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Abstract

In order to make apps functional, mobile operating systems, such as Android, allow

applications to access some system data without asking for user permission. We

demonstrate that by analyzing these system data and some side channel information,

it is possible to gain insight into a smartphone user’s behavior, thus putting their

privacy at risk. With these real-time privacy information collected, a malicious

attacker may launch spear phishing attacks with much higher yield rates. In this

thesis, we study a combination of power consumption, network traffic, and memory

usage of several commonly used activities, and demonstrated that it is possible to

classify a user’s smartphone activities into one of six categories, which are Video,

Game, Internet, Music, Idle, and Phone Call. We designed several experiments

to test the classification which resulted in high success rates. We also present the

possibility of detecting transitions of smartphone activities.
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Chapter 1

Introduction

In this digital age, people are heavily dependent on mobile devices for voice, video,

and data communication, and they store a significant amount of sensitive informa-

tion on their device. Preventing private information leakage from smartphones has

become an important issue. Sandboxing is used to prevent unauthorized access to

information gathered by other applications [19] ; however, smartphones know much

more about their owners than they may realize. Leaking user behavior and private

data represents a serious security threat to users, as smartphones are almost always

connected to cell phone and/or Wi-Fi networks.

This thesis explores whether it is possible for a malicious app on a user’s device

to monitor activities the user is engaged in. There are certain smartphone software

apps that can be installed to monitor, for example, a child’s phone usage; since such

a scenario would require the consent of the owner to be installed, this type of app is

not the focus of our study. Here, we assume that the user is unaware of “malware”
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installed by hackers, and that the malware has the same access privileges to system

information as any other app.

Smartphones are also vulnerable to Distrubuted Denial of Service (DDoS) attacks.

In a DDoS attack, multiple compromised devices make requests towards a single

system or a server, absorbing the resources of the targeted system. Compromised

devices are often infected by viruses, such as Trojans. The main difference between

DDoS and Denial of Service (DoS) attacks is that the attacker launching a DoS attack

usually uses only one computer, while multiple devices are involved in DDoS. Several

different kinds of DDoS attacks have been described by researchers. Karami, Park,

and McCoy, 2016 discussed the DDoS-for-hire business [16], in which profit-motivated

adversaries are available to scale up their networks to perform DDoS attacks; this

type of attack has caused significant damage to public services such as the Microsoft

Xbox and the Sony PlayStation networks. DDoS attacks can also utilize internet

protocols. Czyz et al., 2014 described the rise and decline of DDoS attacks using

NTP [9].

With IP spoofing technology, attackers are able to use devices running certain

protocols, such as DNS and NTP, as amplifiers. When launching an attack, the

attacker uses a spoofed IP address to send a query, and the responses from devices

running the protocol will be sent to the spoofed address, which most times is the

victim. Such attacks are identified as amplified DDoS attacks. A similar method can

also be applied on DNS, which is a much more widely installed protocol. Rijswijk-

Deij, Sperotto, and Pras, 2014 performed a comprehensive measurement study for

DNSSEC and its potential for DDoS attacks [32]. When an attacker uses spoofed
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IP information to send queries to open DNS resolvers, responses will be sent to the

spoofed victim’s IP address and generate a large amount of traffic. This kind of

attack is also called amplified DDoS attacks. Devices sending responses to victims

are called amplifiers. Notice that those devices are not compromised in an amplified

DDoS attack; rather, it is an abuse of network protocol. This factor makes such an

attack extremely hard to detect and defend against. Smartphones, which are running

these protocols as well, are also targets of such attacks. Moreover, smartphones have

fewer resources compared to commercial servers, so they are particularly vulnerable

to this kind of attack.

Cisco, 2014 published a technical report about Telephony Denial of Service,

known as TDoS [8]; this is an attack type that specifically targets phones. The

TDoS attack pattern is similar to that of the traditional DoS. The attacker uses one

or multiple compromised devices to launch call flooding to a target device, causing

disturbances or exhausting resources. Such calls are called robocalls. Currently,

TDoS is becoming an entire industry. With an automated calls generator, an at-

tacker can easily generate thousands of robocalls. Those calls can then be directed

to a single number. Such a large amount of traffic would cause an immediate DoS.

Moreover, one robocall can last for a long time, which makes TDoS attacks more

dangerous. If the attack succeeds in compromising mobile devices with backdoor

malware, it is a distributed TDoS. Under this situation, robocalls can come from a

calling center located anywhere; this increases the difficulty of tracing such an attack.

By launching a TDoS attack, an attacker can prevent legitimate users and customers

from using a targeted system’s voice network. For institutes whose profits depend
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on functioning voice networks, TDoS attacks can cause significant financial loss.

As Voice over IP (VoIP) networks have increased in use, TDoS attacks have

become easier to launch. The vulnerable part of a VoIP network is the Public

Switched Telephone Network (PSTN). This used to be a closed network; however,

with the use of VoIP, it has become more and more similar to the Internet. This is

a security risk because it is easier for an attacker to launch large malicious or junk

calls into a PSTN. Endpoint users have no control against PSTN migrating to an IP.

This trend, combined with the increase in smartphones’ market share, makes TDoS

attacks a significant threat.

Since telephony networks are adopting Internet protocols, attackers now can

launch TDoS attacks using traditional DDoS methods. According to Cisco’s report,

attackers can automatically generate a large amount of calls in a few days using tools

[8]. One way to detect such attacks is to trace back each call to its original carrier;

However, this method is not applicable for distributed TDoS attacks. As already

mentioned, compromised devices can be located anywhere. By compromising smart-

phones, TDoS attacks are even harder to detect, since each calling device is an actual

user’s phone. Even if device owners can be tracked down, it does not mean they are

the actual attackers.

Social networks, such as Twitter and Facebook, also increase the risk of large-

scale TDoS attacks. Malicious scripts used for compromising mobile devices can be

easily spread through social networks. When users on smartphones browse social

networks, their phones are vulnerable to these malicious scripts. Another way to

launch an attack is to use the power of a large number of followers. Social network
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users with large numbers of followers can deliberately or inadvertently spread mali-

cious programs to multiple devices, even directly requesting followers to call a single

number. This is an example of a TDoS attack. In this thesis, we will focus on the

use of malicious scripts.

Recently, a potential TDoS attack on the 911 system appeared in the media [35].

The attacker posted a link on Twitter and used an account with a large number of

followers to encourage people to click and spread the link. The link, in fact, was a

malicious Javascript script that forced infected smartphones to dial 911 repeatedly.

By utilizing an iOS vulnerability, iOS device users who clicked the link were taken

to the malicious script. When their browser downloaded the script and ran it on

their device, the device repeatedly dialed 911. Fortunately, there were not enough

smartphones compromised to cause significant disruption. However, such malicious

scripts are undeniably a potential threat. If the number of compromised smartphones

were large enough, it would become a TDoS attack on the 911 system. According to

the Cisco TDoS report [8], 500,000 calls in a short time would be able to shut down

emergency services.

The TDoS attack just described aimed at emergency system targets of iOS de-

vices; however, with Android, such attacks are even easier. Most users do not know

much about Android’s permission system; thus, it is very likely for them to grant

too much permission to an application. With enough permission to monitoring the

system, a malicious application running in the background can stealthily make phone

calls without the user noticing. By rendering the device into a SIM-free state and

with IMEI spoofing, researchers have found that such attacks can be undetectable
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and unable to be defended against in the short term. Because it is not feasible to

disable SIM-free emergency call, such attacks are even more harder to defend against.

Even if without SIM-free mechanics, unsolicited calls are still possible. Such stealthy

and illegal calls can be directed not only to emergency systems, but also to premium

numbers, which would cause monetary loss.

TDoS attacks can also cause damage to big enterprises, especially enterprises

that rely on telephone networks to communicate and operate. In a short time, a

TDoS attack can cause a large financial loss. TDoS can also be used for toll fraud

and personal harassment. These kinds of attacks should give us pause about smart

device security. Compromised devices may perform tasks in the background without

users noticing it. Our study provides insights into detecting such stealthy and illicit

behavior of possibly compromised devices.

The Android operating system, which is open-source software and can easily be

modified. It has gained a large market share among smart phone platforms [14]. How-

ever, precisely due to Android’s openness, it has become a principle target of malware

attacks. Even though queries require the user’s permission during installation, sen-

sitive data, including the user’s precise location, can be obtained by International

Mobile Station Equipment Identity (IMEI), and carrier information can be obtained

through software. However, power consumption, audio status, Internet traffic, and

memory information under /proc/[pid]/statm are usually not considered to be

sensitive; they can be accessed through API and parsing kernel files.

We will demonstrate that by reading power usage, audio interface, network statis-

tics, and memory usage of system processes, a user’s behavior can be inferred on the
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Android platform. Such kind of data sources are called side channels. All such in-

formation can be accessed without any special user permission. By analyzing data

using machine learning techniques, we have been able to determine whether a user

is watching a video, browsing web pages, listening to music, or putting their phone

on idle. This approach does not require prior knowledge, for example, of user habits

or a currently running application list.

Android has included a permission or notification system to limit access to sensi-

tive information and related API access by apps. However, a device can leak a user’s

activities from the information shared by the phone’s OS or from other side channels.

In order for an app on a smart device to work, it must access system information.

Seemingly harmless information may be accessed without explicit user permission or

notification. For example, PowerSpy was able track one’s location by analyzing the

power consumption of one’s mobile device [21].

Android side channels have been exploited by many researchers before. Battery

information about power consumption is generally grouped as power side channels.

Information from the cache indicating memory usage by processes or thread are

grouped as cache side channels. Other new side channels include accelerometers,

barometers, and gyroscopes. With the development of new hardware technology,

more and more sensors are being added into smartphones. Data within most of these

devices are available to internal programs without any special permission from users.

This provides a possible way of leaking information. The software app mentioned

before, An application, called PowerSpy [21], is able to detect a user’s daily commute

routine with rough GPS data and battery life information. While keystrokes cannot
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be directly recorded from the screen, they can be inferred from accelerometer data.

Currently, such readings are of coarse value since mobile sensors are limited by their

precise level. In the future, however, we will see more diverse and precise sensors

equipped on smartphones, which will increase the likelihood of privacy leaks.

There are several ways to access power side channels on Android. Android has

its own API to determine power usage, and such kind of information can also be

gained from hardware measurements. By directly connecting chips or other parts

of devices with outside hardware, one can get precise values for each part’s power

consumption; however, this approach is seldom used in side channel attacks since it

requires a physical connection between victim devices and measurement hardware.

Therefore, in this work, we only discuss power side channels gained from the Android

system. By leveraging cache side channels, a hacker can obtain valuable information

about foreground or background processes. It is possible to utilize cache side channel

to infer the user interface of a foreground app or to infer what webpage a user has

browsed. We will discuss these methods further in Chapter 2.

By leaking side channel information, an attacker can infer a user’s smartphone us-

age routine. If a certain scenario is present, such as surfing the Internet, the attacker

can utilize sensors, such as accelerometers or soft keyboard deployment monitoring,

to get private information, such as keystrokes. Such a malicious application may

provide hackers a means to engage in spear phishing. Spear phishing is a kind of

accurate phishing targeting a certain user. The difference between spear phishing

and normal phishing emails is that spear phishing usually requires some information
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of the target. Normal phishing emails are automatically generated and sent ran-

domly. However, spear phishing targets certain kinds of users by exploiting known

information from the potential victim. For example, if an automobile dealer or real

estate agency accidentally leak a customer’s contact information, the customer may

receive phishing emails specifically about buying a car or home. Comparing to nor-

mal phishing, spear phishing has a higher success rate, but requires more information

about the target. By utilizing this kind of side channel leaking, an attacker can gain

detailed information about an intended victim in a timely manner, which greatly

enhances success rates of phishing attacks. If an attacker knows the user is watching

a video or listening to music at certain time, the attacker can send phishing emails

pretending to be movie or music introductions. It is also possible for the attacker

to infer a user’s habits of interacting with their smart devices. The combination of

such kind of information with social network analysis could even enable the attacker

to discover the identity of the user.

We developed a method to discover a user’s mobile phone activity without asking

special permission from the user. Malicious applications like this may be used for

spear fishing and lead to financial and information loss. All data we obtained were

considered non-sensitive by security tools on the market. We managed to detect

user behavior with a relatively small delay time of two minutes, while continuously

monitoring change. Our approach shows it is possible to retrieve near real-time user-

activity information. While all of our computations were done on our remote server,

with an enhanced mobile processor, it would be feasible to manage all data processing

on actual smartphones. Since communication with a remote server is less common,
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it’s harder for firewalls that monitor outcome traffic to detect malware running in

background.

Our approach provides a way of monitoring an intended victim’s smartphone

behavior without requiring much information about the user. Our goal was to detect

a user’s behavior with a maximum latency of two minutes. We accessed power

usage data and incoming network traffic data once every ten seconds. We sent the

collected data to our remote server for analysis once every two minutes to avoid

high-resource consumption and to increase stealth. With a more powerful mobile

system, it is conceivable that the analysis would not have to be done offline. We also

monitored whether audio media were active, in order to know if a media player was

running. These features were used to distinguish various user activities. Our system

also retrieved the shared virtual memory usage data of SurfaceFlinger, the system

process responsible for graphics on every Android device. By recording trends of this

feature and monitoring fluctuations, we were able to determine whether a user was

switching between different applications. We also monitored screen status changes.

In this thesis, we show that side-channel information may enable privacy leaks.

The side-channel information discussed in this thesis does not require special per-

mission from users; thus, the malware is able to collect data in a stealthy manner.

With classification techniques, an attacker is able to infer users’ interactions with

their smartphone.

The layout of this thesis is summarized as follows. In Chapter 2, we review the

state of the art in the field of smartphone malware and summarize the technical

information of the Android system needed for our detection system. In Chapter 3,

10



we describe the side channels we used in this work and some modules of the Android

system we used. We described our algorithm of scenario classification in Chapter

4. We present our test results and analysis in Chapter 5. Finally, we conclude in

Chapter 6.
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Chapter 2

Prior Work

2.1 Side Channels and Information Leaking

Information leaked from side channels may lead to side channel attacks. Yan et

al., 2015 [34] provides a detailed analysis of Android system side channels. Chen

et al., 2014 [7] used shared virtual memory as a side channel to peek into applica-

tions running in the foreground without actually breaking into the Android sandbox

mechanism. Saravanan et al., 2014 [28] and Zhang et al., 2009 [36] kept logs of users’

key strokes and managed to identify users by their interactive touch screen habits.

Andrioths et al., 2013 [1] further analyzed this approach and compared pattern

screen-lock and traditional PIN screen-lock. Orthacker et al., 2012 [23] analyzed the

Android permission system and stated that misunderstanding the meaning of per-

missions and a combination of permissions can make Android devices vulnerable to

attackers. Aviv et al., 2012 [2] investigated the practicality of using an accelerometer
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as a side channel for the Android system.

Michalevsky et al., 2015 [21] looked into the relation between battery draining

speed and a device’s distance from its base station, and were able to infer a device’s

location. Jana and Shmatikov, 2012 [15] tracked memory usage inside browser pro-

cesses, and used this as a fingerprint to guess a user’s browsing behavior. Bianchi

et al., 2015 [5] combined several side channels, such as inside process memory usage

and audio interface, and demonstrated a novel GUI attack. Zhou et al., 2013 [38]

looked into information leakage from public resources and how to relates it to the

Android system. They presented a case in which it was possible to detect a user’s

identity using combined information from public resources and Android side chan-

nels. Michalevsky, Boneh and Nakibly, 2014 [20] discovered that with gyroscopes

equipped on smartphones and some hardware, it is possible to recognizing speech.

Our approach utilized multiple side channels and constructed a decision tree

from this information. While previous researchers presented approaches requiring

prior knowledge of an intended victim’s habits, such as an application installation

list of the device, daily commute routine. our work shows that it is possible to derive

an intended victim’s activity without first knowing much about that user’s habits.

Power consumption information has been commonly used as a side channel.

Zhang et al., 2010 [37] presented a detailed and fine-grained battery usage analysis

for several popular Android devices. Pathak et al., 2012 [24] went further to develop

software called Eprof which measures battery usage. The power-usage models in

these papers formed the basis of our approach on this topic.
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Hornyack et al., 2011 [13] showed interesting results by analyzing common behav-

iors of malware, and developed a system that runs in the background that involved

“pausing a suspicious process” when sensitive information was presented in the fore-

ground. Grace et al., 2012 [11] looked into the advertisement library and its behavior

in popular applications. One of the goals of our approach was to keep our monitoring

stealthy by lowering the sampling rate and requesting as few permissions as possible.

2.2 DDoS and TDoS

Kuhrer et al., 2014 [17] described the method of an amplified DDoS attack and

proposed a way to reduce its effects. In their paper, such attack’s threat model

is explained in detail. An Internet-level scan was performed to get reliable data.

In another paper by Kuhrer et al., 2014 [18] the authors state that it is possible

to abuse TCP to launch an amplified DDoS attack. Paxon, 2001 [25] provided a

detailed analysis of the amplified DDoS attack’s nature and suggested possible ways

to defend against it. Buscher and Holz, 2012 [6] looked into botnets (compromised

devices) used in DDoS attack. Bailey et al., 2005 [3] provided a monitoring system

to investigate the IP infrastructure of the Internet to prevent IP address abuse.

Guri, Mirsky and Elovici, 2016 [12] looked into the potential threats that a com-

promised smartphone can pose to the emergency 911 system. It is possible for a

smartphone to make a phone call without its user noticing, and such a phone call is

extremely stealthy. The author states that it is possible to render smartphones into

a SIM-free condition without taking the SIM card out. In this condition, calling to
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emergency center is permitted but unable to be traced. Pelechrinis et al., 2011 [26]

described a possible mobile network DDoS attack in which the attacker is able to

jam wireless networks by abusing protocol parameters. Becher et al., 2011 [4] gave

a definition of mobile security and analyzed different approach of attacks. Seo, Lee

and Yim, 2012 [30] proposed a detection framework for Android malware. Seo et al.,

2014 [29] investigated the feasibility of smartphones compromised as botnets and the

possibility of launching an attack that threatrns homeland security. Suarez-Tangil et

al., 2014 [31] provided a way to detect Android malware by analyzing code structure.
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Chapter 3

Background

3.1 Scenario Definition

In our study, we divided a typical smartphone user’s activities into six categories,

called scenarios, as follows:

• Idle is the idle state of the user’s device, which means the device is not doing

anything in the background or foreground. In our experiment, we disabled all

applicable processes; however, some system processes could not and should not

be terminated.

• Video contains all user activities related to displaying video online, regardless

of the application, including video through a browser or YouTube.

• Game contains all user activities related to playing games; for our purposes, a

game is not played online but it may upload and download a small amount of
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data for advertisements.

• Internet contains all user activities related to surfing the Internet, excluding

videos and music; Internet-related activity through browsers or through special-

ized applications such as Facebook, Twitter, and Instagram are all considered

Internet scenarios.

• Music contains all user behavior related to listening to music; downloading pro-

cess via Wi-Fi is the most common real-world method, and only takes several

seconds; thus, it was unable to be detected in our current sampling. Therefore,

in our measurements, we treated local and online music listening identically.

• Phone Call contains all user activity related to making audio phone calls, re-

gardless of whether a call is routed through Wi-Fi or a carrier’s network.

These six scenarios were our basic (atomic) scenarios. We defined a composite sce-

nario as two or more basic scenarios overlapping at the same time; in this case,

one scenario of the two will be in background. In this project, we considered two

composite scenarios: “Internet + Music” and “Internet + Phone Call”. The former

was defined as listening to local music while browsing the Internet. The latter was

defined as making a phone call while browsing the Internet.

3.2 Side Channels of Android OS

Side channels are data sources used by an attacker to infer more sensitive data

without asking for special user permission. We list the four side channels used in
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this study below.

1. Power consumption statistics.

We computed a phone’s power consumption by reading two files: current now

and voltage now in the /sys/class/power supply/battery directory. We

computed power as current now multiplied by voltage now. The sampling

interval was ten seconds. A higher sampling rate led to more fine-grained data,

and therefore higher accuracy; however, we found that by increasing the sam-

pling rate, the monitoring application itself may increase energy consumption

and interfere with the results.

2. Audio and screen status.

In the Android OS, AudioManager provides access to volume and ringer mode

control. It can be used to get a phone’s audio status. We monitored this feature

by calling system API: getMode() and isMusicAlive() once every ten seconds.

getMode() returns 2 if there is a phone call. isMusicAlive() returns True if

background audio is present, False otherwise. Background audio includes video

soundtracks, local or online music, and game sound effects. Considering that

most games on the market come with Background Music (BGM) and sound,

if the audio status returned True, we made the assumption that the user was

watching a video, listening to music, or playing a game. Our experiment showed

that even if the user switches their device into the mute state, isMusicAlive()

will still return a 1; therefore, our approach’s effectiveness was assured. We

monitored screen status by calling PowerManager.isScreenOn(). It returns

18



True if the screen is on, which indicates the user is interacting with the phone,

otherwise it returns False. For convenience, we refer to the latter as audio and

screen.

3. Incoming internet traffic.

Incoming Internet traffic is the amount of data downloaded to the device while

connecting to Internet. We choose incoming Internet traffic as a side channel

because users use their device to download content from the Internet more

frequently than uploading. The user activities we mentioned before, such as

watching videos and browsing the Internet, are activities that favored down-

loading over uploading.

We parsed the file /sys/class/net/wlan0/statistics/rx packets once ev-

ery ten seconds to get Incoming Internet traffic. We recorded the number of

received Internet packets. After observation, we classified the rate of traffic flow

into three categories: (a) video scenarios, which provided the largest amount

of traffic, and may come from media streaming; (b) Internet and game scenar-

ios which had the second highest traffic, and resulted from webpage browsing,

advertisement loading, and communicating with Google Play; and (c) Music,

Idle and Phone Calls provided the smallest amount of incoming traffic. For

convenience, we refer to incoming Internet traffic as traffic.

4. Shared virtual memory.

Users can switch from one application interface to another when interacting

with smartphones. For an example, a user may want to browse the Internet
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first, then close the browser to play a game, or open a music player. In this

thesis, we define this switching between applications as a scenario transition.

When a scenario transition happens, Android utilizes several system compo-

nents to display the new user interface on the screen. This process causes a

change in the shared virtual memory of these processes. Therefore, we were

able to use this side channel to detect scenario transition.

To elaborate this, we will first describe two mechanisms used by Android to

draw layouts: BufferQueue and SurfaceFlinger. BufferQueue acts as a

“bridge” by connecting elements that generate graphics and elements that

display them; we called the former “producers” and the latter “consumers”.

All movement related to graphic data transitions in Android devices relies on

BufferQueue. The producer requires a free buffer and fulfills it with graphics

data, then returns it to the queue. The consumer then acquires the buffer

and processes the graphics data contained in the buffer. When it is finished,

the buffer is then returned to the queue. SurfaceFlinger is an Android sys-

tem component responsible for drawing display images. It accepts graphics

data from multiple sources, composites them, and sends them to hardware.

WindowsManager is a system component that interacts directly with applica-

tions. When SurfaceFlinger receives a call from WindowsManager to draw

a display, it creates a layer consisting of BufferQueue. For an application, a

navigation bar can be a layer, while the main UI can be another.
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Most devices refresh their display at a rate of 60 frames per second; in or-

der to avoid tearing, the display sends a signal called VSYNC to the sys-

tem to inform it that it is safe to update the contents. Upon receiving the

VSYNC signal, SurfaceFlinger goes through its layer list to collect all buffers.

Once it has finished, it calls Hardware Composer to proceed to the next step.

SurfaceFlinger only wakes up when the screen display is different than before.

Hardware Composer was introduced in Android 3.0 and has been kept through

all succeeding versions of Android; it functions as the bridge between software

and hardware. With Hardware Composer, Android will render BufferQueue

in the most hardware-efficient way. Android’s display usually contains several

layers. For an example, in an application interface, keyboard and navigation

bars are overlapped layers. Hardware Composer renders each layer into differ-

ent buffers and passes all buffers to the display hardware.

When a user switches from one application to another, or when the phone

goes to an idle state, the memory mapping of the SurfaceFlinger process will

change due to this activity. We monitored this change to determine the time

of scenario switching.

This feature was originally leveraged by Chen, Qian and Mao, 2014 [7]. Memory

allocation information of the Android system is stored in the file /proc/[pid]/s

tatm. Each access to this file returns one line of data, which consists of total-

program size, total physical-memory size, shared physical-memory size, text

code, library, private virtual-memory size, and dirty pages; each field is in a

column.
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We calculated shared virtual-memory size by subtracting private virtual-memory

size from total virtual-memory size. In a typical scenario switch process, such

as when a user switches from Video to Internet, the video application is closed;

the home screen is then brought to the foreground, and then the browser is

opened. In this process, the shared virtual-memory size of SurfaceFlinger

changes due to the display change, which requires a buffer load and release.

We monitored this feature to detect when scenario transitions take place.

Privacy leakage requires an application to be running in the background. In

a real world attack, this could be a module hidden in a seemingly benign

application. The application collects data continuously when the device is on,

and sends it to a remote server. We used an offline server to process the data;

however, it is possible to do all processing on the phone being monitored. Our

application only requires permission to use the Internet, which is very common

for apps in general. Our application requires no prior knowledge of an intended

victim, which makes a scaled attack possible.

3.3 Decision Tree

We used a decision tree as classifier. Safavian and Landgrebe, 1991 [27] provided a

detailed explanation of how decision trees works and how they are built. Decision

tree classifiers have been widely used in fields such as speech recognition and natural-

language processing. The main advantage of a decision-tree classifier is its ability

to break down a complex problem into several smaller problems. A testing case will
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navigate down the tree to reach a particular end node; this end node indicates the

group that the test case belongs to.

A properly designed decision tree classifier should be able to classify as many

test cases as possible. It should be able to generalize beyond training data to gain a

higher accuracy rate. Also, the tree structure should not be too complex: it should

be simple to build and use in order to solve a large decision problem. Decision tree

classifiers should also be flexible. When more training data comes, the tree should

be easy to update with more branches.

Decision tree classifiers can be built with four methods: top-down, bottom-up,

hybrid, and growing-pruning. In this thesis, we used the top-down method to build

the tree. There are three aspects to consider when using the top-down method to

build a decision tree. The first one is how to split the path. Various research has

been done in searching splitting rules. For example, Wu et al., 1975 [33] designed

a pattern for remote-sensing applications. Since our use of decision trees is only

for specific data and not for a general-data classifier, we design our own splitting

rules according to our data. The second aspect to consider when using the top-down

method is the end-node decision, which should be determined when building the

tree. In this thesis, we have three side channels, which make up three levels of the

decision tree. Therefore, leaf nodes in the last level naturally become end nodes. The

third top-down method aspect needing consideration is end-node label assignment;

we used a majority vote to assign labels.
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Chapter 4

Classification Methodology

We built our approach using machine learning. We first collected training data and

separated the data into several groups. We then analyzed each group of data and

extracted signatures from them as profiles of each group. Then we used those profiles

to classify the testing data.

4.1 Single Scenario Classification

We defined our single-scenario classification phase as a classification based on six

basic scenarios: Video, Game, Internet, Music, Phone Call, and Idle. We also tested

two-composite scenarios: Internet + Music and Internet + Phone Call. Our goal

was to distinguish these scenarios by the four side channel features we described in

Chapter 3.
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We first tested our application by running it in the background on a smartphone,

and we collected pertinent data from the device for further training and testing

purposes later.

We collected the training data on power, audio, and traffic by parsing system files

and calling various APIs. We repeated the data collection process once every ten

seconds. Each “data clip” collection lasted for two minutes; therefore, we had twelve

data points in each data clip. We collected twenty data clips for each scenario, for a

total of 120 data clips. Each data clip consisted of three time series: audio status,

incoming network traffic, and power consumption. The length of the data clip was

normally twelve but the length was less in some data clips. A sample data clip is

shown in Table 4.1. The first row is the power consumption in micro-watts, the

second row shows network traffic in number of packets; and the third row is the

audio statuses. Given a clip, C, we use C(p) to represent the time series of the power

consumption. C(n) and C(a) are similarly defined. During the data collection, we

disabled all unnecessary background applications and only left processes that are

critical for Android’s normal functioning when collecting data.

Table 4.1: A sample data clip of side channel data in Video scenario
Power(mW) 749 740 922 789 604 803 793 819 891 812 706 732

Network(number of packets) 382 789 1185 1552 1557 1893 2255 2600 2993 3003 3380 3848
Audio status(0,1,2) 1 1 1 1 1 1 1 1 1 1 1 1

Figures 4.1 and 4.2 show the averages of power consumption and the sum of

incoming network traffic in two-minute clips for the six scenarios. We can see that

power consumption of the six scenarios can be divided into two groups: the larger

group consists of power consumption data from Video, Game, Internet, and Call
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scenarios; the smaller group consists of Idle and Music scenarios. It was very dif-

ficult to separate the scenarios within the same group, so we decided to treat the

power consumption as a discrete value of two: low and high. This matched with

our intuition that loading video streams, drawing 3D graphics for games, sending

requests, and loading webpages all consume a large amount of energy. Besides, all

three scenarios require the screen background light to be on, which also consumes

energy. By comparison, the other three scenarios are more battery-friendly.

Similar to power consumption, we divided incoming Internet traffic volume into

three groups: the largest consisted of Video; the medium-sized group was Game and

Internet; the smallest group was Music, Idle, and Call. We found that Video had the

largest incoming Internet traffic, while Internet ranked second and was much smaller

than Video. Music, Game, Phone Call, and Idle all had a significantly smaller volume

of incoming Internet traffic. This is reasonable because downloading a video stream

results in more incoming network traffic, whereas loading webpage is much lighter.

Music, Game, Phone Call, and Idle had lower incoming network traffic volumes. For

the same reasons as with power consumption, we treated the network traffic as a

discrete value of three: low, medium, and high.

Figure 4.3 and 4.4 shows stability for using power consumption and incoming

network traffic as attributes. Each line in Figure 4.3 and Figure 4.4 consists of ten

data points. Each data point is the average value of power consumption data in

a scenario over two minutes. Average-power consumption of the six scenarios was

rather stable. For incoming network traffic, the result varied to some degree, but we

could still easily divide six scenarios into three groups. Video was certainly the one
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Figure 4.1: Power consumption examples of the six different scenarios.
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Figure 4.2: Sample Internet traffic load in various types of scenarios.
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Figure 4.3: The changing trend of power consumption of six different scenarios.

Figure 4.4: The changing trend of incoming network traffic of six different scenarios.
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with most incoming network traffic, while Game and Internet came in second. Idle

and Call used nearly zero network data. Notice that we did not need to separate six

scenarios in this stage; we only needed to separate them into the three groups, which

will be the intermediate result for our next step.

Audio data fell into three groups: “sound-on,” “sound-off,” and “calling.” Video,

Game, and Music all involve sound effects, so their audio status shows sound-on.

Sound-off includes Internet and Idle. Since the system API getMode() reserves a

special return value for Phone Call, it fell into a stand-alone group. We labeled the

three groups as 0, 1, and 2. We extracted signatures from each group as profiles.

Algorithm 1 details this approach as pseudo-code.

Algo. 1: Retrieving audio status data from OS

Input: None

Output: audio status of device

if getMode()==2

return 2;

else

return isMusicAlive()?1:0;

end

We called the API getMode() every ten seconds. For a two minutes long test

case, we had approximately ten data points. Notice that the number of data points
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will not always be ten because of Android’s repeating alarm mechanics [10]. In

order to conserve battery, Android will not set an exact time-interval length between

repeating alarms. If the API’s return value is 2, a phone call is occurring; otherwise, it

will return either 0 or 1, indicating the presence of background music. Our definition

of background music includes playing songs and the background music of videos, as

well as games.

As a result of the analysis of the data collected, we had eighteen (2 × 3 × 3)

possible status combinations from the three attributes that we extracted. Our next

task was to find profiles for each status value of the attributes. For example, when

a test clip came in, we wanted to identify whether the power consumption fell under

the discrete category of low or high. We used all the training data with “low” power

consumptions to build the profile “low-power consumption”; we handled the other

attribute statuses similarly.

Next, we describe how we build the profiles for the eight (=2+3+3) attribute

statuses. Of the three attributes, two of them were time series, and the third was a

discrete value. We first describe our algorithm for selecting profiles for the two time

series. We measured the distance of the two data series by using the Dynamic Time

Warping (DTW) algorithm [22]. The DTW algorithm has been successfully applied

to temporal sequences of video, audio, and graphics data. Any linear sequence of data

can be analyzed with DTW. By warping data points non-linearly in the temporal

dimension, DTW calculates an optimal match between two series. It is independent

of non-linear variations in time dimension. It can measure the similarity of any two

linear series regardless of how quickly or slowly they change. The smaller the DTW
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value is, the more similar the two series are. Therefore, we were able to use the DTW

distance to decide if two test cases belonged to the same scenario. We defined the

distance between the jth series and the kth series as

dist(j, k) =


DTW (dj, dk), for power usage and network traffic

averagei(dj[i] − dk[i]), for audio attribute.

We calculated DTW distances between all data series with the same attribute

status. We then saved the index of the data series corresponding to the minimum

distance value in a vector. We repeated this process until all data series with the

same attribute status were processed. We chose three data series that appeared most

frequently in that vector; these three selected data series represented profiles of that

attribute status. Algorithm 2 presents this strategy in pseudo-code.

Algorithm 2: Attribute status profile building(e.g. low power consumption)

Input: All data series with the same attribute status

Output: A profile P representing the attribute status

for j = 1:n

for each k = 1:n, calculate dist(j,k)

M(j) = argmink (dist(j,:))

end

Choose 3 most frequently appeared time series as the profile for that attribute
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By calculating the DTW distance between all training cases, we were able to

choose specific cases that were the most similar to other cases in the same group. We

wanted the selected profile cases we choose to have the smallest DTW distance within

their group because we had to compare profile cases with testing cases waiting to be

classified by calculating the DTW distance between them. Since groups we defined

differed greatly from each other, we assumed that profile cases had a significantly

larger DTW distance compared to test cases in other groups.

We used a decision tree to determine a corresponding scenario for a test data clip.

We used profiles built with Algorithm 2 to build the tree. The root is labeled P for

power consumption, and it has two splitting paths, which represent the two statuses

of power consumption as described in Table 4.2. Nodes in the second level are labeled

T for network traffic; each decision node has three splitting paths representing the

three statuses of network traffic. The third level is labeled A for audio status; each

decision node has three splitting paths, which represent the three values for audio

status. The last level consists of end nodes.

Table 4.2: Attributes used for analysis and their Status Codes (SC)
Attributes Data Sources Status Codes Value

Power Usage
current now
voltage now

0 Low power usage
1 High power usage

Internet Traffic rx packets
0 Low traffic
1 Medium traffic
2 High traffic

Audio on/off
getMode()
isMusicAlive()

0 Audio OFF
1 Audio ON
2 Used by Phone call

For a given training data clip C, we have three components C(p), C(n), and C(a).
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Figure 4.5: Decision tree before applying training data

Therefore, we had three data series for each data clip. C(p), which represents power

consumption data, corresponds to the decision tree root. In the same manner, C(n)

corresponds to the second level, and C(a) corresponds to the third level.

We use Pk to represent the three data series in a profile P. We define the distance

of a data series d and a Profile P as

Dist(d, p) = mink(dist(d, Pk))

Starting from the root of the decision tree, the algorithm navigates down the

tree by choosing the attribute status with the smallest distance. Eventually, the

algorithm reaches an end node; the data clip now falls into that node. Figure 4.5

shows the tree before labeling end nodes.

Each scenario had twenty data clips. We labeled the end node with the scenario

fallen into it the most frequently. If a leaf node had multiple scenarios fall into it

and the number of them was similar, we labeled it as Unable to Classify (UC). When

a data clip fell into an end node, we stored the corresponding scenario of that data

clip in the end node. We repeated this process for the 160 data clips from all eight
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scenarios. We also collected data for the two composite scenarios: Internet+Music

and Internet+Call.

For testing data clips, we extracted data series from them and navigated down

the tree in the same manner. The label of the end node it fell into was the scenario

of that test case. Algorithm 3 models this logic.

Algorithm 3 Building a decision tree for classification

Input: All training data clips; Profiles for all attribute statuses

Output: A decision tree for data clip classification

Step 1: Initialization

Build a tree as shown in Fig. 3.4 with one level for each data attribute

and a blank label for the end nodes.

Step 2: Training

For each training data clip C:

Extract power consumption data C(p)

Calculate distance between C(p) and the two power consumption

profiles (low and high)

Travel down the tree based on the smaller of the distances.

Network traffic C(n) and Audio status C(a) are processed in the same

manner.
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When a end node is reached, store the scenario of this training data

clip in this node.

end

Label each end node with the most frequently appeared scenario for that

end node.

If the number of multiple scenarios in an end node are similar, labeled it

as UC

4.2 Scenario Transition Detection

Our main goal was to detect not only scenarios, but also borders during scenario

transition. We studied two types of transitions in user behavior. One was switching

from an active scenario to Idle; in this case, the screen backlight goes off and the

phone eventually falls into sleep. This kind of switching is easy to detect because

Idle features differ significantly from those of active scenarios. The other type of

switching is seamless scenario transitions during daily usage of a mobile device. For

example, a user may open a browser to surf the Internet, and then close it and open

a game application. Our goal was to detect the border between surfing the internet

and starting the game. We focus on this type of seamless transition in the remainder

this thesis.

First, we describe how we processed collected data as a stream. Then, we describe
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how we utilized the changing of screen status and the shared virtual memory size of

SurfaceFlinger to detect borders.

We leveraged a sliding window to process data streams. Our client-end parsed

a file every ten seconds and stored data in a device cache. It then sent data to our

remote server every two minutes. This was to avoid sending data too frequently

and draining the battery quickly. The server side stored all data it received in

chronological order. We read data in a fixed period into the cache, then classified

each feature into categories and used the decision tree to determine the corresponding

scenario.

We refer to the classification of features and subsequent decision making as data

processing. We defined the fixed period of time as the base window. Then, we

continued reading in data column by column and concatenated these to the end of our

previously read-in data. Each time we read a new column of data, we made decisions

using previously stored data and new data, until the total-data length reached a

certain limit, which we defined as the maximum window. We then discarded all data

from the base window to the maximum window in the cache and moved the starting

point to the end of the base window. We then started a new session, repeating

the steps we described above. Newly made decisions overwrote previous ones. This

gave us the chance to “correct” wrong decisions we had made. Accuracy rate was

defined as the number of correctly classified segments divided by the total number

of segments. Figure 4.6 shows this incremental method.

We found out that the values of the base window and the maximum window could

affect the accuracy rate. Figures 4.7 and 4.8 show the accuracy rate changing with
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Figure 4.6: An illustration of using shifting base windows and increments for detec-
tion.

different base windows and maximum windows. The accuracy rate first rises, and

then drops an increase in the base window. When the base window was small, we

did not have enough data to perform classification. Therefore, the accuracy rate was

low and would increase with the base-window size. However, after the base-window

size reached a certain value, if we continued to increase it, we started to include data

from another scenario, which lowered the accuracy rate.

We can see that the accuracy rate increased with the maximum window; this

can also be explained with the amount of data. When we increased the size of

the maximum window, we had more data to make a decision, which enhanced the

accuracy rate.

To enhance our ability to detect a user’s borders of seamless-scenario switch-

ing, we developed a multithread system. Our system consisted of a phone-basics

thread, a screen-status thread, and a memory-tracking thread. The phone-basics

thread held the processing of power, traffic, and audio. The screen-status thread
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Figure 4.7: Relationship between accuracy rate and base-window size

Figure 4.8: Relationship between accuracy rate and maximum-window size
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monitored screen-status changes. If a change occurred, it sent an interrupt to the

phone-basics thread. The memory-tracking thread monitored changes in the shared-

virtual-memory size of a monitored process. If a peak was detected, it sent an

interrupt to the phone-basics thread.

When the phone-basics thread received an interrupt, it performed data processing

on data in the cache, and then started a new session. This process aimed to detect

the borders of seamless-scenario switching. As we explained in Chapter 3, a change in

the shared-virtual-memory size of SurfaceFlinger often indicates a switching between

applications, and a screen-status change may also indicate a switching. The memory-

tracking thread and screen-monitoring thread start working after the phone-basics

thread has finished processing the base-window data, which is at the start of a session.

This is because although “start a new session” effectively avoids a wrong judgment

at a border, a short-data clip could also lead to a wrong judgment due to insufficient

information.
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Chapter 5

Experiment Design and Results

5.1 Building the Decision Tree

In this section, we describe the building of our decision tree using the algorithm

introduced in Chapter 4. First, we selected three profiles for each category. Second,

we used training data to compare profiles and navigate down the tree. Third, we

recorded cases falling into each end nodes. After all training cases were processed,

we selected the most frequently appearing scenario in the end node as the label.

We used a two-fold cross validation. We divided our data equally into two groups.

We first used twenty data clips as training cases to select profiles and build the tree,

and used the other data clips for testing. Then, we exchanged training cases and

testing cases to rebuild the tree. The two trees had the same end nodes but showed

little difference in data distribution. Figures 5.1 and 5.2 shows the training cases
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Figure 5.1: Training cases distribution for end nodes in first round of cross valida-
tion(P: Power, T: Traffic, A: Audio, X: Idle, M: Music, C: Phone Call, G: Game, I:
Internet, V: Video)

distribution of end nodes in the tree. Table 5.1 shows the total number of training

cases in the different scenarios falling into end nodes when building the tree. We

used the same notation as in Figures 5.1 and 5.2. Figure 5.3 shows the tree after we

processed all training data.

Table 5.1: Percentage of different scenarios’ training cases falling into end nodes
X V G I M P I+P I+M UC Percentage(%)

(X)Idle 39 1 97.5
(V)ideo 38 1 1 95.0
(G)ame 37 2 1 92.5

(I)nternet 34 6 85.0
(M)usic 39 1 97.5
(P)hone 40 100.0

I+P 40 100.0
I+M 2 3 35 87.5

When building the tree, we saw that Video, Game, and Internet+Music were

usually mixed together. This is reasonable, because all of those scenarios involve

similar smartphone usage. First, all of the scenarios must have the screen on, which
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Figure 5.2: Training cases distribution for end nodes in second round cross valida-
tion(P: Power, T: Traffic, A: Audio, X: Idle, M: Music, C: Phone Call, G: Game, I:
Internet, V: Video)

results in large power consumption. Second, all of the scenarios have background

music. Remember that our definition of background music includes the background

music of videos, games, and songs. For incoming Internet traffic, we noticed that

some game applications had embedded advertisements, which caused an increase

in incoming network traffic each time an advertisement is loaded. Also, some game

applications have advertisements embedded internally, which therefore require online-

data transmission.

Video length is another factor that impacts the results. When we watch videos

on the Internet, the flash player preloads data. In a short Video scenario, the largest

amount of incoming Internet traffic occurs at the beginning. It is possible for the

video file to be so small that it loads completely at the beginning. Incoming Internet

traffic during the remaining time of the scenario was lower than expected; this could

cause a Video scenario to be wrongly classified as an offline Game.

Phone Call and Idle are the easiest because for Phone Call, we have a certain
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Figure 5.3: Decision Tree Used for Scenario Detection (P: Power, T: Traffic, A:
Audio, X: Idle, M: Music, C: Phone Call, G: Game, I: Internet, V: Video, *: unable
to classify)

value returned by system API; and for Idle, the phone usage is minimized, therefore

all attributes will be close to zero.

5.2 Testing on Real Devices

Our experiments were carried out on a ZTE Z667T phone running Android 4.4.2

KitKat. In this version, the getRunningTasks API can be used to get foreground

processes with permission GET TASKS; however, we did not directly call this function

as it was changed in Android 5.0. In the latest version (Marshmallow), a background

application can only use this API to get information about itself, and can no longer be

used to get foreground process information anymore. Android’s sandbox mechanism

also aims at preventing such conditions from happening, for safety reasons.

Despite that change, the side channels we used persist through different versions

of the Android system, so we can safely assume that our method will remain effective
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with different versions of the Android OS. The CPU was a Qualcomm dual-core

1.2 GHz processor and the display was a 3.5” HVGA touch screen with 320x480

resolution. Available internal storage was 1.3 GB and the RAM capacity was 512

MB. We used YouTube and BiliBili Anime as video applications. Android’s built-in

music player was used to play music. The browser we used was Google Chrome. We

used three game applications: Temple Run, Snake ’97: Retro Phone Classic, and

Plague, Inc.

5.2.1 Single Scenario Classification

Table 5.2 shows the results of accuracy rate of single-scenario classification. The

result is an addition of two-fold cross validation. Each round has twenty testing

cases. We found distinguishing Game and Internet scenarios to be the most difficult;

three cases of Game scenarios went into Internet + Music while seven cases of Internet

scenarios went into Unable to Classify. The possible cause of these results is that

games, especially free ones available on the Android app market, usually contain

advertisements. While a user is playing such a game, it connects to the Internet

and downloads advertisements, which generates incoming traffic. A possible reason

for the difficulty in distinguishing Internet scenario cases is that loading different

webpages generates different amounts of incoming traffic, and some webpages (those

with large images, for example) may cause an abnormally large amount of incoming

traffic, making our system give inaccurate results.
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Table 5.2: Distribution of test cases of six scenarios and average classification accu-
racy rates

X V G I M P I+P I+M UC Accuracy(%)
(X)Idle 38 2 95.0
(V)ideo 40 100.0
(G)ame 2 34 3 1 85.0

(I)nternet 33 7 82.5
(M)usic 40 100.0
(P)hone 40 100.0

I+P 40 100.0
I+M 3 3 34 85.0

Figure 5.4: Altered Decision Tree Used for Scenario Detection (P: Power, T: Traffic,
A: Audio, X: Idle, M: Music, C: Phone Call, G: Game, I: Internet, V: Video, *:
unable to classify)

5.2.2 Change Labeling of Decision Tree

In Figures 5.1, 5.2, and 5.3, we can see Internet cases reaching three end nodes. We

labeled the end node with the most cases: Internet, while the other two nodes were

labeled UC (Unable to Classify). However, if we use a majority vote rule, we could

also label the other two end nodes as Internet nodes. The altered decision tree is

presented in Figure 5.4.

The main difference between the decision tree shown in Figure 5.3 and 5.4 is we
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labeled two more nodes as I (Internet). When we use this tree to classify test cases,

we will get a 100% accuracy rate on the scenario Internet. That means all previous

UC cases go to those two nodes. Below is the updated distribution table.

Table 5.3: Updated distribution table of test cases
X V G I M P I+P I+M UC Accuracy(%)

(X)Idle 38 2 95.0
(V)ideo 40 100.0
(G)ame 2 34 3 1 85.0

(I)nternet 40 0 100.0
(M)usic 40 100.0
(P)hone 40 100.0

I+P 40 100.0
I+M 3 3 34 85.0

5.2.3 Scenario Transition Detection

We then performed experiments for detecting seamless-scenario transitions. We used

the format as scenario 1-scenario 2 to represent a scenario switch. We chose the

five most difficult cases of all scenario-switching conditions: Video - Game, Video -

Internet, Game - Internet, Video - Music, and Video - Internet with Music. Border

of these scenario combinations are hard to detect for a variety of reasons. Video,

Internet, and most conditions of Game scenarios often involve in similar amount of

incoming network traffic, battery consumption, and audio activity. Video streams are

usually the largest data consumers; however, due to the nondeterministic character

of webpage loading and some large built-in advertisements in game applications,

Internet and Game scenarios can also have large data consumption. The pairings

comprised of the Video, Game, and Internet scenarios have the blurriest borders
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Table 5.4: Border detection success rates and classification accuracy of 5 scenario
transitions (with 5 test cases each)

Scenarios Border Detection Correct Classification
V-G 5/5 4/5
V-I 5/5 5/5
G-I 2/5 2/5
V-M 5/5 4/5

V-(I+M) 5/5 4/5
Accuracy(%) 88 80

between each scenario, and thus resulted in the greatest challenge for detecting.

The experimental results are presented in Table 5.3. We were able to detect

the borders of the Video-Game, Video-Internet, Video-Music and Video-Internet +

Music scenarios. For scenarios sharing the most similar features, such as Video and

Game, accuracy was slightly lower than those scenarios not sharing as many fea-

tures. For example, the Video and Music scenarios differed significantly in battery

consumption, and the Internet scenario is usually occurred without an active audio,

whereas Video usually did have this. By successfully determining the borders be-

tween two scenarios, we obtained a high-accuracy rate. When we found a border,

we were able to cut the cached data stream into two parts and compare these with

the training data we collected previously; this method eliminated any possible data-

mixing effects near a border. As previously noted, border determination is enhanced

by monitoring screen status and background-memory usage. However, we failed to

detect a border between the Game and Internet scenarios, possibly due to advertise-

ment loading and data exchange with Google Play; the Game and Internet scenarios

also showed similar features in our measuring system.
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5.3 Data Source Robustness Analysis

As we can see from results presented in Section 5.1 and 5.2, although we achieved

reasonable accuracy rates, separating Video, Game, and Internet scenarios was still

relatively difficult. We use three data sources: power consumption, incoming internet

traffic, and audio status. Among these three, audio status is the most robust; these

data is directly obtained from the system API, so we only had three possible values

for it. Our premise is that the Android system is reliable; we conclude from this that

we can be completely sure whether there is music on or not, or there is occurring or

not.

Power consumption was the second robust-data source. We separated the scenar-

ios into two groups: the first was those with low-power consumption (Music, Idle,

Call); the other was those with high-power consumption (Video, Game, Internet).

We believe the power consumption differences between scenarios is related to screen

usage. If an user wants to watch a video, or play a game, or browse the Internet,

they must wake up the screen. In contrast, Music and Idle are almost guaranteed

to have lower-power consumption levels. Therefore, we were easily able to separate

them using this data source.

Our relatively less robust data source was incoming Internet traffic. As we men-

tioned before, we found that the Video scenario did not always have the highest

incoming traffic. For a Video scenario with short-time duration, we found incoming

Internet traffic may peak at the start of the scenario, which will then be grouped into

the large traffic group. It may also fall into the medium traffic group, or even the
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low traffic group; this may cause classification errors when trying to separate Video

and Game scenarios. For Game scenario, even though we targeted offline games,

it is still possible that the application contained online advertisements, as they are

becoming rather frequent in free game apps. Advertisements will cause incoming

Internet traffic to rise when loaded for the first time; some embedded advertisements

are in video format, which makes separating them even harder. Our future work will

focus on a more fine-grained analysis of incoming Internet traffic.
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Chapter 6

Conclusion and Future Work

The Android system provides many APIs to support the functionalities of its apps;

however, such APIs can become a source of privacy leakage, negatively affecting an

unsuspecting smartphone user. In this work, we have demonstrated that even though

one feature alone may seem harmless, multiple features combined together can leak

information about a given smartphone and its user. If a data collection module

is embedded in a normal application, mobile devices may be vulnerable during the

downloading and installation processes. It is possible to have a remote server analyze

collected data to obtain patterns of user behavior without knowing the identity of

the device user. If the attacker does know more details about an intended victim,

the amount of personal data compromised may be even higher, as demonstrated in

Chapter 2. Our future work will focus on scalable attacks of this kind.

We analyzed the robustness of our data sources in Chapter 5, and our conclusion
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was that the incoming Internet traffic data source had the largest room for improve-

ment in our means of analysis. We used the total number of package downloaded

onto a device as the indication of incoming internet traffic. Our future work will

focus more on determining more fine-grained data-usage trends according to time,

and on how incoming Internet traffic changes between different scenarios.

We categorized complex user activities into six single scenarios and two composite

scenarios; however, user activities in the real-world are far more complex than this.

In the future, we will include more scenarios; for example, we will look into different

game-playing activities, such as online games.

It is not enough to ban applications from accessing multiple features in one ap-

plication, as it is possible to distribute a collection of these features over several

applications to avoid raising safety concerns. When these apps are coordinated in

such a manner, a user’s privacy information may be seriously compromised.

There is also new concern about the stealthy phone calls made by coordinated

smartphones, the so-called Telephony Denial-of-Service (TDoS) attacks[12] [35]. These

malicious apps are able to make phone calls without alerting the operating system.

We plan to see if some of our techniques are able to detect this type of attack be-

havior.
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