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Abstract 

We present theory and comprehensive bifurcation analysis of thermally coupled 

homogeneous-heterogeneous combustion of propane and methane in short monolith, 

fibermat or gauze type reactors with a focus on the dependence of the ignition, extinction, 

hysteresis, double and boundary limit loci on the various design and operating 

parameters. We analyze the impact of inlet fuel mole fraction, inlet temperature, 

residence time and channel hydraulic radius on the relative position of the homogeneous 

and catalytic ignition and extinction points and identify the parameter regions in which 

either catalytic or homogeneous reaction dominates. We also identify the regions in 

which catalytic ignition leads either to an intermediate branch on which the homogeneous 

reaction rate is negligible or directly to a high conversion and temperature state thereby 

facilitating homogeneous ignition. For the case of methane oxidation, we examine both 

the lean and rich feeds with the operating pressure as the bifurcation variable and 

compare the predicted results with available experimental data and numerical simulations 

using detailed CFD models. 

We then study the impact of the Lewis number, 𝐿𝐿𝐿𝐿𝑓𝑓  (thermal diffusivity of the 

reaction mixture to the molecular diffusivity of the limiting reactant) and the Peclet 

numbers on the maximum temperature attained for coupled homogeneous-heterogeneous 

combustion process in a parallel plate reactor using one, two and three-dimensional 

models. For the case of 1-D models, we find that the maximum temperature never 

exceeds the adiabatic value for physically consistent boundary conditions. For 2-D 

models, we find that for 𝐿𝐿𝐿𝐿𝑓𝑓<1, the hot spot temperature can exceed the adiabatic value, it 

is always located on the wall and its distance from the inlet and magnitude increase with 
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increasing radial Peclet number. However, for 𝐿𝐿𝐿𝐿𝑓𝑓>1, contrary to some literature claims, 

the peak temperature never exceeds the adiabatic value, though the temperature can be 

non-monotontic across the channel. We show that 3-D solutions can bifurcate either from 

1-D or 2-D solutions irrespective of the value of the Lewis number. The implications of 

these observations for catalyst and process design in systems in which both homogeneous 

and catalytic reactions occur are discussed. 
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Chapter 1

Introduction

1.1 Introduction and literature review:

Catalytic partial (complete) oxidation of hydrocarbons is of interest for the pro-

duction of intermediate chemicals (power generation). In recent years, processes such

as production of syngas from methane partial oxidation, oxidative dehydrogenation

of ethane, and the conversion of methane to C+
2 hydrocarbons have been perceived

as attractive alternatives for basic chemical production (for example see [1-4]). Com-

plete oxidation (combustion) of hydrocarbons with low emissions of NOx and other

pollutants is also of interest in power generation. However, the high operating temper-

atures, short residence times and highly exothermic nature of the oxidation processes

pose a formidable engineering challenge, and without appropriate theoretical under-

standing, undesirable situations like runaways and side reactions might undermine the

purpose of operation. Models describing these systems typically involve both catalytic

and homogeneous reactions. These models must account for the effects of transport

processes as well as the complex chemistry in an idealized manner in order to be

amenable to theoretical and computational analysis while avoiding too much simpli-

fication. An article by Pfefferle [5] reviews the various models and parameter ranges
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in which they are valid for such systems. It is well-known that catalytic reaction

systems exhibit complex behavior such as multiple steady states and hysteresis. It

is therefore intuitively obvious that the coupling between catalytic and homogeneous

chemistry should lead to even more complicated behavior. A comprehensive analysis

of this system requires study of observables like solid/gas temperatures or conversion

of reactants (or yield of intermediate products) with respect to changes in the system

parameters such as inlet mole fraction of fuel, operating pressure, space/inlet velocity,

diameter of the monolith channel and so forth.

Because of its obvious industrial relevance, there have been numerous experi-

mental and computational studies on homogeneous-heterogeneous combustion in the

past three decades. The work of Song et al. ([6], [7] and [8]) analyzed a stagna-

tion flow model using the methods of singularity theory. Later work of Vlachos et

al. [9] used more detailed microkinetic models to understand homogeneous combus-

tion near isothermal and adiabatic surfaces. There has also been a large amount of

work using computational fluid dynamic (CFD) models to study catalytic combustion

([10-11]). Deutschmann et al. [12] investigated 1-D CFDmodels to understand transi-

tions from catalytic to homogeneous combustion of propane on Pt foils using detailed

homogeneous-heterogeneous chemistry. Later work of Deutschmann and coworkers

( [13-14]) addressed catalytic combustion and partial oxidation of methane with 2-

D and 3-D models. These papers also discuss the dependence of light-off behavior

on system parameters. Karagiannidis et al. [15, 16] use 2-D CFD simulations in

a plane channel reactor and obtain combustion stability diagrams for propane and

methane microreactors with more detailed chemistry. Pizza et al. [17, 18] studied
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flame dynamics in fuel-lean hydrogen/air flames and studied the effect of heteroge-

neous reactions on the suppression of the combustion instabilities. Stefanidis and

Vlachos [19] solve 2-D CFD models for propane oxidation taking heat losses into

account with global chemistry. They analyze the interplay between catalytic and

homogeneous chemistry by describing how a catalyst-induced gas phase stabilization

results at high inlet velocities due to synergistic thermal effects between the phases.

The work of Chattopadhyay and Veser [20] studied heterogeneous-homogeneous in-

teractions in Pt-coated microchannels with detailed surface and gas chemistries using

a 2-D boundary layer model and investigated ignition behavior. These approaches,

however, do not provide an exhaustive picture of the different possible bifurcation be-

haviors in the multi-dimensional parameter space. CFD models are not convenient for

bifurcation analysis and detailed exploration of the parameter space but are useful to

study specific types of solutions or reactor systems in more detail. Microkinetic mod-

eling of a combustion system can involve hundreds of reactions making computation

of bifurcations or high order singularities very challenging. This subverts their practi-

cability in providing a detailed understanding of the system in the multi-dimensional

parameter space. The work of Song et al. [6-8] studies bifurcations with global re-

action kinetics, but the stagnation flow system used in their work is not realistic for

industrial settings. In the present thesis, we circumvent this by basing our studies on

practical models that describe short monolith, fibermat or gauze type reactors where

flow is parallel to the catalyst surfaces.
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1.2 Bifurcation Analysis on Chemically Reacting

Systems

Bifurcation studies in Chemical Reaction Engineering can be traced back to the

papers of Van Heerden (1953) and Bilous and Amundson (1955). A substantially large

literature on bifurcations in Chemical Engineering has subsequently accumulated. A

wide range of interesting behaviors such as multiple steady states, oscillations and

chaos have been studied both theoretically and experimentally. Several books as well

as review articles have summarized these developments. We list a few of these here,

noting that the literature is too vast to mention all such works here and omissions

are inevitable. Aris (1975), Schmitz (1975), Hlaváček (1986) and Luss (1985) are

important works we found useful. The reactors most commonly studied in these

works are the CSTR (the seminal paper Uppal, Ray and Poore, 1974, many articles

of Balakotaiah and Luss, especially Balakotaiah and Luss, 1983, 1984, 1985, Farr,

et al., 1986) and the tubular reactor (several papers of Amundson and coworkers

and of Hlavacek and coworkers; the important article of Jensen and Ray, 1982). In

addition, in the Chemistry and Biochemistry literatures, the Brusselator system has

been extensively studied. The classic textbook by Nicolis and Prigogine (1977) which

discusses this system, among other interesting phenomena, has been cited more than

8000 times. The numerical techniques pertinent to bifurcation calculations have been

discussed in many excellent articles and books, some of them written by Chemical

Engineers (e.g. the books of Kubíček and Marek (2012) and Marek and Schreiber
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(1995) ) aside from many books written for the mathematical audience (e.g. the book

of Allgower and Georg (2012)).

There is considerable interest in understanding bifurcation phenomena because

it answers important questions like how many solutions (or steady-states) exist in

different operating regions, and how the system behaves with changes in various pa-

rameters. A recent review article [Balakotaiah andWest, 2014] presents a good survey

of the state of the art in this field. The alternatives to the bifurcation approach to

modeling and simulation are large-scale numerical computation for the entire system

and asymptotic analysis. In contrast to full numerical study and asymptotics, a bi-

furcation study helps provide insights about the physics by classifying the parameter

space into different regions and aids further numerical explorations; however a purely

numerical approach without theoretical guidance usually fails to provide much insight

for complex systems. The singularity theory approach that we employ in this thesis

derives its power from being able to give global information about the system from a

local analysis because of the use of a very powerful theory of unfolding of singularities

and construction of phase diagrams in the space of design or operating parameters.

Thus this thesis aims to study the bifurcation behavior of models that combine

the thermal coupling between the catalytic and homogeneous reactions. This problem

has been known to be of great practical importance for quite some time but is not

yet well-studied. A clear picture of essential features of the process as the parameters

are changed is still not available. One major goal of this thesis is to determine an

approximate phase diagram of the thermally coupled combustion process in the space

of various design and operating parameters (e.g. inlet fuel mole fraction, inlet tem-
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perature, channel dimensions, operating pressure and space velocity). Even coarse

phase diagrams that identify the parameter regions in which either the homogeneous

or catalytic reaction dominates can provide not only physical insight but are also

useful in designing laboratory scale experiments that may lead to a better under-

standing of the interactions between catalytic and homogeneous chemistry during the

oxidation of hydrocarbons. There is an obvious trade-off in how detailed a model one

wants to analyze and how fully one can analyze it with existing mathematical and

computational prowess. If an understanding of essential features is desired, then we

believe that a deep understanding of relatively simple systems, like the ones studied

in the present work, can go a long way.

1.3 Homogeneous-Heterogeneous Reaction Systems

The term homogeneous-heterogeneous reaction systems is used to mean that cat-

alytic and homogeneous reactions occur in tandem in the system. This is not unique

to combustion, but can be widely observed in many other practically relevant sys-

tems. Important examples are catalysis (e.g. gasification of coal) and microelectronics

(e.g. chemical vapor decomposition) besides catalytic partial oxidation and catalytic

combustion. Homogeneous-heterogeneous systems are often very nonlinear and it is

challenging to design these processes. The optimization of these processes depends

on choosing various operating and design parameters in appropriate ranges, as the

process behavior can be very drastically different depending on the choices of these

parameters owing to the nonlinearities. This also makes the control of these systems

a complex problem. Bifurcation analysis proves indispensable before tackling these
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engineering challenges. When aided with experiments, bifurcation analysis can be

useful for fitting kinetic parameters (e.g. Harold and Luss 1987) and this is especially

relevant for systems such as catalytic partial oxidations where appropriate reaction

kinetics for modeling amenable for engineering is still uncertain. In fact, bifurcation

analysis can serve as the essential first step to design appropriate experiments for

such systems.

Amundson and coworkers analyzed bifurcation features for combustion of carbon

utilizing a boundary layer model in several papers in the early 1980s (e.g. Sotirchos

and Amundson, 1984 a, b). The existence of several steady states was established and

the stability of these steady states was investigated for the aforementioned system.

Homogeneous-Heterogeneous reaction systems were studied by Nielson and Villadsen

(1985) for a falling film where absorption followed by catalytic reaction occurs along-

side homogeneous reactions. Later work of Song et al (1991 a, b, c) used Singularity

theory methods to study bifurcations in homogeneous-heterogeneous combustion of

hydrocarbons, but their attention was restricted to stagnation flow type systems.

To our knowledge, no comprehensive bifurcation studies have been performed even

for the simplest homogeneous-heterogeneous systems. Systematic studies of high-

dimensional singularities are almost non-existent. This gap in the literature can be

attributed to the diffi culties arising from strong nonlinearity and multiple parameters

in the system. Such systems have more than one phase and the transport processes

are coupled with both homogeneous and catalytic reactions which makes the modeling

complicated. A further issue is the lack of kinetic data amenable to bifurcation

analysis. Although recent microkinetic models for both catalytic and homogeneous
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reaction systems have been proposed using a variety of theoretical and experimental

techniques, a large number (several hundreds) of microkinetic steps alongside strong

thermal nonlinearities is quite complicated for detailed bifurcation analysis, especially

when the bifurcation behavior for much simpler systems is also not clearly understood.

The present thesis is structured as follows. We first give details of the devel-

opment of models that incorporate essential physics and chemistry, are structurally

stable (i.e. robust to perturbations) and are well-suited for bifurcation analysis. Next,

we consider propane oxidation with stoichiometric feed and investigate the possible

bifurcation phenomena, presenting a complete bifurcation analysis in short monolith

or gauze type reactors, illustrating the impact of inlet fuel mole fraction, residence

time and channel hydraulic diameter on the various ignitions and extinctions. The

important practical case of methane oxidation is also examined for the case of both

lean and rich feeds with the operating pressure as the bifurcation variable and the

predicted results are compared with available results in the literature. We then pro-

ceed to address questions on the presence of hot spots in these reacting systems and

the formation of transport limited patterns in the following two chapters. We also

show the derivation of low-dimensional reactor models that are useful for bifurcation

analysis using Liapunov-Schmidt reduction and singular perturbation theory. In the

last chapter, we summarize the results and conclude by pointing out some possible

extensions to this work.
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Chapter 2

Mathematical Models

2.1 Introduction

In order to describe the family of useful models and how they are related to each

other, we start with a 2-D model valid for reactors with a single homogeneous and

catalytic reactions. We denote the fluid phase cup-mixing mole fraction of the j-th

species by yj and the temperature by T . Two reactants A and B representing the

fuel and oxygen, respectively have been considered.

In the following, we outline the mathematical model for a system consisting of

flow between parallel plate reactors in which homogeneous reaction occurs in the fluid

phase and the catalytic reaction on the wall. For simplicity, we have assumed that the

velocity profile does not change with axial position and the pressure drop is negligible.

(However the dependence of the velocity profile on the transverse coordinate is given

by the function f̂(y′) multiplying the average velocity u). Thus we do not need to

solve the equations for momentum balance separately. With this assumption, the

mathematical model for parallel plates with plate spacing 2a is given by
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Figure 2-1: Schematic diagram of flow between parallel plates with a homogeneous
reaction in the fluid phase and a catalytic reaction on the wall

u

εf
f̂(y′)

∂yA
∂x′

= Dm,A

(
∂2yA
∂x′2

+
∂2yA
∂y′2

)
− rh(yA, yB, T )

C0

, (2.1)

u

εf
f̂(y′)

∂yB
∂x′

= Dm,B

(
∂2yB
∂x′2

+
∂2yB
∂y′2

)
− ν rh(yA, yB, T )

C0

and (2.2)

u

εf
f̂(y′)

∂T

∂x′
=

kf
ρfCpf

(
∂2T

∂x′2
+
∂2T

∂y′2

)
+

(−∆H)C0

ρfCpf

rh(yA, yB, T )

C0

(2.3)

= αf

(
∂2T

∂x′2
+
∂2T

∂y′2

)
+ ∆T ∗ad

rh(yA, yB, T )

C0

; (2.4)

0 < x′ < L, 0 < y′ < a

with the inlet and boundary conditions given by

Dm,A
∂yA
∂x′

=
u

εf
f̂(y′)(yA − yA,in), (2.5)
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Dm,B
∂yA
∂x′

=
u

εf
f̂(y′)(yA − yA,in) (2.6)

αf
∂T

∂x′
=

u

εf
f̂(y′)(T − Tin)atx′ = 0 (2.7)

∂yA
∂x′

=
∂yB
∂x′

=
∂T

∂x′
= 0 at x′ = L (2.8)

−Dm,A
∂yA
∂y′

= 0 (2.9)

−Dm,B
∂yB
∂y′

= 0 (2.10)

αf
∂T

∂y′
= 0 at y′ = 0 and (2.11)

−Dm,A
∂yA
∂y′

=
rc(yA, yB, T )

C0

(2.12)

−Dm,B
∂yB
∂y′

= ν
rc(yA, yB, T )

C0

(2.13)

αf
∂T

∂y′
= ∆T ∗ad

rc(yA, yB, T )

C0

at y′ = a. (2.14)

Here, rc and rh denote the catalytic and the homogeneous reaction rates, respectively,

C0 is a reference concentration and ∆T ∗ad is a reference adiabatic temperature rise

corresponding to combustion of 100 mole percent of the fuel. Let us introduce the
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following non-dimensional variables and parameters

x =
x′

L
, y =

y′

a
, θ =

T

∆T ∗ad
,

τ =
L

u
, f(y) = f̂(y′/a)

Lef =
kf

ρfCpfDm,A

, P em,A =
uL

Dm,A

, PA =
a2u

Dm,AL
, (2.15)

Pem,B =
uL

Dm,B

, PB =
a2u

Dm,BL
, Peh =

uL

α
and Ph =

a2u

αL
(2.16)

and express the model in the following dimensionless form:

f(y)
∂yA
∂x

= εf

(
1

Pem,A

∂2yA
∂x2

+
1

PA

∂2yA
∂y2

)
− τεf

rh(yA, yB, θ)

C0

, (2.17)

f(y)
∂yB
∂x

= εf

(
1

Pem,B

∂2yB
∂x2

+
1

PB

∂2yB
∂y2

)
− ντεf

rh(yA, yB, θ)

C0

and (2.18)

f(y)
∂θ

∂x
= εf

(
1

Peh

∂2θ

∂x2
+
Lef
PA

∂2θ

∂y2

)
+ τεf

rh(yA, yB, θ)

C0

; (2.19)

0 < x < 1, 0 < y < 1.

εf
Pem,A

∂yA
∂x

= f(y)(yA − yA,in),

εf
Pem,B

∂yB
∂x

= f(y)(yB − yB,in) and (2.20)

εf
Peh

∂θ

∂x
= f(y)(θ − θin) at x = 0, (2.21)

∂yA
∂x

=
∂yB
∂x

=
∂θ

∂x
= 0 at x = 1 and (2.22)
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∂yA
∂y

= 0,

∂yB
∂y

= 0 and

∂θ

∂y
= 0 at y = 0 (2.23)

and

∂yA
∂y

+
PAτ

εf

εsrc(yA, yB, θ)

C0

= 0, (2.24)

∂yB
∂y

+ ν
PBτ

εf

εsrc(yA, yB, θ)

C0

= 0 and (2.25)

∂θ

∂y
− Phτ

εf

εsrc(yA, yB, θ)

C0

= 0 at y = 1. (2.26)

This full 2-D model contains several important parameters. Of these, the axial

Peclet numbers, Pem,A, P em,B and Peh serve as measures of strength of the axial

gradients. For the short monolith or gauze type reactors, the value of these axial

Peclet numbers is of order 1.[Remark: 3-D elliptic models that include azimuthal

gradients are practically impossible to analyze with the current computational power

as the mesh size needed to determine all the asymmetric solutions that may exist is

extremely small.]

2.1.1 Limiting Models

We formulate below three limiting cases of the above general model. These limiting

models isolate the effect of spatial gradients in the transverse and axial direction and

provide insight on the phenomena observed in the general 2-D model whose behavior

can be bounded by those of the following models.

13



Short Channel Model:

When the length of the channel is very small compared to the spacing between the

plates (as in the case of gauze or short monolith reactors), we can neglect the axial

gradients and average the aforementioned 2-D model in the axial direction. This leads

to a model similar to the "short monolith model" that has been widely studied for

systems with catalytic reactions [Balakotaiah, Gupta and West, 2000]. This model is

given by

f(y)(yA − yA,in) = εf
1

PA

d2yA
dy2

− τεf
rh(yA, yB, θ)

C0

, (2.27)

f(y)(yB − yB,in) = εf
1

PB

d2yB
dy2

− ντεf
rh(yA, yB, θ)

C0

and (2.28)

f(y)(θ − θin) = εf
Lef
PA

d2θ

dy2
+ τεf

rh(yA, yB, θ)

C0

. (2.29)

0 < y < 1.

and the same transverse boundary conditions (in y) as the full model. The usefulness

of this model lies in the fact that it simplifies the flow terms and focuses mainly

on the transverse variations. It has been shown in previous work [see Gupta et al

[5]]. that this model has the same bifurcation features as the full 3-D model for

catalytic reactions. Changing the form of f(y) in our calculations did not lead to

much qualitative differences in our results and therefore, for simplicity, we chose to

consider f(y) = 1 in subsequent calculations.

By integrating in y, this model can be reduced to a 0-D two mode model, where

the transverse gradients are accounted for by use of heat and mass transfer coeffi cients
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to express fluxes involved. We obtain

yA − yA,in = kc,Aavτ (yA − yA,s)− τεf
rh(yA, yB, θ)

C0

, (2.30)

yB − yB,in = kc,Bavτ (yB − yB,s)− ντεf
rh(yA, yB, θ)

C0

and (2.31)

θ − θin = havτ (θ − θs) + τεf
rh(yA, yB, θ)

C0

. (2.32)

At the wall, we employ the definitions of the heat and mass transfer coeffi cients to

obtain the following equations

kc,Aav (yA − yA,s)− εs
rc(yA, yB, θs)

C0

= 0, (2.33)

kc,Bav (yB − yB,s)− νεs
rc(yA, yB, θs)

C0

= 0 and (2.34)

hav (θ − θs) + εs
rc(yA, yB, θs)

C0

= 0. (2.35)

Both forms of the short channel model are analyzed in detail in chapter 3 of this

thesis.

Analysis of the 1-D model with transverse gradients leads to bifurcation dia-

grams of S and double-S shapes (along with the trivial bifurcation diagrams with

no multiplicity). Mathematically these correspond to the unfolding of the singularity

x5 − λ = 0 where x and λ are the state variable and the bifurcation variable, respec-

tively. We refer the reader to the next chapter and the textbook of Golubitsky and

Schaeffer (1985) for further details. We have calculated the complete phase diagram

for this system which includes the hysteresis locus, the boundary limit locus and the

double limit locus for propane oxidation in the plane of residence time and inlet mole
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fractions of propane. Further details on these calculations alongwith their physical

interpretations can be found in Chapter 3.

1-D Model with Axial Gradients:

When the spacing between the channels is very small (i.e. in the limit of P → 0),

we can ignore the transverse gradients and consider only the axial variations. This

limiting case is described by the following 1-D model:

dyA
dx

=
εf

Pem,A

d2yA
dx2

− τεf
rh(yA, yB, θ)

C0

− τεs
rc(yA, yB, θs)

C0

, (2.36)

dyB
dx

=
εf

Pem,B

d2yB
dx2

− ν
(
τεf

rh(yA, yB, θ)

C0

− τεs
rc(yA, yB, θs)

C0

)
and (2.37)

dθ

dx
=

Lefεf
Pem,A

d2θ

dx2
+

(
τεf

rh(yA, yB, θ)

C0

− τεs
rc(yA, yB, θs)

C0

)
; 0 < x < 1.(2.38)

The boundary conditions at the inlet and exit are the same as that for the general

2D model shown above.

Adiabatic Invariants:

The above steady-state 1D model can be solved by using the shooting method

combined with arclength continuation. This is greatly aided by the presence of adi-

abatic invariants, reducing the computational effort. We discuss this approach here

as this is an important numerical technique useful for many calculations presented in

this thesis. We can see immediately from the balance equations that the following
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two equations are valid:

d(νyA − yB)

dx
=

νεf
Pem,A

d2yA
dx2

− εf
Pem,B

d2yB
dx2

and (2.39)

d(yA + θ)

dx
=

εf
Pem,A

d2yA
dx2

+
Lefεf
Pem,A

d2yB
dx2

. (2.40)

Now, let us define the axial fluxes of the mole fractions of species A and B and the

nondimensional temperature, θ, respectively as

JA = yA −
εf

Pem,A

dyA
dx
,

JB = yB −
εf

Pem,B

dyB
dx

and

Jθ = θ − Lefεf
Pem,A

dθ

dx
.

The balance equations can be rewritten as a system of six first order differential

equations comprising of the above equations along with

dJA
dx

= −τεf
rh(yA, yB, θ)

C0

− τεs
rc(yA, yB, θs)

C0

, (2.41)

dJB
dx

= −ν
(
τεf

rh(yA, yB, θ)

C0

− τεs
rc(yA, yB, θs)

C0

)
and (2.42)

dJθ
dx

= τεf
rh(yA, yB, θ)

C0

− τεs
rc(yA, yB, θs)

C0

, 0 < x < 1. (2.43)

with the boundary conditions given by

JA = yA,in,
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JB = yB,in and

Jθ = θin at x = 0 and (2.44)

dyA
dx

=
dyB
dx

=
dθ

dx
at x = 1.

We can now express the equations (2.39) and (2.40) as

ν
dJA
dx
− dJB

dx
= 0 and

dJA
dx

+
dJθ
dx

= 0.

These equations let us eliminate two of the six differential equations. If we denote the

exit values of the variables by subscript ex, the integration of these equations leads

to the invariants

νyA,in − yB,in = νJA,ex − JB,ex = νyA,ex − yB,ex and

yA,in + θin = JA,ex + Jθ,ex = yA,ex + θex.

Using these invariants, the shooting procedure is greatly simplified. We now need

to guess only one variable at one of the boundaries and the other variables can be

expressed in terms of that variable. We choose to guess yA,ex and integrate the system

backwards. We demand that the inlet condition JA = yA,in is satisfied at x = 0 and in

order to accomplish this, the shooting variable yA,ex is refined by a Newton iteration.

Upon solution of the system for a particular value of θin, we employ the arclength

continuation to find another set of θin and yA,ex for which the shooting procedure is
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repeated. It is interesting to note that in this limiting case, the coupled homogeneous-

catalytic reaction system is completely characterized by one variable which can be

chosen to be the fluid exit temperature. This is the hallmark of a one state variable

bifurcation problem in the vocabulary of Bifurcation Theory (see Golubitsky and

Schaeffer, 1985).

2.2 Summary and comments on other models

Aside from the 2D model and its 1D limiting cases with axial or transverse gra-

dients only, several other models are popular in chemical engineering literature. The

present thesis focuses on models for short monolith or gauze reactors, for which 1D

model with transverse gradients only or its lumped variant are good models. We

would further like to make the following remarks (which are substantiated in ref-

erences [52-62]) about the hierarchy of models to describe homogeneous-catalytic

combustion so that our choice of model can be justified:

(i) The simplest of the models, namely the one dimensional pseudo-homogeneous

plug flow model is structurally unstable and does not show ignition/extinction but

only parametric sensitivity (ii) The pseudo-homogeneous model with no axial gra-

dients (which is included as a special case of our model when interphase gradients

are negligible) is robust but is good only for very small axial length scales and hy-

draulic diameters (micro-channels) [Remark: Structural stability or robustness here

implies that the bifurcation and/or qualitative features do not change when the model

is perturbed by including spatial gradients or other phenomena as long as the per-

turbations are small, see [Balakotaiah, 1996]] (iii) The 2-D boundary layer models

19



(of parabolic type) that ignore axial diffusion (conduction) are structurally unstable,

index infinity differential-algebraic system (and are not initial value problems). Fur-

ther, as explained in the literature articles [Gupta et al 2001, Gupta and Balakotaiah

2001], most computational codes do not consider the Gibbs’phenomenon (which does

not disappear even for arbitrarily small mesh size and leads to incorrect fluxes and

temperature overshoot at the point of ignition) and compute only a single solution.

The same comment applies to 3-D boundary layer models (iv) 2-D elliptic models

that include axial diffusion (conduction) but use Dirichlet boundary conditions at

the inlet to the channel represent the physics incorrectly and lead to thermodynamic

inconsistencies (e.g. fixing the inlet composition and temperature but including con-

duction/diffusion for x > 0 but not for x ≤ 0 can lead to temperatures above adiabatic

value even for long residence times, violating thermodynamic constraints) (v) 2-D el-

liptic models that use Danckwerts’boundary conditions are physically consistent but

are diffi cult to analyze for large values of the axial Peclet numbers (or longer length

scales in the flow direction) as the mesh size needed to eliminate spurious solutions

may be exponentially small (see for example, Dommeti and Balakotaiah, 2000). How-

ever, when axial length scales are small, they reduce to a one-dimensional model with

transverse gradients or its lumped two-mode version that uses heat and mass transfer

coeffi cients. These models are analyzed in the next chapter. This lumped two-mode

model is the simplest, non-trivial and physically consistent model that gives a coarse

map of the various bifurcations [Remark: 3-D elliptic models that include azimuthal

gradients are also practically impossible to analyze with the current computational

power as the mesh size needed to determine all the asymmetric solutions that may
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exist is extremely small, see Gupta et al, 2002). Thus, we expect the one-dimensional

model with transverse gradients or the lumped two-mode model to retain most of the

qualitative features of the 2-D elliptic models (at least for small values of the axial

Peclet numbers) except azimuthally asymmetric solutions.
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Chapter 3

Bifurcation Analysis for Oxidation

of Propane

3.1 Introduction

We present a comprehensive bifurcation analysis for the total oxidation of propane

in this chapter. As outlined in Chapter 1, catalytic combustion technologies, of which

the subject of the present chapter is a prototype, have been widely studied due to

their promise of meeting future energy demands and production of intermediate chem-

icals. As explained in Chapter 1, the models describing catalytic combustion and

catalytic partial oxidations typically involve both catalytic and homogeneous reac-

tions. Although homogeneous ignition in catalytic combustion has been investigated

in various settings such as stagnation point flows, external boundary layer flows and

two-dimensional channel flows (for a good overview of the subject see Hayes and Ko-

laczkowski, 1998), most of these studies have been direct numerical studies relying

on CFD packages. Multiple ignitions and extinctions are possible for such thermally

coupled systems, and a direct numerical study can obscure the essential features as

multiple reactions and space dimensions may detract from the underlying physics.
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The present chapter is structured as follows. We first give details of the develop-

ment of a simple but nontrivial model that incorporates all the essential physics and

chemistry and that is well-suited for bifurcation analysis. Next, we consider propane

oxidation with stoichiometric feed and investigate the possible bifurcation phenomena

for three limiting cases in which either the homogeneous reaction only occurs or cat-

alytic reaction only occurs or both reactions are present but no interphase gradients

exist. The insight obtained from these limiting cases is used to present a complete

bifurcation analysis of propane oxidation in short monolith or gauze type reactors and

the impact of inlet fuel mole fraction, residence time and channel hydraulic diameter

on the various ignitions and extinctions. In the last section, we summarize the results

and point out some possible extensions to this work.

3.2 Model development

Since the bifurcation analysis of a full three-dimensional model of homogeneous-

catalytic reaction system with convection and diffusion in both phases coupled with

detailed kinetics is much too diffi cult to be of any practical use (and also numerically

very expensive, if not impractical), we consider here a one-dimensional model with ra-

dial gradients and its lumped version. This model is valid for short monolith reactors

where the effects of reactor length are negligible. The reason such reactors are appro-

priate models for the combustion systems we are studying is because these processes

are very highly exothermic with high operating temperatures. This necessitates low

residence times (10−4 to 10−1 s), otherwise undesirable runaways to very high tem-

peratures are possible and side reactions may compromise the operation. The model
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considered is an extension of the so called "Short Monolith Reactor Model" developed

by Balakotaiah, Gupta and West (2000) and is applicable to systems such as short

monolith reactors, ceramic foam reactors, fibermat and gauze reactors in which the

length scale in the flow direction is small compared to the transverse length scale

of the reactor (The model is also applicable to a thin layer of packed-bed of cata-

lyst sandwiched between inert layers or the so called ‘shallow packed-bed catalytic

reactor’. Also the transverse length scale in a monolith is the channel hydraulic di-

ameter). Also, the short length scale in the flow direction allows us to ignore any

axial gradients within the system (but the state variables can be different from feed

values). Thus, we have several short monoliths in sequence making up a typical in-

dustrial monolith that is used in after-treatment systems. As shown in references

[55-59], multi-mode models of the type used here can be derived rigorously by spatial

averaging of the 2D/3-D governing equations by taking advantage of the disparate

length or time scales, and the reduced order lumped model considered here retains a

significant wealth of information and most of the qualitative bifurcation features of

the full model.

We use two versions of the short monolith model in this chapter: a one-dimensional

model described by a boundary value problem (described in Chapter 2) and a lumped

model described by a set of algebraic equations that utilizes heat and mass transfer

coeffi cients to describe the interphase gradients. In the rest of this section we detail

the model development for the lumped model as the other model has been discussed

in the last chapter.

We denote the fluid phase cup-mixing mole fraction of the j-th species by yj, solid-
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fluid interfacial mole fraction by yjs, the fluid phase cup-mixing temperature by Tf

, and the interfacial (or solid) temperature by Ts. Volumetric reaction rate for the

homogeneous reaction is denoted by rh(y) and that for catalytic surface reaction by

rc(ys). The parameter RΩ denotes the channel hydraulic radius of the monolith,

kcj and h denote the interphase mass transfer coeffi cient of the j-th species and the

interphase heat transfer coeffi cient, respectively. Mole and energy balances for an

oxidation reaction of the type A+ νB → P (in both the gas phase and catalyst) lead

to the following model at the steady state:

(yA,in(t)− yA)

τ
− kcAav(yA − yAs)−

εfrh(yA, yB, Tf )

C0

= 0, (3.1)

(yB,in(t)− yB)

τ
− kcBav(yB − yBs)− ν

εfrh(yA, yB, Tf )

C0

= 0, (3.2)

kcAav(yA − yAs)−
εsrc(yAs, yBs, Ts)

C0

= 0, (3.3)

kcBav(yB − yBs)− ν
εsrc(yAs, yBs, Ts)

C0

= 0, (3.4)

(Tf,in(t)− Tf )
τ

+
h

c̃pf
av(Ts − Tf ) +

εf (−∆HR)rh(yA, yB, Tf )

c̃pf
= 0 and (3.5)

− h

c̃pf
av(Ts − Tf ) +

εs(−∆HR)rc(yAs, yBs, Ts)

c̃pf
= 0. (3.6)

We assume that the rate of the catalytic reaction (based on unit reactor volume or

εsrc) depends only solid-fluid interfacial area and may be expressed in the form

εsrc(yAs, yBs, Ts)

C0

= εf ×
k0s

RΩ

exp

[
−Ec/R

Ts

]
yn
′

Asy
m′

Bs, (3.7)

25



where k0s (having units of velocity) is the rate constant for the surface reaction.

[Remark: For non-porous catalysts, k0s is determined experimentally by the surface

site density. For the case of a thin washcoat in which no diffusional limitations exist

and all the catalytic sites are accessible, k0s may be related to the rate constant based

on washcoat volume (k0v) and thickness (δc) by k0s = δck0v].

[Remarks: (i) We have expressed the rates in terms of mole fractions rather than

concentrations. This makes the calculations more convenient. (ii) An average value

for c̃pf is used in the calculation of (∆T ∗ad) so that the adiabatic temperature rise

predicted by the model is close to the true value with physical property variations].

Here, εf and εs (= 1 − εf) are the fluid and solid volume fractions in the reactor

and av is the solid-fluid interfacial area per unit reactor volume. It is related to the

hydraulic radius of the flow channel by

av =
εf
RΩ

. (3.8)

[The hydraulic radius RΩ is defined as the open cross-sectional area (volume) available

for gas flow over the solid-fluid interfacial perimeter (area). For a circular (square)

channel of diameter (side) 2a, RΩ = a/2. For a channel of arbitrary shape, the

hydraulic diameter dh is defined as dh = 4RΩ. For the case of parallel plates separated

by a distance 2a, RΩ = a]. The parameter σ is the ratio of solid to fluid volumetric

heat capacities, εc is the void fraction within the solid (catalyst) phase (εc is zero for

non-porous catalysts), c̃pf is the average volumetric heat capacity of the gas mixture

(c̃pf = ĉpf C0, ĉpf = average molar heat capacity of the gas mixture), C0 is the total
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molar concentration in the gas phase and

∆T ∗ad =
(−∆HR)C0

c̃pf
(3.9)

is a reference adiabatic temperature rise [When A is the limiting reactant or A and

B are in stoichiometric amounts in the feed, the actual adiabatic temperature rise

is (∆T ∗ad)yA,in. Here, Dmj and αf = kf/c̃pf are the mass diffusivity of species j and

thermal diffusivity of the gas mixture, respectively.]. To complete the model, we need

to specify how the heat and mass transfer coeffi cients depend on the inlet gas velocity

and other system parameters. Based on the work of Gupta and Balakotaiah (2001),

we use the following correlations for the transfer coeffi cients in monoliths that are

applicable for circular channels when the velocity profile in the channels is uniform

(or not developed):

kcj = 2
Dmj

RΩ

+

(
Dmj

τ

)0.5

and

h

c̃pf
= 2

αf
RΩ

+
(αf
τ

)0.5

. (3.10)

Similar correlations for other flow conditions in monoliths such as simultaneously

developing velocity, concentration and temperature profiles or fully developed lam-

inar velocity profile but developing concentration and temperature profiles in most

common geometries, as given in Gundlapally and Balakotaiah (2011) can be used

without changing any of the qualitative features of the model. Further, the above

form of the correlations is also applicable for other systems such as foam, fibermat,
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gauze type and shallow packed-bed reactors. [Remarks: The numerical coeffi cient in

the first term of the above correlations represents the asymptotic shape normalized

Nusselt/Sherwood number and depends only on the geometry of the channel open

to flow. The numerical coeffi cient and exponent in the second term depend on the

flow conditions (e.g. fully developed or simultaneously developing boundary layers)

but are independent of channel geometry. For the case of shallow packed-beds, the

form of the second term is different, where the exponents are different on the velocity

(or Reynolds number) and diffusivity (or Schmidt/Prandtl number), see for example,

Agrawal et al. (2007). Again, this new form does not alter any of qualitative bifur-

cation features studied here]. Here, Dmj and αf = kf/c̃pf are the mass diffusivity of

species j and thermal diffusivity of the gas mixture, respectively. The above lumped

model is completed by specifying the initial conditions. Finally, it should be pointed

out that for simplicity, we consider here only the adiabatic case and hence do not

include any heat loss terms either in the fluid or solid phase energy balances.

As stated in the previous chapters, more detailed models that include spatial gra-

dients in all directions and the coupling between the continuity, momentum, species

and energy balances can be developed. However, the bifurcation analysis of such de-

tailed models is rather diffi cult without a good understanding of the kinds of models

considered here.
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Adiabatic Invariants:

When the inlet conditions are independent of time, the steady-state lumped model

is described by six algebraic equations for the state variables yA, yB, yAs, yBs, Tf , and

Ts. However, in the adiabatic case considered here, we can reduce the number of

variables by taking advantage of the invariants. In this specific case, we can express

five of the state variables in terms of the fluid temperature as follows:

yA = yA,in −
(Tf − Tf,in)

(∆T ∗ad)
, (3.11)

yB = yB,in −
(Tf − Tf,in)ν

(∆T ∗ad)
, (3.12)

yAs = yA −
1

kcAavτ

[
yA,in − yA − τ

εfrh(yA, yB, Tf )

C0

]
, (3.13)

yBs = yB − ν
kcA
kcB

[yA − yAs] and (3.14)

Ts = Tf +
c̃pf
hav

[
(Tf − Tf,in)

τ
− (∆T ∗ad)

εfrh(yA, yB, Tf )

C0

]
. (3.15)

Substitution of these relations into the solid phase energy balance leads to a single

equation for the steady-state temperature of the fluid:

F (Tf ,p
∗) ≡ τ(∆T ∗ad)

[
εfrh(yA, yB, Tf )

C0

+
εsrc(yAs, yBs, Ts)

C0

]
−(Tf−Tf,in) = 0. (3.16)

Here, p∗ is a vector of various parameters characterizing the steady-state behavior

of the system. For example, these include the inlet mole fractions (yA,in,yB,in), the

space time (τ), inlet fluid temperature (Tf,in), the channel dimensions (RΩ), oper-

ating pressure (through the reaction rates), the catalyst properties and the kinetic
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parameters.

It is interesting to note that in the absence of spatial gradients and heat losses,

the coupled homogeneous-catalytic reaction system is completely characterized by

the fluid exit temperature. Once Tf is known, the other five state variables are

uniquely determined from the above relations. In the terminology of bifurcation (and

singularity) theory, the lumped model studied here is a one state variable bifurcation

problem. However, this may not be the case, when spatial gradients or heat losses are

included.

3.3 Bifurcation Analysis

In this section, we present an analysis of propane oxidation using global kinetic

models. We use global kinetics because our goal is to understand the thermal ef-

fects and coupling between the catalytic and homogeneous chemistry, and without

understanding the thermal effects, one cannot hope to solve the more complicated

problem where both thermal and chemical coupling (as a result of multiple reactions)

are possible. The complete combustion of propane in air is given by

C3H8 + 5O2 → 3CO2 + 4H2O, ∆H0
R = −2044 kJ/mol. (3.17)

The homogeneous rate expression for this global reaction is adapted from Westbrook

and Dryer (1981), while the catalytic rate expression is taken from Hiam et al. (1968).

We use global kinetics and assume that the rate of the homogeneous reaction can be
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expressed as

εfrh(yA, yB, Tf )

C0

= εf × k0h exp

[
−Eh/R

Tf

]
ynAy

m
B . (3.18)

We also assume that the rate of the catalytic reaction (based on unit reactor volume

or εsrc) depends only solid-fluid interfacial area and may be expressed in the form

εsrc(yAs, yBs, Ts)

C0

= εf ×
k0s

RΩ

exp

[
−Ec/R

Ts

]
yn
′

Asy
m′

Bs, (3.19)

where k0s (having units of velocity) is the rate constant for the surface reaction.

[Remark: For non-porous catalysts, k0s is determined experimentally by the surface

site density. For the case of a thin washcoat in which no diffusional limitations exist

and all the catalytic sites are accessible, k0s may be related to the rate constant based

on washcoat volume (k0v) and thickness (δc) by k0s = δck0v].

The various parameters used for the case of propane oxidation are listed in table

1. [Remarks: (i) We have expressed the rates in terms of mole fractions rather than

concentrations by using an average total concentration (21.3 moles/m3) over which

these expressions were validated (ii) average value for c̃pf is used in the calculation of

(∆T ∗ad) so that the adiabatic temperature rise predicted by the model is close to the

true value with specific heat variation with temperature].

Before we analyze the coupled system, we consider some limiting cases that are

helpful in the understanding of the bifurcation features of the full system using the

lumped model. The three limiting cases of interest are (a) homogeneous reaction only

(b) catalytic reaction only and (c) negligible interphase gradients.
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Table 3.1: List of kinetic, thermodynamic and transport parameters used in calcula-
tions for propane oxidation.

Parameter Value
αf 9.80 x 10−10 T 1.75

P
m2/s (T in K and P in bars)

cpc 1000 J/kg.K
c̃pf 875 J/(m3.K)
εf 0.9

Dpropane 5.25 x 10−10 T 1.75

P
m2/s (T in K and P in bars)

Doxygen 9.24 x 10−10 T 1.75

P
m2/s (T in K and P in bars)

k0h 2.67× 108 s−1

k0s 5.06× 104 m/s
Eh/R 15097 K
Ec/R 8555 K
n 0.1
m 1.65
n′ 1
m′ 0.5

∆T ∗ad 49757 K
ν 5

(a)Homogeneous reaction only:
The case of homogeneous reaction alone can be studied completely by analytical

techniques. This case serves as a useful reference point when we compare it to the

coupled system or the case in which only catalytic reaction operates. For simplicity,

we consider here only the case in which the feed contains stoichiometric amounts of

hydrocarbon (A) and oxygen (B). In this case, the steady-state equation simplifies

to

F1(Tf , Tf,in, τ , yA,in) ≡ τ(∆T ∗ad)

[
εfrh(yA, yB, Tf )

C0

]
− (Tf − Tf,in) = 0. (3.20)

This algebraic equation may be used to make a plot (bifurcation diagram) of exit

fluid temperature (Tf) or conversion (χ = 1− (yA/yA,in)) for any fixed residence time
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(τ) and inlet mole fraction (yA,in). Alternately, we can write this relationship in a

parametric form by a rearrangement of the above equation (and using the adiabatic

invariants). For example, we can express both Tf,in and Tf in terms of conversion as

Tf,in =
Eh/R

ln(Da(1−χ)N

χ
)
− (∆Tad)χ ; ∆Tad = ∆T ∗adyA,in, (3.21)

Tf = Tf,in + (∆Tad)χ and (3.22)

Da = k0hτεfy
N−1
A,in ν

m ; N = n+m. (3.23)

Now, a bifurcation diagram of Tf versus Tf,in can be constructed for any fixed yA,in

and τ by varying the conversion χ in the range (0, 1) and plotting equations (3.21) and

(3.22). To obtain the bifurcation set (i.e. the locus of ignition and extinction points)

in the ( Tf,in, yA,in) plane, we differentiate equation (3.21) w.r.t. χ and solve it along

with eqns.(3.21-3.22). This leads to a parametric representation of the bifurcation set

∆Tad =
Eh/R(1 + (N − 1)χ)

χ(1− χ)(ln(Da(1−χ)N

χ
))2

and (3.24)

Tf,in =
Eh/R

ln(Da(1−χ)N

χ
)
− Eh/R(1 + (N − 1)χ)

(1− χ)(ln(Da(1−χ)N

χ
))2
. (3.25)

The hysteresis locus, i.e. the locus of points where the ignition and extinction points

coalesce and disappear as the free parameter Da (or the residence time) is now var-

ied, can be obtained by solving for simultaneous vanishing of the function and the

first two derivatives of the equation (3.20) with respect to Tf . After some algebraic
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manipulation, we can express this locus in parametric form as:

Da =
χ

(1− χ)N
exp(

2( 1
χ

+ N
1−χ)2

( N
(1−χ)2 − 1

χ2 )
) and (3.26)

∆Tad =
Eh/R(1 + (N − 1)χ)

χ(1− χ)(ln(Da(1−χ)N

χ
))2
, 0 < χ < 1. (3.27)

We can use equations (3.22) and (3.23) to revert to variables τ and yA,in instead of

Da and ∆Tad and plot the hysteresis locus in the (τ , yA,in) plane. This is shown in

figure3-1. This locus serves as the boundary between the regions of uniqueness and

multiplicity of steady states. In the region above the curve we have S-shaped bifurca-

tion diagrams of fluid exit temperature (Tf) or conversion versus the inlet temperature

(Tf,in), but below the hysteresis locus, the bifurcation diagrams are single-valued. As

the inlet mole fraction of the fuel at hysteresis increases, the temperature attained at

the hysteresis point also increases due to increased adiabatic temperature rise. We

also note that decreasing the residence time shifts the bifurcation diagrams to the

right, i.e. the system has to reach higher temperatures before igniting because of the

short residence time.

We note that for higher values of the residence time and mole fraction, the ex-

tinction point can move to quite low values of inlet temperatures. In physical terms,

this implies that for high adiabatic temperature rise and residence time, the reac-

tion cannot be quenched even by suffi ciently reducing the inlet temperature (as it

becomes autothermal or self sustaining). We call the locus of parameter values where

the extinction point is at Tf,in = 300 K the boundary limit set (see Balakotaiah and

Luss (1983)). This can also be determined in a parametric form. It is also shown
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in figure3-1. Finally, using standard approximations (Zeldovich et al. (1985)), we

note that the ignition locus (whenever it exists) can be expressed analytically by the

expression

(
∆T ∗adyA,in
Tf,in

Eh
RTf,in

)[
k0hτεfy

N−1
A,in ν

m exp(− Eh
RTf,in

)

]
= 0.368. (3.28)

[Remark: The factor in the first bracket of Eq.(3.28) is the Zeldovich number while the

second term is the Damköhler number at inlet conditions]. Eq.(3.28) may be used to

determine the inlet temperature (Tf,in) at which ignition of the homogeneous reaction

occurs for any fixed values of inlet mole fraction (yA,in) and residence time (τ). For

example, keeping yA,in fixed at 0.02 and changing τ from 1 to 0.001s increases the

ignition temperature from 639K to 948K. Similarly, keeping τ fixed at 0.001s and

decreasing the fuel mole fraction from 0.02 to 0.002 increases the ignition temperature

further to 1350K. Thus, as can be expected intuitively, homogeneous ignition is

suppressed at low fuel mole fractions and short residence times. We return to this

observation as it is important in the understanding of the thermally coupled system

discussed later.

To summarize, the homogeneous reaction system has no ignition or extinction

points for suffi ciently low values of inlet fuel mole fraction and/or residence times,

has one ignition and extinction point for intermediate values of τ and yA,in , and only

an ignition point for values of (τ , yA,in) above the boundary limit set (BLS).

(b)Catalytic reaction only:
The equations determining the limiting case of catalytic reaction only can be
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obtained from the general model by taking the homogeneous reaction rate to be zero.

Thus, we have the steady state equation

F2(Tf , Tf,in, τ , yA,in) ≡ τ(∆T ∗ad)

[
εsrc(yAs, yBs, Ts)

C0

]
− (Tf − Tf,in) = 0, (3.29)

where

yAs = yA,in −
(

1 +
1

kcAavτ

)(
Tf,in − Tf

∆T ∗ad

)
, (3.30)

yBs = ν

[
yA,in −

(
1 +

1

kcBavτ

)(
Tf,in − Tf

∆T ∗ad

)]
, and (3.31)

Ts = Tf +
c̃pf
hav

[
(Tf − Tf,in)

τ

]
. (3.32)

The analysis of Eq.(3.29) is similar to that of the homogeneous case, except that sim-

ple analytical expressions are not possible (and the computations have to be carried

out numerically) due to the nonlinear dependence of the heat and mass transfer coef-

ficients on the residence time. As in the homogeneous case, for suffi ciently low values

of inlet mole fraction and/or residence times, the bifurcation diagram of Tf (or Ts, or

χ) is single valued. It has one ignition and extinction point for intermediate values

of τ and yA,in , and only an ignition point for values of (τ , yA,in) above the boundary

limit set. figure3-1 shows the hysteresis and boundary limit (BL) loci corresponding

to RΩ of 1.32 mm. Since the catalytic reaction has a higher rate and lower activation

energy compared to the homogeneous case, both the hysteresis and BL loci move to

lower values of inlet mole fraction or residence time (as expected). Our calculations
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also show that the solid temperatures attained at hysteresis point increase as the in-

let mole fraction of propane increases, which can be explained by increased adiabatic

temperature rise. The conversion at the hysteresis point, however, shows a small

decrease. It is evident that the hysteresis locus for the catalytic reaction always lies

below that for the homogeneous reaction. This implies that the catalytic chemistry is

dominant and leads to ignition first even with the large value of the hydraulic radius

( RΩ = 1.32 mm) selected. To make the homogeneous reaction dominant, we have to

increase RΩ further to unrealistically higher values. The fact that catalytic reaction

dominates the homogeneous chemistry is a recurring feature in ensuing work when

the thermally coupled system is analyzed. We return to this when we consider the

lean oxidation of methane.

One fundamental difference between the homogeneous and catalytic reaction case

is that, in the latter case, the conversion on the ignited branches can be small as it is

determined by the mass transfer of the reactants from the fluid phase to the wall. In

the limiting case in which the inlet temperature is very high, the catalytic reaction

can enter the mass transfer controlled regime practically at the inlet to the channel.

In this case, the concentration of the limiting reactant at the wall is zero. For the case

of propane oxidation, propane has smaller diffusivity than oxygen and hence is the

limiting reactant when the feed is stoichiometric. [However, for methane oxidation

studied later, oxygen is the limiting reactant for stoichiometric feed as diffusivity of

methane is higher than that of oxygen for any given temperature]. Setting yAs = 0

and replacing the catalytic reaction rate by the mass transfer rate gives a linear

equation, from which the conversion of the fuel, the solid and fluid temperatures can
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be determined to be

χ =
kcAavτ

1 + kcAavτ
, (3.33)

Tf − Tf,in = χ∆Tad, (3.34)

Ts − Tf,in = χ∆Tad(1 +
c̃pf
havτ

), and (3.35)

kcAavτ =
εf
P

[
2 +
√
P
]
. (3.36)

From the above relations, it is easily seen that for τ → 0, the solid temperature near

the inlet (after ignition) approaches the limit Tf,in + ∆Tad
Le0.5fA

. After ignition, both the

solid and fluid temperatures increase monotonically with τ for LefA > 1 [Remark:

For the case of LefA < 1, the solid temperature decreases while the fluid temperature

increases as τ increases. Also, as stated in the model formulation section, the exponent

on the Lewis number LefA depends on the nature of the flow conditions in the inlet].

It is clear from Eqs.(3.33) and (3.36), the important dimensionless parameter that

determines the conversion on the ignited branches is the transverse Peclet number

defined by Balakotaiah et al. (2000)

P =
R2

Ω

τDm,j

, (3.37)

where Dm,j is the average value of diffusivity of the limiting reactant in the gas phase.

It can be seen from Eq.(3.33) that for P � 1, the conversion on the ignited branch
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is mass transfer limited and is given by

χ ≈ εf√
P

for P � 1. (3.38)

[see also Gupta et al, 2001 for more accurate expressions for χ]. Thus, in figure3-1,

while the catalytic reaction is ignited in the region of low residence times and high

mole fractions, the conversion is low (due to mass transfer limitations). In contrast,

in the region of high residence times (P values of order 1 or smaller), the conversion is

high on the ignited branches. This transition point (at P values of order unity) is very

important in the understanding of the coupling between catalytic and homogeneous

chemistry. For example, when the inlet temperature is high, catalytic reaction can

ignite at extremely low values of τ(or very near the inlet when considering spatial

profile) but the reactant conversion (and fluid temperature) continues to increase (in

the mass transfer controlled regime) and reaches high values only for τ values of order

R2
Ω

Dm,j
(which is the characteristic transverse diffusion or mass transfer time).

We note that the channel hydraulic radius, which is the channel volume to sur-

face ratio, is a very important parameter that determines the conversion obtained

in the mass transfer controlled limit and also the degree of coupling between the

homogeneous and catalytic reaction. For example, decreasing the hydraulic radius

(by a factor 5) from 1.32mm to 264 µm shifts the hysteresis curve only slightly but

moves the transitional value of the residence time (at which P = 1) by a factor 25,

from 0.035s (for RΩ =1.32mm ) to 0.0014s (for RΩ = 264µm). Decreasing RΩ im-

pacts the catalytic reaction in two ways: (a) it enhances the catalytic reaction rate
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per unit reactor volume (b) it reduces the interphase heat and mass transport times

(and the transverse gradients) and increases the conversion on the ignited branches.

Thus, with other parameters fixed, decreasing the channel hydraulic diameter makes

the catalytic reaction more dominant (assuming that the catalytic activity per unit

surface area remains constant).

For low residence times, we observe that catalytic ignition may be favored by

lower heat transfer rate from surface to gas phase. Thus, the dependence of catalytic

hysteresis locus is not monotonic with respect to the channel hydraulic radius. This

can be better seen by determining the catalytic ignition locus using the standard

approximations as in the homogeneous case (Zeldovich et al., 1985). Such approxi-

mations were developed by Ramanathan et al. 2003. In the present case, the ignition

locus may be expressed as

(
∆T ∗adyA,in
Tf,in

Ec
RTf,in

)[
k0s

RΩ

εfy
N ′−1
A,in ν

m′ exp(− Ec
RTf,in

) (τ + τh)

]
= 0.368, (3.39)

where N ′ = n′ +m′ and the interphase heat transfer time τh is defined by

1

τh
= εf

[
2
αf
R2

Ω

+

√
αf
τR2

Ω

]
. (3.40)

Here αf is a constant value for the thermal diffusivity used in the approximation (we

took this value to be 7× 10−5m2/s), as the thermal diffusivity does not change much

in the temperature range of interest. Eq.(3.39) may be used to determine the inlet

temperature (Tf,in) at which the catalytic ignition occurs for any fixed values of the
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inlet fuel mole fraction (yA,in), residence time (τ) and channel hydraulic radius (RΩ).

We have plotted the ignition temperature as a function of the hydraulic radius at a

fixed value of residence time and inlet mole fraction in figure 3-2. As can be expected,

depending on the channel hydraulic diameter, for the same residence time and inlet

fuel mole fraction, the catalytic ignition temperature is about 150 to 200◦C lower than

the corresponding homogeneous value. We have compared the ignition temperatures

computed from the governing equation with the value determined by the analytical

ignition criterion and found an excellent agreement. As stated earlier, Tf,in at ignition

is not a monotonic function of RΩ. This is due to the fact while higher values of RΩ

lead to reduced reaction (or heat production) rate per unit reactor volume, they also

reduce the heat removal rate from the catalytic surface to the bulk gas (and hence

higher temperature difference between surface and bulk), thus pushing the ignition

temperature to lower values. In contrast, lower RΩ values increase the reaction rate

but also the heat removal rate from catalyst surface (with very small values of RΩ

corresponding to the homogeneous limit). Thus, the highest ignition temperature

may occur at intermediate values of RΩ. This can be seen more explicitly when we

rewrite the term (τ + τh)/RΩ as

τ + τh
RΩ

=
τ

RΩ

+
RΩ

εf

[
2αf +RΩ

√
αf
τ

] . (3.41)

When the first term in Eq.(3.41) dominates (at lower RΩ), the ignition occurs at the

reactor level with high conversion on the ignited branches. When the second term

dominates, we have local (catalytic) ignition with high surface temperature but low
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reactant conversion. The factor goes through a minimum (or the ignition temperature

is highest) when

RΩ =
2
√
ταf

(
√

2
εf
− 1)

. (3.42)

This is confirmed in figure 3-2. It can be seen that the maximum in the ignition

temperature becomes prominent at higher residence times (where the Nusselt number

attains a constant asymptotic value) like the value used for figure 3-2. The ignition

temperature reaches an asymptotic value at higher values of RΩ [Remark: The non-

monotonic dependence of the catalytic ignition temperature on the channel hydraulic

diameter appears to be a new result predicted by the model but it needs to be

validated experimentally].

(c)No interphase gradients:
If the system has negligibly small interphase gradients, the two-phase model effec-

tively behaves as a one phase system. This can be seen easily by taking the transfer

coeffi cients to be infinite in our full thermally coupled lumped model. Using the

adiabatic invariants then yields:

yAs = yA, (3.43)

yBs = yB, and (3.44)

Ts = Tf . (3.45)

This system is the homogeneous limit of the two-phase model and we need only one

temperature and concentration variable for each of the species. In this section, we
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Figure 3-1: Hysteresis and boundary limit loci for propane oxidation when only the
catalytic reaction operates for RΩ of 1.32 mm and when only the homo-
geneous reaction operates and for kinetic parameters in table 1.

43



Figure 3-2: Dependence of the feed temperature required for ignition as a function of
RΩ for the case of catalytic propane oxidation for a residence time of 1 s
and inlet propane mole fraction of 0.02.
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denote the mole fractions of reactants A and B by the symbols yA and yB, respectively,

and use the symbol T for the common temperature. We then obtain the following

limiting model:

τ(∆T ∗ad)

{
εf × k0h exp

[
−Eh/R

T

]
ynAy

m
B + εf ×

k0s

RΩ

exp

[
−Ec/R

T

]
yn
′

A y
m′

B

}
−(T−Tf,in) = 0,

(3.46)

yA = yA,in −
(T − Tf,in)

(∆T ∗ad)
and (3.47)

yB = yB,in −
(T − Tf,in)ν

(∆T ∗ad)
. (3.48)

Like the previous two limiting cases, here too we get only S-shaped bifurcation curves.

This is because for the system to have no interphase gradients, the characteristic times

of heat and mass diffusion have to be small compared to residence and characteristic

reaction times, leading to very small transverse Peclet numbers. This is possible

for micro-channels or low reactant concentrations or operations with large residence

times. The hysteresis loci for this case turn out to be almost the same as those

for catalytic reaction acting alone discussed above (this is expected because we only

have S-shaped diagrams and the hysteresis locus essentially accounts only for strong

catalytic reaction rates). We have not shown hysteresis plots here so as to avoid

redundancy. Instead, we show two other plots that provide some insight on the

impact of channel hydraulic radius and catalyst loading on the relative importance of

the catalytic and homogeneous reactions. In figure 3-3, we show two plots comparing
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the characteristic times of the catalytic and homogeneous reactions as a function of

temperature for two values of RΩ, namely (the unrealistic value) 3 cm in (a) and 1320

µm in (b). These characteristic reaction times at feed composition and temperature

are defined as

tR,hom o =
C0

rh(yA,in, νyA,in, T )
and (3.49)

tR,cat =
RΩC0

rc(yA,in, νyA,in, T )
, (3.50)

where the value of yin has been fixed at 0.02, respectively. We note that the catalytic

reaction time is larger than the homogeneous reaction time i.e. the homogeneous

reaction becomes important only at high values of T for very large value of RΩ (this

can also be achieved for much lower values of catalyst activity). This is intuitively

expected as the only way to make the homogeneous and catalytic rates comparable

(for fixed activation energies) is to reduce the catalytic activity either directly or

through reduced surface area.

Figure 3-4 shows a typical bifurcation set in the plane of RΩ and τ , calculated by

fixing values of Tf,in and yA,in and using stoichiometric feed of propane and oxygen.

This bifurcation set is composed of two curves, both of which start out as straight lines

with nonzero slopes and eventually become horizontal. The upper curve represents the

ignition locus and the lower curve represents the extinction locus. From the governing

equation (3.46), it can be seen that when the term containing the homogeneous

reaction rate is small, only the ratio τ
RΩ
matters for the bifurcation diagram and the

bifurcation set. However, if the term due to homogeneous reaction term dominates
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that due to the catalytic reaction, RΩ becomes inconsequential. This explains why

the ignition and extinction loci first behave as non-horizontal straight lines (catalytic

dominance) and then turn into horizontal asymptotes for suffi ciently large values ofRΩ

(homogeneous dominance). Another salient feature is that the horizontal asymptote

is not reached at the same value of RΩ for the ignition and extinction loci. This can

be accounted for by the fact that during ignition (on the quenched branches), only the

catalytic reaction contributes but on the ignited branches both reactions contribute

to the fuel conversion if the residence time is greater than that corresponding to the

horizontal asymptote of the homogeneous ignition point (≈ 0.01s in figure 3-4). We

also note that the turnover from catalytic dominance to homogeneous dominance

occurs at different RΩ values on the quenched and ignited branches (and depends

on the inlet temperature). In the next section, we observe that we can get double S

shaped diagrams in a certain range of parameters where the diffusion time is finite

and the residence time is small (much larger values of the transverse Peclet number)

and we show that larger transverse Peclet numbers (or shorter contact times) are

responsible for additional steady states when finite interphase gradients are present.

(d)Thermally coupled system:
In this subsection, a comprehensive analysis of both the one dimensional short

monolith model and its lumped two-mode version is presented. Our calculations

reveal that for both these models, aside from the standard S-shaped bifurcation dia-

grams that were shown in the previous section, we can also obtain double S-shaped

bifurcation diagrams with two ignition and two extinction points. As stated earlier,

the locations of these ignition and extinction points is of interest in the design and
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Figure 3-3: The characteristic reaction times of the catalytic and homogeneous re-
actions as functions of the temperature corresponding to yA,in =0.02 for
(a)RΩ =3 cm and (b) RΩ = 1.32 mm.
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Figure 3-4: Bifurcation set for propane oxidation for inlet mole fraction of 0.02 and
inlet temperature of 700 K in the residence time- hydraulic radius plane,
when interphase gradients are neglected.
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scale-up of reactors in which both catalytic and homogeneous reactions occur. The

relevance of the diagram type where the second ignition is to the right of the first

stems from the fact that we can then access an intermediate stable branch at which

temperatures are comparatively low and the homogeneous reaction is not ignited

(This behavior may also be of interest in partial oxidations with appropriate modi-

fications in the reaction steps and kinetics). Another important bifurcation diagram

is a double-S where the second ignition is to the left of the first. This means that the

system jumps to the high temperature ignited branch upon the first ignition. This

situation is of interest in the design of catalytically assisted burners.

We note that S and double-S bifurcation diagrams are persistent bifurcation di-

agrams in the unfolding of the singularity g(x, λ) := x5 − λ (Balakotaiah and Luss

(1983), Golubitsky and Schaeffer (1985)). This makes us suspect the presence of this

singularity in the phase space described by our model. According to the singular-

ity theory with one distinguished variable (the bifurcation variable) the singularity

g(x, λ) := x5 − λ has the universal unfolding given by

G(x, λ, α, β, γ) := x5 − αx3 − βx2 − γx− λ. (3.51)

Here, x is the state variable and α, β and γ are the unfolding parameters that are

necessary to describe all the persistent bifurcation diagrams of the system near the

singular point. We show in figure 3-5 schematic diagrams of the seven types of

bifurcation diagrams of x versus λ that exist next to the singular point.

To understand our combustion system in terms of the schematic diagrams of
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figure 3-5, we need to find analogs of the variable x and the parameters α, β and

γ. Let us first focus on the lumped version of the model. This model is described

in terms of the state variable Tf and several control parameters. In this section, we

take Tf,in as the bifurcation variable [Bifurcation diagrams with residence time or the

operating pressure as distinguished bifurcation variable are shown in later sections].

The auxiliary control parameters in the model, namely, the residence time, the inlet

mole fraction of reactants, and the hydraulic radius of the channel can serve as the

unfolding parameters [Remark: The pre-exponential factor and activation energy

for the catalytic reaction, which can be varied by changing the catalyst properties

can also be used as unfolding parameters but in this specific case, we take them

as fixed.]. Solutions of equation (3.16) for fixed values of the auxiliary parameters

leads to the bifurcation diagrams. Following the ignition and extinction points in

the bifurcation diagram as one of the extra parameters is allowed to vary generates

a bifurcation set. We have shown one such bifurcation set projected into the plane

of inlet mole fraction-inlet temperature for RΩ = 1.32 mm and a residence time of 3

ms for standard kinetic parameters in propane oxidation (figure 3-6). Furthermore,

we show a projection of the same bifurcation set in the plane of inlet mole fraction-

solid temperature (figure 3-7, top) and a projection showing the difference between

the solid phase and fluid phase temperatures as the inlet mole fraction of propane is

changed (figure 3-7, bottom). Beyond a certain value of yA,in, the catalytic extinction

moves outside feasible region and leads to physically meaningless catalytic extinction

points. This is why the curve corresponding to the catalytic extinction has not been

continued for high yA,in values. The fact that the difference TS − Tf always stays
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positive shows that along the entire locus, the solid phase is hotter than the gas

phase as a result of the catalytic reaction being dominant for the parameters selected.

The temperature difference between the two phases is especially large on the ignited

branches. We have marked seven special points in the bifurcation set (figure 3-

6): A and B representing hysteresis points, C and D, the double limit points and

the three boundary limit points: E, F and G. As the variables in our model pass

through the hysteresis point, the bifurcation diagrams undergo a transition from the

situation where locally a single-valued solution curve as a function of the bifurcation

variable (here Tf,in) is present to the case in which multiple solutions corresponding

to some range of Tf,in exist. We can now allow one more parameter to be freed

and trace the locus of the hysteresis points as this parameter changes. Tracing the

curve of points of intersection C and D from the bifurcation set generates a double

limit locus. A double limit locus describes the occurrence of more than one limit

point at a single value of the bifurcation variable (inlet temperature). As in the

previous section, for suffi ciently large residence times and inlet mole fractions, a

bifurcation diagram may become impractical as a part of the diagram crosses 300

K. As before, we call the locus of points where the ignition or extinction points

touch 300 K temperatures the boundary limit locus. Together the hysteresis, the

boundary limit and the double limit loci constitute a complete phase diagram for

the system and divide the phase space into various regions within which bifurcation

diagrams are qualitatively similar. We have shown a complete phase diagram for

the system at RΩ of 1.32 mm in figure 3-8. Of the seven local bifurcation diagrams

corresponding to the singularity above, five are possible in this phase diagram. We
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have marked the regions corresponding to these by the letter denoting the diagram

type from figure 3-5. The boundary limit locus classifies these five diagram types

further, and regions where diagram (c) is observed, for instance, gets divided into three

subregions denoted by (c1) through (c3). In theory, we obtain eleven qualitatively

different regions. We note that the hysteresis region to the right to the boundary

limit loci has no practical significance as the thermally coupled hysteresis moves to

very low temperatures. Thus, for regions marked as (c1) and (b1) in figure 3-9, only

a single ignition followed by a high temperature ignited branch are seen, and there is

practically no difference between the bifurcation diagrams corresponding to the two

regions. In figure 3-9, we show the bifurcation diagrams corresponding to the regions

where double S-shaped bifurcation diagrams are observed. In figure 3-9, we have

named the bifurcation diagrams with letters that match the archetypal bifurcation

diagram shown in figure 3-5 in order to clarify the analogy between our model and

the unfolding of the singularity. Case (c) corresponds to yA,in of 0.022 and τ of 5

ms, case (e) corresponds to yA,in of 0.026 and τ of 1 ms and case (g) corresponds to

yA,in of 0.024 and τ of 0.2 ms. We note that for inlet mole fractions greater than

0.025, say, the adiabatic temperature rise is quite large, and therefore, on the ignited

branches the temperatures reached are very high. Thus, although we have shown the

full phase diagram for the sake of theoretical understanding and completeness, only

the part of the diagram corresponding to inlet mole fractions below 0.025 may be

physically relevant [We also note that bifurcation diagrams denoted as (d) and (f) in

figure 3-5 can be observed only when a large enough value is selected for RΩ so that

the homogeneous reaction dominates or when the catalytic reaction rate is reduced
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by a factor hundred or more, but we have not pursued this calculation].

We now show the phase diagram for the one-dimensional short monolith model

in figure 3-10. It is obvious that this phase diagram is very similar to figure 3-8.

There is a slight increase in the regions of multiplicity which can be attributed to

the fact that approximations to transverse gradients using heat and mass transfer

coeffi cients were used in the lumped model. All the calculations till now use flat

velocity profiles. In figure 3-11, we show the computed phase diagram for the case

of a fully developed velocity profile. The first catalytic portion of the hysteresis

locus is almost unchanged, while the parabola-shaped thermally coupled portion of

hysteresis has slightly moved up compared to the previous phase diagrams. This can

be attributed to the fact that the Sherwood number (or the mass transfer coeffi cient)

for a parabolic velocity profile is less than that for a flat velocity (see Gupta and

Balakotaiah, 2001). Less concentration flux to the wall where the catalytic reaction

takes place leads to less temperature rise in the fluid phase and hence, a later ignition

due to the homogeneous reaction. Thus, our calculations for the one-dimensional

short monolith model reveal very similar bifurcation features to the lumped model

both qualitatively and quantitatively. This vindicates our extensive use of the lumped

model and shows that the heat and mass transfer coeffi cients are indeed very useful

to simplify models and study bifurcation phenomena. In the rest of this chapter and

the next, we confine ourselves to lumped models as our main goal to understand

qualitatively the bifurcation phenomena.

Before we close this subsection, let us make a comment about the 1D model

with axial gradients only. That model is valid in the limit of P → 0 and does not
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Figure 3-5: Schematic Bifurcation diagrams that exist in the unfolding of the singu-
larity x5 − λ = 0.
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Figure 3-6: Projection of the bifurcation set (ignition/ extinction locus) for propane
oxidation for residence time of 3 ms and hydraulic radius of 1.32 mm in
the inlet temperature- mole fraction plane.
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Figure 3-7: Projections of the bifurcation set for propane oxidation for residence time
of 3 ms and hydraulic radius of 1.32 mm in the solid temperature- mole
fraction plane (top) and difference of solid and gas temperatures- mole
fraction plane (bottom).
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Figure 3-8: Phase diagram for classification of different possible bifurcation diagrams
of state variables (conversion, fluid/solid temperature) versus inlet tem-
perature forpropane oxidation for hydraulic radius of 1.32 mm.
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Figure 3-9: Bifurcation diagrams of the exit fluid temperature (Tf) and conversion
versus the feed temperature (Tf,in) for propane oxidation for (c) yA,in=
0.022 and τ= 5 ms, (e) yA,in= 0.026 and τ= 1 ms and (g) yA,in= 0.024
and τ= 0.2 ms.
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consider any interphase gradients. We find that only S-shaped bifurcation diagrams

are possible (the bifurcation behavior is very similar to that shown in section 3.3 (c)).

This is because when the channel spacing is small, the catalytic reaction completely

dominates the homogenous reaction and the catalytic reaction is never mass transfer

controlled. Thus the thermal coupling effects that lead to double S shaped bifurcation

diagrams never come into the picture. A single catalytic hysteresis locus is observed.

As such the behavior of this model is not so interesting and we choose not to show

calculations for bifurcation diagrams or higher order singularities.

(e) Effect of channel hydraulic radius on thermal
coupling:
We repeat the calculation of the hysteresis loci for different values of the hydraulic

radius, RΩ and note that the parabolic shape obtained keeps shrinking as the channel

hydraulic diameter decreases. Upon consistently decreasing the hydraulic radius, we

find that the hysteresis locus is always composed of two disconnected smooth curves,

one resembling a straight line in log-linear scale and the other resembling a parabola

(as in figure 3-8). For brevity, we will refer to them as the lower and the upper

branch, respectively. It is notable that the catalytic contributions to the hysteresis

locus can be observed to be almost unchanged from the hysteresis with only catalytic

reaction taking place. This means that (for the values of the kinetic parameters used)

the homogeneous reaction does not influence the onset of multiplicity (or ignition/

extinction) due to catalytic reaction. This can be interpreted as meaning that at low

inlet fuel mole fractions and temperatures, the two reactions start off behaving like

sequential and uncoupled processes due to much higher activation energy of homoge-
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Figure 3-10: Phase diagram for the 1-D short monolith model with transverse gradi-
ents (for flat velocity) for propane oxidation with RΩ of 1.32 mm in the
plane of residence time and inlet mole fractions of propane.
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Figure 3-11: Phase diagram for the 1D short monolith model with parabolic velocity
profile for propane oxidation withRΩ of 1.32 mm in the plane of residence
time and inlet mole fractions of propane.
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neous reaction, but at higher inlet mole fractions (or ∆Tad), both reactions operate

side by side and influence each other.

In section 3(a), we showed that the homogeneous hysteresis (figure 3-1) by itself

shows a monotonic behavior, namely the residence time at hysteresis decreases as the

inlet mole fraction of propane is increased. However catalytically assisted combustion

shows a parabola-like hysteresis locus. We contend that this change is due to cou-

pling between the catalytic and homogeneous chemistry. In figure 3-12, we show a

comparison of the thermally coupled portion of the hysteresis loci for the cases of just

homogeneous chemistry and for the catalytically assisted combustion for RΩ values of

1320 µm and 264 µm. As the value of RΩ decreases, the thermally coupled portion

of hysteresis shrinks and moves up. At suffi ciently small values of RΩ like 50 µm,

we do not observe the upper branch at all. This means that as the channel diameter

decreases, the gradients between the two phases become smaller, until eventually we

reach the limit of the homogeneous model analyzed in the previous section. Further,

in this region, the bifurcation features are completely dominated by the catalytic

reaction [Remark: From the discussion in the previous section, it can be seen that

the coupled hysteresis locus can only exist in the region corresponding to P > 1, i.e.

when the catalytic reaction is mass transfer controlled. Thus, the right branch of the

parabola (in figure 3-12) may be termed "catalytically limited homogeneous hystere-

sis" while the left branch is much closer to the hysteresis for homogeneous reaction

only]. One important observation from figure 3-12 is that for practical cases where

fuel mole fraction is below 0.03, the thermally coupled hysteresis does not exist for

RΩ values below 264 µm (curve a). A second important observation from figures 3-8
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and 3-12 is that most numerical simulations of propane oxidation in the literature

using more detailed model with spatial gradients or micro-kinetics were for smaller

values of RΩ (below 264 µm) and higher residence times (0.1 to 1s) corresponding to

regions (b1) and (b2) of figure 3-8 (see for example,Karagiannidis et al., 2011). In

this region of parameter space, ignition (as well as extinction) is mainly dictated by

catalytic chemistry alone and (as explained further in the next section) depending on

the inlet temperature and fuel mole fraction, both reactions may contribute to the

fuel conversion on the ignited branches.

(f)Residence time as bifurcation variable :
We have analyzed the system behavior with feed temperature as the bifurcation

variable as it can be changed easily both in laboratory experiments as well as in

large scale system. In this analysis, the inlet fuel mole fraction, channel hydraulic

diameter and residence time (or flow rate/space velocity) are taken as fixed (unfold-

ing) parameters. While there are advantages to this analysis (e.g. the bifurcation

diagrams are qualitatively the same when the system is close to adiabatic or when

heat losses are small and Tf,in can be varied more easily and in a wider range than

other operating variables), the independence of the variables from axial variation is

a limitation of the models of this chapter. However, we can obtain insight on the

axial variation of the state variables and the correct qualitative picture of the appro-

priate profiles by taking the residence time as the bifurcation variable. As residence

time is directly proportional to the length of the reactor for a fixed velocity, changes

in residence times are analogous to varying axial positions in more detailed models

with axial gradients. While this does not mean exact prediction of features of more
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Figure 3-12: Comparison of the coupled catalytic-homogeneous portion of the hys-
teresis loci for propane oxidation for (a) RΩ = 264 µm and (b) RΩ

= 1.32 mm with (c) the hysteresis locus for the homogeneous reaction
alone.
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complex models with spatial gradients (in the flow direction) can be done using a

lumped model, some important qualitative features can still be studied by interpret-

ing residence time as taking on the role of length/location along the flow direction.

This is certainly meaningful for the adiabatic case considered here. For example, for

the case of a single step homogeneous or catalytic reaction only, the lumped model

always predicts the profiles qualitatively and even the quantitative differences are

small (e.g. for homogeneous singe step reaction, the difference between the ignition

points predicted by the two extreme cases of axial Peclet numbers of zero (CSTR)

and infinity (PFR) models is only a factor 2.718 in residence time or about 10 to 15K

in temperature. The same analogy applies for the catalytic reaction only case in both

the kinetic and mass transfer controlled regimes, see for example Gupta et al., 2001).

Further, when residence time is the bifurcation variable, as shown in by Balakotaiah

et al. 1995, the spatial profiles of the distributed model can be inferred from that of

the lumped model. Thus, in this section, we analyze the bifurcation behavior briefly

using the residence time as a bifurcation variable. [Remark: As stated in the model

formulation section, when the interphase gradients are negligible, the temperature

profile (Tf = Ts = T ) is obtained by integration of the initial value problem (that

follows from equation 3.46):

dT

dτ
= (∆T ∗ad)


εf × k0h exp

[
−Eh/R

T

]
ynAy

m
B

+εf × k0s

RΩ
exp

[
−Ec/R

T

]
yn
′

A y
m′
B

 , (3.52)

T = Tf,in at τ = 0.
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While this model always has a unique solution (and is structurally unstable, as men-

tioned earlier), the two-mode version of this model (or the addition of transverse)

gradients, as in boundary layer models, leads to an index infinity differential-algebraic

system that has an infinite number of solutions (see Gupta et al., 2001, Gupta and

Balakotaiah, 2001). When either axial or axial and transverse diffusion (conduction)

are included (and Danckwerts’boundary conditions are used in the flow direction),

and the axial Peclet numbers are not high, the bifurcation features of the 1-D/2-D

(elliptic) model are again similar to the lumped model discussed here (see Gupta et

al., 2001, Balakotaiah et al. 1995).]

We show in figure 3-13 three bifurcation diagrams (of solid, fluid temperatures

and conversion versus residence time) for different inlet temperatures. In case (a),

the inlet temperature is low (Tf,in = 400K) and hence the catalytic reaction requires

longer residence times to ignite (with ignition at τ = 1.2s). However, after ignition,

the conversion is nearly unity as the inter-phase gradients are small in this region

of high residence times (or length along the flow direction) and the minimum resi-

dence time needed to get complete conversion in the mass transfer controlled regime

R2
Ω

Dm,j
= 0.035s is much smaller than the actual residence time. Interphase temperature

gradients still exist at residence times (or distances) much smaller than 0.035s. Also,

the profiles of fluid temperature and conversion are similar to the upper branch of the

bifurcation diagram (when local residence time is scaled by the total residence time to

obtain dimensionless distance along the reactor). We also note that the logarithmic

scale used in these figures resolves the profiles much better than linear scales used in

most literature studies. For example, with a residence time of 1s, the solid temper-
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ature profile on the ignited branch will appear nearly flat on a linear scale and solid

and fluid temperatures differ only in the front 1% of the length and fuel conversion

is nearly complete in the front 10% of the length. Further, the homogeneous reaction

shows no ignition by itself but contributes to the reactant conversion for fluid temper-

atures exceeding about 1100K. However, by the time the fluid temperature reaches

1100K, 70% of the reactant is already converted by the catalytic reaction (with the

solid temperature still higher than fluid temperature) and both reactions contribute

to the conversion of the remaining fuel. We also note that the extinction point is at

extremely short residence times (four orders of magnitude in length or velocity) and

is determined by the catalytic chemistry alone. As the inlet temperature is increased

to 500K (case (b)) the bifurcation diagram contains four limit points with the homo-

geneous reaction also having ignition and extinction. However, these homogeneous

limit points occur for residence times lower than that at the (first) catalytic ignition

(at τ = 1.83 × 10−2s). Thus, the system goes to high conversion state upon first

ignition with both homogeneous and catalytic reactions contributing to the reactant

conversion. [Remark: The two extinctions, first the homogeneous and then catalytic,

can be observed only when the residence time (velocity) is decreased (increased)].

As the inlet temperature is increased further to 600K, the catalytic reaction ignites

at very short residence time (or length) of τ = 2.1 × 10−4s (and enters the mass

transfer controlled regime) but the conversion and temperature in the fluid phase

increase only slowly until the homogeneous reaction also ignites at τ = 4.3 × 10−3s

and Tf ≈ 1000K, Ts ≈ 1470K and about 40% conversion of the reactant.

At suffi ciently high inlet temperatures, the residence time at the ignition point
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of the catalytic reaction becomes exponentially small and the catalytic reaction is in

the mass transfer controlled regime from practically τ = 0. Further, the separation

between the catalytic and homogeneous ignition becomes larger (or the the hysteresis

loops are clearly separated with the catalytic ignition/extinction at extremely short

residence times compared to homogeneous case). This is shown in figure 3-14 (a) for

Tf,in = 700K. In the same figure, we have also shown the rates of the homogeneous

and catalytic reactions along the bifurcation diagrams. It is obvious from figures

3-14 (b) and (c) that the catalytic reaction ignites at much lower residence times

(or shorter distances) than the homogeneous reaction. Also the catalytic reaction

rate upon ignition is about four times larger than that of homogeneous reaction

upon ignition. The two rates become comparable only around 1100K and then the

homogeneous reaction dominates (but with only a small amount of fuel left). Upon

repeating this calculation for different values of Tf,in (though we have not shown it

here for brevity), we found (as expected) that this temperature at which the two

reaction rates become comparable is always achieved at around 1100 K, and changes

only with RΩ (moving to higher values with increasing RΩ).

In order to illustrate further how the homogeneous and catalytic chemistry sepa-

rately contribute to the fuel conversion, we show in figure 3-15, bifurcation diagrams

for Tf,in = 700K in the thermally coupled system (top), the system with catalytic

reaction alone (middle), and the system with homogeneous reaction alone (bottom).

These calculations were done with stoichiometric feed, yA,in = 0.02, RΩ of 500 µm

and εf of 0.83 so as to make some qualitative comparisons between our calculations

with the stability maps presented in Karagiannidis et al. (2011). Their calculations
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with channel flow microreactors take heat losses into account. However, the adia-

batic system appears as a special case when the external heat transfer coeffi cient is

zero. The stability maps presented in Karagiannidis et al. (2011) always show one

ignition-extinction pair for the systems they consider. We are unable to match their

calculated residence times for ignition or extinction with our calculations of thermally

coupled or catalytic reaction system. In fact, in our model, catalytic chemistry ignites

and attains a mass transfer controlled regime at much lower residence times than the

limit points shown in Karagiannidis et al. (2011). We believe that this disparity is

due to different catalytic kinetics considered in Karagiannidis et al. (2011) than the

global kinetic model used in our calculations [Remark: Another possible reason for

the disagreement may be the mesh resolution used in the calculations. Our calcula-

tions in figure 3-15 indicate that in order to observe catalytic ignition and extinction

in a 1-D or 2-D model with Danckwerts’boundary condition at the inlet and a resi-

dence time of about 1s, one need to use about 106 or more mesh points in the axial

direction alone. We also note our model becomes more accurate at short residence

times]. However, we note that the ignition and extinction points calculated by our

model where only the homogeneous chemistry is acting shows good agreement with

the limit points in the stability map presented in Karagiannidis et al. (2011). We

present more detailed comparisons in the next chapter on methane oxidation where

we consider lean feed as well as combustion at higher pressures.

(g) Infinitely fast catalytic reaction:
The final limiting case we consider is that of infinitely fast wall reaction. First,

as we have already illustrated above, this limiting case is not realistic at lower feed
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Figure 3-13: Bifurcation diagrams of fluid temperature (dashed lines), solid temper-
ature (solid lines) and conversion (χ) versus the residence time (τ) for
yA,in =0.02, RΩ= 1.32 mm and Tf,in = 400 K (top), 500 K (middle) and
600 K (bottom).

71



Figure 3-14: Bifurcation diagrams ((a)) of the exit fluid temperature (dashed lines)
and solid temperature (solid lines) versus the residence time (τ) and
reaction rates along them ((b) and (c)) for yA,in= 0.02, Tf,in= 700 K
and RΩ=1.32 mm.
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Figure 3-15: Bifurcation diagrams of the exit fluid temperature (dashed lines), solid
temperature (solid lines) and conversion (χ) versus the residence time
(τ) for propane oxidation for yA,in = 0.02. RΩ= 500 µm and Tf,in= 700
K. The top figure corresponds to thermally coupled system, the middle
figure to the case when only catalytic reaction operates, and the bottom
picture to the case when only homogeneous reaction operates.
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temperatures where the catalytic reaction may not ignite for short residence times.

For longer residence times and lower inlet temperatures, the catalytic reaction ignites

but the conversion is nearly unity on the ignited branch. However, for higher inlet

temperatures, as illustrated in figures 3-13 and 3-15, the catalytic reaction ignites

very near the inlet and is practically in the mass transfer controlled regime over

the entire length of the monolith. Thus, while the bifurcations due to catalytic

reaction may be eliminated with the assumption of infinitely fast wall reaction, there

is an advantage in analyzing this limiting case as it avoids the numerical diffi culties

associated with calculation of the catalytic ignition and extinction points. A second

reason we consider this case is that it can reveal the utility as well as any limitations

of our 0-D 2-mode model by comparing the predictions with the asymptotic analysis

and CFD computations presented in the literature, see for example the work of Zheng

and Mantzaras (2014). Again, for simplicity, we consider here only propane oxidation

with stoichiometric feed. In this case, as already noted above, the assumption of

infinitely fast reaction corresponds to setting yAs = 0 and simplifies the steady-state

equation to

F∞(Tf ,p
∗) ≡ τ(∆T ∗ad)

[
εfrh(yA, yB, Tf )

C0

+ kcAavyA

]
− (Tf − Tf,in) = 0 (3.53)

with yA and yB(= νyA) defined by Eq.(3.11).

Since the bifurcation analysis of Eq.(3.53) is similar to that of the homogeneous

reaction only (the main difference being the extra mass transfer term), we present
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only some sample results for comparison with literature values. We show in figure

3-16 (A) (top left diagram) the hysteresis curves for three values of RΩ (1320µm,

900µm and 600µm) and note that these are practically the same as those shown in

figure 3-12 with finite rate of wall reaction. This confirms our earlier explanation, i.e.

the upper branch of hysteresis locus corresponds to the ignition of the homogeneous

reaction with catalytic reaction already in the mass transfer controlled regime. Figure

3-16 (parts B, C and D) compares the bifurcation diagrams of solid and fluid temper-

atures as well as fuel conversion as a function of residence time with and without the

assumptions of infinitely fast catalytic reaction for parameter values corresponding to

RΩ = 600µm, Tf,in = 600 K and yA,in = 0.02 (typical to the case considered in Zheng

and Mantzaras (2014), except for the pressure]. As expected, even at this high inlet

temperature, the difference between the two cases is large at short residence times

(near the inlet to the channel).

Zheng and Mantzaras (2014) present asymptotic analysis as well as numerical

calculations for the case of propane (as well as other fuels) oxidation using detailed

models that account for flow development effects as well as physical property varia-

tions and homogeneous chemistry but with the assumption of infinitely fast catalytic

reaction. These authors discuss the possibility that when the Lewis number for the

limiting reactant is larger than unity, the temperature of the fluid (e.g. at the center

of the channel) can exceed that of the wall leading to super-adiabatic temperatures

in the gas phase. The model analyzed here, which uses only two temperatures to

measure transverse gradients, does not predict such solutions (if they exist). As

stated in the model formulation section, this limitation of the two-mode model can
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be removed by using the three-mode model. However, it should also be pointed out

that super-adiabatic conditions may occur only either in a very narrow range of pa-

rameters or not at all. We observe that in predicting the superadiabatic conditions,

Zheng and Mantzaras make several unrealistic assumptions such as infinitely fast wall

reaction (not valid at low temperatures) and negligible axial diffusion/conduction (or

no upstream diffusion effects) which are known to lead to physically (or thermody-

namically) inconsistent results. We discuss these issues further in Chapter 5 after

discussing methane oxidation in the next chapter.

3.4 Summary and discussion

To sum up, the following important observations follow from the bifurcation analy-

sis of propane oxidation:

(i) For the rate expressions we have used and for the values of RΩ below 1.32 mm,

the catalytic reaction dominates, and the first ignition is due to catalytic reaction

alone. The lower branch of hysteresis locus is nearly the same as that obtained by

considering only the catalytic reaction.

(ii) For the kinetics used in this work, thermal coupling between the homogeneous

and catalytic oxidation can occur either for higher values of RΩ and/or at short

contact times and/or higher inlet mole fractions.

(iii) When the catalytic reaction dominates, the solid phase temperature at igni-

tion or extinction is always larger than the gas phase temperature. [Since the Lewis

number for propane oxidation is greater than unity, the surface/solid temperature af-

ter ignition is lower than the adiabatic value, as can be seen in figures 3-13, 3-14 and
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Figure 3-16: For the case of infinitely fast wall reactions, hysteresis loci for RΩ of
(i) 600µm, (ii) 900 µm and (iii) 1.32 mm, and bifurcation diagrams
(solid lines for finite catalytic rates) with RΩ=600 µm, yA,in = 0.02 and
Tf,in = 600 K.
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3-15. Further, when residence time is taken as the bifurcation variable, no isolated

branches can exist in the adiabatic case. However, this is not the case when the Lewis

number is less than unity (especially if it is less than 0.5 as in the case of hydrogen ox-

idation). Also, the case of fluid temperature being higher than solid temperature can

occur when the homogeneous reaction dominates. This case as well as the conditions

for existence of super-adiabatic temperatures is left for future investigations].

(iv) For certain values of parameters (inlet temperatures, residence time and inlet

mole fractions), we can obtain a stable intermediate temperature branch where only

the catalytic reaction is ignited and the conversion of the reactant is much lower than

unity. The rest of the thermally coupled region of hysteresis leads directly to a high

conversion, high temperature branch.
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Chapter 4

Bifurcation Analysis for Oxidation

of Methane

4.1 Analysis of bifurcation features of methane ox-

idation with a Pt based catalyst

In this chapter, the important practical case of methane oxidation is examined for

the case of both lean and rich feeds with the operating pressure as the bifurcation

variable and the predicted results are compared with available experimental results

and calculations based on CFD models in the literature.

Having analyzed the phase space of propane oxidation system in the last chapter,

we can now follow the same procedure for methane oxidation. Calculation of bifurca-

tion diagrams, bifurcation sets and hysteresis loci for methane oxidation requires no

methodological changes and yields results that are qualitatively very similar to the

case of propane oxidation when we use kinetic parameters values fromWestbrook and

Dryer, 1981 and Hiam et al. 1968 (henceforth referred to as the base case). [Remark:

In addition to changes in the activation energies, the maximum fuel mole fraction

in a stoichiometric feed is now 0.095]. However in industrial settings, methane ox-
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idation is often carried out using catalysts based on transition metal oxides rather

than precious metals. These transition metal oxides tend to have lower activity when

compared to precious metals based on which the rate expressions in Westbrook and

Dryer, 1981 and Hiam et al. 1968 have been calculated. Therefore in this section, we

also show bifurcation features of systems where the catalytic reaction rate is hundred

and thousand times smaller than those estimated in Hiam et al. 1968. For brevity, we

only present some sample calculations and some comparisons with literature for the

base case where the results are similar to those presented above for propane oxida-

tion because the catalytic reaction dominates over the homogeneous. We then discuss

bifurcation features when the catalyst loading is decreased from the base case and

note the qualitative differences that appear. In the next section we show bifurcation

calculations using the more commonly used transition metal catalysts.

We start by showing a computed phase diagram for the base case forRΩ = 1.32 mm

in figure 4-1. The hysteresis diagram in figure 4-1 again consists of two disconnected

curves: one that looks linear and another that looks parabolic. A narrow double limit

locus of the same shape as that in figure 3-9 also exists, but we have not shown it

here. We also plot a comparison of the thermally coupled portion of the hysteresis

diagrams for methane oxidation as the channel hydraulic radius is decreased (figure

4-2). This diagram is analogous to figure 3-11, except for the fact that it takes lower

values of RΩ to make the hysteresis diagram move out of the plane of feasible mole

fractions and residence times.

If we lower the catalyst loading to make the reaction rate hundred times less than

that in the base case, we still encounter a hysteresis locus of the same shape as those
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Figure 4-1: Hysteresis and boundary limit locus for methane oxidation for RΩ of 1.32
mm with k0h = 1.15× 1010 s−1 and Eh/R = 25356 K and k0s = 6× 106

m/s and Ec/R = 16204 K.
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Figure 4-2: Comparison of the coupled catalytic-homogeneous portion of the hystere-
sis loci for methane oxidation for RΩ of (a) 60 µm, (b) 100 µm, (c) 264
µm and (d) 1.32 mm, respectively.
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presented above. To avoid redundancy, we instead show a bifurcation set for the

system with k0s = 6 × 104m/s with RΩ of 400 µm in the plane of inlet temperature

and residence time when the inlet mole fraction of methane is fixed at 5 % (figure

4-3). We have marked three special points in the diagram: points A, B and C which

are hysteresis points. As the residence time is varied, there is only one hysteresis

point for a single value of inlet mole fraction of methane. However the thermally

coupled portion of the bifurcation set admits two hysteresis points, meaning that for

the same value of yin, as τ is varied two hysteresis points are possible. This is an

obvious consequence of the parabolic shape of the typical hysteresis loci shown above.

Also the thermally coupled portion of the bifurcation set is shaped like a crescent. Its

narrow width indicates that the region of thermally coupled hysteresis is very small.

If we decrease the catalyst loading further and reduce the k0s to be 6 × 103m/s,

a change in the shape of the phase diagram is observed (figure 4-4. There are still

two disconnected portions of the hysteresis locus, but the lower of these is now due

to homogeneous reaction. This is verified by comparing the hysteresis diagrams when

only the homogeneous reaction operates to the thermally coupled case. No appreciable

changes in the hyperbola-shaped lower branch of the hysteresis curve is observed

when catalytic reaction is turned off. The upper branch of the hysteresis locus no

longer looks parabolic and instead has two smooth components joining each other

sharply at a point. In figure 4-4, this sharp point is marked as point A. It is a

higher order singularity at which the hysteresis point is the result of three limit points

merging together (The analogous point in Catastrophe Theory is called a Swallowtail.

Singularity Theory with a distinguished variable, however, refrains from using any
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Figure 4-3: Bifurcation set for methane oxidation in the plane of inlet temperature
and residence times when the catalyst activity is lowered to make k0s =
6× 104m/s and yA,in = 0.05 and RΩ = 400µm.
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names for this singularity). The double limit locus is also of a different type in this

case- it starts at point A and consists of just a single curve, demarcating two different

regions of five steady states. Calculation of bifurcation diagrams in these two regions

yields the archetypal diagrams (d) and (f) shown in figure 3-5, which could not be

obtained in the calculations for propane oxidation. In contrast to propane oxidation,

we now have a "homogeneously-assisted catalytic combustion". We have shown two

typical bifurcation diagrams corresponding to the thermally coupled region in figure

4-5 - case (i) corresponds to the archetypal diagram (d) and case (ii) corresponds

to the archetypal diagram (f). Note that both these bifurcation diagrams have been

shown here only to illustrate the configurations of various ignitions and extinctions;

from a practical standpoint, both diagrams in figure 4-5 are useless.

To explain why the dramatic change from the usual phase diagram occurs in this

case, we compare the hysteresis loci due to homogeneous reaction acting alone with

those for catalytic reaction acting alone for three different values of k0s : 6×106 m/s,

6×104m/s and 6×103 m/s when the hydraulic radius is fixed at 400 µm (figure 4-6).

We notice that for the case of k0s = 6 × 106 m/s, the catalytic hysteresis is much

below the homogeneous hysteresis curve, meaning that the system is dominated by

the catalytic reaction. In the case of k0s = 6×104 m/s, the location of hysteresis curve

is somewhat comparable to homogeneous hysteresis and our calculations show that

the thermally coupled hysteresis diagram obtained in this case has a lower (almost

linear) branch that is very close to the hysteresis due to catalytic reaction alone.

However when k0s is taken to be 6× 103 m/s, the homogeneous hysteresis is strictly

below the catalytic hysteresis and the system is dominated by homogeneous reaction
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Figure 4-4: Hysteresis and double limit locus for methane oxidation for RΩ of 400 µm
with k0h = 1.15× 1010 s−1 and Eh/R = 25356 K and k0s = 6× 103 m/s
and Ec/R = 16204 K.
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Figure 4-5: Bifurcation diagrams for methane for RΩ of 400 mmwith k0h = 1.15×1010

s−1 and Eh/R = 25356 K and k0s = 6 × 103 m/s and Ec/R = 16204
K. We have chosen yA,in = 0.09 and (i) τ = 2.4 × 10−5s and (ii) τ =
4.5× 10−6s.
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Figure 4-6: Hysteresis locus for methane oxidation for the case of homogeneous reac-
tion acting alone (solid curve) and catalytic reaction acting alone (−−−
k0s = 6× 106m/s, − ·− · −· k0s = 6× 104m/s and · · · k0s = 6× 103m/s)
for RΩ = 400µm).

rather than the catalytic. Recall that all our calculations for propane oxidation were

for systems where the catalytic reaction dominated. This explains why we are now

able to obtain the other two bifurcation diagrams (d) and (f): they show up when

the system is dominated by homogeneous reaction, which turns out to be the case

when the catalyst activity is lowered. Thus, either the catalytic or the homogeneous

chemistry can be made to dominate by appropriately varying the catalyst loading/

activity or the hydraulic radius.

Finally, we consider what happens when one of the few parameters whose variation
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we have not considered yet, namely C0 (or the variable expressing the effect of operat-

ing pressure) is changed. The work of Di Benedetto et al. (2012) and Barbarato et al.

(2012) considers computations and experiments where the operating pressure is used

as the bifurcation variable. The following computation serves as a point of qualitative

comparison with their work (in the next section we use the same kinetics as used in

these works and make more comparisons). A plot of the projection of bifurcation set

for methane oxidation in the plane of total concentration (C0) and the residence time

(τ) is shown in figure 4-7. We observe that the operating concentration (pressure)

at ignition increases as the residence time is decreased and that the extinction curve

always lies below the ignition curve. Both of these observations are quite expected.

The width of the hysteresis decreases as the residence time is increased. This happens

because we fix the inlet temperature at the particular value of 600K and at higher

residence times, both ignition and extinction are driven to lower temperatures for

most values of operating pressure.

To summarize the conclusions of this section, we note that if the catalytic rate

is higher (as in the case of precious metal based catalysts), the bifurcation features

of methane oxidation are similar to that for propane oxidation. However, with much

lower catalytic rates (as in the case of transition metal oxides), the phase diagram

describing different possible bifurcations undergoes a drastic change and either the

catalytic or the homogeneous chemistry can be made to dominate by appropriately

varying the catalyst activity, fuel mole fraction or channel hydraulic radius.
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Figure 4-7: Projection of the bifurcation set for methane oxidation in the plane of
total concentration (C0) and the residence time (τ) when RΩ is 400 µm
with Tf,in fixed at 600 K and yA,in at 0.05.
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4.2 Bifurcation Analysis of methane oxidation with

Transition Metal Oxide catalysts

Since we have already illustrated the bifurcation features with inlet temperature

and residence time as bifurcation variables in the previous section, here we consider

the operating pressure as the bifurcation variable. In practice, methane oxidation is

often carried out using catalysts based on transition metal oxides rather than precious

metals (as the former are more stable at high temperatures) and also under pressures

that are higher than 1 bar, see for example [Di Benedetto et al. (2012), Barbato

et al.(2012)]. The kinetics for the oxidation of methane on transition metal oxides

is different than that on precious metals (e.g. Pt or Pd) and is generally slower by

about one order of magnitude (at the same temperature). Further, in applications

such as power generation, only lean combustion is of interest. (However in catalytic

partial oxidations, bifurcation behavior with rich feed is of interest). Therefore, we

examine here the bifurcation features of thermally coupled lean oxidation of methane

using the recently established catalytic rate expressions used by Di Benedetto et al.

In these calculations, we take mean specific heats (so that the adiabatic temperature

rise is accurate) but include the dependence of the transport properties on the state

variables.

The complete combustion of methane in air is given by

CH4 + 2O2 → CO2 + 2H2O, ∆H0
R = −802.6 kJ/mol. (4.1)
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The homogeneous rate expression which is adapted from Westbrook and Dryer, 1981

(valid for equivalence ratio between 0.5 and 1.5 and pressure up to 25 bars) may be

expressed as

rh(yA, yB, Tf ) = k0h exp

[
−Eh/R

Tf

]
y0.2
A y1.3

B

(
P

RTf

)1.5

. (4.2)

(with units of moles.m−3.s−1). The catalytic reaction rate for LaMnO3/La-γ-Al2O3

catalyst is taken from Di Benedetto et al. [42] and may be expressed as

εsrc(yAs, yBs, Ts) =
εf × 3.8× 103

RΩ

 k1 exp
[
−Ec1/R

Ts

]
k2 exp

[
−Ec2/R

Ts

]
y
CH4,s

yO2,sP

k1 exp
[
−Ec1/R

Ts

]
y
O2,s

+ 2k2 exp
[
−Ec2/R

Ts

]
yCH4,s

 .

(4.3)

(Here, εsrc is the rate based on unit reactor volume and has units of moles.m−3.s−1).

Besides the dependence of the transport properties on the state variables, the resi-

dence time (in the experiments that our model is applicable to) also changes with the

pressure and flow rate. If Q is the gas flow rate (in liters/hour) at STP conditions,

the velocity through the channels of a monolith is given by

〈u〉 = 3.75× 10−3Q

P

Tf,in
273.15

, (4.4)

where 〈u〉 is in m/s, Tf,in is in Kelvins, Q is in slph and P is in bars. For channel of

length 50 mm, the residence time (in seconds) then takes the functional form

τ = 13.33

(
P

Q

)(
273.15

Tf,in

)
. (4.5)
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Table 4.1: List of kinetic, thermodynamic and transport parameters used in calcula-
tions for methane oxidation.

Parameter Value
k0h 2.119×1014 (moles/m3)−0.5.s
Eh/R 24356 K
k1 3.52×105 moles/m2bar.s

Ec1/R 12632 K
k2 2.83×1010 moles/m2bar.s

Ec2/R 26321 K
αf 9.80 x 10−10 T 1.75

P
m2/s (T in K and P in bars)

ĉpf 35 J/(mole-K)
εf 0.78

Dmethane 9.88x 10−10 T 1.75

P
m2/s (T in K and P in bars)

Doxygen 9.24 x 10−10 T 1.75

P
m2/s (T in K and P in bars)

The various parameters used in the model calculations are listed in table 2.

We start by showing a few bifurcation diagrams computed for the same operating

conditions as the experimental results presented in Di Benedetto et al. (2012) and

Barbato et al. (2012), namely RΩ = 183µm, Tf,in = 733K, yA,in = 3.7 % and yB,in =

10 %. These authors also present computational results using the same global kinet-

ics but with more detailed models that include spatial gradients. The calculations,

shown in figure 4-8, reveal that our model predicts the ignition points quite close to

the experimental data of Di Benedetto et al. (2012) and Barbato et al. (2012). How-

ever, the calculated extinction points do not match the experimental results. This

discrepancy could be attributed to the fact that our model is adiabatic and laboratory

scale experiments including those of Di Benedetto et al. (2012) involve heat losses,

leading to different extinction points [Remark: The calculations of Barbato et al. for

the adiabatic case with a different rate expression do not show extinction up to a

pressure of 1 bar but these authors have not extended their calculations for operating

93



pressures below 1 bar]. Next, an ignition-extinction locus is calculated and plotted

in the plane of operating pressure and the flow rate (figure 4-9). We find that the

extinction locus is confined to very low operating pressures while ignition locus is

quantitatively close to the results of Di Benedetto et al. (2012) and Barbato et al.

(2012). For example, for Q = 88 slph, the experimentally observed ignition is at 8

bars, while our model predicts it at about 6 bars. Barbato et al. (2012) used a differ-

ent rate expression (which is independent of oxygen concentration and does not agree

with that given in Di Benedetto et al. (2012)) to simulate the same using CFD and

found ignition at 8 bars and no extinction when P is reduced to low pressures. We

believe that this small discrepancy of our result is within the accuracy of our model.

As explained earlier, our model (which ignores spatial gradients) predicts ignition at

a slightly higher temperature (by about 10 to 15K) and when we reduce the inlet

temperature by about 10K, it predicts the same ignition pressure as that observed

experimentally.

As can be expected intuitively, the experiments of Di Benedetto et al. (2012) pre-

dict that the ignition pressure is reduced when Q is reduced. This is also predicted

by our model (figures 4-8 and 4-9). We observe that unless we consider very low inlet

mole fractions of methane, for the practical range of pressure and flow rates, there is

always a hysteresis (for this inlet temperature). Thus, calculation of the hysteresis lo-

cus does not add much new information and has not been pursued. Instead, we choose

to show ignition locus in the plane of operating pressure and inlet fluid temperature,

fixing Q at 88 slph for three different values of inlet mole fractions of methane to il-

lustrate the impact of the inlet fluid temperature on the ignition point (fig 4-10). We
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Figure 4-8: Bifurcation diagrams of fluid temperature (T) and conversion (χ) versus
pressure (P) for methane oxidation with inlet mole fraction of methane
at 0.037 and inlet temperature of 733 K for hydraulic radius 183 µm.
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Figure 4-9: Projection of the bifurcation set for methane oxidation when pressure is
the bifurcation variable. (yA,in = 0.037, Tf,in = 733K, RΩ =183 µm).
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find that (as expected) increasing inlet temperature leads to a monotonic decrease

in the operating pressure at ignition. Also, as the inlet mole fraction of methane

(yA,in) is decreased, the ignition locus moves to higher operating pressure or inlet

temperatures (as expected). [Remark: The residence time along the ignition locus

shown in figure 4-10 varies from about 0.05 to 1 second].

Our calculations in this section so far have yielded bifurcation diagrams with sin-

gle ignition and extinction. In fact, even if we turn off the homogeneous reaction in

these calculations, we observe no difference in our results, showing that the catalytic

chemistry strongly dominates the homogeneous reaction in calculations shown above.

As discussed in the previous section, one of the ways to increase the influence of the

homogeneous reaction is by increasing the hydraulic radius, which has the effect of

decreasing the catalytic reaction rate (per unit reactor volume) and also requiring

longer residence times for conversion of the fuel. Figure 4-11 shows bifurcation dia-

grams for two different inlet mole fractions of methane when the hydraulic radius is

increased by a factor 30 to 5.49 mm, Q is fixed at 88 slph and Tf,in is taken to be

800 K. We now clearly observe double-S shaped bifurcation diagrams. Next, we take

Tf,in as the bifurcation variable and show bifurcation diagrams for two different inlet

mole fractions of methane for RΩ = 5.49 mm,Q = 88 slph and P fixed at 4 bars

(which is a common operating pressure for methane catalytic combustion) in figure

4-12. Again we see two pairs of ignitions and extinctions [We also note that, in case

(b), the catalytic reaction cannot be quenched unless feed temperature is reduced

below the ambient value]. These calculations also confirm that the qualitative pic-

ture of the phase diagram for methane oxidation (with lean or stoichiometric feed) is
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similar to that of propane discussed in the previous section, the main difference being

in the transport properties (Lewis number for methane being slightly less than unity)

and kinetic constants. The calculations shown in figure 19 and similar calculations at

different values of RΩ show that it is possible to increase RΩ by about a factor of 5

or 10 (hence reducing the pressure drop) without changing the ignition temperature

significantly.

It is of interest to examine bifurcation diagrams when the residence time is the

bifurcation variable, where as in the previous section, we can interpret the residence

time as a space coordinate, and compare the profiles with those computed by Di

Benedetto et al. (2012) and Barbato et al. (2012). We fix P at 9 bars, Tf,in at 733K

and takeRΩ = 183µm, yA,in = 3.7 % and yB,in = 10 %. Again, this yields a bifurcation

diagram that is qualitatively very similar to the ones shown for propane oxidation. For

the conditions chosen for the calculation, the experimental residence time is 0.5s. Our

model predicts the catalytic ignition (extinction) occurs at a residence time of 0.4s

(about 10−8 s). Figure 4-13 shows the dependence of the solid and gas temperatures

and the conversion on the residence time. As stated earlier, due to the logarithmic

scale in τ , the distance over which Ts exceeds Tf is very small and may not be

observed in experiments or calculations that use a linear scale. For example it is not

observed in the calculations of Barbato et al (2012).] The fluid temperature increases

monotonically to the adiabatic value. While ignition occurs only for residence times

exceeding about 0.4s, the ignited branch can persist for extremely small residence

times or distances (which in this case is about seven orders of magnitude lower). We

note that the profiles shown in figure 20 are in qualitative as well as quantitative
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Figure 4-10: Dependence of the pressure at ignition on inlet temperature and mole
fraction for lean oxidation of methane. (Q0 = 88 slph, RΩ =183 µm).
The value of yA,in is (a) 0.01, (b) 0.02 and (c) 0.037.
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Figure 4-11: Bifurcation diagrams of fluid temperature (dashed), solid temperature
(solid) and conversion (χ) versus pressure with Tf,in= 800 K, RΩ= 5.49
mm and Q0= 88 slph for yA,in=0.02 (top) and yA,in = 0.03 (bottom).
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Figure 4-12: Bifurcation diagrams of fluid temperature (dashed lines), solid temper-
ature (solid lines) and conversion (χ) versus inlet temperature for RΩ=
5.49 mm, Q0 = 88 slph and P= 4 bars for yA,in=0.02 (top) and yA,in =
0.03 (bottom).
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agreement with those based on more detailed models considered in Di Benedetto et

al. (2012) and Barbato et al. (2012). Once again, it should be pointed out that detailed

models (and CFD codes even with global kinetics) may not have the mesh resolution

needed to compute the ignited branches, especially the extinction point.

As a final calculation, we show the computed bifurcation diagrams with rich feeds

of methane (inlet mole fraction of methane taken to be 0.10 and that of oxygen taken

to be 0.05) with P as the bifurcation variable when Tf,in is taken to be 733 K (figure

4-14). Two diagrams corresponding to two hydraulic radii (7.32 mm and 5.49mm

or 40 and 30 times the base value of RΩ = 183µm) have been shown. Increasing

the hydraulic radius makes the second ignition to occur at lower operating pressures.

Since the limiting reactant now is oxygen, the methane conversions obtained are

always under 25 %, while oxygen conversions approach 100% on the high temperature

branches. The existence of the intermediate branch (as in the top diagram of figure

19) where the catalytic reaction is ignited but homogeneous reaction rate is negligible

is of interest in catalytic partial oxidations and in the interpretation of experimental

data on oxidative coupling of methane.

4.3 Summary and discussion

To conclude, we have presented bifurcation diagrams for lean oxidation of methane

with pressure as the bifurcation parameter. The predicted ignition locus compares

favorably with experimental data and computational results based on more detailed

models. Our analysis also shows that lean oxidation of methane is also catalytically

dominant and the channel hydraulic diameter can be increased by a factor of ten
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Figure 4-13: Bifurcation diagrams of fluid temperature (dashed), solid temperature
(solid) and conversion (χ) versus τ with P=9 bars, Tf,in=733 K, RΩ =
183µm, yA,in = 0.037 and yB,in = 0.01.
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Figure 4-14: Bifurcation diagrams of fluid temperature (dashed), solid temperature
(solid) and conversion (χ) versus pressure with rich feed (yA,in =0.1 and
yB,in =0.05), Tf,in=733 K, Q0= 88 slph, RΩ=7.3 mm (top) and 5.49 mm
(bottom).
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or more without any significant change in the ignition (or operating pressure) or

inlet temperature or methane conversion. In this chapter we saw a few bifurcation

diagrams where the temperature on the ignited branch exceeds the adiabatic value.

This can be attributed to transport effects (specifically, the fact that methane has

a Lewis number that is less than one). In the next chapter, we proceed to discuss

more on the transport effects focusing on the important issue of location of hot spot

in combustion systems.
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Chapter 5

Effects of Transport Phenomena on

Maximum Temperatures

5.1 Introduction and Literature Review

The bifurcation analysis discussed in the last two chapters showed that in typi-

cal hydrocarbon oxidations, the first ignition-extinction pair is due to the catalytic

reaction alone, while the thermally coupled ignition and extinction only come on the

scene when the catalytic reaction is in the mass transfer controlled regime. Further,

when the inlet temperature is suffi ciently high, the onset of a second ignition and

extinction for a thermally coupled system (with a finite wall reaction rate) and a sys-

tem with infinitely fast catalytic reaction is practically indistinguishable. The case

of homogeneous reaction in the fluid phase with an infinitely fast wall reaction has

not been analyzed in detail in literature and is ripe for a theoretical analysis. The

present chapter focuses on this limiting case (as well as other limiting cases) with

an emphasis on the location of the hot spot, which is crucial for determining the

reactor thermal stability. The Lewis number of the limiting reactant is an important

parameter that dictates the trends in the maximum temperature. Other parameters
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such as the Thiele moduli and Peclet numbers (axial, transverse and radial) also play

a significant role. The effect of Lewis number (Lef) on the surface temperature has

been studied by various investigators (e.g. Satterfield et. al. (1954), Hegedus (1975),

Pfefferle and Pfefferle, (1986, 1987) when only catalytic reaction is present and in the

combustion literature when only the homogeneous reaction is present. When Lewis

number is less than unity, the catalyst surface receives the limiting reactant faster

than it can expel the heat produced due to the reaction. This situation leads to

superadiabatic surface temperatures, the existence of which has been reported and

verified in the literature (Satterfield et. al. (1954), Hegedus (1975)). Even though

numerical simulations have been done demonstrating the effects of Lewis numbers

greater than and less than unity on the maximum temperature in the solid phase

(Satterfield et. al. (1954), Hegedus (1975), Pfefferle and Pfefferle (1986), Bui et al.

(1996)), there have not been many studies which also study the effects on the gas

phase temperatures. The recent work of Zheng and Mantzaras (2014) reports that

in systems with fast catalytic and potential homogeneous reaction, the temperature

within the reactor may exceed adiabatic values for Lewis numbers greater than 1.

This has been presented as a novel and significant result. However, the analysis pre-

sented in this chapter demonstrates that these claims are questionable. We study a

hierarchy of models asking the question: what is the maximum temperature attain-

able for the model and when is it achieved? We find that physically consistent 1-D

and 2-D models do not lead to gas phase temperatures exceeding the adiabatic for

Lef > 1.

In the next section, we formulate a 3-D mathematical model that describes the
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thermally coupled homogeneous-heterogeneous combustion in a parallel plate chan-

nel. We also formulate various limiting cases of this model that are amenable to

analysis. In the following sections, the limiting models are analyzed to provide in-

sight on the impact of various transport parameters representing the heat and mass

transfer phenomena on coupled homogeneous-heterogeneous combustion. We pro-

vide the theory and analytical expressions for concentration and temperature fields

in two-dimensional domains, and in limiting one dimensional models.

5.2 Mathematical Models

We consider a system consisting of flow between parallel plate reactors in which

homogeneous reaction occurs in the fluid phase and catalytic reaction on the wall. For

simplicity, the following assumption are made: (i) the velocity profile is invariant with

axial position and the pressure drop is negligible so that the flow field can be decoupled

from the species and energy balances (ii) one reactant (either fuel or oxygen) is

in excess and the reaction rate is linear in the limiting reactant (iii) the physical

properties can be assumed constant or taken to be average values without impacting

the qualitative features (iv) The system is adiabatic. With these assumptions, the

mathematical model for parallel plates with plate spacing 2a is given by

uf(y′)
∂C

∂x′
= Dm

∂2C

∂x′2
+Dm

(
∂2C

∂y′2
+
∂2C

∂z′2

)
− kh(T )C,

ρfCpfuf(y′)
∂T

∂x′
= kf

∂2T

∂x2
+ kf

(
∂2T

∂y′2
+
∂2T

∂z′2

)
+ (−∆H)kh(T )C ;

0 < x′ < L,−a < y′ < a,−b < z′ < b (5.1)
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with the inlet and boundary conditions given by

Dm
∂C

∂x′
= uf(y′)(C − Cin) and (5.2)

kf
∂T

∂x′
= ρfCpfuf(y′)(T − Tin) at x′ = 0, (5.3)

∂C

∂x′
= 0 and

∂T

∂x′
= 0 at x′ = L (5.4)

∓Dm
∂C

∂y′
= ks(T )C and (5.5)

±kf
∂T

∂y′
= (−∆HR)ks(T )C at y′ = ±a, (5.6)

C(x′, y′,−b) = C(x′, y′, b) and T (x′, y′,−b) = T (x′, y′, b). (5.7)

Here f(y′) is the velocity profile(e.g. for a fully developed laminar flow the parabolic

profile given by f(y′) = 3
2
(1−

(
y′

a

)2

) while for simultaneously developing flow with low

Schmidt/Prandtl number, we can take the velocity profile to be flat, i.e. f(y′) = 1).

The above model describes both symmetric (or 2-D) solutions and non-symmetric

(or 3-D) solutions (whenever they exist). The length scale b determines the period-

icity of the solutions in the second transverse(azimuthal) direction. [Remark: When

3D solutions exist, the term "parallel plate" is not appropriate. In such cases, the

above model describes flow in a circular channel with a large radius and 3D solutions

correspond to those lacking azimuthal symmetry].

We assume Arrhenius type temperature dependence for both the homogenous

and catalytic rate constants, introduce the following non-dimensional variables and
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parameters,

c =
C

Cin
, θ =

T − Tin
Tinβ

,

x =
Dmx

′

a2u
; y =

y′

a
, z =

z′

b
,

β =
(−∆HR)Cin
ρfCpfTin

, γh =
Ea
RTin

, γc =
E ′a
RTin

, φ2 =
kva

2

Dm

, φ2
s =

ksa

Dm

,

Lef =
kf

ρfCpfDm

, P er =
ua

Dm

, P =
a2u

DmL
, α =

b

a
(5.8)

and express the model in the following dimensionless form:

f(y)
∂c

∂x
=

1

Pe2
r

∂2c

∂x2
+
∂2c

∂y2
+

1

α2

∂2c

∂z2
− φ2c exp

[
γhβθ

1 + βθ

]
(5.9)

f(y)
∂θ

∂x
=

Lef
Pe2

r

∂2θ

∂x2
+ Lef

(
∂2θ

∂y2
+

1

α2

∂2θ

∂z2

)
+ φ2c exp

[
γhβθ

1 + βθ

]
; (5.10)

0 < x <
1

P
,−1 < y < 1,−1 < z < 1

1

Pe2
r

∂c

∂x
= f(y)(c− 1)

Lef
Pe2

r

∂θ

∂x
= f(y)θ at x = 0 (5.11)

∂c

∂x
= 0 =

∂θ

∂x
at x =

1

P
(5.12)

∂c

∂y
= ∓φ2

sc exp

[
γcβθ

1 + βθ

]
∂θ

∂y
= ± 1

Lef
φ2
sc exp

[
γcβθ

1 + βθ

]
at y = ±1 (5.13)

c(x, y,−1) = c(x, y, 1); θ(x, y,−1) = θ(x, y, 1). (5.14)
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We note that the model contains 9 dimensionless groups: the dimensionless adia-

batic temperature rise (β), the activation energies for the homogeneous and catalytic

reactions (γh, γc), the (square of the) Thiele moduli for homogeneous and catalytic

reactions (or ratio of characteristic diffusion time to reaction time at the inlet tem-

perature, φ2, φ2
s), the radial Peclet number (Per), the transverse Peclet number (ratio

of transverse diffusion time to convection time, P ), the Lewis number (ratio of fluid

thermal diffusivity to mass diffusivity of limiting reactant, Lef) and the aspect ratio

α. Other dimensionless groups that may be used (but are not independent) are the

axial Peclet number, Pe (= Pe2
r/P ), aspect ratio based on channel length and spacing

(P/Per = a
L
), and the Damköhler numbers (Da = φ2/P , Das = φ2

s/P ).

When the Lewis number is unity, the above model admits an invariant. Defining

θ̂ = c+ θ, we observe that θ̂ satisfies the following PDE:

f(y)
∂θ̂

∂x
=

1

Pe2
r

∂2θ̂

∂x2
+

(
∂2θ̂

∂y2
+

1

α2

∂2θ̂

∂z2

)
0 < x <

1

P
,−1 < y < 1,−1 < z < 1 (5.15)

1

Pe2
r

∂θ̂

∂x
= f(y)(θ̂ − 1) at x = 0

∂θ̂

∂x
= 0 at x =

1

P

∂θ̂

∂y
= 0 at y = ±1

θ̂(x, y,−1) = θ̂(x, y, 1).

It may be shown (using the Finite Fourier Transform) that the only solution to this
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model is θ̂ = 1, or c = 1− θ. This invariant lets us to simplify the model to a single

differential equation for which the analysis is simplified. This special case has been

studied by many investigators in the past, and therefore in the sequel, we focus on

the more general model with an arbitrary Lewis number.

5.2.1 Limiting Models

We formulate below various limiting cases of the above general model containing

fewer parameters. These limiting models are valid in the limit of some characteristic

time (or parameter) being very small or large and provide insight on the behavior of

the general model.

Dilute reactant model

When the concentration of the limiting reactant at the inlet to the channel is

very small (or equivalently, the adiabatic temperature rise β → 0), we can ignore

the variation of the reaction rates with temperature and simplify the above model.

It may be shown that in this limiting case, there are no 3-D solutions. Further,

the species balance decouples from the energy balance and there are no ignitions or

extinctions or multiple solutions. As shown in the next section, this limiting case

retains the spatial variation of the temperature and concentration fields of the 2-D

solutions (even for finite values of β) and provides insight on the impact of transport

properties on the maximum temperature. This limiting model is of interest as it is

linear (so that analytic solutions can be obtained) and contains only 5 parameters.
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It is given by

f(y)
∂c

∂x
=

1

Pe2
r

∂2c

∂x2
+
∂2c

∂y2
− φ2c and (5.16)

f(y)
∂θ

∂x
=

Lef
Pe2

r

∂2θ

∂x2
+ Lef

∂2θ

∂y2
+ φ2c; 0 < x <

1

P
, 0 < y < 1, (5.17)

with same boundary conditions in the axial direction as the full model and

∂c

∂y
= −φ2

sc;
∂θ

∂y
=

1

Lef
φ2
sc at y = 1 and

∂c

∂y
= 0 =

∂θ

∂y
at y = 0. (5.18)

There is further simplification and limiting cases of this model but these will be

considered in the next section, where an analysis of this model is presented.

Long channel 2-D Model:

In the limit of very long residence times (P → 0), the exit boundary condition in

the flow direction may be ignored and the channel may be considered infinitely long.

In addition, if we consider only 2-D symmetric solutions, the number of parameters

is reduced by two (eliminating α and P ). We refer to this limiting case as the long

channel model and do not list the model equations as they can be written down

easily from the general case. A further limiting case of this model that is considered

in most literature studies is obtained when the axial diffusion/conduction is neglected

and inlet (Danckwerts) boundary conditions are simplified to the Dirichlet boundary

conditions. Again, we consider this limiting model in the next section.
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1-D Model with axial gradients:

The 1-D model becomes appropriate when the transverse gradients are negligibly

small and any small variation in transverse direction can be averaged out (in the

limit of a→ 0). When Pe2
r , φ

2 and φ2
s → 0, we can average the general model over

the transverse directions (this can be done rigorously using the Liapunov-Schmidt

averaging procedure) to obtain the 1-D model in the following form:

d 〈c〉
dx

=
1

Pe2
r

d2 〈c〉
dx2

− φ2 〈c〉 exp

[
γhβ 〈θ〉

1 + β 〈θ〉

]
− φ2

s 〈c〉 exp

[
γcβ 〈θ〉

1 + β 〈θ〉

]
(5.19)

and

d 〈θ〉
dx

=
Lef
Pe2

r

d2 〈θ〉
dx2

+ φ2 〈c〉 exp

[
γhβ 〈θ〉

1 + β 〈θ〉

]
+ φ2

s 〈c〉 exp

[
γcβ 〈θ〉

1 + β 〈θ〉

]
, (5.20)

with

1

Pe2
r

d 〈c〉
dx

= (〈c〉 − 1);
Lef
Pe2

r

d 〈θ〉
dx

= 〈θ〉 at x = 0

and
d 〈c〉
dx

= 0 =
d 〈θ〉
dx

at x =
1

P
. (5.21)

Here, the angular bracket denotes the cross-section averaged values. This model can

be written in more familiar form by defining

X = xP =
x′

L
Da =

φ2

P
Das =

φ2
s

P
Pe =

Pe2
r

P
,
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and dropping the angular brackets leads to the 1-D axial dispersion model with Danck-

werts’boundary conditions:

1

Pe

d2c

dX2
− dc

dX
−Dac exp

[
γhβθ

1 + βθ

]
−Dasc exp

[
γcβθ

1 + βθ

]
= 0 and (5.22)

Lef
Pe

d2θ

dX2
− dθ

dX
+Dac exp

[
γhβθ

1 + βθ

]
+Dasc exp

[
γcβθ

1 + βθ

]
= 0, with (5.23)

1

Pe

dc

dX
= (c− 1) and

Lef
Pe

dθ

dX
= θ at X = 0,

dc

dX
= 0 =

dθ

dX
at X = 1. (5.24)

One limiting case of this model that is of interest is when the reactor is infinitely long.

In this case, the reactor length is not appropriate for use as a characteristic length.

We then choose

ζ =
x′u

Dm

= xPe2
r (5.25)

for the nondimensional axial coordinate. Considering only the case of dilute reactant

(β → 0), we recast the full model as:

dc

dζ
=
d2c

dζ2 − Λc , 0 < ζ <∞ and (5.26)

dθ

dζ
= Lef

d2θ

dζ2 + Λc , 0 < ζ <∞ (5.27)
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with the inlet conditions given by

dc

∂ζ
= c− 1 and (5.28)

Lef
dθ

dζ
= θ at ζ = 0. (5.29)

(The parameter Λ =
(kv+ ks

a
)Dm

u2 is the ratio of (Da+Das) and Pe, thereby eliminating

the length scale involved). It is worth noting that Λ contains the diffusivity, the

reaction rate constants and the average velocity and thus, serves as a measure of

relative significance of convection, diffusion and reaction. The criterion Λ� 1 can be

thought of as defining a fast reaction in a convection-diffusion-reaction system just

as Da� 1 indicates fast reaction for convection-reaction systems.

Short channel model:

When the channel length is very small compared to the spacing between the plates

(as in the case of gauze or short monolith reactors), the general model can be simplified

by averaging in the axial direction. This eliminates (or compresses) the axial variation

of the state variables and leads to a model similar to the "short monolith model" that

has been widely used in the catalytic reaction only case [Balakotaiah, et al. (2000)].

This model is given by

Pf(y) (c− 1) =
∂2c

∂y2
+

1

α2

∂2c

∂z2
− φ2c exp

[
γhβθ

1 + βθ

]
and (5.30)

Pf(y)θ = Lef

(
∂2θ

∂y2
+

1

α2

∂2θ

∂z2

)
+ φ2c exp

[
γhβθ

1 + βθ

]
; (5.31)

−1 < y < 1,−1 < z < 1.
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and the same transverse boundary conditions (in y and z) as the full model. The

usefulness of this model lies in the fact that it simplifies the flow terms and focuses

mainly on the transverse variations. For the case of catalytic reaction only, it was

shown that this elliptic model has the same bifurcation features as the full 3-D model

[Balakotaiah, et al. (2002)]. Again, further simplifications of the model may be

formulated and these are considered in the next section.

5.3 Transport Effects on Maximum Temperature

In this section, we analyze the dilute reactant model for the 1-dimensional and

2-dimensional cases to determine the impact of transport parameters (P , Per, Lef)

on the temperature and concentration fields and the maximum temperature attained

in the system.

5.3.1 Long channel model

As stated in the previous section, the assumption of dilute reactant (or low adia-

batic temperature rise) and the normalization of the temperature rise to unity, makes

the model linear for which analytical expressions can be obtained for the 2-D (sym-

metric) solutions when an infinitely fast catalytic reaction is considered. Though this

can be done for both parabolic and flat velocity cases, we consider here only the latter

case as the resulting expression are less cumbersome and easier to analyze. For the

case of a flat velocity profile, the model simplifies to

∂c

∂x
=
∂2c

∂y2
+

1

Pe2
r

∂2c

∂x2
− φ2c , 0 < x <∞, 0 < y < 1 (5.32)
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and

∂θ

∂x
= Lef

(
∂2θ

∂y2
+

1

Pe2
r

∂2θ

∂x2

)
+ φ2c , 0 < x <∞, 0 < y < 1 (5.33)

with the inlet and boundary conditions given by

1

Pe2
r

∂c

∂x
= c− 1 and (5.34)

Lef
Pe2

r

∂θ

∂x
= θ at x = 0, (5.35)

∂c

∂y
= 0 and

∂θ

∂y
= 0 at y = 0, and (5.36)

c = 0 and (5.37)

∂θ

∂y
=
−1

Lef

∂c

∂y
at y = 1. (5.38)

To solve this PDE system, we use the Finite Fourier Transform obtaining:

c(x, y) =
∞∑
n=1

4

(2n− 1) π

(−1)n−1[
1 + Λn

Pe2r

] exp[−Λnx]wn(y) (5.39)

where

Λn =
−Pe2

r +
√
Pe4

r + 4(λn + φ2)Pe2
r

2
(5.40)

and

wn(y) =
√

2 cos

[
2n− 1

2
πy

]
, λn =

(
2n− 1

2
π

)2

. (5.41)

Using the above Fourier series for c(x, y), we have the following PDE for the
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temperature field:

∂θ

∂x
= Lef

(
∂2θ

∂y2
+

1

Pe2
r

∂2θ

∂x2

)
(5.42)

+φ2
∞∑
n=1

4

(2n− 1) π

(−1)n−1[
1 + Λn

Pe2r

] exp[−Λnx] cos[
2n− 1

2
πy],

0 < x <∞, 0 < y < 1, (5.43)

Lef
Pe2

r

∂θ

∂z
= θ at x = 0, (5.44)

∂θ

∂y
= 0 at y = 0, and (5.45)

∂θ

∂y
=

1

Lef

∞∑
n=1

2 exp[−Λnx][
1 + Λn

Pe2r

] at y = 1. (5.46)

This equation can also be solved by Finite Fourier Transform by employing the princi-

ple of superposition for the source terms in the governing equation and the boundary

condition. The final expression for θ(x, y) is

θ(x, y) = 2
∞∑
n=1

(
1 +

4φ2

(2n− 1)2 π2

) [Lef
Pe2r

Λn + 1
]
− exp[−Λnx][

1 + Λn
Pe2r

] [
Lef
Pe2r

Λ2
n + Λn

] ψ0(y) +

4

∞∑
m,n=1

(−1)m

(
1 +

4φ2(
(2n− 1)2 − 4m2

)
π2

)
×[

Lef

Pe2r
Λn+1

Lef

Pe2r
Ωm+1

]
exp[−Ωmx]− exp[−Λnx][

1 + Λn
Pe2r

] [
Lef
Pe2r

Λ2
n + Λn − Lefµm

] ψm(y), (5.47)
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where

Ωm =
−Pe2

r +
√
Pe4

r + 4Pe2
rLe

2
fµ

2
m

2Lef
(5.48)

and

ψm(y) =
√

2 cos[mπy], µm = (mπ)2 when m ≥ 1

= 1, µ0 = 0 when m = 0. (5.49)

Also the average temperature is given by

〈θ〉 (x) = 2
∞∑
n=1

(
1 +

4φ2

(2n− 1)2 π2

) [Lef
Pe2r

Λn + 1
]
− exp[−Λnx][

1 + Λn
Pe2r

] [
Lef
Pe2r

Λ2
n + Λn

] (5.50)

while the surface and centerline temperatures are given as

θs(x) = θ(y = 1, x) = 2
∞∑
n=1

(
1 +

4φ2

(2n− 1)2 π2

) [Lef
Pe2r

Λn + 1
]
− exp[−Λnx][

1 + Λn
Pe2r

] [
Lef
Pe2r

Λ2
n + Λn

] +

4
∞∑

m,n=1

(
1 +

4φ2(
(2n− 1)2 − 4m2

)
π2

) [ Lef

Pe2r
Λn+1

Lef

Pe2r
Ωm+1

]
exp[−Ωmx]− exp[−Λnx][

1 + Λn
Pe2r

] [
Lef
Pe2r

Λ2
n + Λn − Lefµm

]
(5.51)
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and

θc(x) = θ(y = 0, x) = 2

∞∑
n=1

(
1 +

4φ2

(2n− 1)2 π2

) [Lef
Pe2r

Λn + 1
]
− exp[−Λnx][

1 + Λn
Pe2r

] [
Lef
Pe2r

Λ2
n + Λn

] +

4
∞∑

m,n=1

(−1)m

(
1 +

4φ2(
(2n− 1)2 − 4m2

)
π2

)
×[

Lef

Pe2r
Λn+1

Lef

Pe2r
Ωm+1

]
exp[−Ωmx]− exp[−Λnx][

1 + Λn
Pe2r

] [
Lef
Pe2r

Λ2
n + Λn − Lefµm

] , (5.52)

respectively.

We now present the results for the long channel model defined by Eqs. (5.32)

and (5.33) with axial diffusion/conduction terms dropped and the Danckwerts inlet

conditions replaced by the Dirichlet conditions:

c = 1, θ = 0 at x = 0. (5.53)

In this case, the dimensionless concentration and temperature profiles are given by:

c(x, y) =
∞∑
n=1

4(−1)n−1

(2n− 1)π
exp[−(λn + φ2)x] cos

[
2n− 1

2
πy

]
(5.54)
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and

θ(x, y) =

∞∑
n=1

2

λn

(
1− exp[−(λn + φ2)x]

)
+

4

∞∑
m,n=1

(−1)m

(
1 +

4φ2(
(2n− 1)2 − 4m2

)
π2

)
×

exp[−(λn + φ2)x]− exp[−Lefµmx][
Lefµm − (λn + φ2)

] cos[mπy]. (5.55)

We note that the limiting case of no homogeneous reaction can be obtained easily by

setting φ to zero. It may also be verified that in the limit of Pe2
r → ∞ , the model

with Danckwerts inlet condition directly yields the solution of the equations with

Dirichlet inlet conditions [Remark: We have excluded the case of Dirichlet boundary

condition at the inlet but with axial diffusion and conduction added as this leads to

physical inconsistencies as shown below for the 1-D model].

1-D model with axial gradients:

We consider only axial gradients in this subsection because we wish to investigate

and isolate the effects of axial gradients on the location and magnitude of the maxi-

mum temperature. The assumption of negligible radial gradients becomes accurate if

the wall reaction is suffi ciently slow compared to transverse diffusion or if the channel

spacing is small. These effects can be quantified in terms of Thiele modulus for the

catalytic reaction and the radial Peclet number, φ2
s = ksa

Dm
and Per = ua

Dm
, respectively.

When φ2
s and Per � 1, we can lump the transverse modes and get the homogeneous

model given by eqns (5.26) and (5.27).

These equations can be readily solved to yield
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c(ζ) =
2eλζ

1 +
√

1 + 4Λ
(5.56)

and

θ(ζ) =
2Λ

λ
(
1 +
√

1 + 4Λ
) [ eλζ

1− λLef
− 1

]
, (5.57)

where

λ =
1−
√

1 + 4Λ

2
. (5.58)

Then

dθ

dζ
=

2Λ

1 +
√

1 + 4Λ

[
eλζ

1− λLef

]
. (5.59)

Since λ < 0, dθ
dζ
> 0, which means that θ increases monotonically to its maximum

value that is given by

θmax = θ(∞) =
−2Λ

λ
(
1 +
√

1 + 4Λ
) = 1. (5.60)

Thus, the maximum temperature attained is the adiabatic temperature. This result is

independent of the Lewis number and we conclude that the temperature in a radially

lumped model with Danckwerts boundary condition can never exceed the adiabatic

value.

Let us now turn to a study of the same model with Dirichlet inlet conditions given
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by

c = 1 and

θ = 0 at ζ = 0. (5.61)

Then we obtain

c(ζ) = eλζ (5.62)

and

θ(ζ) =
Λ

λ (1− λLef )
(
eλζ − 1

)
. (5.63)

Again

dθ

dζ
=

Λeλζ

(1− λLef )
> 0 (5.64)

and

θmax = θ(∞) =
Λ

λ (λLef − 1)
=

1

Lef +
Lef−1

2Λ

(
1−
√

1 + 4Λ
) . (5.65)

Thus, when Λ→ 0, θmax → 1, and when Λ→∞,

θmax ≈
1

Lef +
1−Lef√

Λ

→ 1

Lef
. (5.66)

Thus, for infinitely fast reactions (Λ→∞) , the imposition of the Dirichlet bound-

ary condition may lead to superadiabatic or subadiabatic maximum temperatures

depending on the magnitude of the Lewis number, Lef . However, the physically

consistent Danckwerts boundary conditions only lead to adiabatic maximum temper-
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atures. It may be shown that this conclusion also holds for the more general 1-D

model defined by eqns. 5.19, 5.20 and 5.21. Thus, we conclude that deviations from

the adiabatic maximum temperature are not due to axial gradients. Therefore, in the

next section we study a model with transverse gradients only.

5.3.2 Short channel model

We now consider a limiting model for our homogeneous-heterogeneous reaction

system where only radial gradients are present using the "short monolith model"

introduced by Balakotaiah et al ([14]). We obtain this model via averaging in the

axial direction when the channel length is small compared to the transverse length

scale and the axial Peclet number, Pe� 1. This model is useful in proving analytical

results for the temperature and the location of the hot spot in the dilute reactant case.

This cannot be done with the results of the long channel model because the Fourier

series solutions obtained therein converge in the L2 norm, i.e. integrated averages

of squares of the functions we evaluated converge, but the function values need not

converge at every point. Also derivatives of the series need not converge rendering

the determination of maximum temperature problematic. The short channel model

is given by

1

P

d2c

dy2
−Dac = c− 1 and (5.67)

Lef
P

d2θ

dy2
+Dac = θ with (5.68)
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dc

dy
= 0,

dθ

dy
= 0 at y = 0 and (5.69)

dc

dy
= −φ2

sc,
dθ

dy
= φ2

sc at y = 1. (5.70)

Here, P and Da are defined in the standard manner as

P =
ua2

LDm

; Da =
kvL

u
. (5.71)

This means that the Thiele modulus for the homogeneous reaction is given as

φ2 = PDa. (5.72)

We can solve these equations in the case of flat velocity profile to obtain

c =
P

ψ2

1− cosh (ψy)

cosh (ψ) + ψ sinh(ψ)

φ2
s

 ,

where ψ =
√
P + φ2 and

θ =

√
P

Lef

tanh (ψ)

ψ tanh(ψ)

φ2
s

+ 1

cosh
(√

P
Lef

y
)

sinh
√

P
Lef

(
1− φ2

ψ2 − P
Lef

)
+
φ2

ψ2 +
P

Lef

φ2

ψ2

cosh (ψy)

cosh (ψ)
(
ψ2 − P

Lef

) .
(5.73)

In this section, we are mainly interested in finding the conditions under which a "po-

tential temperature" defined by the sum of dimensionless concentration and temper-

ature exceeds 1. This potential temperature represents the hypothetical temperature

that would be attained if all the available limiting reactant at any location were fully

and instantly converted by the homogeneous reaction to lead to an equivalent amount
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of heat generation. This is also the quantity used by Zheng and Mantzaras in their

recent work ([1]). To illustrate this, we ignore the homogeneous reaction by taking

φ2 = 0. We can now solve these equations and obtain

c(y) =

1− cosh
√
Py

cosh
√
P +
√
P sinh

√
P

φ2
s

 and (5.74)

θ(y) =

 tanh
√
P√

Lef

(
1 +

√
P
φ2
s

tanh
√
P
) cosh

√
P
Lef

y

sinh
√

P
Lef

 . (5.75)

If we consider the catalytic reaction to be infinitely fast, we must modify the

boundary conditions to

dc

dy
= 0,

dθ

dy
= 0 at y = 0, (5.76)

c = 0 at y = 1 and (5.77)

dθ

dy
=
−1

Lef

dc

dy
at y = 1. (5.78)

This leads to the concentration profile

c(y) =

[
1− cosh

√
Py

cosh
√
P

]
(5.79)

and the temperature profile

θ(y) =

tanh
√
P√

Lef

cosh
√

P
Lef

y

sinh
√

P
Lef

 . (5.80)

The above expressions are readily seen to be limiting solutions of (5.74) and (5.75)
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when φ2
s → ∞. (The expressions for concentration and temperature in the system

above with homogeneous reaction are easy to obtain and are given in the Appendix.)

We use these results in the numerical calculations presented in the next section and

also to examine the potential temperature as well as the true maximum temperature.

We can evaluate the (transverse) average values of the concentration and temper-

ature variables, given by

〈c〉 = 1− tanh
√
P

√
P
(

1 +
√
P
φ2
s

tanh
√
P
) = 1− tanh

√
P√

P
as φ2

s →∞ (5.81)

and

〈θ〉 =
tanh

√
P

√
P
(

1 +
√
P
φ2
s

tanh
√
P
) =

tanh
√
P√

P
as φ2

s →∞. (5.82)

The expression for the average temperature is the same as the well-known result

for effectiveness factor for a catalyst slab, with P taking on the role of φ2. It has

asymptotes given by tanh
√
P√

P
→ 1 as P → 0 and tanh

√
P√

P
→ 1√

P
as P →∞.

The potential temperature θ∗ as defined by Zheng and Mantzaras [1] is

θ∗ = c+ θ. (5.83)

We are interested in understanding when θ∗ exceeds 1 at the center of the channel.

To quantify this, we define an excess potential temperature θE :

θE = θ∗(0)− 1 =
tanh

√
P√

Lef

1

sinh
√

P
Lef

− 1

cosh
√
P
. (5.84)
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Expanding θE in a Taylor series in P , keeping only first order terms, we obtain

θE =
Lef − 1

6Lef
P +O(P 2). (5.85)

This means that for small values of P and Lef > 1, θE > 0. This confirms that

potential temperature indeed exceeds 1 for Lef > 1, but only for a limited range of

P.

If we expand θE in a Taylor series in Lef about Lef = 1, again keeping only first

order terms, we obtain

θE =
Lef − 1

2

( √
P

sinh
√
P
− 1

cosh
√
P

)
+O

(
(Lef − 1)2) . (5.86)

For x > 0, we have tanhx
x

< 1⇒ 1
coshx

< x
sinhx

. Therefore θE > 0, when Lef > 1 for

any P. θE is an increasing function of Lef , so we consider the case when θE attains its

maximum value for Lef → ∞. We then have θ∞E = limLef→∞ θE = tanh
√
P√

P
− 1

cosh
√
P
.

This function attains a maximum value of 0.23 for P = 7.66. Thus the maximum

possible superadiabatic temperature is 23%, which is close to the corresponding max-

imum excess of 20.8 % found in the numerical calculations of Zheng and Mantzaras

(2014). They find the location of the excess at x+ = 0.0086 where x+ = xDm
u(4a)2 . This

is analogous to 1
16P

in our model, which comes out to be 0.00816. Thus, the short

channel model yields very similar results for the potential temperature as Zheng and

Mantzaras (2014).

Having shown that the short channel model retains the qualitative (and quanti-
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tative) features of the full 2-D model, we have used it to examine the actual (and

not the potential) peak temperature with homogeneous reaction [using the solution

of Eqs.(5.67)-(5.70) presented in the Appendix]. We have found that unlike the claim

of Zheng and Mantzaras (2014), the actual temperature never exceeds the adiabatic

value when Lef > 1 [A proof of this using the short monolith model is given in the

Appendix]. The main reason for this may be explained by the fact that there can-

not be instantaneous conversion of the limiting reactant without causing (infinite)

temperature gradient locally. Thus, the potential temperature as defined by Zheng

and Mantzaras has no relation to the actual temperature that may be attained in the

system. This is further illustrated in the numerical results presented in the following

section.

Although it is not the focus of this chapter, as an aside, we show how we can

obtain the Sherwood number from the expressions derived in this section. We use the

definition of Sherwood number, Sh =
(− ∂c∂y )y=1

cm−cs leading to

Sh =
ψ tanh (ψ)

1− tanh(ψ)
ψ

. (5.87)

Note that this expression for the Sherwood number depends on the Thiele modulus of

the homogeneous reaction simply as a modification of P to
√
P + φ2. For the catalytic
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reaction to be infinitely fast, we modify the boundary conditions to

dc

dy
= 0,

dθ

dy
= 0 at y = 0, (5.88)

c = 0 at y = 1, and (5.89)

dθ

dy
=
−1

Lef

dc

dy
at y = 1. (5.90)

The Sherwood number can be expressed again by the same formula as before because

it is independent of the strength of the catalytic reaction. Explicitly, we have

Sh =

√
P + φ2

1

tanh
√
P+φ2

− 1√
P+φ2

. (5.91)

It can be easily seen that this expression for the Sherwood number admits the fol-

lowing asymptotes:

Sh → 3 as (P + φ2)→ 0

Sh →
√
P + φ2 as (P + φ2)→∞. (5.92)

5.3.3 Numerical results

The analytical solutions may be used to plot the concentration and temperature

fields and the impact of transport parameters on these fields. The Fourier series

solutions presented above typically converged quite fast and gave us no computational

diffi culty. Different values of Lewis number, Peclet number and Thiele modulus yield

different qualitative behavior. Figure 5-1 (top) shows a typical temperature contour
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plot for the 2-D model for parallel plate reactor with a homogeneous reaction for

Danckwerts inlet conditions for φ2 = 3.0, Lef = 1.5 and Per = 5.0. Next we have

shown in figure 5-1, a concentration contour plot for a system with Per = 5 and φ2 = 3

(middle), and a temperature contour plot for a system with Per = 15, Lef = 2.5

and φ2 = 30 (bottom). We note that for these values of parameters, the maximum

temperature is always less than the adiabatic value represented by θ = 1. Figure 5-1

(top) shows the situation where the wall is always hotter than the center while figure

5-1 (bottom) shows that the center can be hotter than the wall as well. [Remark:

As Danckwerts boundary conditions allow upstream gradients, the temperature and

concentration at the inlet to the channel x = 0 can be substantially different from

the feed values]. Figure 5-2 (top) shows a temperature contour plot for Danckwerts

inlet conditions with no homogeneous reaction and Per = 5.0 for Lef = 1.5 and

figure 5-2 (middle) shows a concentration contour plot for this system. Again we

find that the maximum temperature never exceeds the adiabatic value. However,

when we plot in figure 5-2 (bottom) a dimensionless potential temperature which

is the sum of θ and c, we find that the maximum (potential) temperature within

the system does exceed the adiabatic value. This potential temperature corresponds

to the temperature that would result if all the reactant available did indeed react,

leading to the production of an equivalent amount of energy. As stated earlier, the fact

that this potential temperature is never realized is due to the creation of gradients

by the homogeneous reaction itself, preventing localization of energy wherever the

potential temperature might have exceeded the adiabatic value. The calculations for

the Dirichlet inlet condition shown in figure 5-3 give similar results. We find that the
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maximum temperature never exceeds the adiabatic value for Lewis number greater

than 1, unless we consider adding to the temperature variable the concentration to

yield a potential temperature. Figure 5-3 shows the temperature (top), concentration

(middle) and the potential temperature (bottom) for Lef = 1.5 and Per = 10, with

no homogeneous reaction. [Remark: For Dirichlet boundary conditions at the inlet

with no axial diffusion/conduction, we have c(x = 0, y) = 1; θ(x = 0, y) = 0 for

0 ≤ y < 1. The point x = 0, y = 1 is a singularity when φ2
s → ∞, i.e. the wall

reaction is infinitely fast.]

To gain a better understanding of the location of the hot spot, we plot the vari-

ations of the average temperature, the wall temperature and the center temperature

along the length of the reactor in figures 5-4 and 5-5. These three temperatures

could serve as three modes in a low-dimensional description of our system. Figure 5-4

deals with the case of Lef = 1.5 and Per = 5, with figure 5-4 (a) depicting the case

of no homogeneous reaction, figure 5-4 (b) denoting a strong homogeneous reaction

(φ2 = 50) and figure 5-4 (c) denoting a blown-out version of the middle figure. In this

case of larger than unity Lewis number, all the temperature modes increase monoton-

ically to the adiabatic value. Also it is evident that with increasing the strength of

the homogeneous reaction, the wall temperature decreases and the difference with the

centerline and wall temperatures becomes smaller. This is because the homogeneous

reaction consumes the excess reactants that would otherwise have migrated to the

wall. Next, we have shown in figure 5-5, the case of Lef = 0.5 and Per = 5, with

figure 5-5 (a) depicting the case of no homogeneous reaction and figure 5-5 (b) de-

noting a strong homogeneous reaction (φ2 = 50). Here, the maximum temperature is
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attained on the wall and its magnitude decreases while the location moves closer to

the inlet as φ2 increases.

Thus, we observe that for Lef < 1, the maximum temperature is always attained

at the wall. In fact, the wall temperature exceeds the adiabatic value in a small

range and then dips again, finally meeting the centerline and average temperatures

at the adiabatic value. When Lef > 1, all three modes eventually reach the adia-

batic value together, which is the maximum temperature reached everywhere. The

effect of increasing the magnitude of homogeneous reaction rate is that the region of

radial gradients gets compressed. The homogeneous reaction is more potent in zones

of higher concentration, consuming reactants faster in these zones and leveling off

gradients. We also observe that the centerline and average temperatures may exceed

the wall temperature at higher values of φ2, representing faster homogeneous reac-

tion. For the sake of comparison, we show in figures 5-6 and 5-7, variations of the

average temperature (〈θ〉), the wall temperature (θs) and the center temperature (θc)

for the short channel model with the reciprocal of transverse Peclet number when (a)

φ = 0 and (b) φ2 = 50 for Lewis numbers of 1.5 and 0.5, respectively. These figures

have been computed using the results given in the appendix. The trends observed

are similar to figures 5-4 and 5-5 with all three curves asymptotically approaching 1.

In figure 5-8, we have shown a contour plot for the short channel model where the

reciprocal of transverse Peclet number has been taken to be analogous to the axial

spatial variable. The trends are remarkably similar to plots for the 2-D model such

as figure 5-2. To understand how the strength of the homogeneous reaction affects

the wall and the center temperatures, figures 5-9 and 5-10 show variations of the wall
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temperature (θs) and the center temperature (θc) for the short channel model with

the reciprocal of transverse Peclet number when φ2 is changed from 0 to 50 for Lewis

numbers of 1.5 and 0.5, respectively. For both Lewis numbers, θc shows an increase

as φ2 increases, however θs decreases with increasing φ
2 when Lef < 1 and increases

with increasing φ2 when Lef > 1.

5.4 Summary and Discussion

The main goal of this chapter was to examine the impact of transport parameters

on the magnitude and location of the temperature peak in coupled homogeneous-

heterogeneous reaction system. Our main conclusions can be summarized as follows:

(i) Hot spot formation may be possible both near the wall and near the center, and

the temperature variation in the direction transverse to flow need not be monotonic.

In either case, for 2D solutions, temperature at the center never exceeds the adiabatic

value for Lef > 1 as claimed by Zheng and Mantzaras, (2014).

(ii) If we consider the ‘potential’temperature given by the sum of the temperature

and concentration, we may get superadiabatic temperatures. However, this potential

temperature never corresponds to the actual temperature because the homogeneous

reaction could not possibly consume instantly all the excess reactants present at a

specific location such as the center and convert it to equivalent amounts of energy, as

this would create an infinite local gradient.

The physical insight derived from this analysis can be useful in bifurcation studies

of combustion systems in which both homogeneous and catalytic reactions can occur

simultaneously. In the last two chapters, we showed that the thermally coupled
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hysteresis locus is virtually unchanged from the hysteresis locus for a system with

infinitely fast wall reaction. Hence, a study of homogeneous combustion with a very

fast catalytic chemistry is useful to understand and compute bifurcation features of

thermally coupled combustion systems. The analysis of maximum temperature in the

present chapter is helpful in understanding qualitative features of the solutions of the

2-D and 3-D models.

Finally it should be pointed out that the main results of this work (especially those

pertaining to the maximum temperature) are valid only for uni-directional flows with

no heat recirculation within the system. In the presence of heat recirculation (or

autothermal operation using heat exchange), it is well-known that superadiabatic

temperatures are easily obtained irrespective of the Lewis or Peclet numbers even

for ultra-lean or ultra -rich reaction mixtures (see Lovo and Balakotaiah (1992) and

Schoegl and Ellzey (2007) for more details).
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Figure 5-1: Contour plots for a 2-D parallel plate reactor model with φ2
s = ∞ and

Danckwerts inlet condition showing (top) temperature (Per= 5, Lef= 1.5,
φ2=3), (middle) concentration (Per= 5, φ

2=3) and (bottom) temperature
(Per= 15, Lef= 2.5, φ

2=30).
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Figure 5-2: Contour plots for a 2-D parallel plate reactor model with Per=10,
Lef=1.5, φ

2 = 0 and φ2
s = ∞ and Danckwerts inlet condition show-

ing (top) temperature, (middle) concentration and (bottom) potential
temperature.
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Figure 5-3: Contour plots for a parallel plate reactor with Per =10, φ2= 0 and φ2
s =

∞ and Dirichlet inlet condition showing (top) temperature (Lef = 1.5),
(middle) concentration, and (bottom) potential temperature (Lef = 1.5).
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Figure 5-4: Variations of the average temperature (〈θ〉), the wall temperature (θs)
and the center temperature (θc) along the reactor length for Lef of 1.5
and Per of 5 when φ

2
s =∞ and (a) φ2 = 0 and (b) φ2 = 50. (c) shows a

blow-up of (b).
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Figure 5-5: Variations of the average temperature (〈θ〉), the wall temperature (θs)
and the center temperature (θc) along the length of the reactor for Lef
of 0.5 and radial Peclet number of 5 when φ2

s = ∞ and (a) φ2 = 0 and
(b) φ2 = 50.

141



Figure 5-6: Variations of the average temperature (〈θ〉), the wall temperature (θs)
and the center temperature (θc) for the short channel model with the
transverse Peclet number for Lef = 1.5 when φ2

s =∞ and (a) φ2 = 0 and
(b) φ2 = 50.
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Figure 5-7: Variations of the average temperature (〈θ〉), the wall temperature (θs)
and the center temperature (θc) for the short channel model with the
transverse Peclet number for Lef = 0.5 when φ2

s =∞ and (a) φ2 = 0 and
(b) φ2 = 50.
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Figure 5-8: Contour plots for the short channel model for parallel plate reactor with
φ2 = 0 and φ2

s = ∞ showing (top) temperature, (middle) concentration
(Lef=1.5), and (bottom) potential temperature (Lef=1.5).
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Figure 5-9: Variations of the wall temperature (θs) (top) and the center temperature
(θc) (bottom) for the short channel model with the transverse Peclet
number (P ) for Lef = 1.5 when (a) φ = 0, (b) φ2 = 10, (c) φ2 = 20 and
(d) φ2 = 50. φ2

s =∞.

145



Figure 5-10: Variations of the wall temperature (θs) (top) and the center temperature
(θc) (bottom) for the short channel model with the transverse Peclet
number for Lef = 0.5 when (a) φ = 0, (b) φ2 = 10, (c) φ2 = 20 and (d)
φ2 = 50. φ2

s =∞.
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Chapter 6

Calculations of Transfer Coeffi cients

In this chapter we develop analytical and semi-analytical expressions for the heat

and mass transfer coeffi cients pertinent to homogeneous-catalytic reaction systems.

As the theory for heat and mass transfer coeffi cients for catalytic reactions is well-

understood (see Gupta and Balakotaiah, 2001), we restrict ourselves to homogeneous

reactions. We first show the general structure of the low-dimensional models for these

systems that use the transfer coeffi cient concept. Then we proceed to obtain the

long distance asymptotes for the transfer coeffi cients rigorously using the Liapunov-

Schmidt reduction. These derivations ultimately reduce to solutions of certain regular

perturbation problems. Subsequently, regular as well as singular perturbation meth-

ods are used to derive the short distance asymptotes for the transfer coeffi cients.

Ultimately we make comments about the appropriate form of correlations for the

transfer coeffi cients that take into account both these asymptotes.

6.1 Reduced order model with axial diffusion and

conduction:

When a wall reaction is present, there are always transverse gradients in the con-

centration and temperature and hence further addition of transverse velocity gradi-
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ents does not impact any of the qualitative features but changes only the quantitative

features. However, when only the homogeneous reaction is present, the transverse gra-

dients are mainly due to velocity gradients and hence the flow profile can have strong

impact on the type of solutions that can exist. The full 2-D model can be averaged

using the Liapunov-Schmidt reduction in the direction transverse to the flow direction

if the transverse variation and the strength of the homogeneous and catalytic reac-

tions is suffi ciently small. The effect of a general velocity profile on the behavior of

homogeneous-heterogeneous reactor systems using the parabolic model that ignores

axial diffusion or conduction was previously shown in Alam et al., 2016. The novelty

of these models is that there are two pairs of heat and mass transfer coeffi cients if the

velocity profile is not flat.

Let us start with the 2D elliptic model:

f(y)
∂c

∂x
=

1

Pe

∂2c

∂x2
+

1

P

∂2c

∂y2
−DaR(c, θ)

f(y)
∂θ

∂x
=
Lef
Pe

∂2θ

∂x2
+
Lef
P

∂2θ

∂y2
+ βDaR(c, θ) (6.1)

∂c

∂y
= ∓PDasRc(c, θ)

∂θ

∂y
= ± β

Lef
PDasRc(c, θ) at y = ±1 (6.2)

with appropriate inlet and exit conditions. HereR(c, θ) := c exp
[
γhβθ
1+βθ

]
andRc(c, θ) :=

c exp
[
γcβθ
1+βθ

]
are being used for notational brevity.

We wish to average the equation in the direction transverse to flow. To accomplish
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this task, we express the above equation in the form:

∂2c

∂y2
= P

(
− 1

Pe

∂2c

∂x2
+ f(y)

∂c

∂x
+DaR(c, θ)

)

∂2θ

∂y2
=

P

Lef

(
− 1

Pe

∂2θ

∂x2
+ f(y)

∂θ

∂x
− βDaR(c, θ)

)
(6.3)

Integrating along the y-directions leads to the following equations which we call global

equations:

dcm
dx
− 1

Pe

d2 〈c〉
dx2

= −DaR(〈c〉 , 〈θ〉)−DasRc(cs, θs)

dθm
dx
− 1

Pe

d2 〈θ〉
dx2

= β (DaR(〈c〉 , 〈θ〉) +DasRc(cs, θs)) (6.4)

Here 〈c〉 is the transverse-averaged value of c defined as 〈c〉 =
∫ 1
−1 cdy∫ 1
−1 dy

, cm is the cup-

mixing average temperature defined as cm =
∫ 1
−1 f(y)cdy∫ 1
−1 f(y)dy

and cs = c(±1). 〈θ〉, θm and

θs are defined analogously. Now a substitution of

c = 〈c〉+ Pc1 +O(P 2) (6.5)

θ = 〈θ〉+
P

Lef
θ1 +O

(
P 2

Le2
f

)
(6.6)

along with the use of the zeroth order terms in the global equations leads to the

following differential equation for c1 and θ1

∂2c1

∂y2
= DasRc(cs, θs) + (f(y)− 1)

dcm
dx

(6.7)

∂2θ1

∂y2
= βDasRc(θs) + (f(y)− 1)

dθm
dx

(6.8)
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with appropriate boundary conditions. This yields

c1 = DasRc(θs)

(
y2

2
− 1

6

)
+
dcm
dx

(
y2

4
− y4

8
− 7

120

)
(6.9)

θ1 = βDasRc(θs)

(
y2

2
− 1

6

)
+
dθm
dx

(
y2

4
− y4

8
− 7

120

)
(6.10)

The following equations can now be obtained in a straightforward manner.

cs − cm = P

(
−17

35
DasRc(θs)−

3

35
DaR(〈θ〉)− 3

35

1

Pe

d2 〈c〉
dx2

)
(6.11)

θs − θm =
P

Lef

(
17

35
βDasRc(θs) +

3

35
βDaR(〈θ〉) +

3

35

1

Pe

d2 〈θ〉
dx2

)
(6.12)

〈c〉 − cm = P

(
− 3

35
DasRc(θs)−

2

105
DaR(〈θ〉)− 2

105

1

Pe

d2 〈θ〉
dx2

)
(6.13)

〈θ〉 − θm =
P

Lef

(
3

35
βDasRc(θs) +

2

105
βDaR(〈θ〉) +

2

105

1

Pe

d2 〈θ〉
dx2

)
(6.14)

The algebraic equations express relationships between 〈c〉 , cm and cs (〈θ〉 , θm

and θs) and are called local equations. These different modes capture the trans-

verse variations in the state variable across the channel. The transfer between these

modes is expressed in terms of the numerical factors (asymptotic Nusselt or Sher-

wood numbers) appearing in the four algebraic equations. The first two algebraic

equation expresses interphase mass and heat transfer, respectively. The next two

algebraic equation expresses heat exchange within the fluid phase because of velocity

gradients, homogeneous and catalytic reactions.

If we assume 1
Pe

∂2θ
∂x2 = O(P ), then we can ignore the terms containing d2〈θ〉

dx2 in

the local equations while the axial diffusion term appears in the global equation as
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a small perturbation. The base model for this assumption is a plug flow reactor and

small radial gradients and axial diffusion appear as corrections (or mathematically,

as small perturbations) to the base model. However we retain the d2〈θ〉
dx2 containing

terms if we consider 1
Pe

d2〈θ〉
dx2 = O(1), in which case even the scenario of small axial

gradients (base model of an ideal CSTR) can be considered within the framework of

the above derivation.

6.1.1 Models without axial diffusion/conduction: Reduction

to Index-infinity DAEs

When the axial conduction terms are ignored, we get systems of differential- al-

gebraic equations instead of boundary value problems. For instance, for the 2D

convection dominated model, the averaged model for the case of unit Lewis number

is found to be of the following form:

dθm
dx

= DaR(〈θ〉) +DasRc(θs), 0 < X < 1 (6.15)

θs − θm = P

(
1

Nu∞
DasRc(θs) +

1

N̂u∞
DaR(〈θ〉)

)
(6.16)

〈θ〉 − θm = P

(
1

N̂u∞
DasRc(θs) +

1

Nui,∞
DaR(〈θ〉)

)
(6.17)

θm = 0 at X = 0

In classical settings, the terms involving N̂u∞ do not appear, but for a system with
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coupled homogeneous-heterogeneous reactions, the homogeneous reaction affects the

heat transfer between the phases and the catalytic reaction affects the heat transfer

within the gas phase. To a first order in P , these two effects are the same and

therefore we have the same heat transfer coeffi cient N̂u∞ in both local equations. For

a fully developed (laminar) velocity profile and a parallel plate geometry, we have

Nu∞ = 35/17, Nui,∞ = 105/2 and N̂u∞ = 35/3 while for the circular geometry,

Nu∞ = 48/11, Nui,∞ = 48 and N̂u∞ = 16. [For flat velocity profile, Nui,∞ =

N̂u∞ =∞ and 〈θ〉 = θm]. Hence, we have for the parallel plate case:

θm − 〈θ〉 = P

(
−3

35
DasRc(θs)−

2

105
DaR(〈θ〉)

)

θm − θs = P

(
−17

35
DasRc(θs)−

3

35
DaR(〈θ〉)

)
(6.18)

Remark: The modeling of the above infinite index DAE system is often erroneously

done using IVP methods, ignoring the possible hysteresis type behavior and calculat-

ing only one out of infinitely many possible solutions. This also leads to numerical

issues such as Gibbs phenomena. We refer the reader to Ratnakar and Balakotaiah,

2016 for more exposition on such models.

6.2 Short distance asymptotes for parabolic veloc-

ity profiles

The derivation of transfer coeffi cients for systems with parabolic velocity profiles

is much more involved than that for the case of flat velocity. Despite the existence
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of analytical expressions for transfer coeffi cients in terms of special functions (Graetz

eigenfunctions and parabolic cylinder functions for long channel and short channel

models respectively, see Abramowitz and Stegun, [9]), such expressions are of little use

from a practical standpoint. In this section we outline the development of expressions

using perturbation methods and numerical calculations for the transfer coeffi cients in

forms that are amenable to bifurcation calculations

Homogeneous reaction systems

We start with the problem

d2c

dy2
= P (1.5

(
1− y2

)
)(c− cin) + φ2c

0 < y < 1

dc

dy
= 0 at y = 0 and 1 (6.19)

We are interested in finding the following Sherwood numbers defined as

Ŝh =
φ2 〈c〉
cm − cs

(6.20)

and

Shi =
φ2 〈c〉
cm − 〈c〉

(6.21)

We concentrate here on the large P (i.e. short distance) asymptotes in this section

because the small P asymptotes can be easily determined using regular perturbation.

[Remark: it is the small P asymptote that are obtained by employing the Liapunov-
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Schmidt reduction.] Let us begin by deriving the asymptotic dependence of Ŝh on P

for large P . In this case, to obtain cs, we make a standard boundary layer approx-

imation near y = 1 and replace the parabolic velocity profile with a linear one, i.e.

1.5 (1− y2) = 1.5(1 + y)(1 − y) ≈ 3(1 − y). This is a valid assumption because the

boundary layer is thin near the inlet for a short channel reactor.

Let us define

β =
φ2

(3P )2/3
=
DaP 1/3

32/3

χ =
cin − c
cin

η =
φ2

(3P )2/3
+ (3P )1/3 (1− y)

= β + (3P )1/3 (1− y)

We are interested in P suffi ciently large so that φ2 � (3P )2/3 or β � 1. The reason

we are interested in this limit is because then 1
φ
� 1

P 1/3 , meaning the reaction zone

thickness is larger than that of the boundary layer and it, therefore, makes sense

to calculate the effects of the boundary layer on the species transfer. We can now

reformulate the species balance in near the wall as

d2χ

dη2
= ηχ− β

0 < η <∞

dχ

dη
= 0 at η = β

χ is finite as η → ∞
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The general solution of this equation can be written using Airy and Scorer functions

as

χ (η) = A1Ai(η) + A2Bi(η) + πβGi(η) (6.22)

Here, A1 and A2 are constants. To ensure finiteness, we must have A2 = 0 while from

the boundary condition at η = β we obtain A1 = −πβGi′(β)
Ai′(β)

. Thus

χ(η) = πβ

(
Gi(η)− Gi′(β)

Ai′(β)
Ai(η)

)

We want to evaluate χ(η) at η = β, i.e. y = 1 in original coordinates. Then

Ai(β) = Ai(0) + βAi′(0) +O
(
β2
)

Gi(β) = Gi(0) + βGi′(0) +O
(
β2
)

=
1√
3
Ai(0)− 1√

3
βAi′(0) +O

(
β2
)

using known relationships between Airy and Scorer functions. Thus for small β,

retaining only O(1) terms of
(
Gi(β)− Gi′(β)

Ai′(β)
Ai(β)

)
, we get

χ(β) =
cin − cs
cin

= πβ
2

35/6Γ (2/3)
+O

(
β2
)

≈ 1.857β = 1.857
φ2

(3P )2/3

Thus cin−cs
cin

= O
(

φ2

(3P )2/3

)
= O

(
P 1/3Da

)
.The bulk conversion represented by cin−cm

cin
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is very close to that for flat velocity as O
(
φ2

P

)
= O (Da) .Thus

Ŝh =
φ2 〈c〉
cm − cs

=
φ2

χs − χm
= O

(
PDa

P 1/3Da

)
= O

(
P 2/3

)
when P � 1.

To study the Sherwood number Shi = φ2〈c〉
cm−〈c〉 for the problem

1

P

d2c

dy2
= (1.5

(
1− y2

)
)(c− cin) +Dac

0 < y < 1

dc

dy
= 0 at y = 0 and 1 (6.23)

for small values of Da, we choose to do a regular perturbation expansion in Da as

c = 1−Dac1 +O(Da2), leading to the boundary value problem:

1

P

d2c1

dy2
= (1.5

(
1− y2

)
)c1 − 1 (6.24)

0 < y < 1

dc1

dy
= 0 at y = 0 and 1 (6.25)

For large values of P , this is a singular perturbation problem and an inspection

quickly reveals a boundary layer next to y = 1. Outside the boundary layer, the

solution can be expressed by a regular perturbation expansion in 1/P . Keeping only
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the leading order term c10, we find

c10 =
1

f(y)
=

1

1.5 (1− y2)
(6.26)

c10 is the solution when the 1
P
d2c1
dy2 term is small but within the boundary layer, d

2c1
dy2

is suffi ciently large that 1
P
d2c1
dy2 balances 1. If we approximate c10 near the wall as

1
1.5(1−y)(1+y)

≈ 1
3(1−y)

, then d2c10

dy2 ≈ 2
3(1−y)3 . This means that within the boundary

layer,

1

P

2

3(1− y)3
= O(1)

or

1− y = O(P−1/3)

Also, we can estimate c10 near the beginning of the boundary layer as 1
3(1−y)

≈

O(P 1/3).

Let us now re-express Shi as Shi = P
〈c1〉−c1,m . We can immediately see that c1,m = 1

upon integrating the 6.24. Thus in order to calculate Shi, we need to calculate 〈c1〉.

To leading order, the average of c1 in the boundary layer is O(1) (c10 is O(P 1/3) while

the boundary layer thickness is O(P−1/3)). Thus

〈c1〉 ∼
∫ 1−P−1/3

0
dy

1.5(1−y2)
+ O(1) = 1

3
ln
[

1+y
1−y

]
|y=1−P−1/3

y=0 + O(1) = 1
3

ln
[

2−P−1/3

P−1/3

]
+

O(1) ≈ 1
3

ln 2− 1
3

lnP−1/3 ≈ 1
9

lnP .

lnP supersedes O(1) terms for very large P , and then Shi = O( P
lnP

). It is quite

diffi cult to obtain this asymptotic relation by numerical calculations, because lnP ,

despite being an increasing function of P , increases quite slowly.
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We note that although the short distance asymptote varies as O( P
lnP

), this ex-

act dependence is not useful for numerical calculations. What matters is that the

Sherwood number becomes very large for large values of P . We find by numerical

bifurcation calculations in the next section that an increasing function of P such as

P 2/3 works very well as far as bifurcation analysis is concerned.

We now proceed to the case of very fast reaction, i.e. Da→∞ while P →∞ as

well. In this case as well, the solution outside the boundary layer dictates the bulk

average quantities such as cm and 〈c〉. This outer solution is given by

c∞ =
f(y)

Da+ f(y)
(6.27)

≈ f(y)

Da
for Da� 1 (6.28)

This immediately yields for f(y) = 1.5 (1− y2) , 〈c〉 = 1
Da
and cm = 6

5Da
leading

to Shi = 5PDa.

We can verify these results numerically. To do so, we solve the 1D model with

transverse gradients with an isothermal first order reaction and then use these calcu-

lations to evaluate cm, 〈c〉 and cs.Then using the various definitions of the Sherwood

numbers, we can plot the numbers as functions of the transverse Peclet number. From

these plots, we can verify the long distance asymptote and the dependence on P can

be seen through the slopes of the plot for large P . We have shown these plots in

figures 6-1, 6-2 and 6-3.

Hence the following expressions for the Sherwood numbers are useful to obtain
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Figure 6-1: Plot of the average, cup-mixing average and surface concentration modes
as transverse Peclet number is changed for a 1D model with transverse
gradients and a first order isothermal reaction.
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Figure 6-2: Homogeneous reaction Sherwood number based on wall flux.
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Figure 6-3: Homogeneous reaction internal Sherwood number for low values of
Damkohler numbers.
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low-dimensional models:

Ŝh = Ŝh∞(1 + P 2/3) (6.29)

Shi = Shi∞(1 + P 2/3) (6.30)

and

Sh = Sh∞(1 + P 1/3)

Here, the subscript ∞ denotes long distance asymptotes. The Nusselt numbers are

similarly expressed by replacing P by P
Lef

.
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Chapter 7

Transport Effects on the Formation

of Patterns

7.1 Patterned States and 3-D Solutions

As stated in chapter 5, most literature studies of coupled homogeneous-heterogeneous

reaction considered only 2-D solutions and ignored the stability of two-dimensional

solutions to 3-D perturbations. For the case of catalytic reaction in a tube, Balakota-

iah et al. (2002) have shown that transport limited patterns and hence 3-D solutions

can exist, irrespective of the value of the Lewis number. In this case, the azimuthally

symmetric solutions can coexist with asymmetric solutions, i.e. there is a region of

parameters in which both 2-D and 3-D solutions can exist or when Lef < 1, only 3-D

solutions can exist.

In the previous chapters, we ignored the z-dependence of the solutions and con-

sidered only 2-D solutions. However, when thermal effects are significant (γβ � 1)

and there are transport limitations, patterns may be formed leading to 3-dimensional

solutions. In this chapter, we examine the conditions under which the concentration

and temperature fields can be 3-dimensional for the case of coupled homogeneous-
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heterogeneous reactions. For simplicity of analysis, we choose the short channel

model, as the reciprocal of the transverse Peclet number can be interpreted as the

axial length. Further, we examine below only the case of either homogeneous or

catalytic reaction only for the simple reason that if patterns are formed in either lim-

iting case, then they also exist when both chemistries operate side by side. We find

that the homogeneous reaction by itself can lead to the formation of Turing patterns,

where despite the absence of catalytic reaction that typically causes transverse gra-

dients the different rates of heat and species diffusion across the channel can produce

nonuniform solutions. These patterns have not been studied in detail before and have

a bearing on the maximum temperature attained in a reactor system. Some of these

solutions may have zones where the temperature exceeds the adiabatic value, though

this may be possible only in a small range of parameters.

7.1.1 Turing Patterns

We consider the short channel model when only the homogeneous reaction is

occurring. In this case, there is no a priori reason for the existence of a nonuniform

state. Intuitively, the absence of the catalytic reaction and a flat incoming velocity

may lead one to think that inhomogeneous solutions would not exist. Ignoring the

transverse gradients in the short channel model leads to the following lumped model:

1− c = DaR(c, θ)

θ = DaR(c, θ)

164



which can have up to three solutions for some range of Da values. However, as is

well-known from the literature on Turing patterns [Segel and Jackson (1972) , Muzika

and Schreiber (2013), Ševčíková, et al (1996), Trávníčková et al (2009), Gupta and

Chakraborty (2009)], this spatially homogeneous state can lose stability if the thermal

and mass diffusivities are different in a way that allows for more dispersion of the

stabilizing variable (the concentration variable) than the destabilizing variable (the

temperature variable). This is the situation when Lef < 1. We can analyze this

loss of stability by considering the evolution of small spatial perturbations from the

homogeneous state. Let us denote the homogeneous state by (c0, θ0),and define the

perturbations as

c1 = c− c0 and

θ1 = θ − θ0.

Linearizing the short channel model about (c0, θ0) yields

1

P

(
∂2c1

∂y2
+

1

α2

∂2c1

∂z2

)
= a11c1 + a12θ1 and (7.1)

Lef
P

(
∂2θ1

∂y2
+

1

α2

∂2θ1

∂z2

)
= a21c1 + a22θ1. (7.2)

Here, the constants a11, a12, a21 and a22 are defined as

a11 =
∂

∂c

[
Dac exp

[
γhβθ

1 + βθ

]
− (1− c)

]
|(c0,θ0) = 1 +Da exp

[
γhβθ0

1 + βθ0

]
,
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a12 =
∂

∂θ

[
Dac exp

[
γhβθ

1 + βθ

]
− (1− c)

]
|(c0,θ0) = γhβDa exp

[
γhβθ0

1 + βθ0

](
1

1 + βθ0

)2

,

a21 =
∂

∂c

[
−Dac exp

[
γhβθ

1 + βθ

]
+ θ

]
|(c0,θ0) = −Da exp

[
γhβθ0

1 + βθ0

]
and

a22 =
∂

∂θ

[
−Dac exp

[
γhβθ

1 + βθ

]
+ θ

]
|(c0,θ0) = 1−γhβDac0 exp

[
γhβθ0

1 + βθ0

](
1

1 + βθ0

)2

.

Assuming the perturbation functions are suffi ciently smooth, we can decompose them

into Fourier modes. We then obtain the following set of homogeneous equations for

the amplitudes (ĉ1, θ̂1) :

(a11 +
k2

P
)ĉ1 + a12θ̂1 = 0 and

a21ĉ1 + a22(θ1Lef
k2

P
)θ̂1 = 0; k2 = m2π2 +

n2π2

α2
. (7.3)

The condition for pattern formation is that the determinant for the above system

be < 0. The stable homogeneous states and patterned states are separated by the

curve defined by the vanishing of this determinant. This condition turns out to be 1+

Da exp
[
γhβθ0

1+βθ0

] (
1− γhβc0

(1+βθ0)2

)
+Lef

k2

P

(
1 +Da exp

[
γhβθ0

1+βθ0

])
+k2

P

(
1−Da γhβc0

(1+βθ0)2 exp
[
γhβθ0

1+βθ0

])
+

Lef
k4

P 2 = 0, which is linear in γhβ. We must also satisfy the following steady state

equation for the uniform state:

θ0

1− θ0

= Da exp

[
γhβθ0

1 + βθ0

]
.

Using the conversion, χ = 1− θ0 as a parameter, we can express these two equa-
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tions in the parametric form:

γhβ =
(1 + βχ)2

χ(1− χ)

(1 + Lefk
2)(1 + k2(1− χ))

1 + k2
and

Da =
χ

(1− χ)
exp

[
(1 + βχ)

(1− χ)

(1 + Lefk
2)(1 + k2(1− χ))

1 + k2

]
. (7.4)

Varying χ between 0 and 1, we can trace out the entire neutral stability curve [Here, k

is the wave number with m and n representing the transverse mode numbers; α is the

aspect ratio] . We have shown in figure 6-1, the bifurcation set for the homogeneous

state along with neutral stability curves for first several modes for α = 1, namely the

cases of m = 1, n = 0 (or equivalently m = 0, n = 1); m = 1, n = 1 and m = 2, n = 0

(or equivalently m = 0, n = 2). When Lef ≥ 1, the bifurcating patterned states

emerge from the unstable homogeneous branch and hence are unstable but when

Lef < 1, stable patterns can be found even when the corresponding homogeneous

solution is unique. This is consistent with the understanding of Turing patterns for

Lef < 1 in literature (as summarized in Segel and Jackson, 1972 and mentioned

above).

Though we have focused on the steady state behavior in this work, it must be

pointed out that many reactor systems with exothermic reaction exhibit oscillatory

dynamics when subjected to time-dependent perturbations. Thus, the formation of

Turing patterns may be accompanied with dynamically unstable patterns which may

subsequently stabilize via a Hopf or saddle-node bifurcation. For an illustration of

these bifurcations, we refer the reader to the work of Hadač, et al. (2015).
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Figure 7-1: Neutral Stability curves and bifurcation set for homogeneous reaction
only case with Lef = 0.3, P = 30 and β = 0.3 (top) and Lef = 1.3,
P = 25 and β = 0.3 (bottom).
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7.1.2 Transport Limited Patterns

The short channel model may also be used to examine the stability of the 2-D

solutions to 3-D perturbations. We consider the 2-D short channel model with no

homogeneous reaction given below:

1

P

(
∂2c

∂y2
+

1

α2

∂2c

∂z2

)
+ (1− c) = 0, and (7.5)

Lef
P

(
∂2θ

∂y2
+

1

α2

∂2θ

∂z2

)
− θ = 0 with (7.6)

∂c

∂y
= −φ2

sc exp

[
γsβθ

1 + βθ

]
at y = 1, (7.7)

∂c

∂y
= φ2

sc exp

[
γsβθ

1 + βθ

]
at y = −1, (7.8)

Lef
∂θ

∂y
= φ2

sc exp

[
γsβθ

1 + βθ

]
at y = 1, (7.9)

Lef
∂θ

∂y
= −φ2

sc exp

[
γsβθ

1 + βθ

]
at y = −1, (7.10)

c(x, y,−1) = c(x, y, 1) and θ(x, y,−1) = θ(x, y, 1). (7.11)

We first consider the z−independent solution to the above model which is given by

c0 = 1−
√
Lefθs

tanh
[√

P
Lef

]
cosh

[√
Py
]

sinh
√
P

and (7.12)

θ0 = θs

cosh
[√

P
Lef

y
]

cosh
[√

P
Lef

] , (7.13)
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where the surface temperature θs = θ(±1) can be found by solving the following

nonlinear algebraic equation:

a0θs = φ2
s exp

[
γsβθ

1 + βθ

]
(1− b0θs) , (7.14)

where

a0 =
√
LefP tanh

[√
P

Lef

]

and

b0 =
√
Lef

tanh
[√

P
Lef

]
tanh

√
P

.

For simplicity, we use the positive exponential approximation. This approximation

is valid when β is small but γs is suffi ciently large to render γsβ finite. Thus, the

model is still nonlinear, but the calculations become more tractable. Setting the

above equation as well as its first two derivatives with respect to θs to zero, we obtain

the hysteresis locus given by

γsβ = 4b0.

Similarly the bifurcation set can be obtained in a parametric form by simultaneously

solving the equation and its first derivative with respect to θs as

γsβ =
1

θs(1− b0θs)
(7.15)

and

φ2
s =

a0θs
(1− b0θs)

exp [−γsβθs] (7.16)
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with 0 < θs < b−1
0 .

To study the patterned states, we linearize the model about (c0, θ0) and define

the perturbation functions:

ω1 = c− c0 and

ω2 = θ − θ0.

We get the following linearized BC’s:

∂ω1

∂y
= −φ2

s [exp [γsβθ]ω1 + c0γsβ exp [γsβθ]ω2] at y = 1,

Lef
∂ω2

∂y
= φ2

s [exp [γsβθ]ω1 + c0γsβ exp [γsβθ]ω2] at y = 1, (7.17)

ω1(z = −1, y) = ω1(z = 1, y), and

ω2(z = −1, y) = ω2(z = 1, y). (7.18)

We can decompose the solution of the linear PDE into components corresponding to

various Fourier modes. The solution for the m− th mode is given as

ω1m = Cm cosh (ζmy) cos (2πmz + ψ) and

ω2m = Dm cosh (χmy) cos (2πmz + ψ) ,
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where

ζm =

√
P +

4π2m2

α2
, (7.19)

χm =

√
P

Lef
+

4π2m2

α2
, (7.20)

and Cm and Dm are constants. We pick ψ = 0, pinning the solution down to a

particular phase angle. To calculate the neutral stability curves, we use the boundary

conditions to a get a pair of homogeneous equations:

Cm
[
ζm sinh (ζm) + φ2

s cosh (ζm) exp [γsβθ]
]

+Dmc0γsφ
2
sβ exp [γsβθ0] cosh (χm) = 0

Cm
[
−φ2

s cosh (ζm) exp [γsβθ]
]

+Dm

[
Lefχm sinh (χm)− c0γsφ

2
sβ exp [γsβθ0] cosh (χm)

]
= 0.

The neutral stability curves are found by setting the determinant of the above system

to be zero, leading to the following equation:

Lefχmζm = φ2
s [c0γsβ coth (χm) ζm − Lefχm coth (ζm)] .

For defining the neutral stability curves, this equation has to be satisfied along with

eqn (7.16) yielding the following parametric form of the neutral stability curves:

γsβ = Lefχm
coth (ζm) + ζm(1−b0θs)

a0θs

ζm coth (χm) (1− b0θs)
and (7.21)

φ2
s =

a0θs
(1− b0θs)

exp [−γsβθs] , (7.22)
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where 0 < θs < b−1
0 .

For P >> 1, γsβ = Lefχm
coth(ζm)+

ζm(1−b0θs)
a0θs

ζm coth(χm)(1−b0θs) ≈
1

θs(1−
√
Lefθs)

and as b0 ≈
√
Lef in

this limit, we conclude that at high values of P , the neutral stability curves coincide

with the bifurcation set of the z-uniform states. This means that for high P (large

transverse gradients or near the inlet to a channel), patterns corresponding to all the

modes are possible. We show the bifurcation set for the z−uniform state as well as

the neutral stability curve for the first two modes in figure 6-2. We again find that

neutral stability curves stay enclosed inside the bifurcation set when Lef ≥ 1, but

when Lef < 1 one can obtain patterns even in the region of unique solution for the

uniform system.

The codimension-1 loci for the patterned states corresponding to different modes

can be obtained by differentiating (7.21) w.r.t. θs and setting the resulting equation

to zero. We can then eliminate θs using (7.21). This finally yields the following

parametric form for γsβ :

γsβ =
Lefχm

a0b0 coth (χm)

(a0 coth (ζm)− b0ζm)2

ζ2
m

(√
1 + a0 coth(ζm)−b0ζm

b0ζm
− 1
)2 . (7.23)

This locus gives us the minimum value of γsβ for which patterns can be found. For

P >> 1, γsβ =
Lefχm

a0b0 coth(χm)
(a0 coth(ζm)−b0ζm)2

ζ2
m

(√
1+

a0 coth(ζm)−b0ζm
b0ζm

−1

)2 ≈ 1

P
√
Lef

(a0 coth(ζm)−b0ζm)2(√
1+

a0 coth(ζm)−b0ζm
b0ζm

−1

)2 ≈

4LefP

P
√
Lef

= 4
√
Lef . This means that the codimesnion-1 loci coincide with the hys-

teresis locus for the 2-D solutions when P >> 1. Also when P � 1, γsβ =
Lef
P√

4π2m2

α
tanh

(√
4π2m2

α

)
 tanh

(√
P
Lef

)
√

P
Lef


. This implies that the minimum γsβ for pattern formation, and
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hence the region of patterns decreases with increasing Lef and increases with in-

creasing P . In figure 6-3, we have shown codimension 1 and hysteresis loci for Lewis

numbers of 0.3 and 2. It is clear that 3-D patterns can be formed even when there is

no steady state multiplicity.

We do not undertake the task of computing 3-D solutions in this work. However we

note that when Lef < 1, 3-D solutions bifurcate super-critically and hence are stable.

Further, the maximum temperature can certainly exceed the adiabatic temperature.

For Lef ≥ 1, the 3-D solutions bifurcate from the unstable 2-D branches. They may

gain stability through a limit point bifurcation (see Balakotaiah et al, (2002)).

7.2 Summary and Discussion

The main goal of this chapter was to examine the impact of transport parameters

to identify the different types of solutions that could exist and the region of parameters

in which 3-D solutions exist. We examined the stability of 1-D/2-D solutions to 3-D

perturbations and discussed the various types of solutions that could exist or coexist

in the system. The main results of this chapter related to these objectives may be

summarized as follows:

(i) We find that 3-D solutions can exist in systems where only the catalytic and/or

the homogeneous reaction take place. The region of parameter values in which these

3-D solutions exist increases with the transverse Peclet number (or inversely with the

distance from inlet) and also increases with decreasing Lewis number.

(ii) When Lef < 1, 3-D patterned states can exist even when there are no multiple

(homogeneous or 2-D) solutions. However, when Lef ≥ 1, it is possible for the 3-D
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states to exist only in the region of multiple 1-D/2-D solutions.

The results on pattern formation presented here have implications on the mod-

eling of combustion systems so that uniformity is not erroneously assumed in the

model when patterns exist. A bifurcation analysis for 2-D and 3-D reactor models of

heterogeneous-homogeneous combustion would be an appropriate testing ground for

ideas presented in this work. This is a subject for future investigation.
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Figure 7-2: 3D Neutral Stability curves and 2D bifurcation set for Lef = 0.3, P = 37
and α = 1 (top) and for Lef = 1.3, P = 10 and α = 1 (bottom) .
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Figure 7-3: Hysteresis locus and codimension 1 loci for Lef = 0.3 and α = 1 (top)
and for Lef = 2 and α = 1 (bottom) .
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Chapter 8

Conclusions and Recommendations

for future work

The main contribution of this thesis is the presentation of a comprehensive bi-

furcation analysis of the thermally coupled homogeneous-heterogeneous combustion

process in short monolith, fibermat or gauze type reactors. The simple lumped model

or 1D model with transverse gradients to describe these systems display a rich bifurca-

tion behavior. In prior work (Balakotaiah, Gupta and West, 2000), it was shown that

the aforementioned models have the same qualitative features as the more complex

2-D elliptic models provided the axial Peclet numbers are not large. Thus, the bifur-

cations predicted by these models will also be present in the more detailed models.

The coarse map of various bifurcations observed in this model can be used as a guide

to explore the more detailed models with multi-step chemistry. Further, while we

focused on the oxidation of propane and methane, our procedure is general enough to

be applicable to other systems of reactions that include complex feeds (which could

be lean or rich) with various hydrocarbons and possibly CO and H2.

Our analysis of propane oxidation on platinum with stoichiometric feed shows

that for propane mole fractions below about 2.5% and channel hydraulic diameters
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below about 1mm, the ignition-extinction behavior of the coupled system is primarily

determined by the catalytic reaction, with the homogeneous reaction playing no role

in the ignition behavior but assisting in the late stages of the fuel conversion. In this

region of parameters, catalytic ignition always precedes homogeneous ignition and

the homogeneous chemistry is activated (further downstream or) at higher values of

residence times where the fluid phase temperature increases suffi ciently for the homo-

geneous rate to be significant. Finally, we note that the phenomenon of quenching

of homogeneous reactions in microburners reported by several investigators, may be

due to the dominance of catalytic reaction over homogenous reaction, in addition to

(or instead of) the quenching of free radicals.

The coupled homogeneous-heterogeneous portion of the propane hysteresis loci

shows that as the channel hydraulic radius increases, the region where both chemistries

interact moves to lower values of fuel mole fractions. For suffi ciently high values of

RΩ, the homogeneous ignition could precede the catalytic ignition, but for the ki-

netics used in our study, this occurs at unrealistically high values of RΩ and also

at high fuel inlet mole fractions that lead to very high gas and solid temperatures.

However, if the catalyst reaction rate (per unit volume) is lowered by about two

orders of magnitude, it is possible to find operating conditions that lead to homoge-

neous chemistry dominance. It is worth noting that varying the catalyst activity and

changing the hydraulic radius are both important ways employing which the desired

ignition-extinction behavior can be controlled. As mentioned above, for reacting flows

in monoliths (or fibermat or gauze type reactors) when catalytic reaction dominates,

the exit conversion admits the asymptotes χ = 1 for P << 1 and χ ≈ εf/P
1/2 for
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P >> 1 with the transition around P = 1. Thus, if P is small (for large residence

times or small channel diameters, say), the system jumps to the high temperature

(and high conversion) ignited branch due to catalytic reaction alone. If P � 1, then

the catalytic reaction leads to some intermediate conversion, after which the homoge-

nous and catalytic reactions interact and could lead to a second ignition. As shown in

this work, the parameter space where the hysteresis diagrams for propane oxidation

admit a parabola-shaped branch of hysteresis locus corresponds to P > 1.

In chapter 4, we presented bifurcation diagrams for lean oxidation of methane

using pressure as the bifurcation parameter. The predicted ignition locus compares

favorably with experimental data and computational results. Our analysis also shows

that lean oxidation of methane is also catalytically dominant and the channel hy-

draulic diameter can be increased by a factor of ten or more without any significant

change in the ignition (or operating pressure) or inlet temperature or methane con-

version.

The work on Maximum Temperatures presented in Chapter 5 discusses that in the

case of Lef > 1, the peak temperature within the reactor never exceeds the adiabatic

value although it can be non-monotonic in the direction transverse to flow. Also if

the homogeneous reaction is suffi ciently strong, the center of the reactor may be hot-

ter than the wall for the case of Lef > 1. This is contrary to some results in recent

literature and the work described in Chapter 5 aims to clarify these conceptual issues.

To describe such solutions, reduced order models require at least three temperature

modes for their analysis (the natural choice for the three modes is the average gas

phase temperature, the cup-mixing average temperature and the solid phase temper-
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ature, see Chakraborty and Balakotaiah, 2004). We continue the exploration of the

impact of various transport parameters such as Lef and P on the qualitative features

of solutions in Chapter 7. We find that stable patterns are possible for Lef < 1

and that patterned states can exist even when there is no multiplicity of solutions.

These results show that that 3D solution structure is expected for the case of low

Lewis numbers and high transverse Peclet numbers, necessitating bifurcation studies

on 3-D models in such cases.

We now discuss some limitations and extensions of the work presented here.

(i) We considered only adiabatic systems. While the adiabatic case provides some

insight, heat losses are important especially in order to compare to experiments.

(ii) At high temperatures, radiation heat losses become important and must be

included in the mathematical model.

(iii) We have restricted ourselves to steady state bifurcations, but the transient

behavior of the model can be rich, displaying a variety of dynamic bifurcations.

The bifurcation analysis of models that include heat losses, radiation heat transfer

and possibility of time-dependent phenomena is obviously more complex but as stated

earlier, all the features of the adiabatic model will still be retained, and can serve

as a starting point for the numerical investigation of the features of such systems.

However, additional bifurcation phenomena may be observed, complicating the phase

diagrams. Such models as well as more detailed two- and three- dimensional models

are topics for future investigations.
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Appendix
Analysis of the peak temperature using the Short

Channel model
In this appendix, we analyze the peak temperature for the case of infinitely fast

catalytic reaction using the short channel model. We start with equations eqs.(5.67)-

(5.69) where eqn (5.70) replaced by the conditions for infinitely fast catalytic reaction:

eqs.(5.77)-(5.78). We can solve for c to obtain c = P
ψ2

(
1− cosh(ψy)

cosh(ψ)

)
, where ψ =√

P + φ2. Now θ must satisfy

d2θ

dy2
− P

Lef
θ = − φ2

Lef

P

ψ2

(
1− cosh (ψy)

cosh (ψ)

)
, 0 < y < 1

with
dθ

dy
= 0 at y = 0

and
dθ

dy
=

P

Lef

tanh (ψ)

ψ
at y = 1.

From this equation we obtain

θ =

√
P

Lef

tanh (ψ)

ψ

cosh
(√

P
Lef

y
)

sinh
√

P
Lef

(
1− φ2

ψ2 − P
Lef

)
+
φ2

ψ2 +
P

Lef

φ2

ψ2

cosh (ψy)

cosh (ψ)
(
ψ2 − P

Lef

) .
(8.1)

When Lef > 1, θ is an increasing function of y, attaining its maximum at y = 1. Thus,

to prove boundedness of solution it is suffi cient to consider only the wall temperature,

θ(1). It is given by

θ(1) =
φ2

φ2 + P
(

1− 1
Lef

)+

√
P

Lef

 P
(

1− 1
Lef

)
φ2 + P

(
1− 1

Lef

)
 tanh

(√
P + φ2

)
√
P + φ2

coth

(√
P

Lef

)
.

(8.2)
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For transparency of the ensuing proof, let us define λ :=
√

P
Lef
. Then we can express

θ(1) as

θ(1) =
λ

ψ

tanhψ

tanhλ
+

φ2

ψ2 − λ2

(
1− λ

ψ

tanhψ

tanhλ

)
. (8.3)

When P = 0, θ(1) = 1. For P > 0 and Lef > 1, ψ2 − λ2 = φ2 + P
(

1− 1
Lef

)
> φ2,

i.e. φ2

ψ2−λ2 < 1. Thus

θ(1) <
λ

ψ

tanhψ

tanhλ
+ 1.

(
1− λ

ψ

tanhψ

tanhλ

)
= 1. (8.4)

Thus, θ is always bounded by 1 for Lef > 1 and in this case, the actual temperature

never exceeds the adiabatic value.
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