) 2D projection of detected contours displayed on
fingerprint projection of the supine image. Blue lines represent the lowest breast
contours detected in the upright images, whereas red lines are the lowest breast
contours detected from the supine image (i.e., the anatomical IMF).
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(a) (b)

(c) (d)

(e) (f)

Figure 6.6: Another subject with no ptosis. (a) 3D image in the upright position. (b)
3D image in the supine position. (c) The detected lowest breast contours displayed in
the upright image (front). (d) The detected lowest breast contours displayed in the
upright image (back). (e) 2D projection of detected contours displayed on fingerprint
projection of the upright image. (f) 2D projection of detected contours displayed on
fingerprint projection of the supine image. Blue lines represent the lowest breast
contours detected in the upright images, whereas red lines are the lowest breast
contours detected from the supine image (i.e., the anatomical IMF).
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(a) (b)

(c) (d)

(e) (f)

Figure 6.7: Subject with moderate ptosis (Grade 2). (a) 3D image in the upright
position. (b) 3D image in the supine position. (c) The detected lowest breast con-
tours displayed in the upright image (front). (d) The detected lowest breast contours
displayed in the upright image (back). (e) 2D projection of detected contours dis-
played on fingerprint projection of the upright image. (f) 2D projection of detected
contours displayed on fingerprint projection of the supine image. Blue lines represent
the lowest breast contours detected in the upright images, whereas red lines are the
lowest breast contours detected from the supine image (i.e., the anatomical IMF).
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(a) (b)

(c) (d)

(e) (f)

Figure 6.8: Another subject with moderate ptosis (Grade 2). (a) 3D image in the
upright position. (b) 3D image in the supine position. (c) The detected lowest
breast contours displayed in the upright image (front). (d) The detected lowest
breast contours displayed in the upright image (back). (e) 2D projection of detected
contours displayed on fingerprint projection of the upright image. (f) 2D projection
of detected contours displayed on fingerprint projection of the supine image. Blue
lines represent the lowest breast contours detected in the upright images, whereas
red lines are the lowest breast contours detected from the supine image (i.e., the
anatomical IMF).
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(a) (b)

(c) (d)

(e) (f)

Figure 6.9: Subject with high ptosis (Grade 3). (a) 3D image in the upright posi-
tion. (b) 3D image in the supine position. (c) The detected lowest breast contours
displayed in the upright image (front). (d) The detected lowest breast contours dis-
played in the upright image (back). (e) 2D projection of detected contours displayed
on fingerprint projection of the upright image. (f) 2D projection of detected con-
tours displayed on fingerprint projection of the supine image. Blue lines represent
the lowest breast contours detected in the upright images, whereas red lines are the
lowest breast contours detected from the supine image (i.e., the anatomical IMF).
The lowest contour of left breast for upright image is missed due to data missing on
this area.
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Chapter 7

Summary and Future Work

7.1 Summary

The long-term goal of this work is to develop algorithms to facilitate quantitative and

objective measures of aesthetic outcomes with high reliability, thereby providing crit-

ical information for pre-operative planning and post-operative aesthetic evaluation

of outcomes in breast reconstruction.

In Chapter 2, we reviewed the literature on the various breast aesthetics out-

come assessment methods currently used: subjective ratings by human observers;

physical measurements on the patient’s body (anthropometry); measurements on

2D photographs (photogrammetry); measurements using 21
2
D images (depth-map)

measurements using 3D images of the breasts (stereophotogrammetry); and mea-

surements using other multi-dimensional imaging approaches.

In Chapter 3, we introduced the image acquisition technique: a custom-designed

imaging system which is composed of two parts: 3dMDtorsoTM Imaging System and
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Tri W-G TG2732 bariatric motorized tilt table. The tilt table is mounted to enable

acquisition of 3D images of the patients breasts in a range of positions from standing

upright to supine, and any reclining angles in between. Thus we can acquire the

multiple-visit images and multi-view images (upright and supine positions) used in

this project.

In Chapter 4, we proposed a rigid registration algorithm of 3D images from multi-

ple clinical visits for the same patient. Two fiducial points, SN and UM are manually

identified as two control points and other thirteen control points are automatically

selected based on the location of SN and UM. To overcome operator bias caused by

manual fiducial points selection and location change of UM between multiple-visit

images caused by breast reconstruction surgery, we optimize the registration of the

SN and UM by searching for the most optimal corresponding points between two

images. The average root mean squared (RMS) error of our proposed algorithm is

2.3611mm for the 83 registrations for the multiple-visit images from 34 patients. It

outperforms an existing ICP algorithm with all of the three worst rejection rates 0

(7.3860mm), 30% (4.7842mm), and 60% (7.7012mm) for the same datasets. Our

proposed algorithm also shows robustness across a range of patient BMI’s.

In Chapter 5, we developed a curvature-based lowest breast contour detection

algorithm for 3D images of the female torso. Our approach employs shape index

and the minimum principle curvature. For the 151 breasts which include breasts of

ptosis grades 0, 1, 2, 3 and breasts unrated for ptosis due to the absence of a sur-

gically extracted nipple. The mean of the average distances between automatically

detected contours and the ground truth (manually selected contours) is 1.642mm.

The breasts with nipples and rated as ptosis grades 0, 1, 2, and 3 by surgeons, include

pre-operative natural breasts, have previous surgeries such as mastopexy, reduction,
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partial mastectomy, implant, flap, and combination of implant and flap. Unrated

breasts without nipples from incomplete implant or flap surgeries include four in-

termediate stages of surgeries: (1) stage 0: had mastectomy, no reconstruction; (2)

stage 1: had tissue expander placement or flap procedure; (3) stage 2: had exchange

procedure for either implant or flap; (4) stage 3: completed revision surgeries.

In Chapter 6, we described an application of the registration algorithm and the

lowest breast contour detection algorithm as a multi-view 3D data fusion technique

for visualization of the IMF in upright images from women with ptotic breasts. We

detect the lowest breast contour algorithm in both the upright and supine images and

register these two images. The transformation parameters obtained from registration

are employed to superimpose the detected lowest breast contour from the supine

image onto the upright image. The anatomical IMF is visible and coincides with

the lowest breast contour in the supine position for breasts which are ptotic in the

upright position. Thus the fusion technique enables visualization of the anatomical

IMF position for ptotic breasts in the upright images.

7.2 Future Work

A system for objective assessment of breast aesthetics is critical in order for breast

cancer survivors and surgeons to make right decisions for different reconstructive pro-

cedures. We have developed algorithm to register 3D images from multiple clinical

visits for same patients, and that to detect lowest breast contours from 3D images

for women. However, substantial future work is needed to fully quantitatively un-

derstand breast outcomes and provide objective data to breast cancer survivors and

surgeons.
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Current quantitative assessments of breast morphology provide a global evalua-

tion of breast morphology at a given time point such as breast ptosis, breast symme-

try, and breast volume. But few works are available to correlate local morphological

changes in breast over time, which is valuable to better assess the surgical outcomes.

Future work will focus on comparing changes in breast morphology occurring during

the time course of several reconstructive procedures. With the help of our multiple-

visit images registration algorithm and lowest breast contour detection algorithm,

and further designed algorithms, we can longitudinally analyze the local morpho-

logical breast changes in different surgery stages for the same patient, and compare

intra- and inter-patient surgical outcomes, and across various surgery types.
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