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Abstract

This dissertation aims at developing a novel and robust high performing paral-

lel computational framework that can enhance the current predictive capabilities of

numerical methods for large-scale subsurface transport applications. With increasing

capacity and complexity of processors and memory systems, the need for improving

the performance of subsurface flow and transport simulations has become an area

of active research. Two of the most well known numerical deficiencies that the pop-

ular formulations and existing simulation packages suffer from are the inability to

meet the non-negative constraint under anisotropic diffusion (i.e., they violate dis-

crete maximum principles) and the inability of the standard finite element formulation

to ensure local mass balance. Moreover, there is no platform-agnostic performance

model that can simultaneously document both the hardware/architectural and algo-

rithmic efficiencies of any numerical method or software package that is sensitive to

memory-bandwidth limitations. Several existing parallel scientific libraries, such as

the Portable and Extensible Toolkit for Scientific Computations (PETSc) and the

Massively Parallel Reactive Flow and Transport (PFLOTRAN) libraries, have been

developed to help predict subsurface phenomena and are used by many of today’s

leading hydrologists and geophysicists alike, but till date, the aforementioned con-

cerns have not yet been resolved. Solutions to these numerical deficiencies have been

proposed in literature but they do not address them concurrently in a high perfor-

mance computing setting. Without a performance model, it is intractable to deter-

mine whether proposed modifications to these subsurface software packages would be

fast, scalable, or efficient.

The objective of this dissertation is to present a computational framework that

preserves important properties like local mass balance and positivity that can per-

form at a high level. Performance tools and methodologies are presented to guide
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users on how to understand the performance of such frameworks. This dissertation

comprises of three sections. First, we present a conceptual performance spectrum

that covers time-to-solution, arithmetic intensity, and equations solved per second for

any parallel computational framework that solves partial differential equations. As

proof of concept, this spectrum is utilized on a wide variety of state-of-the-art sci-

entific libraries and multi-grid solvers like the FEniCS/Firedrake Projects, HYPRE,

and Trilinos. It is shown that this spectrum can augment one’s ability to understand

both the hardware and algorithmic efficiencies of popular numerical techniques like

the finite element method. Second, we propose an optimization-based computational

framework that can ensure variationally consistent non-negative concentrations for

large-scale anisotropic diffusion problems like Chromium remediation in the Sandia

Canyon. The predicted computational performance of the proposed framework is

based on a “perfect-cache” roofline model, loosely based on concepts originating from

the performance spectrum, and it is shown that this roofline model can be used to

predict how well the optimization-based framework can strong-scale. Third, we ex-

tend the proposed computational framework to solve advection-diffusion equations by

employing the variational inequality solver. We also enforce local/element-wise mass

conservation by discretizing the advection-diffusion equation using the Discontinuous

Galerkin finite element method. Our numerical experiments demonstrate that the

proposed variational inequality approach conserves local mass balance, ensures non-

negative concentration fields, and can accurately model large-scale and non-linear

coupled flow and transport phenomena such as the miscible displacement of oil in a

heterogeneous reservoir.
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Chapter 1. Introduction

Subsurface energy sources present a significant and long-term opportunity for

widespread power production. According to the U.S. Department of Energy (DOE),

more than 80% of the total U.S. energy needs are satisfied by Engineered Subsur-

face Systems (ESS), Engineered Geothermal Systems (EGS), and conventional/non-

conventional hydrothermal resources. These constitute nearly 100 Quadrillion BTU of

energy required for domestic needs. Civil engineers, hydrologists, and geophysics alike

have successfully developed technologies to work with complex systems that operate

under various reservoir conditions. Such processes are often extremely large-scale so

it is vital to also quickly and accurately model these processes.

The DOE has invested in the development of algorithms, methodologies, software

and tools that can achieve this. For example, the Portable and Extensible Toolkit for

Scientific Computations (PETSc [12] and the Massively Parallel Reactive Flow and

Transport (PFLOTRAN [100]) simulator are just two of the many ongoing research

endeavors useful for describing large-scale subsurface processes. However, there is

still much room for improvement both numerically and computationally. It is well-

known that many of the leading scientific software packages utilized today by leading

computational scientists suffer from well-known deficiencies. Three of the most well-

known ones are listed below.

1. Local mass conservation: The standard finite element method is notorious

for not ensuring element-wise/local mass conservation. This important physi-

cal property is especially important for modeling subsurface reactive transport

phenomena. Not ensuring this property at the element level creates numerical

artifacts in the advected concentration fields as well as potentially violation

maximum principles, which state that concentration values cannot be negative.

Finite volume methods on the other hand are built upon conservation laws and
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satisfy this property. PFLOTRAN employs the two-point flux finite volume

scheme but this numerical method is highly inaccurate on unstructured grids

and cannot model anisotropic porous mediums. Therefore, it is desireable to

implement a robust finite element scheme that ensures local mass conservation

and can incorporate anisotropic diffusivity.

2. Non-negative concentrations: When the porous medium is highly anosotropic,

one may encounter numerical artifacts when using a non-monotone numerical

discretization scheme. This can also violate maximum principles and positivity.

Concentrations of chemical species physically cannot be negative, and this will

potentially cause errors in the numerical simulation especially when nonlinear

and reactive geochemical processes do occur. Standard numerical methods in-

cluding the finite element and volume methods suffer from this setback, but

one way to fix this problem is to employ optimization-based routines to enforce

the non-negative constraint. Several studies over the years (e.g., [131] and the

references within) have demonstrated the robustness of this approach, but none

of them have extended this framework to large-scale realistic problems.

3. Performance modeling In this day and age of computing, both hardware and

software are constantly evolving to cater to the needs of computational scientists

needing to answer relevant scientific questions. Today’s top supercomputers can

operate at up to 93 peta-FLOPS per second (i.e., one quadrillion floating-point

operations per second) while consuming significant power (15 mega Watts).

It is important to understand how novel computational frameworks needed to

enhance the current predictive capabilities of scientific software will behave on

highly concurrent systems. Several benchmarks such as the memory benchmark

STREAM [114] and the Roofline model [164] capture processor limitations and

do not address algorithmic efficiency which is concerned with total work needed.
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Moreover, complex PDEs require specific implementations of solvers and algo-

rithms that may not be able to effectively utilize a particular hardware architec-

ture. A performance model that can simultaneously model hardware, software,

and algorithmic efficiencies of computational frameworks is highly desirable.

A computational framework that can simultaneously address these issues for large-

scale subsurface flow and transport applications is still needed. A performance model

aiding in the interpretation of how the computational framework for complex PDEs

will behave on state-of-the-art computers is also still needed. It is important to

not only obtain physically meaningful values for temperature and concentration of

chemical species, but also to obtain them with high computational efficiency. The

objective of this dissertation is to present a robust framework that can enhance the

current predictive capabilities of today’s leading open-source software for modeling

subsurface transport applications on high performance computing (HPC) systems. The

steps to achieving these outcomes are outlined in the next three chapters. Each

chapter is self contained as they all have their own introduction, literature survey,

and design methodology.

In Chapter 2, we present a framework called performance spectrum designed

to help computational scientists understand how various flavors of today’s software,

algorithms, and computational platforms compare when solving partial differential

equations (PDE). This chapter provides the reader with the knowledge to not only

understand the performance and scalability of the proposed structure-preserving high

performance computational framework for transport in porous media but also to gain

insight into the performance and scalability of any PDE solver package. Particular

emphasis is placed on comparisons between the standard finite element method and

the locally conservative Discontinuous Galerkin finite element method. The perfor-

mance spectrum framework augments the computational scientists’ abilities to un-

derstand whether a scientific code is running efficiently.
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In Chapter 3 we examine the anisotropic diffusion equation and propose a parallel

optimization-based solver that can be used to enforce the discrete maximum principles

and the non-negative constraint. Popular open-source scientific software packages like

the PETSc and TAO are leveraged. The convex optimization solver utilized in this

chapter not only demonstrates good algorithmic convergence on unstructured grids

but also can model important and large-scale subsurface problems such as Chromium

remediation in the Sandia Canyon. The large-scale performance of this proposed

computational framework is justified using a performance model based on the concepts

described by the performance spectrum.

In Chapter 4 we extend the proposed computational framework to ensure non-

negative concentrations for advection-diffusion equations. Since the governing equa-

tion now has an asymmetric and non-self adjoint operator, the variational inequal-

ity approach, which is a more generalized optimization-based solver, is employed.

Moreover, element-wise/local mass conservation is achieved under the finite element

method using the Discontinuous Galerkin method. We study both the algorithmic

and computational performance of the variational inequality approach for heteroge-

neous problems. The proposed non-negative computational framework is extended

to non-linear coupled flow and transport problems like the miscible displacement of

oil in a field-scale reservoir with randomly permeabiltiy, and the ramifications of not

properly enforcing the non-negative constraint for such simulations is shown numeri-

cally.

Concluding remarks are outlined in Chapter 5. We also outline various ways the

research presented in this dissertation can be extended.
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Chapter 2. A performance spectrum for parallel
computational frameworks that solve PDEs

2.1 INTRODUCTION AND MOTIVATION

Both efficient algorithms and software performing well on modern computing

systems are crucial to address current scientific and engineering problems. These

tools are important for bridging the gap between theory and real-world data. Such

problems often need to tackle field-scale data sets using parallel computers, parallel

algorithms, and programming tools such as OpenMP [41] and the Message Passing

Interface (MPI) [64] and cannot be solved on a standard laptop or desktop. For

example, hydrologists and geophysicists need to work with field-scale reservoirs which

could span tens of kilometers and evolve on time scales of hundreds of years. Morever,

such reservoir simulations involve complicated multi-phase and multi-component flows

which require multiple complex equations to be solved accurately and efficiently.

Atmospheric and climate modelers also require state-of-the-art techniques as both

data assimilation and parameter estimation need to be performed quickly on meso-

scale and global-scale applications. The US Department of Energy has invested in

the development of several portable and extensible scientific software packages like

PETSc [12, 11] and PFLOTRAN [99] that can help address such important large-scale

problems. The time spent developing parallel computational frameworks is amortized

when application scientists employ the packages in their work.

However, it is not always known whether the performance of a particular parallel

computational framework or software will be satisfactory across a panoply of solvers

and computing platforms. How can one really tell whether an algorithm is performing

at its highest level? Is there room for improvement? Answering these questions in

full is a Herculean task, but questions regarding the algorithmic and computational
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efficiency of scientific tools and libraries still need to be answered [82]. Hence, we

need performance models which enable us to synthesize performance data into an

understandable framework. Performance models can include many metrics of im-

portance such as total floating point operations (FLOP), memory usage, inter/intra

process/node communication, memory/cache bandwidth, and cache misses/hits. If

not carefully optimized, some of the hardware resources can become unnecessary bot-

tlenecks that result in costly and inefficient numerical simulations. Modern computer

systems are quite complex and the performance can be difficult to predict with good

accuracy. Conducting large-scale simulations on state-of-the-art supercomputers may

require hundreds to thousands of hours of compute time, so it is highly desirable to

have a performance model that can predict how a particular parallel computational

framework may perform. The application or domain scientist may use software that

either is not made in house or is a “black-box” tool, and it would be too time con-

suming, or impossible if source code is unavailable, to dissect the code and analyze

the design of the subroutines and data structures. It is therefore desireable to analyze

these codes as a whole.

2.1.1 Review of previous works

We now briefly highlight some useful approaches and models one could take to

analyze and perhaps improve the performance of any parallel computational frame-

work. One of the simplest measures one can utilize is the STREAMmemory-bandwidth

benchmark [114]. This benchmark measures sustainable memory-bandwidth on a

single server and indicates the number of threads that saturates memory band-

width. Memory-bandwidth is an important limitation to consider on modern ma-

chines [165, 115, 126]

The Roofline model [164, 106] captures peak achievable performance on a server

taking into account both CPU and memory-bandwidth capabilities by introducing the
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Arithmetic Intensity (AI). The AI is simply the measure of the total floating-point

operations needed, total FLOP, over Total Bytes Transferred (TBT). Higher AI’s

indicate that the algorithm or computational framework is more computationally

intensive and requires less bandwidth for a given amount of work. One is free to

employ any cache model when determining the TBT metric for the roofline model. For

example, scientists have developed a Sparse Matrix-Vector (SpMV) multiplications

model [65] which is based on “perfect cache" (i.e., matrices and vectors are loaded

and stored once from memory). SpMV is an integral part of iterative solvers for

solving PDEs. It has been shown in [30] that the SpMV “perfect cache" model

can also be used to accurately predict and understand the hardware performance of

optimization-based solvers for enforcing discrete maximum principles. In [113], the

authors employ matrix-free iterative methods for Stoke’s equation, which is needed

for lithospheric dynamic applications. The authors manually count the TBT based

on source code. The advantage of matrix-free methods is that the sparse matrix-

vector multiplication, which is memory-bandwidth limited, is not explicitly stored

thus bringing the computational frameworks’ upper-bound limit of the roofline closer

to the Theoretical Peak Performance (TPP) region. TBT can also be determined

based on memory level traffic or cache misses. The same analysis can be carried out

for manycore architectures, such as Nvidia GPUs and the Intel Xeon Phi “Knights

Landing” (KNL), in [91, 90].

For a more thorough analysis of performance, advanced software tools such as the

HPCToolkit [3] and OpenSpeedShop [150] are used by scientific software developers

and application scientists alike. These tools provide in-depth performance analyses

of scientific codes and can also be used to debug the codes. Both of these tools

rely on PAPI [119] which use low level hardware counters for important metrics

like FLOPS, total CPU (central processing unit) cycles, and cache misses. These

tools have proven to be extremely useful for computational scientists in all areas
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of computational physics and can provide a good understanding of the hardware

performance of any computational framework for solving PDEs.

2.1.2 Main contributions

In this chapter, we provide a simple and easy-to-use performance model that

can be used in addition to the techniques and tools mentioned above. Our perfor-

mance model, which we term a performance spectrum [24], takes into account time-

to-solution, AI based on cache misses, and equations solved per second. This model

is applicable to any level of a scientific code, whether it be the entire computational

framework or only particular phases or functions such as mesh generation, assembly

of a matrix, or the solver step. It is important to note that this tool is not intended to

replace any of the aforementioned performance tools or models but to simply augment

one’s ability to quickly understand and diagnose the performance from both the hard-

ware, software, and algorithmic stand point. The main contributions of this chapter

can be enumerated as follows:

1. We outline common issues pertaining to performance, ways to identify them,

and methods to address them.

2. We present a model called performance spectrum that provides an enhanced

understanding of the performance and scalability of algorithms and software.

3. We demonstrate that the proposed model can be utilized on existing popular

software packages and solvers.

4. We apply the model to a more complicated and nonlinear PDE and document

the parallel performance of the computational framework across HPC machines.

5. We discuss some possible ways in which this performance spectrum model can

be extended.
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The rest of the chapter is organized as follows. In Section 2.2, we outline some

of the key performance issues one may come across when solving PDEs and how

to address some of them. In Section 2.3, we propose a model, performance spec-

trum, which captures three critical metrics useful for understanding performance and

scalability. In Section 2.4, we demonstrate possible ways one could utilize the pro-

posed model by systematically comparing commonly used finite element packages

and solvers. In Section 2.5, we extend the model to simulate nonlinear hydrostatic

ice sheet flow equations. In Section 2.6, we run the nonlinear hydrostatic ice sheet

flow equations across multiple compute nodes and study the performance. Conclud-

ing remarks and possible extensions of this work are outlined in Section 2.7. All the

notational conventions employed in this chapter are introduced as needed.

2.2 COMMON PERFORMANCE ISSUES

The performance of any scientific software or algorithm will depend on a myriad

of factors. First and foremost, good performance depends on efficient and practical

implementation of the code. Application and domain scientists may not be inter-

ested in the intricate details of the code framework that they did not design, but

they must still be cognizant of important computational issues that may inhibit per-

formance dramatically. We now briefly highlight some common performances issues

computational scientist may come across in their line of work:

• Core/memory bindings: The simplest way to maximize parallel performance

for MPI applications is to properly enforce MPI process and memory bindings.

This is particularly important for memory bandwidth-limited applications be-

cause, on most CPU architectures, the aggregate core bandwidth exceeds the

CPU bandwidth to memory and it is important to use the CPUs in a multi

CPU server in a balanced way. Furthermore, if multiple users share a compute
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64 KB 64 KB 64 KB 64 KB

512 KB 512 KB 512 KB 512 KB

2 MB

AMD Opteron 2354 (2.2 GHz, 16 GB)
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2 MB
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Intel Xeon E5 2680v2 (2.8 GHz, 64 GB)

Core4 Core5 Core6 Core7

32 KB 32 KB 32 KB 32 KB

256 KB 256 KB 256 KB 256 KB

Core8

32 KB
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Core9

32 KB

256 KB

Core10 Core11 Core12 Core13

32 KB 32 KB 32 KB 32 KB

256 KB 256 KB 256 KB 256 KB

25 MB

Core14 Core15 Core16 Core17

32 KB 32 KB 32 KB 32 KB
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Core18

32 KB

256 KB

Core19

32 KB

256 KB

Mapping of MPI Bindings
Method 1: Core0, Core1, Core2, … Core6, Core7
Method 2: Core0, Core4, Core1, … Core3, Core7

Method 1: Core0, Core1, Core2, … Core18, Core19
Method 2: Core0, Core10, Core1, … Core9, Core19

L1

L2

L3

Maxwell Opuntia

Figure 2.1: An overview of the STREAM measurement on two different compute nodes.
The mapping of MPI bindings has a significant impact on the achievable
memory bandwidth.

node, performance metrics can vary greatly as both memory resources and cer-

tain levels of cache are shared by others. Appropriate mapping methodologies

for binding ranks to cores is vital for complex hardware architectures as well as

for complex topological node layouts. Consider the single dual socket servers

and their respective STREAM Triad benchmark results shown in Figure 2.1.

Both the Maxwell and Opuntia servers possess two sockets where the physical

cores are contiguously ordered. However, when the MPI processes are placed

on alternating sockets, the achievable bandwidth is higher for a fixed number of

cores by using the memory systems on both CPUs. For multi node performance,

different binding techniques are required – memory references on a single node

are several times faster than on a remote node. Process allocation must be
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carefully done so that communication across networks is minimized.

• Hardware architecture: The performance of any benchmark or software de-

pends on the hardware architecture. In this chapter, we consider five different

HPC systems with single node specifications listed in Table 2.1. It is evident

from the STREAM Triad benchmark that different architectures have differ-

ent levels of achievable memory-bandwidth. Some of the processors are recent

(as of the writing of this dissertation), like the Intel KNL processor whereas

others like AMD’s “Barcelona" and Intel’s “Ivybridge" processors are older.

With increasing complexity of processors and memory systems, the challenge

of good performance of solvers and algorithms has become an area of active re-

search. A computational framework may solve a PDE efficiently on a laptop or

small cluster, but that does not mean it will perform efficiently on a supercom-

puter. Understanding basic computer architectural concepts such as pipelining,

instruction-level parallelism, and cache policies may offer excellent guidelines

on how to speedup computations by several orders of magnitude. For exam-

ple, Intel’s KNL processor has two 512-bit vector units per core and may need

fine-grained parallelism to fully exploit the 68 cores per CPU. If a code is not

properly vectorized to utilize the 136 vector units capable of 16 floating-point

operations per cycle or the 16 GB of onboard MCDRAM, it is possible that

the speedup on this system will not be fully realized, and worse yet get outper-

formed by processors that have faster cores. Also, languages such as Python,

which are used in some sophisticated finite element simulation packages, depend

on the file system I/O because the interpreter executes system calls to locate

the module and may need to open hundreds of thousands of files before the

actual computation can begin. Designing and utilizing algorithms/languages/-

compilers that are compatible with recent state-of-the-art HPC architectures is

paramount [118], otherwise the computational performance may be exceedingly
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(a) Default ordering (b) Optimized ordering

Figure 2.2: Assembled sparse matrix where red represents positive numbers, blue repre-
sents negative numbers, and cyan represents allocated but unused nonzero
entries.

poor.

• Domain decomposition: The global ordering and partitioning of the compu-

tational elements in a parallel computing environment, particularly for problems

with unstructured grids, affect both spatial and temporal cache locality. Con-

sider the assembled sparse matrices shown in Figure 2.2. If the nonzero data

entries are not properly grouped together, the code will invoke expensive cache

misses and create little opportunity to use data in a cache line and reuse data

in the cache. Consequently, this create serial bottlenecks at the cache/memory

levels. Several mesh/graph partitioners such as Chaco [73], METIS/ParMETIS

[80], and PTSCOTCH [34] are designed to optimize locality and balance the

workload among MPI processes. Some graph partitioners use a simple model of
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communication in seeking to achieve load balance with minimum communica-

tion while others use a more detailed communication model to better capture

the minimum communication needed by using hypergraphs instead of regular

graphs as a basis for partitioning. Understanding which type of partitioning to

use for the PDE problem at hand (e.g., spectral partitioning, geometric parti-

tioning, multilevel graph partitioning, etc.) can significantly reduce the amount

of communication and lead to higher efficiency and degree of concurrency.

• Solver convergence: Arguably one of the most important performance fac-

tors to consider for solving PDEs is the convergence rate of the solver. Direct

methods like Gaussian elimination [63] as well as its sparse counterparts such

as MUMPS [7] and SuperLU_DIST [98] can solve problems in parallel but

may have huge memory requirements as the problem size is scaled up due to

fill-in during factorization. Scalable and efficient solvers typically rely on the

novel combination of iterative solvers and preconditioners. The Krylov Subspace

(KSP) and Scalable Nonlinear Equations Solvers (SNES) features in the PETSc

library coupled with robust preconditioners [156, 20] is a popular methodology

for solving large and complex PDEs. Novel combinations and tuning of solver

parameters provide powerful and robust frameworks that can accurately and

quickly converge to a specified residual tolerance, even for complex coupled

multi-physics problems [29, 25, 27]. Simple preconditioners such as Jacobi or

Incomplete Lower Upper (ILU(0)) factorization may be fast for smaller prob-

lems, but the computational cost will soar because the number of solver itera-

tions needed with Jacobi or ILU(0) will rapidly grow with problem size. Scaling

up the problem under these choices of preconditioning will be extremely time

consuming and may not even converge for larger or more complicated problems.

Other more robust preconditioners, like the geometric and algebraic multigrid

method, might have a more expensive setup time for smaller problems but have
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been demonstrated to maintain relatively uniform convergence for larger prob-

lems, even those that are nonsymmetric and indefinite [19, 1].

• Serial vs parallel performance: Suppose a computational framework em-

ploys proper MPI bindings, good utilization of hardware resources for a single

MPI process, balanced mesh partitioning, and fast algorithmic solvers yet ex-

periences little parallel speedup. What could be the cause of the lack of scaling

in a serially efficient computational framework? A code that is serially efficient

may often translate to poor parallel efficiency. The problem with parallel per-

formance metrics like strong-scaling and weak-scaling is that they can easily be

“gamed" to appear more efficient. For example, achieving near perfect paral-

lel efficiency can be accomplished by making a code serially inefficient. If one

chooses to forgo basic optimization steps such as loop unrolling and vectoriza-

tion, the computation will be slower. One could also insert many embarass-

ingly parallel yet unnecessary computations to make both the strong-scaling

and FLOP rate metrics look good, but the overall time-to-solution is greatly in-

creased. Amdahl’s law [6] demonstrates that computationally efficient tasks will

almost always experience poor speedup at high levels of concurrency because

the fraction of the computation that can benefit from parallelism reduces.

These important performance issues should not be overlooked when analyzing the

performance of a parallel computational framework. There are also several quick

strategies for understanding and identifying bottlenecks on a specific HPC system.

For example, it is well-known that SpMV is an operation that is sensitive to the

memory-bandwidth. These operations have very low AI’s which can present itself as

a bottleneck at the memory level on a single node. A simple test one can perform is

to run the SpMV operation in parallel, and if it does not scale well on a single server

in the strong sense, the memory-bandwidth is clearly limiting the performance. One

can confirm this by running some simple vector operations like the vector sum and

15



scalar multiplication to see if they experience the same scaling issues. In addition, one

can test the vector dot product operation in order to detect problems with the net-

work interconnect or memory latency issues. The PETSc performance summary [12]

provides comprehensive insight into the performance of many of these important op-

erations including load balancing. The summary also provides information on the

functions consuming most of the time. However, not all scientific software have read-

ily available performance summaries, so a performance model amenable to any code

implementation is needed to help answer common performance questions.

2.3 PROPOSED PERFORMANCE SPECTRUM

The general concept of the performance spectrum model is illustrated by Figure

2.3. This model is designed to simultaneously capture both the hardware/architec-

tural exploitation as well as the algorithmic scalability of a particular parallel com-

putational framework. First and foremost, we need the time-to-solution since this

is the metric of most importance to application scientists needing to execute large-

scale simulations on state-of-the-art HPC systems. One may optionally document the

total number of solver iterations needed for convergence. However, simply knowing

the wall-clock time a computational framework needs to perform a task tells us little

about the computational and algorithmic efficiency. In order to understand how fast

(or slow) a simulation is, we need to introduce two more metrics.

2.3.1 Arithmetic Intensity

The second metric of interest is what we refer to as Arithmetic Intensity (AI).

As described in [164], the AI of an algorithm or software is a measure that aids in

estimating how efficiently the hardware resources and capabilities can be utilized.

For the five machines listed in Table 2.1, it is well-known that the limiting factor

of performance for many applications is the memory-bandwidth. Thus, codes that

16



T
im

e
to

so
lu
ti
on

In
ten

sit
y Rate

Op
er
at
ion

s p
er
by
te
tra

ns
fer
re
d Degrees-of-freedom

per second

O
p
tim

a
l

perfo
rm

a
n

ce

(1)

(3)(2)

A
lgorithm

ic
effi

ciency

Hard
ware

effi
cie

ncy

W
a
ll
-c
lo
ck

ti
m
e

In
st
ru
ct
ion

s p
er
clo

ck
cy
cle

M
em

or
y
ba
nd
wi
dt
h

Seconds per solver iteration

Operations per second

S
o
lv
er

it
er
a
ti
o
n
s

Figure 2.3: Proposed performance spectrum that documents time, intensity and rate. In-
tensity is defined as arithmetic intensity (FLOP to TBT ratio) based on cache
misses, and rate is defined as degrees-of-freedom solved per second.

have a high AI have a possibility of reusing data in cache and have lower memory

bandwidth demands. It should be noted, however, that performance depends on

many factors such as network latency and file system bandwidth, and the arithmetic

intensity alone cannot be used to predict performance.

The general formula for the AI is defined as

AI := [Work]
[TBT] , (2.3.1)

where [Work] is the total amount of computational effort, typically what one would

refer to as FLOPs. The [TBT] metric is a measure of data movement between the

core/CPU and memory. A cache model is needed in order to not only determine the

TBT but also to understand what amount of useful bandwidth is sustained for a given
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cache line transfer. One can employ any cache model for this purpose, such as perfect

cache, total number of load and store instructions at the core level, traffic at the

memory level, or data cache misses. Different cache models are useful for interpreting

different behavioral trends, and the choice of cache model depends on the application

or research problem at hand. In this chapter, we base [TBT] on the total number of

cache misses and cache line size. The formula for obtaining the TBT for the L1, L2,

and L3 cache levels is expressed as

TBTLx = [Lx misses]× [Lx line size (byte)]. (2.3.2)

The simplest way to define [Work] is as the total number of floating-point operations,

denoted FLOPs. Thus the AI based on Lx cache misses is formally written as

AILx = [FLOPs]
TBTLx

. (2.3.3)

If a solver or algorithm experiences a large number of cache misses at the last level,

memory may impede performance.

Sometimes the exact TBT of a particular algorithm is not of interest. Instead,

an application scientist may only care about the relative measure, i.e., whether the AI

is higher or lower compared to either another algorithm, a different implementation

of the same algorithm, or a different processor. Thus, one may simply look at the

ratio of FLOPS and cache misses. Equation (2.3.3) may be simplified to

AILx = [FLOPs]
[Lx misses] . (2.3.4)

Every machine listed in Table 2.1 has a cache line size of 64 bytes for all levels of

cache. Different CPUs may have different line sizes and hence a cache miss may imply

different memory demands on different processor architectures. The remainder of the
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chapter shall refer to the above formula for estimating the intensity metric.

Remark 2.3.1. It should be noted that PAPI’s methodology for counting FLOPS

may be highly inaccurate for the “Ivybridge” systems listed in Table 2.1. The hard-

ware counters only count the instructions issued and not the ones executed or retired.

This is paramount for iterative solvers that rely on SpMV operations because as the

codes spend time waiting for data to be available from memory, they will reissue the

floating-point instructions multiple times. These reissues, coupled with incomplete

filling of a vector unit instruction, can lead to overcount factors of up to 10 times.

For a more thorough discussion on the issue of overcounts, see [162] and the references

within. However, PAPI’s FLOP counters are disabled on both of Cori’s Intel proces-

sors due to the aforementioned issues, so if a software developer is really interested

in approximating the FLOP count of a particular code, they could insert counting

mechanisms into the code. PETSc provides an interface and guidelines for manual

FLOP counting, and thus FLOP counts for computational frameworks using it can be

obtained through the performance summary output.

Remark 2.3.2. The correlation between AI and speedup on a single node may not

always hold true in a cluster sense (i.e., scaling when communication networks are

involved). The mechanisms used for MPI process info exchanged is very different when

the processes are on the same node as opposed to on different nodes. An application

scientist must be fully cognizant of not only the HPC processor specification but also

the network topology as well as the interconnect bandwidth and latency.

2.3.2 Rate

Although AILx is useful for comparatively estimating the performance a par-

ticular parallel framework may attain, it does not necessarily aid in predictions of

time-to-solution. Consequently, this means that AI can also easily be “gamed” to

appear high but the code consumes large amounts of wall-clock time. For example,
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small computationally intensive routines such as DGEMM [45] can be inserted to ar-

tificially inflate the computational demands and increase the AI. Other performance

models, such as the Roofline model, would indicate that this is a favorable trend

while ignoring the fact that more time is spent than necessary. This is also why the

traditional FLOP rate metric, which can also easily be gamed as discussed in Section

2.2, is not helpful either. Instead of measuring the total FLOPS executed per second,

we measure the total degrees-of-freedom solved per second, hence the Rate metric

needed to complete the performance spectrum is defined as

Rate1 := [DOFs]
[total time (seconds)] , (2.3.5)

where [DOFs] simply refers to the total number of degrees-of-freedom or discrete

component-wise equations that need to be solved.

Definition 2.3.3 (Static-scaling). Equation (2.3.5) is an integral component of what

we refer to as static-scaling, where we increase the problem size but fix the concur-

rency. This is a complete reversal to the classical definition of strong-scaling where we

fix the problem size but increase the concurrency. Static-scaling plots time-to-solution

versus the total degrees-of-freedom solved per second for a variety of problem sizes,

so it also has characteristics similar to the classical definition of weak-scaling where

both problem size and concurrency is increased.

Figure 2.4 contains a pictorial description of a static-scaling plot and illustrates

how to visually interpret the data points. A scalable algorithm is O(n) where n :=

[DOFs] is linearly proportional to [total time (seconds)], so it is desirable to see a

PDE solver maintain a constant rate metric for a wide range of problem sizes. The

behavior of parallel computational frameworks for solving PDEs is not simple because

1) problems too small for a given MPI concurrency experience large communication

to computation ratios (hence strong-scaling effects) and 2) large problems may have
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infavorable memory accesses. The static-scaling plots are designed to capture both

strong-scaling and weak-scaling characteristics and can give a good indicator of the

ideal range of problem sizes for a given MPI concurrency.

The tailing off to the right of the static-scaling plot has two potential reasons.

First, problem size affects how memory is allocated and accessed. Larger problem

sizes may see an increase in memory contention as well as affect the access pattern

to main memory. Thus more time is spent waiting on data as opposed to performing

calculations. However, another reason the tailing off occurs is because solvers for

complex PDEs or computational domains may not always be O(n). Suboptimal

algorithmic convergence may maintain a consistent level of hardware utilization but

require more iterations and FLOPs. To determine whether suboptimal algorithmic

convergence plays a role in the deterioration of the static-scaling plot, equation (2.3.5)

can be modified as

Rate2 := [DOFs]
[time (seconds)]× [no. of solver iterations] . (2.3.6)
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This equation averages out increases in time due to an increase in iteration count. If

a flat line is observed using this metric, then poor algorithmic scalability did have a

negative impact on the static-scaling results.

Alternatively, if one is more interested in the performance gain for each MPI

process, equation (2.3.5) can also be modified into

Rate3 := [DOFs]
[time (seconds)]× [no. of MPI processes] . (2.3.7)

This metric presents the average degrees-of-freedom solver per second for each MPI

process or core utilized.

2.3.3 Using the performance spectrum

The arithmetic intensity and static-scaling components of the spectrum offer a

variety of strategies for interpreting the performance and scalability of any computa-

tional framework. Good performance is achieved when a computational framework

achieves low time-to-solution, high arithmetic intensity, and flat static-scaling lines.

The theoretical peak rate of degrees-of-freedom solved per second could be unknown

for a particular algorithm, but the intensity metric can help us understand whether the

static-scaling lines are good by estimating how well it is efficently using the available

hardware resources. We outline three possible ways one could use the performance

spectrum model:

1. Hardware limitations: As mentioned in Section 2.2, the hardware configuration

of the compute nodes plays a vital role in the performance spectrum because

different systems have different core counts, frequencies, and memory architec-

tures. Understanding how PDE solvers behave on different systems is vital for

disseminating software to the scientific and HPC communities. The different

cache sizes listed in Table 2.1 will be reflected in equation (2.3.5). AILx is likely
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to differ on different processors due to possible differences in cache sizes and

cache policies. Furthermore, different processors have different clock frequen-

cies, arithmetic capabilities, and memory bandwidth. Moreover, various GNU,

Intel, and Cray compilers generate different executables that also depend on op-

timization flags used. Compiled code also depend on the data structures used as

well as code constructs. A particular platform may be better suited for certain

PDE applications. The performance spectrum model is useful for quickly visu-

alizing and comparing the impact of platform characteristics, software, compiler

options, and algorithms.

2. Software/solver implementation: There are several software packages suited for

sophisticated finite element simulations such as the C++ based DEAL.II pack-

age [14], the Python based Firedrake Project [141], the Python/C++ based

FEniCS Project [4], the C++ based LibMesh [86], and MOOSE[55] projects.

These scientific libraries all use PETSc’s linear algebra backend, but they can

also use other packages such as HYPRE [51] and Trilinos/ML [74]. How well can

specific solvers or software packages solve the same boundary value problem?

Algebraic multigrid solvers have various theoretical approaches and implemen-

tation strategies, so it is entirely possible that certain solver configurations are

better suited for a particular hardware architecture or PDE. Multigrid solvers

for optimization remain a difficult research problem, but will be imperative for

sustaining a high level of computational performance. Quick visual representa-

tions of the AI and equations solved per second can certainly guide programmers

and scientists in the right direction when designing or implementing different

software and solvers.

3. Numerical discretization: Finally, various flavors of numerical discretizations such

as the finite difference, finite element, and finite volume methods not only have
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different orders of mathematical accuracy but different number of discrete equa-

tions to solve for a given mesh. Consider the Continuous Galerkin (CG) and

Discontinuous Galerkin (DG) finite element methods – clearly the DG method

has more degrees-of-freedom since each element has its own copy of a geometric

node, but does that necessarily mean it is more time consuming? For example,

if the CG and DG elements each take roughly T seconds to attain a solution for

the same computational domain, then the latter element clearly has a higher

rate metric because it has more degrees-of-freedom for a given h-size, hence a

bigger numerator in equation 2.3.1. This is important for computational scien-

tists and mathematicians that want to compare the convergence rate of various

numerical methods particularly if p-refinement studies are involved. A cost

benefit analysis can be performed when comparing the numerical accuracy vs

computational cost, often quantified using a work-precision diagram [87]. One

could also compare the impact finite element discretizations have on different

geometric elements (e.g., tetrahedrons, hexahedrons, wedges, etc.). The per-

formance of any numerical method depends on the hardware limitations and

software implementations, but this spectrum can be useful for comparing differ-

ent and available discretizations and polynomial orders in sophisticated finite

element simulation packages.

2.4 DEMONSTRATION OF THE PERFORMANCE SPECTRUM

As proof-of-concept, we apply the proposed performance spectrum to study the

computational performance of a couple of popular finite element packages when used

to solve the steady-state diffusion equation. A series of demonstrations shall enrich

our current understanding of how hardware limitations, software implementation, nu-

merical discretization, and material properties can impact the performance and scal-

ability. We restrict our studies to the C++ implementation of the FEniCS Project
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and the Python implementation of the Firedrake Project, both of which leverage sev-

eral scientific libraries and solvers such as PETSc, HYPRE, and Trilinos/ML solvers.

The GMRES iterative solver is used with various algebraic multigrid solvers set to a

relative convergence tolerance of 10−7. All numerical simulations are performed on a

single Maxwell (AMD Opteron 2354) and Opuntia (Intel Xeon E5-2680v2) node as

described in Table 2.1. In this section, the performance spectrum model is used only

to assess the assembly and solve steps.

The steady-diffusion equation gives rise to a second-order elliptic partial differ-

ential equation. To this end, let Ω denote the computational domain, and let ∂Ω

denote its boundary. A spatial point is denoted by x. The unit outward normal to

the boundary is denoted by n̂(x). The boundary is divided into two parts: ΓD and

ΓN. The part of the boundary on which Dirichlet boundary conditions are prescribed

is denoted by ΓD, and the part of the boundary on which Neumann boundary condi-

tions are prescribed is denoted by ΓN. For mathematical well-posedness we assume

that

ΓD ∪ ΓN = ∂Ω and ΓD ∩ ΓN = ∅. (2.4.1)

The corresponding boundary value problem takes the following form

−div[D(x)grad[c(x)]] = f(x) in Ω, (2.4.2a)

c(x) = cp(x) on ΓD, and (2.4.2b)

−n̂(x) ·D(x)grad[c(x)] = qp(x) on ΓN, (2.4.2c)

where c(x) is the scalar concentration field, D(x) is the diffusivity coefficient, f(x)

is the volumetric source, cp(x) is the prescribed concentration on the boundary, and

qp(x) is the prescribed flux on the boundary. Assuming D(x) = I, we consider the
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(a) Analytical solution (b) Mesh

Figure 2.5: Analytical solution of the steady-state diffusion example and the correspond-
ing mesh skeleton of the structure grid containing tetrahedrons.

Table 2.2: Mesh discretization and CG1 L2 error norm with respect to h-refinement.

h-size Tetrahedrons Vertices FEniCS L2 error Firedrake L2 error
1/20 48,000 9,261 1.48E-02 2.96E-02
1/40 384,000 68,921 3.90E-03 7.77E-03
1/60 1,296,000 226,981 1.75E-03 3.51E-03
1/80 3,072,000 531,441 9.89E-04 1.99E-03
1/100 6,000,000 1,010,301 6.34E-04 1.28E-03
1/120 10,368,000 1,771,561 4.41E-04 8.88E-04
1/140 16,464,000 2,803,221 3.24E-04 6.52E-04

slope: 1.97 slope: 1.96

following analytical solution and corresponding forcing function on a unit cube:

c(x) = sin(2πx)sin(2πy)sin(2πz) and (2.4.3)

f(x) = 12π2sin(2πx)sin(2πy)sin(2πz). (2.4.4)

Homogeneous Dirichlet boundary conditions are applied on all faces, and the analyt-

ical solution for c(x) is presented in Figure 2.5. These next few studies shall consider

the following h-sizes on a structured tetrahedron mesh: 1/20, 1/40, 1/60, 1/80, 1/100,
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Figure 2.7: Demo #1: Static-scaling for the FEniCS finite element package with PETSc’s
algebraic multigrid solver on a single Opuntia (Intel Xeon E5-2680v2) and
Maxwell (AMD Opteron 2354) compute node.

1/120, and 1/140. All mesh information and L2 error norms with respect to the FEn-

iCS and Firedrake implementations of the continuous Galerkin (CG1) element is listed

in Table 2.2.
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Figure 2.8: Demo #1: Static-scaling per MPI process for the FEniCS finite element pack-
age with PETSc’s algebraic multigrid solver on a single Opuntia (Intel Xeon
E5-2680v2) and Maxwell (AMD Opteron 2354) compute node.

2.4.1 Demo #1: AMD Opteron 2354 vs Intel Xeon E5-2680v2

We first compare the AI betweeen a single Intel Xeon E5-2680v2 (Opuntia)

and AMD Opteron 2354 (Maxwell) compute node for FEniCS’s implementation of

the CG1 element coupled with PETSc’s algebraic multigrid preconditioner. The

AIL1, as seen from Figure 2.6, gradually decreases with mesh refinement. Moreover,

increasing the number of MPI processes also reduces the AI. The Intel processor has

smaller L1 and L2 caches compared to the AMD processor, which explains why the

former processor has lower AIs. It can be concluded that a higher AI on a different

machine does not necessarily translate to better performance because clock rates and

memory bandwidths differ. The fact that differences in AIL1 does not directly relate

to time-to-solution can be seen in Figure 2.6.

The static-scaling plot is shown in Figure 2.7. It is clear that the Intel processor

is capable of solving more degrees of freedom per second than the AMD processor.

Increasing the number of MPI processes improves the Rate1 metric, which is expected

since time to solution is amortized. Employing Rate3 from equation (2.3.7), as seen

in Figure 2.8 gives us a better insight into the effect adding more MPI processes
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Figure 2.9: Demo #1: Strong-scaling efficiency for the FEniCS finite element package
with PETSc’s algebraic multigrid solver on a single Opuntia (Intel Xeon E5-
2680v2) and Maxwell (AMD Opteron 2354) compute node.

onto a single node has on the static-scaling performance. We also note that when

only one or two MPI processes are used, the degrees-of-freedom solved per second

metric degrades as the problem size increases. We also observe that the line plots

for Intel reach higher apexes as more MPI processes and larger problems are solved.

The lines curves “dipping” to the left indicate a degradation in parallel performance –

the problems are very small (e.g., h-size of 1/20 resulting in 9,261 degrees-of-freedom

distributed among 16 MPI processes means each process solves roughly only 580

equations) thus more of the execution time is spent on interprocess communication

and latencies than actual computation. Both the Rate1 and Rate3 lines decrease with

problem size on the AMD node, whereas the line plots for the Intel node are relatively

flat, suggesting that the FEniCS and PETSc combination is in fact an algorithmically

scalable combination for the problem at hand.
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Figure 2.10: Demo #2: L1 arithmetic intensities for the FEniCS and Firedrake finite
element packages with various solver packages on a single Opuntia (Intel
Xeon E5-2680v2) node with 16 MPI processes.

Figure 2.9 depicts the parallel speedup on the two different nodes. The parallel

performance for the smaller h-sizes is significantly worse due to the lack of computa-

tion needed for a given MPI concurrency. It is interesting to note that the speedup

on the AMD node is slightly greater than on the Intel node. Recalling from Figure

2.6 that the AIL1 on the AMD node is larger, we can infer that higher AIs indicate a

stronger likelihood to experience greater parallel speedup. This behavior is consistent

with the strong-scaling results of the optimization-based solvers for the Chromium

remediation problem in [30] where similar classes of AMD and Intel processors were

experimented with.

2.4.2 Demo #2: FEniCS vs Firedrake

Next, we compare the FEniCS and Firedrake implementations of the CG1 el-

ement with 16 MPI processes on a single Intel Xeon E5-2680v2 node. The same

steady-state diffusion equation is considered, but we now investigate how other multi-

grid solver packages like HYPRE and ML affect the performance.

The AI’s in 2.10 clearly depend on the software implementation, the solver used,

and the problem size. The results in this figure suggest that the FEniCS and Firedrake
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Figure 2.11: Demo #2: Static-scaling for the FEniCS and Firedrake finite element pack-
ages with various solver packages on a single Opuntia (Intel Xeon E5-2680v2)
node with 16 MPI processes.
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Figure 2.12: Demo #2: Number of GMRES iterations required for the FEnics and Fire-
drake finite element packages with various solver packages on a single Op-
untia (Intel Xeon E5-2680v2) node with 16 MPI processes.

packages have very similar implementations of the PETSc and HYPRE multigrid

solvers. However, the AIL1 for FEniCS’s implementation of the ML solver deteri-

orates rapidly with problem size. Similar behavior is observed in the static-scaling

plot of Figure 2.11 where the data points with the highest AI also have the highest

rate at which equations are solved. Unlike the previous demonstration where differ-

ent hardware implementations were compared, the AI and rate metrics are strongly
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Figure 2.13: Demo #2: Correlation between the L1/L2/L3 arithmetic intensities and
strong-scaling efficiency on a single Opuntia (Intel Xeon E5-2680v2) node
for up to 16 MPI processes when h-size = 1/140.

correlated to each other, and it is clear that FEniCS’s current implementation of ML

has some issues since the tailing off towards the right occurs before either the PETSc

or HYPRE lines do.

With these two graphs in mind, one may wonder why the tailing off occurs.

Does it occur due to suboptimal algorithmic convergence (i.e., iteration count in-

creases with problem size), or do the data structures needed for important solver

steps begin to drop out of cache? A scalable algorithm suggests that the number

of solver iterations should not increase by much when the problem size increases, so

if the GMRES iteration count increases significant, it is possible that the rate met-

ric will decrease. 2.12 denotes the number of GMRES iterations needed for every

finite element package and solver, and it can be seen that the iteration counts do

not increase by much. These plots must be interpreted carefully because although
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Figure 2.14: Demo #2: Comparison between HYPRE’s default solver parameters and
HYPRE’s optimized solver parameters through the Firedrake package on a
single Opuntia (Intel Xeon E5-2680v2) node with 16 MPI processes.

the iteration plots may suggest algorithmic scalability, the degradation in AI with

respect to problem size suggests that the current software and solver parameters are

not efficiently configured to utilize the hardware. As shown in the previous demon-

stration, the AI is useful for predicting which algorithms will see greater speedups

as the number of MPI processes is increased. Figure 2.13 compares the AIL1/2/3
and parallel performance of Firedrake’s three solver implementations. Regardless of

which level of cache is used to determine the AI, HYPRE and ML have the lowest

and highest AI’s, respectively. Moreover, HYPRE and ML have the worst and best

parallel speedups, respectively, which again supports the fact that the AI metric is

useful for predicting which algorithms may achieve the greatest parallel speedup.

We note that the HYPRE solver has relatively bad performance, suggesting that

the out-of-box parameters are unfit for the problem at hand. One of the best ways to
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Table 2.3: Demo #3: Degrees-of-freedom with respect to h-refinement. In this study we
do not consider h-size = 1/100 for the DG1 or DG2 elements.

h-size CG1 CG2 DG1 DG2
1/20 9,261 68,921 192,000 480,000
1/40 68,921 531,441 1,536,000 3,840,000
1/60 226,981 1,771,561 5,184,000 12,960,000
1/80 531,441 4,173,281 12,288,000 30,720,000
1/100 1,030,301 8,120,601 - -

Table 2.4: Demo #3: L2 error norm with respect to h-refinement for various finite ele-
ments provided through the Firedrake package. In this study we do not consider
h-size = 1/100 for the DG1 or DG2 elements.

h-size CG1 CG2 DG1 DG2
1/20 2.96E-02 3.81E-04 1.65E-02 2.16E-04
1/40 7.77E-03 3.79E-05 4.35E-03 2.26E-05
1/60 3.51E-03 1.06E-05 1.97E-03 6.47E-06
1/80 1.99E-03 4.44E-06 1.12E-03 2.72E-06
1/100 1.28E-03 2.25E-06 - -
slope: 1.95 3.19 1.94 3.16

improve the AI and Rate1 metrics is to simply adjust some of the solver parameters.

If, for example, we optimize the parameters by increasing the strong threshold coars-

ening rate, the performance improves dramatically as we can tell from Figure 2.14.

The AI and Rate1 metrics are now competitive with Firedrake’s implementation of

the PETSc and ML solvers, but it is important to realize that the GMRES iteration

counts increased with size. An algorithm that requires fewer iterations yet remains

constant when the problem size increase does not necessarily mean it has good per-

formance and scalability. Neither the AI nor rate metrics tail off towards the right,

suggesting that the optimized HYPRE solver is scalable despite some minor growth

in the GMRES iteration count. As we have discussed in the previous demonstration,

answers regarding performance and scalability of various solvers and software will

also depend on the hardware.
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Figure 2.15: Demo #3: L1/L2/L3 arithmetic intensities of Firedrake’s various finite ele-
ment formulations on a single Opuntia (Intel Xeon E5-2680v2) node with 16
MPI processes.

2.4.3 Demo #3: Continuous Galerkin vs Discontinuous Galerkin

So far we have only considered the CG1 finite element. What happens if we

employ another discretization such as the Discontinuous Galerkin (DG) method?

Moreover, what happens if we increase the polynomial order and employ second

order CG (CG2) and second order DG (DG2) elements? Various families of elements

and their respective levels of p-refinement will change both the size and numerical

accuracy of the numerical solution, so it is desireable to understand both the costs

and benefits of these approaches on a particular mesh. Tables 2.3 and 2.4 contain the

total degrees-of-freedom and L2 error norms, respectively, of Firedrake’s various finite

element discretizations. The CG elements are studied up to h-size = 1/100 whereas

the DG elements are studied up to h-size = 1/80. We again employ 16 MPI processes

across a single Intel Xeon E5-2680v2 node, and all finite element discretizations in this

demonstration are solved with optimized (i.e., increased strong threshold coarsening)

HYPRE parameters.

Figure 2.15 contains the AIL1/2/3 for the CG1, CG2, DG1, and DG2 elements.

What we learn from these results is that increasing the polynomial order for the CG
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Figure 2.16: Demo #3: Static-scaling for Firedrake’s various finite element formulations
on a single Opuntia (Intel Xeon E5-2680v2) node with 16 MPI processes.

104 105 106 107

DOFs

105

106

R
a
te

 (
D

O
Fs

/s
e
c)

CG1
CG2
DG1
DG2

Figure 2.17: Demo #3: Degrees-of-freedom vs degrees-of-freedom solved per second for
Firedrake’s various finite element formulations on a single Opuntia (Intel
Xeon E5-2680v2) node with 16 MPI processes.

elements lowers the AI whereas the AI increases for DG elements. This may not

always be the case because different solvers and different hardware architectures may

be better tailored to different discretization. Other finite element packages like the

FEniCS or DEAL.II projects may have very different results. The Rate1 metric as

seen from Figure 2.16 depicts the rate at which each discretization solves its equations.

Alternatively, one could also compare the Rate1 metric with respect to the degrees-of-

freedom as seen in Figure 2.17. Although DG elements have more degrees-of-freedom
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Figure 2.18: Demo #3: Solver iterations needed for Firedrake’s various finite element
formulations on a single Opuntia (Intel Xeon E5-2680v2) node with 16 MPI
processes.
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Figure 2.19: Demo #3: Static-scaling per solver iteration for Firedrake’s various finite
element formulations on a single Opuntia (Intel Xeon E5-2680v2) node with
16 MPI processes.

for a given mesh discretization, it is seen that the DG1 element has the highest

Rate1 metric, suggesting that the optimized HYPRE solver parameters are especially

suitable for DG1 elements. Unlike the FEniCS and ML combination example from the

previous demonstration, the DG2 discretization experiences significant degradation in

the static-scaling plot yet maintains relatively consistent AI’s. This begs the question

of whether the tailing off towards the right is due to memory effects or suboptimal
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Table 2.5: Demo #4: L2 error norm with respect to h-refinement for various values of α in
equation (2.4.5) when using the Firedrake implementation of the CG1 element.

h-size α = 0 α = 1 α = 10 α = 100 α = 1000
1/20 1.48E-02 3.45E-02 4.83E-02 5.71E-02 5.86E-02
1/40 3.90E-03 9.31E-03 1.46E-02 1.90E-02 1.99E-02
1/60 1.75E-03 4.23E-03 6.84E-03 9.26E-03 9.76E-03
1/80 9.89E-04 2.40E-03 3.94E-03 5.43E-03 5.75E-03
1/100 6.34E-04 1.55E-03 2.55E-03 3.55E-03 3.77E-03
1/120 4.41E-04 1.07E-03 1.78E-03 2.49E-03 2.64E-03
1/140 3.24E-04 7.88E-04 1.31E-03 1.84E-03 1.96E-03
slope: 1.97 1.94 1.86 1.77 1.75

algorithmic convergence.

As previously observed from Figure 2.14, the optimized HYPRE parameters

resulted in a slight increase in GMRES iteration count for CG1 elements, and we

notice similar trends for the other finite elements in Figure 2.18. If the iteration count

increase is significant enough, it could negatively affect static-scaling. To determine

whether this solver iteration growth stymied the rate by which equations are solved,

we can employ Rate2 (i.e., degrees-of-freedom solved per second per solver iterate)

from equation (2.3.6) as shown in Figure 2.19. In this particular demonstration, it

makes no difference as we still observe degradation with respect to problem size, hence

suggesting that memory bandwidth and cache behavior have an adverse effect on the

simulation. Using more compute nodes may certainly ameliorate both the AI and

rate metrics for the DG2 element, but it should again be cautioned that comparitive

studies on the performance of numerical methods and solvers strongly depend on both

the code implementation as well as the nature of the computing platform.

2.4.4 Demo #4: Material properties

So far all three of our demonstrations have been conducted in a homogeneous

domain. However, many scientific problems are often hetereogeneous in nature, which
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Figure 2.20: Demo #4: Performance spectrum for various values of α in equation (2.4.5)
on a single Opuntia (Intel Xeon E5-2680v2) node with 16 MPI processes.

may complicate the physics of the governing equations and may become more expen-

sive to solve numerically. In [31], it was shown that solving heterogeneous problems

like chaotic flow resulted in suboptimal algorithmic convergence (i.e., the iteration

counts grew with h-refinement), so our goal is to demonstrate how physical proper-

ties such a heterogeneity and anisotropy may skew how we interpret the performance.

Let us now assume that we have a heterogeneous and anisotropic diffusivity tensor

that can be expressed as follows

D(x) =


α(y2 + z2) + 1 −αxy −αxz

−αxy α(x2 + z2) + 1 −αyz

−αxz −αyz α(x2 + y2) + 1

,

 (2.4.5)
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where α ≥ 0 is a user defined constant that controls the level of heterogeneity and

anisotropy present in the computational domain. By employing the same analytical

solution as equation (2.4.3), the various values of α give rise to new forcing functions.

The L2 error norms with respect to α using Firedrake’s CG1 elements are shown in

Table 2.5. Again a single Intel Xeon E5-2680v2 compute node with 16 MPI processes

is used for this study, and PETSc’s multigrid solver is used to solve these problems.

Figure 2.20 depicts the AI, Rate1, solver iterations, and Rate2 metrics. The AI

is not affected by α which suggests that there are no hardware or software implemen-

tation issues, only that the Rate1 metric tails off as α is increased. We see that while

the iteration growth is significant, the Rate2 metric is still flat for this heterogeneous

and anisotropic steady-state diffusion problem. Thus, the primary reason that the

data points in the static-scaling plots decrease with problem size has little to do with

memory contention.

2.5 CASE STUDY PART 1: SINGLE NODE

The previous section, which focused entirely on the steady-state diffusion equa-

tion, covered the basic ways one can utilize the proposed performance spectrum model

to help justify, interpret, or diagnose the computational performance of any algorithm,

numerical method, or solver for a particular compute node. In these next two sec-

tions, we demonstrate that this performance spectrum model is also useful for more

complicated and nonlinear PDEs. We consider PETSc’s toy hydrostatic ice sheet

flow example, based on the work of [26], with geometric multigrid and apply the per-

formance spectrum to give us a better understanding of how certain HPC platforms

scale.
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2.5.1 Hydrostatic ice sheet flow equations

Consider a [0, 10]km × [0, 10]km × [0, 1]km computational ice domain Ω ⊂ R3

lying between a Lipschitz continuous bed b(x, y) and surface s(x, y). The hydrostatic

equations are obtained from the non-Newtonian Stokes equations where the horizontal

x− and y− derivatives of velocity in the vertical z-direction are small and negligi-

ble. Denoting the horizontal component of the velocity field by u = (u, v) where u

and v are parallel to the x− and y− axes respectively, the governing equations for

hydrostatic ice sheet flow is given by

−η
(
∂

∂x

(
4∂u
∂x

+ 2∂v
∂y

)
+ ∂

∂y

(
∂u

∂y
+ ∂v

∂x

)
+ ∂2u

∂z2

)
+ ρg

∂s

∂x
= 0 and (2.5.1a)

−η
(
∂

∂x

(
∂u

∂y
+ ∂v

∂x

)
+ ∂

∂y

(
2∂u
∂x

+ 4∂v
∂y

)
+ ∂2y

∂z2

)
+ ρg

∂s

∂y
= 0, (2.5.1b)

where η is the nonlinear effective viscosity expressed by

η(γ) = B

2

(
ε2

2 + γ

) 1−n
2n

, (2.5.2)

where ice sheet models typically take n = 3. The hardness parameter is denoted by

B, the regularizing strain rate is defined by ε, and the second invariant γ is expressed

by

γ = ∂2u

∂x2 + ∂2v

∂y2 + ∂u

∂x

∂v

∂y
+ 1

4

(
∂u

∂y
+ ∂v

∂x

)2

+ 1
4

(
∂2u

∂x2 + ∂2v

∂x2

)
. (2.5.3)

More information on the theoretical derivation of the above equations can be found

in [148, 149]. Equation (2.5.1) is subject to natural boundary conditions at the free

surface and either no-slip or power-law slip conditions with friction parameter

β2(γb) = β2
0

(
ε2b
2 + γb

)m−1
2

, (2.5.4)
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where γb = 1
2 (u2 + v2), εb is regularizing velocity, β2

0 is a “low-speed" reference friction,

and m ∈ (0, 1] is the slip exponent.

2.5.2 Problem setup

The hydrostatic ice sheet flow equation is discretized using hexahedron Q1 finite

elements on a structured grid and Figure 2.21 contains the corresponding solution.

Details concerning the theoretical derivation of the variational formulation as well

as the parameters used for the boundary value problem can be found in [26]. Since

this example problem is written entirely with PETSc routines and function calls,

the [FLOPs] metric in equation (2.3.4) is determined using PETSc’s manual FLOP

counts instead of hardware FLOP counters. This is particularly useful if a thorough

comparative study on PETSc’s eclectic suite of linear algebra solvers for a particular

PDE were to be conducted.

For this problem, we begin with an initial coarse grid size and successively refine

the grid N times until we get the desired problem size and numerical accuracy. The

“fine grids" produced from this element-wise refinement are solved using the geometric

multigrid technique, whereas the initial coarse grid is solved using algebraic multigrid.

The assembled Jacobian employs block AIJ format (better known as the compressed

sparse row format), where the horizontal velocity components are grouped per grid

node. Since ice-flow is tightly coupled in the vertical direction, parallel domain de-

composition is specially set up so that grid points in the vertical direction are never

distributed and are always contiguous in memory. The initial grid size must be chosen

carefully because the mesh partition happens at the coarsest level and may cause load

balancing issues if the initial grid is not large enough.
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Figure 2.21: Numerical solution of the velocity vector field for the hydrostatic ice sheet
flow example.

Table 2.6: Hydrostatic ice sheet flow for a single node: Mesh information and number of
solver iterations needed for an initial 40×40×5 coarse grid. KSP and SNES
iteration counts may vary depending on the number of MPI processes used.

Levels of refinement Degrees-of-freedom SNES iterations KSP iterations
0 16,000 7 39
1 115,200 8 45
2 870,400 8 44
3 6,758,400 8 44

2.5.3 Results

First, we provide an initial 40×40×5 coarse grid and successively refine this grid

up to 3 times. All five processors from Table 2.1 are studied, and the KNL processor

is configured to use MCDRAM in flat mode. Each node has a different number

of available cores so in order to maintain relatively consistent mesh partitioning,

the Ivybridge and KNL processors will only utilize 16 and 64 cores, respectively.

Table 2.6 presents the problem size as well as the number of total SNES and KSP

iterations needed for each level of refinement. Figure 2.22 depicts the AIL1 metrics

with respect to the overall time-to-solution. Each data point has the same coarse grid
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Figure 2.22: Hydrostatic ice sheet flow single node: L1 arithmetic intensity, based on
PETSc’s manual FLOP counts and L1 cache misses. Note that the Ivybridge
(i.e., Opuntia and Edison) and KNL nodes are only partially saturated.
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Figure 2.23: Hydrostatic ice sheet flow single node: Static-scaling. Note that the Ivy-
bridge (i.e., Opuntia and Edison) and KNL nodes are only partially satu-
rated.

size but has different levels of grid refinement ranging from 0 to 3. The “Ivybridge”

and ”Haswell” processors have similar AIs and are significantly smaller than their

KNL and AMD counterparts. It should be noted that GNU compilers were used to

compile the problem on the AMD Opteron 2354 and Intel Xeon E5-2680v2 processors

whereas the other three processors used Cray compilers, which could explain why the

AIs between the two Ivybridge processors are slightly different. As with the hardware
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Figure 2.24: Hydrostatic ice sheet flow single node: Static-scaling per MPI processes.
Note that the Ivybridge (i.e., Opuntia and Edison) and KNL nodes are only
partially saturated.

counter examples in the last section, the AIs are initially small for the coarser problems

but eventually stabilize if a problem is sufficiently large. It is interesting to note that

the AMD processor is consistently flat for all data points, suggesting that the smaller

problem sizes selected for this example have already approached the AMD processor’s

achievable peak performance of the computational/memory resource. On the other

hand, the KNL’s wider vector instruction sets and caches for smaller problems are

not fully utilized, resulting in low AI’s.

The static-scaling plot on each of these compute nodes is shown in Figure 2.23,

and Figure 2.24 depicts static-scaling based on Rate3 from (2.3.7). Unsurprisingly,

the AMD processor is outperformed by all of the Intel processors. Both of Cori’s Intel

processors have the best performance out of all the systems studied, but we again

notice that the KNL processor has poor metrics when the grid is small. Furthermore,

KNL’s performance per core is considerably lower as seen from Figure 2.24. There

are many reasons why we noticed such dramatic behavior. First, as we already noted

from the AI results, the problem has to be sufficiently large in order to fully utilize

the KNL vector instructions. Second, we used 64 of the 68 available cores on the

KNL node, which is at least double the amount of cores that the other systems have.
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Table 2.7: Hydrostatic ice sheet flow strong-scaling for an initial 64×64×6 coarse grid.

Nodes Edison Cori/Haswell Cori/KNL
Cores Time (s) Eff. (%) Cores Time (s) Eff. (%) Cores Time (s) Eff. (%)

1 16 300 - 32 227 - 64 193 -
2 32 150 100 64 108 105 128 92.4 104
4 64 72.0 104 128 57.3 99.0 256 47.3 102
8 128 37.9 98.9 256 28.7 98.9 512 25.2 95.7
16 256 18.9 99.2 512 13.9 100 1024 15.1 79.9
32 512 9.65 97.2 1024 8.11 87.5 2048 10.6 56.9
64 1024 6.75 69.4 2048 4.62 76.8 4096 9.27 32.5

Table 2.8: Hydrostatic ice sheet flow for multiple nodes: Mesh information and number of
solver iterations needed for an initial 128×128×12 coarse grid. KSP and SNES
iteration counts may vary depending on the number of MPI processes used.

Levels of refinement Degrees-of-freedom SNES iterations KSP iterations
1 3,014,656 8 85
2 23,592,960 8 85
3 186,646,528 8 85
4 1,484,783,616 8 85
5 11,844,714,496 8 85

The degrees-of-freedom per MPI is significantly smaller so it is possible interprocess

communication time affects the scaling results.

2.6 CASE STUDY PART 2: MULTIPLE NODES

The results from every example in this chapter thus far behoove us to now

investigate what happens when more than one compute node is needed to solve a

PDE. Figures 2.9 and 2.11 from the previous section indicate that the AILx metrics

can be used to predict the strong-scaling potential on a single node. Our goal is now

to investiate if the correlation holds true even across multiple nodes. To ensure that

the problem is sufficiently large to distribute to several nodes, we consider an initial

64×64×6 coarse grid with three levels of refinement (21,495,808 degrees-of-freedom).

The number of KSP and SNES iterations needed to solve the problem are 62 and 8,

respectively.

Table 2.7 contains the strong-scaling results for the Cori and Edison systems.
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Figure 2.25: Hydrostatic ice sheet flow multiple nodes: AIL1 when the systems all employ
1024 cores (64 Edison nodes, 32 Haswell nodes, and 16 KNL nodes). Grid
sizes ranging from 3 million to 186 million degrees-of-freedom are considered.

All three systems demonstrate near perfect strong-scaling performance until 1024

cores are used (roughly 20k degrees-of-freedom per core). However, it is difficult to

make performance comparisons because different systems employ different numbers

of MPI processes per node which affect communication to computation ratios as well

as required data bandwidth between nodes. The only concrete conclusion that can

be made is that the KNL system takes the least amount of wall-clock time on a single

compute node but gets outperformed when the problem size per node reduces. Figures

2.22 and 2.23 suggest that when the problem size on a KNL node is sufficiently small,

parallel performance would degrade drastically, which is exactly what the results of

Table 2.7 portray.

2.6.1 Example #1: 1024 MPI processes

In this section, we consider what happens when we employ the same MPI con-

currency. This second example aims to model the performance when the same hydro-

static ice sheet flow problem is solved on Cori and Edison systems each utilizing 1024

MPI processes. We set this problem up by allocating 64 Edison/Ivybridge nodes, 32

Cori/Haswell nodes, and 16 Cori/KNL nodes. An even larger initial 128×128×12
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Figure 2.26: Hydrostatic ice sheet flow multiple nodes: Static-scaling when the systems
all employ 1024 MPI processes (64 Edison nodes, 32 Haswell nodes, and 16
KNL nodes). Three levels of refinement are considered.

coarse grid is selected, and we refine the problem 1–3 times. Table 2.8 presents the

problem size as well as the number of nonlinear and linear solver iterations needed

for every level of refinement. Figures 2.25 and 2.26 contain the intensity and rate

metrics, respectively. The AI data points are either relatively flat or do not experi-

ence drastic changes upon mesh refinement. The static-scaling plot tells us that the

Edison/Ivybridge system has the best performance as the problem gets larger. This

behavior may seem to contradict the findings of the static-scaling plot in Figure 2.23,

but it is important to realize that this PETSc application is limited by the memory-

bandwidth and not the TPP for the FLOP rate. The HPC system with Ivybridge

processors has the best performance simply because it employs more compute nodes

thus more available memory.

2.6.2 Example #2: 256 compute nodes

The previous example is an elegant demonstration of why comparing HPC ma-

chines based on equal MPI concurrency can produce misleading performance metrics,

especially for computational frameworks that are limited by the memory-bandwidth.

What happens if every system employs the same number of compute nodes? In this
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Figure 2.27: Hydrostatic ice sheet flow multiple nodes: AIL1 when the systems all employ
256 nodes (4096, 8192, and 16384 MPI processes for Edison, Haswell, and
KNL respectively). Five levels of refinement are considered.

third example, the Cori and Edison systems shall allocate 256 compute nodes each.

Thus, Edison/Ivybridge will use 4096 MPI processes (16 out of 24 cores per node),

Cori/Haswell will use 8192 MPI processes (32 out of 32 cores per node), and Cori/KNL

will use 16384 processes (64 out of 68 cores per node). We use the same initial coarse

grid as in the previous example but now refine the problem 1–5 times. The AI in Fig-

ure 2.27 again indicate relative consistency for finer problems, and we again observe

that the AI metric will drop significantly if a problem is not large enough. This trend

corroborates the notion that the AI dropping for small problems happens regardless

of whether a single node or multiple nodes are used. The static-scaling plot shown in

Figure 2.28 demonstrates that Edison’s Ivybridge processor does not beat out Cori’s

Haswell processor. What’s particularly interesting is that the performance for Cori’s

KNL processor drastically varies with problem size. KNL cannot beat out Edison

for small problems, but KNL will beat both Edison and Haswell when a problem is

neither too small nor too large.

The performance spectrum model is useful for understanding performance char-

acteristics across a wide variety of hardware architectures. Although the STREAM
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Figure 2.28: Hydrostatic ice sheet flow multiple nodes: Static-scaling when the systems all
employ 256 nodes (4096, 8192, and 16384 MPI processes for Edison, Haswell,
and KNL respectively). Five levels of refinement are considered.

Triad measurements from Table 2.1 suggest that KNL should greatly outperform Ivy-

bridge and Haswell for memory-bandwidth dominated applications, the performance

spectrum indicates that current and practical implementations of scientific software

like PETSc v3.7.4 on KNL may be slow if the problem is dominated by main mem-

ory bandwidth. Different platforms require different implementation methodologies

in order to maximize performance, so optimizing computational frameworks to fully

leverage the power of the KNL processor is still an open research problem. Nonethe-

less, the performance spectrum model is useful for testing various implementations

of PDE solvers and can be utilized to understand hardware architectures trends and

algorithms of the future.

2.7 CONCLUDING REMARKS

In this chapter, we have proposed a performance model, referred to as the perfor-

mance spectrum, designed to simultaneously model both the hardware/architectural

and algorithmic efficiencies of a variety of parallel PDE solvers. The techniques needed

to approximate such efficiency metrics are 1) the arithmetic intensity documenting
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the ratio of flops over data cache misses, and 2) static-scaling, which scales up the

problem while fixing the concurrency. This model enabled us to visualize and en-

rich our current understanding of performance issues related to hardware limitations,

software/solver implementation, and numerical discretization of some popular and

state-of-the-art finite element simulation packages and solvers. Moreover, it has been

shown that this spectrum is also useful for understanding performance and scalability

of complex solvers and PDEs for nonlinear problems like hydrostatic ice sheet flow in

a large-scale environment. Computational scientists have designed and are still de-

signing software and algorithms needed to answer many of today’s pressing scientific

problems, so not only do we need to solve these problems accurately but also to solve

them fast. In order to understand how fast these solvers and software are, particularly

ones that are either black-box or designed by others, we need a performance model,

such as the proposed performance spectrum, to help answer any questions regarding

computational performance.

51



Chapter 3. Large-scale optimization-based non-negative
computational framework for diffusion equations:
Parallel implementation and performance studies

3.1 INTRODUCTION

The modeling of flow and transport in subsurface is vital for energy, climate

and environmental applications. Examples include CO2 migration in carbon-dioxide

sequestration, enhanced geothermal systems, oil and gas production, radio-nuclide

transport in a nuclear waste repository, groundwater contamination, and thermo-

hydrology in the Arctic permafrost due to the recent climate change [79, 101, 67, 81].

Several numerical codes (e.g., FEHM [167], TOUGH [136], PFLOTRAN [100]) have

been developed to model flow and transport in subsurface at reservoir-scale. These

codes typically solve unsteady Darcy equations for flow and advection-diffusion equa-

tion for transport. The predictive capability of a numerical simulator depends on the

robustness of the underlying numerical methods. A necessary and essential require-

ment is to satisfy important mathematical principles and physical constraints. One

such property in transport and reactive-transport problems is that the concentra-

tion of a chemical species cannot be negative. Mathematically, this translates to the

satisfaction of the discrete maximum principle (DMP) for diffusion-type equations.

Subsurface flow and transport applications typically encounter geological media that

are highly heterogeneous and anisotropic in nature, and it is well-known that the

classical finite element (or finite volume and finite difference, for that matter) formu-

lations do not produce non-negative solutions on arbitrary meshes for such porous

media.
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3.1.1 Prior works on non-negative formulations

Before we discuss the prior works, it is important to discuss the reason behind

the negative solutions under the conventional methods. The precise mathematical

answer is that the conventional methods do not converge uniformly to the exact

solution, which will be the case under strong anisotropic dispersion. In fact, the

paper by [37] also provides the same reason in their study on discrete maximum

principles of the Poisson’s equation. The uniform convergence issues also manifest

in the case of steep gradients and one such case is the famous Gibbs phenomenon

[58, 59]. It is difficult to explain intuitively why the Gibbs phenomenon occurs or

why some sequence of functions do not converge uniformly. It is just the nature of

the approximation of functions.

The prior non-negative formulations can be broadly classified into the following

five categories:

1. Reporting the violations: In [134], several cases of violations of the maximum

principle and the non-negative constraint have been showcased for different

anisotropic diffusivity tensors. This chapter also demonstrates that h- and

p-refinements do not eliminate these violations. The adverse effects due to

violations of the non-negative constraint for non-linear ecological models and

chemically reacting flows have been illustrated in [122]. These mentioned papers

and the references therein have clearly documented that the violations of the

non-negative constraint need not be small, which is especially true in the case

of anisotropic diffusion. However, neither of these papers have provided any fix

to overcome these violations.

2. Mesh restrictions: The first work on maximum principles under the finite ele-

ment method can be traced back to the seminal paper by [37]. This paper con-

sidered isotropic diffusion, and has shown that an acute-angled triangular mesh
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(which is a restriction on the mesh) will satisfy the maximum principle under

the finite element method. Anisotropic diffusion equations have been addressed

in [78], wherein they developed an algorithm to generate metric-based meshes to

satisfy the maximum principle for such equations. [121] have addressed various

versions of maximum principles for diffusion and advection-diffusion equations

and studied the performance of metric-based meshes for these equations. This

paper highlighted the main deficiency of metric-based meshes, which is the need

to alter the mesh for different diffusivity tensors. A comprehensive list and dis-

cussion of other prior works related to enforcing mesh restrictions to meet the

maximum principle and the non-negative constraint can also be found in [121].

3. Developing or altering formulations in the continuum setting: Two works that

fall under this category are [69, 133], both of which addressed transient transport

problems. [69] utilized a stabilized method that is available for Helmholtz-type

equations to construct a stabilized formulation for transient isotropic diffusion

equations to meet the maximum principle. This approach, as presented in [69],

is applicable to one-dimensional setting. [133] meets maximum principles for

transient transport equations by employing two techniques. They rewrote tran-

sient transport equations, which are parabolic in nature, into modified Maxwell-

Cattaneo equations, which are hyperbolic in nature, and employed the space-

time Discontinuous Galerkin approach.

4. Non-finite element approaches: A finite volume-based approach, to enforce the

non-negative constraint, as proposed in [135], involves a non-linear iterative

procedure to select appropriate collocation points for cell concentrations. This

technique has been refined by several others including [104] and [152]. Other

similar approaches include the mimetic finite difference method [40], which en-

sures monotonicity and positivity. Since neither the finite difference nor finite
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volume methods are based on weak formulations, these mentioned works cannot

be trivially extended to the finite element method.

5. Optimization-based techniques at the discrete level: Several studies over the

years [132, 127, 130, 131] have focused on the development of optimization-

based methodologies that enforce the maximum principle and the non-negative

constraint for diffusion problems. An optimization-based methodology based on

the work of the aforementioned studies has been applied to enforce maximum

principles advection-diffusion equations [120]. By reformulating the advection-

diffusion problem as a mixed finite element formulation under the least-squares

formalism, one introduces flux variables into the problem. The discrete for-

mulation is also symmetric and positive-definite, so one can easily apply both

bounded constraints and equality constraints to ensure non-negative solutions

and local mass conservation respectively. It should be noted that one may also

employ normal equations or the least-squares approach to ensure that the min-

imization problem for non-symmetric problems is convex [43, 28, 133]. All of

these studies have employed quadratic programming (QP) techniques to enforce

the maximum principle on 2D academic problems, but the problems studied

are small-scale and do not require state-of-the-art Krylov subspace (KSP) iter-

ative solvers and preconditioners. Moreover, it is difficult to find solvers for

least-squares or penalty-type problems due to the condition numbers of large

systems of equations [137].

3.1.2 Large-scale computing

Although the aforementioned studies have successfully enforced the discrete max-

imum principles and the non-negative constraint, they did not address how such meth-

ods can be used for realistic large-scale subsurface problems that have millions of grid

nodes. Furthermore, complex coupling between different physical processes as well as
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the presence of multiple species amplify the degrees-of-freedom (i.e., the number of

unknowns). The aim of this chapter is to develop a parallel computational framework

that solves anisotropic diffusion equations on general meshes, ensures non-negative

solutions, and can be employed to solve large-scale realistic problems.

Large-scale problems can be tackled by using recent advancements in high-

performance computing (HPC) methods and toolkits that can be used on the state-of-

the-art supercomputing architecture. One such toolkit is PETSc [12], which provides

data structures and subroutines for setting up structured and unstructured grids,

communication routines for using clusters and massively parallel processes (MPP),

linear and non-linear solvers, and parallel I/O. These high-level data structures and

subroutines help in faster development of parallel application codes and minimize the

need to program low-level message passing and partition data structures, so that the

domain scientists can focus mostly on the application. To this end, we develop a

parallel framework satisfying the DMP by leveraging the existing capabilities within

PETSc. This property is obtained for anisotropic diffusion by using lower-order finite

elements and the optimization-based approach in [132, 105, 127]. The TAO toolkit

[123], which is built on top of PETSc, has a wide suite of commonly-used optimization

solvers. The robustness of the proposed framework will be demonstrated by solving

realistic large-scale problems.

It needs to be mentioned that there are other possible ways of solving the opti-

mization problem at hand in a large-scale setting, and a brief discussion is warranted

on this aspect. Herein, we pose the problem as a quadratic programming problem

and employ tools that are primarily developed to handle such optimization problems.

However, one can also pose the problem as a variational inequality problem and in

particular as an obstacle problem [84]. A thorough discussion on the mathemati-

cal aspects of variational inequalities can be found in [84, 50]. The state-of-the-art

computational strategies for solving large-scale variational inequalities can be found
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in [15, 160], and a discussion on the associated linear solvers and preconditioners

can be found in [62]. A systematic study of the problem at hand using variational

inequalities will be addressed in the next chapter.

The rest of this chapter is organized as follows. In Section 3.2, we present the

governing equations and the classical single-field Galerkin finite element formulation

for steady-state and transient diffusion equations. The optimization-based method

to ensure non-negative concentrations is also outlined in this section. In Section

3.3, the parallel implementation procedure using PETSc and TAO is presented. We

also highlight the relevant data structures used in this study and present a pseudo

algorithm describing our parallel framework. In Section 3.4, a performance model

loosely based on the roofline model is outlined. This model is used to estimate the

efficiency with respect to computing hardware utilization of currently available solvers

within PETSc and TAO. In Section 3.5, we first verify our implementation using

a 3D benchmark problem from the literature and present a detailed performance

study using the proposed model. Then, we study a large-scale three-dimensional

realistic problem involving the transport of chromium in the subsurface and document

the numerical results of the non-negative methodology with the classical single-field

Galerkin formulation. Conclusions are drawn in Section 3.6.

We shall denote all the continuum vectors by lowercase boldface unitalicized

letters (e.g., a), and the vectors in the discrete setting are denoted by lowercase bold-

face italic letters (e.g., a). We shall denote all the continuum second-order tensors

by boldface uppercase unitalicized letters (e.g., A), and all the finite element matri-

ces are denoted by uppercase boldface italicized letters (e.g., A). Other notational

conventions are introduced as needed in the chapter.
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3.2 GOVERNING EQUATIONS ANDASSOCIATEDNON-NEGATIVE

NUMERICAL METHODOLOGIES

Let Ω ⊂ Rnd be a bounded open domain, where “nd” is the number of spatial

dimensions. A spatial point is denoted by x ∈ Ω. The boundary of the domain is

denoted by ∂Ω = Ω−Ω, which is assumed to be piecewise smooth. The gradient and

divergence operators with respect to x are, respectively, denoted as grad[·] and div[·].

As usual, the boundary is divided into two parts: ΓD and ΓN. ΓD is that part of

the boundary on which Dirichlet boundary conditions are prescribed, and ΓN is the

part of the boundary on which Neumann boundary conditions are prescribed. For

mathematical well-posedness, we assume ΓD ∪ ΓN = ∂Ω and ΓD ∩ ΓN = ∅. The unit

outward normal to boundary is denoted as n̂(x). The diffusivity tensor is denoted

by D(x), which is assumed to be symmetric, bounded above and uniformly elliptic.

That is,

D(x) = DT(x) ∀x ∈ Ω, (3.2.1)

and there exists two constants 0 < ξ1 ≤ ξ2 < +∞ such that

ξ1yTy ≤ yTD(x)y ≤ ξ2yTy ∀x ∈ Ω and ∀y ∈ Rnd. (3.2.2)

3.2.1 Governing equations for steady-state response

We shall denote the steady-state concentration field by c(x). The governing

equations can be written as follows:

−div[D(x)grad[c]] = f(x) in Ω, (3.2.3a)

c(x) = cp(x) on ΓD, and (3.2.3b)

−n̂(x) ·D(x)grad[c] = qp(x) on ΓN, (3.2.3c)
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where f(x) is the volumetric source/sink, cp(x) is the prescribed concentration, and

qp(x) is the prescribed flux. For uniqueness, we assume ΓD 6= ∅.

Maximum principle and the non-negative constraint

The above boundary value problem is a self-adjoint second-order elliptic partial

differential equation (PDE). It is well-known that such PDEs possess an important

mathematical property – the classical maximum principle [49]. The mathematical

statement of the classical maximum principle can be written as follows: If c(x) ∈

C2(Ω) ∩ C0(Ω), ∂Ω = ΓD, and f(x) ≤ 0 in Ω then

max
x∈Ω

c(x) = max
x∈∂Ω

cp(x). (3.2.4)

Similarly, if f(x) ≥ 0 in Ω then

min
x∈Ω

c(x) = min
x∈∂Ω

cp(x). (3.2.5)

To make our presentation on maximum principles simple, we have assumed stronger

regularity on the solution (i.e., c(x) ∈ C2 ∩ C0(Ω)), and assumed that Dirichlet

boundary conditions are prescribed on the entire boundary. However, maximum

principles requiring milder regularity conditions on the solution, even for the case

when Neumann boundary conditions are prescribed on the boundary, can be found

in the literature (see [121, 120]).

If f(x) ≥ 0 in Ω and cp(x) ≥ 0 on the entire ∂Ω then the maximum princi-

ple implies that c(x) ≥ 0 in the entire domain, which is the non-negativity of the

concentration field.
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Single-field Galerkin weak formulation

The following function spaces will be used in the rest of this chapter:

U :=
{
c(x) ∈ H1(Ω)

∣∣∣ c(x) = cp(x) on ΓD
}

and (3.2.6)

W :=
{
w(x) ∈ H1(Ω)

∣∣∣ w(x) = 0 on ΓD
}
, (3.2.7)

where H1(Ω) is a standard Sobolev space [2]. The single-field Galerkin weak formu-

lation corresponding to equations (3.2.3a)–(3.2.3c) reads: Find c(x) ∈ U such that

we have

B(w; c) = L(w) ∀w(x) ∈ W , (3.2.8)

where the bilinear form and linear functional are, respectively, defined as

B(w; c) :=
∫

Ω
grad[w(x)] ·D(x)grad[c(x)] dΩ and (3.2.9a)

L(w) :=
∫

Ω
w(x)f(x) dΩ +

∫
ΓN
w(x)qp(x) dΓ. (3.2.9b)

Since D(x) is symmetric, by Vainberg’s theorem [75], the single-field Galerkin weak

formulation given by equation (3.2.8) is equivalent to the following variational prob-

lem:

minimize
c(x)∈U

1
2B(c; c)− L(c). (3.2.10)
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A methodology to enforce the maximum principle for steady-state prob-

lems

Our methodology is based on the finite element method. We decompose the

domain into “Nele” non-overlapping open element sub-domains such that

Ω =
Nele⋃
e=1

Ωe
. (3.2.11)

(Recall that a superposed bar denotes the set closure.) The boundary of Ωe is denoted

by ∂Ωe := Ωe − Ωe. We shall define the following finite dimensional vector spaces of

U and W :

Uh :=
{
ch(x) ∈ U

∣∣∣ ch(x) ∈ C0(Ω), ch(x)
∣∣∣
Ωe
∈ Pk(Ωe), e = 1, · · · , Nele

}
and

(3.2.12a)

Wh :=
{
wh(x) ∈ W

∣∣∣ wh(x) ∈ C0(Ω), wh(x)
∣∣∣
Ωe
∈ Pk(Ωe), e = 1, · · · , Nele

}
,

(3.2.12b)

where k is a non-negative integer, and Pk(Ωe) denotes the linear vector space spanned

by polynomials up to k-th order defined on the sub-domain Ωe. The finite element

formulation for equation (3.2.8) can be written as: Find ch(x) ∈ Ph such that we

have

B(qh; ch) = L(qh) ∀qh(x) ∈ Qh. (3.2.13)

It has been documented in the literature that the above finite element formulation

violates the maximum principle and the non-negative constraint [105, 132, 127].

We now outline an optimization-based methodology that satisfies the maximum

principle and the non-negative constraint on general computational grids. To this

end, we shall use the symbols � and � to denote component-wise inequalities for
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vectors. That is, for any two vectors a and b

a � b means that ai ≤ bi ∀i. (3.2.14)

The symbol � can be similarly defined. Let < ·; · > denote the standard inner-

product in Euclidean space. After finite element discretization, the discrete equations

corresponding to equation (3.2.13) take the form

Kc = f , (3.2.15)

where K is a symmetric positive definite matrix, c is the vector containing nodal

concentrations, and f is the force vector. Equation (3.2.15) is equivalent to the

following minimization problem

minimize
c∈Rndofs

1
2〈c; Kc〉 − 〈c; f〉, (3.2.16)

where “ndofs” denotes the number of degrees of freedom for the nodal concentrations.

Equation (3.2.15) can lead to unphysical negative solutions.

Following [127, 105], a methodology corresponding to equation (3.2.16) that

satisfies the non-negative constraint can be written as follows:

minimize
c∈Rndofs

1
2 < c; Kc > − < c; f > and (3.2.17a)

subject to 0 � c, (3.2.17b)

where 0 is a vector of size ndofs containing zeros. Since K is positive definite, equa-

tion (3.2.17) has a unique global minimum [18]. Several robust numerical methods

can be used to solve equation (3.2.17), which include e.g., active set strategy and

interior point methods [18]. In this thesis, the optimization problems are solved using
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the parallel optimization toolkit TAO [123], which use the active-set Newton trust

region (TRON) and quasi-Newton-based bounded limited memory variable metric

(BLMVM) algorithms.

3.2.2 Governing equations for transient response

We denote the time by t ∈ [0, I], where I denotes the length of the time inter-

val of interest. We denote the time-dependent concentration by c(x, t). The initial

boundary value problem can be written as follows:

∂c

∂t
= div[D(x)grad[c]] + f(x, t) in Ω× (0, I), (3.2.18a)

c(x, t) = cp(x, t) on ΓD × (0, I), (3.2.18b)

−n̂(x) ·D(x)grad[c] = qp(x, t) on ΓN × (0, I), and (3.2.18c)

c(x, 0) = c0(x) in Ω, (3.2.18d)

where c0(x) is the prescribed initial concentration, f(x, t) is the time-dependent vol-

umetric source/sink, cp(x, t) is the time-dependent prescribed concentration on the

boundary, and qp(x, t) is the prescribed time-dependent flux on the boundary.

The maximum principle and the non-negative constraint

The maximum principle of a transient diffusion equation asserts that the max-

imum can occur only on the boundary of the domain or in the initial condition if

f(x, t) ≤ 0 and ΓD = ∂Ω. Mathematically, a solution to equations (3.2.18a)–(3.2.18d)

will satisfy:

c(x, t) ≤ max
[
max
x∈Ω

c0(x),max
x∈∂Ω

cp(x, t)
]
∀t, (3.2.19)
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provided f(x, t) ≤ 0. Similarly, the minimum will occur either on the boundary or in

the initial condition if f(x, t) ≥ 0. That is, if f(x, t) ≥ 0 then a solution to equations

(3.2.18a)–(3.2.18a) satisfies

c(x, t) ≥ min
[
min
x∈Ω

c0(x), min
x∈∂Ω

cp(x, t)
]
∀t. (3.2.20)

If f(x, t) ≥ 0 in Ω, cp(x, t) ≥ 0 on the entire ∂Ω, and c0(x) ≥ 0 in Ω then the

maximum principle implies that c(x, t) ≥ 0 in the entire domain at all times, which

is the non-negative constraint for the concentration field for transient problems.

A methodology to enforce the maximum principle for transient problems

We divide the time interval of interest into N sub-intervals. That is,

[0, I] :=
N⋃

n=0
[tn, tn+1], (3.2.21)

where tn denotes the n-th time-step. We assume that the time-step is uniform, which

can be written as

∆t = tn+1 − tn. (3.2.22)

Following the recommendation provided in [131] to meet maximum principles, we

employ the backward Euler method for temporal discretization. We shall denote the

nodal concentrations at the n-th time-step by c(n). We shall denote the minimum

and maximum values for the concentration by cmin and cmax, which will be provided

by the maximum principle and the non-negative constraint. At each time-step, one
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has to solve the following convex quadratic program:

minimize
c(n+1)

1
2〈c

(n+1); K̃c(n+1)〉 − 〈c(n+1); f̃
(n+1)〉 and (3.2.23a)

subject to cmin1 � c(n+1) � cmax1, (3.2.23b)

where

K̃ := 1
∆tM + K and (3.2.24)

f̃
(n+1) := f (n+1) + 1

∆tMc(n+1). (3.2.25)

In the above equation, M is the capacity matrix [131].

3.3 PARALLEL IMPLEMENTATION

3.3.1 PETSc and TAO

We leverage existing scientific libraries such as PETSc and TAO to formulate our

computational framework for large-scale problems. PETSc is a suite of data struc-

tures and routines for the parallel solution of scientific applications. It also provides

interfaces to several other libraries such as Metis/ParMETIS[80] and HDF5 [158] for

mesh partitioning and binary data format handling respectively. The Data Manage-

ment (DM) data structure is used to manage all information including vectors and

sparse matrices and compatible with binary data formats. To handle unstructured

grids in parallel, a subset of the DM structure called DMPlex (see [92, 89, 12]), as

shown in Figure 3.1, uses direct acyclic graphs to organize all mesh information. This

topology enables the freedom to mix and match various non vertex-based discretiza-

tion methods, such as the two-point flux finite volume method, and the classical

mixed formulations based on the lowest-order Raviart Thomas finite element space.

Another important feature within PETSc is TAO. The TAO library has a suite
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Figure 3.1: Representation of mesh points within the DMPlex data structure and their
associated directed acyclic graphs.
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of data structures and routines that enable the solution of large-scale optimization

problems. It can support any data structure or solver within PETSc. Our DMP

methodology will use both the TRON and BLMVM solvers available within TAO.

BLMVM is a quasi-Newton method that uses projected gradients to approximate

the Hessian, which is useful for problems where the Hessian is too complicated or

expensive to compute. Other optimization algorithms such as TRON and the Gra-

dient Projected Conjugate Gradient (GPCG) typically require Hessian information

and more memory, but they are expected to converge more rapidly than BLMVM.

Further details regarding the implementation of these various methods may be found

in [123] and the references therein.

3.3.2 Finite element implementation

PETSc abstractions for finite elements, quadrature rules, and function spaces

have also been recently introduced and are suitable for the mesh topology within

DMPlex. They are built upon the same framework as the FInite element Automatic

Tabulator (FIAT) found within the FEniCS Project [85, 107, 108]. The finite element

discretizations simply need the equations, auxiliary coefficients (e.g., permeability, dif-

fusivity, etc.), and boundary conditions specified as point-wise functions. We express

all discretizations in nonlinear form so let r and J denote the residual and Jacobian

respectively.

Following the FEM model outlined in [88], we consider the weak form that

depends on fields and gradients. The residual evaluation can be expressed as

wTr(c) ∼
∫

Ωe
[w · F0 (c,∇c) +∇w ·F1(c,∇c)] dΩ = 0, (3.3.1)

where F0(c,∇c) and F1(c,∇c) are user-defined point-wise functions that capture

the problem physics. This framework decouples the problem specification from the
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mesh and degree of freedom traversal. That is, the scientist need only focus on

providing point function evaluations while letting the finite element library take care

of meshing, quadrature points, basis function evaluation, and mixed forms if any. The

discretization of the residual is written as

r(c) =
Nele

A
e=1

[
NT BT

]
W

 F0(cq,∇cq)

F1(cq,∇cq)

 , (3.3.2)

where A represents the standard assembly operator, N and B are matrix forms

of basis functions that reduce over quadrature points, W is a diagonal matrix of

quadrature weights (including the geometric Jacobian determinant of the element),

and cq is the field value at quadrature point q. The Jacobian of (3.3.2) needs only

the derivatives of the point-wise functions

J(c) =
Nele

A
e=1

[
NT BT

]
W

 F0,0 F0,1

F1,0 F1,1


 N

B

 and (3.3.3a)

[Fi,j] =

 ∂F0
∂c

∂F0
∂∇c

∂F1
∂c

∂F1
∂∇c

 (cq,∇cq), (3.3.3b)

The point-wise functions corresponding to the weak form in (3.2.9) would be

F0 = −f(x), F1 = D(x)∇cq and (3.3.4a)

F0,0 = 0, F0,1 = 0, F1,0 = 0, F1,1 = D(x). (3.3.4b)

Similarly, the point-wise functions for the transient response are

F0 = ċq − f(x, t), F1 = D(x)∇cq and (3.3.5a)

F0,0 = 1
∆t , F0,1 = 0, F1,0 = 0, F1,1 = D(x), (3.3.5b)
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Algorithm 1 Pseudocode for the large-scale transport solver
Create/input DAG on rank 0.
Create/input cell-wise velocity on rank 0.
if size > 1 then

Partition mesh among all processors.
end if
Refine distributed mesh if necessary.
Create PetscSection and FE discretization.
Set n = 0 and c(0) = 10−8.
Insert Dirichlet BC constraints into c(0).
Compute Jacobian J .
while true do . Begin time-stepping scheme.

Compute Residual r(n) .
if Classical Galerkin then . Solve without non-negative methodology.

c(n+1) = c(n) − J\r(n).
else . Solve with non-negative methodology.

TaoSolve() for c(n+1) based on equations (3.3.8) and (3.3.9).
end if
if steady-state or (n) == total number of time steps then

break.
else

n+ = 1.
end if

end while

where ċq denotes the time derivative. A similar discretization is used to project the

Neumann boundary conditions into the residual vector. Assuming a fixed time-step,

[Fi,j] and the Jacobian in equation (3.3.3b) do not change with time and have to be

computed only once. If n denotes the time step (n = 0 denotes the initial condition)

then the residual and Jacobian can be defined as

r(n) ≡ r(c(n)) and (3.3.6)

J ≡ J(c(0)). (3.3.7)

To enforce the non-negative methodology, the following objective function b and gra-

dient function g is provided
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b = 1
2c(n+1) · Jc(n+1) + c(n+1) ·

[
r(n) − Jc(n)

]
and (3.3.8)

g = J
[
c(n+1) − c(n)

]
+ r(n). (3.3.9)

BLMVM relies only on the above two equations, whereas TRON needs the Hessian

which is equivalent to J . Algorithm 1 outlines the steps taken in our computational

framework.

3.4 PERFORMANCE MODELING

PETSc is a constantly evolving open-source library that brings out new features

and algorithms almost every day. It has capabilities to interface with a large number

of other open-source application, software, and linear algebra packages. However,

it is not always known which algorithms or software packages will have the best

performance on an HPC system, especially if these packages have little documentation

and are used as black-box solvers. Computational scientists would like to know which

solvers or algorithms to use for their specific need before using an HPC system. The

simple metric in answering this question is the time-to-solution. However, in order

to gain insight into whether an observed time-to-solution is good, information about

hardware utilization and algorithmic efficiency is needed. Further potential scalability

issues as a function of problem size and computational resources are often needed.

Hardware specifications of HPC systems and software implementations signifi-

cantly impact the performance of numerical algorithms. Ideally we want simulations

to consume as little wall-clock time as possible for the resources used. Several fac-

tors such as compiler optimizations, cache policies, locality of reference, and code

implementation may drastically affect the performance. Table 3.1 lists the hardware
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Table 3.1: List of HPC systems used in this study

Mustang (MU) Wolf (WF)
Processor AMD Opteron 6176 Intel Xeon E5-2670
Clock rate 2.3 GHz 2.6 GHz
FLOPs/cycle/core 4 8
Sockets per compute node 2 2
NUMA nodes per socket 2 1
Cores per socket 12 8
Total cores (compute nodes) 38400 (1600) 9856 (616)
Memory per compute node 64 GB 64 GB
L1 cache per core 64 KB 32 KB
L2 cache per core 512 KB 256 KB
L3 cache per socket 12 MB 20 MB
Interconnect 40 Gb/s 40 Gb/s

specifications of the two HPC systems (Mustang and Wolf) that are used in our nu-

merical experiments in this chapter. The Mustang HPC system consists of relatively

old processors. One could simply measure wall-clock time across multiple compute

nodes on the respective HPC systems and determine the parallel efficiency of a certain

algorithm, but we are interested in quantifying how different algorithms behave se-

quentially and what kind of parallel performance to expect before running numerical

simulations. The wall-clock time of any simulation can generally be summed up as a

function of three things: the workload measured as arithmetic operations, transfer of

data between the memory and CPU registers, and internode communication. Hard-

ware efficiency is traditionally measured as the ratio of time taken if the arithmetic

capability is used to 100% and actual time taken.

For many applications, the memory bandwidth is the performance limiting factor

on common computing platforms. That is, the floating point performance (FLOP-

S/s) of several application codes will never reach the theoretical peak performance

(TPP) determined based on the aggregate peak core rate assuming 100% utilization.

This limitation is particularly important for iterative solvers and optimization meth-

ods that rely on numerous sparse matrix-vector (SpMV) multiplications (see [113]
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Table 3.2: Commonly used PETSc operations and their respective TBT. Here we note
X,Y, Z as vectors with i = 1, · · · , N entries, a is a scalar value, and nz denotes
the total number of non-zeros, with all variables being in 8 byte precision.

PETSc function Operation Total Bytes Transferred
VecNorm() a =

√∑N
i X(i)2 8(N + 1)

VecDot() a = ∑N
i X(i) ∗ Y (i) 8(2N + 1)

VecCopy() Y ← X 8(2N)
VecSet() Y (i) = a 8(2N)
VecScale() Y = a ∗ Y 8(2N)
VecAXPY() Y = a ∗X + Y 8(3N)
VecAYPX() Y = X + a ∗ Y 8(3N)
VecPointwiseMult() Z(i) = X(i) ∗ Y (i) 8(3N)
MatMult() SpMV 4(N + nz) + 8(2N + nz)

and the references within). The frequent use of SpMV allows for little cache reuse

and will result in a large number of cache misses that are expensive in regards to

performance. Such behavior is important to understand when determining how effi-

cient a scientific code is. Performance models such as the Roofline Model [164, 106]

include impact of memory transfers into the performance model to better quantify

performance limitations due to hardware properties. Performance models can help

application developers identify bottlenecks and indicate which areas of the code can

be further optimized. In the next section, we will demonstrate that such models can

also be used to predict the parallel efficiency of various optimization solvers on two

different LANL HPC systems. The key parameter for these models is the Arithmetic

Intensity (AI) which we recall is defined as total FLOP over Total Bytes Transferred

(TBT). The AI in combination with the memory bandwidth and the TPP creates a

“roofline” for the estimation of ideal peak performance. In Chapter 2, the TBT was

based on the total number of cache misses, but in this chapter, we will use a different

cache model to define the TBT.

To this end, we propose a roofline-like performance model where the TBT as-

sumes a “perfect cache” – each byte of the data needs to be fetched from DRAM
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(Dynamic Random Access Memory) only once, and every cache line is freely allo-

cated. Table 3.2 lists the key PETSc functions used for the solvers and their re-

spective estimates of TBT based on the perfect cache assumption. The formula for

SpMV follows the procedure outlined in [65]. We assume that the TBT formula for

operations also involving a sparse matrix and vector, like the incomplete lower-upper

(ILU) factorization, to be the same as MatMult(). Estimating the TBT for other im-

portant operations like the sparse matrix-matrix and triple matrix products (which

are important for multi-grid methods) is an area of future work. In short, our AI

formulation relies on the following four key assumptions:

(i) All floating-point operations (add, multiply, etc.) are treated equally and equate

to one FLOP count.

(ii) There are no cache conflict misses, and cache lines are fully utilized. That is,

each matrix and vector element is loaded into cache only once.

(iii) Processor never waits on a memory reference. That is, every load and store

operation is satisfied in a single cycle.

(iv) Compilers are capable of storing scalar multipliers in the register for streaming

computations.

Therefore, the efficiency based on this new roofline-like performance model is written

as

Roof-line Efficiency (%) = Measured FLOPS/s

min


TPP

AI× “perfect cache” bandwidth

× 100, (3.4.1)

For FLOP/s we use the number reported by the PETSc program. The denominator is

the ideal performance upper-bounded based either on the TPP or the product of the
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Figure 3.2: Measured memory bandwidth of a single Mustang and Wolf compute node
based on the STREAMS Triad Benchmark.

AI, based on perfect cache assumption, and bandwidth measured by the STREAM

Triad benchmark [114]. Figure 3.2 denotes the estimated memory bandwidth as a

function of number of MPI processes on a single Mustang and Wolf node with MPI

processes allocated in a round-robin fashion between CPUs in a node. It is interesting

to note that although the Wolf node has a higher STREAM bandwidth, there is no

performance gain past eight cores. This means that using a Wolf compute node for

memory-bandwidth bound applications, no performance gain can be expected beyond

eight cores, whereas one would still see some performance gains when using all 24 cores

on a Mustang node.

The performance model based on equation (3.4.1) is a serial model. For the

Mustang and Wolf systems, it can be seen from Figure 3.2 that the single core mea-

sured bandwidth is 5.65 GB/s and 15.5 GB/s respectively. It should be noted that

this performance model does account for cache effects. That is, it does not quantify

the useful bandwidth sustained for some particular level of cache. The true hardware

and algorithmic efficiency is not reflected by this model, so our aim is to show relative

performance between select PETSc and TAO solvers. Comparing the AI based on the

measured FLOPS/s and STREAM bandwidths will give us a better understanding
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of how high-performing the PETSc and TAO solvers are for select problems.

3.5 REPRESENTATIVE NUMERICAL RESULTS

In this section, we compare the performance of our non-negative methodology

using the TAO solver to that of the Galerkin formulation using the Krylov Subspace

(KSP) solver. We examine the performance using two problems:

(i) a unit cube with a hole under steady-state, and

(ii) a transient Chromium transport problem.

The diffusivity tensor is assumed to depend on the flow velocity through

D(x) = (αT‖v‖+DM) I + (αL − αT )v⊗ v
‖v‖

, (3.5.1)

where αL, αT , and DM denote the longitudinal dispersivity, transverse dispersivity

and molecular diffusivity, respectively. We employ the conjugate gradient method

and the block Jacobi/ILU(0) preconditioner for solving the linear system from the

Galerkin formulation and employ TAO’s TRON and BLMVM methods for the non-

negative methodology. The relative convergence tolerances for both KSP and TAO

solvers are set to 10−6, and ∆t for the transient response in the Chromium problem

is initially set to 0.2 days. For strong-scaling studies shown here, we used OpenMPI

v1.6.5 for message passing and bind processes to cores alternating between sockets.

ParaView[10] and VisIt[35] were used to generate all contour and mesh plots.

Remark 3.5.1. Throughout this chapter, the non-negative methodology that we refer

to, is in fact a discrete maximum principle preserving methodology. In that, along

with the non-negative constraint we also enforce that the concentrations are less than

or equal to 1.
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(a) Location of the hole (b) Mesh type A

(c) Mesh type B (d) Mesh type C

Figure 3.3: Cube with a hole: pictorial description and the associated unstructured grids.

3.5.1 Anisotropic diffusion in a unit cube with a cubic hole

Let the computational domain be a unit cube with a cubic hole of size [4/9, 5/9]×

[4/9, 5/9] × [4/9, 5/9]. The concentration on the outer boundary is taken to be zero

and the concentration on the interior boundary is taken to be unity. The volumetric

source is taken as zero (i.e., f(x) = 0). The velocity vector field for this problem is

chosen to be

v(x) = ex + ey + ez. (3.5.2)
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Figure 3.4: Cube with a hole: numerical solution for cases A1 (left), B2 (middle), and C3
(right) using the Galerkin formulation (top row) and non-negative methodol-
ogy (bottom row).

The diffusion parameters are set as: αL = 1, αT = 0.001, and DM = 0. The

pictorial description of the computational domain and the three mesh types composed

of 4-node tetrahedrons are shown in Figure 3.3. We consider three unstructured

mesh types with three levels of element-wise mesh refinement, giving us nine total

case studies of increasing problem size as shown in Table 3.3. Five different solver

simulations were used for this study:

• Galerkin with CG/block Jacobi.

• TRON1: with KSP tolerance of 10−1.

• TRON2: with KSP tolerance of 10−2.

• TRON3: with KSP tolerance of 10−3.
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Table 3.3: Cube with a hole: list of various mesh type and refinement level combinations
used.

Case Mesh type Refinement level Tetrahedrons Vertices
A1 A 1 199,296 36,378
B1 B 1 409,848 75,427
C1 C 1 793,824 140,190
A2 A 2 1,594,368 278,194
B2 B 2 3,278,784 574,524
C2 C 2 6,350,592 1,089,562
A3 A 3 12,754,994 2,175,330
B3 B 3 26,230,272 4,483,126
C3 C 3 50,804,736 9,172,044

Table 3.4: Cube with a hole: minimum and maximum concentrations for each case.

Case Min. concentration Max. concentration % nodes violated
A1 -0.0224825 1.00000 9,518/36,378 → 26.2%
B1 -0.0139559 1.00000 32,247/43,180 → 42.8%
C1 -0.0125979 1.00000 57,272/140,190 → 40.9%
A2 -0.0311518 1.00103 82,983/278,194 → 29.2%
B2 -0.0143857 1.00000 255,640/574,524 → 44.9%
C2 -0.0119539 1.00972 453,766/1,089,562 → 41.6%
A3 -0.0258559 1.00646 643,083/2,175,330 → 29.6%
B3 -0.0115908 1.00192 2,073,934/4,483126 → 46.3%
C3 -0.0096186 1.00545 4,932,551/9,172,044 → 53.8%

• BLMVM.

The TRON solvers also use the CG and block Jacobi preconditioner but with dif-

ferent KSP tolerances. Numerical results for both the Galerkin formulation and the

DMP methodologies for some of the mesh cases are shown in Figure 3.4. The top

row of figures arise from the Galerkin formulation where the white regions denote

negative concentrations, and the bottom row arise from either TRON or BLMVM.

Details concerning the violation of the DMP for each case study can be found in Ta-

ble 3.4. Concentrations both negative and greater than one arise for all case studies.

Moreover, simply refining the mesh does not resolve these issues; in fact, refinement

worsens the violation. These numerical results indicate that our computational frame-

work can successfully enforce the DMP for diffusion problems with highly anisotropic
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Table 3.5: Cube with a hole: wall-clock times (seconds) on Mustang for each solver.

Case Galerkin TRON1 TRON2 TRON3 BLMVM
A1 0.337 0.933 0.981 1.14 2.62
B1 0.790 1.72 2.06 2.71 5.04
C1 2.24 4.34 5.80 7.74 13.5
A2 7.21 15.2 21.7 32.5 72.0
B2 15.4 30.0 43.7 57.5 109
C2 40.4 67.8 113 118 286
A3 121 225 414 599 1167
B3 315 498 1061 1344 2524
C3 997 1539 2490 4365 9679

Table 3.6: Cube with a hole: wall-clock times (seconds) on Wolf for each solver.

Case Galerkin TRON1 TRON2 TRON3 BLMVM
A1 0.126 0.388 0.396 0.449 1.01
B1 0.314 0.720 0.853 1.07 2.03
C1 0.888 1.91 2.47 3.31 5.71
A2 2.58 6.34 8.74 12.8 26.2
B2 5.90 12.9 17.8 22.8 46
C2 16.2 30.1 47.3 48.9 133
A3 48.0 98.4 129 247 609
B3 107 171 342 435 1060
C3 281 467 870 1245 3131

diffusivity.

Performance modeling

We first consider the wall-clock time spent in the solvers on a single core. Tables

3.5 and 3.6 depict the solver time for each mesh, and we first note that the Mustang

system requires significantly more wall-clock time to obtain a solution than Wolf;

based on the TPP for the cores (9.2 GFLOPS/s for Mustang and 20.8 for Wolf), Wolf

could be expected to be about 2.25 times faster, but based on STREAM, Wolf could

expect to be close to three times faster if the code is memory-bandwidth limited. The

wall-clock time in Tables 3.5 and 3.6 are not linearly proportional to problem size for

either the Galerkin or optimization solvers. In regards to the solvers, BLMVM can

require as much as ten times the amount of wall-clock time as the Galerkin method.
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Figure 3.5: Cube with a hole: solver iterations needed for Galerkin and BLMVM.
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Figure 3.6: Cube with a hole: KSP (left) and TAO (right) solver iterations needed for
TRON.

TRON on the other hand, does not consume nearly as much time but tightening

the KSP tolerances will gradually increase the amount of time. We are interested in

determining why these optimization solvers consume more wall-clock time, whether it

be mostly due to additional workload associated with optimization-based techniques

or less efficient use of hardware resources due to the presence of relatively more

complicated data structures compared to the standard solvers used for the Galerkin

formulation. The first step is noting the total KSP and TAO iterations needed and

how they vary with respect to problem size. Figure 3.5 depicts the KSP and TAO

iterations for the Galerkin and BLMVM methods respectively. It is well-known that

block Jacobi (also known as ILU(0)) requires more iterates as the size of the problem

increases. In other words, scaling up the size of the problem will potentially increase
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Figure 3.7: Cube with a hole: measured floating-point rate (FLOPS/s) on a single core.

the time-to-solution needed for convergence, and we see that the BLMVM algorithm

exhibits a similar rate of increase in solver iterates with respect to size. For the

TRON solvers, we document both the KSP and TAO iterates as shown in Figure

3.6. We see that tightening the KSP tolerance increases the number of KSP iterates

but reduces the number of TAO iterations needed. This behavior indicates that the

more accurate the computed gradient projection is, the fewer optimization loops the

framework needs to perform.

We also examine the measured floating-point rate provided by the PETSc perfor-

mance logs, as shown in Figure 3.7, of all five solvers across their respective machines,

and the floating point performance decreases as the problem size grows. The maxi-

mum reported floating point rates on the Mustang and Wolf systems are 0.47 and 1.25

GFLOPS/s, respectively. When these numbers are compared the systems’ respective

81



A1 B1 C1 A2 B2 C2 A3 B3 C3
0

0.05

0.1

Cases

A
ri
th

m
e

ti
c
 I

n
te

n
s
it
y

 

 

Galerkin TRON1 TRON2 TRON3 BLMVM

Figure 3.8: Cube with a hole: arithmetic intensity (Total FLOP over TBT) for all solvers
and all cases on a single processor.

single core TPP (9.2 GFLOPS/s for Mustang and 20.8 GFLOPS/s for Wolf), the

hardware efficiencies are shown to be no greater than 5.1% and 6.0% for Mustang

and Wolf, respectively, and it is difficult to draw any conclusions with regard to the

computational performance other than that the floating-point efficiencies are about

the same for the two different architectures. The calculated AI, based on the “perfect

cache” bandwidth as described in Section 3.4, is shown in Figure 3.8. It is interesting

to note that the AI remains largely invariant with problem size unlike the wall-clock

time, solver iterations, and floating point rates. According to the perfect cache model,

the Galerkin formulation’s AI is greater than any of the non-negative methodologies.

Using these metrics in equation (3.4.1) as well as the STREAM Triad bandwidth of

one core as shown in Figure 3.2, the estimated roofline-based efficiencies are shown

in Figure 3.9. Although the raw floating-point rate of BLMVM is lower than the

Galerkin method, the roofline model suggests that BLMVM is actually more efficient

in a hardware sense. The TRON methods have much lower floating-point rates, but

these metrics can be improved or “gamed” by tightening the KSP tolerances. This

behavior leads us to believe that there is some latency associated with setting up the

data structures needed to compute gradient descent projections.
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Figure 3.9: Cube with a hole: roofline efficiency from equation (3.4.1) based on the mea-
sured bandwidth from STREAM.

Strong-scaling

The metric of interest is the strong-scaling potential. We conduct strong-scaling

studies to measure the speedup of all nine case studies of up to 64 cores. 4 Mustang

nodes with 16 of 24 cores per node and 8 Wolf nodes with 8 of 16 cores per node are

allocated for this study. Figure 3.10 depicts the speedup on the Mustang system, and

Figure 3.11 depicts the speedup on the Wolf system. The results indicate that Wolf

exhibits better strong-scaling. For all problems and machines, the TRON simulations

are slightly less efficient in the parallel sense but can be improved by tightening the

KSP tolerances. Interestingly, the BLMVM algorithm not only has the best roofline

efficiency but also the best parallel speedup. The super linear speedup observed for

BLMVM on Wolf is likely due to diminishing cache misses when the workload per
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Figure 3.10: Cube with a hole: speedup for all 9 mesh cases up to 64 processors on the
Mustang system (16 cores per node).

MPI process decreases. We can infer from these results that although BLMVM is

the more efficient optimization in the hardware sense, TRON is more efficient in the

algorithmic sense due to its lesser time-to-solution. Our study has shown that one

can draw correlations between the performance models conducted on a single-core and

the actual speedup across multiple nodes on the same network and switch. As future

solvers and algorithms are implemented within PETSc, we can use this performance

model to assess how efficient they are in both the hardware and algorithmic sense

and how efficiently they will scale in a parallel setting.
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Figure 3.11: Cube with a hole: speedup for all 9 mesh cases up to 64 cores on the Wolf
system (8 cores per node).

3.5.2 Transport of chromium in subsurface

Subsurface clean-up due to anthropogenic contamination is a big challenge [48].

Remediation studies [67, 70] need accurate predictions of transport of the involved

chemical species, which are obtained using limited data at monitoring wells and

through numerical simulations. To accurately predict the fate of the contaminant, a

transport solver that: a) is robust, in that it will not give unphysical solutions, and

b) can handle field-scale scenarios, is needed. The computational framework that is

proposed in this chapter is an ideal candidate for such problems. We now consider
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Figure 3.12: Chromium plume migration in the subsurface: Permeability field (m2) and
the locations of the pumping well (R28) and contaminant source (R42).

Table 3.7: Chromium plume migration in the subsurface: parameters

Parameter Value
αL 100 m
αT 0.1 m
Contaminant source (R42) 1× 10−4 kg/m2s2

∆t 0.2 days
Domain size 7000 km×6000 km×100 m
DM 1× 10−9 m2/s
Permeability Varies
Pumping well (R28) -0.01 kg/m2s2

Total hexahedrons 1,984,512
Total vertices 2,487,765
v Varies with position
Viscosity 3.95×10−5 Pa s

a realistic large-scale problem to predict the fate of chromium in the Los Alamos,

New Mexico area. The chromium was released into the Sandia canyon in the 1950s

up to early 1970s. Back then chromium was used as an anti-corrosion agent for the

cooling towers at a power plant at the Los Alamos National Laboratory (see [71] and

references therein for details).

Here we study the effectiveness of our proposed framework to this real-world

scenario of predicting the extent of chromium plume. The following is a conceptual

model domain that is considered: A domain of size [496, 503]km × [536, 542]km ×
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[0, 100]m with the permeability field (m2) as shown in Figure 3.12. R42 in Figure 3.12

is estimated to be the contaminant source location and a pumping well is located at

R28. The parameters used for this problem are shown in Table 3.7, and we employ

the following boundary conditions:

cp(x = 496km, y, z) = 0, (3.5.3a)

cp(x = 503km, y, z) = 0, (3.5.3b)

cp(x, y = 536km, z) = 0, and (3.5.3c)

cp(x, y = 542km, z) = 0. (3.5.3d)

For this highly heterogeneous problem, we employ PETSc’s algebraic multi-grid pre-

conditioner (GAMG) and couple this with the TRON algorithm for the non-negative

solver. Our goal is to examine its strong-scaling potential across 1024 cores. We first

solve the steady flow equation (based on mass balance and Darcy’s model to relate

pressure and mass flux) with the pumping well located at R28. Cell-wise velocity is

obtained from the resulting pressure field and used to calculated element-wise disper-

sion tensor. We then solve the transient diffusion problem (with tensorial dispersion)

with a constant contaminant source located at R40 for up to 180 days. The con-

centrations at select time levels for Galerkin formulation and DMP methodology are

shown in Figures 3.13 and 3.14, respectively. Negative concentrations arise with the

Galerkin formulation even as the solution approaches steady-state.

Figure 3.15 depicts the amount of wall-clock time with respect to the number of

cores at the first time step. The problem size is roughly 2.5 million degrees-of-freedom

so if 1024 cores are utilized, each core only manages approximately 2,400 degrees-of-

freedom, thus interprocess data exchange time will likely outweigh the computation

time. However, we note that the parallel efficiency at the 64 core mark (4 and 8 node

respectively) is roughly 88 percent, whereas the relative parallel efficiency from 16

87



Figure 3.13: Chromium plume migration in the subsurface: concentrations at select times
using the Galerkin formulation.
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Figure 3.14: Chromium plume migration in the subsurface: concentrations at select times
using the non-negative methodology.
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Figure 3.15: Chromium plume migration in the subsurface: wall-clock time of the TRON
optimization solver with multi-grid preconditioner (GAMG) versus number
of processors after the first time level.

to 64 cores for the unit cube A3 TRON3 case is about 80 percent parallel efficiency.

These metrics suggest that TRON with GAMG demonstrates strong-scaling potential

comparable to that of the TRON with ILU combination. A more thorough analysis

of the potential bottlenecks presented by TRON and GAMG method can be done

when a performance model for sparse matrix-matrix is developed.

It is also interesting to note that the wall-clock time is affected by whether or

not a compute node is fully saturated. When a Wolf node utilizes all 16 cores per

node, the performance with respect to wall-clock time is worse than when a Wolf node

utilizes only 8 of 16 cores per node. The reason for this change is because the code

becomes memory bandwidth limited; it decreases as more cores are utilized as shown

from Figure 3.2 because of contention due to “over subscription”. Therefore, it is

recommended that to maximize the performance of these optimization-based solvers,

the number of cores used per node is governed by the memory bandwidth saturation.
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Figure 3.16: Chromium plume migration in the subsurface: number of KSP (left hand
side) and TAO (right hand side) solver iterations for the TRON optimization
solver versus number of cores after the first time level.

Another metric of interest is the number of solver iterations required for conver-

gence across various numbers of MPI processes. Figure 3.16 depicts the number of

KSP solver iterations and TAO solver iterations for 1024 cores, and we notice that

there are significant fluctuations. This trend is largely attributed to the accumulation

of numerical round-offs from the TRON algorithm. One can reduce these fluctuations

by tightening the solver tolerances, but the strong-scaling remains largely unaffected

even for the results shown. This study suggests that the proposed non-negative

methodology using TRON with GAMG preconditioning is suitable for large-scale

transient heterogeneous and anisotropic diffusion equations.

3.6 CONCLUDING REMARKS

We presented a parallel DMP computational framework suitable for solving

large-scale steady-state and transient anisotropic diffusion equations. The main con-

tribution is that the proposed parallel computational framework satisfies the DMP

for large-scale diffusion-type equations even on general computational grids. The

parallel framework is built upon PETSc’s DMPlex data structure, which can handle
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unstructured meshes, and TAO for solving the resulting optimization problems from

the discretization formulation. We have conducted systematic performance model-

ing and strong-scaling studies to demonstrate the efficiency, both in the parallel and

hardware sense of the computational framework. The robustness of the proposed

framework has been illustrated by solving a large-scale realistic problem involving

the transport of chromium in the subsurface at Los Alamos, New Mexico. In the

next chapter, we extend the proposed parallel framework to advective-diffusive using

variational inequalities.
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Chapter 4. Variational inequality approach to en-
forcing the non-negative constraint for advection-
diffusion equations

4.1 INTRODUCTION

It has been shown in [30] that the PETSc/TAO based computational framework

can successfully ensure non-negative concentrations in a large-scale setting. This

chapter extends that work by presenting a numerical methodology based on vari-

ational inequalities for anisotropic diffusion and advection-diffusion equations that

satisfies discrete maximum principles, meets the non-negative constraint, and is well-

suited for solving large-scale problems using parallel computing.

The diffusion and advection-diffusion equations are important partial differential

equations which are commonly used to model flow and transport of chemical species

in porous media. Some of the applications include subsurface remediation [48, 70,

71] and transport of radionuclides [67, 56]. Since these important problems are not

analytically tractable, one needs to rely on predictive numerical simulations. An

important aspect in a predictive simulation of these equations is to satisfy the non-

negative constraint of concentration of chemical species.

Research efforts over the years have successfully created numerical models and

discretization for these equations, but they are not without their setbacks. For ex-

ample, non-monotone discretizations like the finite element method may result in

spurious oscillations with high Péclet numbers. Other common issues that may occur

within highly heterogeneous and anisotropic diffusion-type equations are violations

of the maximum principle and the non-negative constraint [37, 104, 105, 56]. Such

numerical setbacks can result in algorithmic failures or sharp fronts that may result
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in erroneous approximations of reactive transport. Moreover, several important ap-

plications which require accurate predictive capabilities of transport solvers are often

large-scale and cannot be solved on a single computer. It is important for numeri-

cal algorithms to not only ensure maximum principle but scale well with respect to

both problem size and computing concurrency. Obtaining numerical solutions within

a reasonable amount of time is the ultimate goal when selecting or designing algo-

rithms that are robust and can ensure non-negative concentrations for a wide range

of subsurface transport applications.

4.1.1 Our approach and its salient features

The main contribution of this chapter is to present a finite element computational

framework applicable to both diffusion and advection-diffusion equations that meets

the maximum principle and satisfies the non-negative constraint. The framework is

built by rewriting the weak formulation (WF) as a variational inequality (VI) [160].

The field of VIs grew from a problem posed by Antonio Signorini [153, 154].

This problem was later coined as “Signorini problem” by Gaetano Fichera, who was

a student of Signorini. Fichera posed the problem more precisely and obtained a

variational inequality corresponding to the problem using which he established exis-

tence and uniqueness of solutions [52, 53]. VIs have been employed to study contact

problems [83, 76], obstacle problems [145], elastoplastic problems [76, 68] and other

problems arising in mechanics and mathematics [84]. If the bilinear form under the

WF is symmetric, one can rewrite the WF as a quadratic programming (QP), which is a

special case of VIs [36]. Most of the existing single-field WFs for advection-diffusion

equations do not have symmetric bilinear forms, and hence one cannot construct

equivalent problems under QP. To the best of the authors’ knowledge, VIs have not

be employed to develop numerical formulations to satisfy maximum principles and

the non-negative constraint for anisotropic advection-diffusion equations.
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The framework is particularly suited for large-scale problems, which is the case

with many practical subsurface applications. The proposed framework enjoys the

following salient features:

1. One can enforce bounded constraints for any transport problems that may be

non-symmetric or nonlinear.

2. One can employ any numerical formulation, even a single-field formulation, for

solving advection-diffusion equations.

3. One can leverage on existing high performance computing libraries and toolkits

(e.g., solvers and preconditioners).

4. The framework is amenable for parallel computing, which will be illustrated

using both strong and weak scaling studies.

The rest of the chapter is organized as follows. In Section 4.2, we present the

boundary value problem for steady-state diffusion and advection-diffusion equations.

In Section 4.3, we present the variational inequality (VI) and the various single-field

weak formulations (WF) in the continuous setting. In Section 4.4, we propose the

computational framework in a discrete setting and discuss in detail the specific solvers

and implementation procedure. In Section 4.5, numerical results for the steady-state

governing equations under the proposed framework are shown, and we conduct a

thorough strong and weak-scaling study to demonstrate the parallel performance. In

Section 4.6, we provide an extension of the proposed framework to transient problems

and illustrate the performance of miscible displacement in porous media, which is a

coupled non-linear phenomenon. Conclusions are drawn in Section 4.7. To facilitate

the reader to be able to reproduce the results given in this chapter, sample Firedrake

project files along with the discussion on the solution strategy for large-scale Darcy

equations are provided in Appendices A and B.
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4.2 GOVERNING EQUATIONS IN THE CONTINUOUS SETTING

Let Ω ⊂ Rd be a bounded open domain, where ‘d’ denotes the number of spatial

dimensions. The boundary is denoted by ∂Ω = Ω−Ω, where a superposed bar denotes

the set closure. We denote the set of all k-times continuously differentiable functions

on Ω by Ck(Ω). We denote the set of all functions in C0(Ω) that are continuous to

the boundary by C0(Ω). A spatial point is denoted by x ∈ Ω. The gradient and

divergence operators with respect to x are, respectively, denoted by grad[·] and div[·].

The unit outward normal to boundary is denoted by n̂(x).

Let c(x) denote the concentration field. The boundary is divided into two

parts: ΓD and ΓN, such that ΓD ∪ ΓN = ∂Ω and ΓD ∩ ΓN = ∅. ΓD is that part

of the boundary on which Dirichlet boundary conditions are enforced (i.e., concen-

tration is prescribed). ΓN is the part of the boundary on which Neumann boundary

conditions are enforced (i.e., flux is prescribed). When advection is present, the Neu-

mann boundary is further divided into inflow and outflow regions, which are defined

as follows:

ΓN
inflow :=

{
x ∈ ΓN

∣∣∣∣ v(x) · n̂(x) < 0
}

and (4.2.1a)

ΓN
outflow :=

{
x ∈ ΓN

∣∣∣∣ v(x) · n̂(x) ≥ 0
}
. (4.2.1b)

For uniqueness of the solution under a steady-state response, we assume that concen-

tration is prescribed on a non-zero part of the boundary (i.e., meas
(
ΓD
)
> 0).
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4.2.1 Strong problems (SP)

The strong problem (SP) for steady-state diffusion reads: Find c(x) ∈ C2(Ω) ∩

C0(Ω) such that we have

−div[D(x)grad[c(x)]] = f(x) in Ω, (4.2.2a)

c(x) = cp(x) on ΓD, and (4.2.2b)

−n̂(x) ·D(x)grad[c(x)] = qp(x) on ΓN, (4.2.2c)

and the SP for steady-state advection-diffusion reads: Find c(x) ∈ C2(Ω) ∩ C0(Ω)

such that we have

v(x) · grad[c(x)]− div[D(x)grad[c(x)]] = f(x) in Ω, (4.2.3a)

c(x) = cp(x) on ΓD, (4.2.3b)

n̂(x) · (v(x)c(x)−D(x)grad[c(x)]) = qp(x) on ΓN
inflow, and (4.2.3c)

−n̂(x) ·D(x)grad[c(x)] = qp(x) on ΓN
outflow, (4.2.3d)

where v(x) is the advective velocity, f(x) is the prescribed volumetric source/sink,

cp(x) is the prescribed concentration on the boundary, qp(x) is the prescribed flux on

the boundary, and D(x) is the second-order diffusivity tensor. The diffusivity tensor

is assumed to be bounded and uniformly elliptic. That is, there exist two constants

0 < ξ1 ≤ ξ2 < +∞ such that

ξ1y · y ≤ y ·D(x)y ≤ ξ2y · y ∀y ∈ Rd. (4.2.4)

Moreover, the diffusivity tensor is assumed to be symmetric. That is,

D(x) = DT(x) ∀x ∈ Ω. (4.2.5)
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A solution to SP is commonly referred to as a classical solution.

4.2.2 Maximum principle and the non-negative constraint

From the theory of partial differential equations, it is well-known that a classical

solution for the above mentioned SPs satisfies maximum principles. For completeness,

we provide below the statement of the classical maximum principle of second-order

elliptic partial differential equations with Dirichlet boundary conditions on the entire

boundary.

Theorem 4.2.1. (Classical maximum principle) If ΓD = ∂Ω, c(x) ∈ C2(Ω) ∩ C0(Ω)

and f(x) ≤ 0, then

max
x∈Ω

c(x) ≤ max
x∈∂Ω

cp(x). (4.2.6)

Proof. A proof can be found in [60].

A generalization of the classical maximum principle that is relevant to this chap-

ter is provided in [120]. Specifically, they have extended the classical maximum prin-

ciple on four fronts: the regularity of the solution is relaxed to C1(Ω) ∩ C0(Ω), the

regularity of the volumetric source f(x) is relaxed to the space of square integrable

functions, the boundary can have both Dirichlet and Neumann boundary conditions,

and the Neumann boundary conditions are further divided into inflow and outflow

(i.e., similar to equations (4.2.1a)–(4.2.1b)). For the sake of brevity, we defer all in-

terested readers to the suggested reference. Another property that is relevant to this

chapter is non-negative solutions, which can be shown to be a special case of max-

imum principles. In particular, the above maximum principle implies the following

result:

Corollary 4.2.2. (Non-negative solutions) If ΓD = ∂Ω, c(x) ∈ C2(Ω) ∩ C0(Ω),
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Figure 4.1: Relationships between the strong problem (SP), a weak formulation (WF), a
variational inequality (VI), and the minimization problem (MP).

cp(x) ≥ 0, and f(x) ≥ 0, then

0 ≤ c(x) ∀x ∈ Ω. (4.2.7)

The central aim of this chapter is to obtain numerical solutions to the above gov-

erning equations (i.e., equations (4.2.2) and (4.2.3)) that respect maximum principles

and the non-negative constraint.

The main task will then be to find an appropriate setting for numerical solutions.

The finite difference method directly discretizes the SP. However, under the finite

element method, the SP is rewritten as a WF, which is equivalent to the SP under

some regularity assumptions. A solution to a WF is referred to as a weak solution.

As mentioned in Section 4.1 and will be shown using several examples later in this

chapter, a WF does not guarantee non-negative solutions in the discrete setting. To

overcome this deficiency, some non-negative formulations, especially for diffusion-type

equations, have rewritten the WF as an equivalent minimization problem (MP) and

augmented with bound constraints. However, it needs to be emphasized that such

conversion is not always possible, which is the case with the typical WF for advection-

diffusion equations, as these formulations have non-symmetric bilinear forms. In order

to handle non-self-adjoint differential operators (e.g., advection-diffusion equation)

and WFs with non-symmetric bilinear forms, we rewrite a given WF as a VI. In
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order to satisfy maximum principles and the non-negative constraint, we restrict the

feasible solution space of the VI formulation using bound constraints. It needs to

be mentioned that one can pose the VI as an equivalent MP only if the bilinear

form is symmetric. Figure 4.1 illustrates the various ways of rewriting the governing

equations, and the conditions under which one form is equivalent to the other. We

now present various WFs for diffusion and advection-diffusion equations, which will

form the basis for our proposed VI-based formulations.

4.3 VARIATIONAL INEQUALITIES AND WEAK FORMULATIONS

The non-negative constraint and maximum principles restrict the feasible solu-

tion space to a closed convex set. A variational inequality (VI) is basically a varia-

tional problem on a convex set, which need not be a vector space. To this end, let C

denote the solution space for the concentration field, and K be a closed convex subset

of C. The subset K is defined by the underlying maximum principles and the non-

negative constraint. The formulation based on VIs corresponding to the mentioned

SPs can be compactly written as: Find c(x) ∈ K such that we have

B(w − c; c) ≥ L(w − c) ∀w(x) ∈ K, (4.3.1)

where B(·; ·) is a bilinear form and L(·) is a linear functional, whose specific choices

are provided by the associated weak formulation. A WF can be abstractly written

as: Find c(x) ∈ C such that we have

B(w; c) = L(w) ∀w(x) ∈ W , (4.3.2)

where C and W are appropriate function spaces for a given WF. Our intention is to

illustrate the applicability of the proposed VI framework to a variety of WFs. To this

end, we employ the continuous Galerkin (GAL), Streamlined Upwind Petrov-Galerkin
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(SUPG), and Discontinuous Galerkin (DG) formulations, which are documented below.

For convenience, the standard L2 inner-product over K is denoted as follows:

(a; b)K =
∫

K
a(x) · b(x) dK. (4.3.3)

4.3.1 Continuous Galerkin

The relevant function spaces are:

C :=
{
c(x) ∈ H1(Ω)

∣∣∣∣ c(x) = cp(x) on ΓD
}

and (4.3.4)

W :=
{
w(x) ∈ H1(Ω)

∣∣∣∣ w(x) = 0 on ΓD
}
, (4.3.5)

where H1(Ω) is a Sobolev space [22]. We assume that f(x) ∈ H−1(Ω), which is a

dual space corresponding to H1(Ω). We employ the GAL formulation for the diffusion

problem, for which the bilinear form and linear functional are:

BGAL(w; c) :=
(

grad[w(x)]; D(x)grad[c(x)]
)

Ω
and (4.3.6)

LGAL(w) :=
(
w(x); f(x)

)
Ω
−
(
w(x); qp(x)

)
ΓN
. (4.3.7)

For the advection-diffusion problem, spurious oscillations may arise under the GAL

formulation for high Péclet numbers. Herein, we employ the SUPG formulation [23],

and the corresponding bilinear form and linear functional are:

BSUPG(w; c) := BRES(w; c)+(
w(x); v(x) · grad[c(x)]

)
Ω

+
(

grad[w(x)]; D(x)grad[c(x)]
)

Ω
and (4.3.8)

LSUPG(w) := LRES(w) +
(
w(x); f(x)

)
Ω
−
(
w(x); qp(x)

)
ΓN
, (4.3.9)
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where the residual terms

BRES(w; c) :=(
h

2‖v(x)‖v(x) · grad[w(x)]; v(x) · grad[c(x)]− div [D(x)grad[c(x)]]
)

Ω
and

(4.3.10)

LRES(w) :=
(

h

2‖v(x)‖v(x) · grad[w(x)]; f(x)
)

Ω
, (4.3.11)

and h denotes the element-wise diameter.

4.3.2 Discontinuous Galerkin

For several transport applications, it is highly desirable to possess element-wise

mass balance property, as it is an important fundamental physical law [159]. This is

particularly true when the transport is coupled with chemical reactions and biofilm

growth [163, 161]. The GAL and SUPG formulations do not possess this property

without any further modification or enrichment to their formulations. One way to

ensure this property under a single-field finite element framework is through the use

of the DG formulations (see [9, 144, 38, 96, 95, 97, 133] and the references within for

further details). To present the DG formulation employed in this chapter, we now

introduce relevant notation.

The domain Ω is divided into S subdomains

Ω =
S⋃

i=1
ωi. (4.3.12)

The boundary of the subdomain ωi is denoted by ∂ωi. The interior face between ωi

and ωj is denoted by Γij. That is,

Γij = ∂ωi ∩ ∂ωj. (4.3.13)
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The set of all points on the interior faces is denoted by Γint. Mathematically,

Γint =
S⋃

i=1,i<j

Γij. (4.3.14)

For an interior face, we denote the subdomains shared by this face by ω+ and ω−.

The outward normals on this face for these subdomains are, respectively, denoted by

n̂+ and n̂−. Employing Brezzi’s notation [9], the average and jump operators on an

interior face are defined as follows

{
c
}

:= c+ + c−

2 and
[[
c
]]

:= c+n̂+ + c−n̂−, (4.3.15)

where

c+ = c|∂ω+ and c− = c|∂ω− . (4.3.16)

One of the most popular DG formulations is the Interior Penalty method, which

for equation (4.2.2) is written as

BDG(w; c) :=
(

grad[w(x)]; D(x)grad[c(x)]
)

Ω
−
([[
w(x)

]]
;
{
D(x)grad[c(x)]

})
Γint

+ ε
({

D(x)grad[w(x)]
}

;
[[
c(x)

]])
Γint

+ γ

h

([[
w(x)

]]
;
[[
c(x)

]])
Γint

and (4.3.17)

LDG(w) :=
(
w(x); f(x)

)
Ω
−
(
w(x); qp(x)

)
ΓN
, (4.3.18)

where the penalty term γ = 2 (d+1)
d

[151] for first-order elements and ε ∈ {−1, 0, 1}

denotes the Symmetric, Incomplete, and Non-symmetric Interior Penalty methods

103



respectively. For equation (4.2.3), the DG formulation can be written as

BDG(w; c) :=
(

grad[w(x)]; D(x)grad[c(x)]
)

Ω
−
([[
w(x)

]]
;
{
D(x)grad[c(x)]

})
Γint

+ ε
({

D(x)grad[w(x)]
}

;
[[
c(x)

]])
Γint

+ γ

h

([[
w(x)

]]
;
[[
c(x)

]])
Γint

−
(
w(x); v(x) · grad[c(x)]

)
Ω
−
([[
w(x)

]]
; cup(x)v(x)

)
Γint

and (4.3.19)

LDG(w) :=
(
w(x); f(x)

)
Ω
−
(
w(x); qp(x)

)
ΓN
, (4.3.20)

where the upwinding term cup(x) is defined as

cup(x) =


c+(x) if v(x) · n̂+(x) > 0,

c−(x) otherwise.
(4.3.21)

For the remainder of this chapter, we shall consider only the Symmetric Interior

Penalty method where ε = −1.

4.3.3 A theoretical discussion

The bilinear form is assumed to be continuous (i.e., bounded above). That is,

there exists a constant κ1 > 0 such that

B(w; c) ≤ κ1‖c‖‖w‖ ∀c(x), w(x) ∈ C. (4.3.22)

In addition, the bilinear form is assumed to be coercive. That is, there exists a

constant κ2 > 0 such that

κ2‖c‖2 ≤ B(c; c) ∀c(x) ∈ C. (4.3.23)

Recall that L(·) is assumed to be a linear continuous functional on C. Then, from the

Lax-Milgram theorem [21], it is known that a unique solution exists under the WF.
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Under the same conditions on the bilinear form and the linear functional, a unique

solution exists for the associated VI if K ⊂ C is a closed convex subset [103]. A

solution of the VI is a solution of the WF if C = K. Moreover, if the bilinear form is

symmetric, that is,

B(w; c) = B(c;w) (4.3.24)

then the WF and the VI are equivalent to the following MP: Find c(x) ∈ C such that

minimize
c(x)∈C

1
2B(c; c)− L(c). (4.3.25)

These relations are pictorially described in Figure 4.1. From a theoretical point of

view, it is important to note that the VIs that we will be dealing with for steady-state

problems will be elliptic of first kind. For further details on infinite-dimensional VIs,

see [61, 46].

4.4 PROPOSED COMPUTATIONAL FRAMEWORK IN ADISCRETE

SETTING

We denote the total number of degrees-of-freedom by “ndofs”. We also denote

the vector of ones by 1, as in Chapter 3. The component-wise inequalities are denoted

by � and �. That is,

a � b implies that ai ≤ bi ∀i and (4.4.1a)

a � b implies that ai ≥ bi ∀i. (4.4.1b)

The vector of unknown nodal concentrations is denoted by c, and the corresponding

nodal source vector is denoted by f . The coefficient matrix after a finite element

discretization is denoted by K. Note that the vectors c and f are of size ndofs× 1,
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and the matrix K is of size ndofs × ndofs. We denote the standard inner-product

in Euclidean spaces by 〈·; ·〉. That is,

〈a; b〉 =
ndofs∑

i

aibi ∀a, b ∈ Rndofs. (4.4.2)

The formulation in the discrete setting will be posed as a mixed complementarity

problem (MCP) [84]. For convenience, we define h ∈ Rndofs as

h := Kc− f . (4.4.3)

The corresponding MCP reads: Find cmin1 � c � cmax1 such that for each i ∈

{1, ..., ndofs}

hi(c) ≥ 0 if cmin = ci, (4.4.4a)

hi(c) = 0 if cmin ≤ ci ≤ cmax, and (4.4.4b)

hi(c) ≤ 0 if ci = cmax, (4.4.4c)

where cmin and cmax, respectively, denote the minimum and maximum concentrations,

which are provided by the maximum principle or the non-negative constraint. Simple

complementarity conditions arise from the first-order optimality conditions in opti-

mization. For bound-constrained optimization, h corresponds to the gradient of the

objective functional. If one has only the non-negative constraints (i.e., cmin = 0 and

cmax = +∞), then the problem reduces to a non-linear complementarity problem,

which is a special case of MCP. For details on non-linear complementarity problems,

see [50]. Note that the feasible region, which is restricted by the bound constraints,

form a parallelepiped, which is a convex set [18].

Let the feasible region K be a convex subset of Rndofs. In our case, the feasible

region is restricted by constraints which are in the form of finite number of linear
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Figure 4.2: Condition under which a solution exists for a VI of the form 〈h(c), c̃ − c〉 ≥
0 ∀c̃ ∈ K. Here, c∗ denotes a solution of the VI. The normal cone of K at c∗

is defined as N (c∗) :=
{

w ∈ Rndofs
∣∣∣ 〈w; c− c∗〉 ≤ 0 ∀c ∈ K

}
.

equalities and inequalities. This makes the feasible region to be a polyhedron, which

is a convex set [18]. It should be noted that bound constraints are a special case

of linear inequalities. With this machinery at our disposal, one can pose the second

formulation based on variational inequalities, which reads: Find c ∈ K such that we

have

〈Kc; v − c〉 ≥ 〈f ; v − c〉 ∀v ∈ K. (4.4.5)

Note that MCP is a special case of VIs in which the feasible region is a parallelepiped

(i.e., one has only bound constraints). The conditions under which a solution exists

for the finite-dimensional VI given in equation (4.4.5) is pictorially described in Figure

4.2.

If the coefficient matrix K is symmetric, one can alternatively enforce maximum

principles and the non-negative constraint using QP, which has been illustrated in

[127, 131] for small-scale problems, and in [30] for large-scale problems in parallel

environments. Therefore, this approach is only applicable for formally self-adjoint
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differential operators. The formulation can be posed as follows:

minimize
c∈Rndofs

1
2〈c; Kc〉 − 〈c; f〉, and (4.4.6a)

subject to cmin1 � c � cmax1. (4.4.6b)

In addition, if K is positive-definite the objective function becomes convex. The

resulting optimization problem then belongs to the special case of convex quadratic

programming for which sophisticated solvers exist.

Remark 4.4.1. It should be mentioned that a quick fix to eliminate negative violations

is through the so-called clipping procedure. However, this procedure is rather ad hoc

and, more importantly, it is not variationally consistent. On the other hand, the

proposed VI-based computational framework not only ensures non-negative solutions

but also has a firm variational basis. We will also illustrate that the solutions under

the proposed framework need not necessarily match the solution under the clipping

procedure.

4.4.1 Theoretical results in the discrete setting

In this chapter, we are interested in problems with two different cases of bound

constraints. In the first case, we have both lower and upper bounds. In the second

case, we have only the lower bound. The lower bound typically comes from the non-

negative constraint, and the upper bound comes from maximum principles. We now

discuss existence results for finite-dimensional VIs under the mentioned two cases of

bound constraints.

We begin by noting that the feasible set K will be convex and closed for both the

sets of bound constraints. In the first case, the feasible set will also be bounded, which

makes the feasible set to be compact (which, in the context of Euclidean spaces, is

equivalent to closed and bounded). We therefore deal with both the cases separately.
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Theorem 4.4.2. (Existence based on compactness of K) If K is compact and convex,

then a solution exists to the finite-dimensional VI (4.4.5).

Proof. A proof can be constructed using the Brouwer’s fixed point theorem and can

be found in [50].

Theorem 4.4.3. (Existence based on positive-definiteness of sym[K]) If the sym-

metric part of the coefficient matrix K (i.e., sym[K]) is positive-definite, a solution

to the finite-dimensional VI (4.4.5) exists. (Note that the feasible set K need not be

compact.)

Proof. Let

g(c) := Kc− f . (4.4.7)

The VI then becomes

〈g(c); c̃− c〉 ≥ 0 ∀c̃ ∈ K. (4.4.8)

Clearly, the function g(c) is continuous. Moreover, the function g(c) satisfies the

following coercive condition

〈g(c)− g(c̃); c− c̃〉
‖c− c̃‖

→ ∞, (4.4.9)

as ‖c‖ → ∞. To wit, since sym[K] is positive-definite and symmetric, the minimum

eigenvalue λmin is real and positive. One can then write

λmin‖c− c̃‖2 ≤ (c− c̃) · sym[K] (c− c̃) = (c− c̃) ·K (c− c̃) = 〈g(c)− g(c̃); c− c̃〉.

(4.4.10)
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Figure 4.3: A pictorial description of BR(0) and KR. These sets are used in Theorem
4.4.4.

That is,

λmin‖c− c̃‖ ≤ 〈g(c)− g(c̃); c− c̃〉
‖c− c̃‖

. (4.4.11)

We thus have shown that the function g(c) is continuous and coercive. Under such

conditions, a solution exists to the VI (4.4.8) (e.g., see [128, 129]).

We next present another existence theorem which is particularly useful when the

feasible set is unbounded (for example, when we have only one of the bounds – either

lower or upper bounds). Let BR(0) is a hypersphere of radius R centered at 0, and

let KR = K ∩BR(0) (see Figure 4.3). Clearly, KR is bounded.

Theorem 4.4.4. (Existence based on KR) A solution exists to the VI (4.4.5) on K

(which need not be bounded) if and only if there exists R > 0 and a solution c∗ ∈ KR

that satisfies the following VI:

〈Kc∗; c̃− c∗〉 ≥ 〈f ; c̃− c∗〉 ∀c̃ ∈ KR, (4.4.12)
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which is defined on a bounded set.

Proof. See [128].

Theorem 4.4.5. (Uniqueness) If the symmetric part of the coefficient matrix K is

positive-definite, then the finite-dimensional VI (4.4.5) has a unique solution if it

exists.

Proof. On the contrary, assume that c1 and c2 are two different solutions of the VI

(4.4.5). This implies that

〈Kc1; v − c1〉 ≥ 〈f ; v − c1〉 ∀v ∈ K and (4.4.13)

〈Kc2; v − c2〉 ≥ 〈f ; v − c2〉 ∀v ∈ K. (4.4.14)

Since c1, c2 ∈ K, choose v = c2 in (4.4.13) and v = c1 in (4.4.14). This results in

〈Kc1; c2 − c1〉 ≥ 〈f ; c2 − c1〉 and (4.4.15)

〈Kc2; c1 − c2〉 ≥ 〈f ; c1 − c2〉. (4.4.16)

Summing the above two inequalities and invoking the linearity in the second slot, we

obtain

〈K(c1 − c2); c1 − c2〉 ≤ 0, (4.4.17)

which further implies that

〈sym[K](c1 − c2); c1 − c2〉 ≤ 0. (4.4.18)

On the other hand, the positive-definiteness of sym[K] and our assumption c1−c2 6= 0
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imply that

〈sym[K](c1 − c2); c1 − c2〉 > 0, (4.4.19)

which contradicts the inequality given by equation (4.4.18). Hence, c1 = c2.

Using the aforementioned general existence and uniqueness results for VIs, we

now establish the existence and uniqueness of solutions under the proposed framework

in the discrete setting.

Theorem 4.4.6. (Well-posedness of the proposed framework) Unique solutions exist

for the VIs from the GAL, SUPG and DG WFs under lower bounds (which arise from

the non-negative constraint) and under both lower and upper bounds (which arise from

maximum principles).

Proof. First, it should be noted that the symmetric part of the coefficient matrices

under the GAL and DG formulations are positive-definite. On the other hand, the

stabilization term under the SUPG formulation does not guarantee that the symmet-

ric part of the coefficient matrix to be positive-definite. It should also be noted that

the stabilization term in equation (4.3.10) is O(h), where h is the characteristic mesh

size. This means that there exists a critical mesh size, hcrit, such that if h < hcrit then

the contribution from the residual terms to the coefficient matrix will be small, and

the resulting symmetric part of the coefficient matrix will be positive-definite.

(Existence.) If both the lower and upper bounds are present, the feasible region

will be compact. For this case of bound constraints, Theorem 4.4.2 establishes the

existence of solutions for the VIs arising from all the three WFs (i.e., GAL, SUPG and

DG). If only the lower bounds are present, Theorem 4.4.3 will ensure the existence

of solutions for VIs arising from the GAL and DG formulations, and Theorem 4.4.4

will ensure the existence of solutions for the VIs arising from the SUPG formulation

on a general mesh. Of course, if the mesh is adequately refined (i.e., h < hcrit) then
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Theorem 4.4.3 can also ensure the existence of a solution for the VIs arising under

the SUPG formulation.

(Uniqueness.) Theorem 4.4.5 provides the uniqueness of solution for the VIs

arising from the GAL and DG formulations. As discussed above, upon an adequate

mesh refinement, sym[K] will be positive-definite under the SUPG formulation. On

those meshes, Theorem 4.4.5 will provide the uniqueness of solutions for the VIs

arising from the SUPG formulation.

4.4.2 Computer implementation details

In this chapter, the proposed QP and VI-based formulations for the GAL, SUPG,

and DG formulations are implemented through the Firedrake project (see Appendix

A for further details), but one can employ any other finite element library. The pri-

mary advantage of the Firedrake project is that it provides easy access to parallel

solvers, specifically the PETSc and TAO libraries [12, 13, 123] which are built on top

of Message Passing Interface (MPI) libraries. Appropriate iterative solvers and pre-

conditioners are needed for large-scale problems, and the PETSc library provides the

necessary data structures. The Conjugate Gradient (CG) method is used for symmetric

problems like the diffusion equation whereas the Generalized Minimal Residual (GM-

RES) method is used for the non-symmetric advection-diffusion equation. HYPRE ’s

algebraic multi-grid package [93] is used as the preconditioner.

Solvers

The main ingredient of the proposed computational framework is to solve finite-

dimensional VIs. There are several solvers available for solving these type of inequali-

ties in a large-scale parallel environment. However, the performance of these solvers is

problem-specific. It is, therefore, necessary to identify the best performing VI solver
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for our case, i.e., a solver enforcing maximum principles and the non-negative con-

straint. To this end, we consider the following VI and QP solvers available through

the PETSc and TAO libraries:

1. Semi-smooth (VI - SS): TAO’s implementation of the semi-smooth algorithm

[109, 124] reformulates the MCP as a non-smooth system of equations using

the Fischer-Burmeister function [54]. This function, φ : R2 → R, is defined as

φ(a, b) :=
√
a2 + b2 − a− b and (4.4.20a)

φ(a, b) = 0 ⇔ a ≥ 0, b ≥ 0, ab = 0. (4.4.20b)

The reformulation of the MCP is handled component-wise, and the system of

equations Φ(c) = 0 where Φ : Rndofs → Rndofs is expressed as

Φi(c) :=



φ (ci − cmin, hi(c)) if −∞ < cmin < cmax =∞,

φ (cmax − ci, −hi(c)) if −∞ = cmin < cmax <∞,

φ (ci − cmin, φ (cmax − ci, −hi(c))) if −∞ < cmin < cmax <∞,

−hi(c) if −∞ = cmin < cmax =∞,

cmin − ci if −∞ < cmin = cmax <∞.

(4.4.21)

It should be noted that Φ(c) is not differentiable everywhere but it still satisfies

a semi-smoothness property [117, 138, 139]. The above system of equations

is used to compute a descent direction, and the solver finishes as soon as the

natural merit function Ψ(c) := 1
2‖Φ(c)‖2

2 meets some level of tolerance. We also

employ TAO’s feasible line-search algorithm which ensures that the solution is

within the bounds by using a projected Armijo line search [8].

2. Reduced-space active-set (VI - RS): The reduced-space active-set method selects

an active-set and solves a reduced linear system of equations to calculate a
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direction of the gradient descent. The active and inactive sets are, respectively,

defined as:

A(c) := {i ∈ {1, ..., ndofs}
∣∣∣∣ ci = 0 and hi(c) > 0} and (4.4.22a)

I(c) := {i ∈ {1, ..., ndofs}
∣∣∣∣ ci > 0 or hi(c) ≤ 0}. (4.4.22b)

The active set A(c) represents regions where the lower bound is active thus the

function value can be ignored, and the inactive set I(c) contains everything

else. The descent direction of the active set is set to zero whereas the descent

direction of the inactive set is approximated, and the solution is updated using

a projected line search. Unlike the standard clipping procedure, this method

is still variationally consistent because only the gradient descent is clipped and

not the actual solution itself. As far as we know, there is little documentation

on the theoretical and mathematical convergence properties for this particular

algorithm, but the computational results from [15] demonstrate that this solver

is robust and can handle a wide range of applications. For further implementa-

tion details of these two VI solvers, we defer all interested readers to [15, 123]

and the references within.

3. Trust region Newton (QP - TRON): Unlike the previous two solvers, the trust

region Newton method [102] is an active-set solver designed for large-scale min-

imization problems. It uses the gradient projection to generate a Cauchy step

and the preconditioned CG with an incomplete Cholesky factorization to gener-

ate a descent direction. Each iteration of the TRON algorithm solves a reduced

linear system containing variables that lie between the lower and upper bounds.

The algorithm then applies a trust region to the conjugate gradients to ensure

convergence. The algorithmic scalability and hardware performance of this

solver has been thoroughly documented in [30], so the computational results
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arising from QP - TRON serves primarily as a benchmark for comparison with

the VI solvers.

We acknowledge that there may be several other QP and VI solvers which are not

covered in this chapter. Nonetheless, the computational framework that we propose is

algorithm-independent and platform-agnostic, so one is free to either employ different

solvers or modify the above implementations of the QP and VI algorithms to cater

to specific needs and applications.

An outline of the algorithm

The performance of non-linear and optimization-based solvers depends on ac-

curate initial guesses. To this end, we propose the following steps for the overall

implementation of the proposed computational framework:

1. Assemble K and f

2. Solve for c0.

3. Clip c0 and obtain cCLIP. Formally

cCLIP = arg min1
2‖c− c0‖2 subject to: cmin1 � c � cmax1. (4.4.23)

4. Solve the bounded constraint problem under the QP or VI framework with cCLIP

as the initial guess.

It should be emphasized that one need not solve equation (4.4.23) to implement the

clipping procedure. Instead, one trims nodal values to meet the desired bounds. Since

the governing equations are linear, K and f only need to be assembled once and are

reused for the various QP and VI evaluation routines for Step 4. Python implemen-

tations of the VI - SS, VI - RS, and QP - TRON solvers leveraging petsc4py [42]

capabilities are shown in Listings A.5, A.6, and A.7 respectively of Appendix A. For
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(a) Diffusion problem

vx; vy
D(x)
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cP
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=
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y
)
=
0 c

P(x
=
0
; y
)
=
0

cP
hole

(x; y) = 1

f (x; y) = 0

(b) Advection-diffusion problem

Figure 4.4: 2D benchmarks: Pictorial description of the boundary value problems. Left
figure contains 40,000 structured quadrilateral elements (40,401 nodes). Right
figure contains 96,430 unstructured triangle elements (48,663 nodes).

the steady-state 3D benchmarks in the next section, the KSP relative tolerance is set

to 10−7 for the solver in Step 2, whereas the KSP relative tolerance for approximat-

ing the gradient descents in Step 4 is set to 10−3. It was shown in Chapter 3 that

relaxing the tolerance requires more non-linear iterations but lessens the overall solve

time. Relaxing the tolerance also lessens the arithmetic intensity where the perfor-

mance is governed by the memory bandwidth thus making it less likely to achieve

good speedup on a shared compute node. In other words, the parallel efficiency of

the QP and VI solvers are likely to be worse than solving the WF with standard

KSP convergence tolerances. The absolute convergence tolerances for the QP and

VI solvers are set to 10−8 although it should be mentioned that the optimal values

depends on the application at hand. All 3D simulations computations are conducted

on Intel Xeon E5-2680v2 processors where each MPI process is restricted to a single

core and mapped in a round-robin order.
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(a) cGAL (b) cTRON

(c) cSS (d) cRS

Figure 4.5: 2D diffusion: concentrations under the Galerkin (cGAL), TRON (cTRON),
semi-smooth (cSS), and reduced-space active-set (cRS) methods where the
white regions represent negative concentrations.

4.5 NUMERICAL RESULTS FOR STEADY-STATE RESPONSE

4.5.1 2D benchmarks

We now examine 2D problems in order to demonstrate the effectiveness of the

proposed computational algorithms for ensuring discrete maximum principles and
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(a) ‖cCLIP − cTRON‖ (b) ‖cCLIP − cSS‖

(c) ‖cCLIP − cRS‖

Figure 4.6: 2D diffusion: absolute difference in concentrations between the clipped solu-
tion and the non-negative solution.

the non-negative constraint. Only the GAL and SUPG formulations are employed in

this numerical study. First, let us consider the pure diffusion equation on a bi-unit

square: Ω := (0, 1)× (0, 1) as shown in Figure 4.4a. The following heterogeneous and
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(a) ‖cTRON − cSS‖ (b) ‖cTRON − cRS‖

(c) ‖cSS − cRS‖

Figure 4.7: 2D diffusion: absolute difference in concentrations between the various non-
negative methodologies

anisotropic diffusivity tensor similar to the one considered in [135] is used:

D(x) =

 y2 + εx2 −(1− ε)xy

−(1− ε)xy x2 + εy2

 , (4.5.1)
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where ε = 10−4. The forcing function is defined as f(x, y) = 1 if (x, y) ∈
[

3
8 ,

5
8

]
×[

3
5 ,

5
8

]
and zero elsewhere. Homogeneous boundary conditions are applied on all four

sides of the domain. Numerical solutions under the GAL, VI - SS, VI - RS, and

QP - TRON methods with uniform quadrilateral elements of h-size = 1/200 are

shown in Figure 4.5. All three non-negative solvers successfully eliminate negative

concentrations, and the absolute difference plots in Figure 4.6 show that their results

are quite different than from the one arising from the standard clipping procedure.

Moreover, the absolute differences between the various QP and VI solvers, as seen

from Figure 4.7, are extremely small and suggest that the QP and VI solvers have

similar numerical accuracy.

Next we consider the advection-diffusion problem under the SUPG formula-

tion where only VI - SS and VI - RS methods are applicable for enforcing the

maximum principle and the non-negative constraint. Consider a bi-unit square:

Ω := (0, 1)× (0, 1) with a square hole of dimension
[

4
9 ,

5
9

]
×
[

4
9 ,

5
9

]
as shown in Figure

4.4b. The mesh is discretized into 96,430 unstructured triangular elements and 48,663

vertices. Homogeneous boundary conditions are applied on the outside boundary, and

a Dirichlet boundary value cp(x) = 1 is applied on the interior boundary Γhole. The

velocity vector field v(x) is characterized by the following

vx = cos(2πy2) and (4.5.2a)

vy = sin(2πx) + cos(2πx2), (4.5.2b)

and the diffusivity tensor D(x) for this problem is the dispersion tensor

D(x) = (αT‖v‖+DM) I + (αL − αT )v⊗ v
‖v‖

, (4.5.3)

where αL = 10−1, αT = 10−5, and DM = 10−9 denote the longitudinal dispersivity,

transverse dispersivity and molecular diffusivity, respectively. Figure 4.8 depicts the
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(a) cSUPG (b) cSS

(c) cRS

Figure 4.8: 2D advection-diffusion: concentrations under the SUPG (cSUPG), semi-
smooth (cSS), and reduced-space active-set (cRS) methods where the white
regions represent negative concentrations.

numerical solutions under the SUPG, VI - SS, and VI - RS formulations. We see that

the SUPG formulation results in negative concentrations as well as concentrations

greater than the maximum prescribed boundary condition whereas the two VI solvers

successfully correct these concentrations. The absolute difference plots, as seen in

Figure 4.9, indicate that the VI are also similar to one another and differ from the
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(a) ‖cCLIP − cSS‖ (b) ‖cCLIP − cRS‖

(c) ‖cSS − cRS‖

Figure 4.9: 2D advection-diffusion: absolute difference in concentrations between the
clipped and non-negative solutions.

clipping procedure. These 2D benchmarks suggest that the QP and VI solvers are

accurate alternatives to the clipping procedure for satisfying the discrete maximum

principle and the non-negative constraint. Listings A.1 and A.2 contain the Firedrake

project files for solving the GAL and SUPG formulations, respectively.
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f (x; y; z)

D(x)
vx; vy; vz

cP(x; y; z = 0) = 0

cP(x = 1; y; z) = 0

cP(x; y = 0; z) = 0 cP(x; y = 1; z) = 0

cP(x; y; z = 1) = 0

cP(x = 0; y; z) = 0

Figure 4.10: 3D benchmarks: Left figure contains a pictorial description of the boundary
value problem. Right figure contains the corresponding velocity contour and
vector field for the ABC flow.

4.5.2 3D benchmark

We now consider a 3D problem designed to capture two particular aspects that

may arise in large-scale applications: 1) chaotic advection, which is pervasive in many

porous media applications [94], and 2) random point sources, which in subsurface re-

mediation problems are the sites where potential contaminant leaks occur. Predictive

modeling involving such important aspects require numerical methodologies that are

not only accurate but also fast and scalable in a parallel environment. Herein, our

goal is to study the computational performance of the various QP and VI solvers

under the GAL, SUPG, and DG formulations.

Consider a unit cube domain as shown in Figure 4.10 with chaotic advection
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(a) GAL (b) GAL with VI - SS

(c) DG (d) DG with VI - SS

Figure 4.11: 3D diffusion: 3D contours of the concentrations for the GAL and DG for-
mulations with and without and VI - SS for h-size = 1/80, where the purple
contours represent regions with negative concentrations.

flow characterized by the Arnold-Beltrami-Childress (ABC) flow [166, 44]

vx = 0.3 sin(2πz) + cos(3πy), (4.5.4a)

vy = 0.65 sin(2πx) + 0.3 cos(5πz), and (4.5.4b)

vz = sin(4πy) + 0.65 cos(6πy). (4.5.4c)
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Table 4.1: 3D diffusion: minimum and maximum concentrations for various level of mesh
refinement under the GAL formulation.

h-size Min. Max. % degrees-of-freedom violated
1/10 -0.0224497 0.368322 280/1,331 → 21.0%
1/20 -0.0071611 0.339679 2,462/9,261 → 26.6%
1/30 -0.0083804 0.481598 8,449/29,791 → 28.4%
1/40 -0.0062918 0.378390 20,195/68,921 → 29.3%
1/50 -0.0067679 0.477119 39,500/132,651 → 29.8%
1/60 -0.0072030 0.518469 68,161/226,981 → 30.0%
1/70 -0.0066007 0.498127 109,554/357,911 → 30.6%
1/80 -0.0059264 0.484484 160,925/531,441 → 30.3%

Table 4.2: 3D diffusion: minimum and maximum concentrations for various level of mesh
refinement under the DG formulation.

h-size Min. Max. % degrees-of-freedom violated
1/10 -0.0226040 0.372831 3,704/8,000 → 46.3%
1/20 -0.0071913 0.341955 27,496/64,000 → 43.0%
1/30 -0.0082811 0.483264 91,176/216,000 → 42.2%
1/40 -0.0062341 0.379389 213,000/512,000 → 41.6%
1/50 -0.0067168 0.478146 410,976/1,000,000 → 41.1%
1/60 -0.0071682 0.519338 702,504/1,728,000 → 40.7%
1/70 -0.0065727 0.498775 1,114,856/2,744,000 → 40.6%
1/80 -0.0058998 0.485012 1,624,496/4,096,000 → 39.7%

For this problem, we shall also let D(x) denote the dispersion tensor as shown

in equation (4.5.3) where αL = 10−1, αT = 10−5, and DM = 10−9. All six faces of

the cube have homogeneous boundary conditions, and the following forcing function
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Table 4.3: 3D diffusion: single core wall-clock time on an Intel Xeon E5-2680v2 server
and number of solver iterations (KSP, VI, or QP) for various levels of mesh
refinement under the GAL formulation.

h-size GAL VI - SS VI - RS QP - TRON
time
(s)

iters time
(s)

iters time
(s)

iters time
(s)

iters

1/10 0.003 9 0.027 5 0.008 2 0.007 2
1/20 0.036 15 0.477 12 0.147 5 0.135 5
1/30 0.165 20 2.624 18 0.765 7 0.650 6
1/40 0.525 24 7.576 20 2.246 8 1.758 6
1/50 1.293 28 21.49 27 5.381 9 5.330 9
1/60 2.556 31 43.72 30 12.01 11 12.20 11
1/70 4.747 35 76.21 31 18.27 10 17.81 9
1/80 7.962 39 140.7 37 36.40 13 38.06 13

consisting of 8 randomly located point sources is used throughout the domain

f(x, y, z) =



1 if (x, y, z) ∈ [0.4, 0.2, 0.1]× [0.5, 0.3, 0.2],

1 if (x, y, z) ∈ [0.8, 0.4, 0.2]× [0.9, 0.5, 0.3],

1 if (x, y, z) ∈ [0.5, 0.7, 0.3]× [0.6, 0.8, 0.4],

1 if (x, y, z) ∈ [0.3, 0.5, 0.2]× [0.4, 0.6, 0.3],

1 if (x, y, z) ∈ [0.5, 0.2, 0.6]× [0.6, 0.3, 0.7],

1 if (x, y, z) ∈ [0.6, 0.5, 0.7]× [0.7, 0.6, 0.8],

1 if (x, y, z) ∈ [0.4, 0.7, 0.8]× [0.5, 0.8, 0.9],

1 if (x, y, z) ∈ [0.1, 0.4, 0.7]× [0.2, 0.5, 0.8], and

0 otherwise.

(4.5.5)

To understand the parallel and algorithmic scalability of the QP and VI solvers, vari-

ous levels of mesh refinement are considered, ranging from 1,331 to 1,030,301 degrees-

of-freedom for the GAL/SUPG formulations and ranging from 8,000 to 4,096,000

degrees-of-freedom for the DG formulations. Up to 16 MPI processes are used to

study the weak-scaling and strong-scaling potential of these solvers.

Figure 4.11 depicts the GAL and DG solutions for the diffusion equation with
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Table 4.4: 3D diffusion: single core wall-clock time on an Intel Xeon E5-2680v2 server
and number of solver iterations (KSP, VI, or QP) for various levels of mesh
refinement under the DG formulation.

h-size DG VI - SS VI - RS QP - TRON
time
(s)

iters time
(s)

iters time
(s)

iters time
(s)

iters

1/10 0.030 10 0.748 12 0.221 5 0.186 5
1/20 0.446 14 1.410 20 4.528 8 3.715 7
1/30 2.148 18 73.52 27 23.85 10 22.64 10
1/40 6.278 21 251.5 34 69.33 11 70.77 11
1/50 14.29 24 623.6 39 171.7 13 170.8 12
1/60 28.25 27 1290 45 360.1 15 388.6 15
1/70 51.95 31 2560 51 620.2 16 639.0 15
1/80 85.53 34 5049 54 1107 19 1291 17

and without VI - SS. It can be seen from the figures that negative concentrations are

present regardless which finite element formulation is used. Tables 4.1 and 4.2 indicate

that negative concentrations arise for the GAL and DG formulations, respectively,

even as h-size is refined. It is interesting to note that the DG formulation not only

has more degrees-of-freedom but has more regions with negative concentrations than

its GAL counterpart. Using the initial guess solver from Step 2 of the proposed

framework in 4.4.2 as a baseline for comparison, Tables 4.3 and 4.4 demonstrate

how the wall-clock time and number of KSP/VI/QP solver iterations vary with h-

refinement under a single MPI process. It should be noted that the timings for the

QP and VI solvers consider both the assembly of the data structures as well as the

actual solver. The heterogeneous nature of the problem causes the number of solvers

iterations to increase with problem size, but the iteration counts begin to stabilize as

the problem gets bigger. The VI - RS method outperforms VI - SS in both wall-clock

time and VI iterations but has similar performance to QP - TRON.

Next we perform weak-scaling studies to investigate how increasing both problem

size and number of MPI processes affects the performance of the VI and QP solvers.

Each MPI process will handle approximately 100k degrees-of-freedom so the h-sizes

for the GAL case are 1/46, 1/58, 1/73, 1/92, and 1/116 for 1, 2, 4, 8, and 16 processes
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(d) DG - parallel efficiency

Figure 4.12: 3D diffusion: weak-scaling plots with approximately 100k degrees-of-freedom
per core and the corresponding parallel efficiencies on a single Intel Xeon E5-
2680v2 server.

respectively whereas the h-sizes for the DG case are 1/23, 1/29, 1/37, 1/46, and 1/58

for 1, 2, 4, 8, and 16 processes respectively. Figure 4.12 contains the scaling plots as

well as the parallel efficiencies in the weak sense under the GAL and DG formulations.

These plots suggest that the QP and VI methodologies are not linearly proportional to

problem size (increasing solver iterations with h-size as seen from Tables 4.3 and 4.4).

Furthermore, the lower KSP relative tolerance for the gradient descent computations

make the solver more sensitive to the memory-bandwidth, meaning that performance
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(d) DG - parallel efficiency

Figure 4.13: 3D diffusion: strong-scaling plots for approximately 500k degrees of freedom
(h-size = 1/80 and 1/40 for GAL and DG respectively) and the corresponding
parallel efficiencies on a single Intel Xeon E5-2680v2 server.

can degrade as the compute nodes become populated with more MPI processes (see

Sections 4 and 5 of [30] for a more thorough discussion).

However, the weak-scaling plots alone make it difficult to distinguish whether

parallel performance deteriorates due to communication overhead or suboptimal algo-

rithmic convergence. To better understand why parallel performance degrades as the

number of MPI processes increases, we conduct strong-scaling studies by setting the

h-size to 1/80 and 1/40 for the GAL and DG formulations respectively (roughly 500k
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(a) SUPG (b) SUPG with VI - SS

(c) DG (d) DG with VI - SS

Figure 4.14: 3D advection-diffusion: 3D contours of the concentrations for the SUPG and
DG formulations with and without and VI - SS for h-size = 1/80, where the
purple contours represent regions with negative concentrations.

degrees-of-freedom) and study how increasing the number of MPI processes (hence

communication overhead) affects the parallel performance. Figure 4.13 contains the

strong-scaling plots, and we see that the QP and VI solvers still do not scale as well.
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Table 4.5: 3D advection-diffusion: minimum and maximum concentrations for various
level of mesh refinement under the SUPG formulation.

h-size Min. Max. % degrees-of-freedom violated
1/10 -0.0135676 0.187489 212/1,331 → 15.9%
1/20 -0.0068733 0.180922 2,323/9,261 → 25.1%
1/30 -0.0091657 0.210942 7,964/29,791 → 26.7%
1/40 -0.0055686 0.171690 18,235/68,921 → 26.5%
1/50 -0.0064795 0.185440 35,221/132,651 → 26.6%
1/60 -0.0063168 0.189047 61,171/226,981 → 26.9%
1/70 -0.0053682 0.179675 99,668/357,911 → 27.8%
1/80 -0.0045065 0.172049 147,462/531,441 → 27.7%

Table 4.6: 3D advection-diffusion: minimum and maximum concentrations for various
level of mesh refinement under the DG formulation.

h-size Min. Max. % degrees-of-freedom violated
1/10 -0.0151514 0.259127 4,976/8,000 → 62.2%
1/20 -0.0162537 0.211295 37,464/64,000 → 58.5%
1/30 -0.0137824 0.237722 120,296/216,000 → 55.7%
1/40 -0.0067079 0.186956 276,832/512,000 → 54.1%
1/50 -0.0057574 0.203852 526,080/1,000,000 → 52.6%
1/60 -0.0065627 0.203093 891,768/1,728,000 → 51.6%
1/70 -0.0069389 0.193418 1,410,208/2,744,000 → 51.4%
1/80 -0.0066445 0.199912 2,069,752/4,096,000 → 50.5%

Regardless of the finite element formulation used, the QP and VI - RS methods have

roughly the same strong-scaling performance whereas the VI - SS method has slightly

better strong-scaling.

For the advection-diffusion equation, the same problem is considered but ad-

vection due to the ABC flow is now taken into account. A Firedrake project im-

plementation of the DG formulation can be found in Listing A.3. Like the diffusion

equation, the advection-diffusion equation also exhibits negative concentrations as

seen from Figure 4.14. Table 4.5 depicts violations under the SUPG formulation to

be no greater than 30% whereas the DG formulation exhibits huge violations as seen

from Table 4.6. Moreover, the single MPI process metrics shown in Tables 4.7 and

4.8 clearly indicate that the advection-diffusion equations are generally more time

consuming to solve than its diffusion counterpart. These metrics tell us that the VI
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Table 4.7: 3D advection-diffusion: single core wall-clock time on an Intel Xeon E5-2680v2
server and number of linear (KSP) or nonlinear (VI) solve iterations for various
levels of mesh refinement under the SUPG formulation.

h-size SUPG VI - SS VI - RS
time (s) iters time (s) iters time (s) iters

1/10 0.003 9 0.028 5 0.009 2
1/20 0.045 16 0.504 11 0.146 4
1/30 0.221 22 2.525 14 0.710 5
1/40 0.768 29 10.21 20 2.592 6
1/50 2.019 35 27.27 23 8.842 10
1/60 4.530 43 65.61 30 19.20 10
1/70 8.178 47 117.3 28 34.54 11
1/80 14.70 55 229.4 34 66.07 12

Table 4.8: 3D advection-diffusion: single core wall-clock time on an Intel Xeon E5-2680v2
server time and number of linear (KSP) or nonlinear (VI) solve iterations for
various levels of mesh refinement under the DG formulation.

h-size DG VI - SS VI - RS
time (s) iters time (s) iters time (s) iters

1/10 0.031 10 0.807 13 0.202 5
1/20 0.459 14 14.46 21 3.890 8
1/30 2.352 19 73.84 27 19.56 10
1/40 6.819 22 251.3 35 56.94 11
1/50 15.49 25 629.1 40 137.1 13
1/60 30.65 28 1387 47 292.3 15
1/70 57.56 32 2267 51 570.0 18
1/80 97.15 36 7105 60 917.2 18

iterations also begin to stabilize as the problem size increases and that the VI - RS

method is faster than the VI - SS method for the advection-diffusion equation.

The weak-scaling plots, as seen from Figure 4.15, indicate that the VI solvers are

identical in performance, but the strong-scaling plots from Figure 4.16 suggest that VI

- SS has slightly better parallel speedup than VI - RS. These steady-state numerical

experiments suggest that the VI - RS is the preferred methodology for solving large-

scale advection-diffusion equations because it takes less time to solve than other more

expensive VI algorithms like VI - SS. However, if advection becomes negligible thus

reducing the system to a symmetric diffusion problem, one could employ either QP -
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(d) DG - parallel efficiency

Figure 4.15: 3D advection-diffusion: weak-scaling plots with approximately 100k degrees-
of-freedom per core and the corresponding parallel efficiencies on a single
Intel Xeon E5-2680v2 server.

TRON or VI - RS as these solvers are equal in both parallel and algorithmic scalability.

4.5.3 Solver tolerances

So far the results in this section suggest that the VI approach is fairly computa-

tionally expensive for both diffusion and advection-diffusion type equations. This is,

partly, because we used a stringent solver convergence criterion (an absolute residual
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(d) DG - parallel efficiency

Figure 4.16: 3D advection-diffusion: strong-scaling plots for approximately 500k degrees
of freedom (h-size = 1/80 and 1/40 for GAL and DG respectively) and the
corresponding parallel efficiencies on a single Intel Xeon E5-2680v2 server.

tolerance of 10−8) for both QP and VI. The exact choice of tolerance is indeed prob-

lem and application dependent, but our proposed computational framework sets the

solution to the unconstrained problem as the initial guess. Therefore, we have the lux-

ury to use a more relaxed solver convergence criterion and investigate how a relative

residual tolerance of 10−1 affects the performance of the VI solvers numerically and

algorithmically. Table 4.9 contains the time-to-solution and the total number of VI

iterations for the advection-diffusion problem under the SUPG and DG formulations.
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(a) SUPG (b) DG

Figure 4.17: 3D advection-diffusion: 3D contours of the absolute difference in VI - RS
concentrations between the relative residual tolerance of 10−1 solution and
the absolute residual tolerance of 10−8 solution.

Table 4.9: 3D advection-diffusion: single core wall-clock time on an Intel Xeon E5-2680v2
server and number of VI solve iterations for various levels of mesh refinement
when the relative solver tolerance is set to 10−1.

h-size SUPG: VI - SS SUPG: VI - RS DG: VI - SS DG: VI - RS
time
(s)

iters time
(s)

iters time
(s)

iters time
(s)

iters

1/10 0.051 2 0.005 1 0.653 2 0.088 2
1/20 0.376 2 0.076 2 5.471 2 1.512 3
1/30 1.316 2 0.315 2 19.64 2 6.693 3
1/40 4.425 3 1.308 3 48.70 2 18.20 3
1/50 6.723 2 3.125 3 97.53 2 50.98 4
1/60 11.80 2 6.232 3 174.2 2 96.47 4
1/70 19.68 2 14.92 4 290.0 2 196.6 5
1/80 30.83 2 24.73 4 430.1 2 305.6 5

Relaxing the tolerance greatly reduces the amount of wall-clock time and solver iter-

ations needed with acceptable compromise on the accuracy as seen from the absolute

difference in concentrations in Figure 4.17. The weak scaling plots in Figures 4.18

indicate that the VI - SS has relatively good algorithmic performance with respect to

problem size. whereas the strong-scaling plots in Figure 4.19 still indicate that VI -
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(d) DG - parallel efficiency

Figure 4.18: 3D advection-diffusion: weak-scaling plots of the relaxed VI solvers with ap-
proximately 100k degrees-of-freedom per core and the corresponding parallel
efficiencies on a single Intel Xeon E5-2680v2 server.

RS is not as scalable as the VI - SS.

Remark 4.5.1. These parallel performance studies do not indicate how truly efficient

the PETSc and TAO implementations of the QP and VI solvers are in the context of

high performance computing. Moreover, strong and weak scaling results can be decep-

tive as discussed in Chapter 2. It should be noted that a serially efficient algorithm

will likely have poor parallel performance due to dominating effects from communi-

cation overhead and memory latencies. Also, the use of assembled sparse matrices
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Figure 4.19: 3D advection-diffusion: strong-scaling plots of the relaxed VI solvers for
approximately 500k degrees of freedom (h-size = 1/80 and 1/40 for GAL
and DG respectively) on a single Intel Xeon E5-2680v2 server.

coupled with memory bandwidth effects explains why the scaling can degrade even when

only 2 MPI processes are used. One could use either the performance spectrum model

outlined in Chapter 2 or the “perfect cache” roofline model outlined in Chapter 3 to

better understand the performance of the VI solvers.
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Figure 4.20: 2D miscible displacement: Pictorial description of the boundary value prob-
lems for the coupled Darcy and advection-diffusion equations and the corre-
sponding random permeability.

4.6 EXTENSION TO TRANSIENT ANALYSIS AND COUPLED PROB-

LEMS

We now illustrate that the proposed computational framework, which is based

on variational inequalities, can be extended to perform a transient analysis. The

resulting governing equations will then be parabolic variational inequalities. This

extension will be illustrated by considering the displacement of miscible fluids in

porous media wherein a fluid displaces a fluid with higher viscosity [157]. Some

of the applications of miscible displacement include oil recovery and carbon-dioxide

sequestration [32, 33]. The phenomenon is commonly modeled using coupled flow

and transport equations, which will be presented below. In this section, we will also

show how negative concentrations can have serious ramifications when simulating

non-linear transport phenomenon like the displacement of miscible fluids.

4.6.1 Governing equations and temporal discretization

We denote the time by t ∈ [0, T ], where T denotes the length of the time interval

of interest. For the Darcy equation, the boundary is divided into two parts: Γp

and Γv, such that Γp ∪ Γv = ∂Ω and Γp ∩ Γv = ∅. Γp and Γv denote the parts

of the boundary on which pressure and velocity boundary conditions are enforced
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respectively. We shall denote time-dependent pressure by p(x, t), time-dependent

velocity by v(x, t), concentration-dependent viscosity by µ(c(x, t)), permeability by

k(x), density by ρ, time-dependent specific body force by b(x, t), time-dependent

concentration by c(x, t), prescribed initial concentration by c0(x), time dependent

volumetric source by f(x, t), and time-dependent diffusivity tensor by D(x, t). For

the boundary conditions, the prescribed time-dependent concentration is denoted by

cp(x, t), prescribed time-dependent pressure by pp(x, t), prescribed time-dependent

normal component of the velocity by vn(x, t), and prescribed time-dependent flux

by qp(x, t). The initial boundary value problem for the coupled flow and advective-

diffusive equations can be written as follows:

µ(c(x, t))
k(x) v(x, t) + grad[p(x, t)] = ρb(x, t) in Ω× (0, T ), (4.6.1a)

div[v(x, t)] = 0 in Ω× (0, T ), (4.6.1b)

p(x, t) = pp(x, t) on Γp × (0, T ), (4.6.1c)

v(x, t) · n̂ = vn(x, t) on Γv × (0, T ), (4.6.1d)
∂c(x, t)
∂t

+ v(x, t) · grad[c(x, t)]

− div[D(x, t)grad[c(x, t)]] = f(x, t) in Ω× (0, T ), (4.6.1e)

c(x, t) = cp(x, t) on ΓD × (0, T ), (4.6.1f)

n̂(x) · (v(x, t)c(x, t)

−D(x, t)grad[c(x, t)]) = qp(x, t) on ΓN
inflow × (0, T ), (4.6.1g)

−n̂(x) ·D(x, t)grad[c(x, t)] = qp(x, t) on ΓN
outflow × (0, T ), and (4.6.1h)

c(x, 0) = c0(x) in Ω, (4.6.1i)

where equations (4.6.1a) through (4.6.1d) represent the Darcy equation, and equa-

tions (4.6.1e) through (4.6.1i) represent the transient advection-diffusion equation.

To complete the coupled problem, the viscosity is assumed to depend exponentially
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Table 4.10: 2D miscible displacement: problem parameters

Parameter Value
b(x) {0, 0} m/s2

µ(c(x, t)) See equation (4.6.2a)
µ0 3.95 · 10−5 Pa s
Rc 3
k(x) varies
f(x, t) 0
ρ 479 kg/m3

αL 10−1 m
αT 10−5 m
αD 10−9 m2/s
Number of elements 31,250
Darcy degrees-of-freedom 94,125
Advection-diffusion degrees-of-freedom 125,000

on concentration:

µ(c(x, t)) = µ0 exp
[
Rcc(x, t)

]
and (4.6.2a)

µ(c(x, t)) = µ0 exp
[
Rc(1− c(x, t))

]
, (4.6.2b)

where µ0 is the base viscosity of the less viscous fluid and Rc is the log-mobility ratio

in an isothermal miscible displacement. To solve the transient advection-diffusion

equation, we employ the method of horizontal lines [66], which first discretizes the

time derivatives, thereby giving rise to time-independent equations. The time interval

of interest is divided into N sub-intervals. That is,

[0, T ] :=
N⋃

n=0
[tn, tn+1], (4.6.3)

where tn denotes the n-th time-level. We assume that the time-step is uniform, which

can be written as:

∆t = tn+1 − tn. (4.6.4)
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(a) cDG at t = 0.5 years (b) cDG at t = 1.0 years

(c) cRS at t = 0.5 years (d) cRS at t = 1.0 years

Figure 4.21: 2D miscible displacement: Concentration fields under the DG (cDG) formu-
lation and VI - RS (cRS) method at various time levels. White regions denote
violations of the maximum principle and the non-negative constraint.

One can then employ the finite-dimensional VI solvers for these resulting equations,

which were described earlier in this chapter. This implies that we will still be solving

elliptic VIs of first kind but at each time level. This procedure will be illustrated

below using the backward Euler method. However, a detailed discussion on the effect

of time-stepping schemes in meeting maximum principles can be found in [131]. For

a transient analysis, the proposed framework outlined in Section 4.4.2 is modified as

follows:

1. Set t = 0.0, n = 0, and c(n) = c0.

2. Solve Darcy equation:

(a) Compute µ(c(n)) using equation (4.6.2).

(b) Assemble Kvv, Kvp, Kpv, Kpp, f v and f p.

(c) Solve for v(n).
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(a) cCLIP - cRS at t = 0.5 years (b) cCLIP - cRS at t = 1.0 years

(c) cDG - cRS at t = 0.5 years (d) cDG - cRS at t = 1.0 years

Figure 4.22: 2D miscible displacement: Differences between concentration fields under
the DG formulation (cDG), VI - RS method (cRS), and clipping procedure
(cCLIP).

3. Solve advection-diffusion equation:

(a) Compute D(n) using equation (4.5.3).

(b) Assemble Kc and f c using c(n).

(c) Solve for c
(n+1)
DG .

(d) Clip c
(n+1)
DG and obtain c

(n+1)
CLIP .

(e) Solve the bounded constraint problem for c
(n+1)
RS with c

(n+1)
CLIP as the initial

guess.

4. Set c(n+1) ←− c
(n+1)
RS , t←− t+ ∆t, and n←− n+ 1.

5. If n < N go to Step2.

where Kvv, Kvp, Kpv, Kpp, f v, and f p are the assembled matrices and vectors for the

Darcy equation, and Kc and f c are for the transient advection-diffusion equation.
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vn(x, t) = 0.0
qP(x, t) = 0.0

vn(x, t) = 0.0
qP(x, t) = 0.0

vn(x, t) = 0.0
qP(x, t) = 0.0

vn(x, t) = 0.0
qP(x, t) = 0.0

c0(x) = 0.0

pP(x, t) = 101,325 Pa
qP(x, t) = 0.0

pP(x, t) = 202,650 Pa
cP(x, t) = 1.0

(a) Problem description (b) Log scale permeability field (m2)

Figure 4.23: 3D miscible displacement: Pictorial description of the boundary value prob-
lems (50m×25m×5m domain) for the coupled Darcy and advection-diffusion
equations and the corresponding random permeability.

The finite element discretization and solution strategy for the steady-state Darcy

equations can be found in Appendix B.

4.6.2 Numerical results

Consider a 50m×25m rectangular domain with heterogeneous permeability, as

shown in Figure 4.20. The flow will be modeled using Darcy equations, in which

the viscosity depends on the concentration of the attendant chemical species, and

the transport of the chemical species will be modeled using advection-diffusion equa-

tions. For the flow subproblem, we prescribe the pressure boundary conditions on

the left and right sides of the domain and no flow boundary conditions on the top

and bottom. For the transport subproblem, an initial concentration of unity is pre-

scribed everywhere in the domain, and a Dirichlet boundary condition of zero along

the left side and zero flux boundary conditions on the remaining sides are prescribed.

A time-step ∆t = 1 day is used to simulate the miscible displacement over a time

interval T = 1 year. All other problem parameters and material properties can be

found in Table 4.10. Figure 4.21 depicts the concentration profiles under the DG and
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Table 4.11: 3D miscible displacement: problem parameters

Parameter Value
b(x) {0, 0,−9.81} m/s2

µ(c(x, t)) See equation (4.6.2b)
µ0 3.95 · 10−5 Pa s
Rc 3
k(x) varies
f(x, t) 0
ρ 479 kg/m3

αL 10−1 m
αT 10−5 m
αD 10−9 m2/s
Number of elements 781,250
Darcy degrees-of-freedom 3,165,625
Advection-diffusion degrees-of-freedom 6,250,000

VI - RS methods at t = 0.5 and t = 1.0 years. It can be seen that violations in the

maximum principles occur even under the coupled flow and transport computational

framework. Furthermore, the violations do not go away as the simulation progresses

in time. As it may be difficult to distinguish between the VI - RS and DG or clipping

procedures by directly plotting the solutions, we show the differences in the solutions

in Figure 4.22. The ramification shown by the difference plots is that the development

of the plumes and fingerings throughout the computational domain is altered by the

VI approach. It is also shown that the clipping procedure is significantly different

from the VI approach.

To understand the performance of our VI-based solvers for larger versions of this

problem, we now consider a 50m×25m×5m box domain with heterogeneous perme-

ability as shown in Figure 4.23. Table 4.11 lists all the necessary problem parameters,

and the same time-step and time interval from the previous problem is used. This

problem is now solved in parallel across 40 MPI processes with a relative residual

convergence criterion of 10−3, and Figure 4.24 depicts the numerical results under the

DG formulation without VI - RS and DG formulation with VI - RS. The exact regions

where violations in the maximum principle and the non-negative constraint occur are
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(a) cDG at t = 0.4 years (b) cDG at t = 1.0 years

(c) cDG at t = 0.4 years (d) cDG at t = 1.0 years

(e) cRS at t = 0.4 years (f) cRS at t = 1.0 years

Figure 4.24: 3D miscible displacement: Top (DG) and bottom (VI) show regions with
concentrations above 0.5. Middle figures show regions with concentrations
above 1.0 (green) and below 0.0 (purple).
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Figure 4.25: 3D miscible displacement: Total number of KSP iterations at each time level
for the Darcy and advection-diffusion equation with and without VI. Also
shown is the total number of VI iterations at each time level.
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Figure 4.26: 3D miscible displacement: The wall-clock time as a function of simulated
time with and without VI across 40 cores (two Intel Xeon E5-2680v2 servers).
Also shown is the sum of the wall-clock time across all time levels.

shown in Figures 4.24c and 4.24d. First, we note that this proposed computational

framework can successfully eliminate the violations that occur in a large-scale mis-

cible displacement simulation. We also note that the development and displacement
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of the plumes is significantly affected by whether VI - RS is applied or not; the dif-

ferences between Figures 4.24b and 4.24f are quite evident unlike the 2D example.

Next, we note from Figure 4.25 that enforcing the bounded constraints under the VI

- RS method will not drastically increase the total number of KSP iterations needed

for either the Darcy or advection-diffusion equations. However, the wall-clock time

shown in Figure 4.26 indicates that the VI - RS method is very time consuming. The

oscillatory behavior of both the solver iterations and wall-clock time at each time level

is largely attributed to the heterogeneous nature of the problem as well as the number

of maximum principle violating degrees-of-freedom that naturally arise out of the DG

formulation. Although VI-based solvers like VI - RS can enforce maximum principles

and the non-negative constraint, we have observed that applying such methodologies

can make the overall advection-diffusion finite element simulation up to 20 times as

expensive even in a parallel environment.

Before we draw any further conclusions of this chapter, we acknowledge that we

did not perform a numerical h-convergence study. This is due to, despite our best

efforts, failure to find an advection-diffusion boundary value problem that consid-

ers anisotropy, has an analytical solution, and violates discrete maximum principles.

We, therefore, illustrated the performance of the proposed computational framework

through other means, as presented in the previous sections.

4.7 CONCLUDING REMARKS

We presented a robust computational framework based on VIs for diffusion and

advection-diffusion equations that satisfies the discrete maximum principles and the

non-negative constraint. The framework is applicable to large-scale and transient

problems, and can be solved in a parallel setting. The main contributions of this

chapter and the salient features of the proposed formulation can be summarized as

follows.
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1. Realizing and posing the advection-diffusion problem as a variational inequality

(VI) to meet the discrete maximum principles and the non-negative constraint.

2. For large-scale problems, we have demonstrated that QP solvers, which is a

special case of VIs, are just as good as VI solvers for symmetric and positive-

definite problems like the diffusion equation. On the other hand, the proposed

VI-based framework can also handle non-self-adjoint operators.

3. Unlike the non-negative framework proposed in [120], which is based on a mixed

least-squares WF, the proposed framework can utilize any finite element formu-

lation including single-field formulations, and these formulations need not result

in symmetric and positive definite coefficient matrices.

4. The proposed framework allows one to leverage on existing state-of-the-art com-

putational frameworks for solving VIs. In particular, the Firedrake project,

which provides access to parallel solvers in PETSc and TAO libraries, can serve

as a suitable platform for implementing the proposed framework, as illustrated

in this chapter.

5. This framework is suitable for many important applications like miscible dis-

placement, subsurface remediation, and transport of radionuclides. In these

applications, one encounters not only highly anisotropic medium properties but

also highly non-linear phenomena due to aqueous complexation and kinetic re-

actions.
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Chapter 5. Conclusions

Subsurface flow and transport modeling is highly critical for energy related ap-

plications, so it is important to not only have the software packages and algorithms

needed to enhance current predictive capabilities but also a thorough understanding

of their computational performances when large-scale problems need to be addressed.

We have presented a high performing parallel computational framework that ensures

element-wise/local mass conservation through the Discontinuous Galerkin finite ele-

ment method, enforces the non-negative constraint through the variational inequality

approach, and is able to solve relevant subsurface transport problems in a parallel

setting. The performance of the software and tools used for this framework is justified

using concepts deriving from a newly proposed performance spectrum model. The

main contributions of this dissertation can be summarized as follows:

1. First, we have designed a conceptual performance spectrum model which simul-

taneously illuminates the impacy of both hardware and algorithmic efficiencies.

As proof-of-concept, we displayed its unique capabilities to compare various ap-

proaches to numerical simulation of PDE’s across hardware platforms, software

implementations, algorithms, and numerical discretization.

2. Second, we have outlined a PETSc-based parallel computational framework

that employs optimization-based routines to enforce the non-negative constraint

for diffusion equations. The performance model presented has shown that the

framework is scalable and is suitable for large-scale subsurface problems that

the DOE face every day.

3. Third, we have extended the PETSc-based framework to enforce the non-

negative constraint for advection-diffusion equations by using the variational
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inequality approach. Its robustness was displayed by solving the miscible dis-

placement of oil in a field-scale heterogeneous reservoir.

5.1 FUTURE WORK

Based on the research conducted in this dissertation, we shall outline four promis-

ing future and ongoing research tasks. On the high performance computing front, the

following issues can be studied:

• Most of the HPC systems chosen for this dissertation are from Intel and AMD

and have similar performance characteristics, but processors from other vendors

such as IBM’s POWER8 [155] or ARM-based systems [140] may tell a different

story. HPC architecture is constantly evolving, and simple benchmarks and

measurements like STREAM Triad may not be sufficient for understanding the

performance of complex solvers or algorithms on these state-of-the-art machines.

• The intensity equations presented in Section 2.3 are relatively easy to incorpo-

rate into any code, but they only provide relative comparisons between various

flavors of hardware and software. An improved methodology for documenting

the [Work] and [TBT] metrics (which represent the total floating-point opera-

tions and total bytes transferred, respectively, as described in Chapter 2) would

certain improve the predictive capabilities of the performance spectrum model.

On the numerical front, the following issues can be studied:

• For subsurface flow models, pressure arising from Darcy’s model cannot be neg-

ative nor violate maximum principles. Multi-physics problems require special

preconditioning and solution methodologies, so a possible research endeavor is

to couple the variational inequality approach with PETSc’s block solvers to en-

sure physically realistic pressures. Non-linear flow through porous media models
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such as Richard’s equation and multi-phase flows also need to be addressed as

these equations are commonly needed for subsurface and energy applications.

• Finally, the proposed computational framework can be extended to advective-

diffusive-reactive geochemical systems. These equations are highly non-linear

and are notoriously difficult to solve efficiently. Negative concentrations may

arise not only because of non-monotone numerical methods but also because of

Newton’s method potentially converging to negative roots in the concentration

solution.
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Appendix A. Firedrake Project

The Firedrake project [141, 110, 111] is a python-based library that provides

an automated system for the solution of partial differential equations using the fi-

nite element method. Like the FEniCS Project [108, 4], it is also built upon several

scientific packages and can employ parallel computing tools across either CPUs or

GPUs to obtain the solution. Two of its main leveraged components are the Unified

Form Language (UFL) [5], used to declare finite element discretizations of variational

forms, and the PyOP2 system [142, 112], used for the parallel assembly of the finite el-

ement discrete formulations. The main difference between the FEniCS and Firedrake

project is that all data structures, linear solvers, non-linear solvers, and optimization

solvers for the latter are provided entirely by the PETSc and TAO libraries. The mesh

can either be generated internally or imported from third party mesh generators like

GMSH [57], and the parallel partitioning of the mesh is achieved through packages

like Chaco [72]. Another important feature utilized in this dissertation is extruded

meshes. The internal mesh algorithm generates and partitions a 2D quadrilateral

base mesh and is extruded into a hexahedron mesh using the algorithms listed in

[77, 116]. To facilitate the readers to be able to reproduce the results presented in

this dissertation, we provided some useful Firedrake-related files below.

Listing A.1: 2D GAL diffusion example
1 # Load f i r e d r a k e environment

2 from f i r e d r a k e import ∗

3

4 # Create mesh

5 mesh = UnitSquareMesh ( 2 0 0 , 2 0 0 , q u a d r i l a t e r a l=True )

6

7 # Function s p a c e s

8 P = FunctionSpace ( mesh , ' Lagrange ' , 1)

9 Q = TensorFunctionSpace ( mesh , ' Lagrange ' , 1)

10 u = T r i a l F u n c t i o n (P)

11 v = TestFunction (P)

12
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13 # Bounds

14 cmin = 0 . 0

15 cmax = PETSc . INFINITY

16 l b = Function (P)

17 l b . a s s i g n ( cmin )

18 ub = Function (P)

19 ub . a s s i g n ( cmax )

20

21 # D i f f u s i o n t e n s o r

22 eps = 1e−4

23 D = i n t e r p o l a t e ( E x p r e s s i o n ( ( ' eps ∗x [ 0 ] ∗ x [0 ]+ x [ 1 ] ∗ x [ 1 ] ' , '−(1−eps )∗ x [ 0 ] ∗ x [ 1 ] ' ,

24 '−(1−eps )∗ x [ 0 ] ∗ x [ 1 ] ' , ' eps ∗x [ 1 ] ∗ x [1 ]+ x [ 0 ] ∗ x [ 0 ] ' ) , eps=eps ) ,Q)

25

26 # Forcing f u n c t i o n

27 l b = 0 . 3 7 5

28 ub = 0 . 6 2 5

29 f = i n t e r p o l a t e ( E x p r e s s i o n ( ( ' x [ 0 ] ≥ l b && x [ 0 ]≤ ub && x [ 1 ] ≥ l b &&

30 x [ 1 ] ≤ ub ? 1 . 0 : 0 . 0 ' ) , l b=lb , ub=ub ) ,P)

31

32 # GAL f o r m u l a t i o n

33 a = dot (D ∗ grad ( u ) , grad ( v ) ) ∗ dx

34 L = v ∗ f ∗ dx

35

36 # Homogeneous boundary c o n d i t i o n s

37 bcs = Dir ichletBC (P, Constant ( 0 . 0 ) , ( 1 , 2 , 3 , 4 ) )

38

39 # Assemble c o e f f i c i e n t matrix

40 A = assemble ( a , bcs=bcs )

41

42 # Assemble f o r c i n g v e c t o r

43 tmp = Function (P)

44 bcs . apply (tmp)

45 b = Function (P)

46 b f r e e = assemble (L)

47 rhs_bcs = assemble ( a c t i o n ( a , tmp ) )

48 b . a s s i g n ( b f r e e − rhs_bcs )

49 bcs . apply ( b )

50

51 # Create PETSc s o l v e r

52 i n i t i a l _ s o l v e r = PETSc .KSP ( ) . c r e a t e (PETSc .COMM_WORLD)

53 i n i t i a l _ s o l v e r . s e t O p t i o n s P r e f i x ( " i n i t i a l _ " )

54 i n i t i a l _ s o l v e r . s e t O p e r a t o r s (A.M. handle )

55 i n i t i a l _ s o l v e r . setFromOptions ( )

56 i n i t i a l _ s o l v e r . setUp ( )

57

58 # Solve problem

59 s o l u t i o n = Function (P)

60 with b . dat . vec_ro as b_vec , s o l u t i o n . dat . vec as sol_vec :

61 i n i t i a l _ s o l v e r . s o l v e ( b_vec , sol_vec )

Listing A.2: 2D SUPG advection-diffusion example
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1 # Load f i r e d r a k e environment

2 from f i r e d r a k e import ∗

3

4 # Load GMSH f i l e

5 mesh = Mesh ( ' square_hole . msh ' )

6

7 # Function s p a c e s

8 P = FunctionSpace ( mesh , ' Lagrange ' , 1)

9 V = VectorFunctionSpace ( mesh , ' Lagrange ' , 1)

10 u = T r i a l F u n c t i o n (P)

11 v = TestFunction (P)

12

13 # Bounds

14 cmin = 0 . 0

15 cmax = 1 . 0

16 l b = Function (P)

17 l b . a s s i g n ( cmin )

18 ub = Function (P)

19 ub . a s s i g n ( cmax )

20

21 # V e l o c i t y f i e l d

22 v e l o c i t y = i n t e r p o l a t e ( E x p r e s s i o n ( ( ' cos (2∗ p i ∗x [ 1 ] ∗ x [ 1 ] ) ' ,

23 ' s i n (2∗ p i ∗x [ 0 ] ) + cos (2∗ p i ∗x [ 0 ] ∗ x [ 0 ] ) ' ) ) ,V)

24

25 # D i f f u s i o n t e n s o r

26 alphaT = Constant (1 e −5)

27 alphaL = Constant (1 e −1)

28 alphaD = Constant (1 e −9)

29 normv = s q r t ( dot ( v e l o c i t y , v e l o c i t y ) )

30 Id = I d e n t i t y ( mesh . geometric_dimension ( ) )

31 D = ( alphaD + alphaT ∗normv )∗ Id +

32 ( alphaL − alphaT )∗ o u t e r ( v e l o c i t y , v e l o c i t y )/ normv

33

34 # Forcing f u n c t i o n

35 f = Constant ( 0 . 0 )

36

37 # SUPG weak form

38 h = C e l l S i z e ( mesh )

39 Pe = h /(2∗ normv )∗ dot ( v e l o c i t y , grad ( v ) )

40 ar = Pe ∗( dot ( v e l o c i t y , grad ( u ) ) − div (D∗ grad ( u ) ) ) ∗ dx

41 a = ar + v∗ dot ( v e l o c i t y , grad ( u ) ) ∗ dx + dot ( grad ( v ) ,D∗ grad ( u ) ) ∗ dx

42 a = dot (D∗ grad ( u ) , grad ( v ) ) ∗ dx

43 L = ( v + Pe )∗ f ∗dx

44

45 # Boundary c o n d i t i o n s

46 bc1 = Dir ichletBC (P, Constant ( 0 . 0 ) , ( 1 2 , 1 3 , 1 4 , 1 5 ) ) # Outer square

47 bc2 = Dir ichletBC (P, Constant ( 1 . 0 ) , ( 1 6 , 1 7 , 1 8 , 1 9 ) ) # In n e r square

48 bcs = [ bc1 , bcs2 ]

49

50 # Homogeneous boundary c o n d i t i o n s

51 bcs = Dir ichletBC (P, Constant ( 0 . 0 ) , ( 1 , 2 , 3 , 4 ) )

52

53 # Assemble c o e f f i c i e n t matrix

54 A = assemble ( a , bcs=bcs )

55

56 # Assemble f o r c i n g v e c t o r
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57 tmp = Function (P)

58 f o r bc i n bcs :

59 bc . apply (tmp)

60 b = Function (P)

61 b f r e e = assemble (L)

62 rhs_bcs = assemble ( a c t i o n ( a , tmp ) )

63 b . a s s i g n ( b f r e e − rhs_bcs )

64 f o r bc i n bcs :

65 bc . apply ( b )

66

67 # Create PETSc s o l v e r

68 i n i t i a l _ s o l v e r = PETSc .KSP ( ) . c r e a t e (PETSc .COMM_WORLD)

69 i n i t i a l _ s o l v e r . s e t O p t i o n s P r e f i x ( " i n i t i a l _ " )

70 i n i t i a l _ s o l v e r . s e t O p e r a t o r s (A.M. handle )

71 i n i t i a l _ s o l v e r . setFromOptions ( )

72 i n i t i a l _ s o l v e r . setUp ( )

73

74 # Solve problem

75 s o l u t i o n = Function (P)

76 with b . dat . vec_ro as b_vec , s o l u t i o n . dat . vec as sol_vec :

77 i n i t i a l _ s o l v e r . s o l v e ( b_vec , sol_vec )

Listing A.3: 3D DG advection-diffusion example
1 # Load f i r e d r a k e environment

2 from f i r e d r a k e import ∗

3

4 # Number o f e lements i n each s p a t i a l dimension

5 seed = 40

6

7 # 2D base mesh

8 mesh = UnitSquareMesh ( seed , seed , q u a d r i l a t e r a l=True )

9 # Extruded mesh

10 mesh = ExtrudedMesh ( meshbase , seed )

11

12 # Function s p a c e s

13 P = FunctionSpace ( mesh , 'DG' , 1)

14 V = VectorFunctionSpace ( mesh , 'DG' , 1)

15 u = T r i a l F u n c t i o n (P)

16 v = TestFunction (P)

17

18 # Bounds

19 cmin = 0 . 0

20 cmax = PETSc . INFINITY

21 l b = Function (P)

22 l b . a s s i g n ( cmin )

23 ub = Function (P)

24 ub . a s s i g n ( cmax )

25

26 # V e l o c i t y f i e l d

27 v e l o c i t y = i n t e r p o l a t e ( E x p r e s s i o n ( ( ' 0 . 3 ∗ s i n (2∗ p i ∗x [ 2 ] ) + cos (3∗ p i ∗x [ 1 ] ) ' ,

28 ' 0 . 6 5 ∗ s i n (2∗ p i ∗x [ 0 ] ) + 0 . 3 ∗ cos (5∗ p i ∗x [ 2 ] ) ' ,
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29 ' s i n (4∗ p i ∗x [ 1 ] ) + 0 . 6 5 ∗ cos (6∗ p i ∗x [ 0 ] ) ' ) ) ,V)

30

31 # D i f f u s i o n t e n s o r

32 alphaT = Constant (1 e −5)

33 alphaL = Constant (1 e −1)

34 alphaD = Constant (1 e −9)

35 normv = s q r t ( dot ( v e l o c i t y , v e l o c i t y ) )

36 Id = I d e n t i t y ( mesh . geometric_dimension ( ) )

37 D = ( alphaD + alphaT ∗normv )∗ Id +

38 ( alphaL − alphaT )∗ o u t e r ( v e l o c i t y , v e l o c i t y )/ normv

39

40 # Forcing f u n c t i o n

41 f 1 = i n t e r p o l a t e ( E x p r e s s i o n ( ( ' x [ 0 ] ≥ 0 . 4 && x [ 0 ] ≤ 0 . 5 && x [ 1 ] ≥ 0 . 2 &&

42 x [ 1 ] ≤ 0 . 3 && x [ 2 ] ≥ 0 . 1 && x [ 2 ] ≤ 0 . 2 ? 1 . 0 : 0 . 0 ' ) ) ,P)

43 f 2 = i n t e r p o l a t e ( E x p r e s s i o n ( ( ' x [ 0 ] ≥ 0 . 8 && x [ 0 ] ≤ 0 . 9 && x [ 1 ] ≥ 0 . 4 &&

44 x [ 1 ] ≤ 0 . 5 && x [ 2 ] ≥ 0 . 2 && x [ 2 ] ≤ 0 . 3 ? 1 . 0 : 0 . 0 ' ) ) ,P)

45 f 3 = i n t e r p o l a t e ( E x p r e s s i o n ( ( ' x [ 0 ] ≥ 0 . 5 && x [ 0 ] ≤ 0 . 6 && x [ 1 ] ≥ 0 . 7 &&

46 x [ 1 ] ≤ 0 . 8 && x [ 2 ] ≥ 0 . 3 && x [ 2 ] ≤ 0 . 4 ? 1 . 0 : 0 . 0 ' ) ) ,P)

47 f 4 = i n t e r p o l a t e ( E x p r e s s i o n ( ( ' x [ 0 ] ≥ 0 . 3 && x [ 0 ] ≤ 0 . 4 && x [ 1 ] ≥ 0 . 5 &&

48 x [ 1 ] ≤ 0 . 6 && x [ 2 ] ≥ 0 . 2 && x [ 2 ] ≤ 0 . 3 ? 1 . 0 : 0 . 0 ' ) ) ,P)

49 f 5 = i n t e r p o l a t e ( E x p r e s s i o n ( ( ' x [ 0 ] ≥ 0 . 5 && x [ 0 ] ≤ 0 . 6 && x [ 1 ] ≥ 0 . 2 &&

50 x [ 1 ] ≤ 0 . 3 && x [ 2 ] ≥ 0 . 6 && x [ 2 ] ≤ 0 . 7 ? 1 . 0 : 0 . 0 ' ) ) ,P)

51 f 6 = i n t e r p o l a t e ( E x p r e s s i o n ( ( ' x [ 0 ] ≥ 0 . 6 && x [ 0 ] ≤ 0 . 7 && x [ 1 ] ≥ 0 . 5 &&

52 x [ 1 ] ≤ 0 . 6 && x [ 2 ] ≥ 0 . 7 && x [ 2 ] ≤ 0 . 8 ? 1 . 0 : 0 . 0 ' ) ) ,P)

53 f 7 = i n t e r p o l a t e ( E x p r e s s i o n ( ( ' x [ 0 ] ≥ 0 . 4 && x [ 0 ] ≤ 0 . 5 && x [ 1 ] ≥ 0 . 7 &&

54 x [ 1 ] ≤ 0 . 8 && x [ 2 ] ≥ 0 . 8 && x [ 2 ] ≤ 0 . 9 ? 1 . 0 : 0 . 0 ' ) ) ,P)

55 f 8 = i n t e r p o l a t e ( E x p r e s s i o n ( ( ' x [ 0 ] ≥ 0 . 1 && x [ 0 ] ≤ 0 . 2 && x [ 1 ] ≥ 0 . 4 &&

56 x [ 1 ] ≤ 0 . 5 && x [ 2 ] ≥ 0 . 7 && x [ 2 ] ≤ 0 . 8 ? 1 . 0 : 0 . 0 ' ) ) ,P)

57 f = f 1 + f 2 + f 3 + f 4 + f 5 + f 6 + f 7 + f 8

58

59 # Parameters

60 h = Constant (1/ f l o a t ( seed ) ) # h−s i z e

61 gamma = Constant ( 8 / 3 ) # Penalty term

62 n = FacetNormal ( mesh ) # Unit outward normal

63 vn = 0 . 5 ∗ ( dot ( v e l o c i t y , n ) + abs ( dot ( v e l o c i t y , n ) ) ) # Upwinding term

64

65 # DG weak f o r m u l a t i o n

66 a = i n n e r (D ∗ grad ( u ) , grad ( v ) ) ∗ dx ( d e g r e e =(3 ,3)) \

67 − dot ( jump ( v , n ) , avg (D∗ grad ( u ) ) ) ∗ ( dS_h + dS_v) \

68 − dot ( avg (D∗ grad ( v ) ) , jump ( u , n ) ) ∗ ( dS_h + dS_v) \

69 + gamma/h∗ dot ( jump ( v , n ) , jump ( u , n ) ) ∗ ( dS_h + dS_v) \

70 − dot ( grad ( v ) , v e l o c i t y ∗u )∗ dx ( d e g r e e =(3 ,3)) \

71 + dot ( jump ( v ) , vn ( '+ ' )∗ u ( '+ ')−vn ( '− ' )∗ u ( '− ' ) ) ∗ ( dS_h+dS_v) \

72 + dot ( v , vn∗u ) ∗ ( ds_v+ds_t+ds_b )

73 L = v ∗ f ∗ dx ( d e g r e e =(3 ,3))

74

75 # Boundary c o n d i t i o n s

76 bc1 = Dir ichletBC (V, Constant ( 0 . 0 ) , ( 1 , 2 , 3 , 4 ) , method=" g e o m e t r i c " )

77 bc2 = Dir ichletBC (V, Constant ( 0 . 0 ) , " bottom " , method=" g e o m e t r i c " )

78 bc3 = Dir ichletBC (V, Constant ( 0 . 0 ) , " top " , method=" g e o m e t r i c " )

79 bcs = [ bc1 , bc2 , bc3 ]

80

81 # Homogeneous boundary c o n d i t i o n s

82 bcs = Dir ichletBC (P, Constant ( 0 . 0 ) , ( 1 , 2 , 3 , 4 ) )

83

84 # Assemble c o e f f i c i e n t matrix
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85 A = assemble ( a , bcs=bcs )

86

87 # Assemble f o r c i n g v e c t o r

88 tmp = Function (P)

89 f o r bc i n bcs :

90 bc . apply (tmp)

91 b = Function (P)

92 b f r e e = assemble (L)

93 rhs_bcs = assemble ( a c t i o n ( a , tmp ) )

94 b . a s s i g n ( b f r e e − rhs_bcs )

95 f o r bc i n bcs :

96 bc . apply ( b )

97

98 # Create PETSc s o l v e r

99 i n i t i a l _ s o l v e r = PETSc .KSP ( ) . c r e a t e (PETSc .COMM_WORLD)

100 i n i t i a l _ s o l v e r . s e t O p t i o n s P r e f i x ( " i n i t i a l _ " )

101 i n i t i a l _ s o l v e r . s e t O p e r a t o r s (A.M. handle )

102 i n i t i a l _ s o l v e r . setFromOptions ( )

103 i n i t i a l _ s o l v e r . setUp ( )

104

105 # Solve problem

106 s o l u t i o n = Function (P)

107 with b . dat . vec_ro as b_vec , s o l u t i o n . dat . vec as sol_vec :

108 i n i t i a l _ s o l v e r . s o l v e ( b_vec , sol_vec )

Listing A.4: GMSH geometry file for Listing A.2
1 Point ( 1 ) = {0 , 0 , 0 , 1 . 0 } ;

2 Point ( 2 ) = {1 , 0 , 0 , 1 . 0 } ;

3 Point ( 3 ) = {1 , 1 , 0 , 1 . 0 } ;

4 Point ( 4 ) = {0 , 1 , 0 , 1 . 0 } ;

5 Point ( 5 ) = {4/9 , 4/9 , 0 , 1 . 0 } ;

6 Point ( 6 ) = {5/9 , 4/9 , 0 , 1 . 0 } ;

7 Point ( 7 ) = {5/9 , 5/9 , 0 , 1 . 0 } ;

8 Point ( 8 ) = {4/9 , 5/9 , 0 , 1 . 0 } ;

9 Line ( 1 ) = {1 , 2 } ;

10 Line ( 2 ) = {2 , 3 } ;

11 Line ( 3 ) = {3 , 4 } ;

12 Line ( 4 ) = {4 , 1 } ;

13 Line ( 5 ) = {5 , 6 } ;

14 Line ( 6 ) = {6 , 7 } ;

15 Line ( 7 ) = {7 , 8 } ;

16 Line ( 8 ) = {8 , 5 } ;

17 Line Loop ( 9 ) = {4 , 1 , 2 , 3 } ;

18 Line Loop ( 1 0 ) = {8 , 5 , 6 , 7 } ;

19 Plane S u r f a c e ( 1 1 ) = {9 , 1 0 } ;

20 P h y s i c a l Line ( 1 2 ) = {4};

21 P h y s i c a l Line ( 1 3 ) = {1};

22 P h y s i c a l Line ( 1 4 ) = {2};

23 P h y s i c a l Line ( 1 5 ) = {3};

24 P h y s i c a l Line ( 1 6 ) = {7};

25 P h y s i c a l Line ( 1 7 ) = {6};
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26 P h y s i c a l Line ( 1 8 ) = {5};

27 P h y s i c a l Line ( 1 9 ) = {8};

28 P h y s i c a l S u r f a c e ( 2 0 ) = {11};

Listing A.5: Semi-smooth (VI - SS) method
1 # Create TAO o b j e c t

2 s s _ s o l v e r = PETSc .TAO( ) . c r e a t e (PETSc .COMM_WORLD)

3 s s _ s o l v e r . s e t O p t i o n s P r e f i x ( " ss_ " )

4

5 # Semi−smooth c a l l −backs

6 d e f ss_formJac ( tao , petsc_x , petsc_J , petsc_JP , A=None , a=None , bcs=None ) :

7 A = assemble ( a , bcs=bcs , t e n s o r=A)

8 A.M. _ f o r c e _ e v a l u a t i o n ( )

9 d e f ss_formFunc ( tao , petsc_x , petsc_g , A=None , a=None , b=None , bcs=None ) :

10 A = assemble ( a , bcs=bcs , t e n s o r=A)

11 with b . dat . vec as b_vec :

12 A.M. handle . mult ( petsc_x , petsc_g )

13 petsc_g . axpy ( −1.0 , b_vec )

14

15 # Setup

16 ss_con = Function ( s o l u t i o n . funct ion_space ( ) )

17 with ss_con . dat . vec as con_vec , l b . dat . vec as lb_vec , ub . dat . vec as ub_vec :

18 s s _ s o l v e r . s e t C o n s t r a i n t s ( ss_formFunc , con_vec , kargs={ 'A ' :A, ' a ' : a , ' b ' : b , ' bcs ' : bcs })

19 s s _ s o l v e r . s e t J a c o b i a n ( ss_formJac ,A.M. handle , kargs={ 'A ' :A, ' a ' : a , ' bcs ' : bcs })

20 s s _ s o l v e r . setType (PETSc .TAO. Type . SSFLS ) # can a l s o be ASFLS/SSILS/ASILS

21 s s _ s o l v e r . setVariableBounds ( lb_vec , ub_vec )

22 s s _ s o l v e r . setFromOptions ( )

23

24 # Solve problem

25 d e f v i s s ( ) :

26 with s o l u t i o n . dat . vec as sol_vec :

27 s s _ s o l v e r . s o l v e ( sol_vec )

Listing A.6: Reduced-space active set (VI - RS) method
1 # Create SNES o b j e c t

2 r s _ s o l v e r = PETSc . SNES ( ) . c r e a t e (PETSc .COMM_WORLD)

3 r s _ s o l v e r . s e t O p t i o n s P r e f i x ( " rs_ " )

4

5 # Reduced−space a c t i v e −s e t c a l l −backs

6 d e f rs_formJac ( snes , petsc_x , petsc_J , petsc_JP ) :

7 pass

8 d e f rs_formFunc ( snes , petsc_x , petsc_g , A=None , b=None ) :

9 with b . dat . vec as b_vec :

10 A.M. handle . mult ( petsc_x , petsc_g )

11 petsc_g . axpy ( −1.0 , b_vec )

12 rs_con = Function ( s o l u t i o n . funct ion_space ( ) )

13
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14 # Solve problem

15 d e f v i r s ( ) :

16 with s o l u t i o n . dat . vec as sol_vec , l b . dat . vec as lb_vec , ub . dat . vec as ub_vec :

17 with rs_con . dat . vec as con_vec :

18 r s _ s o l v e r . s e t F u n c t i o n ( rs_formFunc , con_vec , kargs={ 'A ' :A, ' b ' : b })

19 r s _ s o l v e r . s e t J a c o b i a n ( rs_formJac ,A.M. handle )

20 r s _ s o l v e r . setType (PETSc . SNES . Type .VINEWTONRSLS)

21 r s _ s o l v e r . setVariableBounds ( lb_vec , ub_vec )

22 r s _ s o l v e r . setFromOptions ( )

23 r s _ s o l v e r . s o l v e ( None , sol_vec )

24 r s _ s o l v e r . r e s e t ( )

Listing A.7: Trust region Newton (QP - TRON) method
1 # Create TAO o b j e c t

2 t r o n _ s o l v e r = PETSc .TAO( ) . c r e a t e (PETSc .COMM_WORLD)

3 t r o n _ s o l v e r . s e t O p t i o n s P r e f i x ( " tron_ " )

4

5 # TRON c a l l −backs

6 d e f tron_formHess ( tao , petsc_x , petsc_H , petsc_HP ) :

7 pass

8 d e f tron_formObjGrad ( tao , petsc_x , petsc_g , A=None , b=None ) :

9 with b . dat . vec_ro as b_vec :

10 A.M. handle . mult ( petsc_x , petsc_g )

11 xtHx = petsc_x . dot ( petsc_g )

12 x t f = petsc_x . dot ( b_vec )

13 petsc_g . axpy ( −1.0 , b_vec )

14 r e t u r n 0 . 5 ∗ xtHx − x t f

15

16 # Setup

17 with l b . dat . vec as lb_vec , ub . dat . vec as ub_vec :

18 t r o n _ s o l v e r . setVariableBounds ( lb_vec , ub_vec )

19 t r o n _ s o l v e r . s e t O b j e c t i v e G r a d i e n t ( tron_formObjGrad , kargs={ 'A ' :A, ' b ' : b })

20 t r o n _ s o l v e r . s e t H e s s i a n ( tron_formHess ,A.M. handle )

21 t r o n _ s o l v e r . setType (PETSc .TAO. Type .TRON)

22 t r o n _ s o l v e r . setFromOptions ( )

23

24 # Solve problem

25 d e f qptron ( ) :

26 with s o l u t i o n . dat . vec as sol_vec :

27 t r o n _ s o l v e r . s o l v e ( sol_vec )
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Appendix B. Solution strategy for the Darcy equa-
tion

B.1 WEAK FORMULATION

Let w(x) and q(x) represent the weighting functions for velocity and pressure

respectively. The relevant function spaces read as follows:

V :=
{

v ∈ (L2(Ω))d
∣∣∣∣ div[v] ∈ L2(Ω), v · n̂ = vn on Γv

}
, (B.1.1a)

W :=
{

w ∈ (L2(Ω))d
∣∣∣∣ div[w] ∈ L2(Ω), w · n̂ = 0 on Γv

}
, and (B.1.1b)

P := L2(Ω), (B.1.1c)

where L2(Ω) is the space of square integrable functions. The WF under the classi-

cal mixed formulation for the Darcy equations (4.6.1a) through (4.6.1d) reads: Find

v(x) ∈ V and p(x) ∈ P such that we have:

B(w, q; v, p) = L(w, q) ∀w(x) ∈ W , q(x) ∈ P , (B.1.2)

where the bilinear form and linear functional are:

B(w, q; v, p) :=
(

w(x); µ(c(x))
k(x) v(x)

)
Ω

− (div[w(x)]; p(x))Ω − (q(x); div[w(x)])Ω and (B.1.3)

L(w, q) := (w(x); ρb(x))Ω −
(
w(x) · n̂(x); pP

)
Γp
. (B.1.4)

The lowest order Raviart-Thomas (RT0) space [143] is employed because it ensures

element-wise mass conservation. To map the RT0 element onto quadrilateral and

extruded hexahedrons, contravariant Piola mapping is used (see [146, 17] for further
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details). The discrete formulations may be assembled into the following block format:

Kvv Kvp

Kpv Kpp


v

p

 =

f v

f p

 , (B.1.5)

where the terms in equation (B.1.3) respectively correspond to Kvv, Kvp, and Kpv,

and equation (B.1.4) corresponds to f v. It should be noted that Kpp and f p are a

zero matrix and zero vector, respectively.

B.2 PRECONDITIONING METHODOLOGY

Equation (B.1.5) is a saddle-point system which is tricky to precondition effec-

tively for large-scale problems. Several classes of iterative solvers and preconditioning

strategies exist for these types of problems [16, 47, 125]. One could alternatively em-

ploy hybridization techniques [39] which introduces Lagrange multipliers to reduce

the difficulty of solving such problems. In this dissertation, we employed a Schur

complement approach to precondition the saddle-point system. Conceptually, the

problem at hand is a 2×2 block matrix:

K =

Kvv Kvp

Kpv 0

 , (B.2.1)

which admits a full factorization of

K =

 I 0

KpvK−1
vv I


Kvv 0

0 S


I K−1

vv Kvp

0 I

 , (B.2.2)

where I is the identity matrix and

S = −KpvK−1
vv Kvp, (B.2.3)

183



is the Schur complement. The inverse can therefore be written as:

K−1 =

I −K−1
vv Kvp

0 I


K−1

vv 0

0 S−1


 I 0

−KpvK−1
vv I

 . (B.2.4)

The task at hand is to approximate K−1
vv and S−1. Since Kvv is a mass matrix for the

Darcy equation, we can invert it using the ILU(0) (incomplete lower upper) solver.

We note that the Schur complement is spectrally a Laplacian, so we can employ a

diagonal mass-lumping of Kvv to give a good approximation to K−1
vv . That is, we

can use

Sp = −Kpvdiag (Kvv)−1 Kvp, (B.2.5)

to precondition the inner solver inverting S. For this block we employ the multi-grid

V-cycle on Sp using the Trilinos ML package ([147]). These blocks are symmetric and

positive-definite so one could employ the CG solvers to obtain the inverses. When

the inverses are obtained, only a single sweep of flexible GMRES is needed to obtain

the full solution. However, instead of individually solving for K−1
vv and Sp, we could

alternatively apply a single sweep of ILU(0) and multi-grid, respectively, and rely on

GMRES to solve the entire block system. By providing less accurate approximations

of the inner individual blocks, the number of GMRES iterations for the overall sys-

tem increases but the numerical accuracy remains the same. We have found that

this methodology is computationally less expensive and more practical for large-scale

computations. One could alternatively employ one of the factorizations (either lower

or upper) to decrease the computational cost associated with setting up the precon-

ditioner. Below are some necessary PETSc command-line options for the described

Schur complement approach.

184



Listing B.1: PETSc solver options for the Schur complement approach
1 parameters = {

2 # Outer s o l v e r

3 " ksp_type " : " gmres " ,

4

5 # Schur complement with f u l l f a c t o r i z a t i o n

6 " pc_type " : " f i e l d s p l i t " ,

7 " p c _ f i e l d s p l i t _ t y p e " : " schur " ,

8 " p c _ f i e l d s p l i t _ s c h u r _ f a c t _ t y p e " : " f u l l " ,

9

10 # Diagonal mass lumping

11 " p c _ f i e l d s p l i t _ s c h u r _ p r e c o n d i t i o n " : " s e l f p " ,

12

13 # S i n g l e sweep o f ILU ( 0 ) f o r the mass matrix

14 " f i e l d s p l i t _ 0 _ k s p _ t y p e " : " p r e o n l y " ,

15 " f i e l d s p l i t _ 0 _ p c _ t y p e " : " i l u " ,

16

17 # S i n g l e sweep o f multi−g r i d f o r the Schur complement

18 " f i e l d s p l i t _ 1 _ k s p _ t y p e " : " p r e o n l y " ,

19 " f i e l d s p l i t _ 1 _ p c _ t y p e " : " ml "

20 }
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