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Abstract 

Air quality forecasting requires atmospheric weather models to generate reliable and accurate 

meteorological conditions. Some variables are well-simulated, but others, like the planetary 

boundary layer (PBL) height, are not as accurately reproduced. This study compares rarely observed 

energy balance and turbulence variables to modeled results, and seeks to determine if and to what 

extent these variables contribute to the development of the PBL. Similarly configured MM5 and 

WRF model outputs were compared to observations of temperature, wind fields, radiation, heat 

fluxes, and PBL heights during an intensive field campaign on the Gulf Coast in the summer of 2006. 

The r
2
 and bias values were calculated as a measure of model performance. The results showed that 

in general, WRF performed comparably or better than MM5 for all variables except wind speed and 

directions, sensible heat flux, ground flux, and PBL height. Nighttime simulations for both models 

are not well-parameterized except for water vapor mixing ratio. PBL height timing was good for both 

models, but the morning development was not well-simulated. A frontal passage occurred during 

the study period that led to two mostly cloud-free days; on these days the relationship between 

incoming solar radiation and the energy variables suggests that there may be an energy sink in the 

models that could lead to underestimations of PBL height. The dry bias or disparate land-surface 

initialization datasets might contribute to deviations of the models from the observations and may 

explain the models' PBL height performance. Further examination of the energy budget and 

turbulent dataset under extended cloud-free days could provide a better understanding of these 

variables to PBL height development and lead to better air quality predictions. 
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1. Introduction 

1.1 Introduction 

Due to a combination of complex chemical and meteorological interactions, Houston suffers 

from air pollution problems. Metropolitan traffic and a bustling refinery industry generate primary 

pollutants as well as precursors for secondary pollutants such as ozone. Despite the simple 

topography of the area, Houston’s proximity to the Gulf of Mexico leads to a complex 

meteorological system that is influenced by both synoptic-scale and local land-sea breeze 

circulations. Various studies examining the interaction between these forcings have often noted that 

some of the most severe ozone exceedance days have occurred during stagnant periods when local 

and synoptic forces have clashed (Banta et al. [2005], Rappenglück et al. [2008], Langford et al. 

[2010], Tucker et al. [2010], Ngan and Byun [2011]).  

In order to alert people to potentially health-threatening pollution levels, numerical weather 

prediction (NWP) models coupled to chemical models are used to predict the weather and its 

subsequent effect on atmospheric chemistry for the area. Two such models are the fifth-generation 

Penn State/National Center for Atmospheric Research mesoscale model (MM5, Grell et al. [1994]) 

and the Weather Research and Forecasting (WRF) model (Skamarock et al. [2008]). The MM5 model 

has been used extensively to simulate meteorological inputs for use in air quality models such as the 

Community Multiscale Air Quality (CMAQ, Byun and Schere [2006]) model.  

Some studies, such as that done by Mao et al. [2006], have examined MM5 in the capacity 

of a coupled model, endeavoring to understand how changing the meteorological forcings affects 

the atmospheric chemistry output. Similarly, Ngan et al. [2012] looked at MM5 performance in 

connection with the CMAQ model ozone predictions. Other studies, such as was done by Zhong et al. 
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[2007], have instead looked directly at MM5 output in order to better understand the 

meteorological parameterizations most appropriate for the local area.  

Although MM5 is still being used for research purposes, the next-generation Weather 

Research and Forecasting (WRF) model is now in general use. Developers of MM5 physics have 

imported or developed improved physics schemes for WRF, such as discussed in Gilliam and Pleim 

[2010]. They discovered that the errors in all variables studied across the domain were higher in 

MM5 than in either WRF run with a similar configuration or the WRF run with a more common 

configuration. Their final conclusion was that the WRF model was now at a superior level to MM5 

and should therefore be used more extensively, especially to drive air quality models. Hanna et al. 

[2010] tested the Nonhydrostatic Mesoscale Model core for WRF (WRF-NMM) against MM5 for 

boundary layer meteorological variables across the Great Plains, and Steeneveld et al. [2010] used 

intercomparisons between MM5 and WRF to examine longwave radiation in the Netherlands. Both 

of these studies came to the conclusion that in general, WRF outperformed MM5.  

The common parameters examined in all of these previous studies are the planetary 

boundary layer (PBL) schemes and land surface models (LSMs), because in spite of improvements in 

predictions of standard atmospheric variables such as surface temperature and wind fields, 

characteristics of the PBL, especially PBL height, continue to elude modelers. For example, when 

Borge et al. [2008] did a comprehensive analysis of WRF physics configurations over the Iberian 

Peninsula, PBL height estimates for two observation sites were poor at night and during the winter, 

which are classically periods of stable boundary layer development. Other studies have found similar 

performance with PBL height (Wilczak et al. [2009], Hanna et al. [2010], Hu et al. [2010]). 
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1.2 Research Question 

Although many of these studies examine the sensitivity of WRF to PBL scheme and LSMs, 

not as much attention has been given to evaluating the effects of the energy balance variables 

generated by these various schemes. The complex interaction between radiation and the latent, 

sensible, and ground heat fluxes affects the performance of meteorological variables, which in turn 

affect boundary layer properties such as PBL height. Analyzing the performance of these variables 

within a model should give further insight into the mechanisms that affect boundary layer 

properties, but these energy balance variables are not as commonly evaluated in the model because 

of a lack of observations.  

Studies that examine PBL characteristics often utilize observations made during field 

campaigns, such as the first and second Texas Air Quality Study (TexAQS-2000, TexAQS-II) for the 

Houston area. During both field campaigns studies have noted an increase in ozone after a frontal 

passage in the Houston area (Tucker et al. [2010], Wilczak et al. [2009]). Since the PBL height can be 

a determining factor in the extent and location of such upsets, this study is conducted to determine 

how well the MM5 and WRF models simulate PBL height, variables affecting its development, and 

standard atmospheric variables for a frontal passage during TexAQS-II.  

1.3 Hypotheses 

Previous studies that have done model intercomparisons have often found that WRF 

generally outperforms the MM5 model, but the comparison is usually done for just the standard 

meteorology variables. This study will determine whether the WRF model will outperform MM5 in 

less tested variables and determine which variables still need to be further refined on the WRF 

platform.   
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Frontal passages pose a particularly interesting set of problems as the interactions from various 

meteorological systems may change otherwise well-defined relationships between variables. This 

study will look at the effects of a frontal passage on the same given variables for the various model 

simulations. 

1.4 Thesis Organization 

The second part of this paper describes the measurements, model configurations, and 

statistical analysis used for this study. The third part of this paper presents the results and discusses 

the evaluation and the statistics for performance. The final part of this paper highlights final 

conclusions as well as future uses of the dataset. 

2. Models, Measurements, and Statistical Analysis 

2.1 Location 

The focus of this study is the University of Houston Coastal Center, which is located near the 

Gulf of Mexico coast (29˚ 23' 16.67"   N, 95˚ 02' 29.09" W) and is surrounded by approximately 200 

acres of prairie grass (Figure 1). This location was selected both because it is the location of previous 

field studies and is clear of surrounding structures that would interfere with the natural 

meteorological processes. Most of the modeling and observation data were extracted from this 

location with the exception of the radiosondes, which were launched at the University of Houston, 

and wind fields for the inner WRF domain, which were compared to Texas Commission on 

Environmental Quality (TCEQ) Continuous Ambient Monitoring Stations (CAMS) in the surrounding 

area (Figure 2).  
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Figure 2. TCEQ CAMS sites for the modeling region  

 
2.2 WRF Model 

The WRF model used for the simulation was the Advanced Research WRF (WRF-ARW) model 

version 3.2.1 with the following physics configuration: WSM-3 class simple ice microphysics scheme 

(Hong, Dudhia and Chen [2004]), Dudhia shortwave radiation scheme (Dudhia [1989]), Rapid 

Radiative Transfer Model (RRTM) longwave radiation scheme (Mlawer et al. [1997]), no cumulus 

Figure 1. Location of model and measurements where 

the dark blue dot represents the UH Coastal Center and 

the red triangle represents the UH Main Campus where 

the radiosondes were launched 

  

20 mi 

40 km 

10 mi 

10 km 



6 

 

parameterization, Medium-Range Forecast (MRF, Hong and Pan [1996]) PBL scheme, and the MM5 

land surface scheme (Noah LSM).  This configuration (hereafter known as WRF3) is one that is used 

for coupling meteorology to the CMAQ model at the University of Houston for air quality modeling, 

and has appeared in previous WRF and MM5 studies for the Houston area (Zhong et al., 2007, 

Cheng and Byun, 2008, Czader et al., 2013). 

The model was run on three nested domains using 1-way nesting (Figure 3). The horizontal 

grid scales were the 36-km CONUS domain, 12-km eastern Texas domain, and the 4-km Houston-

Galveston-Brazoria domain. All simulation results are taken from the 4-km domain at the grid point 

representing the University of Houston Coastal Center (UHCC) (Figure 1). Observational nudging was 

used in all runs and the model was initialized on 0000 UTC 28 AUG 2006 and ended on 2300 UTC SEP 

1 2006. The study period runs from August 28, 2006-August 31, 2006 CST.  Grid analysis was 

incorporated using North America Mesoscale (NAM) and United States Geological Survey (USGS) 

land surface data; observational analysis was incorporated using TCEQ CAMS sites for temperature 

and wind reanalysis.  

 

 

Figure 3. Nesting domain for WRF model, where the blue box is the 4-km domain that all 

model outputs were extracted from 
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2.3 MM5 Model 

In order to examine any improvements made from the MM5 to WRF simulations, data 

extracted from an MM5 simulation was used for a baseline comparison (Table 1). The physics 

options included the MRF PBL scheme, Noah LSM, Grell cloud scheme (Grell and Devenyi [2002]), 

simple ice microphysics scheme, and RRTM radiation scheme. Observational nudging was used for 

these runs and was initialized with the Eta Data Assimilation System (EDAS) dataset (MM5E).  

Table 1. Model Simulation Configurations  

Simulation  Model PBL Scheme LSM Land Analysis 

MM5E MM5  MRF  Noah   EDAS 

WRF3 WRF-ARW MRF Noah NAM 

  

The differences between the two models' configurations are the cloud scheme and the land 

analysis used for the initialization. While the WRF model has no cloud scheme, the MM5 model uses 

the Grell cloud scheme, which calculates an appropriate initial guess in combination with 

observations to use in predicting future convective activity. The EDAS and NAM land surface 

datasets are similar and use similar observational techniques for data interpolation, but the EDAS 

runs every three hours, which allows for higher-resolution temporal interpolation than the NAM 

data, which only runs every six hours (EDAS Archive Information, National Weather Service 

Environmental Center). Using a more high-resolution dataset should lead to better first-guess and 

ongoing simulations in MM5.  

2.4 Observational Data 

2.4.1 Measurement Tower Instrumentation 

During this study period, both standard and energy budget surface variables were being 

measured (Table 2). Instrumentation included an R.M. Young 5103 anemometer to capture 10-mean 

wind speeds (WDIR10) and directions (WSPD10), a CST CS-500 temperature probe for 2-m 

temperature (TEMP2), and a Kipp & Zonen CNR1 four-component net radiometer to capture 
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incoming shortwave (SWDOWN), incoming longwave (LWDOWN), outgoing shortwave (SWUP), and 

outgoing longwave radiation. Sensible heat (SHFLUX) and latent heat (LHFLUX) fluxes were 

measured using REBS soil heat flux plates.  

Measurements were taken at a frequency of 1 Hz and averaged to 1 minute (TEMP2, Q2, 

WSPD10, WDIR10) and 10 minutes (SWDOWN, LWDOWN, SWUP, SHFLUX, LHFLUX, GRNDFLUX). All 

measurements were then backward averaged to one hour to compare to the hourly model data.  

Table 2. Variable names and descriptions for the study 

Variable Name (Units) Description 

TEMP2 (C) Temperature at 2m 

Q2 (g/kg) Water vapor mixing ratio at 2m 

WSPD10 (m/s) Wind speed at 10 m 

WDIR10 (deg) Wind direction at 10 m 

LHFLUX (W/m^2) Latent heat flux at surface 

SHFLUX (W/m^2) Sensible heat flux at surface 

GRNDFLUX (W/m^2) Ground flux at surface 

SWDOWN (W/m^2) Shortwave incoming radiation at surface 

LWDOWN (W/m^2) Longwave incoming radiation at surface 

SWUP (W/m^2) Shortwave outgoing radiation at surface 

USTAR (m/s) Friction velocity 

PBLH (m) Planetary boundary layer height 

 

2.4.2 Radiosonde Data 

Radiosondes were not directly measured at the UHCC during this study period, but were 

regularly launched from the University of Houston (UH) campus approximately 40 km away. The 

difference in potential temperature vertical lines between the grid point representing the UHCC and 

the UH was zero, which gave confidence that PBL heights measured at UH provide a rough 

approximation for model comparison at the UHCC. Launches were performed at 0600 CST and 1800 

CST for the first two days of the study period, and more were launched during the final two days of 

the study (Table 3). PBL heights were determined to be the height at which potential temperature 

begins to increase (Rappenglück et al. [2008]). The first radiosonde launch was discarded for 
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purposes of statistical analysis because it corresponded to the model initialization time step, which 

had a value of 0.  

 
Table 3. Radiosonde Launch Times (CST)   

20060827 20060828 20060829 20060830 20060831 20060901 

18:00 06:00 

18:00 

06:00 

18:00 

06:00 

12:00 

18:00 

04:00 

06:00 

09:00 

12:00 

15:00 

18:00 

21:00 

04:00 

06:00 

09:00 

12:00 

15:00 

Total # Radiosondes: 20 

 

2.5 Statistical Analysis 

2.5.1 Calculated Statistics 

For the purposes of this study, the coefficient of determination (r
2
) and bias are displayed. 

The r
2
 was calculated using a linear model in Matlab and the bias was determined by first calculating 

the perturbation from the observations, summing the values and dividing by the number of values:  

Bias = (1/n) * Σ(Y'-Y), (1) 

 

where n is the number of values, Y' is the modeled value, and Y is the observed value.  

2.5.2 Determination of Additional Statistic Groups 

 Hourly values were collected from 0000 August 28-1700 September 1, resulting in 114 data 

points (Table 4). Biases and r
2
 values were evaluated for the complete data set as well as for diurnal 

and frontal clusters. For the diurnal statistics, daytime referred to any data between 0600 CST and 

1800 CST every day. Rappenglück et al. [2008] discussed the frontal passage that occurred during 

this period, which occurred during the evening of August 29
th

. An examination of the meteorology 

shows that generally southerly winds gave way to sustained northerly winds on August 29
th

 around 

1830 CST, indicating this frontal passage. For the purposes of this study, the prefrontal period runs 
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from 0000 CST August 28 to 1900 CST August 29, and the postfrontal period runs from 2000 CST 

August 29 to 1700 CST September 1. 

 

Table 4. Data Clusters 

Cluster Number Data Points 

All 114 

Daytime 64 

Nighttime 50 

Prefrontal 44 

Postfrontal 77 

 

3. Results and Discussion 

3.1 WRF and MM5 Measurement Performance 

3.1.1 Standard Meteorological Variables 

Temperature 

WRF has the highest r
2
 for all of the study period as well as when the data is separated into 

daytime, nighttime, prefrontal, and postfrontal time periods (Table 5). The largest differences 

between the WRF and MM5 model in the r
2
 value occur at night and during prefrontal conditions, 

both of which have differences of 0.54. However, the nighttime r
2
 value for MM5 was the smallest 

at 0.04, which reflects the variability in the nighttime temperature modeling. The WRF model has a 

higher nighttime r
2
 value of 0.58, but this value also represents the smallest r

2
 value for the model, 

which implies that both models have difficulty getting nighttime temperatures correct. Batching the 

data into prefrontal and postfrontal groups had little effect on the r
2
 values for WRF, but led to 

increased values in both of the MM5 models.  
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Table 5. Temperature r
2
 and bias for all, diurnal, and frontal conditions 

TEMP2 WRF3 MM5E 

R^2 0.87 0.56 

R^2_Day 0.86 0.48 

R^2_Night 0.58 0.04 

R^2_Prefront 0.90 0.36 

R^2_Postfront 0.88 0.65 

Bias 0.19 0.23 

Bias_Day -0.52 -0.62 

Bias_Night 1.09 1.33 

Bias_Prefront -0.34 -0.73 

Bias_Postfront 0.52 0.84 

 

WRF also has the smallest magnitude bias for the entire study period as well as for the 

daytime, nighttime, prefrontal period, and postfrontal period. The overall biases for all of the 

simulations are relatively low but both WRF and MM5 underestimate temperatures by about half a 

degree during the day and overestimate temperatures by about a degree at night for the entire 

study period (Table 5). These biases could possibly be attributed to too much moisture in the 

models, which would suppress temperature amplitudes. This warm nighttime bias is especially 

evident on the nights of August 30th and August 31st and is reflected in the increased post-frontal 

bias values (Figure 4 and Table 5). These biases could be the product of too much moisture in the 

model, which would lead to less suppressed temperature peaks. Another possibility is that there is 

too much nighttime surface energy in the model, which could lead to increased nighttime 

temperatures. Also, higher modeled nighttime winds could lead to a well-mixed nighttime 

atmosphere, which would prevent temperatures from dropping as low as they should in the model.  

Steeneveld et al. [2010] noted that both of the models have difficulty simulating nighttime 

temperatures. That same study also mentioned that the MM5 warming and cooling trends tended 

to lag behind the observations, which is visible in the time series for the first half of this study as 

well (Figure 4). The WRF model simulation does not have this same time lag.  
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Figure 4. Time series of temperature for observations (stars), WRF (dark blue line), and MM5 (light blue line) 

  

Water vapor 

MM5 values were extracted at a lower precision, so both WRF and the observations were 

rounded to the same precision in order to make a fair comparison (not shown). However, the WRF r
2
 

values are again higher than the MM5 r
2
 values (Table 6). The overall r

2
 values were highest for both 

WRF and MM5. WRF had the highest overall and postfrontal values. Both of the models saw low r
2
 

values prior to the frontal passage, which increased following the frontal passage and more than 

doubled in the case of WRF. WRF had the highest postfrontal values but the lowest prefrontal values. 

The water vapor mixing ratio r
2
 values are relatively high although they are lower than the 

temperature r
2 

values. Daytime water vapor mixing ratio tended to be higher than the overall r
2
, 

while nighttime water vapor r
2
 values were slightly lower than the overall r

2
 for both simulations. 

WRF overall, daytime, and nighttime r
2
 values were higher than MM5, although this trend changes 

for the prefrontal and postfrontal conditions. 
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Table 6. Water vapor mixing ratio r
2
 and bias for all, diurnal, and frontal conditions 

Q2  WRF3 MM5E 

R^2 0.80 0.74 

R^2_Day 0.81 0.78 

R^2_Night 0.77 0.69 

R^2_Prefront 0.30 0.38 

R^2_Postfront 0.65 0.57 

Bias -0.46 -2.61 

Bias_Day -0.50 -2.81 

Bias_Night -0.40 -2.36 

Bias_Prefront -0.70 -2.77 

Bias_Postfront -0.30 -2.51 

 

Table 6 shows that both models underestimated moisture for the entire study period with 

dry biases of 0.46 g/kg and 2.61 g/kg for WRF and MM5, respectively. During the day, this dry bias 

increases for both WRF and MM5 to 0.50 g/kg and 2.81 g/kg. However, at night, the dry bias 

decreases to 0.40 g/kg and 2.36 g/kg for WRF and MM5, respectively. Zhong et al. [2007] modeled 

water vapor at the UHCC and saw biases of 1.38 during the day, -0.63 at night, and 0.37 for the 

overall value, which indicated overestimation of moisture during the day and underestimation at 

night. The difference in the two models' moisture bias could be attributed to the different land 

initialization schemes used for the two models, but in either case temperature performance during 

the entire study period appears to be affected by more than the water vapor mixing ratios.  

For the two days following the frontal passage, the models' temperature and water vapor 

mixing ratio biases appear to be more coupled. WRF underestimates daytime temperature with a 

bias of 0.71 degrees C and could correspond to a moist bias of 0.5 g/kg, while MM5 slightly 

overestimates daytime temperature with a bias of 0.12 degrees C and could correspond to a dry bias 

of 2.05 g/kg (Table 6). The days following the frontal passage were mostly cloudless, so temperature 

may be more directly affected by moisture. The fact that following the frontal passage the 

conditions are drier could also be a contributing factor, as the observed water vapor mixing ratio 
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dropped by approximately 4 g/kg for the remainder of the study period (figure not shown). Moisture 

bias effects could be magnified in light of much smaller moisture values.  

For the two nights following the frontal passage, both models' dry biases are relatively close 

to the mean nighttime biases of the entire study period, but temperature biases are not 

proportional to these changes. The nighttime biases decrease by only 0.04 g/kg and 0.09 g/kg for 

WRF and MM5, respectively, but both models clearly overestimate temperature on the nights of 

August 30 and August 31 (Figure 4). For the entire study period, the models have too warm 

nighttime biases of 1.09 and 1.33 degrees C for WRF and MM5, respectively; these warm biases 

increase to 2.62 and 3.81 degrees C for those two nights.  

Wind speed  

Wind speeds had generally low r
2 

values, with the highest overall r
2
 being the MM5 

simulation using EDAS (Figure 5). Separating data into day and nighttime values did not increase the 

r
2
 values; in fact, both day and nighttime r

2
 were lower than the overall values for both of the 

models. While the MM5 model bias was relatively small and slightly underestimated during the 

daytime, the WRF model overestimated with a much higher magnitude. Both models have the 

largest biases at night when wind speeds are overestimated, and with the highest overestimation 

occurring by the WRF model. Ngan et al. [2012] mention that modeled MM5 winds persisted for 

hours after the observed winds had died down at sunset. A similar trend is visible for a few nights of 

this study period in MM5, but is most clearly evident in the WRF model.  
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Table 7. 10-meter wind speed r
2
 and bias for all, diurnal, and frontal conditions 

WSPD10 WRF3 MM5E 

R^2 0.36 0.40 

R^2_Day 0.33 0.31 

R^2_Night 0.04 0.45 

Bias 0.68 0.18 

Bias_Day 0.55 -0.11 

Bias_Night 0.86 0.54 

Bias_Prefront 0.27 -0.08 

Bias_Postfront 0.94 0.34 

 

Wind speed r
2
 values were equally low for both prefrontal and postfrontal conditions. 

However, clustering data by frontal condition led to having at least one higher r
2
 value for each 

model than for all of the data combined (Table 7). In WRF3, the prefrontal value was higher than the 

postfrontal value, and this was the highest prefrontal value among the models. The MM5 model 

postfrontal value was higher. Prefrontal biases are low and then increase in the postfrontal 

environment, with WRF3 making a jump in overestimations following the front. Tucker et al. [2010] 

found that daytime winds tended to be higher and be more southerly following strong low level jet 

(SLLJ) nights, and they were weaker and either northerly or stagnant following weak LLJ (WLLJ) 

nights. Although it slightly overestimates wind speeds, WRF is able to better capture the post-SLLJ 

conditions on August 28 which correspond to prefrontal conditions. However, WRF persists in 

generating high winds on the days following two WLLJ nights (August 31 and September 1), which 

correspond to postfrontal conditions and leads to a much higher bias and lower r
2
 values. The MM5 

model does not suffer from high bias to the same extent, but it also tends to overestimate more 

following the postfrontal conditions corresponding to the post-WLLJ scenario. 
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Figure 5. Time series of wind speeds for observations (stars), WRF (dark blue line), and MM5 (light blue line) 

 

Wind Direction 

Wind direction r
2
 values were generally low for the entire study period and at nighttime for 

both models, and only reach approximately 0.50 during the daytime (Table 8). Houston's proximity 

to the Gulf generally means that there is a strong diurnal cycle as the temperature difference 

between the land and the water creates surface pressure gradients. This cycle tends to manifest 

itself in strong southerly winds during the daytime and more northerly winds in the evening and at 

night. However, during this time period the frontal passage led to more persistent northerly winds, 

which might have interfered with the normal cycle of the models (Figure 6). The prefrontal and 

postfrontal r
2
 values are both very similarly low for both models with values at or near 0.30. During 

the study period, wind direction was variable as the front and the daytime wind cycle came into 

contact. 
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Table 8. Wind direction r
2
 and bias for all, diurnal, and frontal conditions 

WDIR10 WRF3 MM5E 

R^2 0.34 0.29 

R^2_Day 0.49 0.50 

R^2_Night 0.10 0.03 

R^2_Prefront 0.30 0.30 

R^2_Postfront 0.30 0.27 

Bias -22.57 -2.41 

Bias_Day -26.17 -8.32 

Bias_Night -17.97 5.17 

Bias_Prefront 3.48 -10.23 

Bias_Postfront -38.95 2.51 

 

The magnitudes for the overall, daytime, and nighttime biases were an order of magnitude 

larger for WRF than for MM5. Wind direction for the entire study was underestimated by 22.57 

degrees and 2.41 degrees in WRF and MM5, respectively, which means that the wind directions 

were in the same quadrant, but for WRF started having more of an orthogonal wind component. 

During the daytime these bias magnitudes increase for both models, although the MM5 model has a 

larger increase. This could possibly be related to the frontal passage, especially during the day when 

the frontal passage and the land-sea breeze cycle led to stagnant air conditions and wind directions 

were variable. Southerly winds are associated with moist, ocean air, while north and northwesterly 

winds are associated with drier, continental air, so the direction of the wind in the models could 

relate to the level of water vapor mixing ratio found in the models.  
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Figure 6. Time series of wind direction for observations (stars), WRF (dark blue line), and MM5 (light blue line) 

 

3.1.2 Energy Budget Variables 

An important contributor to the development of the PBL is the land-air exchange captured 

in the energy budget as well as turbulence parameters. This study offers the rare chance to examine 

the overall, daytime, and nighttime observed values and compare them to model runs. Results are 

first examined for the radiation (incoming longwave, incoming/outgoing shortwave), followed by 

the flux measurements (sensible heat, latent heat, ground), and finally the turbulent variable friction 

velocity.  

3.1.2.1 Radiation 

Longwave outgoing radiation was only available at the top of the atmosphere for both WRF 

and MM5, creating a large bias for both of the models and not adequately capturing the values at 

the surface. Therefore this variable was removed from the study analysis, and only the other three 

components of radiation were studied (Table 9).   
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Table 9. Incoming longwave radiation r
2
 and bias for all, diurnal, and frontal conditions 

LWDOWN WRF3 MM5E 

R^2 0.68 0.64 

R^2_Day 0.73 0.61 

R^2_Night 0.41 0.47 

R^2_Prefront 0.64 0.45 

R^2_Postfront 0.49 0.48 

Bias 9.59 3.00 

Bias_Day 8.51 2.76 

Bias_Night 10.97 3.30 

Bias_Prefront 11.66 4.35 

Bias_Postfront 8.29 2.15 

 

Incoming longwave radiation 

The r
2
 values for longwave radiation are lower than for either temperature or water vapor 

mixing ratio, but are still relatively high (Table 9). WRF3 has a slightly higher r
2
 during the daytime 

than overall, while MM5E is slightly lower than the overall value during the daytime. The overall and 

daytime WRF3 r
2
 values are higher than the MM5E values, but at night, MM5 has a slightly higher r

2
 

than the WRF model. Both models have relatively low nighttime r
2
 values compared to either 

daytime or overall values.  

Both models consistently overestimate incoming longwave radiation with the largest 

overestimations occurring at night. WRF consistently has larger biases than MM5. However, the 

minimum longwave radiation value recorded during this time period was ~371 W/m
2
. Even the 

largest bias (11 W/m
2
) only represents a 2% overestimation of incoming longwave radiation. 

There is a slight time lag in both the cooling and the warming trends for the longwave 

radiation for both models, but they both also attempt to capture the drop in radiation following the 

frontal passage (Figure 7). Both of the models overestimated; prefrontal conditions produced the 

largest bias. In WRF there is an almost 30% drop in bias from the prefrontal to postfrontal data 
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cluster, and a 50% drop for the MM5 model.  MM5E had the lowest overall and frontal cluster 

biases, while WRF had the highest total and postfrontal values.  

 
Figure 7. Time series for incoming longwave radiation for observations (stars), WRF (dark blue line), and MM5 (light blue 

line) 

 

Incoming/outgoing shortwave radiation 

Although the relationship between incoming and outgoing shortwave radiation is not one-

to-one, the models tend to treat outgoing radiation as a direct decrease caused by albedo. 

Therefore, both incoming and outgoing shortwave radiation are driven to 0 after sunset, leading to 

the "not a number" (NaN) values found in the tables for nighttime values. For outgoing radiation, 

the WRF model performs better than the MM5 model, which has very small r
2
 values during the 

daytime (Table 10). These small r
2
 values are most likely the result of the overestimations found 

during the early part of the study period when MM5 overestimates outgoing shortwave radiation by 

as much 337 W/m
2
 (Figure 8) and results in daytime biases of 60 W/m

2
. While the overall bias in the 

WRF model is slightly underestimated, it is overestimated in MM5 with a magnitude of 33 W/m
2
.  
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Table 10. Outgoing and incoming shortwave radiation r
2
 and bias for all, diurnal, and frontal conditions 

SWUP WRF3 MM5E 

R^2 0.79 0.52 

R^2_Day 0.60 0.23 

R^2_Night NaN NaN 

R^2_Prefront 0.66 0.65 

R^2_Postfront 0.90 0.76 

Bias -2.32 33.23 

Bias_Day -2.84 60.49 

Bias_Night -1.66 -1.66 

Bias_Prefront -11.21 79.12 

Bias_Postfront 3.26 4.38 

SWDOWN WRF3 MM5E 

R^2 0.82 0.81 

R^2_Day 0.66 0.64 

R^2_Night NaN NaN 

R^2_Prefront 0.68 0.64 

R^2_Postfront 0.93 0.92 

Bias -13.92 9.56 

Bias_Day -24.78 17.04 

Bias_Night -0.01 -0.01 

Bias_Prefront -61.57 -24.00 

Bias_Postfront 16.03 30.65 

 

For the first two days of the study period, incoming solar radiation (SWDOWN) did not reach 

maximum insolation peaks, possibly due to scattered cloud cover. Following the frontal passage on 

August 29th, cloud cover began to dissipate as observed incoming solar radiation began to increase, 

reaching maximum insolation on the afternoon of August 31st before again devolving on September 

1st. However, both models moved too soon in developing maximum insolation (Figure 9).  

During the daytime for the entire study period, WRF tended to underestimate SWDOWN 

while MM5 tended overestimate (Table 10). However, for the two clearest days of the study period, 

both WRF and MM5 overestimated incoming solar radiation by 51.9 W/m
2
 and 52.9 W/ m

2
, 

respectively. While these values drop to 11.53 W/ m
2
 and 17.27 W/ m

2
 on the clearest day of the 

study, both models continue to overestimate incoming solar radiation. This excess energy in the 
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models could appear as overestimations in the energy flux partitions for sensible, latent, and ground 

flux.  

 
Figure 8. Time series for outgoing shortwave radiation for observations (stars), WRF (dark blue line), and MM5 (light 

blue line) 

 

Incoming radiation r
2
 values are generally higher than the outgoing values for both of the 

models, but daytime r
2
 values are still lower than the overall r

2
 values (Table 9). WRF performs 

better than the MM5 model for all values. Again, WRF tends to underestimate the radiation while 

the MM5 model overestimates, but the magnitudes of the biases for incoming radiation are smaller, 

only reaching a maximum magnitude of 24 W/m
2
 (Table 6). Similar to outgoing radiation, the 

magnitude of the daytime biases is higher than either the overall biases or nighttime biases.  

For both outgoing and incoming radiation, daytime r
2
 values and biases could be affected by 

the delayed onset of daytime radiation in the models. Both models take an additional hour before 

seeing increased incoming and outgoing solar radiation values, which is especially visible following 

the frontal passage (Figure 8 and Figure 9). The averaging of the hourly observations when sunrise 

occurred in the middle of an hour may also contribute to the discrepancy between the observations 
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and simulations. Incoming solar radiation has much smaller biases. The maximum daytime values 

reached 979 W/m
2
, leading to a maximum daytime average bias of only 1%.  

The nighttime data, in part, contributes to the increase in overall high r
2
 of both incoming 

and outgoing radiation when compared to the daytime values of the variables. Having this 

underestimation of daytime solar insolation could explain the cool bias in the WRF model, but does 

not explain the cool bias in the MM5 model.  

 
Figure 9. Time series for incoming shortwave radiation for observations (stars), WRF (dark blue line), and MM5 (light 

blue line) 

 

Similar to the outgoing shortwave radiation, both models runs for incoming shortwave 

radiation have larger postfrontal r
2
 values (Table 10). Both of the models have comparable r

2
 values 

within frontal clusters, but the biases vary. Both of the models underestimated prior to the front 

and overestimated following the front, and the largest magnitude bias varied by model. WRF had 

the largest bias in the prefrontal cluster, while both MM5 models had larger bias in the postfrontal 

cluster.  



24 

 

 

3.1.2.2 Flux Variables 

Latent heat flux 

The overall latent heat flux r
2
 values for both simulations are even higher than for 

temperature, but decrease when considering the daytime values and become almost negligible 

when considering the nighttime values (Figure 10). WRF3 again has the highest r
2
 values for all of 

the groupings. When looking at the frontal passage period, the data tend to have a higher r
2
 

following the frontal passage (Table 11).   

Table 11. Latent heat flux r
2
 and bias for all, diurnal, and frontal conditions  

LHFLUX WRF3 MM5E 

R^2 0.90 0.87 

R^2_Day 0.80 0.75 

R^2_Night 0.15 0.00 

R^2_Prefront 0.80 0.75 

R^2_Postfront 0.94 0.92 

Bias 16.37 26.99 

Bias_Day 29.63 49.84 

Bias_Night -0.61 -2.27 

Bias_Prefront 5.12 16.46 

Bias_Postfront 23.44 33.61 

 

The magnitudes of all of the model biases are much higher than those seen for any of the 

radiation values. The MM5 model has a larger bias magnitude than the WRF model with maximum 

magnitude bias of 65 W/m
2
 and 30 W/m

2
, respectively. The maximum daytime latent heat flux value 

was only 470 W/m
2
, which meant an 8% decrease from the largest bias in MM5 to the bias in WRF.  

Overall and daytime latent heat flux is overestimated for both of the models with the largest biases 

occurring during the daytime. The nighttime biases for both of the models are relatively small and 

are underestimated in both models.  
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Prior to the frontal passage on August 29th, latent heat values were scattered throughout 

the day, which could correspond to lower moisture content (Figure 10). Following the frontal 

passage (August 30th and 31st), observed daytime latent heat flux increases, indicating increased 

moisture. Both models overestimate daytime latent heat flux for the entire study period, but MM5 

has larger overestimations than WRF by approximately 20 W/ m
2
 (Table 11). However, on August 

30th and 31st both models perform similarly with overestimation biases of ~41 W/m
2
 and ~47 W/m

2
 

for WRF and MM5, representing a difference of only 6 W/m
2
. Both models vary in their simulation of 

the meteorological conditions prior to the frontal passage but resort to similar parameterizations 

following the front, perhaps in response to the these clearer incoming solar radiation simulations.  

 
Figure 10. Time series for latent heat flux for observations (stars), WRF (dark blue line), and MM5 (light blue line) 

 

Sensible heat flux 

MM5 has higher overall, daytime, and nighttime values of r
2
 compared to WRF (Table 12). 

Both of the models had higher overall values compared to daytime clustering, while the nighttime 

values are low. Compared to the diurnal r
2
, the r

2
 is higher both for all data and for the prefrontal 

and postfrontal clusters (Table 12). 
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For the study period there was an r
2
 value of 0.49 between observed sensible heat flux and 

water vapor mixing ratio at night. None of the models reach this level of r
2
 values, but the MM5 

models get closer to this relationship than the WRF model.  This relationship may relate to the fact 

that for overall, daytime, and nighttime r
2
, the MM5 models perform better than the WRF model. 

The decrease in r
2
 from sensible heat flux to latent heat flux and the decrease in the magnitude of 

the biases are in agreement with the findings of Zhong et al. [2007]. However, they do not agree 

with LeMone et al. [2009], who found that their modeled sensible heat overestimated throughout 

the entire study period and tended to have a larger bias than latent heat.  

Table 12. Sensible heat flux r
2
 and bias for all, diurnal, and frontal conditions 

SHFLUX WRF3 MM5E 

R^2 0.73 0.77 

R^2_Day 0.59 0.64 

R^2_Night 0.00 0.16 

R^2_Prefront 0.57 0.71 

R^2_Postfront 0.85 0.81 

Bias -5.16 3.75 

Bias_Day -5.77 6.83 

Bias_Night -4.37 -0.21 

Bias_Prefront -14.02 5.39 

Bias_Postfront 0.41 2.71 

 

WRF3 had the highest overall and nighttime biases and MM5E had the highest daytime 

biases. WRF3 underestimated sensible heat flux for all clusters and MM5E underestimated only at 

night. While the r
2
 decreased for sensible heat flux compared to latent heat flux and the biases are 

smaller, the relative magnitude of the biases represents a larger portion of measured values. During 

the daytime, MM5 had an average overestimation of 32% while WRF underestimated by 28%. This is 

only a 4% disparity between the values during the daytime, but this gap increases greatly at night, 

when WRF underestimated values by as much as 50% while MM5 was only 2.4%.  
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The sensible heat flux shows similar simulation pattern to the latent heat flux time series 

(Figure 11). During the first two days of the study period, both models respond differently to the 

inconsistent sensible heat flux, but have very similar responses during the two days following the 

frontal passage. The initial variations in response seem to lead to disparate biases over the course of 

the study period, with daytime biases being overestimated by MM5 and being underestimated by 

WRF (Table 12). Sensible heating is associated with ground heating, so it is possible that 

temperature variations in the models, combined with differences in the moisture, could contribute 

to these variations. However, the two days following the frontal passage produce similar model 

responses, with WRF and MM5 overestimating sensible heat by ~14 W/m
2
 and 6 W/m

2
, respectively. 

 
Figure 11. Time series for sensible heat flux for observations (stars), WRF (dark blue line), and MM5 (light blue line) 

 

Ground flux 

Similar to the other flux variables, the overall r
2
 values were higher than either the day or 

nighttime values (Table 13). Out of all the flux variables, the overall and daytime r
2 

values for ground 

flux are the lowest. The nighttime r
2 

values are also very low, but are higher than for either sensible 
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or latent heat flux. The WRF model has slightly lower r
2
 values than either of the MM5 models 

overall and during the day, but is slightly higher at night.  

Table 13. Ground flux r
2
 and bias for all, diurnal, and frontal conditions 

GRNDFLUX WRF3 MM5E 

R^2 0.66 0.67 

R^2_Day 0.46 0.47 

R^2_Night 0.20 0.13 

R^2_Prefront 0.57 0.60 

R^2_Postfront 0.71 0.70 

Bias -2.01 -4.63 

Bias_Day -15.68 -14.98 

Bias_Night 15.49 8.62 

Bias_Prefront -1.58 -1.99 

Bias_Postfront -2.28 -6.29 

 

The ground flux biases do not follow the pattern that sensible and latent heat flux (Table 13). 

During the day both models consistently underestimate for the entire study period as well as for the 

two days following the frontal passage, and at night both models have similar overestimations. 

Additionally, both models have similar timing of the ground flux that lies in contrast with the 

observations (Figure 12). Both models have sharp increases of ground flux in the evening that 

eventually diminish as the night progresses, while the observations have gradual increases in ground 

flux through the afternoon and then sharp drops in the morning. The ground flux is associated with 

increased ground temperatures as the sun reaches the ground, so the increased insolation on the 

two days following the frontal passage leads to higher observed ground flux amplitudes. Both of the 

models capture these higher ground flux values, but have higher amplitudes of both the amount of 

ground flux escaping from and entering the ground, which again could be associated with the 

increased incoming solar radiation found in the models.   



29 

 

 
Figure 12. Time series for the ground flux for observations (stars), WRF (dark blue line), and MM5 (light blue line) 

 

As a first approximation of the energy budget at the surface, the sum of these three flux 

variables' daytime biases, while accounting for the direction of each component, should equal the 

bias found in incoming solar radiation. On mostly cloudless days like August 30th and August 31st, 

the sum of the biases should be close to 50 W/m
2
 for both models (Table 10). However, neither 

model comes close to this value: The sum of sensible, latent, and ground flux daytime biases for 

these two days was only ~2 W/m
2
 and ~-2 W/m

2
 for WRF and MM5, respectively. Despite the fact 

that on the most cloudless day of the study period there is only an overestimation of less than 20 

W/m
2
 for both models, the sum of sensible, latent, and ground flux still does not approach this value 

for either model.  These variables cannot completely account for the energy output in the models, 

so the rest of this energy might present itself in temperature or other increases during the daytime.  

On the other hand, a sum of the nighttime biases following the front yield values closer to the 

missing 50 W/m
2
, which may imply that the models use latent, sensible, and ground heat fluxes as a 

reservoir to drive nighttime energy changes.                                                                                                                                     
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3.1.2.3 Turbulence 

Friction velocity 

Friction velocity, or u*, is one measure of how much turbulence is being generated through 

shearing forces at any given time [Stull, 1988]. Examining the observed and modeled and measured 

values can provide insight into shear turbulence that contributes to the development of the PBL. 

Table 14 presents the overall and diurnal r
2
 and bias values for friction velocity and Figure 13 shows 

the time series for the study period.  

Table 14. Overall and diurnal r
2
 and biases for USTAR 

USTAR WRF3 MM5E 

R^2 0.77 0.70 

R^2_Day 0.66 0.56 

R^2_Night 0.11 0.11 

R^2_Prefront 0.76 0.61 

R^2_Postfront 0.79 0.77 

Bias 0.06 0.02 

Bias_Day 0.08 0.01 

Bias_Night 0.04 0.03 

Bias_Prefront 0.04 0.00 

Bias_Postfront 0.07 0.02 

 

Despite the fact that friction velocity is a small component of turbulent energy, the models 

are able to model it relatively well with overall r
2
 values of 0.77 and 0.70 for WRF and MM5, 

respectively. The overall r
2
 values for both of the models are higher than daytime values and much 

higher than the nighttime values. At night, the models are set to a minimum value of 0.1 m/s, which 

does not always accurately reflect the observations that can get much smaller. Above this threshold, 

both models attempt to mimic nighttime u* behavior, but following the frontal passage, nighttime 

wind speeds were relatively calm (Figure 5). On those nights observed u* values were well below 

the 0.1 m/s threshold, so neither model is able to simulate these values, which could have led to the 

low nighttime r
2
 values.  
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Both models overestimate u*, which could be related to the overestimations in wind speed 

for the models.  There is no distinct cluster with the highest bias magnitudes; the largest bias for 

WRF3 occurs during the daytime but for MM5 occurs at night.  WRF3 has the highest overall, 

daytime, and nighttime magnitude biases, which is in contrast with Hanna et al. [2010], who 

mentioned that MM5 had larger biases in the afternoon than WRF. Friction velocity is a measure of 

how much shear turbulence will be generated and is affected by topography and is directly related 

to wind speed. Compared to the other model variables, the absolute biases for friction velocity are 

relatively small, but assuming a maximum u* value of approximately 0.6 m/s, the bias can be 

overestimated by nearly 15% in the WRF model.  

 
Figure 13. Time series for friction velocity for observations (stars), WRF (dark blue line), and MM5 (light blue line) 

 

3.1.3 Planetary Boundary Layer Variable 

PBL Height 

Due to the small number of radiosonde launches available for the duration of the study 

period, the biases were not calculated for planetary boundary layer height. However, PBL heights 

were calculated at sunrise and sunset prior to the frontal passage, and then following the frontal 
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passage were recorded with more regularity, so the few observations available offer a better chance 

to look at the development and destruction of the PBL (Figure 14). Ideally, suppressed daytime 

temperatures and elevated nighttime temperatures should yield similar PBL height results. However, 

while the daytime PBL heights are in fact underestimated during the day as expected, they are also 

underestimated at night when they should be overestimated. Daytime peaks are better 

approximated following the frontal passage, but the PBL destruction always happens too soon.   

 
Figure 14. Time series of PBL height for the study period for observations (stars), WRF (dark blue line), and MM5 (light 

blue line) 

 

There are various reasons for the possible variations in the onset of PBL development and 

destruction. Especially during the morning PBL height estimates, the late onset of solar radiation in 

the models could contribute to the slow development of the PBL during a time when convection 

leads to a rapid increase of PBL height. LeMone et al. [2009] suggests overestimations of sensible 

heat lead to overestimations in the convective boundary layer depth. The converse could apply in 

this study, where underestimations in sensible heat flux leads to underestimations in the PBL height 

simulations. In general, MM5E tends to overestimate sensible heat flux and generally has the 

smallest underestimations and largest overestimations, while WRF tends to substantially 
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underestimate sensible heat and generally has lower PBL height estimations. However, a different 

PBL scheme was used; examining other PBL schemes to see if this trend is sustained could be 

beneficial.  

Rappenglück et al. [2008] speculated whether PBL development was slower on ozone 

exceedance due to cooler temperatures delaying PBL development. In the postfrontal environment 

temperatures were in fact cooler (Figure 4), but none of the models were able to simulate 

temperature minimums for the nights of the 30
th

 or 31
st

. WRF gets closest to the simulated 

temperatures while MM5 has a larger bias following the front, which may explain why the models 

overestimated noontime PBL height on August 30
th

-September 1
st 

(Figure 14).  

4. Conclusions 

Although WRF does not perform as well as either MM5 model in predicting PBL heights, it 

does a better job in capturing most of the general and energy budget variables. Energy balance 

partitioning can have an effect on standard and planetary boundary layer height variables. Both 

models overestimate incoming solar radiation, which implies a surplus of energy that could be 

exhibited in either the partitioning of the surface energy variables or in some other aspect of the 

meteorological modeling not examined here. At least following the frontal passage, some evidence 

suggested that this energy shows up in nighttime partitioning, in which case the sensible, latent, and 

ground fluxes are only discharging part of the energy during the daytime, which would lead to lower 

daytime temperatures. The WRF model's suppressed daytime temperatures would seem to confirm 

this scenario, but MM5 overestimates temperature on both of these days. This scenario would also 

imply that there's more energy available for the nighttime system, which should mean increased 

temperatures and higher boundary layer height estimations. While nighttime temperatures do seem 

to reflect this increased energy, but PBL height estimations do not reflect it.  



34 

 

The nighttime temperature bias disparity in the models following the frontal passage could 

reflect the disparity in moisture. The MM5 model consistently had much drier conditions than the 

WRF model, which could mean more energy available to the rest of the meteorological system. On 

the clearest day of the study period MM5 had increased latent heat flux, which could lead to higher 

evaporation rates and lower moisture in the model. However, this latent heat disparity between the 

two models is not visible during any other part of the study, so examining sequential cloud-free days 

would be necessary to see whether the moisture and latent heat effect was sustained. The full 

effects of moisture on the energy balance cannot be determined here other than as a potential 

reason for inconsistent model outputs. The difference in the land datasets used to initialize and 

update each model make this situation plausible. 

The frontal passage allowed this study to examine these variables both under prefrontal and 

postfrontal conditions, and it was found that a frontal passage does affect the performance of most 

of the variables, including the radiation, flux, and turbulence variables, at times creating dramatic 

differences in the r
2
 values. Ultimately the clear, sunny days offered the most insight into the 

potential effects of the energy balance variables on standard variables and planetary boundary layer 

height. These two days were also two of the highest 8-hour ozone peak days on record for the year. 

Since these kinds of days are favorable for high ozone production, the energy balance variables 

reproduced on these days could more accurately represent meteorological conditions. Accurately 

determining the energy balance variables could in turn produce better standard meteorology and 

PBL heights, which are essential in determining accurate ozone concentrations.  
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