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Abstract 

This dissertation consists of a study of the effects of multiple-alignment method on 

phylogenetic analyses.  

First, I investigated the effects of multiple-sequence alignment quality on branch-

length estimation, which can influence downstream bioinformatic analyses such as 

estimating rates of evolution and divergence times. To quantify the accuracy of 

branch-length estimates, I devised a scale-free measure of branch length 

proportionality between two phylogenetic trees that contain the same taxa and 

topology. This measure was named “normalized tree distance” (NTD). NTD is an 

ideal measure for detecting coevolutionary processes, in addition to measuring the 

accuracy of branch-length estimates. 

Using NTD as an error measure, I investigated the effects of multiple-sequence 

alignment quality on branch-length estimation. I simulated coding sequences and 

estimated the effects of multiple evolution parameters and choice of alignment- and 

alignment-filtering algorithms on the accuracy of branch-length estimation. I 

demonstrated that branch-length accuracy is indeed dependent on the method of 

alignment. Alignments with high-accuracy algorithms combined with methods for 

filtering out unreliable sites produce significantly better branch-length estimates. The 

optimal method combination depends on the evolutionary scenario. Thus, different 

alignment algorithms and different combinations of algorithms yield better branch-

length estimates under different evolutionary conditions. A judicious choice of 
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alignment- and alignment filtering algorithms is recommended for phylogenetic 

studies. 

Second, I studied the correlation between two types of purifying selection: against 

nonsynonymous mutations and against deletions using mammalian genomic protein-

coding sequences. Intuitively, a codon that is intolerant of amino-acid altering 

substitutions is expected to be also intolerant of deletion. However, there has not been 

any comprehensive study on this purported correlation. In addition to the nine-species 

alignments of 8,595 genes, I simulated coding sequences along the same phylogenetic 

trees. The real data showed a much stronger correlation than the simulated sequences. 

I demonstrated that the correlation between amino-acid replacement and deletion rates 

exists and cannot be explained solely by alignment errors. Further investigations on 

nonsynonymous and synonymous mutations showed that this is most likely due to 

selection rather than mutation rates. Understanding selection on different types of 

mutations would help strengthen the link between population genetics and sequence 

evolution. 
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Chapter One: Introduction 
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A typical molecular macroevolution study starts with the collection of homologous 

DNA or protein sequences from multiple taxa. In order to directly compare these 

sequences, the homology must be extended to a positional homology – determining 

which sites (nucleotides or amino acids) in the sequences are descended from the same 

ancestral site. This process, called sequence alignment, can be difficult if multiple 

insertion and deletion events (“indels”) have occurred in their evolutionary history 

(Figure 1.1A, 1.1B). Researchers usually use automated algorithms to produce 

alignments. As a mathematical tool, alignment algorithms are not able to accurately 

reconstruct all mutation events, causing alignment errors (Figure 1.1C). Because 

alignments are produced by optimizing (attempting to maximize) an arbitrary 

mathematical score, it is possible that the true alignment has an equal (cooptimal) or 

lower (suboptimal) score compared to the reconstructed one (Figure 1.2A, 1.2B; 

Landan and Graur 2008). As seen in the figure, cooptimal or suboptimal situations can 

occur even with a very small number of indels and substitutions. In addition, 

alignments involving three or more sequences have to resort to heuristic algorithms to 

avoid prohibitive computation time. These algorithms usually produce a neighbor-

joining tree (Saitou and Nei 1987) based on pairwise alignment results, and add 

sequences to the alignments according to the estimated relatedness. This process 

cannot fix errors occurring in earlier stages based on data from later stages. 
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Figure 1.1 Examples of alignments and alignment errors. (A) A hypothetical ancestral 

DNA sequences. (B) Two descendants of this ancestor. Note that multiple substitutions, 

insertions, and deletions have occurred in the process; “+” denote inserted nucleotides 
and “-“denotes gaps left by deleted nucleotides. (C) The same two descendant sequences 
as aligned by CLUSTALW. Note the difference between this alignment and the true 

alignment; especially the fact that there are fewer gaps compared to the true alignment. 

 

Figure 1.2 Cooptimal and suboptimal alignments. (A) Situation where the reconstructed 

and true alignments are cooptimal, caused by a deletion of one in two consecutive and 

identical nucleotides. A mathematical model cannot distinguish which alignment fits the 

model better due to ambiguity. (B) Situation where the true alignment is suboptimal to 

the reconstructed alignment, caused by a deletion and a substitution in its neighboring 

site. A mathematical model will favor the wrong alignment. 
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In the past two decades, as biologists gather more and more DNA and protein data 

from thousands of species, programmers have devised dozens of algorithms for 

multiple sequence alignment. The majority of researchers use CLUSTALW 

(Thompson et al. 1994) to align their sequences. However, CLUSTALW, a 1994 

program, has been repeatedly shown to be outperformed by more recent ones (Nuin et 

al. 2006, Wang et al. 2011). Alignment errors are likely to cascade into even larger 

errors in later parts of the study (Markova-Raina and Petrov 2011, Schneider et al. 

2009); for example, an erroneous mismatch can produce a positive selection signal 

where none has occurred. Therefore, the under-usage of more accurate alignment 

algorithms may indicate a large amount of errors (especially false positives) in the 

literature. 

In addition to choosing a better-performing alignment algorithm, researchers can also 

employ alignment-filtering algorithms for alignment quality control. These algorithms 

attempt to identify segments of the alignments as reliable or unreliable based on 

statistical probabilities (e.g., Misof and Misof 2009), parallel comparisons (e.g., Penn 

et al. 2010) or conservation levels (Castresana 2000). The removal of sites marked as 

unreliable can improve the quality of the alignment and reduce error rates in 

subsequent analysis, as demonstrated by Privman et al. (2012) and Jordan and 

Goldman (2012). 

Table 1.1 shows the number of citations for some alignment and alignment filtering 

algorithms in the year 2013. I see from this table that alignment-filtering algorithms 
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are much less used than alignment algorithms, and in each category, older algorithms 

are much more frequently used than newer ones. This represents a mindset of many 

evolutionary and phylogenetic biologists: they consider alignment as a trivial 

technicality that does not warrant scrutiny, and choose alignment algorithms by 

imitating earlier studies. Unfortunately, as I will demonstrate in my dissertation, this 

treatment of the alignment step causes a hidden, but real source of error in 

evolutionary analysis. 

Table 1.1 Year of publication and number of citations in 2013 for a few alignment- and 

alignment filtering algorithms. Some important algorithms have not been included 

because they were presented in more than one paper and citations may overlap. All data 

from scholar.google.com. 

Type 

 

Alignment algorithms Alignment filtering algorithms 

Method 

 

CLUSTA

LW 

MUSCLE PROBCO

NS 

T-

COFFEE 

GBLOCK

S 

ALISCO

RE 

ZORRO 

Year 

published 

 

1994 2004 2005 2000 2000 2009 2013 

Citations in 

2013 

 

2890 1960 68 407 454 20 9 

Reference Thompso

n et al. 

(1994) 

Edgar 

(2004) 

Do et al. 

(2005) 

Notreda

me et al. 

(2000) 

Castresana 

(2000) 

Misof 

and 

Misof 

(2009) 

Wu et al. 

(2009) 

 

My dissertation focuses on the effects of alignment errors and choice of alignment- 

and alignment filtering algorithms on molecular evolution studies. Particularly, I want 

to demonstrate quantitatively that alignment errors can cause inaccuracies in estimates 

of branch lengths, and attempt to find methods that can mitigate them.  
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In Chapter Two, I develop a method to compare the branch lengths of two 

phylogenetic trees with the same set of taxa and topology. This method, Normalized 

Tree Distance, is not affected by the scale of either tree and can reflect the overall 

difference in proportionality. 

In Chapter Three, I study the effects of alignment algorithm and alignment filtering on 

the accuracy of branch-length estimates in maximum likelihood phylogenetic trees, 

using the vector-cosine score. I simulated coding sequence under a variety of 

evolutionary scenarios, and used a number of different alignment and alignment 

filtering algorithms before producing maximum likelihood trees with defined branch 

lengths. I demonstrated the effects of algorithm choice, as well as its interaction with 

evolutionary scenarios, on the accuracy of branch-length estimates.  

In Chapter Four, I analyze the correlation between the patterns of substitutions and 

deletions in mammalian protein-coding sequences. To measure the extent of 

alignment-induced artifacts, I included a parallel simulation dataset to serve as 

controls. 
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Chapter Two: A scale-free method for testing the 

proportionality of branch lengths between two phylogenetic 

trees 
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Introduction 

In species groups with established phylogenetic relationships, such as the great apes, 

branch length is used to compare the rates and patterns of evolution among different 

lineages and among different genes. Let us consider a case of two orthologous groups 

of genes from the same taxa. On each branch, gene a will evolve at a rate determined 

by the rate of mutation on that branch and the selective constraints that are dictated by 

its function. The same applies to gene b that performs a different function. If the 

lineages under study experience mutation rates that do not change with time (but vary 

between genes) and if the two genes maintain their respective functions in the lineages 

under study, then the branch lengths of the phylogenetic tree for gene a (tree A) will 

most probably be different from the branch lengths of the phylogenetic tree for gene b 

(tree B); however, the corresponding branches on the two different trees will be 

proportional to each other. That is, dividing the length of a branch in tree A by the 

length of the corresponding branch in tree B will yield the same result regardless of 

which branch pair is chosen (Figure 2.1A, B). If, on the other hand, the selective 

constraints or the mutation patterns change in one or more branches, proportionality 

will be violated (Figure 2.1A, C). 
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Figure 2.1 Phylogenetic trees A, B, and C for three hypothetical proteins, a, b, and c. 

Between a and b, there are no lineage-specific changes in the selection scheme, so the 

branch lengths are completely proportional; however in protein c, the selection has 

strengthened or relaxed in some branches, causing a deviation from proportionality. 

Methods for comparing phylogenetic trees, especially branch lengths, can be used in 

studying the patterns of molecular evolution. For example, Pazos et al. (2008) 

compared phylogenetic trees of bacterial proteins and found that tree similarity can be 

predictive for protein interaction. Lovell and Robertson (2010) also suggested that the 

similarity of branch length ratios, or “evolution rate correlation,” is an indicator of 

protein-protein interactions. Rosa et al. (2013) used branch length comparison as one 

of the methods to characterize the evolution of “barcode sequences” (stretches of 

mitochondrial DNA used to identify species.) When determining the accuracy of 
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phylogenetic tree reconstruction, the accuracy of branch lengths is an important aspect 

to consider (e.g., García-Pereira et al. 2011, Knowles et al. 2012). 

Measures of proportionality between two trees should be free of bias caused by the 

scale of the two trees. Mathematically, there are two issues that must be dealt with. 

First, the distance between two trees should be independent of scale: resizing one (or 

both) of the trees by multiplying all branch lengths by a fixed number should leave the 

distance between the trees unchanged. For example, since trees A and B in Figure 

2.1A and 2.1B are different in scale but perfectly proportional to each other, the 

distance between them should be zero (or their “similarity” should be 100%). Second, 

the distance function should be a metric in the mathematical sense, meaning that it 

should be symmetric and satisfy the triangle inequality. The triangle inequality implies 

that the distance between trees A and C in Figure 2.1 should be equal to that between 

trees B and C. Such a scale-independent, mathematically rigorous notion of distance 

would be useful in a variety of contexts. In particular, scale independence prevents 

bias due to longer trees appearing to have larger distances from one another. 

There are a few methods in the literature that compare phylogenetic trees; however, 

most of them only take differences in topology into account (e.g., Robinson and 

Foulds 1981; Nye et al. 2006). One of the very few distance measures that take both 

topology and branch length into consideration is the Branch Length Score (BLS) by 

Kuhner and Felsenstein (1994):  

ܵܮܤ = √∑ሺܽ௜ − ܾ௜ሻଶ                                                                                               (2.1) 
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Here ai and bi are the branch lengths corresponding to the i-th possible bipartition of 

all the taxa in trees A and B, respectively. This measure is implemented in the popular 

phylogenetic package PHYLIP (Felsenstein 2005). The BLS measure, however, 

depends on scale: trees with longer branch lengths will produce larger BLS values. In 

addition, a large BLS value will be produced if the trees are proportional to each other 

but the rates of evolution are different. For example, the BLS between trees A and B in 

Figure 2.1 is 0.0255, while the BLS between trees B and C is 0.0197. Therefore, BLS 

can be affected by non-lineage-specific variation of evolution rate, i.e., tree scale, 

which makes it an inappropriate measurement of proportionality. 

To counter this problem, Soria-Carrasco et al. (2007) made an ingenious modification 

to BLS by scaling one of the trees with a parameter K that minimizes BLS. This 

modified distance measure is called the “K tree Score” (KTS).  

ܵܶܭ =  √∑ ሺܽ௜ − ௜ሻଶே௜=ଵܾܭ  , �ℎ݁ܭ ݁ݎ =  ∑ ሺ௔೔௕೔ሻ�೔=భ∑ ௕೔మ�೔=భ                                                 (2.2) 

This value of K is chosen to minimize the score. Because only one of the trees is 

scaled, this measure is not symmetrical. Here the capital “N” is used to denote the total 

number of branches, as opposed to the lower-case “n” which will be used to represent 

number of species.  

Another tree-comparing algorithm that uses branch length data is Hall’s 

CompareTrees program (as used in Hall 2005). Unlike BLS, one of the two trees has 

to be designated the “true tree.” This branch length score (CompareTrees Score, CTS) 
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is calculated by averaging the relative differences between the lengths of the same 

branches in the two trees:  

ܵܶܥ = ሺ∑ ͳ − |௔೔−௕೔|௔೔ே௜=ଵ ሻ/�                                                                                   (2.3) 

Here N is the number of branches shared by the two trees and ai and bi are the lengths 

of the shared branches. In this method, A is designated the “true tree” or reference tree, 

and B is the tree compared to it. This method is intended to be used when one of the 

trees is known to be true. Similar to KTS, this method is asymmetrical. Furthermore, if 

there is a very short branch in A, it may produce an extremely large value due to being 

a denominator; this may obscure the comparisons of other branches. 

Here, I propose a method for comparing phylogenetic trees that solves the 

mathematical challenges outlined above. The method uses what I call the normalized 

tree distance (NTD) and is suitable for comparing trees with the same topology and set 

of taxa. 

 

Materials and Methods 

The NTD method 

Imagine two unrooted phylogenetic trees, A and B, with the same topology and the 

same set of n taxa. Since the topology is identical, each tree can be described by N = 

2n–3 branch lengths. They are denoted by a1, a2, a3,…, aN and b1, b2, b3,…, bN. As a 
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consequence, each phylogenetic tree is represented by a vector in an N-dimensional 

space: A = (a1, a2, …, aN), and B = (b1, b2, …, bN). Comparing the trees can be done by 

comparing the two vectors. The measure I choose, the NTD, is derived by adding up 

numerical differences between each pair of branches after both trees are scaled to a 

total branch length of 1, then dividing the sum by 2: 

ܦܶ� =  ሺ∑ሺ| ܽ݅∑ ݆ܽ�݆=ͳ − ܾ݅∑ ܾ݆�݆=ͳ |ሻሻ ʹ⁄                                                                               (2.4) 

As the added differences are all absolute values, the NTD will always be greater than 

or equal to 0. At the same time, the theoretical maximal value is 1; this happens when 

all branches with non-zero length in tree A have zero length in tree B and vice versa. 

In this situation, the differences will add to 2; after dividing by 2, the NTD will be 1. 

The range [0,1] of the NTD does not change with either number of taxa or the total 

length of the trees; therefore, this dimensionless measure is fully normalized. 

In mathematical terms, the calculation of NTD after scaling is the L1 metric on the set 

of N-vectors whose nonnegative entries sum to 1.  Like all mathematical metrics, NTD 

is therefore symmetric and satisfies the triangle inequality. 

 

Simulated Example 

Let us first compare my NTD with scores obtained by the three other methods: BLS, 

KTS ,and CTS. Two eight-taxon phylogenetic trees (Figure 2.2) with the same 

topology but different branch lengths were randomly generated and named X1 and Y1. 
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All branch lengths in tree Y1 were doubled to produce tree Y2, and tripled to produce 

tree Y3. Here I will examine the properties of different tree-comparing methods using 

these simulated phylogenetic trees. 

 

Figure 2.2 Simulated 8-taxa trees used to compare the four measures. X1 and Y1 are 

produced independently, while Y2 and Y3 are produced respectively by doubling and 

tripling each branch length of Y1. 

Table 2.1 shows the scores given by all four methods. From the comparison between 

X1 and Y1 and between Y1 and X1, it is clear that both KTS and CTS produce 

asymmetrical results. From the comparison between Y1 and Y2, I see that only NTD 

and KTS recognize perfectly proportional trees. Also, when one of the compared trees 
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has very long branches (e.g., when X1 and Y3 are compared), the BLS and the CTS 

will have large absolute values, while NTD is always between 0 and 1. No matter in 

which order are they compared or if the branches are proportionally changed, as long 

as the comparison is done between an “X” and a “Y” tree, NTD will remain the same.  

Table 2.1 Comparison of four tree-comparing measures used simulated eight-taxon trees 

(Figure 2.2). These scores are, the Normalized Tree Distance (NTD), the branch length 

score (BLS), the K tree score (KTS), and the CompareTrees score (CTS). 

Tree Pairs NTD BLS KTS CTS 

X1 / X1 0 0 0 1 

Y1 / X1 0.08144 2.3054 1.71401 -1.09598 

X1 / Y1 0.08144 2.3054 2.18746 -0.34057 

X1 / Y2 0.08144 3.47463 2.18746 -1.63611 

X1 / Y3 0.08144 5.15815 2.18746 -3.00397 

Y3 / X1 0.08144 5.15815 5.14204 0.27316 

Y1 / Y2 0 1.97171 0 0 

Y2 / Y1 0 1.97171 0 0.5 

 

 

Deriving distribution of NTD 

Here I will provide a profile of how the distribution of NTD looks from real DNA and 

protein sequence data. I downloaded CDS and corresponding protein alignments that 

contain 12 well-sequenced mammal species from the online database ORTHOMAM 
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(Douzery et al. 2014). These species are: human (Homo), chimpanzee (Pan), macaque 

(Macaca), marmoset (Callithrix), rat (Rattus), mouse (Mus), guinea pig (Cavia), dog 

(Canis), horse (Equus), cow (Bos), pig (Sus), and elephant (Loxodonta). The website 

also provides the topological phylogenetic relationship among these species (Figure 

2.3). Although there is controversy on the placement of horse (e.g., Zhou et al. 2012), 

I decided to use this external tree as the user tree for simplicity. All alignments 

containing unknown nucleotides or amino acids were removed. 5,140 pairs of 

DNA/protein alignments remained in the dataset.

 

Figure 2.3 The phylogenetic tree topology of 12 mammalian species. This is a commonly 

accepted topology of their phylogenetic relationship, used as a guide tree for the 

maximum likelihood tree reconstruction. 
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All CDS and protein alignments were used to produce maximum likelihood trees with 

RAxML (Stamatakis 2006), using the GTRGAMMA model for DNA sequences and 

PROTGAMMAJTT model for protein sequences. A user tree (Figure 2.3) was used to 

guide the tree topology. Branch lengths were collected from the result for calculating 

NTD. Three empirical distributions were derived: among all DNA trees, among all 

protein trees, and between DNA and protein trees for each gene. The distributions 

were fit to beta, gamma, and lognormal distributions, using log likelihood as a 

measure of goodness-of-fit. 

Distributions were fit to the NTD data by using a maximum likelihood estimation of 

the distributions parameters, together with resampling to ensure that the fitted 

distributions are robust to outliers in the given data. 

For a given probability distribution with probability density function f, the log 

likelihood (LL) of data X1, …, XM, given a parameter θ, is computed as LLሺθሻ =∑ log ݂ሺ�௜|�ሻெ௜=ଵ . I normalized this log likelihood by the sample size to better compare 

the LL for data sets of different sizes. Therefore, instead of using LL(θ), I used L(θ) := 

LL(θ)/M. 

To fit distributions to the NTD data, I used maximum likelihood estimation, together 

with a resampling technique to ensure that the fitted distributions are robust against 

outliers in the datasets. Given the original dataset X1, …, XP, a family of subsamples 

X1
j, …, XPj

j 
(j = 1,…, 1000, Pj = 1000 for all j) was taken. For each subsample, the 

maximum likelihood estimate for the unknown parameter θ was computed. I call this 
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estimate θj. I then used a resampling technique to compute a log likelihood value for 

each θj. Specifically, from the original data I then sampled k = 1000 subsamples, each 

of size K = 1000, and used these subsamples to obtain repeated estimates {ܮ(�௝)௜}௜=ଵ௞ . 

The log likelihood for the parameter θj was obtained by taking the mean ̂ܮ(�௝) =
ଵ௞ ∑ ሺ�௝ሻ௜௞௜=ଵܮ . Finally, I chose the best fit estimator �̂ as �̂ = arg max�ೕ   .ሺ�௝ሻܮ̂

The error on the estimate ̂ܮሺ�̂ሻ was obtained by computing σ/√݇ where σ is the 

sample standard deviation of {ܮ(�̂)௜}௜=ଵ௞ . 

 

Results 

 

Figure 2.4 The distribution of NTD scores from a sample of mammalian gene trees. (A) 

Trees produced from DNA sequences are compared with one another; (B) trees 

produced from protein sequences are compared with one another; (C) trees produced 

from corresponding DNA and protein sequences are compared with each other for each 

gene. The curves are theoretical distributions fit to the data with a maximum likelihood 

method. The black curves represent the best-fit beta distribution, green curves the best-

fit lognormal distribution, and red curves the best-fit gamma distribution. In all three 

cases, the lognormal distribution fits most appropriately. 

Figure 2.4 shows empirical distributions of NTD scores in three different datasets and 

approximation of them to established distribution families. Although they are all 
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unimodally distributed, the mean score for comparisons between corresponding DNA 

and protein trees (Figure 2.4C) is smaller than the mean score for comparisons among 

DNA trees (Figure 2.4A), which is in turn smaller than the mean score for 

comparisons among protein trees (Figure 2.4B). This can be explained biologically, as 

DNA sequences have more neutral-evolving characters than proteins and the lineage-

specific selection effects are weaker. Trees produced from the DNA and protein 

alignments of the same gene are more similar because these two sources are dependent 

on each other.  

Table 2.2 The log-likelihood of three distribution families fit to the NTD data from 

protein-protein, DNA-DNA, and protein-DNA tree comparisons. In all cases, lognormal 

distribution appears to have the highest log-likelihood values, indicating a good fit. Error 

estimates are in parentheses.  

Dataset Beta distribution Lognormal 

distribution 

Gamma 

distribution 

Protein-protein 

 

0.3612 (<0.0001) 0.4482 (0.0004) 0.4372 (0.0004) 

DNA-DNA 

 

1.0107 (0.0011) 1.0644 (0.0009) 1.0447 (0.0008) 

Protein-DNA pairs 0.9369 (0.0010) 1.0515 (0.0009) 0.9918 (0.0009) 
 

Table 2.2 shows the log likelihood scores for distribution fitting. For all three datasets, 

lognormal distribution fits better than both beta and gamma distributions, though the 

scores are not highly different. Similarly, in Figure 2.4, one can see that the green 

curves (lognormal) fit the histograms better than the black (beta) and red (gamma) 

curves. Thus, the NTD scores of a sample of phylogenetic trees produced from real 

sequences are distributed most closely to lognormal.  
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Discussion 

Differences between phylogenetic trees can be classified into three categories: 

differences in topology, scale, or proportionality. While most comparison methods 

(Robinson and Foulds 1981; Nye et al. 2006) focus on topology, the ones that compare 

branch lengths do not distinguish between scale (Kuhner and Felsenstein 1994) and 

proportionality, or are not symmetrical (Soria-Carrasco et al. 2007, Hall 2005). My 

NTD measure is useful when only proportionality information (but not scale) is 

needed. 

For the NTD method, I chose to use the total tree length to scale each tree to total 

length one before comparison. If the tree is considered a vector, the scaling factor is 

known as the L1-norm (ܽ′௜ =  ܽ௜/ ∑ ௝ܽே௝=ଵ ). In mathematical algorithms that deal with 

vectors, however, a popular scaling alternative is the L2-norm (ܽ′௜ =  ܽ௜/√∑ ܽଶே௝=ଵ ), 

which is the square root of the sum of the squared values. I compared the L1-scaled 

trees branch by branch and used the sum of the differences, known as the L1-distance 

(∑ ሺ|ܽ′௜ − ܾ′௜|ሻே௜=ଵ ). I certainly could have used the L2-distance (Euclidean distance, 

√∑ ሺܽ′௜ − ܾ′௜ሻଶே௜=ଵ ), since Euclidean distance has a natural geometric meaning. The 

main reason I chose L1 measures over L2 is the consideration of the biological 

meaning of branch lengths. Since branch length signifies the amount of evolutionary 

change from one point in the tree to another, the total length (L1-norm) is the total 
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amount of evolutionary change that occurred along the entire tree, while the L2-norm 

does not have a biological meaning.  

Unlike previous methods, the NTD is itself normalized, because both trees are scaled 

before the comparison. All possible NTD scores are between 0 and 1. This enables the 

NTD to become a standardized measure of tree proportionality, which can be 

compared across different taxa. Another advantage of this method is that it does not 

need too much computation time. To calculate the NTD between two n-taxa trees, 

only 8n – 15 additions/deductions and 4n – 5 divisions are needed. No iterations are 

required, and the computation time increases linearly with the number of taxa. 

The potential applications for such a measure include comparing the evolutionary 

histories of two proteins where the phylogeny among the species studied is 

uncontroversial or known (e.g., experimentally evolved organisms). For example, if 

the NTD between gene a and gene b is much lower than those between gene a and 

other genes, it is possible that genes a and b coevolve. In addition, because the 

absolute values of branch lengths are not important, NTD can be used to compare trees 

computed from different kinds of data, e.g., from DNA sequences and protein 

sequences. Even if the absolute branch-length values in a DNA tree and a protein tree 

are not comparable directly, the trees can be compared using NTD. If comparing 

phylogenetic trees produced by a coding gene and its protein product gives a high 

NTD score, it is likely that the selection pressure on this gene differs among lineages. 
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As the NTD is a global measure that compares entire trees, it can only be used to 

compare the branch length patterns over the entire trees. To pinpoint in which lineages 

the selective changes occur, lineage-specific measures such as dN/dS analysis are 

required. However, since NTD is easy and fast to compute, it is computationally 

efficient to first identify “interesting” tree pairs with NTD before analyzing them in 

depth with more sophisticated methods like maximum likelihood or Bayesian analysis. 

In the future, a statistical test can be devised that uses NTD scores to identify genes 

that evolve under different situations in a single set of species. For example, 

researchers can establish a lognormal distribution for one-to-one comparisons in a 

collection of gene trees, and look for trees that produce significantly more scores in 

the tail of the distribution compared to the mean.  

Finally, I want to mention the possibility of using NTD for trees that are not 

topologically identical. In the BLS method (Kuhner and Felsenstein 1994), branches 

that are present in one tree but not in the other are treated as zero length in the latter 

tree. This can also work in my NTD measure; however, I decided not to include this 

aspect here, since I am skeptical as to how well a zero-length branch can represent a 

non-existent one in a phylogenetic tree. 
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Chapter Three: Multiple sequence alignment quality control 

improves estimates of branch length 
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Introduction 

In phylogenetic analyses, branch lengths indicate evolutionary distance, i.e., how 

many changes had occurred between a hypothetical ancestral state and either another 

ancestral state or an extant state. Under the molecular clock hypothesis, branch lengths 

are expected to be proportional to the length of time between the two states and can, 

therefore, be used to estimate divergence time between species (Hasegawa et al. 1985). 

Even when the molecular clock is relaxed or absent, researchers still use branch 

lengths for dating speciation events, evolutionary rates, and coalescent times 

(Sanderson 2002; Lepage et al. 2007; Smith and Donoghue 2008; Edwards 2009). 

Notwithstanding the importance of branch lengths, phylogenetic studies usually 

emphasize the reliability of the tree topology, while under-emphasizing the reliability 

of branch length estimations.  

Various means to improve the accuracy of branch length estimations are used. The 

most conspicuous such trend in the literature is the use of likelihood and Bayesian 

methods instead of simpler methods of phylogenetic reconstruction, such as parsimony. 

However, simply using a more complicated algorithm does not ensure increased 

accuracy. Bayesian methods are usually computationally intensive and dependent on 

prior settings. Indeed, priors can have an inordinate effect on branch length estimation 

(Marshall et al. 2006; Leaché and Mulcahy 2007; Gamble et al. 2008; Brown et al. 

2010). Moreover, because of inherent characteristics of Markov-Chain Monte-Carlo 
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(MCMC) algorithms, the computation can easily become “trapped” in a parameter 

space that does not include the true value of the parameter (Marshall 2010).  

Alignment quality may be a factor of branch-length accuracy. Although a theoretical 

optimal solution to a multiple sequence alignment problem exists, the time needed to 

achieve such solution increases exponentially with both sequence length and number 

of sequences. As a NP-complete problem (Wang and Jiang 1994), such an algorithm 

can exceed the computation capacity of the best computers even when no more than 

three or four short sequences are aligned. Therefore, for all algorithms attempting to 

produce multiple sequence alignments, a heuristic method must be used. Typically, the 

program produces a guide tree from a pairwise distance matrix, and adds sequences 

one by one to that guide tree. Because of the heuristic nature as well as the difficulty 

of exactly duplicating a biological process with a mathematical model, multiple 

sequence alignments usually contain a large number of errors. Landan and Graur 

(2009) characterized common alignment error types. One of the most common errors 

is to favor mismatches over gaps, thereby yielding an alignment that is shorter than it 

should be. Mathematical over-fitting of models may give optimal placements of gaps, 

while the true natural process is co-optimal or sub-optimal (Landan and Graur 2008). 

Alignment error rate increases with the level divergence, but the accuracy of guide 

trees is largely independent from it. 

It is widely known that different alignment algorithms produce multiple sequence 

alignments of different qualities (e.g., Wang et al. 2011), and this difference can affect 
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downstream analysis such as phylogenetic reconstruction (Ogden and Rosenberg 2006) 

and estimation of positive selection (Markova-Raina and Petrov 2011, Schneider et al. 

2009). Unfortunately, in studies focusing on phylogeny and divergence time, the 

accuracy of alignment is usually ignored (Morrison 2009).  

Alignment filtering algorithms (also known as refining or masking algorithms) aim to 

identify regions of a multiple sequence alignment likely to contain errors and remove 

them from the dataset. These algorithms identify sequence conservation (e.g., 

Castresana 2000), use statistical hypothesis testing (e.g., Misof and Misof 2009), or 

compare parallel alignment attempts (e.g., Penn et al. 2010). Filtering either unreliable 

columns or characters can significantly decrease the false positive rate in detecting 

positive selection (Privman et al. 2012). However, simply removing uncertain columns 

does not increase the accuracy of topology by much (Landan 2005).  

Unfortunately, researchers use these algorithms much less than they should when 

estimating phylogenies. Most phylogenetic studies take automatic alignments for 

granted. They may check their alignments by eye (which is not reproducible), and 

even if they use filtering, they are likely to use GBLOCKS (Castresana 2000), which 

is less accurate than newer algorithms (Privman et al. 2012). 

In this study, I tested how difference in choice of alignment algorithm and refinement 

algorithm affect the accuracy of branch length estimates. 
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Materials and Methods 

Simulation of coding sequences 

INDELible (Fletcher and Yang 2009) was used to simulate coding sequences, because 

it contains a large number of controllable variables, and because its model setting is 

highly flexible. Below I list the constants and variables chosen for this study (Table 

3.1). 

Table 3.1 The list of all six variables in producing the simulated alignments. 

Category Variable Value 1 Value 2 Value 3 

Phylogenetic 

tree 

Tree topology Balanced Pectinate  

Divergence 

level 

1 substitution per 

codon root-to-tip 

 

2 substitution per 

codon root-to-tip 
 

Internal and 

terminal branch 

lengths 

(branching time) 

Longer internal 

branches (“ancient” 
branching) 

 

Equal internal and 

terminal branches 

Longer 

terminal 

branches 

(“recent” 
branching) 

Variation in 

branch lengths 

Small variation 

(longest is 2.25× 

shortest) 

 

Large variation 

(longest is 9× 

shortest) 

 

Indel model 

Indel frequency 

relative to 

substitutions 

 

0.0429 0.0857 0.1286 

Insertion vs 

deletion rate 
Equal Unequal  

 

The site-wise distribution of dN/dS values was drawn from the data of Lindblad-Toh 

et al. (2011) which contain more than 12,000 genes in 29 mammal species. The part of 
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dN/dS distribution above 1 was truncated. Due to INDELible’s requirement, the 

distribution was further binned into 50 categories, each represented by the middle 

value (0.01, 0.03… 0.99). 

The ratio of transition to transversion mutations was set to 3.6. The rates of insertion 

and deletion (frequency compared to substitution) were produced from an earlier study 

on human pseudogenes (Zhang and Gerstein 2003), which gave the insertion rate to be 

0.0291 and deletion rate to be 0.0566. To examine the effects of total indel rates and 

relationship between insertion and deletion rates, these numbers were varied in 

simulation. First, using × 0.5, × 1, and × 1.5 of the pseudogene indel rate, three levels 

of indel rates were produced; second, both “equal” (using a mean value for both 

insertion and deletion) and “unequal” insertion and deletion rates were used. For the 

distribution of indel size, I used Jordan and Goldman’s (2012) value, a truncated 

power-law distribution with a parameter of 1.8 and a maximum size of 40 codons. 
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Figure 3.1 The phylogenetic trees before introducing of random variation in branch 

lengths. The topologies are balanced (A,B,C) and pectinate (D,E,F). The “branching 

times” are “ancient” (A,D), “intermediate” (B,E), and “recent” (C,F). 

Next, 16-species phylogenetic trees were used as the “correct trees” for the 

simulations. First, in half of the trees, the topology was perfectly balanced (Figure 

3.1A,B,C); in the other half it was thoroughly pectinate (Figure 3.1D,E,F). Second, 

two different divergence levels were used, measured by mean root-to-tip distance, 

being 1 and 2 substitutions per codon. Third, “ancient,” (Figure 3.1A,D) 

“intermediate,” (Figure 3.1B,E) and “recent” (Figure 3.1C,F) branching was achieved 

by varying the ratio of internal and terminal branch lengths. In “ancient” branching, I 
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set the ratio of branch lengths from the most internal to the terminal is 1:2:3:4 for 

balanced trees, and 1:2:3:…:15 for pectinate trees (for early branched taxa, like A~N 

in Figure 3.1D, the terminal branch is set to make root-to-tip distance same in each 

taxon; same for “recent” branching.) In “intermediate” branching, the branch lengths 

of every level were the same. In “recent” branching, the ratio was 4:3:2:1 for balanced 

trees and 15:14:13:…:1 for pectinate trees. I did this because it was previously 

demonstrated that trees that have “ancient” branching (longer terminal than internal 

branches) are more difficult to reconstruct (Cantarel et al. 2006). At this step, all trees 

were ultrametric. Finally, every branch length was multiplied with an independent 

random number log-uniformly distributed between (1/K, K) (density function: fሺxሻ =  ଵଶ�×ln ሺ�ሻ), then with a constant (
�మ−ଵଶ�×ln ሺ�ሻ). K is 1.5 for “small branch length 

variation” and 3 for “large branch length variation.” In this way, the randomized 

branch length has an expectation of the original branch length in the ultrametric tree. 

Therefore, 24 trees are produced, each with a different combination of these four 

variables. 

With 6 different indel models and 24 different trees, there are a total of 6 variables and 

144 sets of simulation data (see Table 3.1 for the list of variables and their values); for 

each set, 50 replicates were produced, and for each replicate, the initial length is 1,000 

codons.  
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Alignment, filtering, and phylogenetic reconstruction 

ClustalW (Thompson et al. 1994) is one of earliest multiple sequence alignment 

programs. It is the most commonly used alignment program in phylogenetic studies 

(Yamamoto et al. 2000; Regier et al. 2008; Morrison 2009). However, comparisons 

showed that ClustalW produces relatively less accurate alignments (Edgar and 

Batzoglou 2006, Thompson et al. 2011) than more recently developed algorithms such 

as MAFFT (Katoh et al. 2005), MUSCLE (Edgar 2004), and ProbCons (Do et al. 

2005). In addition, MAFFT has an option called L-ins-I (abbreviated as MALINSI in 

this chapter) where a few more iterative steps are added after the default MAFFT 

alignment. This option has been shown to be superior to the default option of MAFFT 

(Katoh and Toh 2008, Nuin et al. 2006).  

Seven different alignment algorithms were used to align the simulated sequences. In 

addition to the ones introduced in the last paragraph, I used T-COFFEE (Notredame et 

al. 2000) and Clustal-Omega (abbreviated as ClustalΩ) in this chapter, Sievers et al. 

2011). Because of the mechanism of one refinement program (GUIDANCE), 

CLUSTALW, MAFFT and MUSCLE were used in joint with GUIDANCE in codon 

align mode, which produce both pre-refining and post-refining alignments. For the 

other algorithms, which are PROBCONS, MALINSI, ClustalΩ, and T-COFFEE, the 

unaligned sequences were first translated into proteins and aligned, and DNA 

alignments are back-constructed from protein alignments. In addition, the true 

alignment was included as a control to see how much variation in the final results is 
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due to alignment errors.  The accuracy of each reconstructed alignment was calculated 

as the proportion of nucleotide pairs that are correctly aligned, and “alignment error” 

is one minus the accuracy. 

All alignments, including the true alignment, were processed through a number of 

different refinement algorithms.  

One of the first alignment-refining algorithms was GBLOCKS (Castresana 2000). It 

was written specifically to find conserved regions (blocks) in an alignment (e.g., Kück 

et al. 2010; Göker et al. 2011; Privman et al. 2012). It is the most frequently used 

alignment filtering program in phylogenetic studies (e.g., Rodríguez-Ezpeleta et al. 

2005; Fitzpatrick et al. 2006; Philippe et al. 2009). The option for gap permission were 

set to either “all” (more lenient) or “half” (more stringent), producing two parallel sets 

of results. 

GUIDANCE (Penn et al. 2010) was developed using an approach of comparing 

alignments of same sequences under different guide trees, based on an earlier program 

named HoT (Landan and Graur 2007), which simply compared the alignment 

produced from the 5’ to 3’ sequence to that produced from the 3’ to 5’ sequence.  The 

percentage of “unreliably aligned” columns according to GUIDANCE is usually 

similar to that identified by HoT. Because GUIDANCE must be used in conjunction 

with compatible alignment algorithms, I could only filter CLUSTALW, MUSCLE, 

and MAFFT alignment with GUIDANCE. Because the default cut-off value removes 

virtually all sites in many alignments, alternative criteria were used: 30%, 50% or 70% 



33 

 

of lowest-scoring codons are masked (GUIDANCE-30%, GUIDANCE-50%, and 

GUIDANCE-70% respectively), changed to “X,” and the corresponding nucleotides 

are changed to “NNN” indicating missing data. 

ALISCORE (Misof and Misof 2009) is a probability-based alignment filtering 

algorithm. It tests the statistical significance of aligned columns against a null model 

of random association. ALISCORE uses a random permutation of small sliding 

windows, and tends to remove a large proportion of sequences among conservative but 

distant sequences (von Reumont et al. 2009). Only the default option was used in my 

study. 

ZORRO (Wu et al. 2012) calculates the posterior probability of a pair of aligned 

characters. A higher probability indicates that they are reliably aligned. Currently, 

ZORRO can only be used on protein sequences. The cut-off score was set to 4, 5 or 6 

(henceforth referred to as ZORRO-4, ZORRO-5, and ZORRO-6, respectively). 

The multiple sequence alignment package T-COFFEE (Notredame et al. 2000) 

includes an “evaluation mode” that can assign scores to each character of an externally 

provided alignment. In the evaluation mode, a score (“CORE,” Consistency of Overall 

Residue Evaluation) is calculated based on the appearance of character pairs in a 

library of pairwise alignments (Notredame and Abergel 2003). This function can be 

used as an independent alignment filtering algorithm. I masked low-scored amino acid 

residues, and the cut-off scores were set to 3, 5, or 7 (T-COFFEE-3, T-COFFEE-5, 
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and T-COFFEE-7 respectively). In both ZORRO and T-COFFEE, a lower cut-off 

value indicates a more lenient filtering. Both algorithms produced three sets of results. 

In highly diverged sequence alignments, refining may cause too few sites to remain 

for phylogenetic purposes. Therefore, I removed all filtered alignments with less than 

100 columns of 2 or more non-gap codons. 

Maximum likelihood trees were produced from all refined and unrefined alignments, 

with the program RAxML (Stamatakis 2006). This program was used because it can 

generate maximum likelihood trees rapidly. The user tree option was used to produce 

trees that are topologically identical as the true trees. 

  

Evaluation and analysis of branch length estimates 

A fully resolved phylogenetic tree of 16 taxa has 29 branches, so the data would be 

very difficult to analyze if the accuracies of branch lengths are estimated one by one. 

Instead, a measure that will produce one value from the comparison of two trees is 

needed. I chose the NTD (Normalized Tree Distance) score (see Chapter 2), a 

symmetric score that measures the proportionality of trees without interference from 

scale. To calculate NTD, both trees are scaled to a total length of 1, and the absolute 

differences between corresponding branches are added up and halved. NTD will 

always be in the range of [0, 1]. For two n-taxa trees A and B whose branches are a1 to 

a2n-3 and b1 to b2n-3 respectively, the calculation is: 
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ܦܶ� =  ሺ∑ሺ| ௔೔∑ ௔ − ௕೔∑ ௕|ሻሻ ʹ⁄ , where ∑ ܽ = ܽଵ + ܽଶ + ⋯ + ܽଶ�−ଷ, and ∑ ܾ = ܾଵ +ܾଶ + ⋯ + ܾଶ�−ଷ                                                                                  
The scores were analyzed with ANOVA to determine which factors (6 simulation 

variables and 2 method variables) affect the accuracy of branch length estimation. 

During the preliminary test, 2 of these variables (variance of branch lengths within a 

tree and ratio of insertion to deletion rates) did not express any large individual or two-

way interaction effects (all mean squares <15). These variables were subsequently 

removed from the analysis. Another ANOVA was done with the six remaining 

variables: tree topology, branching time (relative internal branch length), divergence 

level, indel rate, alignment algorithm, and alignment refining algorithm. Single-

variable and two-way interaction effects are studied. Paired t-tests for NTD score 

among alignment algorithms were performed. 

A similar ANOVA was also performed on alignment accuracy (in which only 

unfiltered alignments are used), to see if the effects of alignment choice is consistent 

in alignment accuracy and branch-length score. Linear regression was used to analyze 

the correlation between alignment accuracy and branch length accuracy. Paired t-tests 

for alignment accuracy among algorithms were performed. 

To find which combination of alignment and refinement algorithms could produce the 

most accurate estimation of branch lengths, a ranking was done for each evolutionary 

scenario. I use the phrase “evolutionary scenario” to mean a combination of tree 

topology, relative internal branch length, divergence time, and indel rate. Paired t-tests 
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(with Bonferroni correction) were performed to see if the difference between the best 

method combination and its unfiltered/T-COFFEE-3 filtered counterpart is significant. 

To see how alignment quality correlates with the estimation of branch length, 

regression and correlation analysis was performed between alignment score and 

branch length score. Because alignment score was calculated only for unrefined 

alignments, only the branch length score from unrefined alignments were used here. 

For each evolutionary scenario the coefficient of determination (r
2
) was calculated.  

All branch length scores were recalculated using the tree reconstructed from the true 

alignment instead of the true tree as the reference. ANOVA and ranking analysis were 

similarly conducted, to disentangle the effect of errors from phylogenetic 

reconstruction algorithm from that of alignment errors. 

 

Changes in tree scale after filtering 

To evaluate to what extent alignment filtering causes the tree to shrink in scale, all 

trees produced from filtered alignments were compared to their unfiltered counterpart. 

The score used to represent scale change is mean of the logs of the ratios between 

filtered and unfiltered tree branches is ݈ܵܿܽ݁ − ݁ݎ�ܿݏ =  ∑ lnሺ௔೔ ௕೔⁄ ሻమ�−య೔=భ ଶ�−ଷ , where ai  and bi  

are corresponding branches from filtered and unfiltered alignments. Mean scores for 

each filtering methods were computed, and paired t-tests were conducted. 
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Results and Discussion 

Alignment and filtering 

I produced by simulation 144 datasets differing in six variables, each with 50 

replicates. There are 7,200 true alignments in total. Including the true alignments, 

57,600 alignments are generated. Although one set of sequences can produce 97 

filtered and unfiltered alignments, some of them have too many columns removed to 

be used in phylogenetic studies. I removed all filtered alignments with less than 100 

codons and classify them as missing data. 
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Factors affecting branch length accuracy 

Table 3.2 ANOVA showing effects of topology, degree of divergence, indel rate, 

alignment method, and filtering, as well as their two-way interactions on branch length 

accuracy. All variables and interactions have p-value below 3.3×10
-15

after Bonferroni 

correction. 

Variable 

Sum of 

squares 

Percentage of 

Variation Explained 

Topology 23.58 1.18 

Branching Time 30.54 1.53 

Divergence 160.04 8.02 

Indel Rate 415.09 20.79 

Alignment Algorithm 487.75 24.43 

Alignment Filtering Algorithm 34.52 1.73 

Topology × Branching Time 1.73 0.09 

Topology × Divergence 1.99 0.10 

Branching Time × Divergence 2.86 0.14 

Topology × Indel Rate 3.14 0.16 

Branching Time × Indel Rate 1.53 0.08 

Divergence × Indel Rate 47.31 2.37 

Topology × Alignment Algorithm 14.05 0.70 

Branching Time × Alignment Algorithm 4.2 0.21 

Divergence × Alignment Algorithm 48.48 2.43 

Indel Rate × Alignment Algorithm 104.92 5.25 

Topology × Alignment Filtering Algorithm 14.36 0.72 

Branching Time × Alignment Filtering Algorithm 6.27 0.31 

Divergence × Alignment Filtering Algorithm 20.61 1.03 

Indel Rate × Alignment Filtering Algorithm 13.54 0.68 

Alignment Algorithm × Alignment Filtering Algorithm 51.82 2.60 

Higher Interactions 151.12 7.57 

Residuals 357.16 17.89 

Total 1996.61 100 
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After a series of preliminary ANOVA tests, I removed two variables from the analyses 

(variance of individual branch lengths in the tree and ratio of insertion to deletion rates) 

due to weak direct and interaction effects. I then did another ANOVA with the 

remaining six variables. The combinations of tree topology, branching time (relative 

internal branch length), divergence, and indel rate are called evolutionary scenarios 

(total 36 scenarios). All six variables and their 15 two-way interactions are highly 

significant (p < 0.0001), but the sums of squares, which tell us how much variance is 

explained, are vastly different (Table 3.2). The choice of alignment method alone 

explains 24.4% of the total variance. The choice of alignment filtering explains 1.7%, 

and the interaction between alignment and filtering methods explains 2.6%. Therefore, 

the total effect of method is 28.7%. On the other hand, the largest evolutionary-

scenario-rated source of variation is indel rate, which is 20.8%; the total effect of 

evolutionary scenarios is 34.8%. Since the residuals are 17.9%, the interaction 

between method and evolutionary scenario explains 18.6% of the variance. Because 

my evolutionary scenarios cover a very large range of indel rates and divergence 

levels, these results shows that choices of alignment and filtering methods have a very 

strong effect on the branch-length score. 
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Figure 3.2 Mean Normalized Tree Distance scores under different divergence, indel rate, 

and a few chosen method combinations. Error bars are standard deviations. A higher 

score indicates less accurate reconstruction. In all 4 combinations of parameters, 

PROBCONS provide better results than CLUSTALW, and T-COFFEE refining further 

improves the accuracy. 

Figure 3.2 shows the a few examples of method combinations. No matter what the 

level of divergence and indel rate are, PROBCONS alignments produce lower NTD 

than CLUSTALW – closer to true alignment. At the same time, T-COFFEE-3 filtering 

improves the estimation in PROBCONS alignments by a smaller amount. Judging by 

the mean for each alignment algorithm (Figure 3.3), PROBCONS and T-COFFEE 

produce the most accurate branch-length estimates in all reconstructed alignments; 

MALINSI, CLUSTALΩ, and MUSCLE are closely followed. While MAFFT 

produces lower branch-length accuracies, CLUSTALW is the worst of all these 

algorithms by a wide margin. 
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Figure 3.3 Mean (A) alignment error and (B) Normalized Tree Distance scores (from 

unfiltered alignments) by alignment algorithm, ordered from the most to least amount of 

error. Error bars are standard deviations. “**”between two adjacent columns indicating 
significant difference (p < 0.01) after Bonferroni correction. 

 

Interactions among evolution scenario and methodology variables 

The interaction between evolutionary scenario and method combination is evident. I 

found that when the tree topology, divergence, and indel rate varies, the optimal 

method combination also changes. In Table 3.3, the best methods of each evolutionary 
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scenario are provided, and t-tests between the best method and its filtered/unfiltered 

counterparts are described. 

Table 3.3 The best method combination for each evolutionary scenario (by mean 

Normalized Tree Distance score). The p-values of filtering are based on t-test between 

the best method and its T-COFFEE-3/unfiltered counterpart. For example, PROBCONS 

is compared to PROBCONS_T-COFFEE-3, while MAFFT_T-COFFEE-3 is compared 

to MAFFT. Significant difference between filtered and unfiltered alignments are marked 

with “**” (α = 0.01) or “*” (α = 0.05), after Bonferroni correction. 

Tree 

Topolog

y 

Relative 

Terminal 

Branch 

Diver-

gence 

Indel Rate Best Method Combination 
P-Value of 

filtering 

Balanced 

Long (Ancient 

Branching) 

Low 

Low PROBCONS_T-COFFEE-3 0.006905 

Medium PROBCONS_T-COFFEE-3 0.00011 ** 

High PROBCONS_T-COFFEE-3 <0.0001 ** 

High 

Low PROBCONS <0.0001 ** 

Medium PROBCONS 0.002196 

High T-COFFEE 0.00133 * 

Medium 

(Intermediate 

Branching) 

Low 

Low PROBCONS_T-COFFEE-3 0.475491 

Medium PROBCONS_T-COFFEE-3 0.000562 * 

High PROBCONS_T-COFFEE-3 <0.0001 ** 

High 

Low PROBCONS 0.094791 

Medium T-COFFEE <0.0001 ** 

High T-COFFEE <0.0001 ** 

Short (Recent 

Branching) 

Low 

Low PROBCONS 0.320608 

Medium PROBCONS_ZORRO-4 0.022583 

High T-COFFEE_T-COFFEE-3 <0.0001 ** 

High 

Low PROBCONS 0.008921 

Medium T-COFFEE_T-COFFEE-3 0.227178 

High T-COFFEE <0.0001 ** 

Pectinate 

Long (Ancient 

Branching) 

Low 

Low MAFFT_T-COFFEE-5 <0.0001 ** 

Medium MAFFT_T-COFFEE-3 <0.0001 ** 

High MAFFT_T-COFFEE-3 <0.0001 ** 

High 

Low MALINSI_T-COFFEE-3 <0.0001 ** 

Medium PROBCONS_T-COFFEE-3 <0.0001 ** 

High CLUSTALO <0.0001 ** 

Medium 

(Intermediate 

Branching) 

Low 

Low MAFFT_T-COFFEE-5 <0.0001 ** 

Medium MAFFT_T-COFFEE-3 <0.0001 ** 

High MAFFT_T-COFFEE-3 <0.0001 ** 

High 

Low MAFFT_T-COFFEE-3 <0.0001 ** 

Medium MAFFT_T-COFFEE-3 <0.0001 ** 

High CLUSTALO <0.0001 ** 

Short (Recent 

Branching) 

Low 

Low MAFFT_T-COFFEE-5 <0.0001 ** 

Medium MAFFT_T-COFFEE-5 <0.0001 ** 

High MAFFT_T-COFFEE-5 <0.0001 ** 

High 

Low MAFFT_T-COFFEE-5 <0.0001 ** 

Medium MAFFT_T-COFFEE-3 <0.0001 ** 

High CLUSTALO <0.0001 ** 
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The data suggested that, in different evolutionary scenarios, different method 

combinations produce the most accurate branch lengths. With balanced trees, 

PROBCONS appears the most the top list; in a few scenarios T-COFFEE alignments 

are in the top, and MALINSI and MUSCLE occasionally occupying the second or 

third place. In balanced trees and low level of divergence T-COFFEE-3 filtering is 

used in the best combination, although ZORRO-4 and unfiltered alignments top the 

list once each. In 5 of the 9 scenarios (mostly with higher indel rates), T-COFFEE-3 

provides a significant benefit. On the other hand, sequence alignments evolved along 

balanced trees with high level of divergence are best left unfiltered, being top 8 of 9 

cases and significantly better than their T-COFFEE-3 filtered counterpart in 5 of them. 

Pectinate trees produce a very different set of outcomes. Instead of PROBCONS or T-

COFFEE, alignments by MAFFT (default option) occupy almost all top spots, except 

when the divergence and indel rate are both high. These best methods are often 

MAFFT alignments (with two exceptions) filtered by T-COFFEE-3 or T-COFFEE-5, 

and are highly significantly better than unfiltered MAFFT alignments (P < 0.0001 in 

13 scenarios). Under high divergence and high indel rate (scenarios highly improbable 

in real data), the best method is unfiltered CLUSTALΩ.  

I have shown that the best alignment algorithm depends on the tree shape. Therefore, 

at least in my case, an objectively “best” alignment algorithm does not exist; a sensible 

researcher would choose their algorithm(s) based on their needs. Of course, sometimes 

the tree shape cannot be known without aligning the sequence and building a 
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phylogeny, especially in taxa that are not studied extensively before. To break this 

catch-22, a preliminary phylogeny can be made and the resulting tree topology can be 

used to guide the main alignment. 

When different filtering algorithms are compared, in almost all evolutionary scenarios, 

the best were filtered with the evaluation mode of T-COFFEE. With one exception, T-

COFFEE produces the best filtered alignment in all evolutionary scenarios; most of 

them are under the stringency level T-COFFEE-3. Lenient filtering performs better 

than stringent filtering, likely because less informative sites are removed. 

A recent study (Chang et al. 2014) also demonstrated that T-COFFEE evaluation have 

better sensitivity and specificity compared to other alignment filtering algorithms. 

They used an improvement of the T-COFFEE CORE evaluation which I did not use 

because it was developed after I conducted the studies.  

There are studies arguing that MALINSI provides better results than MAFFT’s default 

mode (Katoh and Toh 2008, Nuin et al. 2006), and some even claim it is consistently 

superior to PROBCONS (Ahola et al. 2006). However, I showed that, while in term of 

mean effects MALINSI performs better than the MAFFT default mode in both the 

alignment accuracy and branch-length score, it appears less frequently in the top three 

lists (Table 3.3). Specifically, in the scenarios where the tree topology is pectinate, 

filtered MAFFT alignments often yield higher branch-length score than MALINSI 

alignments filtered by the same method. However, in all but one case, unfiltered 

MALINSI yields higher branch-length score than MAFFT default, and even in that 
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case the difference is very marginal. It is possible that although MAFFT’s default 

mode is less accurate than MALINSI, it has more space for improvement for 

alignment filtering, especially with pectinate trees.  

 

Correlation between alignment accuracy and branch-length accuracy 

Table 3.4 ANOVA showing effects of topology, degree of divergence, indel rate, and 

alignment method, as well as their two-way interactions, on alignment accuracy. All 

variables and interactions have p-value below 0.0001. 

Variable 

Sum of squares Percentage of Variation 

Explained 

Topology 27.92 1.19 

Branching Time 117.19 4.99 

Divergence 808.24 34.41 

Indel Rate 748.81 31.88 

Alignment Algorithm 361.42 15.39 

Topology × Branching Time 36.42 1.55 

Topology × Divergence 3.65 0.16 

Branching Time × Divergence 19.56 0.83 

Topology × Indel Rate 3.89 0.17 

Branching Time × Indel Rate 16.22 0.69 

Divergence × Indel Rate 58.74 2.50 

Topology × Alignment Algorithm 2.71 0.12 

Branching Time × Alignment Algorithm 9.97 0.42 

Divergence × Alignment Algorithm 21.22 0.90 

Indel Rate × Alignment Algorithm 19.02 0.81 

Higher Interactions 28.58 1.22 

Residuals 65.48 2.79 

Total 2349.04 100 
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In the ANOVA test for alignment accuracy (Table 3.4), all four variables of 

evolutionary scenario, choice of alignment algorithm, as well as all second-order 

interactions have p < 0.0001. However, evolutionary scenarios place a larger role in 

alignment accuracy variance compared to the NTD data; both divergence and indel 

rate explain over 30%, while alignment algorithm explains only 15.3%. Judged by the 

mean (Figure 3.3), PROBCONS and MALINSI are most accurate, followed by T-

COFFEE and MAFFT (default), then MUSCLE and Clustal-Omega, and 

CLUSTALW is the worst. This is consistent with previous studies (e.g., Wang et al. 

2011) in which PROBCONS and MAFFT were described as superior while 

CLUSTALW are less accurate. I can observe that the order of alignment accuracy and 

branch-length accuracy are not necessarily the same; for example, MAFFT alignments 

are substantially more accurate than MUSCLE, but the NTD score shows a higher 

level of error. 
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Figure 3.4 The relationship between alignment error and Normalized Tree Distance 

score (indicating error of branch-length estimates). The red line indicates the linear 

regression. There is a clear trend that with higher alignment error, the error score is also 

higher. 

The linear regression between the alignment error and NTD score is described in 

Figure 3.4. I use the error instead of accuracy because NTD is an error measure here, 

and using the accuracy will give a negative correlation. There is a significant (p < 

2×10
-16

) correlation, and the coefficient of correlation is r = 0.62, with the regression 

formula of NTD = 0.26119 – 0.21500 × (alignment accuracy). The linear regressions 

by each evolutionary scenario rate are all significant (all p < 2×10
-16

). Table 3.5 and 

3.6 show the correlation coefficients associated with each alignment scenario. The r 
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(Table 3.5) ranges from 0.51 to 0.91; however, a visible trend is that the easier the 

alignment is (with low indel rate and level of divergence, and preferably balanced 

tree), the higher the coefficient of determination is. 

Table 3.5 The correlation coefficient between alignment accuracy and Normalized Tree 

Distance (measure of branch-length error) in each evolutionary scenario.  

  

Balanced Pectinate 

Divergence 

Branching

\Indel Ancient 

Inter-

mediate Recent Ancient 

Inter-

mediate Recent 

Low 

Low 0.82 0.78 0.80 0.74 0.71 0.61 

Medium 0.88 0.88 0.91 0.86 0.79 0.72 

High 0.86 0.84 0.86 0.87 0.80 0.74 

High 

Low 0.91 0.87 0.91 0.91 0.88 0.83 

Medium 0.78 0.78 0.80 0.69 0.65 0.70 

High 0.61 0.64 0.60 0.57 0.51 0.53 
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Table 3.6 The correlation coefficient between alignment accuracy and Normalized Tree 

Distance (measure of branch-length error) in each evolutionary scenario, after 

controlling for alignment algorithm choice. 

  

Balanced Pectinate 

Divergence 

Branching

\Indel Ancient 

Inter-

mediate Recent Ancient 

Inter-

mediate Recent 

Low 

Low 0.13 0.30 0.23 0.12 0.26 0.17 

Medium 0.11 0.24 0.14 0.16 0.20 0.22 

High 0.04 0.13 0.11 0.13 0.12 0.09 

High 

Low 0.06 0.16 0.15 0.12 0.10 0.12 

Medium 0.06 0.08 0.11 0.10 0.07 0.06 

High 0.08 0.11 0.17 0.05 0.04 0.08 

  

To test if the choice of alignment algorithm plays a great role in this correlation, I re-

calculated r controlling for alignment algorithm. In the complete dataset, r
 
dropped to 

0.41, while in individual evolutionary scenarios (Table 3.6), r
 
dropped below 0.3, with 

the lowest being 0.04. Therefore, it is most likely that this correlation largely result 

from the choice of alignment algorithm; a good algorithm (like PROBCONS, T-

COFFEE) produces good alignments and accurate branch-lengths, while a bad one 

(like CLUSTALW) produces low-quality alignments and inaccurate branch-lengths. 
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Branch length accuracy measured in reference to the reconstructed tree from true 

alignment 

I produced branch-length scores using the trees generated from true alignments instead 

of true input trees as references, to separate the effect of alignment errors from 

sampling error during simulation and systematic bias of the tree-producing algorithm. 

I performed an ANOVA test, but the effects of all variables are very close to those 

calculated from the main dataset. The only major difference being tree topology only 

explains 0.54% instead of 1.18% of variance. I reason that, because the sequences are 

relatively long (1,000 codons) and RAxML is a high-accuracy phylogenetic algorithm, 

the effects of sampling error and tree bias when using the true alignment are minimal. 

However, the effects may be a bit different between balanced and pectinate trees; 

since pectinate trees are a bit difficult to reconstruct, this effect may also exist in the 

trees built from true alignments. This may partially offset the errors in the trees by 

inferred alignments, reducing the difference of NTD scores between balanced and 

pectinate trees. 

 

Change in scale of phylogenetic trees 

The NTD method I adopted to evaluate branch length accuracy does not incorporate 

increases or decreases in the tree scale. For example, if the three branches in one tree 

are 0.1, 0.2, and 0.3, while their counterparts are 0.2, 0.4, 0.6, the score will be 0. To 

observe how alignment filtering causes the tree scale to change, I used the log 
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geometric mean of all branch length ratios to score a tree produced by a filtered 

alignment. A negative score indicates decreased tree branch lengths. 

Table 3.7 describes the effects of each filtering method on the branch lengths in 

general. All 12 filtering methods and leniency levels significantly reduce the scale of 

the tree (p < 0.0001 for all). The filtering method that was shown to be most helpful to 

increase accuracy, T-COFFEE-3, can cause a reconstructed branch to be ~26% shorter 

on the geometric average.  

 

Table 3.7 Mean proportional branch length reduction for each filtering method, ordered 

by paired t-test result. Note some methods have lower mean scale-score but are 

significantly higher in t-test comparison; this is mainly because of the interaction among 

evolutionary scenario, alignment, and filtering methods. Different letters in “t-test 

significance” column indicates significant difference. 

Filtering Method Mean Scale-score Expected Branch 

length if the 

unfiltered 

alignment gives 1.0 

t-test significance 

GUIDANCE-30% -0.30 0.74 A 

T-COFFEE-3 -0.30 0.74 B 

GBLOCKSA -0.29 0.75 C 

GBLOCKSH -0.33 0.72 D 

ALISCORE -0.36 0.70 E 

ZORRO-4 -0.32 0.72 F 

GUIDANCE-50% -0.48 0.62 F 

ZORRO-5 -0.36 0.70 G 

ZORRO-6 -0.47 0.62 H 

GUIDANCE-70% -0.70 0.49 H 

T-COFFEE-5 -0.61 0.55 I 

T-COFFEE-7 -0.86 0.43 J 
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This tendency of alignment filtering to decrease branch lengths in reconstructed 

phylogenies, due to the removal of fast-evolving regions, is seldom mentioned. This 

study shows that alignment filtering does cause a global bias towards shorter branches. 

This may cause a number of problems in phylogenetic studies that require absolute 

values of branch lengths, for example estimation of mutation rates and divergence 

time.  

 

Caveats and limitations 

While the only phylogeny method I used is maximum likelihood, there are other 

commonly used ones such as neighbor-joining (Saitou and Nei 1987) and Bayesian 

(e.g., Ronquist and Huelsenbeck 2003). However, neighbor-joining does not allow the 

input of a user tree, and the Bayesian methods take so much time that it is infeasible to 

use it on all the alignments even if a large computational cluster is used.  

Because an incorrect topology will complicate the scoring of branch lengths, user trees 

are used to ensure that there is no topology incongruence.  Admitted, this is unrealistic, 

because I do not know the branching order of real species for sure. This problem can 

be resolved if one score that take both topology and branch length into consideration 

(e.g., Kuhner and Felsenstein 1994) is used; however, I have chosen to explorer the 

accuracy of branch lengths alone (independent from topology) in this study.  
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Conclusion 

This study has shown that alignment quality has a profound effect on the accuracy of 

branch length estimation in maximum-likelihood phylogenetic trees. It is also shown 

this accuracy can be significantly improved by choosing a suitable combination of 

alignment and filtering algorithms. The choice of algorithms depends on the nature of 

the sequence data, particularly the tree topology (if known), and the degree of 

divergence. 

The application of alignment-filtering algorithms can improve the accuracy in 

estimation of branch lengths. Therefore, researchers should choose their methods of 

obtaining multiple-sequence alignments carefully, and based on their needs, rather 

than use the most popular method (i.e., ClustalW without filtering) for all purposes. 
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Chapter Four: Correlated selection on amino-acid deletion 

and replacement in mammalian protein sequences 
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Introduction 

Functional constraint is defined as the limitation of nucleotides that can appear in a 

site while keeping the gene’s function undisrupted (Miyata et al. 1980, Jukes and 

Kimura 1984). Sites with stronger functional constraints have lower rate of evolution, 

and usually perform functions more important to the organism’s fitness. Because 

mutations consist of point mutations and indels (insertions and deletions), functional 

constraint can be defined separately with respect to each type of mutation. A naïve 

expectation would be that the functional constraints against nucleotide substitutions 

and against indels will be correlated; because if the function of a genomic site can be 

disrupted by a substitution, it is likely that it can also be disrupted by an indel. 

However, this is not always the case. For example, if a nucleotide substitution occurs 

in a fourfold degenerate site in a protein-coding gene, it will be selectively neutral 

because the protein product is not affected; but if that fourfold-degenerate site is 

deleted, it will cause a frameshift which may completely disrupt the function of that 

protein. Graur et al. (2015) have called such regions, “indifferent DNA,” to be 

evolutionarily between functional and junk DNA; these sites are not under selection as 

long as they are not deleted. 

Although a rich literature exists on the selection pattern on substitutions, and to a 

lesser extent deletion, the two have only rarely been systematically compared. 

Substitutions are studied more extensively than deletions, partly because current 

multiple-sequence alignment methods are better in modeling them. Multiple sequence 
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alignment algorithms are often unreliable in locating insertions and deletions (Landan 

and Graur 2009). 

Taylor et al. (2004) identified 1,743 indel events in 1,282 genes (out of a dataset of 

8,148 genes) from human-mouse-rat triple alignments. They compared indel rates in 

different gene functions (using Gene Ontology), and found that intracellular proteins 

and enzymes are less likely to have indels. When they compared the indel rate 

differences with an earlier study of substitution rates (Waterston et al. 2002), it was 

found that their distribution among categories were highly similar. Unfortunately, their 

study used gene categories instead of directly separate the data by gene. Another study 

(Miller et al. 2007) used a 28-vertebrate alignment to study coding-sequence 

conservation over these species. In one section, the authors tested the hypothesis that 

amino acids that are conserved in long-term evolution are more likely to cause 

diseases when a deletion mutation happens on them. They used the gene PAH 

(phenylalanine hydroxylase), whose deficiency causes a well-studied genetic disease 

PKU (phenylketonuria). However, the conservation levels of the codons involved in 

disease-causing deletions (that are multiples of three nucleotides) are not significantly 

higher than the gene overall, failing to show a correlation. This study only used a 

single gene, presumably because disease data on amino acid deletions are difficult to 

obtain. This makes the sample size rather small, but the usage of disease data is an 

advantage in that the deleterious effects are confirmed and not inferred. Finally, Chen 

et al. (2009) studied a different measure, the ratio of nucleotide substitution to indel 

rates, across mammalian and bacterial genomes. A higher ratio indicates a lower 
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relative indel rate. First, they found that coding sequences have less indels relative to 

point mutations; this is expected given frameshifts will destroy a protein's function. 

Within coding regions, more conservative genes have a higher substitution/indel ratios, 

i.e., less tolerant to indels. This suggests indels (even those that are times of three 

nucleotides) are subject to stronger selection than substitutions in conservative genes; 

however, since the "substitution" they used includes both synonymous and 

nonsynonymous ones, the ratio does not necessary compare two kinds of selection 

because of neutral sites mixing in the data. 

The null hypothesis to be tested here is that purifying selection against 

nonsynonymous substitutions and purifying selection against indel events are not 

correlated. If there is a correlation, one can expect that the dN/dS value of a codon 

would be proportional to the probability of that being deleted in one (or more) of the 

studied lineages; otherwise, the two would be independent. dN will also behave 

similarly because it is also under selection; dS would not because it measures neutral 

substitutions. It is also possible that the correlation occurs only on a gene level: genes 

with higher dN/dS would have higher mutation rate, but the correlation is absent 

within genes. However, selection is not the only evolutionary force that may cause a 

correlation between substitutions and indels; it is possible that regions with high point 

mutation rates would also have high indel mutation rates. In this case, I would see that 

the deletion rate would be correlated to both dN and dS, but the dN/dS ratio would not 

have such an effect. 
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In this study, I used mammalian protein-coding sequences and simulated sequences to 

study the correlation between deletion rates and dN/dS, to understand how similar or 

different the patterns of the two types of selection are. In addition, I used dN and dS 

separately to see their correlation with deletion rates, to test my hypothesis on whether 

or not mutation plays a role. I have found that there is indeed a correlation, and it is 

more caused by selection than mutation; the correlation is mostly due to the difference 

of selection patterns between genes. 

 

Materials and Methods 

Data collection and analysis of dN, dS, and dN/dS 

A list of aligned mammalian protein sequences was taken from Lindblad-Toh et al. 

(2011). To make sure that only good-quality genome sequences are used, I only used 

data from 9 mammalian species (Figure 4.1): human (Homo sapiens), chimpanzee 

(Pan tryglodytes), macaque (Macaca mulatta), rat (Rattus norvegicus), mouse (Mus 

musculus), guinea pig (Cavia porcellus), dog (Canis lupus familiaris), cow (Bos 

taurus), and horse (Equus caballus).  I retained 8,605 alignments.  Coding DNA 

sequences that correspond to these sequences were retrieved from ENSEMBL 2011 

archive (Flicek et al. 2011). 
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Figure 4.1 The commonly accepted phylogenetic relationship among the 9 species used in 

this study. This tree will be called the external reference tree throughout the paper. 

Seven different colors denote seven pairs of branches/lineages (A ~ G) on which deletions 

were estimated. The black-colored branches are the root of the tree. The branch lengths 

of the 9-species tree are derived from UCSC Human/hg19/GRCh37 46-way multiple 

alignment (Kent et al. 2002). These branch lengths are used as guidance for simulation 

and estimation of deletion rates. 

All protein sequences were realigned with CLUSTALW (Thompson et al. 1994), 

PROBCONS (Do et al. 2005), and T-COFFEE (Notredame et al. 2000), and DNA 

alignments were threaded through the protein alignments. Maximum likelihood trees 

were produced with RAxML (Stamatakis 2006) from PROBCONS alignments and 10 

genes that produced a total tree length above 5 were removed. Throughout the study, I 

used the remaining 8,595 genes. The DNA alignments were processed through the 

program HyPhy using the FUBAR script (Murrell et al. 2013), which estimated the dN 

and dS of each site using an approximate Bayesian algorithm. Their ratio dN/dS 
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(Omega) is calculated from the output of FUBAR. Hereafter dN, dS, and dN/dS are 

collectively called “substitution measures.” 

 

Deletion Identification and statistical analysis 

I searched seven pairs of branches for deletions of one to eight amino acids (Figure 

4.1). These pairs of branches are: (A) human and chimpanzee lineages (red branches, 

macaque as outgroup); (B) ape and macaque lineages (green branches, cow as 

outgroup); (C) rat and mouse lineages (indigo branches, guinea pig as outgroup); (D) 

murid and guinea pig lineages (orange branches, human as outgroup); (E) primates 

and rodents lineages (purple branches, cow as outgroup); (F) dog and horse lineages 

(yellow branches, cow as outgroup); (G) (dog+horse) and cow lineages (cyan branches, 

human as outgroup). The outgroup was used to determine if an indel is an insertion or 

a deletion. In branch pair (B), the closest outgroup is a rodent, but cow was chosen 

because rodents have long branch lengths. For a lineage containing multiple species 

(e.g., apes), only the branch before the divergence (e.g., divergence between human 

and chimpanzee) was analyzed. This was done by combining multiple sequences into 

an “ancestral” sequence. If the site is not a gap in at least one of these sequences, it 

was treated as a non-gap in the whole ingroup. In this way, every branch in the nine-

species tree, excluding the root branch, was searched for deletions without repetition. 

The root branch (the branch separating Euarchontoglires and Laurasiatheria) was not 

searched for deletions because the directions of its indels could not be determined. 
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Figure 4.2 Illustration of how I identified deletion events and non-used sites in protein 

sequences for each pair of lineages. (A) Identified short deletion in ingroup 1. (B) Non-

used sites because of gaps in the outgroup. (C) Non-used sites because both ingroups are 

gaps, thus direction and time of indel unknown. (D) Non-used sites because of long (> 

8aa) deletion. (E) Non-used sites because of unknown amino acids. (F) Non-used sites 

because of terminal gaps. Figure made with MEGA version 6 (Tamura et al. 2013). 

Each amino acid site in each pair of branches was also determined to be a “used site” 

or not; a used site should be a non-gap in the outgroup (Figure 4.2B), and cannot be 

gaps in both ingroup lineages (Figure 4.2C), part of a long deletion (>8 amino acids, 

Figure 4.2D), unidentified amino acid (Figure 4.2E) or part of terminal gaps (Figure 

4.2F). A detected deletion (Figure 4.2A) always happens in used sites. 

Then the weighted “deletion rate” of each amino acid site in all alignments are 

calculated. For each branch pair, its weight is the sum of the corresponding branch 

lengths in the reference tree (Figure 4.1). The branch lengths are derived from 

human/hg19/GRCh37 46 species multiple alignment, using the placental tree without 
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chromosome X (http://genomewiki.ucsc.edu/index.php/Human/hg19/GRCh37_46-

way_multiple_alignment, Kent et al. 2002). The “deletion rate” of that site is number 

of deletion(s) that occurs in this site, divided by the sum of weights of branch pairs in 

which the site is a “used site.” Similarly, the “deletion rate” of the whole gene is the 

number of deleted sites in the whole gene divided by the total sum of weights of 

corresponding branch pairs from each used site. 

For each amino acid site in each alignment, four values were obtained: a weighted 

“deletion rate” and three substitution measures (dN, dS, and dN/dS). Spearman 

correlation coefficients (Spearman coefficients hereafter) were calculated between 

“deletion rate” and all three substitution measures, for each alignment method. These 

datasets use all sites, so I named them “All.” To reduce the effects of spuriously high 

or low dN/dS due to gappy sites, the correlation coefficients were recalculated for sites 

that are non-gap in at least four sequences, and for sites that are non-gap in at least six 

sequences. These datasets were named “4+” and “6+.” Since there are a large number 

of sites that does not experience any nucleotide substitutions (their dN/dS is 

technically incalculable due to division by 0, only approximated using extrapolation 

from other sites), the correlation coefficients were also recalculated with all datasets 

after these constant sites were removed. These datasets were named “NC-All,” “NC-

4+,” and “NC-6+.” Therefore, with “All,” “4+,” “6+,” “NC-All,” “NC-4+,” and “NC-

6+,” from which 6 Spearman coefficients were calculated for each alignment method.  

 

http://genomewiki.ucsc.edu/index.php/Human/hg19/GRCh37_46-way_multiple_alignment
http://genomewiki.ucsc.edu/index.php/Human/hg19/GRCh37_46-way_multiple_alignment
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Test simulation for determining the parameters for the main simulation 

I simulated sequence evolution using INDELible (Fletcher and Yang 2009). To 

simulate coding sequences, INDELible evolves nucleotide sequences along the input 

tree based on a nucleotide substitution models. These substitutions are subject to 

selection as determined by dN/dS, randomly drawn from an input distribution for each 

site. Insertions and deletions, always multiples of three nucleotides, are independently 

modeled and have a uniform rate among sites; however, the total amount of indels is 

proportional to the branch length. To input the parameters, including tree length 

(divergence), gene-wise indel rate, gene size, and dN/dS based on those of real data, I 

need to know what input parameters would correspond to the output values of each 

gene. I started with a “test” simulation to establish the relationship between input 

parameters and values estimated from sequences. Both in the test simulation and the 

main simulation, the input tree and the lengths of its branches are scaled from the 

“reference tree” from UCSC genome browser (Figure 4.1, Kent et al. 2002).  

My simulation included three parts of grid search. In part one, only the level of 

divergence was varied. The trees along which simulated sequences were evolved are 

produced by multiplying every branch of the “reference tree” by factors. These 1,000 

factors range from 0.01 to 10 with increments of 0.01, and are hereafter called ST (tree 

scaling factor). For each of the 1,000 trees, 5 replicates are produced. The indel rate 

(relative to substitution rate) is derived from Gerstein et al. (2003), using the rate of 

insertions and deletions that are a multiple of three. The relative insertion rate is 
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0.00354, and the relative deletion rate is 0.01357. Part two is a two-dimensional grid 

search that varies both the level of divergence and relative rate of indels. For the level 

of divergence, ST takes ten values from 1 to 10. The input relative indel rates are 

produced by multiplying 0.00354 and 0.01357 with factors from 0.1 to 8 with 

increments of 0.1. These factors are called SRI (relative indel rate scaling factor). I call 

their product (ST×SRI) = SAI (absolute indel rate scaling factor). For each of the 10×80 

= 800 scenarios, 5 replicates are produced. A gamma distribution of site-wise dN/dS 

with a shape parameter of α = 0.5 and mean = 0.17 (derived from the gene-wise mean 

of the whole real dataset) was used for both parts. To satisfy the INDELible input 

requirement, the distribution was binned into 50 bins between 0 and 1, 20 bins 

between 1 and 2 and 1 bin above 2. In each bin, the dN/dS value used was the median. 

Part three dealt with the change of gene-wise dN/dS from input to output. In this part, 

ST was set at 1.5 and SRI was set at 0.6; they are close to the mean of real data and 

preliminary tests showed that dN/dS output is not sensitive to ST or SRI as long as ST is 

not very small (e.g., below 0.5). The input mean dN/dS varies from 0.01 to 1 with 

increments of 0.01 (5 replicates for each dN/dS value), and the distribution is a gamma 

distribution with a shape parameter of α = 0.5, and binned with the same method as 

the two previous tests (bins with a probability below 10
-6

 were discarded). 

In all three test simulations, the distribution of indel size is a power-law distribution 

(Cartwright 2009) whose parameter is 1.8 and truncated at 40, and each replicate 

started with a coding sequence of 500 codons. 
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All simulated alignments from this test round were realigned with PROBCONS. Part 

one alignments were then used to produce maximum likelihood trees using RAxML 

(Stamatakis 2006) with the user tree option, and total tree lengths were calculated. The 

relationship between ML total tree length and ST was obtained by a linear regression 

through origin. Part two alignments were processed through an in-house Perl script to 

determine the gene-wise deletion rate; the relationship between this deletion rate and 

SAI is obtained by a linear regression through origin. The ratio between the alignment 

length and ancestral gene length was also mapped to SAI with a linear regression 

through origin, because insertions can increase alignment lengths.  Because a very 

large SAI would cause the alignment to be very difficult and the relationships would be 

non-linear, as well as not occurring in real data, only test-simulated data with SAI <= 

20 were used. For part three, FUBAR was used to estimate gene-wise dN/dS, by 

dividing the mean dN by mean dS, using only “4+” sites. I did not use “NC-4+” 

because excluding substitution-free sites may cause a bias. A linear regression (not 

through origin) is used to estimate the relationship between input and output dN/dS.  

The procedures for the test round and regressions are illustrated in Figure 4.3A. 
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Figure 4.3 A flowchart describing the procedure I did to obtain the simulation 

parameters. (A) Three parts of the test round were used to determine how input tree 

length, indel rate, and dN/dS determine output tree length, deletion rate, alignment size, 

and dN/dS. (B) The formulas of input-output relations were then used to convert 

estimates from real data to input parameters of main simulation round. 
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After obtaining the mathematical relationship between simulation input and output, I 

applied them on real data to get the parameter used for the main round of simulation. 

For each of the 8,595 PROBCONS real gene alignments, the following information is 

collected: (1) the alignment length; (2) the total RAxML tree length; (3) gene-wise 

deletion rate; (4) gene-wise FUBAR-estimated dN/dS. The mean dN/dS are estimated 

by dividing the mean dN by mean dS, using only “4+” sites. Using (2) and (3), the ST 

and SAI corresponding to each gene is calculated. Using SAI and (1), the “ancestral 

gene length” is calculated. Using (4) I calculated the input mean dN/dS; however if the 

regression formula (see Results) was used for the whole dataset, negative input mean 

dN/dS would appear in several genes, and there would be a strong bias in low-dN/dS 

genes. As a compromise, I only used the regression formula to calculate input dN/dS if 

the real data output is higher than 0.1704167; otherwise the input was the same 

number as output. The resulting polyline is continuous.  

The formulas I used are as follows: 

Total ML tree length = ST × 0.4389; 

Gene-wise deletion rate = SAI × 0.02108; 

(Alignment length / ancestral gene length) – 1 = SAI × 0.01135. 

Output dN/dS = (Input mean dN/dS × 0.71511) + 0.04855 (if dN/dS > 0.1704167) 

Output dN/dS = Input mean dN/dS (if dN/dS < 0.1704167) 
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Coding sequence simulation and analysis  

For the main simulation round, 8,595 genes × 5 replicates were simulated with 

INDELible. For each gene, the ancestral gene length and level of divergence (achieved 

by multiplying the reference tree with ST) were based on the values derived from the 

corresponding real gene. The distribution of dN/dS was a gamma distribution with a 

shape parameter of α = 0.5 and mean = dN/dS calculated as per last paragraph, binned 

using the same methods as the test round (bins with a probability below 10
-6

 are 

discarded). Because I was studying the correlation between substitution rate 

(proportional to ST) and absolute deletion rate (proportional to SAI), I could not 

directly use the SAI value estimated from the real gene. Instead, for each replicate, I 

drew SAI from a gamma distribution with a shape parameter of α = 0.6 and mean = 

0.79 (the mean SAI from the real data). This means the five replicates will have five 

different SAI, while sharing other parameters. SRI values (required calculate the 

parameters directly input) were then calculated by dividing SAI with ST. The whole 

process of deriving parameter for the simulation is also described via a flowchart in 

Figure 4.3B.  

The simulated protein sequences were aligned with CLUSTALW, T-COFFEE, and 

PROBCONS, and then nucleotide alignments were threaded through the protein 

alignments. Together with the true alignment (as control for alignment error), their 

site-wise substitution measures were estimated with the FUBAR script by HyPhy. 
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Deletions were identified, and site-wise deletion rates were estimated with the exact 

same method as with real data. 

To provide ranges of values with which the ones from real data can be compared with, 

bootstrap resampling was used. 1000 subsets of the simulated data were produced. In 

each subset, one random replicate was chosen from the five for each of the 8,595 

“genes.” Spearman coefficients were calculated for each subset. Each subset were 

used as-is, having sites with less than 4 or 6 non-gap characters removed,  having sites 

without nucleotide substitution (constants) removed, or the combination of the them, 

similar to the procedures for real data (“All,” “4+,” “6+,” “NC-All,” “NC-4+,” and 

“NC-6+”). For all the 6 Spearman coefficients, the mean, standard deviation, 2.5% 

and 97.5% quantiles were calculated. The corresponding real data value was compared 

to the range of simulated data values both with a Z-score and using quantiles. For the 

Z-score, the differences between the means of bootstrap values from simulated data 

and the values from real data were divided by the standard deviations of bootstrap 

values from simulated data; the resulting statistics were compared to a standard 

normal distribution and p-values were obtained. 

 

Distribution of dN/dS in deleted sites 

All real mammalian protein sites that have undergone at least one deletion in any 

lineage were extracted from the data set and their distributions of estimated dN/dS are 

computed. The distributions were compared with those from deletion-free sites to see 
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if any difference exists with chi-square tests. Effect sizes (Cohen’s D, Cohen 1988) 

were calculated between dN/dS distributions in deletion and non-deletion codons. 

These analyses were done on “All” and “NC-4+” datasets only, because I thought the 

others would produce similar results and are thus unnecessary. These procedures were 

repeated for the simulated data. Similar to the previous section, one thousand 

bootstrap subsets were used, and the mean, standard deviation, 2.5%, and 97.5% 

quantiles were calculated. The corresponding real data values were compared to the 

range of simulated data values both with a Z-score (same formula as in the previous 

section) and using quantiles.  

 

Analysis of gene-wise and within-gene correlations  

For both real and simulated data, I calculated gene-wise dN, dS, dN/dS, and deletion 

rate. Gene-wise dN and dS are the mean of corresponding values of “4+” sites over the 

whole gene. I did not use “NC-4+” because excluding substitution-free sites may 

cause a bias. Gene-wise dN/dS is gene-wise dN divided by gene-wise dS. Gene-wise 

deletion rate is the total number of deletion divided by the total sum of weights of 

corresponding branch pairs from each used site. 

I calculated the Spearman correlation between gene-level deletion rate and substitution 

measures in both real and simulated data, for each alignment method. Similar to 

previous sections, in the simulated data bootstrapping is used. Each subsample 

includes only one replicate for every simulated gene. The mean, standard deviation, 
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2.5%, and 97.5% quantiles were calculated. The corresponding real data values were 

compared to the range of simulated data values both with a Z-score and using 

quantiles. 

I calculated within-gene Spearman correlation between deletion rates and substitution 

measures, using 466 real genes and 466 × 5 = 2,330 simulated genes that have the 

derived “ancestral gene length” longer than 1,500 amino acids. The correlation 

coefficients are calculated for both “all” and “NC-4+” datasets. Genes that do not have 

any deletions identified were removed from the data, while the rest were used to 

calculate the mean and standard deviation.  

Table 4.1 gives an overview of my data. 
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Table 4.1 A summary of my data, both real and simulated. 

 Real Data 

(PROBCONS) 

Simulated Data 

(PROBCONS) 

Simulated Data 

(TRUE) 

Number of genes 8,595 42,975 42,975 

Total alignment length 

(aa) 

5675396 28458331 28465275 

Proportion of 

substitution-free sites 

0.3106 0.2266 0.2275 

Number of deletions 50698 338330 340895 

Mean deletion size (aa) 1.9591 1.9218 1.9274 

Mean site-wise dN (sd) 0.3326 (0.9098) 0.2804 (0.5671) 0.2793 (0.5625) 

Mean site-wise dS (sd) 1.9526 (2.6370) 1.5625 (1.8169) 1.5586 (1.8032) 

Mean site-wise dN/dS 

(sd) 

0.2687 (0.4891) 0.2705 (0.5630) 0.2705 (0.5654) 

Mean gene-wise dN (sd) 0.3595 (0.2087) 0.2983 (0.1432) 0.2974 (0.1433) 

Mean gene-wise dS (sd) 2.1206 (0.4309) 1.6833 (0.2955) 1.6789 (0.2936) 

Mean gene-wise dN/dS 

(sd) 

0.1702 (0.0940) 0.1790 (0.0884) 0.1789 (0.0888) 

Mean gene-wise deletion 

rate (sd) 

0.0166 (0.0222) 0.0186 (0.0258) 0.0189 (0.0266) 
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Results  

Correlation between deletion rates and substitution measures 

 

Figure 4.4 Site-wise Spearman correlation between deletion rate and substitution 

measures (A. dN/dS, B. dN, C.  dS) in real and simulated data, complete dataset. For the 

simulated data, the shown value is the mean of 1,000 bootstrap re-samplings, and the 

error bar is 2.5% to 97.5% quantiles. I observe that in all three measures, real data 

produces a higher correlation than simulated data. 

In Figure 4.4, the correlations between deletion rate and all three substitution measures 

(dN, dS, and dN/dS) are presented. In the dataset “All,” a correlation of about ρ ≈ 0.08 

exists between dN/dS and deletion rate (Figure 4.4A), and ρ ≈ 0.11 between dN and 

deletion rate (Figure 4.4B), estimated from the pooled sample of 8,595 real 

mammalian alignments. The differences between different alignment methods are 

minimal, therefore I only showed PROBCONS in the three algorithms (similar below). 

On the other hand, the corresponding correlation from simulated data is only ρ ≈ 0.01 
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for dN/dS and ρ ≈ 0.03 for dN. The real data are highly significantly different from 

these (P < 0.0001 in Z-test for all cases; all P values are from Z-tests in this section). 

For true simulated alignments, the correlation is well below the level of inferred 

alignments for dN and dN/dS. With dS (Figure 4.4C), the difference are much smaller, 

being ρ ≈ 0.04 in real data and ρ ≈ 0.01 for simulated data, but still significantly 

different from zero (P < 0.0001). 

 

Figure 4.5 Site-wise Spearman correlation between deletion rate and substitution 

measures (A. dN/dS, B. dN, C.  dS) in real and simulated data. Here I use the “NC-4+” 
dataset, from which substitution-free sites and sites that are gaps for more than five 

species are removed. For the simulated data, the shown value is the mean of 1,000 

bootstrap re-samplings, and the error bar is 2.5% to 97.5% quantiles. 

In the dataset “NC-4+,” only sites that have at least one nucleotide substitution and are 

non-gaps in at least 4 species are used for the calculation. The patterns for dN and 

dN/dS have not changed (Figure 4.5A, 4.5B); the only visible difference is that the 

true alignment from simulated data has an extremely small correlation between dN/dS 
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and deletion rate (ρ < 0.0001), which is not significantly different from zero (P = 

0.4982). On the other hand, the situation with dS has reversed (Figure 4.5C); here 

simulated data have a slightly higher correlation, ρ ≈ 0.025 than real data, ρ ≈ 0.02 (P 

< 0.0001). The other four datasets, “4+,” “6+,” “NC,” and “NC-6+” presents similar 

results; it also appears that which one have a higher dS-deletion correlation depends 

on if substitution-free sites are removed. In datasets without substitution-free sites, the 

correlation between dN/dS and deletion rate in true simulated alignment is two 

magnitudes smaller than in datasets with substitution-free sites. It is likely that datasets 

without substitution-free sites are more reliable, because dN/dS of those sites are only 

estimated by extrapolation from other sites. 

 

dN/dS distribution in codons that underwent deletion 

Figure 4.6 shows the Cohen’s D, a measure of differences in means of substitution 

measures between sites with and without deletion. It is another way to examine the 

relationship between deletion and substitution measures. Here the number of deletions 

does not matter; only presence or absence does. Biologically, if a site has a deletion, 

then it would be more “expendable;” another deletion is more likely to occur than by 

random. The observation from Cohen’s D data is very similar to Spearman data: in 

both dN and dN/dS, real data gives a much higher effect than simulated data, with dN 

having slightly stronger signal; while in dS, the effect is much weaker. However, 

Cohen’s D between deleted and non-deleted sites’ dS are significantly different 
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between real and simulated data; simulated data have a higher Cohen’s D in both “All” 

(P < 0.0001) and “NC-4+” (P < 0.0001) datasets. 

 

Figure 4.6 Effect size (Cohen’s D) indicating the difference of (A) dN/dS, (B) dN, or (C) 
dS means between deleted and non-deleted sites. In each graph, both simulated and real 

data, and both “All” and “NC-4+” datasets are used. For the simulated data, the shown 
value is the mean of 1,000 bootstrap re-samplings, and the error bar is 2.5% to 97.5% 

quantiles. 

To visualize the different distributions of dN/dS between deleted and non-deleted sites, 

I made bar graphs for real and simulated “NC-4+” data aligned with PROBCONS 

(Figure 4.7). In real data (Figure 4.7A), it is easy to see that non-deleted sites are twice 

likely to have dN/dS under 0.1 than deleted sites; while in all bins above 0.2, the 

fractions of deleted sites are much higher. On the contrary, in simulated data (Figure 

4.7B), the fractions of deleted and non-deleted sites in each bin of dN/dS are very 

close. There are visible differences in the lowest (<0.1) and highest (>2) bins, but they 

are much less pronounced than in real data. Thus, I have shown that deleted sites 
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generally have a higher dN/dS (as well as dN) than non-deleted sites, and this effect is 

much higher in real data than in simulated data. 

 

Figure 4.7 Histograms showing dN/dS distribution comparisons between sites with and 

without deletion, in both (A) real, (B) simulated data aligned with PROBCONS. It can be 

observed that the distributions are much more different in real data than in simulated 

data: the non-deleted sites have a heavier left tail, while the deleted sites have a heavier 

right tail. 
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Gene-wise correlation between deletion rates and substitution measures 

Previously, I showed the correlation of deletion rate and substitution measures on a 

site level. However, there can be a large stochastic effect on the deletion or 

substitution of codons, which decreases the signal-to-noise ratio. To reduce the effects 

of noise, I looked at the same correlation at a gene level; using the same statistical 

method, with gene-averaged deletion rates and substitution measures instead of site-

by-site. This may reduce the noise caused by stochasticity and put emphasis on 

differences among genes. 

I estimated the dN and dS of each gene by taking a mean of all its sites. For deletion 

rate, I used a weighted mean that takes different total corresponding branch lengths 

among used sites into consideration. The dN/dS of the gene is calculated by dividing 

the mean dN by the mean dS (“ratio of mean” approach). When calculating the 

substitution measures over the whole gene, I only take “4+” sites into account. 

Figure 4.8 shows the substitution measures plotted against deletion rates in real and 

simulated data, aligned by PROBCONS. The real-data plots have a top-right leaning, 

with the most high-deletion incidents appearing in the right side of the bulk of dots. 

On the contrary, in the simulated-data plots, the shape outline of the dots skews to the 

left – similar to the skew in dN/dS distribution among genes itself. 
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Figure 4.8 Gene-wise deletion rates plotted against dN/dS, in both (A) real and (B) 

simulated data. 



80 

 

 

Figure 4.9 Gene-wise Spearman correlations between deletion rate and substitution 

measures (A. dN/dS, B. dN, C. dS). In both dN/dS and dN, the correlation in real data is 

very high (≈0.45) compared to simulated data (<0.05); the difference is much less 
pronounced in dS. For the simulated data, the shown value is the mean of 1,000 

bootstrap re-samplings, and the error bar is 2.5% to 97.5% quantiles. 

Figure 4.9 further supports it by showing the Spearman correlation coefficients using 

the same data. In all cases, the correlations in real data are significantly higher than in 

simulated data (P < 0.0001). However, the amount of correlation in real data clearly 



81 

 

depends on what substitution measure is used. For both dN and dN/dS, ρ is as high as 

0.4 to 0.5; but for dS, ρ is close to 0.15. At the same time, all simulated data with the 

exception of dN and dS in CLUSTALW alignments show correlations that are not 

significantly different from zero; even dN in CLUSTALW is only marginally 

significant. For dN, dS as well as dN/dS, true simulated alignments give a weakly 

negative correlation. 

 

Within-gene correlation between deletion rates and substitution measures 

 

Figure 4.10 Within-gene site-wise Spearman correlation between deletion rate and 

substitution measures (A. dN/dS, B. dN, C.  dS) in real and simulated data. Here I use 

the “NC-4+” dataset, from which substitution-free sites and sites that are gaps for more 

than five species are removed. The column shown is the mean over all genes that have at 

least one deletion and estimated ancestral gene size over 1,500 aa, and the error bar is 

the standard error. 
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Figure 4.10 shows the within-gene correlation for both real and simulated data. I only 

took genes that have an estimated ancestral length over 1,500 aa, because with smaller 

genes, stochastic effects will be too strong. In dN/dS, the real data gives a slightly 

higher correlation compared to the simulated data (ρ ≈ 0.05 compared to ρ ≈ 0.02), 

though not to the level of entire genome site-wise correlation. dN is similar; but in dS 

the results are surprising. In simulated data, there is a very strong negative correlation 

between dS and deletion rates within genes (ρ ≈ -0.2), which is not observed in real 

data. It is most likely that this is due to some feature in the simulation algorithm. 

 

Discussion 

Implications on protein sequence evolution 

This study shows that there is indeed a positive correlation between the probability a 

codon being deleted and its dN/dS value, indicating similarity in patterns of purifying 

selection against deletion and amino acid replacement. This can be interpreted as that 

both replacement and deletion can damage the function of an amino acid residue in the 

protein; thus reducing the fitness of individuals bearing such mutation. However, this 

site-wise correlation is very weak, on the order of ρ ≈ 0.1; therefore it would be rather 

difficult to predict one kind of selection from the other. In other words, selection 

against deletion is not completely consistent from selection against replacement. 
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One reason of the low correlation may be the existence of “indifferent DNA” (Graur et 

al. 2013, 2015). Indifferent DNA refers to sequences that are subject to strong 

purifying selection against deletions but not substitutions, due to its functionality 

relying more on the length than the exact sequences. For example, fourfold degenerate 

(synonymous) nucleotide sites in proteins can be any of the four nucleotides, but 

deletion of that nucleotide causes a frameshift; a promoter motif needs to have a 

certain distance from the start codon, thus the sequence between them can freely 

change as long as the length is kept. In my case, it is possible that some amino acids 

are required for the protein structure but do not actively bind anything. Some 

functional sites can also have a range of choices of amino acids, due to similar 

biochemical properties of these amino acids. 

In both the Spearman correlation and distribution comparison, dN also produces a 

correlation to deletion rates, at a level similar to dN/dS. On the other hand, such 

correlation is very weak when dS is used, even undistinguishable from simulated data 

in some cases. If I compare the substitution measures to biological processes, dN/dS is 

an indicator of selection, dS of mutation, and dN is a combination of both. Thus, it is 

reasonable to suggest that this correlation between deletion and substitution is largely 

due to a similar selection scheme instead of correlated mutation rates, though 

mutational effects cannot be ruled out. 

This study on the correlation between substitutions and indels is the first one that 

involves genomic protein-coding genes, and includes both site-wise and gene-wise 
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analyses. Using the deletion rate inferred from multiple sequence alignments instead 

of data on genetic diseases (Miller et al. 2007) made the rate estimation across 

multiple species rather than human-specific. Alignment-derived deletion rates are also 

available as long as the genomes of these species are annotated, while disease-derived 

rates are limited to clinical data and lethal sites are excluded.  However, due to 

alignment errors and partial sequences in some species, alignment-derived deletion 

rates are less reliable. Nevertheless, I think that I have taken precautions for these 

disadvantages, respectively by use of simulation and datasets “4+”/”6+.” 

The potential non-independence between selection against substitutions and deletions 

can also be relevant in studies involving simulated sequence evolution. In protein 

simulation, the algorithm writer must decide whether to account for this correlation. 

For example, INDELible, one of the most comprehensive and frequently used 

simulation programs, does not allow variation of indel rates along the sequence 

(Fletcher and Yang 2009). On the other hand, programs like SIMPROT (Pang et al. 

2005) implements an algorithm that chooses indel positions relative to their 

substitution rates. ROSE (Stoye et al. 1998) and indel-Seq-Gen (Strope et al. 2009) 

limit indels to less conserved regions of sequences. 

 

Difference between site-wise and gene-wise analyses 

Site-wise and gene-wise analyses on evolutionary parameters often yield different 

results (e.g., Wang et al. 2013). Here, I have shown that the Spearman correlation 
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between dN, dS as well as dN/dS and deletion rate are more than 4 times higher in 

gene-wise comparisons than in site-wise comparisons. dN/dS values vary in a much 

larger range in site-wise than gene-wise analyses (Lindblad-Toh et al. 2011). It is 

possible for sites (individual amino acids) to undergo positive selection, which yields a 

dN/dS above 1, while this is rare for a whole gene because a protein’s basic structure 

need to be kept consistent for it to function. Therefore, a site-wise study can provide a 

higher resolution on the selection schemes on the coding part of genomes. On the 

other hand, site-wise studies suffer from a low sample size for each data point, and 

thus larger random error. 

Although the most likely reason for a much higher gene-wise correlation is that the 

stochasticity of both substitution and indel rates on the site level causes a low signal-

to-noise ratio, it is also possible that between-gene differences contribute more to the 

overall correlation than within-gene differences. Since traditional methods for 

distinguishing within-category and between-category effects such as ANCOVA are 

not applicable due to the non-normal distribution of deletion rates, I looked at the 

within-gene correlation between deletion rates and substitution measures in individual 

genes. Since the within-gene Spearman’s ρ is smaller than that from the total dataset, 

it is safe to say that the within-gene effects are smaller than the between-gene effects. 

On a population genetics level, it is possible that 1) selection is similar within one 

gene because the deleterious effects of mutations are similar, and 2) mutation rates 

within one gene (a short region in the genome) do not have much variation. 
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Artifactual correlation caused by alignment errors 

Aside from the biological insights into protein sequence evolution, this study also 

provides information about consequences of alignment errors. There is no pre-

determined correlation between indels and dN/dS in the simulated sequences; thus all 

estimated correlation is due to artifacts. The correlation between dN/dS and deletion in 

true alignments of simulated sequences is undistinguishable from zero, which 

confirmed this point. The same correlations estimated from inferred alignment, on the 

other hand, are consistently higher than zero. Since the only difference between them 

is the presence of alignment error, I can conclude that the small correlation observed 

in simulated reconstructed alignments is caused by alignment errors. 

On the other hand, there is a correlation between dN and deletion as well as dS and 

deletion in simulated sequences that cannot be explained by alignment errors. This 

phenomenon appears in both true and inferred alignments, and in both site-wise and 

gene-wise analyses. Since dN, dS, and deletion rate are all indicators of total 

evolutionary change along the whole tree, the most likely explanation is different rates 

of evolution (tree length) among different genes. 

Multiple sequence alignment is a mathematically difficult (NP-complete) problem; an 

optimal solution, though theoretically exists, is impossible to implement due to the 

time needed is immense. All current multiple sequence alignment algorithms use 

heuristic methods. These algorithms typically produce alignments that are shorter than 

the true alignment due to preferring mismatches over gaps, and gives mathematically 
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optimal placements while the real process is sub- or co-optimal (Landan and Graur 

2008, Landan and Graur 2009). Regions that are rich in insertions and deletions are 

difficult to align due to co-optimal placement of gaps; thus putting gaps and 

mismatches together more often than it should be.  

Different alignment algorithms produce a similar level of correlation between dN/dS 

and deletion rate, despite PROBCONS and T-COFFEE being substantially more 

accurate than CLUSTALW (e.g., Thompson et al. 2011). Therefore, although the 

causal relationship between alignment error and Spearman coefficient is uncontested 

(because true alignments have minimal Spearman coefficients), the amount of 

alignment error is not a good indicator of Spearman coefficient. I suggest that a large 

part of the correlation is caused by the most difficult parts of the alignment such as co-

optimal and sub-optimal sites (Landan and Graur 2009); even the best alignment 

algorithm is not able to accurately resolve them. In other words, the artifact is caused 

by the shared errors of different alignment algorithms. 

 

Phase-1 and Phase-2 deletions 

A phase-1 or phase-2 codon deletion (deletions that only partially encompass the first 

and the last codon involved) can cause an amino acid mismatch without nucleotide 

substitutions. They are also called non-conservative deletions because they do not 

conserve the undeleted amino acids (de la Chaux et al. 2007). However, past studies 

demonstrated that such events are rare. In a study on pairwise indel event between 
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mouse and rat, 12% of indels found are non-conservative, in contrast with a simulation 

expectation of 29% (Taylor et al. 2004); another study (de la Chaux et al. 2007) gave 

an even lower estimate that 4% of all deletions are non-conservative from 3-primate 

alignments. 

Unfortunately, with the simulation and alignment methods I used, I could not account 

for the effects for such deletions, nor could I mimic them by simulation. Nevertheless, 

the mismatch caused by non-conservative deletions usually does not happen in the 

same site as the gap. For example, if ACGCAT (Thr-His) became A---AT (Asn), the 

Asn residue will be aligned into one of the sites, while the gap occupies the other. The 

elevated dN/dS would thus only occur in the non-gap site. It is possible that the 

presence of such a mismatch complicates the alignment process and attracts other 

alignment errors, but I am not able to quantify this effect. 

 

Caveats and future directions 

In my study, the simulation part was used as a negative control. In other words, it was 

used as a baseline when indel rates and dN/dS are independent from each other. I 

suggest that in future studies, a positive control can be implemented. If a simulation 

includes a correlation between indel and substitution models (or even perfectly 

linearly correlated rates), I could see how the results would compare to the real data. 

After all, even if the input indel and replacement rates are perfectly linear to each 

other, the site-wise correlation would still not be one because of stochastic effects.  
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In the phylogenetic tree used in this study, I put the horse (Perissodactyla) and the dog 

(Carnivora) together as sister groups, while the cow (Cetartiodactyla) is a sister group 

for the horse+dog clade. This hypothesis, named Pegasoferae, is supported by a 

phylogenetic study using molecular data (Nishihara et al. 2006). However, the 

evolutionary relationship among horse, dog, and cow is still under debate. A rival 

hypothesis groups the horse and the cow together (Perissodactyla + Cetartiodactyla = 

Euungulata), to the exclusion of the dog (Prasad et al. 2008). I reasoned that in both 

hypotheses, the branch separating two of them from the third is very short, and this 

controversy would have a minimal effect on the estimation of evolutionary parameters. 

Therefore, I have arbitrarily chosen the Pegasoferae hypothesis. It may be a good idea 

to check if the choice of phylogenetic tree will affect the result in the future. 

 

Conclusion 

This study has demonstrated that in the evolution of mammalian proteins, the selection 

regimes on amino acid replacement and on short deletions are weakly correlated to 

each other. Codons that are less likely to undergo nonsynonymous substitutions are 

statistically also less likely to be deleted. However, in practice this correlation can be 

overestimated due to the effects of alignment errors.  
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Chapter Five: Summary 
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As a highly automatized procedure for molecular evolutionary studies, multiple 

sequence alignment is frequently scrutinized for its accuracy but also often ignored 

and deprioritized in actual evolutionary studies. Many biologists like to focus on 

biological questions like what kind of selection has occurred in which genes, and 

when did two species diverge, rather than paying attention to the computational 

processes and how errors may undermine the credibility of the final results. High-

accuracy alignment algorithms like PROBCONS (Do et al. 2005) and T-COFFEE 

(Notredame et al. 2000) have been published more than a decade ago, but many 

researchers still default to CLUSTALW (Thompson et al. 1994) without knowing 

better. It is difficult to estimate how many inaccurate studies litter the literature due to 

faulty methodology; how many false positives have been reported in studies positive 

selection (Markova-Raina and Petrov 2011).  

In my dissertation, I examined the effects of alignment errors and the choice of 

alignment- and alignment-refining algorithms on evolutionary analyses. Particularly, I 

focused on studies downstream of the phylogenetic reconstruction, such as branch-

length estimation (when the topology is fixed by the user tree) and selection-pattern 

analyses. 

In Chapter Two, I established a method to compare the branch lengths of two 

phylogenetic trees with identical topology. This measure, named Normalized Tree 

Distance (NTD), is completely unaffected by the scales of both of the compared trees. 
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Using mammalian protein-coding sequences, I showed that NTD has a log-normal 

distribution when a large number of genes are used. 

In Chapter Three, I studied the effects of choice of alignment- and alignment-refining 

algorithm on the accuracy of branch-length estimates. The measure I described in the 

previous chapter was used to quantify the accuracy. I identified the choice of 

algorithms as well as four variables of the evolutionary scenario to have significant 

effects on branch-length accuracy; there were clearly predictable differences between 

branch lengths estimated from “good” and “bad” alignments. I also discovered the 

alignment-refining algorithm T-COFFEE (whose evaluation model was used as a 

criterion for filtering) provides the strongest improvement in branch-length accuracy 

across multiple evolutionary scenarios. However, the optimal alignment algorithm (out 

of the seven I studied) depends chiefly on the input tree topology.  

In Chapter Four, I checked how inferred alignments differ from true (simulated) 

alignments in analyses of selection patterns. I chose the correlation between purifying 

selection on deletion and amino acid replacement, an understudied topic in molecular 

evolution, as an example. Using a combination of real and simulated data, I have 

shown that while there is a real correlation (that is biologically explainable), alignment 

error can complicate the results by introducing artifacts into the correlation. 

I believe there is still much to do on the topic of alignment accuracy affecting 

molecular evolutionary studies, especially quantifying the effects of low-quality 

alignment tools, such as CLUSTALW, on downstream analyses. In particular, 
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estimations that are sensitive to false positives, such as positive selection, 

hybridization, horizontal gene transfers, need to be scrutinized. When there is 

sufficient proof that alignment algorithm choice is vital to their accuracy, researchers 

would have stronger incentive to pay attention to this step during real-data studies. It 

may be also worthy to reexamine some milestone macroevolutionary studies in the 

recent past, to see if the usage of high-accuracy alignment algorithms combined with 

alignment refining can improve the results. 
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