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Abstract

Theoretical ecologists have long strived to explain how the persistence of pop-

ulations depends on biotic and abiotic factors and have proposed various models

to predict the long time behavior of biological populations. We are interested in

modeling the effects of natural selection and adaptation in a bacterial population of

Escherichia coli, one of the most intensively studied organisms on Earth.

A distinctive signature of living systems is Darwinian evolution, that is, a ten-

dency to generate as well as self-select individual diversity. Mathematical models

built to describe this natural dynamics of populations must be rooted in the micro-

scopic, stochastic description of discrete individuals characterized by one or several

adaptive traits and interacting with each other. The simplest models assume asex-

ual reproduction and haploid genetics, where an offspring usually inherits the trait

values of her progenitor, except when a mutation causes the offspring to take a mu-

tation step to new and different trait values and selection follows from ecological

interactions among individuals.

In this dissertation we borrow results from large deviation theory to predict the

most likely evolutionary trajectories for genetic traits in a given bacterial population

leading from known initial multi-species frequencies to terminal domination by mu-

tants with highest fitness. To compute the most likely evolution path, we seek the

trajectory with minimal large deviations cost among all genetic evolution trajecto-

ries. The goal thus reached is to compute the most likely evolutionary steps which

brought an actually observed terminal overwhelming dominance by a new mutant.
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CHAPTER 0

Introduction

0.1 Broad outline

Large deviation theory deals with the decay rates for probabilities of increasingly

unlikely events and is intimately related to the calculus of variations and Hamilton-

Jacobi equations, as became clear after Wentzell and Freidlin’s work on small diffu-

sion [123, 124]. This dissertation applies large deviation theory to predict the most

likely evolutionary trajectories for genetic traits in a given bacterial population lead-

ing from known initial multi-species frequencies to terminal domination by mutants

with highest fitness.

1



0.1. BROAD OUTLINE

Often used probabilistic growth models for asexual bacterial populations with

roughly fixed sizes involve competing genotypes with various “fitnesses” controlling

their respective growth rates. Such stochastic models are natural to analyze labo-

ratory experiments studying the genetic evolution of bacteria Escherichia coli. In

many of these experiments, periodic dilutions alternate with free growth periods of

roughly constant duration.

Due to large cell populations sizes N ranging between 105 and 108, large devi-

ations approximations are a natural tool to evaluate the probabilities of arbitrary

population trajectories in the space of population histograms. This approach leads

to computing the minimal “large deviations” cost among all these genetic evolution

trajectories.

The goal of this dissertation is to actually compute the most likely evolutionary

steps which brought an actually observed terminal overwhelming dominance by a

new mutant.

We formalize and study a stochastic model involving successive cycles where

a deterministic growth phase with random mutations is followed by the random

selection of a population sub-sample of a fixed size N .

For this stochastic process and for large population size N , we fix the num-

ber of competing genotypes g and we introduce the convex space HIST ⊂ Rg of

all population histograms. We then apply large deviation concepts and tools to

compute the Rate Functional RF (tr) ≥ 0 associated to any evolution trajectory

tr = {H1H2H3...Hn} where Hj ∈ HIST for all j.

2



0.2. DETAILED OUTLINE OF CHAPTERS IN THE DISSERTATION

An equation linking Hn, Hn+1, Hn+2 and characterizing the trajectories tr which

are “local” minimizers for the large deviations cost RF (tr) is then developed.

We apply this equation in reverse time to develop a reverse shooting algorithm

dedicated to the computation of most likely trajectories starting from any given

initial histogram Hinit and ending with the fixation of a target histogram Htar.

We implement this algorithm numerically to compute the most likely population

trajectories to population fixation in the context of populations involving 4 geno-

types, using concrete E. coli bacterial evolution models with parameters derived

from the experimental results of T. Cooper (UH Biology) [129].

We also present a numerical application of these approaches to the notions of

repeatability of evolution and clonal interference in a biological context analyzed by

R. Azevedo et al. [94].

0.2 Detailed Outline of Chapters in the Disserta-

tion

We introduce techniques of large deviation theory to predict and estimate probabil-

ities of evolutionary trajectories for a large class of stochastic population dynamics.

Chapter 1 outlines the biological background of our work.

Chapter 2 introduces our Locked Box Model for stochastic population dynamics.

We consider “cell” populations where the number g of competing potential genotypes

3



0.2. DETAILED OUTLINE OF CHAPTERS IN THE DISSERTATION

is fixed. Every “day”, the current population (of roughly constant size N) under-

goes a deterministic growth phase driven by fixed growth factors Fj specific to each

genotype Gj. The logarithmic growth factor of a genotype is directly linked to its

fitness coefficient.

These growth phases stop when the population reaches a saturation size Nsat >>

N , and then the saturated population undergoes multiple random Poisson mutations,

occurring independently and at fixed mutation rates.

Then the selection process is implemented by random selection of a sub-sample

of size N , which becomes the initial population for the next daily cycle.

We introduce the simplex HIST ⊂ [0, 1]g of all possible population histograms,

and we compute the transition probabilities of the Markov chain {H1, H2, ...Hn} of

successive population histograms.

In chapter 3 we introduce general concepts and a few basic results from large

deviation theory. We present a survey of the main published applications of large

deviation to stochastic population dynamics.

In chapter 4 we present, for N large, an explicitly detailed construction of the

large deviation rate functionals for the one-step transition probabilities P (Hn+1 =

G | Hn = H) of the Markov chain modeling our stochastic processes in the space

HIST of population histograms. We then compute the full rate functional RF (tr)

for arbitrary random trajectories

tr = {H1, H2, . . . Hn}

dynamically evolving in the space of histograms.

4



0.2. DETAILED OUTLINE OF CHAPTERS IN THE DISSERTATION

The residual terms in the large deviation approximations for logarithms of tran-

sition probabilities are also computed.

In chapter 5, we develop an adequate fast numerical approximation of the one

step rate functional for transition probabilities which was derived in chapter 4. To

achieve this, we need to derive first-order approximations for the optimal number of

mutations which minimize the one-step transition rate functional. Theoretical and

numerical evidence for local convexity of the one-step rate functional is also provided

to reinforce the validity of the one-step numerical approximations just mentioned.

Chapter 6 develops explicit optimality conditions for rate minimizing evolution-

ary trajectories. These optimality conditions involve essentially an explicit equation

linking any three successive steps Hn, Hn+1, Hn+2 of any trajectory tr locally mini-

mizing the large deviation “cost” RF (tr).

We fix the target (i.e. terminal ) histogram Htar in our trajectory tr and use

multiple penultimate histograms to define multiple reverse shooting directions, and

generate in reverse time the corresponding multiple rate minimizing trajectories.

Here one needs to carefully analyze the various “near boundary” situations in-

volving histograms having one or several coordinates equal to 0 or to 1. We develop

an iterative algorithm to compute the trajectory with minimal cost starting from an

initial histogram Hinit and ending with a terminal histogram Htar.

In chapter 7, we outline our numerical implementation for the reverse construc-

tion of cost minimizing trajectories outlined in chapter 6. We present a stage by stage

implementation of our multi-stage algorithm generating rate minimizing trajectories.
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0.2. DETAILED OUTLINE OF CHAPTERS IN THE DISSERTATION

We also develop a multi-scale approach to accelerate the preceding numerical imple-

mentation, by introducing successively finer discretization of the histogram space

HIST .

Chapter 8 illustrates numerically and graphically the implementation of our tech-

niques on concrete examples of genetic evolution processes. For the cases of 2, 3,

and 4 genotypes, we present step by step construction of multi-stage rate minimiz-

ing trajectories leading to the fixation of arbitrary given genotypes, and list out the

associated optimized costs RF (tropt).

In chapter 9, we present direct simulation of these evolutionary stochastic pro-

cesses. Using the same parameters as in chapter 8 we generate probabilities of ob-

serving rare events in the population evolution. These empirical frequency results are

displayed for 3 and for 4 genotypes as observed in simulation with 104 trajectories.

In chapter 10 our large deviations approach is applied to an evolutionary pop-

ulation model studied by R. Azevedo et al. [94], to analyze the effects of clonal

interference, and the repeatability of evolution. We export our framework to this

context and thus predict explicitly the most likely trajectories that lead the popula-

tion to fixation.

Conclusions and future work are presented in chapter 11.
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CHAPTER 1

Cell Populations : Genetic Evolution Models

1.1 Modeling Genetic Evolution

The first systematic presentation of evolution was put forth by the French scientist

Jean Baptiste de Lamarck (1774 − 1829) in 1809. Lamarck described a mechanism

known as “the inheritance of acquired characteristics” by which he believed evolution

could occur.

However, Darwin’s theory of evolution [28] by natural selection is one of the

best substantiated theories in the history of science, supported by evidence from a

7



1.1. MODELING GENETIC EVOLUTION

wide variety of scientific disciplines, including paleontology, genetics, developmental

biology and geology. Darwin coined the term natural selection to describe the process

by which organisms with favorable variations survive and reproduce at a higher rate.

An inherited variation that increases an organism’s chance of survival in a particular

environment is called an adaptation. According to Darwin an adaptation could

spread throughout the entire species over many generations and evolution by natural

selection would occur.

The physical and behavioral changes that make natural selection possible are

mainly due to random mutations at the level of DNA and genes. Such changes are

called “mutations”. Mutations can be caused by chemical or radiation damage or

errors in DNA replication. Mutations can even be deliberately induced in order to

adapt to a rapidly changing environment. Most times, mutations are either harmful

or neutral but in rare instances, a mutation might prove beneficial to the organism.

If so, it will become more and more prevalent in the next generations and spread

throughout the population. Thus, natural selection guides the evolutionary process,

preserving and adding up the beneficial mutations and rejecting the bad ones.

Emergence and subsequent spread of beneficial mutations through natural selec-

tion leads to adaptive evolution. Various stochastic models have been developed and

studied for this process which demonstrate the importance of stochastic events in

evolving populations (Haldane (1927) [57]; Fisher (1930) [48]).

So a combination of “chance and necessity” governs the outcome of evolution

(Monod (1971) [87]). Occurrence of a mutation in a particular individual at a certain

time during the evolution process and its survival so as to be passed on to next

8



1.1. MODELING GENETIC EVOLUTION

generation characterizes the chance variable in the system. Necessity arises mainly

through the action of natural selection and mutational biases. One of the main goals

of evolutionary genetics is to understand the interplay between these factors and

successfully predict evolving mutational trajectories taken by a population.

If a mutant with high selective advantage appears in a population, then it has a

positive probability of survival, however large the population may be (Kimura (1983)

[73]). A genetic advantage of one organism over its competitors that causes it to be

favored in survival and reproduction rates over time is defined to be its selective

advantage. Haldane (1927) [57] proved that for a constant sized population, the

probability of a mutation with selective advantage s to survive random changes in

allele frequency due to random sampling is approximately 2s. These changes in allele

frequency in a population due to random sampling are termed “Genetic Drift”.

In population genetics, it is assumed that selection acts on individuals based on

their phenotype and these phenotypes are determined by the individual’s genotype.

Thus, considering fitness as a property of an individual or as a property of a genotype

is not an issue in population genetics (Rice (1961) [101]). The ability of an individual

to both survive and reproduce in an environment is characterized as its fitness.

In a large asexual population, beneficial mutations compete with each other for

fixation. In population genetics, fixation is the change in a gene pool from a situation

where there exists at least two variants of a particular gene (allele) to a situation

where only one of the alleles remains. Recently Wilke (2004) [125] showed that with

the increase in population size, the rate of substitution approaches a constant which

is equal to the mean effect of new beneficial mutations. He also shows that the mean
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effect of new beneficial mutations is smaller than the mean effect of new deleterious

mutations and that the mean effect of fixed mutations grows logarithmically with the

population size. Wilke derives a formula evaluating whether at a given population

size, the beneficial mutations are expected to compete with each other or go to

fixation.

Some of the main conclusions of the experimental work by Gerrish and Lenski in

1998 [51] include

1. The probability of fixation of a given beneficial mutation decreases with both

population size and mutation rate.

2. As population size or mutation rate increase, adaptive substitutions result in

larger fitness increases.

3. The rate of adaptation is an increasing, but decelerating, function of both

population size and mutation rate.

4. Beneficial mutations that become transiently common but do not achieve fix-

ation because of interfering beneficial mutations are relatively abundant.

More recent work using large population has shown that beneficial mutations

can be very common in this setup (Joseph and Hall (2004) [67]; Desai et al.(2007)

[33]; Desai and Fisher (2007) [32]). In such a case, many new mutations will occur

before any of the mutation can fix, so there will be many different mutant lineages in

the population concurrently. In asexual populations, these different mutant lineages

interfere and not all can fix simultaneously (Perfeito et al. (2007) [96]; Gresham et
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al. (2008) [55]; Kao and Sherlock (2008) [68]). Work of Visser and Rozen (2008)

[106] and Desai and Fisher (2007) [32], for instance, analyzes the dynamics of such

multiple mutations and the interplay between multiple mutations and interference

between clones.

“Clonal Interference” is the process by which different beneficial mutations arise

in an asexual population and have to compete with one another for fixation (Gerrish

and Lenski (1998) [51]). It can significantly affect the evolution dynamics ([90], [51],

[107], [125], [70], [33], [95], [17], [16], [65]).

Beneficial mutations that occur in different lineages may be recombined into a

single lineage in sexual populations (Peters and Otto (2003) [97]). However, in asex-

ual populations, the clones that carry such alternative beneficial mutations compete

with one another, and interfere with the expected progression of a given mutation

to fixation. The idea that beneficial mutations must compete in asexual populations

was originally proposed by Muller in 1932 [90]. Clonal interference is thus the phe-

nomenon whereby the fate of the beneficial mutation is altered by the appearance of

a superior alternative mutation (Atwood et al. (1951) [2]; Helling et al. (1987) [60];

Visser et al. (1999) [1]).

Such competition between beneficial mutations slows the spread of and may even

eliminate the first mutation. Asexual populations adapt to their environment by

the occurrence and subsequent rise in frequency of the beneficial mutations. Clonal

interference ensures that those beneficial mutations that do achieve fixation are of

large effect. So it is more likely for the population to follow trajectories beginning

with mutations of large effect, since these can out-compete other mutations, even if

11
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they do not occur first [94].

Similar selective selection of beneficial mutations was also observed by Rozen et

al. [107]. They confirmed that many beneficial mutations, mostly those of small effect

are lost either due to (1) genetic drift or due to (2) competition among clones carrying

different beneficial mutations, a phenomenon called the Hill-Robertson effect for

sexual populations and clonal interference for asexual populations. Together, these

two phenomena suggest that only those beneficial mutations of large fitness effect

achieve fixation. This prediction was confirmed both empirically and theoretically by

showing that fitness effects of fixed beneficial mutations follow a distribution whose

mode is positive.

Beneficial mutations also play an essential role in bacterial adaptation. One

prominent example of bacterial adaptation is antibiotic resistance. Tenaillon et al.

[102] documented the selection and fixation of resistant mutations in populations of

Escherichia coli that had never been exposed to antibiotics but instead evolved for

2000 generations at high temperature (42.2◦C). They show that it is not always true

that antibiotic resistance is selected by the presence of antibiotics because resistant

mutations confer fitness costs in antibiotic free environments. They describe the

resistance mutations that are not necessarily costly in the absence of antibiotics or

compensatory mutations but are highly beneficial at high temperature and low glu-

cose. Their fitness effects depend on the environment and the genetic background,

providing glimpses into the prevalence of epistasis and pleiotropy. In genetics, epis-

tasis is a phenomenon in which the expression of one gene depends on the presence

of one or more ‘modifier genes’ whereas pleiotropy is the phenomenon in which a
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single gene contributes to multiple phenotypic traits.

Multiple models of evolutionary dynamics have been proposed and extensively

studied. Imhof and his team [50] approached the dynamics in a finite population

under the assumption of strong selection and weak mutations using game theory.

They generalized the Moran process (Moran [88]; Ewens [45]) to include frequency

dependent selection and mutation. In a classic Moran process mutations are not

allowed and selection is constant. Game theory provides a means to study frequency

dependent selection, where the fitness of a phenotype depends on the composition of

population. Deterministic differential equations have been typically used to model

game dynamics in evolutionary biology to describe the evolution of very large pop-

ulations.

One of the most fundamental questions in population biology concerns the per-

sistence of species and populations, or conversely their risk of extinction. Extinction

risk is influenced by a myriad of factors, including interaction between species traits

and various stochastic processes leading to fluctuations and declines in population

size [82, 100, 61].

Conducting a population viability analysis involves the steps of choosing an ap-

propriate model, fitting the model to data, and using the fitted model to predict the

extinction risk. In 2004 Bahi and Michel [7] developed a new class of gene evolution

models in which the nucleotide mutations are time dependent. These models allowed

them to study nonlinear gene evolution by accelerating or decelerating the mutation

rates at different evolutionary times.
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VanderSluis et al. [43] studied the effects of duplicate genes on evolutionary

trajectories. They show that duplicate gene pairs are highly imbalanced in their

number of genetic interactions with other genes, a pattern which appears to result

from asymmetric evolution, such that one duplicate evolves or degrades faster than

the other and often becomes functionally or conditionally specialized. These differ-

ences in genetic interactions are predictive of differences in several other evolutionary

and physiological properties of duplicate pairs.

Méléard and Roelly (2013) [84] modeled the effects of natural selection and adap-

tation for a multi-cell population. They model a two-level population dynamics,

resulting from the interplay between individuals submitted to mutation and com-

petition for resources and their composition in multi-type cells. They focus on the

behavior of the individual and cell populations on the long time scale of evolution

where phenotypic mutations can be fixed. By rigorously constructing the underlying

mathematical model and proving its existence they obtain moment and martingale

properties which are the key points to deducing approximations for large individual

and cell populations.

Ovaskainen and Meerson [93] in their recent paper on stochastic models of popu-

lation extinction have shown how predicted extinction risk depends on the structure

and parameters of a stochastic population model.

Sylvie Méléard in her other paper with Villemonais [85] has presented the quasi-

stationarity properties of models derived from ecology and population dynamics.

The long time behavior of different stochastic population size processes when 0 is an

absorbing point and is almost surely attained by the process is discussed.
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1.2 Models and Experiments for Escherichia coli

Our primary focus is on models of evolutionary dynamics for simple bacterium pop-

ulations. Bacterial populations seem ideal for studying beneficial mutations because

these populations have large sizes and short generation times. Bacterial populations

propagated in the laboratory over a relatively short period of time can undergo very

large numbers of replications.

Herron and Doebeli [62] documented the genetic basis and the evolutionary dy-

namics of adaptive diversification in three replicate evolution experiments, in which

competition for two carbon sources caused initially isogenic populations of the bac-

terium Escherichia coli to diversify into two coexisting ecotypes representing differ-

ent physiological adaptations in the central carbohydrate metabolism. This process

closely corresponds to the evolutionary dynamics seen in mathematical models of

adaptive diversification due to frequency-dependent ecological interactions.

To justify diversity-stability hypothesis which states that ecosystem diversity is

positively correlated with stability, Imhof [64] used diverged Escherichia coli cells

and showed that the fitness of community members depends on the complexity (num-

ber of participants) of the system and concluded that system complexity provides a

buffer against stochastic effects. For this study stability was defined as non stochastic

and reproducible population dynamics.

Fong et al. [49] conducted laboratory experiments on E. coli K-12 MG1655

grown on either lactate or glycerol minimal media to address fundamental questions

about adaptation to selection pressures. They investigated the reproducibility of
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growth phenotypes and global gene expression states during adaptive evolution. The

results from parallel, replicate adaptive evolution experiments showed that

(1) growth phenotypes at the endpoint of evolution are convergent and reproducible;

(2) endpoints of evolution have different underlying gene expression states;

(3) the evolutionary gene expression response involves a large number of compen-

satory expression changes and a smaller number of adaptively beneficial expression

changes common across evolution strains.

The impact of stochasticity on gene expression is widely discussed. Whether

stochastic gene expression is detrimental or beneficial is, however, still unclear. Hoek

and Hogeweg [120] studied the effects of stochasticity from an evolutionary point of

view in the lac operon of E. coli, using a detailed, quantitative model evolving

through a mutation-selection process. The lac operon is a cluster of genes required

for the transport and metabolism of lactose in Escherichia coli. They concluded

that in a natural environment, the impact of stochastic gene expression on lac operon

evolution is minor, but that this evolution responds with much stronger stochastic-

ity when confronted with artificial inducers. By showing that high stochasticity

increases the delay in lactose uptake in a variable environment, they prove that in

this particular system stochasticity is detrimental.

The most popular and longest experiment on E. coli is being conducted by Lenski

and his team. Experimental populations of E. coli bacteria have evolved for 20, 000

generations in a uniform environment. Twelve populations of these were founded

in 1988 from a common ancestor (Lenski et al.(1991) [78] and Barrick and Lenski

(2009) [8]).
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These populations have evolved under the uniform environment with glucose as

the density limiting resource (Lenski et al. (1991) [78]; Lenski et al. (1994) [79];

Lenski et al. (2000) [24]) that also contains citrate, which E. coli cannot use as a

carbon source under toxic conditions. The populations adapted to this environment

by the substitution of spontaneous beneficial mutations. One particularly significant

adaption was the evolution of a strain of E. coli that was able to use citric acid as a

carbon source in an aerobic environment [11].

1.3 Experimental Design: Escherichia coli Evolu-

tion Experiments

In this section we present the general setup of the experiments conducted by Tim

Cooper’s laboratory at the UH department of Biology and HK (Hegreness et al.

(2006) [59]). We borrow the description of this experimental setup from the Ph.D.

thesis of V.Sehgal [112].

L− arabinose(Ara−) is mainly used as a culture medium in most of the experi-

ments and the strain of E. coli is considered to be strictly asexual. An Ara+ mutant

was isolated from this strain (Lenski (1988) [77]). The Ara− and the Ara+ colonies

form red and white colonies, respectively (Levin et al. (1977) [80] and Lenski et

al. (1991) [78]) on the indicator medium. The arabinose marker has been shown

to be effectively neutral under the culture conditions used in the present series of

experiments (Lenski (1988) [77]). In HK experiments, yellow and cyan fluorescent
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protein markers were used. In both the experiments, the color markers used were

neutral, having no detectable effect on the individual.

Both the TC (Tim Cooper et al. [129]) experiments, as well as the HK exper-

iments, start with a number K of culture wells of replicate populations, each well

containing an initial population of E. coli cells of size N

In each one of the first six TC experiments, the K replicate populations start

with a distinct initial population composed of cells having identical genotypes.

One of the six initial genotypes is Ara − 1, the common ancestor of the 5 other

initial genotypes. In the HK experiments, all populations were started from a single,

different genotype MC4100 (Hegreness et al. (2006) [59]). In each well, the initial

population was composed of a single genotype, except that half of the cells were

of one marker type and the other half were of another. In these experiments, an

arabinose marker was used (Lenski et al. (1991) [78]).

In this experimental stochastic population evolution, the populations of bacteria

Escherichia coli evolve over generations with daily growth + dilution cycles. The

number of mutations is assumed to have a Poisson distribution dependent on the

size of the population. Stochastic distributions, such as the Poisson distribution, for

mutants in each generation, allow for random fluctuations in population sizes. The

whole evolutionary process is explained below in detailed steps.
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1.3.1 Daily Growth

At the beginning of each daily growth period, the initial numbers of red and white

cells in each culture well are equal to N = 2, where N is the size of the population

in each one of the wells at the beginning. After the nutrients of a well have been

exhausted, (which occurs after approximately 8 to 12 hours) the population growth

stops. Nsat is the daily terminal cell population size in each well after nutrient

exhaustion and Nsat is essentially fixed in this experimental context. Thus, during

the daily growth period, number of cells in each one of the wells increases from the

initial value N to Nsat, at the end of the daily growth period.

1.3.2 Daily Dilution

Every 24 hours, once the population in each well has reached size Nsat, a subpopu-

lation of approximate fixed size N is randomly extracted from each one of the wells.

There is an effective dilution of the culture by a fixed dilution factor, D = Nsat/N .

The extracted cells are then transferred to a new well, containing fresh growth

medium. This transfer step is repeated daily for all the K wells.

1.3.3 Estimating Marker Frequencies for Empirical Data

Once the daily “growth + dilution” cycle has been completed, and after transfer

of the diluted population to a new well, another small random sample is extracted

from the N cells in the new well. This complementary sub sampling is dedicated to
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daily estimation of color markers frequencies. These complementary samples of sizes

ranging between 300 and 400 are extracted from each one of the new K populations,

and transferred onto K culture plates, where the cells are allowed to grow again. On

each cell plate, after a few days, the complementary subsample of 300 to 400 cells,

can be inspected by a laboratory technician who determines by visual counting the

frequencies of red and white cells.

1.3.4 Time Series Recording of the Experiment

The daily estimated color marker frequencies are recorded and indexed by the ac-

quisition date t, encoded as the number of days since the start of the experiment.

Table 1.1 shows the structural design parameters for TC and HK experiments.

Parameter Name Parameter TC Experiment HK Experiment

Number of Wells K 11 72

Initial Size of Population N 5× 104 2.5× 105

Saturation Size of Population Nsat 107 8.25× 108

Dilution Factor D 200 3300

Table 1.1: Structural Design Parameters for TC and HK

Experiments

In the HK experiments, the daily frequencies of the two cell marker types were
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recorded by direct fluorimetric measurements, which generate more accurate evalu-

ations of the daily red and white cell frequencies.

The mutation rate is the average rate at which a given cell of one genotype may

mutate into another genotype, per unit of time. The bacterial evolution experiments

described above were designed and carried out to estimate the mutation rate and

selective advantage of the newly arising beneficial mutations. A mutant arises with

selective advantage s, and thus has an advantage of (1 + s) relative to the progenitor

cell. The multiplicative growth factor per time interval is then given by F 1+s where

F is the multiplicative growth factor per time interval of progenitor cells given by

F = Nsat/N = D.

As described in detail in the joint paper of Tim Cooper with Sehgal et al. [129],

the fitness of the evolved clone was calculated relative to the ancestor as the ratio of

each strain’s Malthusian parameter, estimated as log(fsat/finit), where fsat and finit

are the final and initial frequencies of one cell type, respectively. In other words the

fitness of a genotype, g is defined as

Fit(g) = logFg = logF 1+s.

The selective advantage of gene g over other ancestral gene anc is then given by

(Fit(g)− Fit(anc))/F it(anc).

The selective advantage is essentially the basis for evolution by natural selection.

It is the characteristic of an organism that enables it to survive and reproduce better

than other organisms in a given environment.

New algorithms were developed in [129] to estimate these parameters directly
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from the observed red and white daily frequency data. These estimated mutation

rates and selective advantages will be used in several of the numerical examples

analyzed further on in the thesis

During population growth, and the daily “growth + dilution” cycles, mutant

genotypes with various selective advantages s > 0 can occur with a small probabil-

ity µ at each cell division. All individuals are asexual and, therefore, when a fitter

genotype reaches “fixation” in a population, it will drive the ancestral genotype to

extinction, and thus will eliminate it from the population. This will simultaneously

cause the fixation of the color marker type in which it occurred. Because adaptive

mutations can arise at many sites in the genome, it is usually impossible to experi-

mentally follow their simultaneous dynamics directly. For this reason, one of the goal

of these experiments is to infer the underlying genotypic dynamics from the changes

in the frequencies of the two marker types.

For numerical results, we concentrate primarily on parameters estimated for the

above described experiments carried out by T.C. [129] (hereafter will be called TC ex-

periments), but also include a previously described experiment (Hegreness et al., [59],

hereafter will be called HK experiment) as a point of reference and to demonstrate

the effect of a realistic range of the experimental parameters on the application of

our model. Reliable and robust estimates of these parameters can be found in [129].
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CHAPTER 2

Stochastic Population Dynamics and Genotypic Composition

We consider models for the genetic evolution of asexual bacterial populations such as

E. Coli, in contexts similar to the experiments of T. Cooper [129] and Hegreness [59],

where populations undergo successive daily cycles of deterministic growth, random

mutations, and random subsampling as formalized below.

2.1 Notations and Definitions

We introduce the following definitions and biological parameters for our model.
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� The genotype is defined to be the genetic “signature” of an organism. It deter-

mines the hereditary potentials and limitations of an individual. We assume

the presence of g distinct genotypes in our stochastic population model.

� Hn is defined to be the g−dimensional vector of population histogram at the

beginning of day n where Hn(j) is the frequency of genotype j in the population

such that
∑g

j=1Hn(j) = 1.

� HIST is the space of all possible population histograms H with g distinct

genotypes such that
∑g

j=1H(j) = 1.

� Population trajectories spanning T generations can be viewed as discrete ran-

dom Markov sequences h = (Hn)0≤n≤T of population histograms Hn ∈ HIST .

A sequence X1, X2, ... of random variates is called Markov [69] if, for any n

Prob(Xn = xn|X1 = x1, ..., Xn−1 = xn−1) = Prob(Xn = xn|Xn−1 = xn−1).

� Let N be the fixed initial population size at the beginning of each daily growth

period and Nsat be the saturation size reached by the population at the end of

each growth period, just before random sampling.

� Define ~m = m(j), j = 1, ..., g to be the matrix of mutation rates in the model.

The mutation rate m(j) is the average rate at which a given cell may mutate

into genotype j, per unit of time. Also mutation rates are of the order of 10−6

in our setup.
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� Gene structure changes induced by single random mutations transform geno-

type j into genotype i where i 6= j. We also assume mutations to be indepen-

dent, i.e., each individual cell may mutates at the end of one growth period.

Real mutations in E. Coli bacteria may actually occur only when a cell splits

into two new cells, which happens essentially in continuous time throughout

a daily growth period. Here we simplify these occurrence dates by assuming

that they occur simultaneously at the end of the daily growth period. The

mathematical analysis of this simplification is presented in [129], where one

shows that the impact of this simplification is minor for large values of N .

� A mutant arises with selective advantage s, and thus has an advantage of (1+s)

relative to the progenitor cell. This means that the multiplicative growth factor

per time interval is then given by F 1+s where F is the multiplicative growth

factor per time interval of progenitor cells given by F = Nsat/N = D.

� Fitness defines the ability of an individual to both survive and reproduce in

an environment and strongly influences its contribution to the gene pool in

the next generation. The distribution of fitness reflects the selection coefficient

relative to the fittest alleles in the population.

� Fitness of the evolved clone is calculated relative to the ancestor as the ratio

of each strain’s Malthusian parameter, estimated as log(fsat/finit), where fsat

and finit are the final and initial frequencies of one cell type, respectively [129].

In other words the fitness of a genotype, g is defined as

Fit(g) = logFg = logF 1+s.
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The typical value of growth factor in the TC experiments [129] on E. coli

populations is about 200.

� For a population of size N with growth factors F = (Fj) and population

histogram Hn at the beginning of day n, the population size at the end of the

nth daily growth period is Sizen = N〈F,Hn〉, where 〈, 〉 is the usual scalar

product in Rg.

2.2 Deterministic Daily Growth Periods

Locked Box models : competing genotypes in fixed size populations

For cell populations the main focus is on successive population samples popn of

fixed size N extracted by periodic dilutions alternating with free growth periods of

fixed duration τ . We simulate and analyze the evolution of finite sets Γ of species or

cell genotypes competing within a fixed size population.

At generation n, Locked Box dynamics start with a population popn of N cells

Ci ; 1 ≤ i ≤ N with respective genotypes j(i) and deterministic growth factor Fj(i).

We name this model as a Locked Box model to refer to that fact the population

systems being studied here are assumed to be isolated in nature. This means we do

now allow and emigrants or immigrants from neighboring population system into the

population of interest.
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Step 1: Growth.

During one pure deterministic growth step with no mutations, popn becomes a popu-

lation Q and the number of cells with genotype j grows from NHn(j) to NHn(j)Fj.

Then, we have size of Q as Sizen = N〈F,Hn〉. The frequency of cells with genotype

j in the intermediary population Q is then Gn(j) = FjHn(j)/〈F,Hn〉.

Hence a purely deterministic growth step transforms the current histogram Hn

into a new histogram Gn = Φ(Hn), where the deterministic function Φ : HIST →

HIST is defined on the convex set HIST by

Φj(H) = FjH(j)/ < F,H >, for all H ∈ HIST. (2.1)

This step is equivalent to the “Daily Growth” step described in 1.3.1 for TC

experiments.

Step 2: Mutations.

Next, random Poisson distributed independent mutations, governed by the vector

~m = (mj) of mutation rates, are implemented in the intermediary population Q to

generate a (random) population POPint. The global mutation rate m̄ =
∑g

j=1 mj,

is assumed to be very small. After these random mutations, and just before the

next periodic dilution, the histogram of genotypes frequencies becomes a random

histogram MGn. This step is sometimes also called selection. We will study MGn

further below.

Step 3 : Random Sampling.

To generate the new population popn+1, one performs a “random sampling” of the

population POPint by extracting from population POPint a random sample of size
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N . This random sample is then called the population popn+1, and Hn+1 is the

genotypic histogram of popn+1. Given Hn, the random vector NHn+1 has then a

multinomial distribution Mult(N,MGn) = µ(N) with parameters N and MGn.

In long term laboratory experiments to study genotypic evolution of bacteria, this

random sampling is implemented concretely by population dilutions at the end of

daily growth periods.

This step is equivalent to “Daily Dilutions”, as described in 1.3.1 for TC experi-

ments.

Hence the Markov chain dynamics Hn → Hn+1 is implemented in 3 successive steps.

� The Growth step is a deterministic transformation Hn → Gn = Φ(Hn).

� The Mutation step is a random perturbation Gn → MGn of Gn by Poisson

mutations, and the conditional expected value of MGn is very close to Gn.

� The Selection step is the extraction of a random sample of fixed large size N

which transformsMGn into a random histogramHn+1 such that the conditional

distribution of Hn+1 given Hn is the multinomial distribution Mult(N,MGn).
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2.3 Random Mutations Model

After changing the time unit, we can assume that the fixed duration of free growth

periods is τ = 1. For instance in laboratory experiments [129], τ is essentially equal

to 1 day. In our numerical implementations, the number of genotypes will be inferior

or equal to 4 to facilitate computations. But the theory developed below is valid for

arbitrary numbers of genotypes.

At the beginning of day n, the population histogram is given by hn = (Hn(j))0≤j≤g

so that
∑g

j Hn(j) = 1.

After the nth free growth period for the population with growth factor F = (Fj)

the number of individuals with genotype j becomes FjHn(j)N , giving rise to an

intermediary population of size

Sizen = N〈F,Hn〉. (2.2)

Now, let

Sn(j) = NFjHn(j) (2.3)

denote the number of individuals of genotype j at the end of growth period of day

n.

Next, random Poisson distributed independent mutations, governed by the vector

m = (mj) of mutation rates, are implemented in the intermediary population, Q.

The global mutation rate m̄ =
∑

jmj, is assumed to be very small.

Alternatively, we also work with situation where only forward mutations are
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accepted (i.e.), mutants can only evolve into fitter genotype.

Thus, we focus on the following two cases separately :

1. Non-restricted mutations - Cells are allowed to mutate into cells of any other

genotype right at the moment of their births. Only mutations which result in

a change of genotype are considered here.

2. Restricted mutations - Cells are only allowed to mutate into cells with geno-

types of higher fitness.

2.3.1 Non-restricted Mutations

Fix any time n. Recall that we consider the population existing at the end of the nth

growth period and the number of individuals of genotype j present in this population

is given by FjHn(j)N .

Let Xj,k denote the number of mutants of genotype j changing into genotype k at

time step n. We naturally assume that all the Xj,k are independent and we impose

Xj,j = 0. Due to the Poisson distribution assumption, we have [46]

Prob(Xj,k = Rj,k) = exp(−mkSn(j))
(mkSn(j))Rj,k

Rj,k!
, ∀j 6= k. (2.4)

This implies

E(Xj,k) = mkSn(j), ∀j 6= k. (2.5)

This defines the new composition of the population after mutations. The new
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number of individuals of genotype j is given by

NFjHn(j)−
g∑

k=1

Xj,k +

g∑
k=1

Xk,j.

For the sub-population of genotype j, let the respective number of emigrants and

immigrants be,

On(j) =

g∑
k=1

Xj,k,

In(j) =

g∑
k=1

Xk,j,

where Xj,j is defined to be 0. Define the g × g matrix,

R = [Rj,k], 1 ≤ j, k ≤ g.

where we systematically impose that the diagonal terms Rj,j should be equal to zero.

For instance, a 3× 3 non restricted mutation matrix, R can be visualized as below

R =


0 r1,2 r1,3

r2,1 0 r2,3

r3,1 r3,2 0


Then for our case with g genotypes, for j = k for instance, we see that

On(k) =
∑
i|i 6=k

Xk,i

has a Poisson distribution with mean,

mean(On(k)) = (
∑
i|i6=k

mi)Sn(k).
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Similarly, In(k) will have a Poisson distribution with mean,

mean(In(k)) =
∑
i|i6=k

miSn(i).

Now, after mutations have been allowed the new population Mint has g groups

of sizes Un(j), where

Un = Sn −On + In.

Lemma 2.3.1. The size of population POPint is equal to Sizen.

Proof :

Size(POPint) =
∑
j

Un(j),

=
∑
j

(Sn(j)−On(j) + In(j))

=
∑
j

Sn(j)−
∑
j

On(j) +
∑
j

In(j),

= Sizen −
∑

j

∑
k|k6=j

Xj,k +
∑

j

∑
k|k 6=j

Xk,j,

= Sizen.

Corollary 2.3.2. Thus the histogram MGn of the population after growth and mu-

tations is given by

MGn = Un/Sizen.

Lemma 2.3.3. The conditional expectation of MGn given Hn is given by

E[MGn | Hn] = (1− m̄)Φ(Hn) +m. (2.6)
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Proof : The number of individuals of genotype j after mutations is Un(j), where

Un = Sn −On + In.

So, the expected number of individuals is,

E[Mint(j) = Un(j)|Hn = H] = Sn(j)− E[On(j)|Hn = H] + E[In(j)|Hn = H],

= Sn(j)−
∑
k|k 6=j

E[Xj,k|Hn = H] +
∑
k|k 6=j

E[Xk,j|Hn = H],

= Sn(j)− Sn(j)
∑
k

mk +mj

∑
k

Sn(k),

= Sn(j)(1− m̄) +mjSizen.

This implies that the conditional expectation of histogram MGn given Hn is given

by:

E [MGn(j)|Hn = H] =
Sn(j)

Sizen

(1− m̄) +mj,

= (1− m̄)Φj(H) +mj

Thus,

E[MGn | Hn] = (1− m̄)Φ(H) +m.

Definition 2.3.4. Call X = [Xj,k] the random matrix of mutants at time step n .

Fix any matrix of integers R = [Rj,k] such that Rj,j = 0 and Rj,k ≥ 0. Given X = R,

the random histogram MGn is the vector p(R,H) defined by

p(R,H)(j) =
1

Sizen

[NFjH(j)−
∑
k|k 6=j

Rj,k +
∑
k|k 6=j

Rk,j] , j = 1, 2, ..., g
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2.3.2 Restricted Mutations

In reference to the restricted mutations discussed before, if we only allow mutations

into genotypes with higher fitness and not into lower fitness genotypes, then

Xj,k = 0 ∀j ≥ k

where we reorder the genotypes so that F1 < F2 < ... < Fg, where Fj is the

growth factor for genotype j. For instance, a 3 × 3 restricted mutation matrix, R

can be visualized as below

R =


0 r1,2 r1,3

0 0 r2,3

0 0 0


Note that this does not alter any results regarding expectations and histograms

proved before for general mutations. The only major difference is that now our

mutation matrix is strictly upper triangular in nature. So, the vector p(R,H) defined

by

p(R,H)(j) =
1

Sizen

NFjH(j)−
∑
k|k>j

Rj,k +
∑
k|k<j

Rk,j

 , ∀j = 1, 2, ..., g

2.4 Random Sampling Model

Now that we have an intermediary population with random mutations, to generate

the population at time n+ 1, we extract a random sample popn+1 of size N from the

population POPint.
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Let Vn(j) be the number of individuals of genotype j present in population, popn+1

at time n+ 1 after selection by random sampling. Then

∑
j

Vn(j) = N,

and the new population histogram becomes Hn+1(j) = Vn(j)/N .

Given X = R, the random vector Vn has a multinomial distribution µ(N) with g

occurrences, which are given by the g coordinates of the vector p(R,H).

Thus to generate the new population we have one deterministic step and two

probabilistic steps. The concatenated probability of this sequence of 3 steps is given

by the transition probability :

Θ(H,G) = Prob(Hn+1 = G|Hn = H)

=
∑
R

∏
j,k|j 6=k

Prob(Xj,k = Rj,k|Hn = H).µ(N)[G]. (2.7)

In the case of g genotypes with general non restricted mutations the matrix R

depends only on g2 − g parameters which are the off diagonal elements Rj,k, with

j different of k. For restricted mutations R depends only on (g2 − g)/2 parameters

which are the upper triangular elements Rj,k, with j < k.

These elements have integer values verifying

0 ≤ Xj,k, and
∑

k

Xj,k ≤ Sn(j).

However, for Rj,k we have

0 ≤ Rj,k <∞
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Let

Q(R,H,N) =
∏

j,k|j 6=k

Prob(Xj,k = Rj,k|Hn = H).

Thus, we have that

Q(R,H,N) =
∏

j,k|j 6=k

Prob(Xj,k = Rj,k|Hn = H,Xj,k ≤ Sn(j)),

=
∏

j,k|j 6=k

Prob(Xj,k = Rj,k|Hn = H,Xj,k ≤ NFjHn(j)),

=
∏

j,k|j 6=k

Prob(Xj,k = Rj,k|Xj,k ≤ NFjHj).

Now,

Prob(Xj,k = Rj,k|Xj,k ≤ NFjHj) =
Prob(Xj,k = Rj,k,Xj,k ≤ NFjHj)

Prob(Xj,k ≤ NFjHj)
,

=
Prob(Xj,k = Rj,k,Xj,k ≤ NFjHj)

1− Prob(Xj,k > NFjHj)
.

Recall here that Xj,k is Poisson distributed with mean mkNFjHj. Now in our

computations, rate of mutations, m is assumed to be 10−6, so E[Xj,k] = 10−6 ×

NFjHj. We will show that

1− Prob(Xj,k > NFjHj) ' 1

using lemma 2.4.1.

Lemma 2.4.1. If X is a Poisson random variate with mean λ, then for a > 0

Prob[X > aλ] < eλ(et−1−at), ∀t > 0.

Proof: We know for a > 0

Prob[X > aλ] = Prob[etX > etaλ], ∀t > 0, (2.8)
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Now etX > 0, so using Markov inequality [46], we get for a positive random variable,

Z = etX

Prob[Z ≥ b] ≤ E[Z]

b
(2.9)

or

Prob[etX ≥ b] ≤ E[etX]

b
(2.10)

where b = etaλ > 0. Hence,

Prob[X > aλ] = Prob[etX > etaλ] <
E[etX]

etaλ
. (2.11)

Now we know X has Poisson distribution, so E[etx] is the moment generating

function given by [46]

E[etx] = eλ(et−1).

Substituting this into equation 2.11 we get our required result

Prob[X > aλ] < eλ(et−1−at), ∀t > 0. (2.12)

Using lemma 2.4.1, Prob(Xj,k > NFjHj) is analyzed below. Assume X = Xj,k 6= 0,

then λ = mkNFjHj and aλ = NFjHj = 106λ. This gives

Prob(Xj,k > NFjHj) < eλ(et−1−106t), ∀t > 0. (2.13)

Now, λ(et−1−106t) is a function which attains its minimum value at t = log 106.

Hence

Prob(Xj,k > NFjHj) < eλ(106−1−106 log 106). (2.14)
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or

Prob(Xj,k > NFjHj) < e106λ(−10−6−(13.82)+1),

= e106λ(−10−6−12.82),

= eNFjHj(−10−6−12.82).

If Hj = 0 then Xj,k = 0 since Xj,k is number of mutants of genotype k emerging

from genotype j and thus Prob(Xj,k > NFjHj) = 0.

If instead Hj 6= 0, then minimum value of NFjHj is at least of the order of F

since Hj ≥ 1/N and for our experiments we have assumed least growth factor value

to be 200. So,

Prob(Xj,k > NFjHj) < e200(−10−6−12.82) ' 0. (2.15)

In other words,

1− Prob(Xj,k > NFjHj) ' 1

and hence

Prob(Xj,k = Rj,k|Xj,k ≤ NFjHj) = Prob(Xj,k = Rj,k,Xj,k ≤ NFjHj) (2.16)

= Prob(Xj,k = Rj,k). (2.17)

So,

Q(R,H,N) =
∏

j,k|j 6=k

Prob(Xj,k = Rj,k) (2.18)

The sum in the expression for probability Θ(H,G) in 2.7 denotes multiple sums,

one over each non zero coordinate of R. Then the expression for probability Θ(H,G)
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in 2.7 simplifies to

Prob(Hn+1 = G|Hn = H) = Θ(H,G) =
∑

R

Q(R,H,N).µ(N)[G]

where Q(R,H,N) is given by equation 2.18.
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CHAPTER 3

Large Deviation Approach to Stochastic Population Evolution

3.1 General Large Deviations Principles

Large deviation theory focuses on the asymptotic behavior of remote tails of se-

quences of probability distributions. The theory deals with the rates of decay of rare

events probabilities as some natural parameter in the problem is allowed to vary.

The large deviation theory has its origin in the work of Boltzmann who brought

probability ideas into thermodynamic theory in his effort to characterize energy

and density fluctuations in physical systems. The first large deviations formula (in
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dimension 1) due to Cramér (1938) was widely extended to infinite dimensional vector

spaces and trajectory spaces by the papers and books of Donsker and Varadhan

[38, 39], Wentzell and Freidlin [123, 124], Bahadur and Zabell [6], Azencott [4, 3],

Dembo and Zeitouni [29], Dupuis and Wang [40] and many others, to generate a new

domain of probability theory.

The theory behind large deviations has been explored recently in detail by Varad-

han [121], Azencott [4] in their respective books.

Let Xn be sequence of independent and identically distributed random vari-

ables(r.v.) having with mean 0 and finite second moment σ2. Then, X̄n = X1+...+Xn
n

tends almost surely to 0 as n→∞ by the law of large numbers. On the other hand,

Z̄n = X1+...+Xn
σ
√
n

has a limiting normal distribution according to the Central Limit

Theorem. In particular

P (|X̄n| ≥ δ)→ 0, n→∞, (3.1)

and, for any interval A,

P (|Z̄n| ∈ A)→ 1

2π

ˆ
A

e
−x2
2σ2 dx, n→∞, (3.2)

therefore

1

n
logP (|X̄n| ≥ δ)→ −δ

2

2σ2
, n→∞. (3.3)

Expressions like the one derived in 3.3 present the type of probability estimates

which are of primary interest in large deviation theory. Extensions to random vari-

ables taking values in infinite dimensional vector spaces have been studied in detail

and presented below.
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The large deviation principle (LDP) essentially characterizes the limiting behavior

as N →∞, of a family of probability measures PN in terms of a rate function.

Let Ω be a complete separable metric space, and PN a family of probability

measures on the Borel subsets of Ω.

Definition 3.1.1. One says that {PN} obeys the LDP with a rate function λ(·) if

there exists a function λ(·) from Ω into [0,+∞] satisfying

(i) 0 ≤ λ(φ) ≤ ∞∀φ ∈ Ω.

(ii) λ(·) is lower semi-continuous.

(iii) For each L <∞, the set {φ : λ(φ) ≤ L} is a compact set in Ω.

(iv) For each closed set F ⊂ Ω

lim sup
N→∞

1

N
logPN(F ) ≤ − inf

φ∈F
λ(φ).

(v) For each open set A ⊂ Ω

lim inf
N→∞

1

N
logPN(A) ≥ − inf

φ∈A
λ(φ).

For any borel set A ⊂ Ω define

Λ(A) = inf
φ∈A

λ(φ).

Whenever A verifies the conditions

Λ(Ao) = Λ(A) = Λ(Ā)
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where Ao is interior and Ā is closure of A.

Then we have

lim
N→∞

1

N
logPN(A) = − inf

φ∈A
λ(φ).

Definition 3.1.2. Cramér Transform and Legendre Duality on R. Let θ

be a probability on R. Let θ̂ : R → (0,+∞] be its Laplace transform, defined by

θ̂(t) =
´

R e
txdθ(x). Define the Cramèr transform λ : R → [0,+∞] of the measure θ

by

λ(x) = sup
t∈R

[tx− log θ̂(t)] (3.4)

Then the function λ(x) is convex and lower semi-continuous for x ∈ R.

Theorem 3.1.3. Cramér Chernoff Theorem on R. ( Cramér [27], Chernoff

[23]) Let Xn be a sequence of independent real valued r.v. with the same probability

distribution θ, and let X̄n = (X1 + ... + Xn)/n . Let λ be the Cramér transform of

θ. Assume also that
´
|x|dθ(x) is finite, and let m =

´
xdθ(x). Then for all a ∈ R,

lim
n→∞

1

n
logP (|X̄n| ≤ a) = −λ(a), a ≤ m (3.5)

lim
n→∞

1

n
logP (|X̄n| ≤ a) = 0, m < a (3.6)

lim
n→∞

1

n
logP (|X̄n| ≥ a) = 0, a < m (3.7)

lim
n→∞

1

n
logP (|X̄n| ≥ a) = −λ(a), m ≤ a. (3.8)

So the sequence Xn satisfies the LDP with a rate function λ(·) given by 3.4.

The proof for above theorem can be found in most texts on this subject such as

Varadhan [121] and Azencott [4].
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We now present a result which characterizes the rate functional for empirical

distributions in general.

Let Γ be a Polish topological space. Let π and ν be arbitrary probability measures

on the Borel σ−algebra B(Γ). Polish topological spaces are complete, metric spaces

with a countable dense subset.

If ν is absolutely continuous with respect to π, the Kullback information Iπ(ν) of

ν with respect to π (see [4]; [76] ) is defined by,

Iπ(ν) =

ˆ
Γ

dν

dπ
(x) log

(
dν

dπ
(x)

)
dπ(x). (3.9)

and we set Iπ(ν) = +∞ when ν is not absolutely continuous with respect to π.

In particular, Iπ(ν) = 0 if and only if ν = π. Recall that the non-negative function

Iπ(ν) is also called the relative entropy of ν with respect to π. Further information

on properties of Iπ(ν) can be found in [76].

Let E = M(Γ) be the Frechet topological vector space of bounded Borel measures

on Γ, endowed with the tight convergence topology. The random Dirac masses

Xn = δYn can be viewed as independent random vectors with values in E having

the same probability distribution µ. The probability µ is defined on B(E) and its

support is included in the convex set M1(Γ) ⊂ E of all probabilities on Γ [108].

Theorem 3.1.4. (see [38], [6], [4] and Sanov [111])

Let π be a probability on the Borel subsets of a Polish topological space Γ. Let Yn be

a sequence of independent random variables taking values in Γ, and having the same

probability distribution π. For any ν ∈M1(Γ), let Iπ(ν) be the Kullback information

of ν with respect to π. Then Cramér transform λ of the probability µ has compact
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level sets and is given by

λ(ν) = Iπ(ν) for ν ∈M1(Γ) and λ(ν) = +∞ for ν ∈ [E −M1(Γ)] (3.10)

For empirical distributions like multinomial distribution (random dilution in our

case) the rate functional then is given by Kullback information function as described

above. We derive the exact formulation for this rate functional in our set up in

chapter 4. Similarly, the derivation of rate functional for Poisson probability (random

mutations) is shown in detail in chapter 4.

Let b(y) ∈ Rn be a locally Lipschitz vector field defined for all y ∈ Rn. One

associates to b the dynamic system (D)

dyt
dt

= b(yt), (D).

Let Xt : Ω → Rk be a continuous Gaussian process defined on the time interval

J = [0, 1]. The probability distribution of the trajectories of Xt over the time interval

J is a Gaussian probability µ on that path space C(Rk). Let λ̃ : C(Rk)→ [0,∞] be

the Cramér transform of the Gaussian measure µ.

Then for each small ε > 0, consider the following stochastic dynamic system

SDEε, where the random noise perturbing the underlying deterministic dynamic

system D is modeled by Xt

dYt
dt

= b(Yt) + εσ(Yt)Xt, (SDEε)

with deterministic initial condition Y0 = x for some fixed x ∈ Rk.
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Our goal here is to analyze the behavior of the probability distribution of the

trajectories of Yt when ε→ 0. More precisely, we will evaluate the probability P ε(A)

that the trajectories of Yt, 0 ≤ t ≤ 1 belong to any given set A of paths starting at

x but which are not solutions of the limit deterministic dynamic system (D).

For small ε, these events A are naturally “rare events” for the process Yt and

for “nice” sets A, we will have a large deviations principle, namely the probabilities

P ε(A) will tend to 0 with ε , at exponential speeds of order of exp(−Λ(A)/ε2).

Let Y ε
t be the solution of the perturbed dynamic system SDEε. starting from x

at time 0. Denote by Ex(Rn) the space of possibly exploding paths starting at x and

defined for t ∈ J .

Let Y ε
t : Ω→ Ex(Rn) be the random variable defined by the trajectories of Y ε

t on

time interval J . For any g ∈ Ex(Rn), define the (possibly empty) set B−1
x (g) of all

f ∈ C(Rk) such that g is the maximal solution on J of the differential equation

g′t = b(gt) + εσ(gt)ft with g0 = x.

For the perturbed dynamic system SDEε in 4.1, we then define the rate function

λ : Ex(Rn)→ [0,+∞] by

λ(g) = inf{λ̃(f)|f ∈ B−1
g }.

On arbitrary subsets A of Ex(Rn) define the “rate functional” Λ(A) by

Λ(A) = inf
g∈A

λ(g).

This is the extension of general Wentzell-Freidlin theory [123] and more details
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along with proofs for existence of this rate functional can be found in the book by

Azencott [4].

So essentially, large deviations theory focuses on computing

−Λ(A) = lim
N→∞

1

N
log[ProbN(A)]

via a rate functional λ(φ) where A is a rare event and φ is any trajectory of the

process. Typically

Λ(A) = inf
φ
λ(φ)

where φ is a trajectory which realizes the event A, and in most cases this infimum is

realized by a cost minimizing trajectory φm.

This broadly outlines our approach for estimating rate functionals (costs) of rare

trajectories in the thesis for classes of population evolution processes.

3.2 Large Deviations Applied to Stochastic Pop-

ulation Dynamics

Numerous applications of large deviations have been explored in the context of

Markov stochastic processes. For instance in economics, Noah Williams (2008) [126]

in his paper on small noise asymptotics for a stochastic model derives a functional

central limit theorem, a large deviation principle, and a moderate deviation principle.

These are used to calculate analytically the asymptotic distribution of the capital

stock, and to obtain bounds on the probability that the log of the capital stock will

47



3.2. LARGE DEVIATIONS APPLIED TO STOCHASTIC POPULATION
DYNAMICS

differ from its deterministic steady state level by a given amount. This latter result

can be applied to characterize the probability and frequency of large business cycles.

Budhiraja and Ghosh [15] in 2005 studied the problem of asymptotically opti-

mal control of a well known multi-class queuing network, referred to as the “criss-

cross network”, in heavy traffic. They consider exponential inter-arrival and service

times, linear holding cost and an infinite horizon discounted cost criterion. Using

the path wise solution of the Brownian control problem, they present an elementary

and transparent treatment of the problem using large deviation ideas and obtain an

asymptotically optimal scheduling policy which is of threshold type.

Tailleur and Lecomte [117] in 2008 used large deviation principles in thermody-

namics. For the last ten years, physicists have been interested in large deviation

functions mainly because they are good candidates to extend the concept of thermo-

dynamic potentials to out of equilibrium situations and to dynamical observables. In

2011 Smith [115] used LDP to construct entropy functions that both express large

deviations scaling of fluctuations, and describe system environment interactions, for

discrete stochastic processes either at or away from equilibrium.

In 2009 Bresslof [12] analyzed a master equation formulation of stochastic neuro-

dynamics for a network of synaptically coupled homogeneous neuronal populations.

They showed how the path integral approach can be used to study large deviation or

rare event statistics underlying escape from the basin of attraction of a stable fixed

point of the mean-field dynamics in neural networks.

Liu [81] presented a new framework for finding the optimal transition paths of
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metastable stochastic chemical kinetic systems with large system size. The optimal

transition paths were identified to be the most probable paths according to the large

deviation theory of stochastic processes. Applications to gene regulatory networks

such as the toggle switch model and the Lactose Operon Model in Escherichia coli

are presented as numerical examples.

In the context of stochastic models for population evolution, large deviation the-

ory has also been used to study evolutionary models with mutations and selection in

the specific biological framework of adaptive dynamics.

An unpublished manuscript of Darden (1983) has large deviation results for the

Wright-Fisher model with two alleles and heterotic selection. Morrow and Sawyer [89]

derived large deviation results for a class of Markov chains arising from population

genetics. They used Wright-Fisher model where average effect of forces such as

selection and mutation are much stronger than effects due to finite population size.

The equilibrium probability for the process to be found away from fixed point and

amount of time required by the process to escape a fixed neighborhood of a fixed

point is computed using large deviation principles. We are studying a similar model

and would like to estimate probabilities for rare events under large population limit.

A stochastic Lotka-Volterra model was analyzed by Klebaner and Liptser [75] in

2001. They approach the problem of extinction via the theory of large deviations.

The large deviation principle is established, and consequently used to obtain bounds

for the asymptotics of the time to extinction of the prey population.

Demetrius, Gundlach and Ochs [30] studied complexity and demographic stability
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in population models. They invoked the large deviation theory to derive a fluctuation

theorem in the system. This theorem says that the rate of fluctuations around a

steady state is positively correlated with entropy, a point which is then used to

predict correlations between ecological constraints and evolutionary trends.

A. Cercueil and O. Franq́is [18] described new models in population genetics that

extend the neutral Wright-Fisher model by including strong selection and mutation.

Fixation times are studied in the limit of small mutation rates within the framework

of Markov chains with rare transitions. These results use the formalism of large

deviations. The main result outlines the role of the discrete geometry of the fitness

landscape and provides a mean for estimating the expected number of generations

for an individual with better fitness value to appear.

Johansson and Sumpter [66] also calculate evolutionary stable strategies, extinc-

tion probabilities using large deviations for a wide range of site based ecological

models. For these models local interactions between individuals are assumed to take

place at a finite number of discrete resource sites over non-overlapping generations

and individuals between generations move randomly between sites over entire system.

In 2005 N. Champagnat [19] proved a convergence result of the microscopic

[35, 83] model of evolution to the adaptive dynamics trait substitution sequence

model when the parameters are normalized in a non-standard way, leading to a

time scales separation. Under the large population asymptotic, and small mutations

asymptotic he proved the occurrence of time scale separation between the birth and

death events and the mutation events. The proof uses large deviation results on

branching processes and logistic Markov birth and death processes.
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Metz et al. [86] have introduced an asymptotic of rare mutations to approximate

the process of adaptive evolution with a monomorphic (composed of individuals hold-

ing the same trait value) jump process. The jump process describes evolutionary

trajectories as trait substitution sequences developing over the timescale of muta-

tions. Dieckmann and Law [34] have further achieved a deterministic approximation

for the jump process as a solution to the so called canonical equation of adaptive

dynamics. Metz et al.’s notion of trait substitution sequences and Dieckmann and

Law’s canonical equation form the core of the current theory of adaptive dynamics.

Dynamics for finite populations with strong selection and weak mutations were

studied by Fudenberg et.al. [50]. They implement game theory to study frequency-

based selection, where fitness of a phenotype depends on composition of the popu-

lation. The long run behavior of the process with mutations is related to a simpler

process with no mutations using large deviations. They provided a characterization

of the asymptotic behavior of the absorption probabilities as the population size go

to infinity.

Méléard, Jabin and Champagnat [20] described adaptation in a stochastic multi-

resources chemostat model. All the traits with zero density at equilibrium are proved

to actually go extinct after a time of the same order as the logarithm of the population

size. Also it is proved that the exit time from a neighborhood of the equilibrium grows

as an exponential of the population size using classical results from large deviation

estimates.

Viet Chi Tran [119] studied a continuous-time discrete population structured by

a vector of ages where individuals reproduce asexually, age and die. It is shown
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that in a large population limit, the microscopic process converges to the measure-

valued solution of an equation that generalizes the McKendrick-Von Foerster and

Gurtin-McCamy PDEs in demography and the large deviations associated with this

convergence are studied.

With Ferriére and Méléard [22], Champagnat published results for unifying evo-

lutionary dynamics from individual stochastic processes to macroscopic models. The

issue of evolutionary dynamics drifting away from trajectories predicted by the canon-

ical equation is investigated by considering the asymptotic of the probability of ’rare

events’ for the sample paths of the discussion. Martingale and large deviation theo-

ries are used as the probabilistic tools for deriving and unifying models of evolution-

ary dynamics from stochastic nonlinear processes operating at the individual level.

On a timescale of very rare mutations, they establish rigorously the models of trait

substitution sequences and their approximation known as the canonical equation of

adaptive dynamics.

Champagnat and Méléard [21] also published results for polymorphic evolution

sequence and evolutionary branching. They use adaptive dynamics based on the bio-

logically motivated assumptions of rare mutations and large population. It is proved

that such a microscopic process describing ecological dynamics can be approximated

by a Markov pure jump process on the set of point measures on the trait space. They

examine the asymptotic behavior of the microscopic process when the population size

grows to infinity as well as the mutation rate converges to 0, in a long time scale.

We are also interested in probabilities of ’rare events’ in evolutionary dynamics

with assumption of rare mutations and large population. We assume the process
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to be a Markov chain as described in chapter 2 and use reverse shooting technique

from numerical analysis to predict the trajectory and associated rate functional for

desired evolutionary events.

3.3 Importance Sampling in the Context of Large

Deviations

Another significant application is large deviations analysis to derive an effective strat-

egy for importance sampling, a domain covered by an extensive literature.

Importance sampling is a variance reduction technique that has been applied

successfully to the problem of estimating the probabilities of rare events. A guiding

principle in the efficient estimation of rare event probabilities by Monte Carlo is that

importance sampling based on the change of measure suggested by a large deviations

analysis can reduce variance by many orders of magnitude.

Siegmund [113] showed that the uniquely optimal exponential change of measure

for estimating a gambler’s ruin probability is determined by the exponential rate of

decay of the probability as one of the boundaries recedes.

As observed by Glasserman and Wang [54] in 1997, the subsequent literature can

be roughly divided in two: results showing that specific estimators have provably

good performance, and the development of estimators, often evaluated experimen-

tally, suggested by, but not strictly supported by, rare-event asymptotics.

Consider a probability space Ω of the space of trajectories ω of a random process,
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endowed with a probability PN , . Then consider a fixed event, A ⊂ Ω which satisfies

either a logarithmic limit

1.

lim
N→∞

1

N
logPN(A) = −γ

for some γ > 0, or the stronger exponential asymptotic

2.

PN(A) ∼ Ce−γN ,

for some constant C > 0. To estimate α(N) , PN(A), straightforward simulation

generates ‘r′ independent realizations of the process trajectories ω1, ..., ωr.

The standard estimator of PN(A) is the empirical frequency qr observed for the

realization of the event A among these r simulated trajectories. The variance of this

estimator is then α − α2/r. If PN(A) → 0 then this variance approaches 0. The

relative error of the estimator (the ratio of its standard deviation to its mean) then

satisfies

relative error =

√
α(N)− α2(N)√

rα(N)
≥ 1√

rα(N)
→∞.

If (2) is true, then

relative error ≥
√
CeγN√
r

and the increase is observed to be exponential and the number of independent

simulations trajectories ωi required to achieve a fixed relative error grows exponen-

tially in N .
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Importance sampling generates samples under a different measure P̄N with ex-

pectation operator Ē and uses the representation

(3)

PN(A) = E[LN1AN ],

in which LN is the likelihood ratio of P̄N to PN .

Based on (3), we obtain an unbiased estimator of PN(A) by averaging over inde-

pendent replications of the random terms LN(ωj)1AN (ωj). It can then be shown [54]

that the number of independent replicate trajectories ωj required to achieve a fixed

relative error for the estimation of PN(A) grows at a grows at a sub-exponential rate

and remains bounded.

However, it was noted that a successful application of an importance sampling

distribution based on large deviation theory critically depends on the specific prob-

lem at hand. Glasserman and Wang [54] give variations on both the level-crossing

problem and the Cramér-type problem, and show that exponential twists can be

inefficient if the rare event A is irregular. Similar observations have been made by

Glasserman and Kou [53] in a queuing context.

It is natural to ask whether there exist any necessary and sufficient conditions for

asymptotic efficiency. In cases when the Gärtner-Ellis theorem applies, this question

is studied by Sadowsky and Bucklew [110] , while Sadowsky [109] extends these

findings to a general abstract large deviation setting.

Dieker and Mandjes [36] have given necessary and sufficient conditions (Varadhan
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conditions), which are shown to improve the conditions of Sadowsky [109].

Dupuis and Wang [40], indicate that large deviation theory suggests many possi-

ble changes of measure, which are not all are suitable for importance sampling. They

consider importance sampling schemes where the exponential change of measure is

adaptive, in the sense that it depends on the historical empirical mean. Their results

indicate that large deviations analysis truly suggests an adaptive change of measure,

rather than a static change of measure.

Using the fact that the statistical functionals usually can be represented as the

functionals of empirical probability measures Ermakov [42] developed a similar ap-

proach of effective importance sampling based on the theorems about the large and

moderate large deviations of empirical measures ([56], [41] ). The results on efficient

simulation of large deviations are obtained and expressed in terms of Kullback-Leibler

information. He also shows that the effective importance sampling measures are the

solutions of extremal problem involving the minimization of Kullback-Leibler infor-

mation numbers on specific sets.

A more comprehensive overview of these techniques for light and heavy tailed

systems can be found in paper by Blanchet and Lam [10]. They review standard

(state-independent) techniques that take advantage of large deviations results for

the design of efficient importance sampling estimators. State dependent techniques

are also discussed in detail along with examples in which they are applicable.

Another important application is in the field of finance, where questions related

to extremal events play an increasingly major role. Financial applications range from
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Monte-Carlo methods and importance sampling in option pricing to estimates of large

portfolio losses subject to credit risk, or long term portfolio investment. Pham [98]

in his lectures has explained some essential techniques in large deviations theory, and

illustrated how they are applied recently for example in stochastic volatility models

to compute implied volatilities near maturities.

The use of large deviation theory to efficiently implement importance sampling

is a very active area of research. In future extensions of our work on large deviations

approximations for genetic population evolutions, a natural next step for us is to

study an implement importance sampling to estimate probabilities of rare events

involving genetic evolution trajectories.
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CHAPTER 4

Large Deviations for One-step Transition Probabilities

We have specified in chapter 2 a locked box stochastic model for genotypic evolu-

tion of a population submitted to successive growth periods alternating with random

selections. We now introduce large deviation approximations for the transition prob-

abilities of this stochastic dynamics for large population size N . Thus we derive large

deviation rate functionals for both multinomial sampling and Poisson probability of

random mutations.
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4.1 Asymptotic Contexts

We distinguish at least 3 radically different situations.

(1.) Bounded Mean Mutations(BMM)

N tends to ∞ but Nmj(N)Fj(N) remain bounded between fixed bounds

0 < a < Nmj(N)Fj(N) < A.

(2.) Unbounded Mean Mutations(UMM)

N tends to ∞ and mj(N)Fj(N) remain between fixed bounds

0 < b < mj(N)Fj(N) < B

so that Nmj(N)Fj(N) tends to infinity at a speed proportional to N .

(3.) Low Mean Mutations(LMM)

N tends to ∞ and for some c > 0 and d > 0

Nmj(N)Fj(N) <
c

Nd

so that Nmj(N)Fj(N) tends to zero at polynomial speed.

For the two experimental setups we will consider (TC[129], HK[59]), we are es-

sentially in the context UMM and thus will focus only on this case. In fact we have

the values for rate of mutations (m) and growth factor (F ) to be constant and thus

independent of N . Hence all our limits have been studied in the UMM case. Also,

we isolate the cases of restricted and general non-restricted random mutations and

approach them separately.
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4.2 Large Deviations Approximation for Multino-

mial Sampling

Due to the large size N of cell populations being considered here in the biological sys-

tems, we introduce large deviations approximations for the multinomial distributions

involved in the random selection step.

Let N be the fixed initial population size at the beginning of each daily growth

period and Nsat be the saturation size reached by the population at the end of each

growth period, just before random selection. the values of N and Nsat are given in

Table 4.1.

Parameter TC HK

N 5× 104 2.5× 105

Nsat 107 8.25× 108

Table 4.1: Parameters from TC [129] and HK[59] exper-

iments

Call g the number of genotypes involved in the evolution model, and let Ui denote

the number of cells of genotype i present in the population before random selection by

multinomial sampling. Also, assume Vi to be the number of cells of genotype i chosen

after the random selection. Then, we have that
∑g

i=1 Ui = Nsat and
∑g

i=1 Vi = N .

Since we use the Stirling formula

log(n!) ' n log n− n
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for estimating factorials, we need to introduce boundary cases where Stirling approx-

imation is not accurate since it is only valid for factorials larger than 50!.

Thus, let pi = Ui/Nsat and Gi = Vi/N , so that for boundary cases we will have

0 ≤ Gi ≤ ε

where we systematically set ε = 50/N . The value of ε in our numerical contexts

of TC and HK experiments is 10−3 and 5× 10−6 respectively.

We present below detailed large deviations approximations for multinomial prob-

abilities under various boundary case assumptions.

1. Assume that all Gi ≥ ε or in other words Vi ≥ 50 is true for all genotypes.

The multinomial probability for picking Vi cells of genotype i from a population

with Ui cells of genotype i is expressed as [46]

µ(N) =
N !∏g
i=1 Vi!

g∏
i=1

pVii (4.1)

where pi = Ui/Nsat. Taking logarithm on both sides and dividing by population

size N we get

1

N
log µ(N) =

1

N
log(N !)−

g∑
i=1

1

N
log(Vi!) +

g∑
i=1

Vi
N

log pi (4.2)

We now introduce Stirling formula, log(n!) ' n log n− n and simplify to get

1

N
log µ(N) ' 1

N
[N logN −N ]−

g∑
i=1

1

N
[Vi log Vi − Vi] +

g∑
i=1

Vi
N

log pi (4.3)
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Thus,

1

N
log µ(N) ' N

N
logN − N

N
+

1

N

g∑
i=1

Vi −
g∑
i=1

1

N
Vi log Vi +

g∑
i=1

Vi
N

log pi

(4.4)

Since we know
∑g

i=1 Vi = N and Gi = Vi/N we get

1

N
log µ(N) '

g∑
i=1

Gi log
1

Gi

+

g∑
i=1

Gi log pi (4.5)

Now, take limit as N →∞ for both sides

lim
N→∞

1

N
log µ(N) =

g∑
i=1

Gi log
pi
Gi

(4.6)

or,

lim
N→∞

1

N
log(µ(N)) = −KLD(G, p) (4.7)

where KLD is the Kullback Leibler Divergence defined by

KLD(G,P ) = +∞ iff there is a j ∈ Γ such that G(j) > 0 and P (j) = 0,

KLD(G,P ) =
∑
j ∈ Γ

G(j) log
G(j)

P (j)
in all other cases.

where Γ is the set of all genotypes and by convention, the term 0 log 0 is defined

to be 0.

2. The case where Gi ≤ ε, or equivalently Vi ≤ 50 is true for all genotypes is not

feasible since we need
∑g

i=1Gi = 1. So, without loss of generality, let G1 ≤ ε

or equivalently V1 ≤ 50 and Gi ≥ ε or Vi ≥ 50 for all other genotypes. Then

we have

1

N
log µ(N) =

1

N
log(N !)−

g∑
i=1

1

N
log(Vi!) +

g∑
i=1

Vi
N

log pi (4.8)
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Proceeding as above, we use Stirling approximation for all factorials except V1!.

We now have

1

N
log µ(N) ' 1

N
[N logN −N ]− 1

N
log(V1!)−

g∑
i=2

1

N
[Vi log Vi − Vi] (4.9)

+

g∑
i=1

Vi
N

log pi

Thus,

1

N
log µ(N) ' N

N
logN − N

N
− 1

N
log(V1!) +

1

N

g∑
i=2

Vi −
g∑
i=2

1

N
Vi log Vi

(4.10)

+

g∑
i=1

Vi
N

log pi

Again using the facts that
∑g

i=1 Vi = N , N = N/〈F,H〉, and Gi = Vi/N we

get

1

N
log µ(N) ' − 1

N
log(V1!) +G1(logN − 1) +

g∑
i=2

Gi log
1

Gi

+

g∑
i=1

Gi log pi

' − 1

N
log(V1!) +

V1

N
[logN − 1 + log p1] +

g∑
i=2

Gi log
pi
Gi

(4.11)

In the above expression, we analyze the sum when V1 ≤ 50

s(N) =
1

N
log(V1!) +

V1

N
[1− log(p1N)]

.

We first assume U1 ≥ 1. Since p1 = U1/Nsat, p1N = U1
N
Nsat

= F1U1, and so

log(p1N) = logF1 + logU1.
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Thus for given U1, we have

s(N) =
1

N
log(V1!) +

V1

N
[1− log(p1N)],

=
1

N
log(V1!) +

V1

N
[1− logU1 − logF1]

Now, for U1 > 1 clearly limN→∞ s(N) = 0.

Similarly, for U1 = 1, logU1 = 0 and

s(N) =
1

N
log(V1!) +

V1

N
[1− logF1]

we obtain limN→∞ s(N) = 0.

Also, for the case with N = 50000, g = 3 and pi = Gi = Vi/N numerical

evaluations show that maximum sum, |sum| for V 1 ≤ 50 is inferior to 6×10−5.

If however U1 = 0, this means p1 = 0⇒ V1 = 0. Using this information in the

expression for 1
N

log µ(N) we get

1

N
log µ(N) =

1

N
log(N !)−

g∑
i=2

1

N
log(Vi!) +

g∑
i=2

Vi
N

log pi (4.12)

and using Stirling approximation gives us

1

N
log µ(N) '

g∑
i=2

Gi log
pi
Gi

(4.13)

Thus the additional factorial terms are not relevant in this particular case.
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Hence the rate functional for very large population, when N → ∞ turns out

to be

−
g∑
i=2

Gi log
pi
Gi

(4.14)

3. Without loss of generality let Gi ≤ ε or Vi ≤ 50 for i = 1, 2 and Gi ≥ ε or

Vi ≥ 50 for i ≥ 3. Then similar to above case we have the final cost formula as

−
g∑
i=3

Gi log
pi
Gi

(4.15)

Thus, for a target population with g genotypes where B is the set of genotypes

that satisfy boundary condition as outlined before and J = Γ − B is the set of

genotypes away from boundary, the one-step rate functional associated to the random

selection step is given by

∑
j∈J

Gj log
Gj

pj
(4.16)

Note that the boundary margin ε = 50/N depends on the daily initial population

size N and is not constant. We now derive inequalities which help us to choose and

estimate the value of ε required for proper convergence in equation 4.11.

When p1 = 0, we have already seen in equations 4.12 and 4.12 that the expression

simplifies without any additional factorials. So, now we prove the following formulas

for the case p1 ≥ 1
N

.

1.

log(V !) ≤ (V + 1) log(V + 1)− V, ∀V ≥ 1, V ∈ Z. (4.17)
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Proof : We have that

(V + 1)! = (V + 1)V !,

≥ 2V !, forV ≥ 1, V ∈ Z,

log((V + 1)!) ≥ log 2 + log V !.

Approximating the sum log(n!) =
∑n

j=1 log j with an integral

n∑
j=1

log j ≈
ˆ n

1

log x dx = log(n!) ≈ n log n− n+ 1

we get

log V ! ≤ (V + 1) log(V + 1)− (V + 1) + 1− log 2,

≤ (V + 1) log(V + 1)− V + 1− log 2− log 2,

log V ! ≤ (V + 1) log(V + 1)− V.

2.

0 ≤ log(Npi) ≤ log(N). (4.18)

Proof : We know that 1 ≤ Npi ≤ N and taking log on both sides gives us the

required inequality, 0 ≤ log(Npi) ≤ log(N).

3. Hence

log(V !) + V − V log(Npi) ≤ (V + 1) log(V + 1). (4.19)

Proof : We have shown that log(V !) + V − V log(Npi) ≤ log(V !) + V and also

log(V !) + V − V log(Npi) ≤ (V + 1) log(V + 1).
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From the above formulas it is clear that the sum s(N) = 1
N

log(V1!) + V1

N
[1 −

log(p1N)] in the expression 4.11 when V1 ≤ 50 is always smaller than 51 log 51/N for

N = 50000 or 0.004. This upper bound is not yet small but becomes smaller as the

population size increases to N = 106 and N = 107. Hence to ensure the convergence

of this approximation we need to make sure that we allow for maximum value of V ,

Vmax = NεN such that

NεN log(NεN)/N → 0.

Now, for the above relation to be true we need

εN log(N)→ 0 and εN log(εN)→ 0 as N →∞

since if εN log(N)→ 0 then clearly εN log(εN)→ 0.

Thus, in order to make sure εN log(N)→ 0 we need to pick εN << 1/logN . This

is true in our case as we have N = 50000 and so εN = 10−3 << 1/ log(50000) = 0.09.
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4.3 Large Deviations Approximation for One-step

Random Mutations

4.3.1 Non-restricted Mutations

The probability expression for random Poisson mutations, Q(R,H,N) actually de-

pends on the initial population size, N , the mutation matrix, R and initial population

histogram H. This expression was derived in chapter 2. So to be more precise, let

Rj,k = Nrj,k,

where Rj,k = rj,k = 0 for j = k.

We here study the correct approximation (for large N and given Hn = H and

rj,k fixed) of the following probability

Q(r,H,N) =
∏

j,k|j 6=k

Prob(Xj,k = Nrj,k)

This is a conditional probability for Xj,k where each Xj,k has Poisson probability

distribution. So

Q(r,H,N) =
∏

j,k|j 6=k

exp(−mkNFjHj)
(mkNFjHj)

Nrj,k

[Nrj,k]!
.

We approximate the factorials using Stirling formula.

1

N
logQ(r,H,N) =

∑
j,k|j 6=k

[
−mkFjHj + rj,k(logN + log(mkFjHj))−

1

N
log((Nrj,k)!)

]
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Using Stirling formula gives

1

N
logQ(r,H,N) '

∑
j,k|j 6=k

[−mkFjHj + rj,k log(mkFjHj)] + logN
∑
j,k|j 6=k

rj,k

− 1

N

∑
j,k|j 6=k

[
Nrj,k log(Nrj,k)−Nrj,k +

1

2
log(Nrj,k) +

1

2
log 2π

]
,

Taking limit as N →∞ we get,

L(r,H) = lim
N→∞

−1

N
logQ(r,H,N)

= −
∑
j,k|j 6=k

[−mkFjHj + rj,k log(mkFjHj)] +
∑
j,k|j 6=k

[rj,k log rj,k]−
∑
j,k|j 6=k

rj,k

(4.20)

Thus, we can write

Q(r,H,N) ' res(N) exp(−NL(r,H)).

where res(N) is equivalent to some power of 1/N for large N . The full derivation of

res(N) follows in a separate section.
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4.3.2 Restricted Mutations

Let

Rj,k = Nrj,k,

where Rj,k = rj,k = 0 for j ≤ k.

So we study the correct approximation (for large N and given Hn = H and rj,k

fixed) of the following probability

Q(r,H,N) =
∏

j,k|j<k

Prob(Xj,k = Nrj,k)

=
∏

j,k|j<k

exp(−mkNFjH(j))
(mkNFjH(j))Nrj,k

[Nrj,k]!
.

Using Stirling formula as before and taking limit as N →∞ we get,

L(r,H) = lim
N→∞

−1

N
logQ(r,H,N)

= −
∑
j,k|j<k

[−mkFjHj + rj,k log(mkFjHj)] +
∑
j,k|j<k

[rj,k log rj,k]−
∑
j,k|j<k

rj,k

(4.21)

Thus, again for this case we can write

Q(r,H,N) ' res(N) exp(−NL(r,H)).

where res(N) is equivalent to some power of 1/N for large N . The full derivation of

res(N) follows in a separate section.
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4.4 Residual Terms in Large Deviations Approxi-

mation

4.4.1 Non-restricted Mutations

For random mutations probability we have

1

N
logQ(r,H,N) '

∑
j,k|j 6=k

[−mkFjHj + rj,k log(mkFjHj)] + logN
∑
j,k|j 6=k

rj,k

− 1

N

∑
j,k|j 6=k

[
Nrj,k log(Nrj,k)−Nrj,k +

1

2
logNrj,k +

1

2
log 2π

]
,

'
∑
j,k|j 6=k

[−mkFjHj + rj,k log(mkFjHj) + rj,k − rj,k log rj,k]

− 1

2N

∑
j,k|j 6=k

logN − 1

2N

∑
j,k|j 6=k

log rj,k +
1

2N

∑
j,k|j 6=k

log 2π,

Since for the case of g mutants we have s = g2−g sums over non diagonal entries

of the mutation matrix, we obtain

1

N
logQ(r,H,N) ' −L(r,H)− s logN

2N
− 1

2N

∑
j,k|j 6=k

log rj,k +
s

2N
log 2π

then,

1

N
logQ(r,H,N) ' −L(r,H)− ηN

where

ηN =
s logN

2N
+

1

2N

∑
j,k|j 6=k

log rj,k −
s

2N
log 2π
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and limN→∞ ηN = 0.

Thus we have

Q(r,H,N) ' exp(−NL(r,H)) exp(−NηN)

and

exp(−NηN) =

(
2π

N

)s/2 ∏
j,k|j 6=k

exp(rj,k/2)

−1

Similarly, for the case one step random selections with no boundary cases we can

obtain residual term in the limit as follows. We know
∑g

i=1 Vi = N and Gi = Vi/N

and also

1

N
log µ(N) =

1

N
logN !−

g∑
i=1

1

N
log Vi! +

g∑
i=1

Vi
N

log pi

Using Stirling formula log(n!) ' n log(n)− n+ 1/2 log n+ 1/2 log 2π, we get

1

N
log µ(N) ' 1

N
[N logN −N +

1

2
logN +

1

2
log 2π]

−
g∑
i=1

1

N
[Vi log Vi − Vi +

1

2
log Vi +

1

2
log 2π] +

g∑
i=1

Vi
N

log pi,

'
g∑
i=1

Vi
N

log
N

Vi
+

g∑
i=1

Vi
N

log pi +
1

2N
(logN −

g∑
i=1

log Vi)−
1

N
log 2π

'
g∑
i=1

Gi log
pi
Gi

+
1

2N
(logN −

g∑
i=1

log Vi)−
1

N
log 2π

Generalizing the above expression so as to include the cases with boundary con-

ditions we have

1

N
log µ(N) '

∑
i∈J

Gi log
pi
Gi

+
1

2N
(logN −

∑
i∈J

log Vi)−
a− 1

2N
log 2π
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where J is the set of genotypes away from boundary and cardinality(J) = a.

Thus we get that

1

N
log µ(N) ' −KLD − δN

or

µ(N) ' exp(−N ∗KLD) exp(−NδN)

where

δN = − 1

2N
(logN −

∑
i∈J

log Vi) +
a− 1

2N
log 2π

= − 1

2N
(logN −

∑
i∈J

logNGi) +
a− 1

2N
log 2π

and

KLD =
∑
i∈J

Gi log
pi
Gi

.

Hence

exp(−NδN) =
1

(2πN)
a−1
2

∏
i∈J
√
Gi

4.5 One-step Large Deviations Rate for Transition

Probabilities

Hence, we get final probability (derived in chapter 2) as the product of Poisson and

Multinomial probabilities as follows

Θ(H,G) =
∑
r

exp(−N(L(r,H) +KLD(p,G))) exp(−N(ηN + δN)).
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Defining S(H, r,G) = L(r,H) +KLD(G, p), where L(r,H) is given by the Equa-

tion 4.20 and KLD(G, p) is expressed in the Equation 4.8, we obtain the final ex-

pression for the probability as follows

Θ(H,G) =
∑
r

exp(−N S(H, r,G))

(2π)
s−a+1

2

N
s+a−1

2

(∏
i∈J

√
Gi

∏
j,k,j 6=k

exp(rj,k/2)

)−1
 .

(4.22)

where J = Γ− B is the set of genotypes in G away from boundary, s = g2 − g and

cardinality(J) = a.

4.5.1 Restricted Mutations

Following a similar line of argument for restricted mutations where rj,k = 0,∀j ≥ k,

we obtain

1

N
logQ(r,H,N) '

∑
j,k|j<k

[−mkFjHj + rj,k log(mkFjHj) + rj,k − rj,k log rj,k]

− 1

2N

∑
j,k|j<k

logN − 1

2N

∑
j,k|j<k

log rj,k +
1

2N

∑
j,k|j<k

log 2π,

And for the case of g mutants we have s = (g2 − g)/2 sums over the possible

non-zero entries of the mutation matrix and we obtain

1

N
logQ(r,H,N) ' −L(r,H)− s logN

2N
− 1

2N

∑
j,k|j<k

log rj,k +
s

2N
log 2π

then

1

N
logQ(r,H,N) ' −L(r,H)− ηN
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where

ηN =
s logN

2N
+

1

2N

∑
j,k|j<k

log rj,k −
s

2N
log 2π

and limN→∞ ηN = 0.

Thus we have that

Q(r,H,N) ' exp(−NL(r,H)) exp(−NηN)

and

exp(−NηN) =

(
2π

N

)s/2 ∏
j,k|j<k

exp(rj,k/2)

−1

Also, for the case of one step random selections with no genotypes on boundary we

can obtain the similar residual term in the limit for restricted mutations as before.

Thus we get

Θ(H,G) =
∑
r

exp(−N(L(r,H) +KLD))(2π

N

)s/2 ∏
j,k|j<k

exp(rj,k/2)

−1

1

(2πN)
a−1
2

∏
i∈J
√
Gi

 ,

Defining Sr(H, r,G) = L(r,H) + KLD(G, p), where L(r,H) is given by the

Equation 4.21 and KLD(G, p) is expressed in the Equation 4.8, we obtain the final

expression for the probability as follows

Θ(H,G) =
∑
r

exp(−N Sr(H, r,G))

 (2π)
4−a
2

N
2+a
2

∏
i∈J
√
Gi

 ∏
j,k|j<k

exp(rj,k/2)

−1 .

(4.23)
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4.6 Analysis of One-step Rate Functional

From the discussion in previous sections, if we have a target population with g

genotypes, B as the set of genotypes that satisfy boundary condition and J = Γ−B

as the set of genotypes away from boundary. Then rate functional for one-step is

RF = L(r,H) +KLD(G, p)

where L(r,H) is given by the Equation 4.21 and KLD(G, p) is expressed in the

Equation 4.8.

Let µ be a probability distribution of Frechet type on the Borel σ algebra of

a separable locally convex vector space E. Let λ : E → [0,+∞] be the general

Cramer transform of µ defined in chapter 3. The Cramer Set Functional A→ Λ(A)

associated to µ is then defined for all subsets A of E by

Λ(A) = inf
x∈A

λ(x)

Then Λ takes values in [0,+∞]. The function λ uniquely determines the func-

tional Λ and conversely. For more detailed discussion and proofs refer to [4], [38],

[39] and [6].

Recall here that the sum is being taken over the non-zero entries of mutation

matrix r and hence is a finite sum. So applying this generic principle of large devi-

ations to a a finite sum of exponentials exp(−NAq) with 1 ≤ q ≤ qmax, we get its

equivalence to cte× exp(−NA) where A = min(Aq) and cte is some constant.

Here we have a sum over all matrices r which gives a polynomial number of terms
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< N g2/2. Then the optimal large deviations rate functional, RF will be

RFopt = min
r

[
L(r,H) +

∑
j∈J

Gj log
Gj

pj

]
as N→∞,

As before, we analyze the restricted and non-restricted mutation cases separately.
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4.6.1 Non-restricted Mutations

For our model the mutation rate, m is assumed to be same for all genotypes. We de-

liberately study this slightly simplified context but all the arguments we develop here

also apply to the generic case of distinct mutations. The one-step large deviations

rate, RF is given by

RFopt = min
r

[
∑
j,k|j 6=k

(mkFjHj)−
∑
j,k|j 6=k

rj,k log(mkFjHj) +
∑
j,k|j 6=k

rj,k log rj,k

−
∑
j,k|j 6=k

rj,k +
∑
j∈J

Gj log
Gj

pj
]. (4.24)

Thus, for the optimal value of r

RF = (g − 1)m〈F,H〉 −
∑
j,k|j 6=k

rj,k(1 + log(mFjHj)− log rj,k) +
∑
j∈J

Gj log
Gj

pj
,

(4.25)

Differentiating the function RF given in Equation 4.25 w.r.t r in order to find the

minimum, we get

∂RF

∂rl,n
= −(1 + log(mFlHl)) + (1 + log rl,n)−

∑
j∈J

Gj

pj

∂pj
∂rl,n

,

= − log(mFlHl) + log rl,n −
∑
j∈J

Gj

pj

∂pj
∂rl,n

.

Now we know that

pj =
FjHj

〈F,H〉
−
∑

k|k 6=j rj,k

〈F,H〉
+

∑
k|k 6=j rk,j

〈F,H〉
, ∀j = 1, ..., g
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and so,

∂pj(r,H)

∂rl,n
=


0 j 6= l, j 6= n

−〈F,H〉−1 j = l

〈F,H〉−1 j = n

Let qj = pj〈F,H〉, then

qj = FjHj −
∑
k|k 6=j

rj,k +
∑
k|k 6=j

rk,j

and

∂qj
∂rl,n

=


0 j 6= l, j 6= n

−1 j = l

1 j = n

Thus, we get the following expression

∂RF

∂rl,n
=



− log(mFlHl) + log rl,n +
(
Gl
ql
− Gn

qn

)
l, n ∈ J

− log(mFlHl) + log rl,n + Gl
ql

l ∈ J, n /∈ J

− log(mFlHl) + log rl,n − Gn
qn

l /∈ J, n ∈ J

− log(mFlHl) + log rl,n l /∈ J, n /∈ J

or

∂RF

∂rl,n
=



log
rl,n

mFlHl
+
(
Gl
ql
− Gn

qn

)
l, n ∈ J

log
rl,n

mFlHl
+ Gl

ql
l ∈ J, n /∈ J

log
rl,n

mFlHl
− Gn

qn
l /∈ J, n ∈ J

log
rl,n

mFlHl
l /∈ J, n /∈ J
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4.6.2 Restricted Mutations

For the case of restricted mutations, we have our modified cost function as follows

RFopt = min
r

[
∑
j,k|j<k

mkFjHj −
∑
j,k|j<k

rj,k log(mkFjHj) +
∑
j,k|j<k

rj,k log rj,k

−
∑
j,k|j<k

rj,k +
∑
j∈J

Gj log
Gj

pj
].

Thus,

RF =
∑
j,k|j<k

mkFjHj −
∑
j,k|j<k

rj,k(1 + logmFjHj)− log rj,k) +
∑
j∈J

Gj log
Gj

pj
. (4.26)

Again,

pj =
FjHj

〈F,H〉
−
∑

k|k>j rj,k

〈F,H〉
+

∑
k|k<j rk,j

〈F,H〉

Thus, introducing qj as before where

qj = FjHj −
∑
k|k>j

rj,k +
∑
k|k<j

rk,j

we have that

∂qj
∂rl,n

=



0 j 6= l, j 6= n

0 l ≥ n

−1 j = l, l < n

1 j = n, l < n

Differentiating the rate functional, RF given by Equation 4.26 w.r.t r in order to

find the minimum, we get

∂RF

∂rl,n
=

 0 l ≥ n

− logmFlHl + log rl,n −
∑

j∈J
Gj
pj

∂pj
∂rl,n

. l < n
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Thus, we get the following expression

∂RF

∂rl,n
=



0 l ≥ n

− logmFlHl + log rl,n +
(
Gl
ql
− Gn

qn

)
l < n, l, n ∈ J

− logmFlHl + log rl,n + Gl
ql

l < n, l ∈ J, n /∈ J

− logmFlHl + log rl,n − Gn
qn

l < n, l /∈ J, n ∈ J

− logmFlHl + log rl,n l < n, l /∈ J, n /∈ J

or

∂RF

∂rl,n
=



0 l ≥ n

log
rl,n

mFlHl
+
(
Gl
ql
− Gn

qn

)
l < n, l, n ∈ J

log
rl,n

mFlHl
+ Gl

ql
l < n, l ∈ J, n /∈ J

log
rl,n

mFlHl
− Gn

qn
l < n, l /∈ J, n ∈ J

log
rl,n

mFlHl
l < n, l /∈ J, n /∈ J

For the special case of g = 3 genotypes and restricted mutations we have that

there are only 3 non-zero values in the mutation matrix.

Let r1,2 = x, r1,3 = y, r2,3 = z. Then our equations simplify as follows

RF =
∑
j,k|j<k

mkFjHj − x(1 + logmF1H1)− y(1 + logmF1H1)− z(1 + logmF2H2)

+ x log x+ y log y + z log z +
∑
j∈J

Gj log
Gj

pj
. (4.27)
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Also, the intermediate probability vector is given as

p(1) =
F1H1

〈F,H〉
− x+ y

〈F,H〉
,

p(2) =
F2H2

〈F,H〉
− z

〈F,H〉
+

x

〈F,H〉
,

p(3) =
F3H3

〈F,H〉
+

y + z

〈F,H〉

So,

∂p1

∂x
=
∂p1

∂y
=
∂p2

∂z
= − 1

〈F,H〉
,

∂p1

∂z
=
∂p2

∂y
=
∂p3

∂x
= 0,

∂p2

∂x
=
∂p3

∂y
=
∂p3

∂z
=

1

〈F,H〉
.

In terms of q, we get following expressions

q1 = F1H1 − x− y,

q2 = F2H2 − z + x,

q3 = F3H3 + y + z

So,

∂q1

∂x
=

∂q1

∂y
=
∂q2

∂z
= −1,

∂q1

∂z
=

∂q2

∂y
=
∂q3

∂x
= 0,

∂q2

∂x
=

∂q3

∂y
=
∂q3

∂z
= 1,

Again, differentiating RF given by Equation 4.27 w.r.t r in order to find minimum,
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we get

∂RF

∂rl,n
=

 0 l ≥ n

− logmFlHl + log rl,n −
∑

j∈J
Gj
pj

∂pj
∂rl,n

. l < n

Expressing them with new variables we get the following equations

∂RF

∂x
=



− logmF1H1 + log x+
(
G1

q1
− G2

q2

)
1, 2 ∈ J

− logmF1H1 + log x+ G1

q1
1 ∈ J, 2 /∈ J

− logmF1H1 + log x− G2

q2
1 /∈ J, 2 ∈ J

− logmF1H1 + log x 1, 2 /∈ J

∂RF

∂y
=



− logmF1H1 + log y +
(
G1

q1
− G3

q3

)
1, 3 ∈ J

− logmF1H1 + log y + G1

q1
1 ∈ J, 3 /∈ J

− logmF1H1 + log y − G3

q3
1 /∈ J, 3 ∈ J

− logmF1H1 + log y 1, 3 /∈ J

and

∂RF

∂z
=



− logmF2H2 + log z +
(
G2

q2
− G3

q3

)
2, 3 ∈ J

− logmF2H2 + log z + G2

q2
2 ∈ J, 3 /∈ J

− logmF2H2 + log z − G3

q3
2 /∈ J, 3 ∈ J

− logmF2H2 + log z 2, 3 /∈ J

Clearly the above expressions give explicit formulas for x, y, z depending on the non

boundary set J . Various cases are outlined below.
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(i) If 1, 2, 3 ∈ J , then

x = mF1H1 exp

(
G2

q2

− G1

q1

)
,

y = mF1H1 exp

(
G3

q3

− G1

q1

)
,

z = mF2H2 exp

(
G3

q3

− G2

q2

)
.

(ii) If 1 /∈ J , and 2, 3 ∈ J , then

x = mF1H1 exp

(
G2

q2

)
,

y = mF1H1 exp

(
G3

q3

)
,

z = mF2H2 exp

(
G3

q3

− G2

q2

)
.

(iii) If 2 /∈ J , and 1, 3 ∈ J , then

x = mF1H1 exp

(
−G1

q1

)
,

y = mF1H1 exp

(
G3

q3

− G1

q1

)
,

z = mF2H2 exp

(
G3

q3

)
.

(iv) If 3 /∈ J , and 1, 2 ∈ J , then

x = mF1H1 exp

(
G2

q2

− G1

q1

)
,

y = mF1H1 exp

(
−G1

q1

)
,

z = mF2H2 exp

(
−G2

p2

)
.
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(v) If 2, 3 /∈ J , and 1 ∈ J , then

x = mF1H1 exp

(
−G1

q1

)
,

y = mF1H1 exp

(
−G1

q1

)
,

z = mF2H2.

(vi) If 1, 3 /∈ J , and 2 ∈ J , then

x = mF1H1 exp

(
G2

q2

)
,

y = mF1H1,

z = mF2H2 exp

(
−G2

q2

)
.

(vii) If 1, 2 /∈ J ,and 3 ∈ J , then

x = mF1H1,

y = mF1H1 exp

(
G3

q3

)
,

z = mF2H2 exp

(
G3

q3

)
.

(viii) If 1, 2, 3 /∈ J , then

x = mF1H1,

y = mF1H1,

z = mF2H2.

Thus, we can say that x = mA, y = mB, and z = mC where the values of
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A,B,C are determined as explained above. This gives the following expression

RF = m(2F1H1 + F2H2)−mA(1 + logmF1H1)−mB(1 + logmF1H1)

−mC(1 + logmF2H2) +mA logmA+mB logmB +mC logmC

+
∑
j∈J

Gj log
Gj

pj
.

Simplifying the above expression we obtain

RF = m(2F1H1 + F2H2)−mA−mA logm−mA logF1H1

−mB −mB logm−mB logF1H1

−mC −mC logm−mC logF2H2

+mA logm+mA logA+mB logm+mB logB

+mC logm+mC logC +
∑
j∈J

Gj log
Gj

pj
.

or

RF = m(2F1H1 + F2H2)−mA−mA logF1H1 −mB −mB logF1H1

−mC −mC logF2H2 +mA logA+mB logB +mC logC +
∑
j∈J

Gj log
Gj

pj
.

and so

RF = m(2F1H1 + F2H2 − A− A logF1H1 −B −B logF1H1

− C − C logF2H2 + A logA+B logB + C logC) +
∑
j∈J

Gj log
Gj

pj
.

In other words we observe that the final cost given by rate functional, RF is

composed of two parts where the Poisson part is a multiple of mutation rate. Another

interesting observation to make here is that the cost from Poisson part is positive
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so presence of mutations actually leads to increase in overall cost. This was verified

numerically and it was also observed that cost from multinomial process is in general

much higher than Poisson cost.

Recall that N is large (for instance 105) and the mj are small (i.e. 10−6), and

the Fj can be of the order of 200. Other realistic combinations are also possible.

We present the comparison of these two costs for a particular case of 2 genotypes

and 1% discretization in sample space.

The non-zero values of Poisson cost vary between 2× 10−17 and 8× 10−6. On the

other hand, non-zero values of multinomial cost have a minimum of 1.2× 10−8 and

a maximum of Infinity.

The histograms of Poisson cost and multinomial cost for the case of 2 genotypes

and 1% discretization are shown in Figure 4.1.
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Figure 4.1: The Histograms of Poisson Cost and Multinomial Cost for the Case of 2
Genotypes and 1% Discretization.
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Note that in the case of general mutations one cannot derive closed form ex-

pressions for the matrix of random mutations, r which minimizes the one step rate

function for transition between H and G easily. The higher number of variables and

equations increases the complexity of optimization.

As could be expected from fairly general large deviation principles, we have nu-

merical evidence for multiple cases that our one-step rate function S(H, r,G) is a

convex function of mutations, r and thus we assume the success of above approach

in estimating the global optimal value of cost for optimal value of r. The Hessian of

the cost matrix turns out to be symmetric and positive definite. For the case of 3

genotypes and restricted mutations, the Hessian was computed theoretically and its

eigen values were analyzed numerically. The symmetric Hessian matrix is presented

below 
1
x

+ G1

q21
+ G2

q22

G1

q21
−G2

q22

G1

q21

1
y

+ G1

q21
+ G3

q23

G3

q23

−G2

q22

G3

q23

1
z

+ G2

q22
+ G3

q23


All the eigen values were observed to be strictly positive. However, we did observe

that for histograms with genotypes near boundary the eigen values were very small.

Some of them were of the order 10−10. This is acceptable since the expression for first

and second derivative of cost are well defined for histograms away from boundary.

For this particular case with g = 3 genotypes and restricted mutations, it is easy

to verify that the hessian matrix is indeed positive definite. The determinants for all

the three principal square submatrices are clearly positive and are presented below.
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1.

1

x
+
G1

q2
1

+
G2

q2
2

,

2. (
1

x
+
G2

q2
2

)(
1

y
+
G1

q2
1

+
G3

q2
3

)
+
G1

q2
1

(
1

y
+
G1

q2
1

)
, and

3.

1

xyz
+

G2

xyq2
2

+
G3

xyq2
3

+
G1

xzq2
1

+
G1G2

xq2
1q

2
2

+
G1G3

xq2
1q

2
3

+
G3

xzq2
3

+
G2G3

xq2
2q

2
3

+
G1

yzq2
1

+
G1G2

yq2
1q

2
2

+
G1G3

yq2
1q

2
3

+
G2

1G3

q4
1q

2
3

+
G1G3

zq2
1q

2
3

+
G2

yzq2
2

+
G2G3

yq2
2q

2
3

+
G1G2

zq2
1q

2
2

+
G2G3

zq2
2q

2
3

.

Next, we present a few histograms showing distribution of minimum eigen values

for each cost matrix observed.
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The Figure 4.2 shows a histogram of minimum eigen values of histograms away

from boundary.

Figure 4.2: Histogram of Minimum Eigen Values for Interior Points

Some of the eigen values have very large magnitude resulting in the skewed his-

togram. It is important to note here that x-axis has a scale of the order 105. The

minimum of all eigen values plotted here is 2000.
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and a zoomed in version of the previous histogram near the origin is shown here

in figure 4.3.

Figure 4.3: Histogram (near Origin) of Minimum Eigen Values for Interior Points
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The following figure 4.4 shows a histogram of minimum eigen values of histograms

near the boundary.

Figure 4.4: Histogram of Minimum Eigen Values for Boundary Points

As, explained before we observe the highest frequency near origin.
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For the case with g = 3 genotypes, we can view the state space as a 2− dimen-

sional simplex which is a unit triangle with one of the vertices on origin. So the

distribution of points which have minimum eigen values for the cost matrix less than

10−7 is along the edges of this triangle as shown in figure 4.5.

Figure 4.5: Boundary Points

Note that in equation 4.25, if we assume mean mutations, i.e., rj,k = mFjHj

and mean density for multinomial random sampling, i.e., Gi = pi, the expression for

one-step rate function transforms to

RF = (g − 1)m〈F,H〉 −
∑
j,k|j 6=k

mFjHj(1 + log(mFjHj)− logmFjHj) +
∑
j∈J

pj log
pj
pj
,
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or

RF = (g − 1)m〈F,H〉 −
∑
j,k|j 6=k

mFjHj,

= (g − 1)m〈F,H〉 − (g − 1)m〈F,H〉 = 0

Hence we achieve minimal cost or optimal value of rate functional for a trajectory

which follows path given by mean mutations and mean sampling distribution. This

optimal trajectory can be computed explicitly and it is the most likely trajectory

which always directs the population towards fittest genotype. Hence we can not

use this approach for finding optimal trajectories for other events which are rare in

nature.
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CHAPTER 5

Numerical Computation of One-step Rate Functional

To compute optimal value of rate functional given initial and target histograms, we

need to find corresponding cost optimizing mutation matrix, r in the evolutionary

step. In chapter 4 we derived implicit equations for random mutations in the system

using the derivative of rate functional to be zero. We also demonstrated that except

for few particular cases with restricted mutations, it was not feasible to solve the

implicit system and derive closed form solutions for value of mutations.

One of the techniques for solving directly the implicit equations is to use opti-

mization toolbox in MATLAB. When optimizing optimal mutations using an inbuilt

subroutine ‘fmincon’ with all the constraints for g = 3 genotypes, we find that the
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5.1. OPTIMAL INTERMEDIARY MUTATION STEP

complete computation of one-step rate functional which includes computation of op-

timal mutations takes around 2− 5 seconds per pair of initial and target histogram.

So for a discretization of 2% with g = 3 genotypes, where we have 1326 states in the

state space, we would need atleast 60 days to finish computations for one-step rate

functional.

Hence we need to devise an alternative approach which allows us to estimate cost

optimizing values of the mutation matrix.

Next, we describe an efficient way to find optimal value of mutations. Consider,

the equation

0 =
∂RF

∂rl,n

Rearranging the terms we get following equations for r, where J is the set of

genotypes in target state G which are away from boundary, i.e. Gj ≥ ε, j ∈ J .

log rl,n =



log(mFlHl)−
(
Gl
ql
− Gn

qn

)
l, n ∈ J

log(mFlHl)− Gl
ql

l ∈ J, n /∈ J

log(mFlHl) + Gn
qn

l /∈ J, n ∈ J

log(mFlHl) l /∈ J, n /∈ J

We want to solve these equations for the value of r.

5.1 Optimal Intermediary Mutation Step

We will study two situations, the generic case with non-restricted mutations and

special case with restricted mutations separately.

97



5.1. OPTIMAL INTERMEDIARY MUTATION STEP

5.1.1 Non-restricted Mutations

For an initial histogram H and target histogram G with mutation matrix r, where

set of boundary genotypes B is empty, we have that the rate functional is given by

RF =
∑
j,k|j 6=k

mkFjHj −
∑
j,k|j 6=k

rj,k(1 + log(mkFjHj)) +
∑
j,k|j 6=k

rj,k log rj,k +
∑
j

Gj log
Gj

pj
.

Now we know that mean of r is r̄j,k = mkFjHj and we also assume m = mi, ∀i

to simplify results.

then we have

RF = (g − 1)m〈F,H〉+
∑
j,k|j 6=k

rj,k(log
rj,k
r̄j,k
− 1) +

∑
j

Gj log
Gj

pj
. (5.1)

and the derivatives w.r.t. r are given by

∂RF

∂rj,k
= − log(mFjHj) + log rj,k −

1

〈F,H〉

(
Gj

pj
− Gk

pk

)
.

So rearranging the terms, we get the stationarity conditions

0 =
∂RF

∂rj,k

= log

(
rj,k

mFjHj

)
− 1

〈F,H〉

(
Gj

pj
− Gk

pk

)
. (5.2)

So we obtain for a given H and G, r as the solution of the following system of g2

equations in g2 unknowns given by rj,k and pj

rj,k = mFjHj exp

(
1

〈F,H〉

(
Gk

pk
− Gj

pj

))
,

pj = p(j) =
FjHj

〈F,H〉
−
∑

k rj,k
〈F,H〉

+

∑
k rk,j
〈F,H〉

.
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or it can be written as a solution to the following system,

rj,k = mFjHj exp

(
Gk

qk
− Gj

qj

)
,

qj = q(j) = FjHj −
∑
k

rj,k +
∑
k

rk,j.

where qj = pj〈F,H〉 and qj ≥ 0. Also let

ρj,k =
rj,k
r̄ j,k

=
rj,k

mkFjHj

=
rj,k

mFjHj

. (5.3)

Then, from the expression for q,

qj = FjHj −
∑
k

rj,k +
∑
k

rk,j

= FjHj −
∑
k|k 6=j

ρj,kr̄j,k +
∑
k|k 6=j

ρk,j r̄k,j,

= FjHj − FjHj

∑
k|k 6=j

ρj,km+m
∑
k|k 6=j

ρk,jFkHk,

= FjHj

1−m
∑
k|k 6=j

ρj,k +
m

FjHj

∑
k|k 6=j

ρk,jFkHk

 .

Thus, q is given by Equation 5.4

qj = FjHj

1−m
∑
k|k 6=j

ρj,k +
m

FjHj

∑
k|k 6=j

ρk,jFkHk

 . (5.4)

If m = 0, (i.e.) there are no mutations in the system then we have that

q0
j = FjHj where clearly q0(j) ≥ 0.

Thus from equations 5.3 and 5.2

ρ0
j,k = exp

(
Gk

FkHk

− Gj

FjHj

)
=
γk
γj

(5.5)
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where γi = exp
(

Gi
FiHi

)
. Thus we have, for m = 0,

r0
j,k = mFjHj

γk
γj
. (5.6)

In case of realistic cell populations, the mutation rate m is very small, generally

smaller than 10−6. So for these small values of m, we may use first-order approxi-

mations, which we write as follows

qj ' q0
j (1 +mβj),

and

ρj,k ' ρ0
j,k(1 +mαj,k).

where αj, k and βj are known coefficients.

Gj

qj
' Gj

q0
j

(1 +mβj)
−1 ' Gj

q0
j

(1−mβj) (5.7)

Using this approximation in expression for ρj,k, we obtain

ρj,k = exp

(
Gk

qk
− Gj

qj

)
,

' exp

(
Gk(1−mβk)

q0
k

− Gj(1−mβj)
q0
j

)
,

' exp

(
Gk

q0
k

− mGkβk
q0
k

− Gj

q0
j

+
mGjβj
q0
j

)
,

' exp

(
Gk

FkHk

− Gj

FjHj

)
exp

(
m

(
−Gkβk

q0
k

+
Gjβj
q0
j

))
,

' ρ0
j,k exp

(
m

(
−Gkβk

q0
k

+
Gjβj
q0
j

))
,

' ρ0
j,k

(
1 +m

(
Gjβj
FjHj

− Gkβk
FkHk

))
.
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This yields the following expressions for the αj, k in terms of βj and βk.

αj,k =

(
Gjβj
FjHj

− Gkβk
FkHk

)
(5.8)

Now we use Equation 5.4 for qj and rewrite it to obtain,

qj = FjHj

1 +m

∑
k|k 6=j

−ρj,k +
1

FjHj

∑
k|k 6=j

ρk,jFkHk

 (5.9)

This implies the relations

βj =
∑
l|l 6=j

−ρ0
j,l +

1

FjHj

∑
l|l 6=j

ρ0
l,jFlHl,

=
∑
l,l 6=j

−γl
γj

+ +
1

FjHj

∑
l|l 6=j

γj
γl
FlHl,

= −γj
∑
l|l 6=j

1

γl
+

1

FjHjγj

∑
l|l 6=j

γlFlHl,

= −γj
∑
l|l 6=j

1

γl
+

1

FjHjγj

∑
l|l 6=j

γlFlHl

Updating values of βj and βk in equation 5.8, we derive

αj,k =
Gj

FjHj

γj∑
l|l 6=j

− 1

γl
+

1

FjHjγj

∑
l|l 6=j

γlFlHl



− Gk

FkHk

γk∑
l|l 6=k

− 1

γl
+

1

γkFkHk

∑
l|l 6=k

γlFlHl


where γi = exp

(
Gi
FiHi

)
and thus we have the first-order approximations for the

optimal intermediary mutation step between H and G.

rj,k = mFjHj exp

(
Gk

FkHk

− Gj

FjHj

)
(1 +mαj,k)
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or

rj,k = mFjHj exp

(
Gk

FkHk

− Gj

FjHj

)
[1 +m

(
Gkγk
FkHk

− Gjγj
FjHj

)∑
l|l 6=j

1

γl

+

(
Gj

F 2
j H

2
j γj
− Gk

γkF 2
kH

2
k

)∑
l|l 6=k

γlFlHl].

Thus, using the values of γ we get an approximation for the values of r and q

and a very precise approximation of the minimal rate functional for a one-step jump

from H to G. The corresponding optimal rate functional is derived in section 5.2

later.

Extending the above discussion to the case which allows one or several genotypes

to be near boundary frequencies (< ε), we derive similar results and approximations

for r and q. As before let J be the set of genotypes in target population G which

are away from boundary values (Gj ≥ ε) and B be the set of remaining boundary

genotypes. Also, call I the set of genotypes i such that Hi 6= 0.

We claim that j /∈ I ⇒ j /∈ J . The mean for random Poisson mutations, r̄ is

given by r̄j,k = mkFjHj.

For the case when j /∈ I, then Hj = 0 and thus

r̄j,k = mkFjHj = 0,∀k.

In order for Gj > ε or j ∈ J , we need that rj,k ≥ ε. Since, our tolerance for boundary

cases for population of size N = 50000 is ε = 10−3, we would need atleast rj,k ≥ 10−3.

This is highly unlikely since r̄j,k = 0.

This fact can also be verified numerically. We present the histogram for the values
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of ρj,k which is ratio of values of rj,k to its mean value ¯rj,k in Figure 5.1. This figure

has been generated for every pair of initial and target histogram in the state space

of g = 3 genotypes generated using 2% discretization. The values of growth factor

and mutation rates are used from TC experiments. It is clear from the figure that

random mutations have values very close to mean mutations.

Figure 5.1: Histogram for Ratio of Random Mutations to Mean Mutations.

Hence we can safely assume that if Hj = 0, then pj << 10−3 and thus Gj < 10−3

or j ∈ B for optimal trajectory.

Thus, j /∈ I ⇒ j /∈ J or in other words j ∈ J ⇒ j ∈ I. The set of genotypes

for which pi is very small or zero can be similarly included in the set of boundary

genotypes in G.

These relations are required so that we do not divide by 0 or extremely small
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values in the expression for r0
j,k.

We have computed the expression for approximate random mutation matrix, r

in equation 5.6 when the target histogram G is away from boundary. Next we

introduce target histograms which may satisfy boundary conditions and recompute

an approximation for the mutation matrix for these special cases.

The generalized one-step rate functional or the cost function for any pair of initial

(H) and target (G) histogram using Equation 4.24 is given as

RF=
∑

j∈I,k|j 6=k

mkFjHj −
∑

j∈I,k|j 6=k

rj,k(1 + log(mkFjHj)) +
∑

j∈I,k|j 6=k

rj,k log(rj,k) +
∑
j∈J

Gj log
Gj

pj

.

(5.10)

The derivative of the rate functional in equation 5.10 for these special cases is

given in Equation 5.11.

Recall here that Hk 6= 0, ∀k ∈ I.

∂RF

rj,k
=



0 j /∈ I; j, k /∈ J
−1
〈F,H〉

Gk
pk

j /∈ I; j /∈ J, k ∈ J

log(ρj,k) j ∈ I; j, k /∈ J

log(ρj,k) + 1
〈F,H〉

(
Gj
pj
− Gj

pj

)
j ∈ I; j, k ∈ J

log(ρj,k) + 1
〈F,H〉

Gj
pj

j ∈ I; j ∈ J, k /∈ J

log(ρj,k) + −1
〈F,H〉

Gk
pk

j ∈ I; j /∈ J, k ∈ J

(5.11)
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Using the fact that qj = pj〈F,H〉 and rewriting, we get

ρj,k =



0 j /∈ I

1 j ∈ I; j, k /∈ J

exp
(
Gk
qk
− Gj

qj

)
j ∈ I; j, k ∈ J

exp
(
−Gj

qj

)
j ∈ I; j ∈ J, k /∈ J

exp
(
Gk
qk

)
j ∈ I; j /∈ J, k ∈ J

(5.12)

and thus

rj,k =



0 j /∈ I

mFjHj j ∈ I; j, k /∈ J

mFjHj exp
(
Gk
qk
− Gj

qj

)
j ∈ I; j, k ∈ J

mFjHj exp
(
−Gj
qj

)
j ∈ I; j ∈ J, k /∈ J

mFjHj exp
(
Gk
qk

)
j ∈ I; j /∈ J, k ∈ J

(5.13)

Proceeding as before, for the case when m = 0 we will get

qj =

 0 j /∈ I

FjHj j ∈ I

which gives

ρ0
j,k =



0 j /∈ I

1 j ∈ I; j, k /∈ J

exp
(

Gk
FkHk

− Gj
FjHj

)
j ∈ I; j, k ∈ J

exp
(
− Gj
FjHj

)
j ∈ I; j ∈ J, k /∈ J

exp
(

Gk
FkHk

)
j ∈ I; j /∈ J, k ∈ J

(5.14)
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The above expression is valid since if k ∈ J then k ∈ I and hence qk 6= 0. So,

r0
j,k =



0 j /∈ I

mFjHj j ∈ I; j, k /∈ J

mFjHj exp
(

Gk
FkHk

− Gj
FjHj

)
j ∈ I; j, k ∈ J

mFjHj exp
(
− Gj
FjHj

)
j ∈ I; j ∈ J, k /∈ J

mFjHj exp
(

Gk
FkHk

)
j ∈ I; j /∈ J, k ∈ J

(5.15)

The above calculation completes the zero order approximation for optimal non

restricted mutation matrix, r for any pair of initial (H) and target (G) histograms.
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5.1.2 Restricted Mutations

Now we consider the special case of restricted mutations in the above system and

determine the optimal intermediary values of r and p. Random mutations in a

population are said to be restricted when they are only allowed to increase the fitness

of population. This means that a genotype with higher growth factor is not allowed

to mutate into a genotype with lower growth factor.

RF=
∑

j∈I,k|j<k

mkFjHj −
∑

j∈I,k|j<k

rj,k(1 + log(mkFjHj)) +
∑

j∈I,k|j<k

rj,k log(rj,k) +
∑
j∈J

Gj log
Gj

pj

.

(5.16)

The derivative of rate functional in equation 5.16 for various possibilities is given

in Equation 5.17.

Recall again that Hk 6= 0, ∀k ∈ I.

∂RF

rj,k
=



0 j /∈ I; j, k /∈ J

0 j ∈ I, j ≥ k; j, k /∈ J
−1
〈F,H〉

Gk
pk

j /∈ I; j /∈ J, k ∈ J

log(ρj,k) j ∈ I, j < k; j, k /∈ J

log(ρj,k) + 1
〈F,H〉

(
Gj
pj
− Gj

pj

)
j ∈ I, j < k; j, k ∈ J

log(ρj,k) + 1
〈F,H〉

Gj
pj

j ∈ I, j < k; j ∈ J, k /∈ J

log(ρj,k) + −1
〈F,H〉

Gk
pk

j ∈ I, j < k; j /∈ J, k ∈ J

(5.17)
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Using the fact that qj = pj〈F,H〉 and rewriting, we get

ρj,k =



0 j /∈ I

0 j ∈ I, j ≥ k

1 j ∈ I, j < k; j, k /∈ J

exp
(
Gk
qk
− Gj

qj

)
j ∈ I, j < k; j, k ∈ J

exp
(
−Gj
qj

)
j ∈ I, j < k; j ∈ J, k /∈ J

exp
(
Gk
qk

)
j ∈ I, j < k; j /∈ J, k ∈ J

(5.18)

and thus

rj,k =



0 j /∈ I

0 j ∈ I, j ≥ k

mFjHj j ∈ I, j < k; j, k /∈ J

mFjHj exp
(
Gk
qk
− Gj

qj

)
j ∈ I, j < k; j, k ∈ J

mFjHj exp
(
−Gj
qj

)
j ∈ I, j < k; j ∈ J, k /∈ J

mFjHj exp
(
Gk
pk

)
j ∈ I, j < k; j /∈ J, k ∈ J

(5.19)

Proceeding as before, for the case when m = 0 we will get

ρ0
j,k =



0 j /∈ I

0 j ∈ I, j ≥ k

1 j ∈ I, j < k; j, k /∈ J

exp
(

Gk
FkHk

− Gj
FjHj

)
j ∈ I, j < k; j, k ∈ J

exp
(
− Gj
FjHj

)
j ∈ I, j < k; j ∈ J, k /∈ J

exp
(

Gk
FkHk

)
j ∈ I, j < k; j /∈ J, k ∈ J

(5.20)

108



5.1. OPTIMAL INTERMEDIARY MUTATION STEP

and

r0
j,k =



0 j /∈ I

0 j ∈ I, j ≥ k

mFjHj j ∈ I, j < k; j, k /∈ J

mFjHj exp
(

Gk
FkHk

− Gj
FjHj

)
. j ∈ I, j < k; j, k ∈ J

mFjHj exp
(
− Gj
FjHj

)
j ∈ I, j < k; j ∈ J, k /∈ J

mFjHj exp
(

Gk
FkHk

)
j ∈ I, j < k; j /∈ J, k ∈ J

(5.21)
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5.1.3 Mathematical Justification

The above approximations for the value of optimal mutation matrix r are not only

numerically correct but can also be shown to be a good approximation to the optimal

mutation matrix using the implicit function theorem. We focus on a special case

where we have g = 3, mi = m,∀i and ri,i = 0,∀i.

We know that the optimal r is the solution to following system of implicit equa-

tions

rj,k = mFjHj exp

(
Gk

qk
− Gj

qj

)
, (5.22)

qj = FjHj −
∑
k|k 6=j

rj,k +
∑
k|k 6=j

rk,j. (5.23)

This is a system of 8 implicit equations in 8 unknowns r12, r13, r21, r23, r31, r32, q1

and q2 since
∑

j qj = 〈F,H〉, and thus q3 = 〈F,H〉 − q1 − q2. We now appeal to the

implicit function theorem [91].

Theorem 5.1.1. Let A be an open set in Rn+k and let f : A→ Rn be a Cr function.

Write f in the form f(x, y), where x and y are elements of Rk and Rn. Suppose that

(a, b) is a point in A such that f(a, b) = 0 and the determinant of the n×n Jacobian

matrix whose elements are the derivatives of the n component functions of f with

respect to the n variables, written as y, evaluated at (a, b), is not equal to zero.

Then there exists a neighborhood B of a in Rk and a unique Cr function g : B →

Rn such that g(a) = b and f(x, g(x)) = 0 for all x ∈ B.

Hence it says that there is a unique solution r(m) of the system for m close to
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zero and that, r(m) is a smooth function of m, and hence has a Taylor expansion for

m close to zero.

We will show that the Jacobian of system given by 5.22 is non singular and hence

using the Implicit function theorem we can approximate r in the close neighborhood

of m = 0.

The Jacobian matrix is as follows

1 0 0 0 0 0 −e1,2G1/q
2
1 e1,2G2/q

2
2

0 1 0 0 0 0 −e1,3(G3/q
2
3 +G1/q

2
1) −e1,3G3/q

2
3

0 0 1 0 0 0 e2,1G1/q
2
1 −e2,1G2/q

2
2

0 0 0 1 0 0 −e2,3G3/q
2
3 −e2,3(G2/q

2
2 +G3/q

2
3)

0 0 0 0 1 0 e3,1(G1/q
2
1 +G3/q

2
3) e3,1G3/q

2
3

0 0 0 0 0 1 e3,2G3/q
2
3 e3,2(G2/q

2
2 +G3/q

2
3)

1 1 −1 0 −1 0 1 0

−1 0 1 1 0 −1 0 1



where ei,j = mFiHi exp
(
Gi
qi
− Gj

qj

)
.
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The determinant of the above matrix is given by

Determinant = 1 + (G1e1,2q
2
2q

2
3 +G2e1,2q

2
1q

2
3 +G1e1,3q

2
2q

2
3 +G3e1,3q

2
1q

2
2 +G1e2,1q

2
2q

2
3

+G2e2,1q
2
1q

2
3 +G2e2,3q

2
1q

2
3 +G3e2,3q

2
1q

2
2 +G1e3,1q

2
2q

2
3 +G3e3,1q

2
1q

2
2 +G2e3,2q

2
1q

2
3

+G3e3,2q
2
1q

2
2 +G1G2e1,2e1,3q

2
3 +G1G3e1,2e1,3q

2
2

+G2G3e1,2e1,3q
2
1 +G1G2e1,3e2,1q

2
3 +G1G3e1,3e2,1q

2
2

+G2G3e1,3e2,1q
2
1 +G1G2e1,2e2,3q

2
3 +G1G3e1,2e2,3q

2
2

+G2G3e1,2e2,3q
2
1 +G1G2e1,3e2,3q

2
3 +G1G3e1,3e2,3q

2
2

+G2G3e1,3e2,3q
2
1 +G1G2e1,2e3,1q

2
3 +G1G3e1,2e3,1q

2
2

+G2G3e1,2e3,1q
2
1 +G1G2e1,2e3,2q

2
3 +G1G2e2,1e2,3q

2
3

+G1G3e1,2e3,2q
2
2 +G1G3e2,1e2,3q

2
2 +G2G3e1,2e3,2q

2
1

+G2G3e2,1e2,3q
2
1 +G1G2e1,3e3,2q

2
3 +G1G3e1,3e3,2q

2
2

+G2G3e1,3e3,2q
2
1 +G1G2e2,1e3,1q

2
3 +G1G3e2,1e3,1q

2
2

+G2G3e2,1e3,1q
2
1 +G1G2e2,1e3,2q

2
3 +G1G3e2,1e3,2q

2
2

+G2G3e2,1e3,2q
2
1 +G1G2e2,3e3,1q

2
3 +G1G3e2,3e3,1q

2
2

+G2G3e2,3e3,1q
2
1 +G1G2e3,1e3,2q

2
3 +G1G3e3,1e3,2q

2
2

+G2G3e3,1e3,2q
2
1)/(q2

1q
2
2q

2
3);

Clearly in the above expression all terms are positive and the very first term

1 > 0. Thus the Jacobian matrix is non singular, hence proving our result. We can

follow similar argument in case with arbitrary g number of genotypes and derive a

non singular Jacobian matrix.
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5.2 Efficient Approximation of One-step Rate Func-

tional

Now using the intermediary optimal values of mutations derived in previous section,

we rewrite the corresponding approximation for the associated rate functional or the

cost expression. As done before, first we consider the rate functional for the case

where all genotypes in the target histogram G are away from boundary, Gi ≥ ε.

RF =
∑
j,k|j 6=k

mkFjHj +
∑
j,k|j 6=k

rj,k(log(ρj,k)− 1) +

ng∑
j=1

Gj log
Gj

pj
. (5.24)

Now, using optimal intermediary values for ρ, r, p

ρj,k = exp

(
Gk

FkHk

− Gj

FjHj

)
,

rj,k = mkFjHj exp

(
Gk

FkHk

− Gj

FjHj

)
,

pj =
FjHj

〈F,H〉
.

RF =
∑
j,k|j 6=k

mkFjHj +
∑
j,k|j 6=k

mkFjHj

(
Gk

FkHk

− Gj

FjHj

− 1

)
exp

(
Gk

FkHk

− Gj

FjHj

)

+ log〈F,H〉+

ng∑
j=1

Gj log

(
Gj

FjHj

)
. (5.25)
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Extending the cost function so that it reflects the boundary cases, Hi = 0 geno-

types and restricted mutations we can write it as

RF =
∑

j∈I,k∈I|j<k

mkFjHj +
∑

j∈I,k∈I|j<k

mkFjHj

(
Gk

FkHk

− Gj

FjHj

− 1

)
exp

(
Gk

FkHk

− Gj

FjHj

)

+ log〈F,H〉
∑
j∈J

Gj +
∑
j∈J

Gj log

(
Gj

FjHj

)
. (5.26)
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CHAPTER 6

Optimality Conditions for Rate Minimizing Evolution

Trajectories

Consider a trajectory of histograms from initial point a to final stage b in a pop-

ulation with g genotypes with deterministic growth factor F . Let (x, y, z) be any

sequence of 3 consecutive points along a trajectory from a to b minimizing the rate

functional among all paths going from a to b. Our motivation here is to find an op-

timal intermediary step y given x and z which minimizes the rate functional. Now,

assuming that all the points preceding and following y are fixed along the trajectory
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we can write

RF(x, y) + RF(y, z) = f(y)

(i.e.) the one-step rate functional (RF) can be considered a function of y assuming

x and z are fixed.

So, for a minimal path we must have

min
ỹ

RF(x, ỹ) + RF(ỹ, z) = RF(x, y) + RF(y, z).

Moreover, since it is a trajectory of histograms, we have
∑g

i=1 ỹi = 1. Now,

minimizing the cost function as a function of histogram y using Lagrange multipliers

we obtain Equation 6.1

∂RF(x, y)

∂yj
+
∂RF(y, z)

∂yj
= λ, ∀j = 1, 2, ..., g (6.1)

where λ is corresponding Lagrange multiplier and the constraint is

g∑
j=1

yj − 1 = 0.

6.1 Generic Optimality Conditions

For the trajectory x→ y → z, let r̄, p̄ and r, p be the corresponding random matrix

of mutations and the intermediary population histogram before dilution for x and y

respectively. Also, let ~m = (mi) be the vector of mutation rates where mi = m, ∀i,

i.e., we consider that the rates of mutation are equal regardless of the species.

We start with the case of no genotypes on boundary in both the target histograms

y and z and will discuss relevant boundary cases in a later section.
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Using the expression of cost as derived in Equation 5.25 with approximation for

r, ρ, p, we have

RF(x, y) = (g − 1)m〈F, x〉+m
∑
j,k|j 6=k

Fjxj

(
yk
Fkxk

− yj
Fjxj

− 1

)
exp

(
yk
Fkxk

− yj
Fjxj

)

+

g∑
j=1

yj log

(
yj〈F, x〉
Fjxj

)
, (6.2)

RF(y, z) = (g − 1)m〈F, y〉+m
∑
j,k|j 6=k

Fjyj

(
zk
Fkyk

− zj
Fjyj

− 1

)
exp

(
zk
Fkyk

− zj
Fjyj

)

+

g∑
j=1

zj log

(
zj〈F, y〉
Fjyj

)
. (6.3)

We first we explore the case with zero mutations, m = 0. The rate functional or

cost becomes

RF(x, y) =

g∑
j=1

yj log

(
yj

Fjxj/〈F, x〉

)

=

g∑
j=1

yj log(yj) + yj log〈F, x〉 − yj log(Fjxj)

=

g∑
j=1

yj log(yj) + log〈F, x〉 −
g∑
j=1

yj log(Fjxj)

where 〈F, x〉 =
∑g

j=1 Fjxj and F = (Fj) is the vector of deterministic growth

factors where F1 < F2 < ... < Fg.

Similarly,

RF(x, y) =

g∑
j=1

zj log(zj) + log〈F, y〉 −
g∑
j=1

zj log(Fjyj)
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Taking derivative w.r.t y gives

∂RF(x, y)

∂yj
= 1 + log(yj)− log(Fjxj), ∀j (6.4)

∂RF(y, z)

∂yj
= −zj

yj
+

Fj
〈F, y〉

, ∀j. (6.5)

Thus, using Lagrange optimality condition Equation 6.1.

λ = 1 + log(yj)− log(Fj)− log(xj)−
zj
yj

+
Fj
〈F, y〉

, (6.6)

which simplifies to

log(xj) = 1 + log(yj)− log(Fj)−
zj
yj

+
Fj
〈F, y〉

− λ.

Hence log(xj) can be expressed as a function of λ, y, z. Taking exponential of

both sides we get

xj = exp

(
1 + log(yj)− log(Fj)−

zj
yj

+
Fj
〈F, y〉

)
exp(−λ) = exp(−λ)Ψj(y, z) (6.7)

where

Ψj(y, z) = exp

(
1 + log(yj)− log(Fj)−

zj
yj

+
Fj
〈F, y〉

)
. (6.8)

We know that x is a histogram, so

g∑
j=1

xj = 1 = exp(−λ)

g∑
j=1

Ψj(y, z),

or

exp(λ) =

g∑
j=1

Ψj(y, z).
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Thus, given the histograms z and y, the unknown histogram x must be given by

Equation 6.9

xj =
Ψj(y, z)∑g
j=1 Ψj(y, z)

,∀j. (6.9)

where Ψ is given by Equation 6.8.

So if we fix a last target state z for any cost minimizing trajectory, we can generate

by successive reverse steps the unique cost minimizing trajectory ending with the last

two successive points y and z. This will be valid for every choice of the penultimate

position histogram y. So, for a fixed z we only need to explore the possible values of

the penultimate step y in the state space.

Recall that these formulas are valid for the case where m = 0. Now, we come

back to the generic case of small but non-zero mutations rate m and calculate the

new derivatives of the two-step rate functional using expressions in Equations 6.2

and 6.3.

∂RF(x, y)

∂yi
= 1 + log

(
yi
Fixi

)

+m
∑
k|k 6=i

Fixi

(
−1

Fixi
exp

(
yk
Fkxk

− yi
Fixi

)
+
−1

Fixi

(
yk
Fkxk

− yi
Fixi

− 1

)
exp

(
yk
Fkxk

− yi
Fixi

))

+m
∑
j|j 6=i

Fjxj

(
1

Fixi
exp

(
yi
Fixi

− yj
Fjxj

)
+

1

Fixi

(
yi
Fixi

− yj
Fjxj

− 1

)
exp

(
yi
Fixi

− yj
Fjxj

))
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and

∂RF(y, z)

∂yi
= (g−1)mFi+

Fi
〈F, y〉

−zi
yi
−mFi

+m
∑
k 6=i

((
Fizk
Fkyk

− Fi
)

exp(−bi,k) +

(
Fiyizk
Fkyk

− zi − Fiyi
)(

zi
Fiy2

i

)
exp(−bi,k)

)
+m

∑
j 6=i

((
−Fjyjzi
Fiy2

i

)
exp(bi,j) +

(
Fjyjzi
Fiyi

− zj + Fjyj

)(
−zi
Fiy2

i

)
exp(bi,j)

)

Simplifying, we obtain

∂RF(x, y)

∂yi
= 1 + log

(
yi
Fixi

)
+m

∑
j|j 6=i

ai,j exp(−ai,j) +
Fjxj
Fixi

ai,j exp(ai,j)

∂RF(y, z)

∂yi
= (g − 1)mFi +

Fi
〈F, y〉

− zi
yi
−mFi

+m
∑
k|k 6=i

(
Fizk
Fkyk

− Fi +
zkzi
Fkykyi

− z2
i

Fiy2
i

− zi
yi

)
exp(−bi,k)

+m
∑
k|k 6=i

(
−Fkykz

2
i

F 2
i y

3
i

+
zizk
Fiy2

i

)
exp(bi,k)

where

ai,j =
yi
Fixi

− yj
Fjxj

.

and

bi,j =
zi
Fiyi
− zj
Fjyj

.

Now, using Lagrange optimality conditions from Equation 6.1 we have

λ =
∂RF(x, y)

∂yi
+
∂RF(y, z)

∂yi
, ∀i
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λ = 1 + log

(
yi
Fixi

)
+ (g − 1)mFi +

Fi
〈F, y〉

− zi
yi
−mFi

+m
∑
j|j 6=i

ai,j exp(−ai,j) +
Fjxj
Fixi

ai,j exp(ai,j)

+m
∑
j|j 6=i

(
Fizj
Fjyj

− Fi +
zjzi
Fjyjyi

− z2
i

Fiy2
i

− zi
yi

)
exp(−bi,j)

+m
∑
j|j 6=i

(
−Fjyjz

2
i

F 2
i y

3
i

+
zizj
Fiy2

i

)
exp(bi,j)

The above equations give an implicit system of equations for x along with the

condition that
∑

i xi = 1.
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So we have the following system of implicit equations in x given y, z

λ = 1 + log

(
yi
Fixi

)
+ (g − 2)mFi +

Fi
〈F, y〉

− zi
yi

+m
∑
j|j 6=i

ai,j exp(−ai,j) +
Fjxj
Fixi

ai,j exp(ai,j)

+m
∑
j|j 6=i

(
Fizj
Fjyj

− Fi +
zjzi
Fjyjyi

− z2
i

Fiy2
i

− zi
yi

)
exp(−bi,j)

+m
∑
j|j 6=i

(
−Fjyjz

2
i

F 2
i y

3
i

+
zizj
Fiy2

i

)
exp(bi,j)

If we compare the derivatives of the two-step rate functional for the case with

m = 0 with the derivatives of two-step rate functional with random mutations, we

are led to introducing two terms of order 0 in m denoted by U(x, y), Ũ(y, z) where

Ui(x, y) = 1 + log
yi
Fixi

, (6.10)

Ũi(y, z) =
−zi
yi

+
Fi
〈F, y〉

(6.11)

Call V (x, y), Ṽ (x, y) to be the coefficients of the first-order terms in m where

Vi(x, y) =
∑
j|j 6=i

ai,j exp(−ai,j) +
Fjxj
Fixi

ai,j exp(ai,j), (6.12)

Ṽi(y, z) = (g − 2)Fi +
∑
k|k 6=i

(
Fizk
Fkyk

− Fi +
zkzi
Fkykyi

− z2
i

Fiy2
i

− zi
yi

)
exp(−bi,k)

+
∑
k|k 6=i

(
−Fkykz

2
i

F 2
i y

3
i

+
zizk
Fiy2

i

)
exp(bi,k) (6.13)

and thus we have

∂RF(x, y)

∂yi
= Ui(x, y) +mVi(x, y), (6.14)

∂RF(y, z)

∂yi
= Ũi(y, z) +mṼi(y, z). (6.15)
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Then,

λ = Ui(x, y) + Ũi(y, z) +m(Vi(x, y) + Ṽi(y, z)). (6.16)

where

λ(0) = Ui(x, y) + Ũi(y, z). (6.17)

is the system of equations for the case m = 0. We have an explicit solution as derived

in Equation 6.9 for such a case. Let the solution for m = 0 be x(0), λ(0).

Let x(1) and λ(1) be the first-order approximations of the solution of the system

given by 6.16.

xi(1) = xi(0) +mXi, ∀i

and

λ(1) = λ(0) +mΛ

Substituting into Equation 6.16 we get,

λ(0) +mΛ = Ui(x(1), y) + Ũi(y, z) +m(Vi(x(0), y) + Ṽi(y, z)). (6.18)

Now, using Taylor expansion for Ui(x(1), y), we have

Ui(x(1), y) = Ui(x(0) +mX, y) = Ui(x(0), y) +m
∑
j

Xj
∂Ui
∂xj

Replacing it back we get

λ(0) +mΛ = Ui(x(0), y) +m
∑
j

Xj
∂Ui
∂xj

+ Ũi(y, z) +m(Vi(x(0), y) + Ṽi(y, z)).

Now x(0), λ(0) is a solution of the Equation 6.17, so

λ(0) = Ui(x(0), y) + Ũi(y, z)
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Hence, we need to solve the following system for value of X

Λ =
∑
j

Xj
∂Ui
∂xj

+ Vi(x(0), y) + Ṽi(y, z). (6.19)

Also, since
∑

i xi(1) =
∑

i xi(0) = 1, we have

∑
i

Xi = 0

Moreover, using the fact that Ui(x, y) = 1 + log(yi)− log(Fixi), we get

∂Ui
∂xj

=

 0 i 6= j

−1
xi(0)

i = j

so the system of equations for X transform to,

Λ =
−Xi

xi(0)
+ Vi(x(0), y) + Ṽi(y, z).

or,

Xi = xi(0)(−Λ + Vi(x(0), y) + Ṽi(y, z)) (6.20)

and using the fact that
∑

iXi = 0, we have

0 =
∑
i

Xi =
∑
i

xi(0)(−Λ + Vi(x(0), y) + Ṽi(y, z)),

0 = −
∑
i

xi(0)Λ +
∑
i

xi(0)(Vi(x(0), y) + Ṽi(y, z)),

0 = −Λ +
∑
i

xi(0)(Vi(x(0), y) + Ṽi(y, z)),

Λ =
∑
i

xi(0)(Vi(x(0), y) + Ṽi(y, z))
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Replacing the value of Λ in Equation 6.20, we obtain

Xi = −xi(0)
∑
j 6=i

xj(0)(Vj(x(0), y) + Ṽj(y, z)) + xi(0)(1− xi(0))(Vi(x(0), y) + Ṽi(y, z)).

(6.21)

and so finally we have

xi(1) = xi(0) +mXi (6.22)

as the solution where xi(0) is given by Equation 6.9 and X is given by Equation 6.21.
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6.2 Iterative Procedure

In the evolution trajectory, x→ y → z assuming

hn = z, hn−1 = y, hn−2 = x

or as the population histograms at n, n − 1 and n − 2 steps respectively, we can

rewrite expression in the Equation 6.9 as

hn−2(j) =
Ψj(hn−1, hn)∑g
j=1 Ψj(hn−1, hn)

, ∀j. (6.23)

where Ψ is given by

Ψj(hn−1, hn) = exp

(
1 + log hn−1(j)− logF (j)− hn(j)

hn−1(j)
+

F (j)

〈F, hn−1〉

)
. (6.24)

The above gives us a reverse iterative scheme to estimate the optimal histogram

hn−2 given histograms hn−1 and hn when m = 0.

The value of n is not fixed in our model and we keep building the reverse trajectory

with the iterative formula in 6.23 which uses the next 2 steps in the chain as input.

At the first step we fix z = hn as the target histogram and y = hn−1 as the

penultimate step. Then we iterate and estimate optimal x = hn−2. Then hn and

hn−1 are updated to be y and x respectively. Thus we continue the procedure and

estimate new hn−2 in the optimal rate minimizing trajectory.

This procedure is repeated until the histograms get close to the boundary or reach

a corner since our formulas are for interior points only.

This iterative scheme also works for the population trajectories with non zero
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random mutation matrix. The corresponding formulas are derived at the end of

previous section 6.1.
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6.3 Optimality Conditions for Restricted Muta-

tions

For the trajectory x→ y → z, let r̄, p̄ and r, p be the corresponding random matrix

of restricted mutations and the intermediary population histogram before dilution

for x and y respectively. Also, let ~m = (mi) be the vector of mutation rates where

mi = m, ∀i, i.e., we consider that the rates of mutation are equal regardless of the

species.

Again, using the expression for rate functional as derived in Equation 5.26 with

approximation for r, ρ, p, we have

RF(x, y) = m

g∑
j=1

(g − j)Fjxj +m
∑
j,k|j<k

Fjxj

(
yk
Fkxk

− yj
Fjxj

− 1

)
exp

(
yk
Fkxk

− yj
Fjxj

)

+

g∑
j=1

yj log

(
yj〈F, x〉
Fjxj

)
. (6.25)

RF(y, z) = m

g∑
j=1

(g − j)Fjyj +m
∑
j,k|j<k

Fjyj

(
zk
Fkyk

− zj
Fjyj

− 1

)
exp

(
zk
Fkyk

− zj
Fjyj

)

+

g∑
j=1

zj log

(
zj〈F, y〉
Fjyj

)
. (6.26)
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Recomputing the expressions for the optimal value of x given y and z using the

Lagrange parameter λ as explained in section 6.1 we derive the following formulas.

λ = 1 + log

(
yi
Fixi

)
+ (g − i)mFi +

Fi
〈F, y〉

− zi
yi

+m
∑
j|j>i

ai,j exp(−ai,j) +m
∑
j|j<i

Fjxj
Fixi

ai,j exp(ai,j)

+m
∑
j|j>i

(
Fizj
Fjyj

− Fi +m
zjzi
Fjyjyi

− z2
i

Fiy2
i

− zi
yi

)
exp(−bi,j)

+m
∑
j|j<i

(
−Fjyjz

2
i

F 2
i y

3
i

+
zizj
Fiy2

i

)
exp(bi,j)

And similar to the case of general random mutations in section 6.1, we obtain

xi(1) = xi(0) +mXi (6.27)

as the solution where xi(0) is given by Equation 6.9 and X is given by Equation 6.21

where

Ui(x, y) = 1 + log
yi
Fixi

, (6.28)

Ũi(y, z) =
−zi
yi

+
Fi
〈F, y〉

(6.29)

Vi(x, y) =
∑
j|j>i

ai,j exp(−ai,j) +
∑
j|j<i

Fjxj
Fixi

ai,j exp(ai,j), (6.30)

and

Ṽi(y, z) = (g − i)Fi +
∑
k|k>i

(
Fizk
Fkyk

− Fi +
zkzi
Fkykyi

− z2
i

Fiy2
i

− zi
yi

)
exp(−bi,k)

+
∑
k|k<i

(
−Fkykz

2
i

F 2
i y

3
i

+
zizk
Fiy2

i

)
exp(bi,k). (6.31)
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6.4 Optimality Conditions for Boundary Targets

In this section we consider the special case of restricted random mutations in the

trajectory and target histograms to be on boundary. Here the boundary cases are

only explored for g = 3 genotypes in the system. case.

We use the same strategy as developed before for the case of non boundary

targets. We determine the corresponding functions U, Ũ , V, Ṽ and then solve to get

the value for xi(1) using xi(0).

We use the rate functional or cost expression given by Equation 5.26. The rate

functional is as follows

RF(H,G) =
∑

j∈I,k∈I|j<k

mkFjHj +
∑

j∈I,k∈I|j<k

mFjHj

(
Gk

FkHk

− Gj

FjHj

− 1

)
exp

(
Gk

FkHk

− Gj

FjHj

)

+ log〈F,H〉
∑
j∈J

Gj +
∑
j∈J

Gj log

(
Gj

FjHj

)
.

where J is the set of genotypes which are away from boundary in G and I is the

set of genotypes for which H is non zero (i.e.), Hi 6= 0,∀i ∈ I. Since I ⊂ J , for

notational convenience we rewrite the rate functional as

RF(H,G) =
∑
j,k|j<k

mkFjHj

(
Gk

FkHk

− Gj

FjHj

− 1

)
exp

(
Gk

FkHk

− Gj

FjHj

)

+m

g∑
j=1

(g − j)Fjxj + log〈F,H〉
∑
j∈J

Gj +
∑
j∈J

Gj log

(
Gj

FjHj

)
.

Similar to our approach for interior points, we will derive expressions for the case

m = 0 and then develop formulas for the case with non-zero mutations. Again, let B

be the set of genotypes that satisfy boundary condition as outlined before and rest
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J be the set of genotypes away from boundary such that B ∪ J = [1 : g].

The feasible cases to be considered while discussing boundary cases are outlined

next.

1. In the chain x→ y → z, only y is on boundary and without loss of generality

let Jy = {1, 2} and By = {3}. Then we get for m = 0,

RF(x, y) =
∑
j∈Jy

yj log

(
yj

Fjxj/〈F, x〉

)
=
∑
j∈Jy

yj log yj + yj log〈F, x〉 − yj logFjxj

=
∑
j∈Jy

yj log yj + (1−
∑
j∈By

yj) log〈F, x〉 −
∑
j∈Jy

yj logFjxj.

RF(y, z) =
3∑
j=1

zj log

(
zj

Fjyj/〈F, y〉

)

=
3∑
j=1

zj log(zj) + log〈F, y〉 −
3∑
j=1

zj log(Fjyj).

This gives

∂RF(x, y)

∂yj
=

 − log〈F, x〉 j /∈ Jy

1 + log yj − logFjxj j ∈ Jy

and

∂RF(y, z)

∂yj
= −zj

yj
+

Fj
〈F, y〉

Thus using Lagrange optimality conditions in 6.1

λ =

 − log(〈F, x〉)− zj
yj

+
Fj
〈F,y〉 j /∈ Jy

1 + log(yj)− log(Fjxj)− zj
yj

+
Fj
〈F,y〉 j ∈ Jy
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Since Jy = {1, 2} and By = {3}, then

λ = − log〈F, x〉 − z3

y3

+
F3

〈F, y〉

which gives

〈F, x〉 = exp(−λ) exp

(
−z3

y3

+
F3

〈F, y〉

)
(6.32)

Also, we have

log(xj) = 1 + log(yj)− log(Fj)−
zj
yj

+
Fj
〈F, y〉

− λ, j = 1, 2

Taking exponential on both sides we get for j = 1, 2

xj = exp

(
1 + log(yj)− log(Fj)−

zj
yj

+
Fj
〈F, y〉

)
exp(−λ),

= exp(−λ)Ψj(y, z) (6.33)

where

Ψj(y, z) = exp

(
1 + log(yj)− log(Fj)−

zj
yj

+
Fj
〈F, y〉

)
, j = 1, 2. (6.34)

Thus, from Equation 6.32

F1x1 + F2x2 + F3x3 = exp(−λ) exp

(
−z3

y3

+
F3

〈F, y〉

)
,

F1 exp(−λ)Ψ1(y, z) + F2 exp(−λ)Ψ2(y, z) + F3x3 = exp(−λ) exp

(
−z3

y3

+
F3

〈F, y〉

)
or,

x3 = exp(−λ)

(
1

F3

exp

(
−z3

y3

+
F3

〈F, y〉

)
− F1

F3

Ψ1(y, z)− F2

F3

Ψ2(y, z)

)
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Using
∑3

j=1 xj = 1 we get

exp(λ) =

(
1

F3

exp

(
−z3

y3

+
F3

〈F, y〉

)
−

2∑
i=1

Fi
F3

Ψi(y, z) +
2∑
i=1

Ψi(y, z)

)
(6.35)

thus giving us explicit formulas for xi which depend only on y, z as follows

x1 = exp(−λ)Ψ1(y, z), (6.36)

x2 = exp(−λ)Ψ2(y, z), (6.37)

x3 = exp(−λ)

(
1

F3

exp

(
−z3

y3

+
F3

〈F, y〉

)
− F1

F3

Ψ1(y, z)− F2

F3

Ψ2(y, z)

)
(6.38)

with Ψ given by 6.34 and λ given by 6.35.

Now, bringing back random mutations into the equations, we compute once

again the functions U(x, y), Ũ(y, z), V (x, y) and Ṽ (y, z).

Ui(x, y) =

 − log〈F, x〉 i = 3

1 + log yi
Fixi

i 6= 3

Ũi(y, z) =
−zi
yi

+
Fi
〈F, y〉

Vi(x, y) =
∑
j|j>i

ai,j exp(−ai,j) +
∑
j|j<i

Fjxj
Fixi

ai,j exp(ai,j),

and

Ṽi(y, z) = (g − i)Fi +
∑
k|k>i

(
Fizk
Fkyk

− Fi +
zkzi
Fkykyi

− z2
i

Fiy2
i

− zi
yi

)
exp(−bi,k)

+
∑
k|k<i

(
−Fkykz

2
i

F 2
i y

3
i

+
zizk
Fiy2

i

)
exp(bi,k)
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where ai,j = yi
Fixi
− yj

Fjxj
and bi,j = zi

Fiyi
− zj

Fjyj
.

This gives

∂Ui
∂xj

=


−Fi
〈F,x(0)〉 i = 3

0 i 6= 3, i 6= j

−1
xi(0)

i 6= 3, i = j

with x(0) given by Equations 6.36, 6.37 and 6.38. So,

Λ =


−FiXi
〈F,x(0)〉 + Vi(x(0), y) + Ṽi(y, z) i = 3

−Xi
xi(0)

+ Vi(x(0), y) + Ṽi(y, z) i 6= 3

and hence

Xi =


〈F,x(0)〉
Fi

(−Λ + Vi(x(0), y) + Ṽi(y, z)) i = 3

xi(0)(−Λ + Vi(x(0), y) + Ṽi(y, z)) i 6= 3

Now, using the fact that
∑

iXi = 0, we have

2∑
i=1

xi(0)(−Λ+Vi(x(0), y)+Ṽi(y, z))+
〈F, x(0)〉

F3

(−Λ+V3(x(0), y)+Ṽ3(y, z)) = 0,

Hence we get the value of Λ as follows

Λ =

∑2
i=1 xi(0)(Vi(x(0), y) + Ṽi(y, z)) + 〈F,x(0)〉

F3
(V3(x(0), y) + Ṽ3(y, z))∑2

i=1 xi(0) + 〈F,x(0)〉
F3

,

and thus

Xi =


〈F,x(0)〉
Fi

(−Λ + Vi(x(0), y) + Ṽi(y, z)) i = 3

xi(0)(−Λ + Vi(x(0), y) + Ṽi(y, z)) i 6= 3
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where value of Λ is as derived above. So we have

xi(1) = xi(0) +mXi

as the new solution.
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2. In the chain x→ y → z, both y, z are on boundary and Jy = Jz with #Jy = 2.

Without loss of generality, let Jy = Jz = {1, 2} and By = Bz = {3}. Then we

get that

Then proceeding as before we get

RF(x, y) =
∑
j∈Jy

yj log

(
yj

Fjxj/〈F, x〉

)
=
∑
j∈Jy

yj log yj + (1−
∑
j /∈Jy

yj) log〈F, x〉 −
∑
j∈Jy

yj logFjxj.

RF(y, z) =
∑
j∈Jz

zj log

(
zj

Fjyj/〈F, y〉

)
=
∑
j∈Jz

zj log zj + zj log〈F, y〉 − zj logFjyj.

This gives

∂RF(x, y)

∂yj
=

 − log〈F, x〉 j /∈ Jy

1 + log yj − logFjxj j ∈ Jy

and

∂RF(y, z)

∂yj
=


Fj
〈F,y〉

∑
i∈Jz zi j /∈ Jz

− zj
yj

+
zjFj
〈F,y〉 j ∈ Jz

Thus,

λ =



− log〈F, x〉+
Fj
〈F,y〉

∑
i∈Jz zi j /∈ Jy, j /∈ Jz

− log〈F, x〉 − zj
yj

+
zjFj
〈F,y〉 j /∈ Jy, j ∈ Jz

1 + log(yj)− log(Fjxj) +
Fj
〈F,y〉

∑
i∈Jz zi j ∈ Jy, j /∈ Jz

1 + log(yj)− log(Fjxj)− zj
yj

+
zjFj
〈F,y〉 j ∈ Jy, j ∈ Jz
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using Lagrange optimality conditions in 6.1. Using Jy = Jz = {1, 2} and

By = Bz = {3} in the above system gives

λ = − log〈F, x〉+
F3

〈F, y〉
∑
i∈Jz

zi,

or

〈F, x〉 = exp(−λ) exp

(
F3

〈F, y〉
∑
i∈Jz

zi

)
. (6.39)

For, j = 1, 2, we have as before

xj = exp(−λ) exp

(
1 + log yj −

zj
yj

+
zjFj
〈F, y〉

− logFj

)
,

= exp(−λ)Ψj(y, z)

where

Ψj(y, z) = exp

(
1 + log yj −

zj
yj

+
zjFj
〈F, y〉

− logFj

)
, j = 1, 2. (6.40)

Now

〈F, x〉 = F1x1 + F2x2 + F3x3 = exp(−λ) exp

(
F3

〈F, y〉
∑
i∈Jz

zi

)
,

= F1 exp(−λ)Ψ1 + F2 exp(−λ)Ψ2 + F3x3,

x3 = exp(−λ)

(
exp

(
F3

〈F, y〉
∑
i∈Jz

zi

)
− F1Ψ1 − F2Ψ2

)
/F3,

Finally, using the fact that
∑

j xj = 1, we get that

exp(λ) = exp

(
F3

〈F, y〉
∑
i∈Jz

zi

)
+

(
1− F1

F3

)
Ψ1 +

(
1− F2

F3

)
Ψ2. (6.41)
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So that we have deterministic values of xi as follows

x1 = exp(−λ)Ψ1, (6.42)

x2 = exp(−λ)Ψ2, (6.43)

x3 = exp(−λ)

(
exp

(
F3

〈F, y〉
∑
i∈Jz

zi

)
− F1Ψ1 − F2Ψ2

)
/F3. (6.44)

where Ψ and λ are given by Equations 6.40 and 6.41.

Bringing back random mutations into the equations, we compute once again

the functions U(x, y), Ũ(y, z), V (x, y) and Ṽ (y, z).

Ui(x, y) =

 − log〈F, x〉 i = 3

1 + log yi
Fixi

i 6= 3

Ũi(x, y) =


Fi(z1+z2)
〈F,y〉 i = 3

−zi
yi

+ ziFi
〈F,y〉 i 6= 3

Vi(x, y) =
∑
j,j>i

ai,j exp(−ai,j) +
∑
j,j<i

Fjxj
Fixi

ai,j exp(ai,j),

Ṽi(y, z) = (g − i)Fi +
∑
k|k>i

(
Fizk
Fkyk

− Fi +
zkzi
Fkykyi

− z2
i

Fiy2
i

− zi
yi

)
exp(−bi,k)

+
∑
k|k<i

(
−Fkykz

2
i

F 2
i y

3
i

+
zizk
Fiy2

i

)
exp(bi,k)

where ai,j = yi
Fixi
− yj

Fjxj
and bi,j = zi

Fiyi
− zj

Fjyj
. This gives

∂Ui
∂xj

=


−Fi
〈F,x(0)〉 i = 3

0 i 6= 3, i 6= j

−1
xi(0)

i 6= 3, i = j
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with x(0) given by Equations 6.42, 6.43 and 6.44. So,

Λ =


−FiXi
〈F,x(0)〉 + Vi(x(0), y) + Ṽi(y, z) i = 3

−Xi
xi(0)

+ Vi(x(0), y) + Ṽi(y, z) i 6= 3

and hence

Xi =


〈F,x(0)〉
Fi

(−Λ + Vi(x(0), y) + Ṽi(y, z)) i = 3

xi(0)(−Λ + Vi(x(0), y) + Ṽi(y, z)) i 6= 3

and using the fact that
∑

iXi = 0, we have

2∑
i=1

xi(0)(−Λ+Vi(x(0), y)+Ṽi(y, z))+
〈F, x(0)〉

F3

(−Λ+V3(x(0), y)+Ṽ3(y, z)) = 0,

Hence we get the value of Λ as follows

Λ =

∑2
i=1 xi(0)(Vi(x(0), y) + Ṽi(y, z)) + 〈F,x(0)〉

F3
(V3(x(0), y) + Ṽ3(y, z))∑2

i=1 xi(0) + 〈F,x(0)〉
F3

,

and thus

Xi =


〈F,x(0)〉
Fi

(−Λ + Vi(x(0), y) + Ṽi(y, z)) i = 3

xi(0)(−Λ + Vi(x(0), y) + Ṽi(y, z)) i 6= 3

where value of Λ is as derived above. So we have

xi(1) = xi(0) +mXi

as the new solution.
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3. In the chain x→ y → z, both y, z are on boundary and Jz ∈ Jy with #Jy = 2

and #Jz = 1. Without loss of generality let Jy = {1, 2} and Jz = {1}, and so

By = {3} and Bz = {2, 3}. Then we get that

λ =



− log〈F, x〉+ F3

〈F,y〉
∑

i∈Jz zi j = 3

1 + log y2 − logF2x2 + F2

〈F,y〉
∑

i∈Jz zi j = 2

1 + log y2 − logF2x2 − z2
y2

+ z2F2

〈F,y〉 j = 1

using Lagrange optimality conditions 6.1.

Thus we have,

〈F, x〉 = exp(−λ) exp

(
F3

〈F, y〉
∑
i∈Jz

zi

)
,

x1 = exp(−λ) exp

(
1 + log y1 − logF1 −

z1

y1

+
z1F1

〈F, y〉

)
,

x1 = exp(−λ)Ψ1(y, z) (6.45)

and

x2 = exp(−λ) exp

(
1 + log y2 − logF2 +

F2

〈F, y〉
∑
i∈Jz

zi

)
,

x2 = exp(−λ)Ψ2(y, z) (6.46)

where

Ψ1(y, z) = exp

(
1 + log y1 − logF1 −

z1

y1

+
z1F1

〈F, y〉

)
,

Ψ2(y, z) = exp

(
1 + log y2 − logF2 +

F2

〈F, y〉
∑
i∈Jz

zi

)
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Then

〈F, x〉 = exp(−λ) exp

(
F3

〈F, y〉
∑
i∈Jz

zi

)

= F1 exp(−λ)Ψ1 + F2 exp(−λ)Ψ2 + F3x3,

x3 = exp(−λ)

(
exp

(
F3

〈F, y〉
∑
i∈Jz

zi

)
− F1Ψ1 − F2Ψ2

)
/F3. (6.47)

Again using the fact that x is a histogram we get

exp(λ) =

(
exp

(
F3

〈F, y〉
∑
i∈Jz

zi

)
− F1ψ1 − F2ψ2

)
/F3.

which gives deterministic values for x given y, z as before.

Bringing back random mutations into the equations, we compute once again

the functions U(x, y), Ũ(y, z), V (x, y) and Ṽ (y, z).

Ui(x, y) =

 − log〈F, x〉 i = 3

1 + log yi
Fixi

i 6= 3

Ũi(x, y) =


Fiz1
〈F,y〉 i = 2, 3

−zi
yi

+ ziFi
〈F,y〉 i = 1

Vi(x, y) =
∑
j|j>i

ai,j exp(−ai,j) +
∑
j|j<i

Fjxj
Fixi

ai,j exp(ai,j),

Ṽi(y, z) = (g − i)Fi +
∑
k|k>i

(
Fizk
Fkyk

− Fi +
zkzi
Fkykyi

− z2
i

Fiy2
i

− zi
yi

)
exp(−bi,k)

+
∑
k|k<i

(
−Fkykz

2
i

F 2
i y

3
i

+
zizk
Fiy2

i

)
exp(bi,k)
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where ai,j = yi
Fixi
− yj

Fjxj
and bi,j = zi

Fiyi
− zj

Fjyj
. This gives

∂Ui
∂xj

=


−Fi
〈F,x(0)〉 i = 3

0 i 6= 3, i 6= j

−1
xi(0)

i 6= 3, i = j

where x(0) is given by Equations 6.45, 6.46 and 6.47. So

Λ =


−FiXi
〈F,x(0)〉 + Vi(x(0), y) + Ṽi(y, z) i = 3

−Xi
xi(0)

+ Vi(x(0), y) + Ṽi(y, z) i 6= 3

and hence

Xi =


〈F,x(0)〉
Fi

(−Λ + Vi(x(0), y) + Ṽi(y, z)) i = 3

xi(0)(−Λ + Vi(x(0), y) + Ṽi(y, z)) i 6= 3

and using the fact that
∑

iXi = 0, we have

2∑
i=1

xi(0)(−Λ+Vi(x(0), y)+Ṽi(y, z))+
〈F, x(0)〉

F3

(−Λ+V3(x(0), y)+Ṽ3(y, z)) = 0,

Hence we get the value of Λ as follows

Λ =

∑2
i=1 xi(0)(Vi(x(0), y) + Ṽi(y, z)) + 〈F,x(0)〉

F3
(V3(x(0), y) + Ṽ3(y, z))∑2

i=1 xi(0) + 〈F,x(0)〉
F3

,

and thus

Xi =


〈F,x(0)〉
Fi

(−Λ + Vi(x(0), y) + Ṽi(y, z)) i = 3

xi(0)(−Λ + Vi(x(0), y) + Ṽi(y, z)) i 6= 3
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where value of Λ is as derived above. So we have

xi(1) = xi(0) +mXi

as the new solution.
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6.5 Optimality Conditions for Mean-mutation Ap-

proximation

Next consider another stochastic model which is a process where mutations are con-

sidered to be deterministic and equal to the mean number of the Poisson random

mutations at each mutation step.

For the trajectory x → y → z, let p̄ and p be the intermediary population

histogram before dilution for populations x and y respectively. Also, let vector

~m = (mi) be the vector of mutation rates and m̄ =
∑g

j=1mj.

The complete model with its parameters is described in the chapter 4. We know

for a model with mean mutations, the intermediary population histogram is given

by

p̄j = (1− m̄)
Fjxj
〈F, x〉

+mj. (6.48)

and

pj = (1− m̄)
Fjyj
〈F, y〉

+mj, (6.49)

The corresponding expression for one-step rate functional or the cost is given by

RF(x, y) =

g∑
j=1

yj log
yj
p̄j

=

g∑
j=1

yj log yj − yj log p̄j

and

RF(y, z) =

g∑
j=1

zj log zj − zj log pj
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Thus we have, for the derivative of rate functionals w.r.t y

∂RF(x, y)

∂yj
= 1 + log yj − log p̄j

and

∂RF(y, z)

∂yj
= −

∑
k

zj
pk

∂pk
∂yj

= (1− m̄)
Fj
〈F, y〉

So, using Lagrange optimality conditions from 6.1 we get

λ = 1 + log yj − log p̄j + (1− m̄)
Fj
〈F, y〉

which simplifies to give

p̄j = exp(−λ) exp

(
1 + log yj + (1− m̄)

Fj
〈F, y〉

)

Let

Ψj(y, z) = exp

(
1 + log(yj) + (1− m̄)

Fj
〈F, y〉

)
. (6.50)

Then using the fact that p̄ is a histogram we get

exp(λ) =

g∑
j=1

Ψj(y, z).

Thus we have the value of p̄ given y and z as follows

p̄j =
Ψj(y, z)∑g
j=1 Ψj(y, z)

We know from Equation 6.48 that

p̄j = (1− m̄)
Fjxj
〈F, x〉

+mj,
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Rearranging we obtain

xj
〈F, x〉

=
p̄j −mj

Fj(1− m̄)
, (6.51)

Now, taking sum over all genotypes, we get

g∑
k=1

xj
〈F, x〉

=

g∑
k=1

[
p̄k −mk

Fk(1− m̄)

]
.

This gives

〈F, x〉 =
(1− m̄)∑g
k=1

p̄k−mk
Fk

(6.52)

Using Equations 6.51 and 6.52 we express the value for x for the case of mean

random mutations as follows

xj =
p̄j −mj

Fj

1∑g
k=1

p̄k−mk
Fk

(6.53)
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CHAPTER 7

Shooting Algorithms to Compute Rate Minimizing Evolution

Trajectories

The motivation for building reverse trajectories using only penultimate steps comes

from shooting algorithms [116] used to numerically solve two-point boundary value

problems. Our problem of optimizing rate functional for a fixed initial and target

histograms can be characterized broadly as a two-point boundary value problem.

Also, the problem can be expressed from a geodesic point of view where we are

trying to find the best geodesic between two histograms based on a metric defined

by some rate functional.
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However, the task of solving a two-point boundary value problem is in general

very difficult. The available solution techniques usually face serious convergence

difficulties because of the lack of a good initial guess. A lot of global algorithms for

finding a geodesic joining two given points in general spaces have been developed

over the time.

For our applications, theoretically we can generate rate minimizing trajectory in

both forward and reverse directions, i.e., projecting from either initial state histogram

or target state histogram. However as can be seen by formulas in chapter 6 for the

chain x→ y → z, isolating explicit formula for z given x, y is not as simple as isolating

expression for x given y, z. So we build our trajectories for a fixed target state and

use feasible shooting directions to generate required rate minimizing trajectory which

starts at our required initial state.

The explicit formulas derived in previous chapter for generating reverse rate min-

imizing optimal evolutionary trajectories are used to develop MATLAB subroutines

to implement the above approach numerically. The detailed explanation of the algo-

rithm to obtain these trajectories is explained in the following section.

7.1 Building the Most Likely Trajectory

7.1.1 First-stage Rate Minimizing Trajectory

We generate a state space HIST of all possible histograms with a given discretization

d%. Numerically, having a d% discretization in a state space HIST with g genotypes
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implies that for any 2 distinct histograms H,G ∈ HIST , the difference at any two

indices is always a multiple of d. So, for all j = 1, ..., g

|H(j)−G(j)| = l(j)d, ∀H,G ∈ HIST (7.1)

where l(j) ≥ 0 is a scalar. For instance, a state space with g = 4 genotypes with

d = 2% discretization has about 24000 histograms.

When concentrating on evolutionary trajectories which lead to fixation of a cer-

tain genotype starting from a population with some other fixed genotype, the region

of interest (RI ⊂ HIST ) is generally classified by the sets of histogram which have

the required genotype frequency greater than a given threshold say 99%.

The core subroutine developed fixes a target histogram Htar ∈ RI. Let Ω be

a fixed neighborhood of Htar in the discretized set of histograms HIST . Possible

penultimate steps Hpen are chosen from set Ω ⊂ HIST . Denote by Hin the required

initial histogram for the rate minimizing trajectory.

The iterative scheme developed in chapter 6 builds the trajectory step by step

using Htar and Hpen as first inputs and giving Hpen−1 as optimal step on trajectory.

Recall here that in the formula 6.23, after first step of iteration we update hn and

hn−1 to be Hpen and Hpen−1 respectively and compute corresponding hn−2 as the next

optimal step in the chain as follows.

hn−2(j) =
Ψj(hn−1, hn)∑g
j=1 Ψj(hn−1, hn)

, ∀j. (7.2)

where Ψ is given by

Ψj(hn−1, hn) = exp

(
1 + log hn−1(j)− logF (j)− hn(j)

hn−1(j)
+

F (j)

〈F, hn−1〉

)
. (7.3)
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This recursive procedure can be repeated until the current histogram hn becomes

too close to some boundary, i.e., hn(j) < ε for some j = 1, ..., g where ε is the

tolerance threshold for boundary as discussed in detail in chapter 4, since formula

6.23 holds for interior points only.

For the initial histogram Hin, we construct the unique mean trajectory starting

at Hin which has mean mutations and mean sampling frequency in multinomial

sampling. Call this mean trajectory mtr and its length to be L. The cost or the rate

functional associated to mtr is 0.

For each point mtrk on the trajectory mtr, define a neighborhood Vk of mtrk.

Similarly, let U be a neighborhood of Hin. Then we define a starting zone Winit as

Winit = ∪kVk ∪ U .

Then, we compute the set TRΩ containing all the feasible rate minimizing trajec-

tories using Hpen ∈ Ω with target Htar. For every trajectory tr ∈ TRΩ a cost, RF(tr)

given by the rate functional in Equation 5.26 is computed and attached to it. Hence

TRΩ contains one trajectory for each choice of Hpen in Ω.

The minimal one-step cost from any histogram A to another histogram B is

computed using equation 5.26 and defined as cost(A,B) and in general cost(A,B) 6=

cost(B,A).

Since these trajectories are allowed to “reverse” shoot in every possible direction,

we have reverse trajectories in TRHIST starting at Htar and reverse shooting towards

Hpen, where Hpen is arbitrary in HIST . Now the aim is to isolate trajectories starting

at a given initial histogram Hin and ending at Htar. However we only fixed the target
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state, so it is possible that none of the trajectories in TRHIST have Hin as their initial

state.

We now filter the trajectories on the basis of their initial state and call TRcom

to be the set of trajectories in TRΩ with initial histogram in Winit and remaining

trajectories in TRΩ are classified as incomplete and collected in the set TRinc. Thus

we consider the trajectory to be complete if it starts in the neighborhood Winit.

Now, we want to generate trajectories which first follow mean trajectory mtr for

a while before going towards Htar. The procedure is described below.

1. For every trajectory, tr ∈ TRinc, we follow steps 2− 7 and get a corresponding

complete trajectory, ctr.

2. For every point trk, k = 1 : l on tr with length l, compute the one step cost,

cost(mtrj, trk) from all the points mtrj, j = 1 : L on mean trajectory mtr.

3. Among all the points mtrj of the mean trajectory mtr, call mtrK the point

which achieves the least one-step cost. Hence we compute cost(mtr, trj) =

minmtri∈mtr cost(mtri, trj).

4. Now we have a minimal one-step cost RFk = cost(mtr, trk) from mtr to every

point trk on trajectory tr.

5. Next we optimize over all these one step costs, cost(mtr, tr) = mink=1:lRFk =

mintrk∈trcost(mtr, trk). This gives an optimal point on tr which minimizes

jump cost from mtr to tr. Let such a histogram on tr be trj, its corresponding

histogram on mtr be mtrJ and minimal cost be RFj.
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6. A complete new trajectory, ctr is constructed by concatenating the partial

trajectory trj : trl at the end of partial mean trajectory, mtr1 : mtrJ .

7. The corresponding cost is the sum of cost from mtrJ to trj, RFj =cost(mtr, tr)

and the cost of partial trajectory trj : trl.

These new complete trajectories thus obtained are integrated with the set TRin to

form a new set CTRin of trajectories since they all start in the required neighborhood

of Hin. Finally for obtaining first-stage rate minimizing trajectory, we choose the

optimal minimal cost trajectory from the set TRin and call it tropt. The corresponding

value of cost or rate functional is RFopt.

The set of all the above trajectories is referred to as first-stage rate minimizing

evolution trajectories.

We still save the original set of incomplete trajectories TRinc and use it to obtain

multi-stage rate minimizing trajectory as described next.

7.1.2 Multi-stage Rate Minimizing Trajectory

All the incomplete first-stage trajectories in TRinc are now used to generate multi-

stage rate minimizing trajectories.

Using RFopt, the minimal cost obtained from complete first-stage trajectories

we filter from the set of incomplete trajectories TRinc, the ones which have lower

cost than RFopt. Call the new set of incomplete trajectories thus obtained LTRinc,

which will become the end segments of our potential multi-stage rate minimizing
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trajectories.

The initial point of each of these incomplete trajectories is considered a potential

new target point newHtar. Denote newHt to be the set of all points newHtar obtained

at this stage. For each newHtar ∈ newHt, we use the same starting zone Winit as

before for the neighborhood of required initial histogram Hin. Penultimate step

histogram at this stage can be chosen from the set nΩH , where nΩH is the set of

neighborhood histograms around newHtar.

Now first-stage reverse optimal trajectories ending at newHtar are generated for

every newHtar. Thus for a fixed newHtar, we obtain new sets of trajectories as

complete and incomplete trajectories as HTRcom and HTRinc respectively.

The procedure is repeated for every newHtar ∈ newHt to obtain 2 new sets of

trajectories as follows

nTRcom = ∪newHtar∈newHtHTRcom

and

nTRinc = ∪newHtar∈newHtHTRinc

Now we have a new optimal cost, RFnew from the set of all complete trajectories,

nTRcom. We find the new optimal two-stage rate minimizing trajectory and update

RFopt = min{RFnew,RFopt} as the new minimal cost.

If we still have any incomplete trajectories at this stage which have a cost lower

than RFopt, then the above described procedure for finding a next three-stage rate

minimizing trajectory using their respective newHtar is followed. This multi-stage
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algorithm is applied till all of the incomplete trajectories have been either completed

or have a cost higher than RFopt.

The final minimal evolution trajectory thus computed is called the optimal multi-

stage rate minimizing trajectory.

The algorithmic steps for the complete iterative procedure is presented below.

1. Input Target state Htar, discretization level d, required initial state Hin and

mean trajectory, mtr starting at Hin.

2. Compute neighborhood Ω of Htar.

3. Define starting zone Winit to be a neighborhood of Hin and points on mtr.

4. For every penultimate step Hpen in Ω implement reverse trajectory subroutine

to get a set of first-stage reverse optimal trajectories TRΩ.

5. Compute corresponding costs RF(tr) for every trajectory, tr ∈ TRΩ.

6. Call TRin to be the set of trajectories in TRΩ with initial histogram in Winit

and remaining trajectories in TRΩ are classified as incomplete and collected in

the set TRinc.

7. Complete the incomplete trajectories by concatenating mean trajectory, mtr

using the optimal jump cost from mtr to tr ∈ TRinc and form a new set of

complete trajectories CTRin.

8. The minimal cost trajectory is extracted from the set CTRin and its cost is

called RFopt. This concludes the computation for first-stage rate minimizing
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trajectory.

9. Set newHtar = initial state of the incomplete trajectories with cost less than

RFopt.

10. Compute nΩH for each Hntar and repeat steps 4− 9.

11. Following the above steps, if we obtain a trajectory from Hin to Htar with

lower cost than RFopt, then we call it as the new rate-minimizing trajectory

and update the value of RFopt as the cost of this new trajectory.

12. Repeat till all trajectories are complete or until all incomplete trajectories have

higher cost than RFopt. This concludes the computation for multi-stage rate

minimizing trajectory from Hin to Htar with optimal cost given by RFopt.

7.1.3 Multi-scale Rate Minimizing Trajectory

The search for cost minimizing trajectories starting at Hin and ending at Htar can be

improved further by introducing finer scaling in addition to the multi-stage approach

described before.

Using a finer discretization scale δ% to compute new discretized state space

HISTδ for possible penultimate steps Hpen increases the computation time expo-

nentially and also requires a lot of computing memory to be available. For instance,

a state space with g = 4 genotypes with d = 2% discretization has about 24000

histograms.
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One approach is to generate whole state space HISTδ using very fine discretiza-

tion δ% but use a very restricted Ωδ ⊂ HISTδ as a set of histograms available for

the choice of Hpen. We can select a neighborhood of Htar in HISTδ as our new Ωδ.

We can assume that optimal Hpen will lie in some small neighborhood of Htar.

Another approach to finer scaling is to first generate an optimal multi-stage tra-

jectory with coarse discretization and then selectively introduce finer discretization

near some selected histograms in the optimal trajectory. Once we know the optimal

penultimate step Hpen (or the reverse shooting direction) for the optimal trajectory,

we can generate closer neighbors around Hpen with finer discretization. Call Ωδ as

these new set of points and generate a new optimal multi-stage trajectory using Ωδ in

place of Ω instead. This is based on the continuity assumptions that the shooting di-

rection required for an optimal trajectory in finer scale would not deviate too far from

the shooting direction used to compute optimal trajectory in a coarser discretization.

In our numerical computations we have implemented the first described approach

for estimating multi-scale rate minimizing trajectories. Thus using Ωδ as the new

state space and for the same target state Htar, multi-stage rate minimizing trajectory

is computed and the optimal rate minimizing trajectory TRopt is updated along with

its cost RFopt.

As expected the multiscale approach leads to a significant reduction in RFopt as

we introduce finer and finer discretization. However after a certain discretization

level the value of RFopt stops changing and stabilizes.

A big reduction in required computation time and memory resources needed is
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7.1. BUILDING THE MOST LIKELY TRAJECTORY

observed using this technique. Some estimates for cpu times observed are presented

in next chapter. The particular cases for different number of genotypes along with

figures are presented in next chapter.
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CHAPTER 8

Most Likely Optimal Paths Realizing Rare Events

In this chapter we work with parameters derived from realistic estimates [129] con-

cerning the TC experiment and present step by step generation of optimal multi-stage

trajectory. For the purpose of our simulations, genotypes are arranged in order of

their increasing growth factor, i.e, F1 < F2 < ... < Fg and the rate of mutations is

considered to be same for all genotypes in the population.
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8.1. NUMERICAL RESULTS FOR THE POPULATION WITH 2 GENOTYPES

8.1 Numerical Results for the Population with 2

Genotypes

We show in following figures the comparison of the mean trajectory with the multi-

stage optimal trajectory obtained via our approach of estimating rate minimizing

trajectory (TRopt) using the technique outlined in chapter 7.

The realistic growth factors and mutation rates adopted for this example are

derived from [129] and are shown in Table 8.1.

Genotype Growth Factor Mutation Rate

1 200 0.5× 10−6

2 2001.1 0.5× 10−6

Table 8.1: Parameters for TC experiment
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8.1. NUMERICAL RESULTS FOR THE POPULATION WITH 2 GENOTYPES

Without loss of generality let H be the initial and G be the terminal state in the

trajectory. Then Hi, Gi denote the frequency of genotype i in initial and terminal

target state respectively.

Figure 8.1 shows the mean trajectory. The initial state has genotype 1 dominant

in the population, H1 ≥ 0.99 and the target state has genotype 2 dominant, G2 ≥

0.99.

Figure 8.1: Mean Trajectory in Population with g = 2 Genotypes.
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8.1. NUMERICAL RESULTS FOR THE POPULATION WITH 2 GENOTYPES

The step by step computation for the TRopt is presented below. Table 8.2 shows

the possible target histograms used which satisfy G2 ≥ 0.99. In this case we obtain

4 possible targets using discretization of 0.25%.

Frequency of Genotype 1 Frequency of Genotype 2

0.0025 0.9975

0.0050 0.9950

0.0075 0.9925

0.0100 0.9900

Table 8.2: Possible Target Histograms in a Population

with g = 2 Genotypes

Table 8.3 on the next page lists histograms in the neighborhood of a target

histogram. They form the set Ω which is the set of all possible penultimate steps. In

this case we obtain 19 neighbors of terminal state [0.0025, 0.9975] using discretization

of 0.25%.
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8.1. NUMERICAL RESULTS FOR THE POPULATION WITH 2 GENOTYPES

Frequency of Genotype 1 Frequency of Genotype 2

0.0025 0.9975

0.0050 0.9950

0.0075 0.9925

0.0100 0.9900

0.0125 0.9875

0.0150 0.9850

0.0175 0.9825

0.0200 0.9800

0.0225 0.9775

0.0250 0.9750

0.0275 0.9725

0.0300 0.9700

0.0325 0.9675

0.0350 0.9650

0.0375 0.9625

0.0400 0.9600

0.0425 0.9575

0.0450 0.9550

0.0475 0.9525

Table 8.3: Possible Penultimate Histograms in a Popula-

tion with g = 2 Genotypes
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8.1. NUMERICAL RESULTS FOR THE POPULATION WITH 2 GENOTYPES

The one-stage rate minimizing trajectory can be seen in Figure 8.2.

Figure 8.2: Rate Minimizing Optimal Trajectory at Step 1
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8.1. NUMERICAL RESULTS FOR THE POPULATION WITH 2 GENOTYPES

We do not observe any incomplete trajectories at first stage in this case. So,

figure 8.3 shows the mean trajectory with blue stars and multi-stage optimal rate

minimizing trajectory (TRopt) in red.

Figure 8.3: Mean Trajectory and Rate Minimizing Optimal Trajectory in Population
with g = 2 Genotypes.

Mean trajectory has 0 cost. On the other hand, TRopt (takes 6.3 minutes to

generate) has a cost of 4.7× 10−5. The mean trajectory has 161 steps and TRopt has

163 steps. In this case, we observe that both the trajectories overlap and thus are

essentially identical. This also validates our numerical cost optimization technique

and gives us confidence to proceed and use it for larger number of genotypes.
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8.2. NUMERICAL RESULTS FOR THE POPULATION WITH 3 GENOTYPES

8.2 Numerical Results for the Population with 3

Genotypes

We now explore the case of 3 genotype and first study two events of obvious prac-

tical interest. The first event has probability close to 1, and is realized if we have

population fixation at fittest genotype 3. The second event is a rare event, namely

the population fixation at genotype 2 when starting at population where genotype

1 dominates overwhelmingly. We also study a comparatively less rare event where

population has frequency of genotype 2 to be ≥ 60% and total frequency of genotype

1 and 3 to be ≤ 40%.

The realistic growth factors and mutation rates adopted for this example are

derived from [129] and are shown in Table 8.4.

Genotype Growth Factor Mutation Rate

1 200 0.5× 10−6

2 2001.08 0.5× 10−6

3 2001.15 0.5× 10−6

Table 8.4: Parameters Derived from Realistic Estimates

(see [129]) Concerning the TC Experiment
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8.2. NUMERICAL RESULTS FOR THE POPULATION WITH 3 GENOTYPES

Again, without loss of generality let H be the initial and G be the terminal state

in the trajectory. Then Hi, Gi denote the frequency of genotype i in initial and

terminal target state respectively.

Figure 8.4 shows the mean trajectory. The initial state is one with genotype 1

dominant in the population, H1 ≥ 0.99 and the terminal target state has genotype

3 dominant, G3 ≥ 0.99.

Figure 8.4: Mean Trajectory in Population with g = 3 Genotypes.
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8.2. NUMERICAL RESULTS FOR THE POPULATION WITH 3 GENOTYPES

First we present the graphs for the most likely trajectory from initial state with

H1 ≥ 0.99 and target state with G3 ≥ 0.99.

Figure 8.5 shows the mean trajectory in blue and multi-stage optimal rate mini-

mizing trajectory (TRopt) in red.

Figure 8.5: Mean Trajectory (Blue) and Rate Minimizing Optimal Trajectory (Red)
in Population with g = 3 Genotypes.

Mean trajectory has 0 cost. TRopt on the other hand (takes 12 minutes to gen-

erate) has a cost of 6× 10−5. The mean trajectory has 26 steps and large deviations

trajectory has 19 steps. Here we observe that the trajectories are not really identical

as in the case of 2 genotypes. We compute the mean trajectory using [1, 0, 0] as our

initial state and population of genotype 2 does not grow noticeably and stays near
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8.2. NUMERICAL RESULTS FOR THE POPULATION WITH 3 GENOTYPES

boundary (almost 0). However in our computations, we have to use interior points

and our tolerance for boundary is 10−3, thus not allowing the trajectory to get too

close to boundary like in the mean trajectory.
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8.2. NUMERICAL RESULTS FOR THE POPULATION WITH 3 GENOTYPES

Next, we present graphs for the rare event trajectory with initial state having

frequency of genotype 1, H1 ≥ 0.99 and target state having frequency of genotype 2,

G2 ≥ 0.99. The step by step computation for TRopt is shown in following sequence

of figures.

Figure 8.6 shows the possible target histograms, which have the frequency of

genotype 2, G2 ≥ 0.99. In this case we obtain 10 possible target histograms using

discretization of 0.2% around [0.0080.990.002].

Figure 8.6: Possible Target Histograms in a Population with g = 3 Genotypes
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8.2. NUMERICAL RESULTS FOR THE POPULATION WITH 3 GENOTYPES

Figure 8.7 shows histograms in the neighborhood of a target terminal histogram

[0.0020.990.008]. They form the set Ω which is the set of all penultimate steps. In

this case we obtain 400 neighbors of terminal state using discretization of 0.2%.

Figure 8.7: Possible Penultimate Histograms in a Population with g = 3 Genotypes
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8.2. NUMERICAL RESULTS FOR THE POPULATION WITH 3 GENOTYPES

The one-stage rate minimizing trajectory which takes approximately 2 minutes

to generate and has cost of 0.21 can be seen in Figure 8.8.

Figure 8.8: Rate Minimizing Optimal Trajectory at Step 1
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8.2. NUMERICAL RESULTS FOR THE POPULATION WITH 3 GENOTYPES

Some of the incomplete trajectories at first step from the set TRinc are shown in

Figure 8.9.

Figure 8.9: Incomplete Trajectories at Stage 1.
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8.2. NUMERICAL RESULTS FOR THE POPULATION WITH 3 GENOTYPES

The initial point of each of these incomplete trajectories is considered a potential

new target point newHtar. Penultimate step histogram at this stage can be chosen

from the set nΩH , where nΩH is the set of neighborhood histograms around newHtar

and is presented in Figure 8.10.

Figure 8.10: State Space nΩH of Possible Penultimate Histogram for the Incomplete
Trajectory.

So, figure 8.11 shows the multi-stage optimal rate minimizing trajectory, TRopt

obtained.

Rate minimizing optimal trajectory, TRopt in this case has a cost of 0.178.

The costs and number of steps associated to rate minimizing trajectories in this
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8.2. NUMERICAL RESULTS FOR THE POPULATION WITH 3 GENOTYPES

Figure 8.11: Rate Minimizing Optimal Trajectory in Population with g = 3 Geno-
types.

case are tabulated in Table 8.5.

Initial Genotype Target Genotype Number of Steps Cost

1 2 24 0.178

1 3 19 6× 10−5

Table 8.5: Rate Minimizing Trajectories for TC Experi-

ment
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8.3. NUMERICAL RESULTS FOR THE POPULATION WITH 4 GENOTYPES

8.3 Numerical Results for the Population with 4

Genotypes

Next, we illustrate the case of 4 genotype and study three feasible cases. One is

the most likely event of population fixating at fittest genotype 4, second is the rare

event of population fixing at a lesser fit genotype 3 and third is the rarest event of

population fixing at genotype 2 while starting at population dominant with genotype

1.

The realistic growth factors and mutation rates adopted for this example are

derived from [129] and are shown in Table 8.6.

Genotype Growth Factor Mutation Rate

1 2001.06 0.5× 10−6

2 2001.08 0.5× 10−6

3 2001.1 0.5× 10−6

4 2001.12 0.5× 10−6

Table 8.6: Parameters for TC Experiment
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8.3. NUMERICAL RESULTS FOR THE POPULATION WITH 4 GENOTYPES

Recall that H is the initial and G is the terminal state in the trajectory and Hi, Gi

denote the frequency of genotype i in initial and terminal target state respectively.

Figure 8.12 shows the mean trajectory. The initial state is one where genotype

1 is dominant in the population, H1 ≥ 0.99 and the target state has genotype 4

dominant, G4 ≥ 0.99.

Figure 8.12: Mean Trajectory in Population with g = 4 Genotypes.
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8.3. NUMERICAL RESULTS FOR THE POPULATION WITH 4 GENOTYPES

Figure 8.13 shows the mean trajectory in blue and optimal rate minimizing tra-

jectory, TRopt in red.

Figure 8.13: Mean Trajectory and Rate Minimizing Optimal Trajectory in Popula-
tion with g = 4 Genotypes.

As before the mean trajectory has 0 cost associated to it. TRopt on the other

hand (takes 50 minutes to generate) has a cost of 0.005. The mean trajectory has

26 steps and large deviations trajectory has 27 steps. Here again we observe see

that both the trajectories are almost identical and so our large deviation trajectory

provides us with a reliable estimate for the paths of trajectories.
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8.3. NUMERICAL RESULTS FOR THE POPULATION WITH 4 GENOTYPES

We now illustrate the first rare event in the case of 4 genotypes. We create a large

deviation trajectory from initial population with dominant genotype 1, H1 ≥ 0.99 to

a target population which has frequency of genotype 3, G3 ≥ 0.99.

The step by step computation for large deviations trajectory is shown in following

sequence of figures.

178



8.3. NUMERICAL RESULTS FOR THE POPULATION WITH 4 GENOTYPES

Figure 8.14 shows the possible target histograms which have G3 ≥ 0.99. In this

case we obtain 22 neighbors using discretization of 0.5% around [0.002, 0.003, 0.99, 0.005].

Figure 8.14: Possible Target Histograms in a Population with g = 4 Genotypes.
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8.3. NUMERICAL RESULTS FOR THE POPULATION WITH 4 GENOTYPES

Figure 8.15 shows histograms in the neighborhood of a target terminal histogram

[0.0050.0020.990.003]. They form the set Ω which is the set of all penultimate steps.

In this case we obtain 166 neighbors using discretization of 0.5%.

Figure 8.15: Possible Neighbors for Target Histogram.
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The one-stage rate minimizing trajectory with 19 steps which takes approximately

30 seconds to generate and has cost of 0.15 can be seen in Figure 8.16.

Figure 8.16: Rate Minimizing Optimal Trajectory at Step 1.
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8.3. NUMERICAL RESULTS FOR THE POPULATION WITH 4 GENOTYPES

Some of the incomplete trajectories out of 20 incomplete trajectories in the set

TRinc at first step are shown in Figure 8.17.

Figure 8.17: Incomplete Trajectories at Step 1
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The initial point of each of these incomplete trajectories is considered a potential

new target point newHtar. Penultimate step histogram at this stage can be chosen

from the set nΩH , where nΩH is the set of neighborhood histograms around newHtar

and is presented in figure 8.18.

Figure 8.18: State Space nΩH for Possible Target Histogram in the Incomplete Tra-
jectory
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8.3. NUMERICAL RESULTS FOR THE POPULATION WITH 4 GENOTYPES

So, figure 8.19 shows multi-stage optimal rate minimizing trajectory, TRopt ob-

tained.

Figure 8.19: Rate Minimizing Optimal Trajectory in Population with g = 4 Geno-
types.

Rate minimizing optimal trajectory, TRopt in this case (takes 81 minutes to gen-

erate) has a cost of 0.09.
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Next we illustrate the second rare event in the case of 4 genotypes. We create a

rate optimizing trajectory from population with dominant genotype 1, H1 ≥ 0.99 to

target population with dominant genotype 2, G2 ≥ 0.99.

The step by step computation is shown in following sequence of figures. Figure

8.20 shows the possible target histograms which have G2 ≥ 0.99. In this case we

obtain 23 neighbors using discretization of 0.3% around [0.002, 0.99, 0.003, 0.005].

185



8.3. NUMERICAL RESULTS FOR THE POPULATION WITH 4 GENOTYPES

Figure 8.20: Possible Target Histograms in a Population with g = 4 Genotypes.
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Figure 8.21 shows histograms in the neighborhood of a target terminal histogram

[0.0050.0020.990.003]. They form the set Ω which is the set of all penultimate

steps. In this case we obtain 1017 neighbors using discretization of 0.3% around

[0.002, 0.99, 0.002, 0.006].

Figure 8.21: Possible Neighbors for Target Histograms
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The one-stage rate minimizing trajectory with 21 steps which takes approximately

50 seconds to generate and has cost of 0.41 can be seen in Figure 8.22.

Figure 8.22: Rate Minimizing Optimal Trajectory at Step 1
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Some of the incomplete trajectories out of 97 incomplete trajectories in the set

TRinc at first step are shown in Figure 8.23.

Figure 8.23: Incomplete Trajectories at Step 1
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The initial point of each of these incomplete trajectories is considered a potential

new target point newHtar. Penultimate step histogram at this stage can be chosen

from the set nΩH , where nΩH is the set of neighborhood histograms around newHtar

and is presented in figure 8.24.

Figure 8.24: State Space nΩH for Possible Target Histogram in the Incomplete Tra-
jectory
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So, figure 8.25 shows multi-stage optimal rate minimizing trajectory, TRopt ob-

tained.

Figure 8.25: Rate Minimizing Optimal Trajectory in Population with g = 4 Geno-
types.

Rate minimizing optimal trajectory, TRopt in this case (takes 16 hours to gener-

ate) has a cost of 0.42.
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The costs and number of steps associated to rate minimizing trajectories in this

case are tabulated in Table 8.7.

Initial Genotype Target Genotype Number of Steps Cost

1 2 18 0.42

1 3 18 0.09

1 4 27 0.005

Table 8.7: Rate Minimizing Trajectories for TC Experi-

ment
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CHAPTER 9

Direct Simulation of the Stochastic Evolution Dynamics

In this chapter we simulate and present the results of direct simulation of the pop-

ulation growth model described in chapter 2. The process parameters will be given

by TC experiments, as stated in Tables 9.1 and 9.6.

We generate random sets of K = 104 population histograms trajectories and

compute the empirical frequencies of key evolutionary events such as near fixation

of specific genotypes. This is done for the cases of 2, 3, and 4 genotypes.

We simulate the population model described in chapter 2 with locked box dy-

namics. In this experimental stochastic population evolution, the population evolves
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over generations with daily growth + dilution cycles. During the growth period, the

number of cells increases from the initial value N to Nsat. Next, random independent

mutations, governed by the vector ~m = (mj) of mutation rates, are implemented in

the intermediary population. The number of mutations is assumed to have a Poisson

distribution dependent on the size of the population. In the numerical simulation of

the model, only forward mutations are allowed (i.e.), mutants can only evolve into

fitter genotype. This makes mutation process unidirectional and irreversible.

Next, to generate the new population, one performs a “dilution” of the population

by extracting from intermediary population a random sample of size N . For this sub

sampling we avoid the direct use of multinomial sampling function in MATLAB since

it involves computing factorials. Calculating factorials is not an efficient method with

the large population sizes, N considered (N ranging from 50000 to 500000) in our

case. So, instead we implement the inbuilt MATLAB subroutine ‘mnrnd ’ which

utilizes the fact that the marginals for multinomial are binomial.

Simulations are done for a population starting with pure concentration of geno-

type of lowest growth factor (genotype 1 in our case) as initial state.

Given a target genotype, we want to estimate probability for the evolving popu-

lation to reach a stage where the frequency of target genotype is almost 1. In reality,

however one rarely achieves 100% fixation of target genotype in the population. De-

note by fTH the threshold fixation frequency of the target genotype in the terminal

state of the evolutionary trajectories.

The evolution trajectories are then sorted on the basis of the observed genotype
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with frequency≥ fTH in the population histogram of the terminal state. We are

interested in estimating probability, PN(A) where A is the event that required target

genotype has a frequency≥ fTH in the terminal state of trajectory.

We present results for evolution trajectories in the population with g = 4 geno-

types and restricted random mutation matrix. The process parameters used are

given in Table 9.1.

Genotype Growth Factor Mutation Rate

1 2001.06 0.5× 10−6

2 2001.08 0.5× 10−6

3 2001.1 0.5× 10−6

4 2001.12 0.5× 10−6

Table 9.1: Parameters for Direct Simulation with g = 4

Genotypes
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Recall that N is the population size and we present results for 3 population sizes,

N = 5× 104, 2× 105 and 5× 105.

1. For initial histogram [1, 0, 0, 0], the Table 9.2 displays the fixation probabilities

of each genotype, for a fixation threshold, fTH = 90%.

Fixation Genotype N = 5× 104 N = 2× 105 N = 5× 105

1 0 0 0

2 0.03 10−4 0

3 0.25 0.09 0.003

4 0.72 0.9 0.997

Table 9.2: Probability of Reaching Fixation for all Geno-

types in Simulated Trajectories with 4 Genotypes and

fTh = 90% as the Fixation Threshold.
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2. For initial histogram [1, 0, 0, 0], the Table 9.3 displays the fixation probabilities

of each genotype, for a fixation threshold, fTH = 95%.

Fixation Genotype N = 5× 104 N = 2× 105 N = 5× 105

1 0 0 0

2 0.03 0 0

3 0.27 0.06 0.003

4 0.7 0.94 0.997

Table 9.3: Probability of Reaching Fixation for all Geno-

types in Simulated Trajectories with 4 Genotypes and

fTh = 95% as the Fixation Threshold.
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3. For initial histogram [1, 0, 0, 0], the Table 9.4 displays the fixation probabilities

of each genotype, for a fixation threshold, fTH = 98%.

Fixation Genotype N = 5× 104 N = 2× 105 N = 5× 105

1 0 0 0

2 0.03 0 0

3 0.25 0.06 0.003

4 0.72 0.94 0.997

Table 9.4: Probability of Reaching Fixation for all Geno-

types in Simulated Trajectories with 4 Genotypes and

fTh = 98% as the Fixation Threshold.

198



Recall that K = 104 is the total number of simulated trajectories, p is the empir-

ical estimate of fixation probability of a genotype in the simulated trajectories and

fTHis the fixation threshold fTH.

These probabilities are almost similar for all the three thresholds we selected and

the estimation error on these empirical estimates of fixation probabilities estimated

is given by √
p(1− p)

K

where Kp ≥ 5. However when Kp < 5, we compute the estimation error as follows.

We know that for a Binomial distribution, B(K, p) where K is very large and p

is very small the appropriate binomial probabilities can be approximated by way of

the Poisson probability function with mean Kp [46].

So, for our rare events with very small non-zero probability and 0 empirical

probability estimate, we estimate error by computing a one-sided 95% confidence

interval for the true mean using the Poisson probability with estimated mean Kp.

Hence we are interested in estimating p̂ for which

e−Kp̂ = 0.05.

This gives p̂ = 3×10−4 as the one-sided (upper) bound for the estimation error when

p = 0 and K = 104.
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The errors are presented in Table 9.5.

Fixation Genotype N = 5× 104 N = 2× 105 N = 5× 105

1 0 0 0

2 0.002 3× 10−4 3× 10−4

3 0.004 0.002 5.4× 10−4

4 0.004 0.002 5.4× 10−4

Table 9.5: Table for Errors in Estimated Probabilities for

all Genotypes.

It can be observed that as we increase the population size from N = 5 × 104 to

N = 5× 105, the fixation probability for the fittest genotype becomes almost 1 and

fixation probabilities for other genotypes tend to 0. Hence, fixation of any genotype

which is not the fittest becomes a rare event as N →∞. In other words the fixation

probability for all genotypes except for the fittest decrease very quickly with N as

N →∞.

This is the main application of large deviation algorithms implemented in previous

chapters. The probability of a rare event A decays, PN(A) → 0, at an exponential

rate given by the rate functional λ where λ = mintraj∈A Cost(traj).
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Next, we illustrate results for evolution trajectories in the population with g = 3

genotypes and restricted random mutation matrix. The process parameters used are

given in Table 9.6.

Genotype Growth Factor Mutation Rate

1 200 0.5× 10−6

2 2001.08 0.5× 10−6

3 2001.15 0.5× 10−6

Table 9.6: Parameters for Direct Simulation with g = 3

Genotypes

1. For the initial histogram [1, 0, 0], the Table 9.7 displays the fixation probabilities

of each genotype, with a fixation threshold, fTH = 90%.

Fixation Genotype N = 5× 104 N = 2× 105 N = 5× 105

1 0 0 0

2 0.25 0.06 0.003

3 0.75 0.94 0.997

Table 9.7: Probability of Reaching Fixation for all Geno-

types in Simulated Trajectories with 3 Genotypes and

fTh = 90% as the Fixation Threshold.

2. For the initial histogram [1, 0, 0], the Table 9.8 displays the fixation probabilities
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of each genotype, with a fixation threshold, fTH = 95%.

Fixation Genotype N = 5× 104 N = 2× 105 N = 5× 105

1 0 0 0

2 0.26 0.06 0.003

3 0.74 0.94 0.997

Table 9.8: Probability of Reaching Fixation for all Geno-

types in Simulated Trajectories with 3 Genotypes and

fTh = 95% as the Fixation Threshold.

3. For the initial histogram [1, 0, 0], the Table 9.9 displays the fixation probabilities

of each genotype, with a fixation threshold, fTH = 98%.

Fixation Genotype N = 5× 104 N = 2× 105 N = 5× 105

1 0 0 0

2 0.25 0.06 0.003

3 0.75 0.94 0.997

Table 9.9: Probability of Reaching Fixation for all Geno-

types in Simulated Trajectories with 3 Genotypes and

fTh = 98% as the Fixation Threshold.

Again we observe that the fixation probabilities are almost similar for all the

three thresholds we selected and the estimation error on these estimated probabil-

ities estimated is given by Table 9.10. Recall that when Kp < 5, we compute the
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estimation error using Poisson distribution as explained in the case of 4 genotypes.

Fixation Genotype N = 5× 104 N = 2× 105 N = 5× 105

1 0 0 0

2 0.004 0.002 5.4× 10−4

3 0.004 0.002 5.4× 10−4

Table 9.10: Table for Errors in Estimated Probabilities

for all Genotypes.

Also as we increase the population size from N = 5 × 104 to N = 5 × 105, the

winning probability for the fittest genotype is almost 1 and winning probabilities

for other genotypes are almost 0. Hence, fixation of any genotype which is not the

fittest becomes a rare event as N → ∞. In other words the fixation probability for

all genotypes except for the fittest decrease very quickly with N as N →∞.

As explained before, this is the main application of large deviation algorithms

implemented in previous chapters. The probability of a rare event A, PN(A)→ 0 at

an exponential rate given by the rate functional λ where λ = mintraj∈A Cost(traj).
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Next we present Table 9.11 with the computing times in minutes required to

simulate the above trajectories.

Number of Genotypes N = 5× 104 N = 2× 105 N = 5× 105

3 13 33 67

4 28 78 174

Table 9.11: Table for CPU Times in Minutes for Esti-

mating Probabilities for all Genotypes in Simulated Tra-

jectories with 3 Genotypes.
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The following Figure 9.1 shows histogram for length of trajectories starting at

[1, 0, 0, 0] required for fixation when we have g = 4 genotypes and the genotype 4

fixates first, i.e., G4 ≥ 0.98.

Figure 9.1: Histogram for Length of the Trajectories Observed in Direct Simulation
where Initial State is [1, 0, 0, 0] and Genotype 4 Wins.
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The following Figure 9.2 shows histogram for length of trajectories starting at

[1, 0, 0, 0] required for fixation when we have g = 4 genotypes and the genotype 3

fixates first, i.e., G3 ≥ 0.98.

Figure 9.2: Histogram for Length of the Trajectories Observed in Direct Simulation
where Initial State is [1, 0, 0, 0] and Genotype 3 Wins.
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The following Figure 9.3 shows histogram for length of trajectories starting at

[1, 0, 0, 0] required for fixation when we have g = 4 genotypes and the genotype 2

fixates first, i.e., G2 ≥ 0.98.

Figure 9.3: Histogram for Length of the Trajectories Observed in Direct Simulation
where Initial State is [1, 0, 0, 0] and Genotype 2 Wins.
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The following Figure 9.4 shows histogram for length of trajectories starting at

[1, 0, 0] required for fixation when we have g = 3 genotypes and the genotype 3 fixates

first, i.e., G3 ≥ 0.98.

Figure 9.4: Histogram for Length of the Trajectories Observed in Direct Simulation
where Initial State is [1, 0, 0] and Genotype 3 Wins.
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The following Figure 9.5 shows histogram for length of trajectories starting at

[1, 0, 0] required for fixation when we have g = 3 genotypes and the genotype 2 fixates

first, i.e., G2 ≥ 0.98.

Figure 9.5: Histogram for Length of the Trajectories Observed in Direct Simulation
where Initial State is [1, 0, 0] and Genotype 2 Wins.
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Using the rate functional formulas derived in previous chapters we compute the

costs of these simulated trajectories. For each population size, quantile curve of the

costs of all trajectories observed is computed. Hence we obtain 3 quantile curves for

each of the 3 population sizes. These quantiles of costs for all three population sizes

with 3 genotypes is shown in Figure 9.6.

Figure 9.6: Comparison of Cost Quantiles over all Three Population Sizes with 3
Genotypes.
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Similar quantiles of costs for all three population sizes with 4 genotypes are shown

in Figure 9.7.

Figure 9.7: Comparison of Cost Quantiles over all Three Population Sizes with 4
Genotypes.

These quantile curves demonstrate that with an increase in population sizes, the

overall cost decreases.

Figure 9.8 shows histogram for cost of trajectories observed in direct simulation

starting at [1, 0, 0, 0] where the genotype 3 fixates first and fTH = 0.98, i.e., G3 ≥

0.98 across population sizes N = 5× 104, 2× 105 and 5× 105.
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Figure 9.8: The Histograms of Cost of Trajectories Observed in Direct Simulation
Starting at [1, 0, 0, 0] where the Genotype 3 Fixates First and fTH = 0.98 across
Population Sizes N = 5× 104, 2× 105 and 5× 105.
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Figure 9.9: The Histograms of Cost of Trajectories Observed in Direct Simulation
Starting at [1, 0, 0, 0] where the Genotype 4 Fixates First and fTH = 0.98 across
Population Sizes N = 5× 104, 2× 105 and 5× 105.
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Similarly Figure 9.9 shows histogram for cost of trajectories observed in direct

simulation starting at [1, 0, 0, 0] where the genotype 4 fixates first and fTH = 0.98,

i.e., G4 ≥ 0.98 across population sizes N = 5× 104, 2× 105 and 5× 105.

It can be observed that in both cases, as N increases from 5 × 104 to 5 × 105

the x-axis is shrinking or the the cost histograms are becoming narrower. Thus as

population size increases we expect the evolution to almost always follow the most

likely path and have very less deviations.
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Next, we present a quantile comparison for length of trajectories required to reach

fixation frequency, fTH by target genotype in terminal state.

For the various fixation thresholds, fTH = 0.98, 0.95, 0.90 and number of geno-

types, g = 3 the quantile curves comparing trajectory lengths are shown in Figure

9.10.

Figure 9.10: Comparison of Trajectory Length Quantiles over all Three Population
Sizes with 3 Genotypes and fTh = 0.98.
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Similarly, for the fixation threshold, fTH = 0.98 and number of genotypes, g = 4

the quantile curves comparing trajectory lengths are shown in Figure 9.11.

Figure 9.11: Comparison of Trajectory Length Quantiles over all Three Population
Sizes with 4 Genotypes and fTh = 0.98.

Again we observe the decrease in the trajectory length required for fixation as we

increase the population sizes.
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CHAPTER 10

Clonal Interference in Mutational Trajectories

This chapter refers to a currently submitted paper prepared by a team of UH biol-

ogists Ricardo Azevedo, Tiago Paixão et al. [94]. The paper (yet to be published)

discusses the effect of population size, mutational effects and epistasis on the re-

peatability of evolution on simple adaptive landscapes. We concentrate primarily

on applying our large deviations approach to study the repeatability of evolution

(hereafter CI model) using parameters from laboratory experiments on populations

of bacterium Escherichia coli performed by Tim Cooper et al.[129] at the University

of Houston Biology Department.
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10.1. ADAPTIVE LANDSCAPE MODEL

10.1 Adaptive Landscape Model

Wright [127] defined adaptive landscape using a genotype-to-fitness, (G → F ) map

and specification of how genotypes are connected. According to Robert Skipper [114]

“Sewall Wright’s adaptive landscape is the most influential heuristic in evolutionary

biology.”

Introduced by Wright, the fitness landscape describes the possible mutational

trajectories by which lineages evolve in a step wise manner from genotypes that lie

in regions of low fitness to ones of higher fitness [127, 128]. When viewed as a whole,

this metaphorical landscape represents a species’ possible paths of adaptive evolution

towards the optimal genotype in a particular environment.

Thus, fitness landscapes illustrate possible steps adaptive evolution can take to

increase the evolutionary fitness of individuals within a population, and the accessi-

bility of the fittest point on the landscape is determined by the shape of the fitness

landscape [37].

Evolutionary transitions from one phenotype to another are mediated by muta-

tions to their underlying genotypes. The space of all genotypes can be considered

as a mutational network with each genotype as a node and mutations between geno-

types as edges. In other words, any two genotypes that differ exactly by one single

point mutation are connected by an edge. One can then represent phenotypes (or

fitness values) as colors. Thus mutational networks capture patterns of mutational

connectivity among genotypes and phenotypes [127, 26].

Historically, mutations have been thought of by evolutionary biologists in terms

218



10.1. ADAPTIVE LANDSCAPE MODEL

of distributions of fitness effects and a lot of interest has been shown to measure

the fractions of mutations that are typically beneficial, neutral, and deleterious.

Although these distributions critically determine the local evolutionary dynamics,

they provide little information about processes on larger scale. For this purpose, it

is useful to think in terms of mutational paths connecting distant genotypes and,

more generally, in terms of the large scale patterns of mutational connectivity within

genotype spaces.

In this model we use mutational networks defined using L fitness loci, each with K

alleles. There are KL genotypes since typical genotypes are arbitrary configuration

of alleles. We consider L = 3 loci (hereafter referred to as A,B and C) and K = 2

alleles (A/a,B/b and C/c). This means that a gene, say A is allowed to express itself

in K = 2 ways as A or a.
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10.1. ADAPTIVE LANDSCAPE MODEL

The complete network for mutational trajectories [94] to be generated are shown

in the Figure 10.1.

Figure 10.1: Network of Mutational Trajectories in the Model.
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10.1. ADAPTIVE LANDSCAPE MODEL

We consider the case where we have only irreversible mutation available to the

population, and that mutants cannot mutate further. For instance, consider a single

fitness locus A, with two alleles, A and a, with A for the ancestor allele and a for the

derived allele. Then A alleles mutate irreversibly to a alleles and a cannot mutate

back into A. These mutations are independent events. The mutant allele confers a

selective advantage sa > 0.

A mutant arising with selective advantage s to the ancestor genotype has by

definition a multiplicative growth factor per time interval given by F 1+s where F is

the growth factor of the ancestor genotype. For details about the range of fitness

values estimated experimentally by TC experiments refer to chapter 2.

Selective advantages are essentially the basis for evolution by natural selection.

They are important characteristics of organisms enabling them to survive and repro-

duce better than other organisms in a given environment.

Hence, the relative fitness of the ancestral genotype ABC is set to be wABC = 1

and every derived allele increases the fitness by sa, sb, sc respectively. Without loss

of generality, we assume that sa > sb > sc.
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10.1. ADAPTIVE LANDSCAPE MODEL

Table 10.1 lists the relative fitnesses of all genotypes, evaluated in terms of sa,

sb, and sc by the same formulas as in the paper [94].

Genotype Relative Fitness

ABC 1

aBC 1 + sa

AbC 1 + sb

ABc 1 + sc

Abc (1 + sb)(1 + sc)

aBc (1 + sa)(1 + sc)

abC (1 + sa)(1 + sb)

abc (1 + sa)(1 + sb)(1 + sc)

Table 10.1: Relative Fitnesses for all Genotypes.

So the genotype abc containing all derived alleles is assumed to be the fittest.
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10.1. ADAPTIVE LANDSCAPE MODEL

The emergence and fixation of the fittest genotype abc can be realized by six mu-

tational trajectories where each trajectory is characterized by the order of successive

emergence and fixation of the alleles a, b, c in the population.

1. a→ b→ c,

2. a→ c→ b,

3. b→ a→ c,

4. b→ c→ a,

5. c→ a→ b,

6. c→ b→ a.

corresponding to each possible mutational trajectory (Figure 10.1) based on the or-

der in which derived alleles were acquired to reach abc. In the study [94], the authors

investigate by intensive simulations the effects of population size on particular mu-

tational trajectory being followed during adaptive evolution.

We consider population sizes from N = 50000 to N = 107 and estimate the

probabilities for mutational trajectory “tr”, in terms of a corresponding Cost(tr)

which we estimate below by computing adequate trajectories minimizing the rate

functional introduced earlier in chapter 6.
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10.2. NUMERICAL ADAPTATION OF CI MODEL

10.2 Numerical Adaptation of CI Model

We estimate the rate minimizing trajectories in 2 stages. In the first stage, the evolu-

tionary trajectory starts from a pure ancestral genotype ABC to reach a population

with only one derived allele. All the possibilities at this stage are listed below.

1. ABC → aBC,

2. ABC → AbC,

3. ABC → ABc.

Then in the second stage, a second derived allele emerges and fixates in the

population. Again the possibilities are

1. aBC → abC,

2. aBC → aBc,

3. AbC → abC,

4. AbC → Abc,

5. ABc→ aBc,

6. ABc→ Abc.

Finally we stop when all ancestral alleles have mutated into derived alleles, so

that the genotype abc has then reached fixation.
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10.2. NUMERICAL ADAPTATION OF CI MODEL

Due to the large population sizes being considered, one can consider as biolog-

ically significant fixation events, the situations where a specific genotype reaches a

moderately high threshold frequency, such as 70%. Indeed in large populations, mul-

tiple genotypes can coexist side by side for a fairly long time once both genotypes

have reached sufficiently high frequencies. We present the results for fixation thresh-

old of 90% . However, from a biological point of view a fixation threshold of 70%

would already be quite meaningful, and our computations and concepts could also

be applied to these moderate fixation thresholds.

In the CI model [94], back or reverse mutations are not allowed, mutations are

only allowed from ancestral alleles to derived alleles. So a derived allele is not allowed

to mutate into any other allele, for instance, a → bAbc → ABc is not allowed. So,

this gives us a sparser mutation matrix leading to some changes in the formulas

derived for rate functional minimizing trajectories.

Without loss of generality, at every stage, set genotype 1 to be the genotype with

the most ancestral alleles and the other genotypes are arranged in the increasing

order of their relative fitnesses.

In the model we introduced before in chapter 2, the growth factor was given by

Fg = F 1+Sg
anc

where Fanc is the growth factor of an ancestor and Sg is the selective advantage of

genotype g over the ancestor.

In our numerical computations below, the values of growth factors and mutation

parameter are the experimental values estimated for the E. coli experiments of Tim
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10.2. NUMERICAL ADAPTATION OF CI MODEL

Cooper [129]. These values are tabulated in Table 10.2.

In the evolution model we consider here, we assume as before that mutations

emerge at random, according to Poisson distributions, but that regressive mutations

never occur.

Table 10.2 presents the values of selection coefficient and mutation rates used in

our computations.

Genotype Index Genotype GrowthFactor = F 1+SelectionCoefficient Mutation Rate

1 ABC 200 0.5× 10−6

2 ABc 2001.06 0.5× 10−6

3 AbC 2001.1 0.5× 10−6

4 aBC 2001.15 0.5× 10−6

Table 10.2: Parameters from TC [129] Experiment used

in CI Model.

In Stage I, as explained above, we start from a pure population of genotype ABC,

and study what are the most likely process trajectories leading to the fixation of a

single derived allele.

For Stage I, we have ABC as ancestor and 3 mutational trajectories to aBC,AbC,

and ABc giving us a total of 4 genotypes. The 4× 4 mutations matrix, r will have

ri,j = 0, for all i = 2, 3, 4 with j = 1, ..., 4 and r1,1 = 0. So the mutation matrix has

non zero entries in the first row only.
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10.2. NUMERICAL ADAPTATION OF CI MODEL

We have labeled ABC, ABc, AbC, and aBC as genotype 1, 2, 3, and 4 respec-

tively in the increasing order of their growth factors, which is also the increasing

order of their fitnesses.

Similarly for Stage II, we have 3 possible ancestors: ABc, Abc, and aBc. So we

subdivide this stage into 3 substages, each starting from different ancestor.

For instance, Stage II.1 starts from aBC and has mutational trajectories to abC

and aBc. The mutations matrix, r will now have ri,j = 0, for all i = 2, 3 with

j = 1, 2, 3 and r1,1 = 0.

Stage II.2 starts from AbC and has mutational trajectories to abC and Abc. The

mutations matrix, r will now have ri,j = 0, for all i = 2, 3 with j = 1, 2, 3 and

r1,1 = 0.

Similarly, Stage II.3 starts from ABc and has mutational trajectories to aBc and

Abc. The mutations matrix, r will now have ri,j = 0, for all i = 2, 3 with j = 1, 2, 3

and r1,1 = 0.

Again we observe that the mutation matrix has non zero entries in the first row

only. Now we implement the techniques derived in chapter 6 for building reverse

optimal rate minimizing trajectories.
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10.3. LARGE DEVIATIONS APPLICATION: MOST LIKELY MUTATIONAL
TRAJECTORY

10.3 Large Deviations Application: Most Likely

Mutational Trajectory

We derive the formulas like in chapter 6 before for the trajectory x → y → z.

Let r̄, p̄ and r, p be the respective random matrix of restricted mutations and the

intermediary population histogram before dilution for x and y respectively. Also, let

~m = (mi) be the vector of mutation rates where mi = m, ∀i, i.e., we consider that

the rates of mutation are equal regardless of the species and the number of genotypes

in system be g .

For now, we use the rate functional approximation as derived before using zero

order approximation for r, ρ, p. There is one main difference in the expression for

cost or rate functional in this case. Since the mutation matrix has non-zero entries

in the first row only, we have

RF(x, y) = m

g∑
j=1

(g − j)Fjxj〉+m

g∑
k=2

F1x1

(
yk
Fkxk

− y1

F1x1

− 1

)
exp

(
yk
Fkxk

− y1

F1x1

)
+
∑
j

yj log

(
yj〈F, x〉
Fjxj

)
.

and

RF(y, z) = m

g∑
j=1

(g − j)Fjyj +m

g∑
k=2

F1y1

(
zk
Fkyk

− z1

F1y1

− 1

)
exp

(
zk
Fkyk

− z1

F1y1

)
+
∑
j

zj log

(
zj〈F, y〉
Fjyj

)
.
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Thus,

∂RF(x, y)

∂y1

= 1 + log

(
y1

F1x1

)
−m

g∑
k=2

(
yk
Fkxk

− y1

F1x1

)
exp

(
yk
Fkxk

− y1

F1x1

)

and

∂RF(x, y)

∂yi
= 1 + log

(
yi
Fixi

)
+m

F1x1

Fixi

(
yi
Fixi

− y1

F1x1

)
exp

(
yi
Fixi

− y1

F1x1

)

for i = 1, ..., g.

Thus,

∂RF(x, y)

∂y1

= 1 + log

(
y1

F1x1

)
+m

g∑
k=2

a1,k exp(ak,1)

and

∂RF(x, y)

∂yi
= 1 + log

(
yi
Fixi

)
+m

F1x1

Fixi
ai,1 exp(ai,1)

for i = 1, ..., g, where ai,j = yi
Fixi
− yj

Fjxj
.

Similarly,

∂RF(y, z)

∂y1

= (g − 1)mF1 +
F1

〈F, y〉
− z1

y1

(10.1)

+m

g∑
k=2

(
F1zk
Fkyk

− z1

y1

− F1 +
z1zk
Fkyky1

− z2
1

F1y2
1

)
exp(bk,1)

and

∂RF(y, z)

∂yi
= (g − i)mFi +

Fi
〈F, y〉

− zi
yi
−mF1y1zi

Fiy2
1

bi,1 exp(bi,1)

for i = 1, ..., g, where bi,j = zi
Fiyi
− zj

Fjyj
.

229



10.3. LARGE DEVIATIONS APPLICATION: MOST LIKELY MUTATIONAL
TRAJECTORY

Now, using Lagrange optimality conditions we have

λ =
∂RF(x, y)

∂yi
+
∂RF(y, z)

∂yi
, ∀i

λ = 1 + log

(
y1

F1x1

)
+ (g − 1)mF1 +

F1

〈F, y〉
− z1

y1

+m

g∑
k=2

a1,k exp(ak,1)

+m

g∑
k=2

(
F1zk
Fkyk

− z1

y1

− F1 +
z1zk
Fkyky1

− z2
1

F1y2
1

)
exp(bk,1)

and

λ = 1 + log

(
yi
Fixi

)
+ (g − i)mFi +

Fi
〈F, y〉

− zi
yi

+m
F1x1

Fixi
ai,1 exp(ai,1)−mF1y1zi

Fiy2
1

bi,1 exp(bi,1)

The above equations give an implicit system in g variables xi along with the

condition that
∑

i xi = 1.

Again we assume our histograms to be interior points, and with Poisson mutations

we have following system of implicit equations in x given y, z

λ = 1 + log

(
y1

F1x1

)
+ (g − 1)mF1 +

F1

〈F, y〉
− z1

y1

+m

g∑
k=2

a1,k exp(ak,1)

+m

g∑
k=2

(
F1zk
Fkyk

− z1

y1

− F1 +
z1zk
Fkyky1

− z2
1

F1y2
1

)
exp(bk,1)

and

λ = 1 + log

(
yi
Fixi

)
+ (g − i)mFi +

Fi
〈F, y〉

− zi
yi

+m
F1x1

Fixi
ai,1 exp(ai,1)−mF1y1zi

Fiy2
1

bi,1 exp(bi,1)
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Proceeding exactly like in chapter 6, we solve the system for value of x as follows.

Thus

Xi = −xi(0)
∑
j 6=i

xj(0)(Vj(x(0), y) + Ṽj(y, z)) + xi(0)(1− xi(0))(Vi(x(0), y) + Ṽi(y, z)).

where x(0) is given by equation 6.9 and

V1(x, y) =

g∑
k=2

a1,k exp(−a1,k), (10.2)

Vi(x, y) =
F1x1

Fixi
ai,1 exp(ai,1), i = 2, .., g (10.3)

Ṽ1(y, z) = (g − 1)Fi +

g∑
k=2

(
F1zk
Fkyk

− z1

y1

− F1 +
z1zk
Fkyky1

− z2
1

F1y2
1

)
exp(bk,1)

Ṽi(y, z) = (g − i)Fi −
F1y1zi
Fiy2

1

bi,1 exp(bi,1) i = 2, ..., g. (10.4)

Here

ai,j =
yi
Fixi

− yj
Fjxj

and

bi,j =
zi
Fiyi
− zj
Fjyj

So we have

xi(1) = xi(0) +mXi

as the solution.
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10.4 Most Likely Evolution Trajectories

As explained in previous section, we build the rate optimizing trajectory in stages.

There are many possible process trajectories that start at ABC and for which

g3 = AbC reaches near fixation before all other genes g1, g2, or g4 fixate. For large

N the probability of such an event Γ is of the order of

exp(−NΛ(Γ))

where

Λ(Γ) = min
traj∈Γ

RF (traj).

The cost of a trajectory is given by the value of associated optimal rate func-

tional(RF) as explained in detail previously in chapters 4 and 5.

We first present results for generating optimal large deviation trajectory for the

case of g = 4 genotypes, where

Genotype Index Associated Genotype

1 ABC

2 ABc

3 AbC

4 aBC

Table 10.3: Genotypes in the Mutational Trajectories at

Stage I
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We start from an almost pure population in the initial state with genotype fre-

quency ≥ 99% and for terminal histogram we assume fixation threshold frequency

to be ≥ 90%.

1. At Stage I, among all trajectories starting from ABC (genotype 1) and reach-

ing fixation at aBC (genotype 4), the rate minimizing trajectory is the mean

trajectory since the mean trajectory has cost 0 and ends up at genotype 4.

Hence this event Γ has cost Λ(Γ) = 0, and its probability will become close

to 1 when N is large as shown in chapter 4. The mean trajectory is shown in

Figure 10.2.

Figure 10.2: CI Model-Stage 1: Mean Trajectory is the Rate Minimizing Trajectory
from ABC (Genotype 1) to aBC (Genotype 4).
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2. At Stage I, the rate minimizing trajectory from ABC (genotype 1) to AbC

(genotype 3) is presented in the Figure 10.3. The rate minimizing trajectory

has 14 steps and an associated cost of 0.018.

Figure 10.3: CI Model-Stage 1: Rate Minimizing Trajectory from ABC (Genotype
1) to AbC (Genotype 3).
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3. At Stage I, the rate minimizing trajectory for the rare event from ABC (geno-

type 1) to ABc (genotype 2) is presented in the Figure 10.4. The rate mini-

mizing trajectory has 19 steps and an associated cost of 0.65.

Figure 10.4: CI Model-Stage 1: Rate Minimizing Trajectory from ABC (Genotype
1) to ABc (Genotype 2).
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At Stage II we build optimal evolutionary trajectories for the second stage in

which a population with one derived allele evolves into a population with two derived

alleles. We subdivide Stage II into 3 stages depending on the one derived allele

already present in the intermediate population reached at the end of Stage I. Stage

II.1 has mutational trajectories involving the genotypes listed in Table 10.4.

Genotype Index Associated Genotype

1 aBC

2 aBc

3 abC

Table 10.4: Genotypes Involved in Stage II.1
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1. At Stage II.1, the rate minimizing trajectory from genotype aBC (Genotype

1) to abC (Genotype 3) is the mean trajectory starting from aBC, which has

zero cost. The mean trajectory with 37 steps is presented in Figure 10.5.

Figure 10.5: CI Model-Stage II.1: Mean Trajectory as the Rate Minimizing Trajec-
tory from aBC (Genotype 1) to abC (Genotype 3).
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2. At Stage II.1, the rate minimizing trajectory from genotype aBC (Genotype 1)

to aBc (Genotype 2) is shown in Figure 10.6. It has 21 steps and an associated

cost of 0.037.

Figure 10.6: CI Model-Stage II.1: Rate Minimizing Trajectory from aBc (Genotype
1) to aBc (Genotype 2).
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Stage II.2 has mutational trajectories involving the genotypes listed in Table

10.5

Genotype Index Associated Genotype

1 AbC

2 Abc

3 abC

Table 10.5: Genotypes Involved in Stage II.2
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3. At Stage II.2, the rate minimizing trajectory from genotype AbC (Genotype

1) to abC (Genotype 3) is the mean trajectory starting from AbC, which has

zero cost. It is shown in Figure 10.7 and has 26 steps.

Figure 10.7: CI Model-Stage II.2: Mean Trajectory is the Rate Minimizing Trajec-
tory from AbC (Genotype 1) to abC (Genotype 3).
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4. At Stage II.2, the rate minimizing trajectory from genotype AbC (Genotype 1)

to Abc (Genotype 2) is shown in Figure 10.8. It has 18 steps and an associated

cost of 0.19.

Figure 10.8: CI Model-Stage II.2: Rate Minimizing Trajectory from Abc (Genotype
1) to Abc (Genotype 2).
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Stage II.3 has mutational trajectories involving the genotypes listed in Table

10.6

Genotype Index Associated Genotype

1 ABc

2 Abc

3 aBC

Table 10.6: Genotypes Involved in Stage II.3
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5. At Stage II.3, the rate minimizing trajectory from genotype ABc (Genotype

1) to aBc (Genotype 3) is again the mean trajectory starting at ABc and has

zero cost. Mean trajectory with 26 steps is presented in the Figure 10.9.

Figure 10.9: CI Model-Stage II.3: Mean Trajectory is the Rate Minimizing Trajec-
tory from ABc (Genotype 1) to aBc (Genotype 3).
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6. At Stage II.3, the rate minimizing trajectory from genotype ABc (Genotype

1) to Abc (Genotype 2) is presented in the Figure 10.10. It has 15 steps and

an associated cost of 0.029.

Figure 10.10: CI Model-Stage II.3: Rate Minimizing Trajectory from ABc (Geno-
type 1) to Abc (Genotype 2).
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So the network of all mutational trajectories with corresponding costs is shown

in Figure 10.11

Figure 10.11: CI Model: All Mutational Trajectories with the Rate Functional
Values Associated to each Transition.
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10.5 Complete Costs for Mutational Trajectories

As explained in chapters 3 and 4 the complete cost of a three-stage mutation trajec-

tory will be the sum of the individual costs of all the three trajectories involved.

Since rate functional (cost) for each part of trajectory is optimal, the sum of these

optimal rate functionals gives an optimal rate functional for the complete mutational

trajectory.

We now rank the mutational trajectories in order of their increasing associated

cost in Table 10.7

Number of Trajectory Mutational Trajectory Associated Cost

1 ABC → aBC → abC → abc 0

2 ABC → AbC → abC → abc 0.018

3 ABC → aBC → aBc→ abc 0.037

4 ABC → AbC → Abc→ abc 0.2

5 ABC → ABc→ aBc→ abc 0.65

6 ABC → ABc→ Abc→ abc 0.67

Table 10.7: Associated Costs for the Complete Muta-

tional Trajectories.

The repeatability is mainly the fact that for larger values of population sizes, N

the probabilities of mutational trajectories become more and more like exp(−N(cost)).
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10.6 Direct Simulations

Recall that, fTH denotes the threshold fixation frequency of target genotype in the

terminal state of the evolutionary trajectories. Also, N is the population size and

we present results for 3 population sizes, N = 5× 104, 2× 105 and 5× 105.

For Stage I, Table 10.8 shows the distribution of genotypes in terminal state of

all the trajectories where fTH = 0.90.

Fixation Genotype N = 5× 104 N = 2× 105 N = 5× 105

1. ABC 0 0 0

2. ABc 0.07 0.003 0

3. AbC 0.3 0.11 0.01

4. aBC 0.63 0.89 0.99

Table 10.8: Probability of Reaching Fixation (Stage I)

for all Genotypes in Simulated Trajectories with 4 Geno-

types and fTh = 90% as the Fixation Threshold.
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10.6. DIRECT SIMULATIONS

For Stage II.1, Table 10.9 shows the distribution of genotypes in terminal state

of all the trajectories where fTH = 0.90.

Fixation Genotype N = 5× 104 N = 2× 105 N = 5× 105

1. aBC 0 0 0

2. aBc 0.26 0.06 0.004

3. abC 0.74 0.94 0.996

Table 10.9: Probability of Reaching Fixation (Stage II.1)

for all Genotypes in Simulated Trajectories with 3 Geno-

types and fTh = 90% as the Fixation Threshold.

For Stage II.2, Table 10.10 shows the distribution of genotypes in terminal state

of all the trajectories where fTH = 0.90.

Fixation Genotype N = 5× 104 N = 2× 105 N = 5× 105

1. AbC 0 0 0

2. Abc 0.2 0.02 10−4

3. abC 0.8 0.98 0.9999

Table 10.10: Probability of Reaching Fixation (Stage

II.2) for all Genotypes in Simulated Trajectories with 3

Genotypes and fTh = 90% as the Fixation Threshold.
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10.6. DIRECT SIMULATIONS

Finally for Stage II.3, Table 10.11 shows the distribution of genotypes in terminal

state of all the trajectories where fTH = 0.90.

Fixation Genotype N = 5× 104 N = 2× 105 N = 5× 105

1. ABc 0 0 0

2. Abc 0.33 0.12 0.02

3. aBc 0.67 0.88 0.98

Table 10.11: Probability of Reaching Fixation (Stage

II.3) for all Genotypes in Simulated Trajectories with 3

Genotypes and fTh = 90% as the Fixation Threshold.
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10.6. DIRECT SIMULATIONS

The following Figure 10.12 shows probabilities for all the mutational trajectories.

Figure 10.12: CI Model: All Mutational Trajectories with Simulated Transition
Probabilities.
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10.6. DIRECT SIMULATIONS

Table 10.12 shows the empirical probabilities estimated using direct simulations

with N = 5× 105 for all 6 mutational trajectories.

Number of Trajectory Mutational Trajectory Probability

1 ABC → aBC → abC → abc 0.986

2 ABC → AbC → abC → abc 0.01

3 ABC → aBC → aBc→ abc 0.004

4 ABC → AbC → Abc→ abc 10−6

5 ABC → ABc→ aBc→ abc 0

6 ABC → ABc→ Abc→ abc 0

Table 10.12: Empirical Probabilities Simulated for the

Full Mutational Trajectories.

Note that the ordering of these 6 trajectories by decreasing likelihood is the same

for the empirical probabilities P (traj) evaluated by simulations in Table 10.12 and

for the minimal costs associated to these 6 mutational trajectories given in the Table

10.7.
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CHAPTER 11

Conclusions and Future Work

We have shown that large deviation rate minimizing trajectories provide a compu-

tationally efficient way of predicting rare events in the evolution models for bacteria

Eschericia coli. We have implemented shooting algorithms to efficiently compute

reverse large deviation optimal trajectories instead of brute force optimization.

It is often impossible to visualize rare event trajectories during direct simula-

tion and also under laboratory experimental conditions. To that effect we can not

only predict the paths for rare trajectories but also obtain rough estimates of their

probabilities.
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We would like to implement importance sampling to obtain accurate simulations

of rare events by forcing the simulated random evolutions to follow the most likely

trajectories obtained by minimization of large deviation rate functionals.

We also extended our model to the set up in paper on clonal interference and are

able to illustrate similar results using different growth factor and mutation restric-

tions.

We have shown that large deviation approaches provide new tools, implementable

numerically, to study the genetic evolution of large populations of bacteria or viruses,

and specifically when one focuses on comparing rare evolutionary events which may

never emerge in direct simulations. In future work, we intend to collaborate with

experimental biologists to apply these techniques to genetic evolution data for other

microbial and bacterial populations.

253



Bibliography

[1] J.G. Arjan, M. De Visser, C.W. Zeyl, P.J. Gerrish, J.L. Blanchard, and R.E.
Lenski. Diminishing returns from mutation supply rate in asexual populations.
Science, 283(5400):404–406, 1999.

[2] K.C. Atwood, L.K. Schneider, and F.J. Ryan. Periodic selection in E. coli..
Genetics, 37:146–155, 1951.

[3] R. Azencott. Grandes deviations et applications. Lecture notes in Mathematics,
774:1–176, 1980.

[4] Robert Azencott, Mark I. Freidlin, and Srinivasa R.S Varadhan. Large Devia-
tions at Saint-Flour. Springer-Verlag New York, LLC, 2012.

[5] R. R. Bahadur. Some Limit Theorems in Statistics. SIAM : Society for Indus-
trial and Applied Mathematics, 1971.

[6] R.R. Bahadur and S.L. Zabell. Large deviations of the sample mean in general
vector spaces. Annals of Probability, 7(4):587–621, 1979.

[7] J. M. Bahi and C. J. Michel. A stochastic gene evolution model with time
dependent mutations. Bulletin of Mathematical Biology, 66:763–778, 2004.

[8] J.E. Barrick and Lenski R.E. Genome-wide mutational diversity in an evolving
population of Escherichia coli. Cold Springs Harbor Symposia on Quantitative
Biology, 74:119–129, 2009.

254



BIBLIOGRAPHY

[9] J.E. Barrick, C.C. Strelioff, R.E. Lenski, and M.R. Kauth. Escherichia coli
rpob mutants have increased evolvability in proportion to their fitness defects.
Molecular Biology and Evolution, 27(6):1338–1347, 2010.

[10] Jose Blanchet and Henry Lam. State-dependent importance sampling for rare-
event simulation: An overview and recent advances. Surveys in Operations
Research and Management Science, 17(1):38–59, 2012.

[11] Zachary D. Blount, Christina Z. Borland, and Richard E. Lenski. Historical
contingency and the evolution of a key innovation in an experimental popu-
lation of Escherichia coli. Proceedings of the National Academy of Sciences
USA, 105(23):7899–7906, 2008.

[12] Paul C. Bressloff. Stochastic neural field theory and the system-size expansion.
SIAM Journal on Applied Mathematics, 70(5):1488–1521, 2009.

[13] James A. Bucklew. Large Deviation Techniques in Decision, Simulation, and
Estimation. John Wiley and Sons, 1990.

[14] James A. Bucklew. Introduction to Rare Event Simulation. Springer, 2004.

[15] Amarjit Budhiraja and Arka Prasanna Ghosh. A large deviations approach
to asymptotically optimal control of crisscross network in heavy traffic. The
Annals of Applied Probability, 15(3):1887–1935, 2005.

[16] Paulo R. A. Campos and Lindi M. Wahl. The effects of population bottlenecks
on clonal interference, and the adaptation effective population size. Evolution,
63(4):950–958, 2009.

[17] Paulo R. A. Campos and Lindi M. Wahl. The adaptation rate of asexuals:
Deleterious mutations, clonal interference and population bottlenecks. Evolu-
tion, 64(7):1973–83, 2010.

[18] Alain Cercueil and Olivier Franq́is. Sharp asymptotics for fixation times in
stochastic population dynamics with low mutation probabilities. Journal of
Statistical Physics, 110:311–332, 2003.

[19] Nicolas Champagnat. A microscopic interpretation for adaptive dynamics trait
substitution sequence models. Stochastic Processes and their Applications,
116(8):1127–1160, 2006.

[20] Nicolas Champagnat, Pierre-Emmanuel Jabin, and Sylvie Méléard. Adaptation
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[85] Sylvie Méléard and Denis Villemonais. Quasi-stationary distributions and pop-
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