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ABSTRACT 

Privacy-Preserving Face Matching Using Frequency Components 

Faces constitute a susceptible portion of an image, which in this age has become vulnerable with 

the increasing use of applications involving face detectors. Increasing concerns over the privacy 

of people have led to research involving anonymizing faces, privacy-preserving feature selection 

from facial images, active learning to obfuscate the visual appearance of a detected face, and many 

other approaches that make the face unviewable during its use in an application, specifically in the 

case of facial matching or face recognition. Along the lines of preserving privacy of detected faces 

during a face matching process, we aim to provide a possible solution to the privacy issues by 

utilizing the frequency components of an image instead of using the intensity components. This 

process involves computing a frequency transform of the detected facial image and using the 

frequency coefficients in the matching process. The matching is established using metrics such as 

the cosine distance, correlation value, and the Manhattan distance between two facial images. We 

use the three metrics to compute a combined score and establish a valid match by use of empirically 

derived threshold values. We analyze the role of specific DCT coefficients in making the combined 

decision and test the overall algorithm on the Aberdeen and Utrecht face image dataset. 
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Introduction 

 Privacy in computer vision 

Since the 70s, the field of computer vision has seen an increase in algorithms proposed to address 

a broad range of object recognition challenges. “Computer vision” is a field where researchers are 

developing methods to mimic the human visual process to recognize various objects, especially 

faces. The state-of-the-art object detection algorithms today have provided us with accuracy and 

precision in detecting objects and faces that seem to have surpassed human capabilities. The 

internet started growing even earlier than computer vision and has given us access to a variety of 

information at our fingertips. The vast majority of the information that people access is images. In 

the specific case of facial images, their use has become ubiquitous with the maturity of face 

detection and matching algorithms. The applications on a smartphone involving unlocking the 

phone, taking a selfie and more, all involve the use of locating an object in an image, the face being 

the most utilized part of it. A face serves as a unique identifier of a person and helps the human 

eye to recognize a person. With such advancements in technology and accessibility to the same, 

there has been increasing concern over the security and privacy of users’ data. The recent case of 

Facebook’s inability to protecting its users’ data shook the social media world in a very different 

way. 

Following the events when technology has failed to protect the user’s data, researchers are 

trying their best to provide methods to secure identities. There is a growing need to develop 
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methods for detecting objects in images and matching them while preserving the privacy of the 

object. In the case of faces, this would mean the ability to use the face image without being able 

to visualize or distinguish any facial features. 

The standard approach in preserving privacy is often to encrypt the image acquired by the 

camera. Nonetheless, the image is later decrypted when specific computations need to be 

performed on it, as would be the case in the use of facial matching algorithms.  However, such 

cryptographic techniques do not work very well in the scenario where the user is reluctant to 

disclose the image information even to the specific computational process or algorithm. Avidan 

and Butman [2] proposed the use of secure multi-party techniques to address this problem.  They 

rely on the use of Oblivious Transfer to input the image to the facial image processing algorithm 

and to report the results.  This method includes intense bit by bit computation, rendering the 

process very slow. Alternate methods to address this problem range from approaches that 

transform a facial image into feature attributes that are not unique to the specific identity visible 

in the image [3], project the intensity values observed in the facial image into an identity-

preserving subspace [9, 11], to efficient privacy-preserving Viola-Jones type object detection via 

random base image representation [6]. 

The above solutions to privacy preservation involve the use of pixel intensity information 

in one way or another. Hence, if an attacker tries to steal the data or even a substantial part of it, 

this would result in a privacy breach resulting in the possibility that the attacker would be able to 

reconstruct the image and thereby being able to view the face in the image. The work in this thesis 

tries to approach the privacy problem by considering the use of images based on their frequency 

content rather than their pixel intensity information. 
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 Motivation and goal 

In the effort to preserve the privacy of users and mask the ability to visualize the image during the 

required algorithmic processing, cryptographic, non-cryptographic, and machine learning methods 

have helped. The similarity among these approaches lies in the fact that they all try to modify the 

base image pixels in one way or another to achieve their goals. In order to preserve privacy, this 

thesis presents one such method that involves the use of the frequency coefficients computed from 

an image in a matching process rather than the pixels themselves. The Discrete Cosine Transform 

(DCT) is one possible transform that provides a mapping of the pixel intensity values to 

frequencies present in the image. We try to leverage the importance of the different frequency 

coefficients and to evaluate their role in producing a decision over the question, “Are the two 

images of the same person?”. 

 Privacy-preserving scenario 

In this section, we describe a scenario where we can observe the need for preserving a face in 

image data. Consider an example where Alice has some surveillance data, and she would like to 

use a face matcher to match facial images from the surveillance data against a database of face 

images. Bob has a face-matching algorithm and wants Alice to use his algorithm. Alice would like 

to do so provided Bob is unable to visualize the facial images from the surveillance data and hence 

not compromise the identity of people whose faces are present in the surveillance data. In such 

situations, most often, the users tend to proceed to use the algorithm without much thought, which 

puts their privacy at risk. Figure 1.1 illustrates such a scenario. 



 

4 

 

 
Figure 1.1: A transaction between Alice and Bob, involving image data. 

 

 

 Thesis outline 

Chapter 2 presents related work on privacy preservation. In Chapter 3, we explain how the method 

we propose could potentially help strengthen the image data security. Chapter 4 explains the 

datasets and the significance of their use in trying to evaluate our approach. Chapter 5 presents the 

results obtained, and Chapter 6 outlines the conclusions and future work based on the experimental 

results and findings. 

  

Image Matching Resource 
Alice Bob 

 

Surveillance 
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Image 

Database 

Image to be matched 
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Related work 

In this section, we mention some of the work done in the domain of computer vision aimed at 

preserving the privacy of face images. We explain some of the methods under the category of 

cryptographic and non-cryptographic approaches. 

 Cryptographic approaches 

Cryptographic approaches are the conventional methods used to secure a transaction by encrypting 

the data. The encryption changes the original form of the data and hence succeeds in providing 

security. Such a method was proposed by Avidan and Butman [2]. They constructed a secure 

classifier that included cryptography using oblivious transfer. The cryptographic tools used in their 

approach proved to be computationally intensive and thus reduced the speed of processing the 

image. To speed up the calculation involved, the authors suggested alternatives involving a smaller 

number of oblivious transfer operations, incomplete privacy preservation, and development of a 

one-way hash-function. Their experiments concluded that the proposed approach could be 

successful in preserving the identity in an image but would be impractical for typical applications. 

 Cryptography free approaches 

The cryptographic methods, despite their effectiveness, have slow processing speeds. The speed 

limitation has sparked works in the field of privacy preservation by proposing cryptography-free 

methods. 
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2.2.1 Efficient privacy-preserving Viola-Jones type detector 

Jin et al. [6] revisited the work of Avidan and Butman [2] to secure the transaction and to speed 

up the process by introducing the concept of a random base image. A random base image is created 

by separating the image in random base images, each carrying a specific weight, which is known 

only to the owner of the image. The random base images along with the random vector signifying 

the weights are utilized during the processing of the image and the results are aggregated to derive 

the result of the algorithmic operations. This was shown to be a relatively fast approach towards 

privacy preservation. 

2.2.2 Learning to anonymize faces for privacy-preserving action 

detection 

Machine learning has enabled learning using machines, thus creating more opportunities for 

researchers to evolve their algorithms in the best possible ways. Zhongzheng et al. [9] incorporated 

machine learning to enable learning of a video anonymizer. They used the generative adversarial 

network where the face anonymizer learned to generate modified pixels of an input image to 

decrease the accuracy in visualizing a face but at the same time trained a face detector acting as a 

discriminator that could increase the face identification accuracy. 

2.2.3  Efficient methods for privacy-preserving face detection 

Avidan and Butman developed further their work in [2] by replacing cryptographic techniques 

with machine learning algorithms to provide a secure pipeline during a transaction involving image 

data between two parties, each with sensitive information [3]. They proposed a method that is a 

variant of AdaBoost under which a subset of features from the input image are selected that are 
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sufficient to classify a patch in an image. This allows partial information from an image to be 

utilized for algorithmic processing and hence could result in ensuring data privacy. 

 Conclusion 

Current approaches suggest that techniques of privacy preservation are effective but can be 

painfully slow, or they could suffer from data leakage. The work proposed in this thesis tries to 

leverage the spatial independence property of the frequency components extracted by the discrete 

cosine transform. We intend to keep our data in a form that is difficult to comprehend and visually 

identify due to spatial independence. The coefficients obtained after the process of transformation 

and quantization are thus analyzed to choose only those who are essential in performing a secure 

match between image pairs. 
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Face matching algorithm 

The thesis proposes a simple approach for a face-matching algorithm to preserve the privacy of a 

face in an image. The process involves computing a frequency transform of the detected facial 

image and representing the images as its frequency coefficients. This would render the image to 

be visually non-recognizable. The match between any two images, represented by their frequency 

coefficients, is defined through a similarity function that uses metrics including the cosine distance, 

correlation value, and the Manhattan distance to report a matching value. The three resulting values 

are combined, and an empirically derived threshold value is used to report a match. 

Let us assume we have an input image 𝐼𝑖𝑛𝑝𝑢𝑡 and another image 𝐼𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒  from a database 

of images that the input image is to be matched against. The discrete cosine transform, when 

applied to both the images, will result in the frequency transform 𝐼′𝑖𝑛𝑝𝑢𝑡 and 𝐼′𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒, which 

after quantization produces a quantized version of the transforms 𝐼′𝑖𝑛𝑝𝑢𝑡
𝑞

 and 𝐼′𝑑𝑎𝑡𝑎𝑏𝑎𝑠𝑒
𝑞

. The 

quantized versions are used to extract the feature vectors for the images that are utilized in 

computing the matching score. Figure 3.1 below illustrates the major components of the face 

matching process. Upcoming sections in this chapter explain the functioning and significance of 

the elements in detail. 
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 Frequency components of an image 

A real-life image captured by a camera is stored digitally in a 2D matrix defined by its width and 

height, where the values in the matrix represent the intensity values of the corresponding image 

pixels. There are other ways to express an image, namely by its Fourier transform, discrete cosine 

transform, or its wavelet transform. An image can broadly be described in terms of its low-

frequency and high-frequency elements in the Fourier or frequency space. Low-frequency 

elements tend to represent the image background or slowly varying visual components while the 

high-frequency components are often ephemeral forming structures like edges. Figure 3.2 below 

shows a 2D DCT of an image. The color scale on the right side shows the color red to represent 

coefficients with larger values while the color blue is used to indicate coefficients with smaller 

Input 

image 
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Min score 
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old
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Figure 3.1: Pipeline for the privacy-preserving matching algorithm. 
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values. The DCT transformed image itself shows frequencies ranging from low to high with lower 

frequency starting from the top-left and increasing from left to right and top to bottom. 

 

 
Figure 3.2: 2D image and its DCT transform. 

 

 

3.1.1 DCT  

The goal of applying a frequency transform on an image is to simplify an image into the sum of 

its sine and cosine components with different amplitudes [8]. A discrete Fourier transform is like 

a continuous Fourier transform known only at specific instants separated by a sample time. DFT 

is known for its computational efficiency but also has weak energy compaction as it calculates 

both the sine and cosine parts of an image. DCT [5], on the other hand, analyzes an image with 

few low-frequency components calculating only the cosine parts of the image resulting in the 

decorrelation of an input signal providing higher energy compaction.  DCT [5] was first proposed 

by Ahmed et al. in 1974. DCT [5] takes an image block as an input and transforms it into a linear 

combination of its basis functions. Each of the basis functions is unique and represents the 

DCT 

Log color map 

Lena image 
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decorrelated data. The DCT equation for an image 𝐼 of size 𝑀 ×𝑁 transformed into an image 𝐼′ 

is  

 

 𝐼′𝑝𝑞 = 𝛼𝑝𝛼𝑞 ∑ ∑𝐼𝑚𝑛

𝑁−1

𝑛=0

𝑀−1

𝑚=0

cos
𝜋(2𝑚 + 1)𝑝

2𝑀
 cos

𝜋(2𝑛 + 1)𝑞

2𝑁  3.1 

 

where 

 

 0 ≤ 𝑝 ≥ 𝑀 − 1 
3.2 

 

 0 ≤ 𝑞 ≥ 𝑁 − 1 
3.3 

 

 𝛼𝑝 =

{
 
 

 
 
1

√𝑀
, 𝑝 = 0

√2

√𝑀
, 1 ≤ 𝑝 ≤ 𝑀 − 1

 
3.4 

 

 𝛼𝑞 =

{
 
 

 
 
1

√𝑁
, 𝑞 = 0

√2

√𝑁
, 1 ≤ 𝑞 ≤ 𝑁 − 1

 
3.5 

 

As a DCT calculates only the cosine parts of the frequency representation of the image, the 

result depends on the horizontal, diagonal, and vertical components of the frequencies. The value 
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for the size of a DCT block is chosen to be 8 in this work, and thus an 8 × 8 block of DCT is 

represented by a predefined transformation matrix given in Figure 3.3. 

 

 
Figure 3.3: 8 × 8 discrete cosine transformation matrix. 

 

 

The matrix 𝑇 represents the transform matrix that is multiplied to each 8 × 8 image block 

to transform the corresponding pixel values to their frequency representation. 𝑇 is an orthogonal 

matrix, the columns of which are orthonormal to each other [10]. 

Let us consider the grayscale image in Figure 3.4 and its 8 × 8 block of pixels represented by a 

blue square in the upper left part of the image.  The pixel intensity values are shown on the right 

side of the figure. 

0.3536    0.3536    0.3536    0.3536    0.3536    0.3536    0.3536    0.3536 

0.4904    0.4157    0.2778    0.0975   -0.0975   -0.2778   -0.4157   -0.4904 

0.4619    0.1913   -0.1913   -0.4619   -0.4619   -0.1913    0.1913    0.4619 

0.4157   -0.0975   -0.4904   -0.2778    0.2778    0.4904    0.0975   -0.4157 

0.3536   -0.3536   -0.3536    0.3536    0.3536   -0.3536   -0.3536    0.3536 

0.2778   -0.4904    0.0975    0.4157   -0.4157   -0.0975    0.4904   -0.2778 

0.1913   -0.4619    0.4619   -0.1913   -0.1913    0.4619   -0.4619    0.1913 

0.0975   -0.2778    0.4157   -0.4904    0.4904   -0.4157    0.2778   -0.0975 

𝑇 = 

8 × 8 
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Figure 3.4: Lena image 8x8 block denoted on the image by the blue square and its corresponding 

pixel intensity values. 

 

 

A DCT works on the pixel values ranging from −128 to 128. We subtract 128 from each 

entry in the image block shown in Figure 3.4. The resulting matrix with the correct range for the 

pixels is shown in Figure 3.5. 

 

162 162 162 163 165 162 155 160 

162 162 162 163 165 162 155 160 

162 162 162 163 165 162 155 160 

160 163 160 159 159 156 155 156 

155 158 159 157 163 158 159 156 

156 156 156 155 158 157 159 158 

158 157 157 159 160 158 156 156 

158 159 155 158 155 151 157 156 

 

𝐼 =  
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Figure 3.5: 8 × 8 image block leveling and the resulting pixel values. 

 

 

After multiplying the image values with the values in the DCT transform matrix, we obtain the 

matrix in Figure 3.6. 

 

 
Figure 3.6: DCT coefficients of an 8 × 8 image block. 

  

34    34    34    35    37    34    27    32 

34    34    34    35    37    34    27    32 

34    34    34    35    37    34    27    32 

32    35    32    31    31    28    27    28 

27    30    31    29    35    30    31    28 

28    28    28    27    30    29    31    30 

30    29    29    31    32    30    28    28 

30    31    27    30    27    23    29    28 

𝐼 − 128 = 

247.3750   6.2619   -5.8351    0.7143    4.1250   -5.4437   -0.6949    0.9123 

15.3306    3.8938   -4.7945    0.8608    2.3670   -4.7028    4.8982   -1.6560 

1.5491    1.5286    0.6919   -0.4326    3.1823    0.9709    0.4508   -2.3150 

-1.3976   -5.3607   -1.1326    1.8457   -1.5784   -0.0535    1.0039    2.0622 

-3.1250    2.2919    1.2853   -1.8988   -1.3750    0.4214   -3.1031    0.8073 

0.6060    2.6198   -0.0861    0.3733    0.4852   -0.1866    1.2182   -1.5752 

-0.5064   -1.4340    2.2008   -0.5673    0.1701    0.4124   -0.1919   -0.0379 

3.2734   -1.7293   -4.0723    1.4173    0.6948   -0.8212    1.0147    0.9472 

 

 𝐼′ = 
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𝐼′ represents the transformed matrix in Figure 3.6, where each value corresponds to a coefficient 

number. Figure 3.7 illustrates the ordering of the coefficients from highest to lowest. 

 

DC AC AC AC AC AC AC AC 

AC AC AC AC AC AC AC AC 

AC AC AC AC AC AC AC AC 

AC AC AC AC AC AC AC AC 

AC AC AC AC AC AC AC AC 

AC AC AC AC AC AC AC AC 

AC AC AC AC AC AC AC AC 

AC AC AC AC AC AC AC AC 

Figure 3.7: AC and DC coefficients depicted in zig-zag order. 

 

 

The first component is called the DC component, the essence of the 8 × 8 transformed block. The 

rest are called the AC components, which are the combination of low and high-frequency elements 

that have a decreasing order of values when traversed in a zig-zag manner. High-frequency 

elements are the changes in the signal, which oscillate at a higher rate. The high order coefficients 

represent the small spanned rapid changes, and the low order coefficients represent the gradual 

changes in the image.  

 Quantization 

The frequency transform process is often followed by a quantization step to reduce the number of 

bits required to store the transformed values. This is useful in image compression but can also be 

used to make a decision regarding some of the transformed information to retained or to be 

discarded. A quantization matrix [10] is used to perform this process. The standard quantization 
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table [10] to perform compression representing a level of 50 as per the JPEG standard is given in 

Figure 3.8. 

 

 
Figure 3.8: Quantization matrix at compression level of 50 as per the JPEG standard. 

 

 

A different quantization matrix can be obtained by the following equation [10] given 

below. 

 

 𝑄𝑛 = 𝑓(𝑥) = {

100 − 𝑛

50
𝑄50, 𝑛 < 50

50

𝑛
      𝑄50, 𝑛 > 50

 
3.6 

 

where 

𝑛 > 50 - represents less compression and better quality. 

𝑛 < 50 - represents more compression and less quality. 

16   11   10   16   24   40   51   61 

12   12   14   19   26   58   60   55 

14   13   16   24   40   57   69   56 

14   17   22   29   51   87   80   62 

18   22   37   56   68   109 103 77 

24   35   55   64   81   104 113 92 

49   64   78   87   103 121 120 101 

72   92   95   98   112 100 103 99 

Q50 = 
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Quantization is performed by dividing each element of the matrix 𝐼’ by the corresponding 

element in the quantization matrix and finally rounding the values to the nearest integers. The 

matrix given below in Figure 3.9 represents an example of a resultant quantized matrix. 

 

 𝐶𝑖,𝑗 = 𝑟𝑜𝑢𝑛𝑑 (
𝐼′𝑖,𝑗

𝑄𝑖,𝑗
) 

3.7 

 

 
Figure 3.9: Final quantized matrix applied to the image block rendering the higher-order 

coefficients zero. 

 

 

As we can observe, the values in the upper left side of the matrix represent the low 

frequencies to which the human eye responds well. The quantization saves these values, whereas 

the values corresponding to the higher frequencies are rounded to zero as they carry redundant 

information. The choice of the quantization matrix can produce a varying number of zeroes in the 

high-frequency positions. The quantization matrix used in this thesis is 𝑄50.  

  

10   4   2    5     1   0   0   0 

3     9   1    2     1   0   0   0 

-7   -5   1   -2   -1   0   0   0 

-3   -5   0   -1     0   0   0   0  

-2   -1   0     0    0   0   0   0 

  0   0    0    0     0   0   0   0 

  0   0   0     0     0   0   0   0 

𝐶 = 
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 Feature vector 

Mathematically a vector is viewed and understood as an object which has magnitude and direction 

in some vector space of a specific dimensionality. In computer vision and machine learning, we 

define another term complementing the vectors called feature vectors. A feature represents an 

attribute of an object. A feature vector is defined as a set of values for a specific attribute, organized 

in a row or column vector. 

A feature vector is a convenient method of representing the many data points in space. The 

matrix of the quantized values is used to extract the feature vectors. In a DCT of an image, we 

have the coefficients ordered from high to low in a zigzag traversal, as depicted in Figure 3.7. The 

very first element in Figure 3.7 represents the frequency element, which contains the highest value 

in the entire block. This reflects the strength of the energy present in a DC component. We use the 

following naming convention for every coefficient in that matrix. Let us assume we have the 

coefficients in the zigzag order in a list called 𝐶 = [𝐶𝑜𝑒𝑓𝑓 − 1, 𝐶𝑜𝑒𝑓𝑓 − 2,… , 𝐶𝑜𝑒𝑓𝑓 − 64]. 

Given an image of size 256 ×  256, we can divide it into non-overlapping blocks, each of size 

8 × 8. The division results in a total of 1024 blocks for that image, each of which is transformed 

into their frequency domain using DCT. The quantization matrix reduces the coefficients of low 

value to zero leaving only a few non-zero coefficients in every block. The quantized image blocks 

are each processed one by one to extract the corresponding coefficient values and place them under 

their respective coefficient numbers. 

Every coefficient vector is a column vector which can be given by  

 

 𝐶𝑜𝑒𝑓𝑓𝑖 = [𝐶𝑜𝑒𝑓𝑓 − 𝑖𝑏1 , 𝐶𝑜𝑒𝑓𝑓 − 𝑖𝑏2 , 𝐶𝑜𝑒𝑓𝑓 − 𝑖𝑏3 , … , 𝐶𝑜𝑒𝑓 − 𝑖𝑏1024] 3.8 
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where 𝑖 ranges from 1 to 64. 

Thus, the feature extraction results in a total of 64 column vectors, each of size 1024. 

Hence the size of the coefficient feature matrix is 1024 × 64. 

 

 𝐶𝑜𝑒𝑓𝑓_𝐹𝑉 = [

𝐶𝑜𝑒𝑓𝑓 − 1𝑏1 ⋯ 𝐶𝑜𝑒𝑓𝑓 − 64𝑏1
⋮ ⋱ ⋮

𝐶𝑜𝑒𝑓𝑓 − 1𝑏1024 ⋯ 𝐶𝑜𝑒𝑓𝑓 − 64𝑏1024

]

 1024×64

 
3.9 

 

 As every coefficient in a quantized block is a unique feature of the 8 × 8 image block, 

while calculating similarity scores between the feature vectors, we collect the values from the 

quantized blocks under similar features. The reasoning behind the approach is that if two images 

are the same, then their unique frequency components must remain the same. This assumption is 

the foundation of the application of the similarity functions, namely cosine distance, correlation 

value, and Manhattan distance, which are expected to produce a high score for cosine distance and 

correlation value calculations and a low score for Manhattan distance calculation. 

Every coefficient feature vector is processed separately, and the similarity scores of each 

of the feature vectors are independent in deciding a face match. The reason to consider the feature 

vectors independently is to understand the similarity score pattern they carry amongst them. This 

kind of analysis is of importance in determining the number of coefficients we must include in the 

decision process while preserving the identity of the face image. Figure 3.10 below shows the 

process of feature extraction. 
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Figure 3.10: Coefficient feature extraction process. 

 

 

 Similarity functions 

This section explains the working and significance of the similarity functions in detail.  

3.4.1 Cosine distance 

The cosine similarity calculates the angle of cosine between two vectors in the same vector space.  

The orientation of a vector is important in a vector space as two vectors despite having the same 

magnitude may end up being completely different from each other. In situations when we have 

large sets of data, we often need a measure that can compare two objects and best describe their 

similarity in terms of their orientations in the vector space. A cosine similarity measure is the dot 

product of the vector quantities given below. 

Calculate 8 × 8 

DCT of each 

such block 

Divide the image into 

non-overlapping blocks 

1 

Coefficient 

feature vectors 

64 3 2 

………. 

………. 
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𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = cos 𝜃 =

𝐴. 𝐵

‖𝐴‖‖𝐵‖
=  

∑ 𝐴𝑖𝐵𝑖
𝑛
𝑖=1

√∑ 𝐴𝑖
2𝑛

𝑖=1  √∑ 𝐵𝑖
2𝑛

𝑖=1

 

3.10 

 

 
Figure 3.11: Vectors A and B with (a) Similar, (b) Orthogonal, and (c) Opposite cosine relation. 

 

 

Figure 3.11 above illustrates the results of a cosine similarity score in a 2D Euclidean space. 

Calculating cosine similarity requires non-zero vectors for the calculation. A zero vector represents 

a non-existent magnitude and hence, a non-existent orientation. This requirement carries a 

significance in analyzing the role every coefficient feature vector plays in the decision-making 

process. The fact that after quantization, many of the low order high-frequency elements are zero 

removes specific coefficient feature vectors from the decision-making process. The range of the 

cosine similarity lies from −1 to 1, with −1 representing the opposite and 1 representing identical 

entities. Figure 3.12 shows the feature vectors extracted from each of the images as the inputs to 

the cosine similarity function.  

(a) (b) 

 

(c) 

 

A 
A 

A 

B 
B 

B 
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Figure 3.12: Feature vectors each of size 1024 × 64 are inputs to the cosine similarity function, 

which outputs the score for each of the 64 coefficients represented by the log color map ranging 

from −1 to 1. 

 

 

3.4.2  Correlation value 

The correlation measures the linear dependence between two variables. Pearson’s correlation 

coefficient is used to calculate the correlation between the pair of the coefficient feature vectors. 

The equation for Pearson’s correlation is below. 

 

 𝑟𝑋𝑌 =
∑(𝑋 − 𝑋̅)(𝑌 − 𝑌̅)

𝑛𝑆𝑋𝑆𝑌
 

3.11 

 

where 

𝑋 and 𝑌 represent the subject variables or in our case, the feature vector pairs. 

𝑋 and 𝑌 have a positive linear relationship if the value of 𝑟𝑋𝑌 = 1. 
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𝑋 and 𝑌 have a negative linear relationship if the value of 𝑟𝑋𝑌 = −1. 

𝑋 and 𝑌 have no linear relationship if the value of 𝑟𝑋𝑌 = 0. 

The significance of calculating the correlation score helps us to reduce the number of 

coefficient feature vector we would use in the decision-making process. In the absence of the 

variance of each of the feature vectors, a condition arises where the correlation score results in not 

a number value denoted by NAN. The NAN score can be thus analyzed to understand the pattern 

of low-frequency and high-frequency components in the set of feature vectors. A correlation 

matrix best represents the correlation scores between the variables. Figure 3.13 shows the feature 

vectors extracted from each of the images as the inputs to the correlation similarity function and 

the resulting correlation values. 

 

 
Figure 3.13: Feature vectors each of size 1024 × 64 are inputs to the correlation similarity 

function, which outputs the score for each of the 64 coefficients represented by the log color map 

ranging from −1 to 1. 
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3.4.3  Manhattan distance 

The Manhattan distance introduced by Hermann Minkowski is also known as the L1 norm or city 

block distance. It is the measure of the distance between two points in an N-dimensional vector 

space. Given a 2D vector space, let us suppose we have points 𝐴 (𝑥1, 𝑦1) and 𝐵 (𝑥2, 𝑦2). The 

equation below provides the Manhattan distance between points 𝐴 and 𝐵. 

 

 |𝑥1 − 𝑥2| + |𝑦1 − 𝑦2| 3.12 

 

Regression analysis and frequency distribution applications very frequently use the 

Manhattan distance. The frequency distribution application utilizes the benefits of this metric to 

find out similar frequency distributions in a pair of images. The Manhattan distance has been used 

previously in the process of facial recognition in [7]. The range of the score calculated can range 

from 0  𝑡𝑜 + ∞. Figure 3.14 shows the feature vectors extracted from each of the images as the 

inputs to the Manhattan similarity function and the resulting distance values. 
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Figure 3.14: Feature vectors each of size 1024 × 64 are inputs to the Manhattan similarity 

function, which outputs the score for each of the 64 coefficients represented by the log color map 

ranging from −1 to 1. 

 

 

 Preprocessing 

The preprocessing step in the algorithm is used to maintain a standard format for all the images to 

be processed. In this work, we have converted all the images to the grayscale format with size 

256 × 256. In Figure 3.15, we show the preprocessing of an input image before we proceed to the 

coefficient wise feature extraction. 
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Figure 3.15: Image preprocessing steps. 

 

 

 Image variants 

In the process of image matching algorithm, an essential component is a threshold. In the absence 

of a threshold, we would not be able to decide on a face match. To establish an empirical value for 

the threshold, we generated five affine variants of an image, as explained in this section. Image 

variants are created to analyze the differences in the thresholds. Given the affine transforms, we 

are analyzing the strength of the coefficients in the order from high to low.  

  The variants were created by following the concept of geometric affine transforms of an 

image [1]. The geometric transform of an image is the process of modifying the locations of the 

pixel values from one point in an image to another image. A list of geometric transforms includes 

translation, rotation, scaling, and many more. 

We chose these four transforms, namely translation, rotation, scaling, and shear, to create 

image variants. We also created a transform called Puzzle. Geometric transforms can generalize 

by the equation given below. 

Resize to 

256x256 

 

Grays

cale? 

Convert to 

grayscale 

No 

conversion 

no yes Input-

image 



 

27 

 

 𝐹𝑜𝑟𝑤𝑎𝑟𝑑 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 → 𝑔(𝑥, 𝑦) = 𝑓(𝑢(𝑥, 𝑦), 𝑣(𝑥, 𝑦)) 
3.13 

 

 𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 → 𝑓(𝑢, 𝑣) = 𝑔(𝑥(𝑢, 𝑣), 𝑦(𝑢, 𝑣)) 
3.14 

 

The transform can be represented in a 2D Cartesian coordinate, as shown in Figure 3.16 below. 

 

 
Figure 3.16: A general forward and inverse geometric transform. 

 

 

The coordinate pair (𝑢, 𝑣) represents a pixel in the original image which is transformed into the 

coordinate pair (𝑥, 𝑦) in the new image. 

3.6.1  Translation 

Translation of an image is the mapping of the image pixels using a transformation matrix 𝑇 in 

Equation 3.16 depicted in Figure 3.17 and described by Equation 3.13.  

Forward Transform 

Inverse Transform 

(𝑢, 𝑣) 

(𝑥, 𝑦) 
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Figure 3.17: Translation of an input image from a vector space (𝑥, 𝑦) to (𝑣, 𝑢). 
 

 

 𝑣 = 𝑥 + 𝑡 
𝑢 = 𝑦 + 𝑡 

3.15 

 

The translation matrix for a 2D affine geometric transform used in this thesis is the following 

 

 𝑇 =
1 0 0
0 1 0
100 0 1

 
3.16 

 

3.6.2 Rotation 

The rotation transform maps a pixel 𝑈 located at (𝑢, 𝑣) to a new pixel 𝑋 located at (𝑥, 𝑦) by 

rotating it by an angle 𝜃. The transformation matrix for the rotation transform is given by the 

following equation. 

 𝑋 = 𝑅𝑈,    𝑈 = 𝑅𝑇𝑋 
3.17 

𝑦 

𝑥 

𝑡𝑣, 𝑡𝑢 

𝑢 

𝑣 
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where 

 𝑅 = [
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
𝑠𝑖𝑛𝜃 𝑐𝑜𝜃

] 
3.18 

 

Figure 3.18 below illustrates the output of a rotation transform on an input image. 

 

 
Figure 3.18: Rotation of an input image by an angle of 30 around the origin. 

 

The rotation angle 𝜃 used in this thesis is 30 and results in the following rotation matrix. 

 

 

cos (30) sin (30) 0
−sin (30) cos (30) 0

0 0 1

 
3.19 
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3.6.3 Shear 

The shear transform changes the position of the pixels, so that the output is the slanted version of 

the original object. The value used in this work to change the 𝑦 and 𝑥 coordinates proportionally 

is 0.5. Figure 3.19 represents the shear transform applied to an input image and is described by 

Equation 3.20. 

 

 

1 0 𝑎 0 𝑥  𝑥 + 𝑎𝑧  𝑋’ 

0 1 𝑏 0 𝑦 = 𝑦 + 𝑏𝑧 = 𝑌’ 

0 0 1 0 𝑧  𝑧  𝑍′ 

0 0 0 1 1  1  1 

 

3.20 

 

 
Figure 3.19: The Shear transformation of an input image. 
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3.6.4 Scale 

Scaling of an image causes the magnification or diminution of that image, transforming a pixel 𝑈 

located at (𝑢, 𝑣) to a new pixel 𝑋 located at (𝑥, 𝑦). The scale factor used in the transform matrix 

shown in Equation 3.21 is 5. 

 

 
5 0 0
0 5 0
0 0 1

 
3.21 

  

We can scale an image by following Equation 3.22 

 𝑋 = 𝑆𝑈,     𝑈 = 𝑆−1𝑋. 
3.22 

 

The Figure 3.20 given below shows the scaling of an input image. 

 

 
Figure 3.20: Scale transformation of an input image. 
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3.6.5  Puzzle 

The transform called “Puzzle” is a straightforward concept of generating random pixel locations 

within the limits of the image width and height to create a puzzle of an image. We divided an 

image into non-overlapping image blocks of size 8 × 8 and then shuffled their locations based on 

a random number generator. The random number generator generates the numbers in the range of 

the image width and height. Figure 3.21 depicts the process of generating a puzzle transform. 

 

 
Figure 3.21: Transforming an input image to jumbled pieces. 

 

 

 Not a number 

This section provides details about how a coefficient’s significance depends upon individual 

factors for each of the similarity functions. We encounter the “not a number” or “NAN” situation 

because of division by zero. We calculated the number of times we encountered NAN for every 
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coefficient feature vector.  The Aberdeen dataset [1] has 687 images. Figure 3.22 shows the graph 

that represents the NAN scores calculated for all images in the Aberdeen dataset. The Y-axis of 

the graph represents the number of NAN values, and the X-axis represents the coefficient feature 

vectors from 1,2, … ,64.  

 

 
Figure 3.22: Graph representing the total number of images for which the cosine and correlation 

of the coefficients are NAN. The Y-axis represents the number of images that were calculated to 

have NAN, and X-axis represents the coefficient numbers. 

 

 

• As mentioned earlier, a cosine metric is impossible to calculate in the presence of a 

zero vector. Many of the high-frequency coefficients are rendered zero after the 

quantization step. The zeros in the high order coefficient positions result in zero 

magnitude feature vectors at the higher orders and hence make it impossible to calculate 

a cosine score.  
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• Under correlation, the coefficients due to the absence of variance in the feature vector 

set to result in a NAN value as a score.  

• The Manhattan distance does not suffer from these effects created by a zero vector or 

a non-varying feature vector. Instead, we observed elementary effects after 

quantization for a Manhattan score, where if the two coefficient vectors were rendered 

0, their distance metric resulted in a value 0. A 0 value helped to eliminate those 

coefficient feature vectors from the list of the credible feature vectors. 

 Conclusion 

In this chapter, we explained the components involved in the privacy-preserving face matching 

algorithm. We observed how the quantization step results in a varying number of zeros in the high 

order coefficient positions. This, in turn, has specific implications in the use of the resulting 

coefficient feature vectors for the purpose of computing a similarity score between two feature 

vectors. 
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Datasets 

In this section, we describe the datasets utilized in the process of testing the utility of the proposed 

matching process. Two datasets are used, namely: 

• 2D Face sets - Aberdeen 

• 2D Face sets - Utrecht ECVP 

2D face sets are a collection of images used primarily for psychological experiments. The 

dataset is comprised of facial images of subjects with varying pose and expression. In the 

upcoming sections, we describe the arrangement of the dataset and the extraction process of the 

data in order to create the ground truth and the test set. 

 2D Face sets 

2D Face Sets [1] is the collection of the image data conducted by the Psychological Image 

Collection at Stirling. There are nine image sets, namely Aberdeen, Iranian women, Nottingham 

scans, Nott-faces-originals, Stirling faces, Pain expressions, Pain expression subset, Utrecht 

ECVP, Mooney_LR, and Mooney_MF. Out of these nine sets, we have used two of the image sets 

to create a ground truth set and test set. 

4.1.1 Aberdeen 

There are 687 Color faces from Ian Craw at Aberdeen. The images belong to 90 individuals with 

variations in lighting and viewpoint, as shown in the sample images in Figure 4.1. The resolution 

of the images varies from 336 × 480 to 624 × 544.  
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Figure 4.1: Aberdeen dataset image samples representing the viewpoint and lighting variations in 

the dataset. 

 

 

The ground truth dataset created from this set of images involves all the 687 images for each of 

which we have created the five transformation variants, as shown in Figure 4.2. 

 

Figure 4.2: Aberdeen dataset image and its variants (a) puzzle, (b) rotate, (c) scale, (d) shear, and 

(e) translate. 

 

 

 

(a) Puzzle (b) Rotate (c) Scale (d) Shear (e) Translate 
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4.1.2 Utrecht ECVP 

There are 131 images of 49 men and 20 women with neutral faces and faces with a smile collected 

at the European conference on visual perception in Utrecht in 2008. The resolution of the images 

varies from 900 × 1200. Figure 4.3 shows sample images from this dataset. 

 

      

Figure 4.3: Utrecht dataset image samples. 

 

 

We have created the transformation variants for all 131 images to create the ground truth. Figure 

4.4 shows the variants of an example image from the dataset. 

 

 
Figure 4.4: Utrecht dataset image and its variants (a) puzzle, (b) rotate, (c) scale, (d) shear, and (e) 

translate. 

 

(a) Puzzle (b) Rotate (c) Scale (d) Shear (e) Translate 
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 Significance of different sets in creating ground truth 

 We have created the ground truth using the Aberdeen dataset, which contains multiple images of 

the same person, and we have created another ground truth dataset which does not contain multiple 

images of the same person. We chose to create two ground truth datasets so that we can observe a 

pattern in the average and mode threshold scores, if any. Also, the number of images in the two 

databases is different, which can illuminate the differences in the thresholds. It was of importance 

to perform testing under such a set up as we wanted to analyze the behavior of the coefficients 

individually. Therefore, it is essential to note that the experiments involving the ground truth set, 

test set creation, and threshold calculations had been carried out for all the 64 coefficients 

separately.  
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Experiments and results 

In this chapter, we report the experiments performed and the results obtained. We also discuss in 

detail how we have prepared our ground truth, test set, and the process of thresholding. We report 

the average accuracy across the test sets for the two databases separately. 

 

 Ground truth set  

The ground truth set is the set of images for which we have calculated the five variants using the 

affine transformations defined in Chapter 3. The significance of these variants is to observe a 

pattern in the threshold values calculated over the entire dataset. We calculated the average and 

mode threshold for every coefficient number from 1 𝑡𝑜 64 across all the image-variant pairs. 

Given a dataset has a total number of 𝑥 images, the total number of image-variant pairs are 5 × 𝑥. 

 

 𝑇𝑜𝑡𝑎𝑙 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠 = 5 ×  𝑥 5.1 

 

 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 =

{
 
 
 

 
 
  Correlation𝑖  

∑ 𝑠𝑐𝑜𝑟𝑒𝑇𝑜𝑡𝑎𝑙 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠
1

𝑇𝑜𝑡𝑎𝑙 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠

 Cosine𝑖  
∑ 𝑠𝑐𝑜𝑟𝑒𝑇𝑜𝑡𝑎𝑙 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠
1

𝑇𝑜𝑡𝑎𝑙 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠

 Manhattan𝑖  
∑ 𝑠𝑐𝑜𝑟𝑒𝑇𝑜𝑡𝑎𝑙 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠
1

𝑇𝑜𝑡𝑎𝑙 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠

         𝑖 = 1 𝑡𝑜 64 
5.2 
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 𝑀𝑜𝑑𝑒 =  {

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑖(𝐿𝑖𝑠𝑡[𝑆𝑐𝑜𝑟𝑒 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠])
𝐶𝑜𝑠𝑖𝑛𝑒𝑖(𝐿𝑖𝑠𝑡[𝑆𝑐𝑜𝑟𝑒 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠])

𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛𝑖(𝐿𝑖𝑠𝑡[𝑆𝑐𝑜𝑟𝑒 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠])
  𝑖 = 1 𝑡𝑜 64 

5.3 

 

 

Figure 5.1 shows the process of ground truth construction for a dataset. 

 

 
Figure 5.1: Ground truth construction by creating variants of an image. For an image-variant pair, 

we calculated cosine, correlation, and Manhattan scores. The threshold for the entire dataset was 

calculated by averaging the scores across all such image-variant pair. 
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𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = 
𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝑅_𝑖, 𝑆_𝑖, 𝑆𝐿_𝑖, 𝑇_𝑖, 𝑃_𝑖) 

 
𝑀𝑜𝑑𝑒(𝑅_𝑖, 𝑆_𝑖, 𝑆𝐿_𝑖, 𝑇_𝑖, 𝑃_𝑖) 

𝐶𝑜𝑠𝑖𝑛𝑒 = 
𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝑅_𝑖, 𝑆_𝑖, 𝑆𝐿_𝑖, 𝑇_𝑖, 𝑃_𝑖) 

 
𝑀𝑜𝑑𝑒(𝑅_𝑖, 𝑆_𝑖, 𝑆𝐿_𝑖, 𝑇_𝑖, 𝑃_𝑖) 

𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛 = 
𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝑅𝑖 , 𝑆𝑖, 𝑆𝐿𝑖, 𝑇𝑖, 𝑃𝑖) 

 
𝑀𝑜𝑑𝑒(𝑅_𝑖, 𝑆_𝑖, 𝑆𝐿_𝑖, 𝑇_𝑖, 𝑃_𝑖) 

where 𝑖 = 1 to Total 

number of images in 

dataset 
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 Test set 

The test set construction involves the following steps: 

• For every dataset, we extracted 50 images at random as the 50 faces that we want to match. 

• The rest of the images in the dataset becomes the database images. 

• We matched every face against the database for which we calculate the accuracy. 

• We have repeated the above steps ten times, and the accuracy calculated for every test set 

is then averaged over the 10-test sets. 

• To match an image pair, we have used two types of thresholds – average and mode. The 

matching is performed for every coefficient number separately. 

• Figure 5.2 illustrates the process of test set generation. 

 

 𝐴𝑣𝑒𝑟𝑎𝑔𝑒_𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

{
  
 

  
 
∑ 𝑇𝑒𝑠𝑡_𝑆𝑒𝑡𝑖
10
𝑖=1

10
∑ 𝑇𝑒𝑠𝑡_𝑆𝑒𝑡𝑖
10
𝑖=1

10
∑ 𝑇𝑒𝑠𝑡_𝑆𝑒𝑡𝑖
10
𝑖=1

10

 
5.4 
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Figure 5.2: A pictorial representation of how the original database is split into a test set and a 

database set, such as the database is shown here, has a total of 12 images that results in a test set 

of 5, and a database set of 7 images. 

 

 

 Thresholding 

Thresholding is the process where we obtain a value for an algorithm, which in turn aids the 

algorithm to make a certain kind of decision. In order to obtain such a significant value, we thought 

it would be interesting to experiment with two things, namely the average and the mode. As we 

have calculated the scores reflecting a match between the image-variant pairs, the prior knowledge 

about the pair belonging to the same person intrigued us to find out the central tendency among 

those scores for every coefficient. 

• An average would reflect such a central tendency among the list of values. 

• The mode of a list of numbers represents the value that is repeated most in the set and the 

minimum number in the list in the absence of a frequently used value. With the prior 

knowledge about the image-variant pair and the property of a number selected as the mode 
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of the list, we thought we could observe a pattern in the similarity scores calculated between 

the image-variant pairs.  

We have calculated the average and mode thresholds for each of the similarity functions, 

namely cosine, correlation, and Manhattan, of the two datasets. The figures below reflect the 

importance of every coefficient number for every similarity function under two datasets separately. 

We have represented the NAN values for the coefficients by the value −3 and zeroes obtained 

after calculating the scores by −4. This representation was adopted as we wanted to distinguish 

between the zeroes and NAN by looking at the charts themselves; otherwise, there was no 

distinction. Also, the zero values were hard to distinguish from minimal values. For the ground 

truth dataset for Aberdeen, we calculated the thresholds - average and mode for cosine, correlation, 

and Manhattan. We report the behavior of the coefficients under different similarity functions.  

5.3.1 Aberdeen 

In this section, we report the values for mode and average for every coefficient calculated over the 

entire ground truth set, which contains 687 images. The values thus are calculated over 687 × 5 =

3435 similarity function scores. 

5.3.1.1 Manhattan 

• The mode for the coefficients numbered from 1 to 21 has values very close to 0. This kind 

of behavior represents that most of the image-variant pairs have often had small Manhattan 

distances between them.  

• As quantization reduces the coefficients, the average values of the Manhattan distance for 

the same coefficients decrease with increasing coefficient indices. 
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• The coefficients arranged in the decreasing order of their horizontal and vertical 

frequencies traversed in a zig-zag manner represent the higher indices with lower mode 

and average values. 

• The Manhattan scores are normalized in the range [0,1] before calculating the average and 

mode that are plotted in the graphs shown in Figures 5.3 and 5.4. 

 

 
Figure 5.3: Manhattan mode and average threshold values for coefficient feature vectors from 1 to 

32 on Aberdeen dataset. The Y-axis represents the normalized values, and the X-axis represents 

the coefficient numbers organized in a zig-zag traversal. 
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Figure 5.4: Manhattan mode and average threshold values for coefficient feature vectors from 33 

to 64 on Aberdeen dataset. The Y-axis represents the normalized values, and the X-axis represents 

the coefficient numbers organized in a zig-zag traversal. 

 

 

• The mode for the coefficients numbered from 22 to 64 is 0. A 0 value shows how 

quantization produces minimal values in the higher positions in the coefficient list. Even 

in the absence of a most frequently occurring value, a 0 value reflects the presence of 0 or 

smaller values after the quantization process. 

5.3.1.2 Correlation 

• A score of NAN after calculating the correlation score is due to the absence of the variance 

in the feature vectors, which is the result of the zeros in the higher coefficient indices. 

• The mode stops existing after coefficient number 10 because of the quantization transform 

values. The coefficients at the indices from 11 to 64 are 0 because of quantization, which 

produces small values at those indices, as shown in Figures 5.5 and 5.6. 
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Figure 5.5: Correlation mode and average threshold values for coefficient feature vectors from 1 to 

32 on Aberdeen dataset. The Y-axis represents the normalized values, and the X-axis represents 

the coefficient numbers organized in a zig-zag traversal. 

 

 

Figure 5.6: Correlation mode and average threshold values for coefficient feature vectors from 33 

to 64 on Aberdeen dataset. The Y-axis represents the normalized values, and the X-axis represents 

the coefficient numbers organized in a zig-zag traversal. 
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• The average value for most of the high order coefficients from 22 to 64 does not exist due 

to the presence of the NAN. 

• It is interesting to observe how, among 64 coefficients, there are only a few which retain a 

valid average and mode value. 

5.3.1.3 Cosine 

• Calculating the cosine similarity involves the norm of a vector, and thus, when the 

norm is 0, the similarity score ceases to exist, resulting in NAN for average. 

• As we observe in the charts in Figures 5.7 and 5.8, the mode only exists for the first 

three coefficients, whereas the mode for coefficients indexed from 22 to 64 again 

follows to be 0. 

• As we are averaging the values across all the similarity scores in the ground truth 

dataset, the NAN values due to the zero vectors make the thresholds for the 

coefficients at the higher indices NAN, and hence those coefficients are excluded 

from the decision-making process. 
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Figure 5.7: Cosine mode and average threshold values for coefficient feature vectors from 1 to 32 

on Aberdeen dataset. The Y-axis represents the normalized values, and the X-axis represents the 

coefficient numbers organized in a zig-zag traversal. 

 

 

Figure 5.8: Cosine mode and average threshold values for coefficient feature vectors from 33 to 

64 on Aberdeen dataset. The Y-axis represents the normalized values, and the X-axis represents 

the coefficient numbers organized in a zig-zag traversal. 
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5.3.2 Utrecht ECVP 

In this section, we report the values for mode and average for every coefficient calculated over the 

entire ground truth set, which contains 131 images. We have calculated the ground truth with 73 

images, excluding multiple images. The values thus are calculated over 73 × 5 = 365 similarity 

function scores. 

5.3.2.1 Manhattan 

• We can observe from Figures 5.9 and 5.10 below, how the average values exist through all 

the coefficients but with decreasing values.  

 

Figure 5.9: Manhattan mode and average threshold values for coefficient feature vectors from 1 to 

32 on Utrecht dataset. The Y-axis represents the normalized values, and the X-axis represents the 

coefficient numbers organized in a zig-zag traversal. 

 



 

50 

 

• It is interesting to observe how the mode threshold does not exist for the first 35 

coefficients, whereas, from 36 to 64, we see the NAN values. 

Figure 5.10: Manhattan mode and average threshold values for coefficient feature vectors from 

33 to 64 on Utrecht dataset. The Y-axis represents the normalized values, and the X-axis 

represents the coefficient numbers organized in a zig-zag traversal. 

 

 

5.3.2.2 Correlation 

• The mode exists for coefficient indices 1 to 10, whereas the average exists for the 

coefficients from 1 to 15 as shown in Figures 5.11 and 5.12 below. 
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Figure 5.11: Correlation mode and average threshold values for coefficient feature vectors from 

1 to 32 on Utrecht dataset. The Y-axis represents the normalized values, and the X-axis represents 

the coefficient numbers organized in a zig-zag traversal. 

 

 

Figure 5.12: Correlation mode and average threshold values for coefficient feature vectors from 

33 to 64 on Utrecht dataset. The Y-axis represents the normalized values, and the X-axis 

represents the coefficient numbers organized in a zig-zag traversal. 
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• The mode and the average both stop existing for higher coefficients. 

5.3.2.3 Cosine 

• As shown in Figures 5.13 and 5.14, a similar pattern is observed for the cosine mode and 

average threshold values for each of the coefficients when compared to the values for the 

correlation similarity function. 

• Although the mode threshold can be seen to attain a positive value for the first coefficient.  

Figure 5.13: Cosine mode and average threshold values for coefficient feature vectors from 1 to 

32 on Utrecht dataset. The Y-axis represents the normalized values, and the X-axis represents the 

coefficient numbers organized in a zig-zag traversal. 
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Figure 5.14: Cosine mode and average threshold values for coefficient feature vectors from 33 to 

64 on Utrecht dataset. The Y-axis represents the normalized values, and the X-axis represents the 

coefficient numbers organized in a zig-zag traversal. 
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 Average accuracy 

We have calculated the average accuracy across 10 test sets each for Aberdeen and Utrecht ECVP. 

Each test set contains 50 random images; we have matched each against the images into the 

respective databases. We calculated the accuracy for each test over 50 images, and then the 

accuracy from each test set is averaged over 10 test sets. Table 5.1 below shows the average 

accuracy of the Utrecht dataset. 

 

 

Table 5.1: The percentage average accuracy values for Utrecht 

Coefficient 

Numbers 

Average 

(%) 

Mode 

(%) 

1 0.194 0 

2 0.094 0 

3 0.088 0 

4 0.086 0 

5 0.084 0 

6 0.082 0 

7 0.08 0 

8 0.076 0 

9 0.048 0 

10 0.014 0 

11 0 0 

12 0 0 

13 0 0 

14 0 0 

15 0 0 

 

 

 

Table 5.2 below shows the average accuracy of the Aberdeen dataset. 
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Table 5.2: The percentage average accuracy values for Aberdeen 

Coefficient 

Number 

Average 

(%) 
Mode 

(%) 

1 14.8 0 

2 4.4 0 

3 2.4 0 

4 1.6 0 

5 1.2 0 

6 1 0 

7 1 0 

8 0.6 0 

9 0.2 0 

10 0.2 0 

11 0 0 

12 0 0 

13 0 0 

14 0 0 

15 0 0 

16 0 0 

17 0 0 

18 0 0 

19 0 0 

20 0 0 

21 0 0 
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Conclusions and future work 

 Conclusion 

After analyzing the coefficients in the process of face matching, we observe how there are only a 

first few coefficients that contribute towards calculating an average and a mode threshold. The 

pattern of recurring NAN was interesting as it existed for the coefficients at the higher indices. 

Therefore, different quantization matrices may produce different results. It gives us an insight into 

the significance of the coefficients at the lower indices and the importance to choose a proper 

quantization matrix. This helps us to drop the coefficients at the higher indices without any worry 

as they do not play an essential role in decision-making. While fewer coefficients help us reduce 

the number of coefficient feature vectors involved in the process, this also allows us to store the 

data in a compact form which can be understood or recreated without complete coefficient 

information; this provides a reliable method to obfuscate the visual appearance of a face in an 

image.  We also observed that Aberdeen produced lower average threshold values as compared to 

the Utrecht ECVP dataset. As well, several significant coefficients were dropped in the Utrecht 

ECVP as compared to Aberdeen; the reason may lie in the fact that the images in Utrecht ECVP 

were fewer than in Aberdeen.  

The process of thresholding, which included the use of average and mode values of the 

coefficient feature vector similarity calculations, clearly indicates that the use of average values 

for thresholding is a better option compared to the use of mode value. The similarity functions 

cosine and correlation show similar results for the average threshold values. We observe that for 
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cosine and correlation, the coefficients which actively participate in the decision-making span from 

1 to 22, whereas for Manhattan, the coefficient number increases to 26 but not with a significant 

increase or difference in the value of the threshold score. 

The average accuracy produced for average and mode thresholds reflects how mode as a 

threshold is not useful in this process. However, the average thresholds are not sufficient; thus, we 

require an improved threshold metric. 

  Future work 

As exciting it was to observe the behavior of the DCT coefficients in the process of face matching 

while preserving the identity, it would be even more interesting to see its behavior at different 

quantization levels. We need to employ a better threshold method to obtain better average 

accuracy. We also need to experiment on a larger dataset to obtain more clarity about the patterns 

the coefficients exhibit. We want to extend the experiment to test the combination of the 

coefficients in matching the faces and preserving the privacy. Machine learning has become the 

backbone of computer society; therefore, in future work on these algorithms, we expect to include 

machine learning algorithms in the proposed method. As mentioned earlier, the quantization 

matrices affect the number of significant coefficients in the face matching process, and thus it 

would be interesting to calculate a quantization matrix for the process, which results in higher 

average accuracy and better privacy preservation. 
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