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ABSTRACT

The brain is a control system with a strong impact on all human functions. Inspired by

the recent advances in wearable technologies, we design wearable-machine interface (WMI)

architectures for controlling brain responses. The WMI architecture encompasses collecting

physiological data using wearable devices, inferring neural stimuli underlying pulsatile sig-

nals, estimating an unobserved state based on the underlying stimuli, designing the control,

and closing the loop. In this thesis, we design WMI architectures for regulating human’s

cognitive stress state and controlling energy levels in patients with hypercortisolism.

Hypercortisolism, which corresponds to the excessive levels of cortisol hormone, is asso-

ciated with tiredness and fatigue during the day and disturbed sleep at night. Automating

the use of medications that are effective by either elevating or lowering the energy levels

might help patients with hypercortisolism to experience more balanced energy cycles re-

quired for their daily activities and better sleep patterns at night. Keeping cognitive stress

at a healthy range can improve the overall quality of life by helping the subjects to decrease

their high levels of arousal to relax them and elevate their low levels of arousal to increase

the engagement. Skin conductance data provides us with valuable information regarding

one’s cognitive stress-related state. We propose to use this physiological data collected via

wearable devices to infer individuals’ arousal state.

In the first part of this research, we simulate multi-day cortisol profile data for mul-

tiple subjects both in healthy conditions and with Cushing’s disease. Then, we present a

state-space model to relate an internal hidden cognitive energy state to subject’s cortisol

secretion patterns. Particularly, we consider circadian upper and lower bound envelopes

on cortisol levels, and timings of hypothalamic pulsatile activity underlying cortisol se-

cretions as continuous and binary observations, respectively. By estimating the hidden

energy state and incorporating the simulated hypothetical medication dynamics, we design

a knowledge-based control system and close the loop. In the second part of this research, we

design a simulation environment to control a cognitive stress-related state in a closed-loop

manner. Hence, using the state-space approach, we relate internal cognitive stress state

to the changes in skin conductance. Then, we estimate the hidden stress state and close
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the loop by designing a fuzzy controller. Next, we propose supervised control architectures

to enhance the closed-loop performance in cognitive stress regulation. To further enhance

the closed-loop design, we consider adaptive and robust control systems to handle model

uncertainty and additional disturbance input.

Finally, we design and perform multiple human-subject experiments to further explore

safe actuation to regulate internal hidden brain states in real-world. In these novel ex-

periments, we employ wearable technologies and publish data sets that could be further

investigated to model the dynamics of proposed safe actuation. These studies are the first

steps toward the goal of treating similar mental and hormone-related disorders in real-world

situations. Analyzing the human subjects’ responses to the effective safe actuation would

further enhance the efficiency of proposed approaches and lead us to a practical automated

personalized closed-loop architecture.
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1 Introduction

1.1 Motivation and Objective

The brain is a complex control system with a strong impact on all human functions, such

as adjusting autonomic nervous system and hormone-release patterns in response to internal

or external stimuli. In recent years, stress-related health issues and hormone-related diseases

have attracted massive attention [1, 2, 3, 4, 5, 6, 7]. According to the American Institute of

Stress, 77% of individuals experience high levels of stress that affects their physical health

and 73% suffer from stress that influences their mental health [8]. Despite recent advances

in technology, handling cognitive stress-related disorders is still a major problem around the

globe and impacts quality of life in general [9]. Furthermore, any dysregulation in hormonal

release could also affect the individuals in multiple ways. For instance, abnormal secretion

of cortisol, which is a glucocorticoid hormone and isreleased in a pulsatile manner, can lead

to irregular daily energy patterns such as feeling fatigued, mood irregularities, and sleep

disorders [10, 11]. While there have been growing advances in medical fields, there still exist

gaps for mental health enhancement and addressing hormone-related disorders [12, 13].

In this dissertation, inspired by the recent advances in wearable technologies, we propose

wearable machine interface (WMI) architectures. Hence, we design closed-loop WMI archi-

tectures for controlling brain responses. As presented in Figure 1, the WMI architecture

encompasses collecting physiological data using wearable devices, inferring neural stimuli

underlying pulsatile signals, estimating an unobserved state based on the underlying stim-

uli, designing the control, and closing the loop in real-time. To close the loop, we propose

to use safe actuation such as hypothetical medication, listening to music, drinking bever-

ages, or smelling fragrances (Figure 1). Compared to the existing open-loop approaches,

which aim to employ actuation without any feedback from the human body, we propose to

regulate internal states by monitoring physiological measurements that could be collected

using wearable devices [5, 6]. In this dissertation, we aim to employ WMI architectures to

(1) build a novel architecture for energy management in patients with hypercortisolism and

1



(2) investigate different approaches for internal cognitive stress state regulation.

Human

Neural 
Impulses

State 
Estimation

Control 
Design

Figure 1: Overview of wearable machine interface architectures.

1.2 Prior Studies and Existing Challenges

Hypercortisolism, or Cushing’s disease, which corresponds to the excessive levels of

cortisol hormone, is associated with fatigue during the day and disturbed sleep at night [14].

Cushing’s disease is a rare disorder and affects individuals between 25 to 40 years old. It

also targets females five times more frequently than males [15]. While the initial treatment

option for Cushing’s disease is a surgery with a 78% success rate, evidence shows that

relapse happens in almost 13% of patients [16]. For the patients in whom the surgery is not

successful or feasible, medical therapy is unavoidable [17]. As patients with hypercortisolism

suffer from lack of energy for their daily life and balanced sleep cycles at night [18], we

propose a closed-loop architecture to automate medications’ intake effective in regulating

energy state. While the proposed approach is one of the very first to manage energy
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imbalance in patients with cortisol-related disorders, real implementation needs further

advancement in wearable technologies to monitor cortisol levels in real-time. To further

explore real-world implementation of the proposed WMI architectures, we intend to handle

internal cognitive stress in a closed-loop manner.

Keeping cognitive stress at a healthy range can improve the overall quality of life: help-

ing subjects to decrease their high levels of arousal, which will make them relaxed, and

elevate their low levels of arousal, which could increase their engagement. Experiencing

high levels of cognitive stress while performing routines, or low cognitive engagement with

the environment, may seriously affect an individual’s life [19]. While there exist methods

for managing stress, there is still a lack of reliable systems that continuously track the

stress levels in individuals and automatically regulate them by suggesting appropriate safe

solutions during daily activities [20, 21]. To this end, we propose a novel architecture to

infer internal stress state by monitoring electrodermal activity. Next, we design and im-

plement multiple control algorithms to close the loop. We then propose novel supervised

control architectures to combine knowledge-based and model-based control techniques to

regulate the internal arousal state in a more efficient way. Considering model uncertainty in

the model dynamics and additional disturbance input caused by potential inter- and intra-

subject variations, we also design adaptive and robust control systems.

To implement the proposed WMI architectures in real-world, we design and perform

multiple human-subject experiments to further investigate effects of potential safe actua-

tion for closing the loop. To this end, we propose to employ safe actuation such as listening

to music, drinking coffee, smelling fragrances, and diaphragmatic breathing to regulate in-

ternal brain states. We perform three sets of closed-loop human-subject experiments. In

experiment 1, we aim to analyze the effectiveness of listening to different kinds of music

while under cognitive load. In experiment 2, we propose to explore the effects of drink-

ing coffee and smelling fragrances as safe actuation in closing the loop. We hypothesize

that taking this actuation would influence the cognitive stress state and affect the cog-

nitive performance. In experiment 3, we design procedures to expose the subjects with
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an existing degree of acrophobia to face their fear conditioning. To investigate how safe

actuation would affect their fear, we propose to use music and diaphragmatic breathing

to close the loop. To measure changes in cognitive arousal, we employ wearable devices.

The collected data further validates our hypothesis in including these safe actuation while

utilizing WMI architectures and closing the loop in a real-world setting. Investigating the

effects of the proposed actuation in individuals’ responses would further enable us to model

their dynamics and incorporate them while closing the loop.

1.3 Thesis Outline

In this research, we employ WMI architectures in closed-loop brain state regulation.

This thesis is conducted in five chapters:

• Chapter 2 is dedicated to regulating energy state in patients with hypercortisolism

and designing a closed-loop control system for automating hypothetical medications.

• Chapter 3 is focused on establishing a simulation system based on experimental data

for exploring control systems techniques in closing the loop and regulating internal

brain cognitive stress-related state.

• Chapter 4 addresses developing supervised control architectures in enhancing the per-

formance of the closed-loop cognitive stress regulation.

• Chapter 5 is arranged to design adaptive and robust control systems to consider model

uncertainty and additional disturbance input while modeling cognitive stress state.

• In chapter 6, we present our novel human-subject experiments to further explore the

effects of safe actuation in closed-loop brain state regulation in real-world.

1.4 Scientific Significance

These studies are the first steps toward the ultimate goal of treating similar mental

and hormone-related disorders in real-world situations. This thesis includes transformative

system-theoretic toolsets for regulating brain internal states in a personalized framework
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that is robust and adaptive to the inter- and intra-subject variabilities. Results of this

research produce control-theoretic tools for different physiological observations. While the

initial focus is on two aspects of brain function, namely internal arousal and energy states,

the proposed architectures open up the opportunity to investigate broader questions in

computational neuroscience. In a similar manner, one may explore other physiological

signals that correspond to different diseases or malfunctions and track the latent state(s)

that could not be measured directly. Consequently, the proposed architectures could be

further expanded to close the loop and regulate other hidden brain state(s).
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2 Closed-loop Energy Regulation in Patients with Hypercor-

tisolism

2.1 An Overview of Closed-Loop Energy Regulation by Monitoring Cor-

tisol Data

The cortisol hormone is the main stress hormone in an individual’s body which is secreted

in a pulsatile process [5, 22, 23, 24]. Cortisol secretion patterns, which are mainly controlled

by the hypothalamus, are critical in assessing various functionalities such as regulating blood

pressure and adjusting blood glucose levels. So, investigating changes in cortisol secretion

would shed some light on one’s internal energy state variations [22, 23, 25]. Adrenocorti-

cotrophic hormone (ACTH) (i.e. a tropic hormone) causes the adrenal cortex to release cor-

tisol in a pulsatile manner [26, 10, 27]. The hypothalamus employs corticotrophin-releasing

hormone (CRH) to stimulate the anterior pituitary to produce ACTH [28, 29]. Any irregular

patterns in cortisol secretions (e.g. too much cortisol release, which is called hypercorti-

solism, or not providing a sufficient amount of cortisol, which is called hypocortisolism) may

cause the imbalance in internal energy variations [30, 31, 32]. These irregularities, which

are common among the Cushing’s patients who are exposed to the hypercortisolism, lead

them to feel fatigue during the daytime and sleep problems at night [33, 34]. Insufficient

release of cortisol early in the morning may result in feeling fatigue during the day. On the

other hand, high levels of cortisol in the evening might cause sleep disturbances at night

[35].

While the initial treatment option for Cushing’s disease is a surgery with a 78% success

rate, evidence shows that the relapse happens in almost 13% of patients [16]. For the

patients in whom the surgery is not successful or feasible, medical therapy is unavoidable

[17]. Due to recent advances in employing novel compounds that can regulate cortisol

secretions, medical therapy has attracted more attention [36]. Nowadays, medical therapy

Chapter two was first presented in part at the proceedings of the 2019 Asilomar Conference on Signals,
Systems, and Computers [5]. Chapter two has been mainly adopted from Fekri Azgomi, Hamid, Jin-Oh
Hahn, and Rose T. Faghih. “Closed-Loop Fuzzy Energy Regulation in Patients With Hypercortisolism via
Inhibitory and Excitatory Intermittent Actuation.” Frontiers in Neuroscience (2021): 909 [4].
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is being suggested in different ways: pre-surgical treatment, post-surgical options for the

patients that fail the surgical option, and the primary remedy for those in whom the surgery

is not considered as an option [17].

The clinical observations in Cushing’s syndrome patients clearly demonstrate a role for

the HPA axis in the regulation of energy balance [37, 38, 23]. While there exist multiple

factors to understand one’s energy variations, there is not any specific method to directly

infer internal energy state. Hence, it is not possible to present the evidence to show the

correlation between energy state and cortisol variations. However, there is evidence that

patients with irregular cortisol patterns experience fatigue during day time and disturbed

sleep cycles at night. For example, authors in [27, 10] have shown that the patients with

fibromyalgia syndrome, which is also associated with the irregular patterns in cortisol se-

cretions, experience fatigue during the day and sleep disorders at night. Researchers in [39]

identified lower cortisol levels in the patients with chronic fatigue syndrome. This evidence

verifies the potential correlation between cortisol measurements and internal energy state.

As it is discussed, patients with Cushing’s syndrome have disturbed circadian rhythm

in their sleep cycles. In this regard, medications with inhibitory effects to lower the en-

ergy state and help the subjects with more balanced sleep cycles could be helpful. An

example of these types of medications could be Melatonin. In the literature, it has been

indicated that excessive cortisol secretions associated with Cushing’s disease may lead to an

irregular Melatonin rhythm [40, 41]. So, taking the advantages of Melatonin in improving

sleep cycles, we can suggest using this medication for inhibitory effects. Although patients

with hypercortisolism usually experience high levels of energy during the evening, they may

suffer a lack of sufficient energy levels during the daytime [10, 27]. As a result, the need

for medications to elevate the energy levels is unavoidable. Medications with excitatory

effects to enhance energy state and prevent the subjects to feel fatigue during the day-

time would be helpful in this regard. An example of these types of medications could be

Methylphenidate. As patients with hypercortisolism suffer from not having enough energy
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levels in the daytime, medications like Methylphenidate could be suggested while imple-

menting the proposed approach in the real world. In literature, it has been validated that

taking two doses of Methylphenidate is significantly effective in relieving fatigue [42, 43].

Due to the potential medications’ side-effects, tolerance, and resistance that a person

shows against the use of specific medications, it is highly important to establish a supervision

layer that enables automated regulation of medication usage [44]. We propose our approach

by taking the advantages of wearable-type devices capable of monitoring blood cortisol in

a non-invasive way as a feedback modality for such supervision. The proposed approach is

the first attempt to automate the regulation of medications required to manage the energy

levels in patients with hypercortisolism in a closed-loop manner.

Recently, there has been an increased interest in employing control theory in advanc-

ing modern medication therapies such as goal-directed fluid therapy [45], cardiopulmonary

management [46], fluid resuscitation [47], and medically induced coma [48, 49]. In a similar

way, and considering how irregular cortisol secretion patterns affect energy state in patients

with hypercortisolism, we leverage control theory in regulating energy variations in these

patients. While there exist medications effective in managing energy levels, there is still a

lack of closed-loop and automated architecture for making the decisions on the time and

dosage of the medications in real-time. Hence, we construct a virtual patient environment

based on the experimental cortisol data for further analysis. Then, we design the control

algorithm that can determine the time and dosage of hypothetical simulated medications

in a real-time automated fashion.

As someone’s energy variations are influenced by changes in their cortisol levels, the

objective of this research is to regulate the energy state by monitoring the cortisol secretion

patterns. To model the internal energy state and relate it to the cortisol variations, we

utilize the state-space model presented in [23]. To close the loop, we simulate hypothetical

medication dynamics and develop a control system. In the present simulation study, we

apply hypothetical medication dynamics as the actuation in a real-time closed-loop brain
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machine interface architecture [5, 6]. As presented in Figure 1, a wearable device mea-

sures the cortisol data in a non-invasive manner. We infer the CRH secretion times via a

deconvolution algorithm [10, 27, 29, 28, 50, 51, 52, 53]. We use the state-space approach

[23, 54] to link the CRH secretion times, which cause the fluctuations in cortisol levels

[5, 23, 55, 56], to the internal energy state. This state-space representation tracks the in-

ternal energy state continuously and provides the capability of utilizing the control systems

theory to close the loop. To estimate the hidden cognitive energy-related state in real-time,

we employ Bayesian filtering method [23]. By incorporating hypothetical dynamical system

model of medications effective in both decreasing and increasing energy levels [42, 41], and

designing a fuzzy controller, we close the loop to regulate the energy state in patients with

hypercortisolism in a simulation environment.

In section 2.2, we explain the steps required for creating the virtual patient environment.

We also discuss the state-space model along with the real-time estimation process. We then

incorporate the hypothetical medication dynamics and propose a knowledge-based control

system to close the loop in real-time. In Section 2.3, we present the outcome of implementing

the proposed approach in regulating the energy state in patients with hypercortisolism.

More particularly, we present the results on two classes of patients: (1) who do not have the

circadian rhythm in their cortisol profiles, and (2) who have the circadian rhythm in their

cortisol profiles. The final results demonstrate that our proposed real-time architecture can

not only track one’s energy state, but also regulate the energy variations in patients with

hypercortisolism utilizing the simulated medication dynamics. Section 2.4 points out the

implications of our findings. This simulation study based on the experimental data is the

first step toward treating other hormone-related disorders.

2.2 Methodologies

Figure 2 illustrates an overview of the proposed closed-loop architecture. The present

study consists of two main parts: the offline process and the real-time closed-loop simula-

tion environment. In the offline part, we first generate multi-day cortisol data for multiple
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Figure 2: Overview of closed-loop energy regulation.

subjects based on their experimental data collected over 24 hours. Although there are re-

cent advances in monitoring cortisol levels using wearable devices [57, 58, 59], there is still

a lack of technologies for real-time multi-day cortisol data collection. Hence, to design a

virtual patient environment, we first follow the results from [23, 54, 60] to simulate cortisol

profiles in both healthy subjects and Cushing’s patients. To extend our preliminary results

presented in [5], we simulate data for ten subjects [29]. This offline process enables us to

examine the performance of the proposed architecture in multiple cases. By performing

deconvolution algorithm, we infer the cortisol secretion times and the circadian upper and

lower envelopes. Utilizing Expectation Maximization (EM) approach, we estimate the cir-

cadian rhythm forcing function along with model parameters. In the offline stage, we also

model dynamical systems for hypothetical medications with both inhibitory (i.e. medica-

tions to lower the cortisol levels) and excitatory (i.e. medications to elevate the cortisol

levels) effects.

As depicted in the bottom section of Figure 2, we take the circadian rhythm forcing

function in the real-time simulation system and relate the internal energy state to the

cortisol secretion times and cortisol upper and lower bound envelopes using the state-space

approach. Employing the Bayesian filtering, which uses the estimated model parameters

calculated with the offline EM algorithm, we estimate the hidden energy-related state in

real-time. Incorporating the dynamical system model of medications and the personalized
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desired levels of energy, we design a fuzzy controller to close the loop. The deigned control

system will take the energy state estimate and determine the time and dosage of each

medication as the actuation in the loop. Hence, it controls cortisol variations which will

result in energy regulation.

2.2.1 Data Simulation

Due to the lack of multi-day experimental measurements of healthy subjects and the

patients with Cushing’s disease, we first simulate multi-day cortisol data profiles [23, 29, 54,

60]. Following [28, 54], cortisol secretion process could be assumed to follow a second-order

stochastic differential equation

dCort1(t)

dt
= −ζ1Cort1(t) + n(t) (1)

and
dCort2(t)

dt
= ζ1Cort1(t)− ζ2Cort2(t), (2)

where Cort1(t) and Cort2(t) are cortisol concentration in adrenal glands and plasma space

at time t, respectively [29]. Moreover, ζ1 stands for cortisol infusion rate from adrenal gland

to the blood, ζ2 corresponds to the cortisol clearance rate by the liver [28, 54]. In addition,

n(t) represents secretory events (pulses) underlying cortisol release. The output equation

yk = Cort2(k) + ψk, where Cort2(k) is the discretized cortisol concentration in plasma

with ψk ∼ N (0, σ2
ψ) as the measurement noise with variance σ2

ψ. We employ estimated

model parameters ζ1 and ζ2 derived in [28]. The details of this information are presented

in Table 1.

To model cortisol secretory events n(t), we follow the approach presented in [54].

• Healthy Profiles: We use the gamma distribution for pulse inter-arrival times and

Gaussian distribution for pulse amplitudes [54]. The corresponding parameters for

gamma distribution are α = 54 and β = 39. The pulse amplitude follows a Gaus-

sian distribution Hk ∼ N (µk, k
2
k), where µk = 6.1 + 3.93 sin( 2πk

1440) − 4.75 cos( 2πk
1440) −

2.53 sin( 4πk
1440)− 3.76 cos( 4πk

1440) and kk = 0.1
√
µk [5, 23].
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Table 1: Infusion and clearance rates associated with the ten simulated cortisol profiles.

Subject number ζ1(min−1) ζ2(min−1)

1 0.0739 0.0067
2 0.0762 0.0057
3 0.0921 0.0082
4 0.1248 0.0061
5 0.0585 0.0122
6 0.0726 0.0095
7 0.0799 0.0107
8 0.0365 0.0091
9 0.0361 0.0090
10 0.0864 0.0073

To simulate the data for patients with Cushing’s disease, we consider two cases: (1)

Cushing’s patients without circadian rhythms in their cortisol profiles, and (2) Cushing’s

patients with circadian rhythms in their cortisol profiles. While cortisol variations in pa-

tients with Cushing’s disease do not follow normal circadian rhythms, at the very early

stages of the disease, the circadian rhythms might be slightly dysregulated [23, 61].

• Cushing’s patients without circadian rhythm: We follow [60, 61] and consider the

inter-arrival times following a gamma distribution that belong to the range of 59± 11

min. Regarding the pulse amplitudes, we assume they are within the range of 38±2.5

µgdL−1 min−1, following a Gaussian distribution [5, 23],

• Cushing’s patients with circadian rhythm: We employ µk = 38.5 + 1.93 sin( 2πk
1440) −

1.6 cos( 2πk
1440)−1.5 sin( 4πk

1440)−3.5 cos( 4πk
1440), kk = 2.5√

38µk
as the Gaussian distribution pa-

rameters in the pulse amplitudes and the same gamma inter-arrival time distribution

as described previously for the Cushing’s patients with circadian rhythm.

Employing the model parameters ζ1 and ζ2 provided in supplementary information and a

vector input of pulse timings and amplitudes n(t) presented above, we simulate the cortisol

profiles. We employ coupled differential equations (1) and (2), and add measurement noise

to generate cortisol profile data for different subjects in three different situations. More

particularly, we simulate the cortisol profiles associated with healthy subjects, Cushing’s
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patients with circadian rhythm in their cortisol profiles and Cushing’s patients without

circadian rhythm in their cortisol profiles over five days for further analysis [25, 29, 54].

The resulting multi-day cortisol profiles are presented in Figures 3–4. In Figures 3–4,

panel (A) displays the healthy profile, panel (B) shows the profile associated with the

Cushing’s patients without circadian rhythm, and panel (C) depicts the profiles associated

with the Cushing’s patients with circadian rhythm. Each panel displays cortisol levels (black

curve), upper bound envelopes (orange curve), and lower bound envelopes (green curve).

2.2.2 State-space Modeling

Cortisol dynamical system explained above will generate the cortisol observations for

our virtual patient environment. We employ the state-space approach presented in [27, 29]

to relate the hidden cognitive energy-related state to cortisol variations. The state-space

approach lets us systematically track internal energy state and control it in real-time [62].

We model the cognitive energy-related state as a first-order state-space representation

xk+1 = ρxk + uk + εk + Ik, (3)

where xk is the hidden internal energy-related state, ρ is a person-specific parameter, uk

is the control input, εk ∼ N (0, σ2
ε ) is the process noise, and Ik is being considered as the

forcing function that keeps the energy variations during wakefulness and sleep in 24 hour

periods. By analyzing the simulated cortisol profiles [23], we design the harmonic forcing

function as

Ik =

2∑
i=1

αi sin
(2πik

1440

)
+ βi cos

(2πik

1440

)
, (4)

where the coefficients αi and βi along with parameter ρ in (61) for each subject/case are

derived using the EM algorithm explained in [23] (Table 2).

Analyzing the discretized cortisol data at a one minute time resolution, we observe that

the presence or absence of the cortisol pulses builds a binary point process [23]. Hence, we

assume the probability of receiving pulses associated with CRH secretion times that results
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Figure 3: Simulated multi-day cortisol profile - Subjects 1-6.
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Figure 4: Simulated multi-day cortisol profile - Subjects 7-10.

in cortisol secretion, ck, follows a Bernoulli distribution

P (ck|pk) = pckk (1− pk)1−ck , (5)

where the probability pk is connected to the energy state xk by the Sigmoid function:

pk =
1

1 + e−(γ0+γ1xk)
. (6)

This model relates the probability pk of observing a CRH pulse event ck to the energy state

xk through person-specific baseline parameters γ0 and γ1 calculated by the offline EM.
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Table 2: Parameters used to generate forcing function (Ik).

Subject number Case α1 β1 α2 β2

A 0.00565 0.00108 −0.00046 −0.00585
1 B 0.00104 0.000003 0.00370 −0.00186

C 0.00280 0.00129 0.00286 −0.000546

A 0.00577 0.00100 −0.00062 −0.00533
2 B 0.00048 −0.00100 0.000011 −0.000006

C 0.00300 −0.00035 −0.00017 −0.00376

A 0.00538 −0.000013 −0.00087 −0.00657
3 B −0.000002 0.000002 0.000009 −0.000002

C 0.00267 −0.00007 −0.00073 −0.00530

A 0.00566 0.00101 −0.00051 −0.00626
4 B 0.00125 0.000006 0.000001 −0.00236

C 0.00285 0.00203 0.00085 −0.00595

A 0.00522 0.00191 −0.000014 −0.00693
5 B 0.00284 0.00069 −0.000006 −0.00099

C 0.00393 0.00080 0.00334 −0.00659

A 0.00534 0.00190 0.00105 −0.00672
6 B 0.00163 −0.00233 −0.00064 −0.00453

C −0.00295 −0.00095 0.00238 −0.00911

A 0.00516 0.00220 0.00017 −0.00659
7 B −0.00079 −0.00235 −0.00031 −0.00381

C 0.00241 −0.00082 0.00245 −0.00895

A 0.00560 0.00003 −0.00064 −0.00613
8 B 0.00023 0.00063 0.00190 0.00060

C 0.00186 −0.000032 −0.00001 −0.00613

A 0.00543 0.00114 −0.00117 −0.00637
9 B 0.00104 0.00188 −0.00152 0.00095

C 0.00267 0.00286 −0.00140 −0.00306

A 0.00559 0.00124 −0.00049 −0.00632
10 B 0.00283 −0.00052 0.00002 0.00288

C 0.00445 −0.00003 −0.00054 −0.00416
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In addition to the cortisol secretion times as binary observations, we use the upper and

the lower bound envelopes of the blood cortisol measurements as continuous observations

to estimate the energy state xk [23]. We label these two upper and lower envelopes as Rk

and Sk, respectively. Assuming there exists a linear relationship between these envelopes

and the corresponding state xk:

Rk = r0 + r1xk + vk (7)

and Sk = s0 + s1xk + wk, (8)

where vk ∼ N (0, σ2
v), wk ∼ N (0, σ2

w), and r0, r1, s0, s1 are regression coefficients obtained

by offline EM algorithm [23, 63, 56].

It is worth mentioning that while there exist recent advances in performing deconvo-

lution methods, there is still lack of real-time deconvolution algorithm. With real-time

deconvolution tool, we directly infer the cortisol impulses n(t) in (1) and employ it in

further analysis.

2.2.3 Energy State Estimation

We employ two continuous and one binary observations in the estimation process [64,

65, 66]. Taking the CRH pulse events ck and the upper and lower envelopes Rk and Sk as

observations, we perform Bayesian filtering [64, 63] to estimate the hidden cognitive energy-

related state mean xk and its variance σk in two prediction and update steps.

Prediction step:

xk|k−1 = ρxk−1|k−1 + Ik + uk (9)

and σ2
k|k−1 = ρ2σ2

k−1|k−1 + σ2
ε . (10)

Update step:

Ak =
σ2
k|k−1

σ2
vσ

2
w + σ2

k|k−1(r2
1σ

2
w + s2

1σ
2
v)
, (11)
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x̂k = xk|k = xk|k−1+

Ak

(
γ1σ

2
v(ck − pk) + r2

1σ
2
w(Rk − r0 − r1xk|k−1) + s2

1σ
2
v(Sk − s0 − s1xk|k−1)

)
,

(12)

and σ̂2
k = σ2

k|k =

(
1

σ2
k|k−1

+ γ2
1pk(1− pk) +

r2
1

σ2
v

+
s2

1

σ2
w

)−1

. (13)

The pk presented in (12) is related to the x̂k by (6). Consequently, the x̂k is present on

both sides of (12) and we employ Newton’s method to solve the update equations.

2.2.4 Dynamic System Model of Medications

The next step in closing the loop and regulating energy-related state is to model the

dynamical system of hypothetical medications and include them in control design process.

In this research, we focus on the medications that can lead the subjects to reach their

desired energy levels [42, 41]. In this regard, we consider two classes of medications: (1)

for elevating the energy levels required for daily activity (i.e. excitation effect), and (2)

for helping the subjects to lower their energy levels in the evening which may help them

experience well-ordered sleep cycles at nights (i.e. inhibition effect). To analyze how a

specific medication affects one’s energy levels and incorporate them in the control design

process, we model their dynamics by a second-order state-space representation

ż1(t)

ż2(t)

 =

−θi1 0

θi1 −θi2


z1(t)

z2(t)

+

η
0

 q(t), (14)

where i = 1, 2 denotes the type of medications. y(t) = z2(t) is the estimated energy

level and θi1, θi2 correspond the infusion rate and the clearance rate of each corresponding

medication i, respectively. We assume θi =

(
θi1 θi2

)
. In the state-space representation

(14), q(t) = q∗i δ(t− τ∗i ) is the actuation input impulses where parameters τ∗i and q∗i stand

for time and dosage of the corresponding medication i [29, 67]. The η term also determines

if the actuation should be excitation (i.e. η = +1 for elevating the energy level) or inhibition

(i.e. η = −1 for lowering the energy level). With this representation, we analyze how using

a specific dosage q∗i of medication i at time τ∗i will affect the internal energy levels z2(t)
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dynamically. Solving the state-space equation (14) and considering the output equation

y(t) = z2(t), we compute the output at each time step j as

yj = ajy0 + bjq + ej , (15)

where aj = e−θi2j and bj = θi1
θi1−θi2

[
(e−θi2j−e−θi1j) (e−θi2(j−1)−e−θi1(j−1)) · · · (e−θi2−

e−θi1) 0 · · · 0︸ ︷︷ ︸
N−j

]′
. The vector input q consists of one non-zero element (i.e. q =

[q1 · · · qN ], where qj = 0, ∀j except the one element q∗i at time τ∗i ) and error term ej ∼

N (0, σ2
e). Forming the output for the whole time horizon N , we generate the vector repre-

sentation y as

y = Aθy0 + Bθq + e, (16)

where y =

[
y1 y2 · · · yN

]′
, Aθ =

[
a1 a2 · · · aN

]′
, Bθ =

[
b1 b2 · · · bN

]′
,

and e =

[
e1 e2 · · · eN

]′
. To complete the system identification task, we impose the

constraint ||q||0 = 1 in the corresponding parameter estimation problem [68]. To find the

optimum parameters, we solve the following optimization problem to optimize the error

term J = e′e as

min
θi,q
||q||0=1

J =
1

2
||y−Aθy0 −Bθq||22. (17)

Given y, we can estimate Aθ, Bθ (i.e. include θi), and q to obtain the actuation dynamics

[55]. As a result of this process, we simulate the way that a specific medication affects the

energy levels. In the following part, we explain the control approach and close the loop.

In this in silico study, incorporating the hypothetical medication dynamics (14), we

design the control strategy to determine the time and the dosage of each medication to

regulate the estimated energy state. In the practical case, this system identification step

is recommended to be performed in parallel to update the dynamical model parameters in

real-time.
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2.2.5 Fuzzy Control System

Fuzzy control, which is known as a knowledge-based control approach, employs the

insights about the system, performs the corresponding inference, and makes the control

decisions [69, 70, 71]. As an intelligent approach, it is a powerful bridge from the expertise

inference to the real world [6, 72]. Any fuzzy controller includes four main parts: rule base,

fuzzifier, inference engine, and defuzzifier. In the rule base, we define the rules to achieve

our control objective [73]. These IF-THEN rules are derived employing expert knowledge

of the system and the corresponding constraints.

In the present study, the estimated cognitive energy-related state and the time of the

day are the inputs of the fuzzy controller, and the control output is the time and dosage of

the required simulated medications [5]. To design the fuzzy system, we employ information

about the personalized levels of energy state and the dictionary of medication dosages and

actuation responses (Figure 2). We also use two classes of actuation: exciting medications

which increase the energy levels, and inhibiting medications which lower the estimated

energy levels. The purpose of applying medications with exciting and inhibiting effects is

to provide the required energy for daily activity [10] and lowering the energy-related state

to result in a better sleep cycle at nights [74], respectively. Based on the literature and

nature of the medications [42, 41], we consider the constraint of applying maximum two

medications (i.e. control inputs) per day: one in the morning which increases energy levels,

and one in the evening to lower the energy levels. The rule base of the proposed fuzzy

controller is presented in Table 3.

As an example, to clarify the structure of rules presented in Table 3, rule number 1

denotes:

• If the estimated energy state is High, and the time is early in the morning then the

actuation is positive small.

To quantify the linguistic variables presented in the rule base, we employ membership

functions as the fuzzifiers [75]. Investigating the simulated environment including estimated
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Table 3: Fuzzy Rule Base.

Rule # Time (Input 1) Energy State (Input 2) Actuation (Output)

1 Early Morning High Positive Small

2 Early Morning Low Positive Big

3 Early Morning Medium Positive Medium

4 Late Morning High Zero

5 Late Morning Low Positive Medium

6 Late Morning Medium Positive Small

7 Early Evening High Negative Medium

8 Early Evening Low Zero

9 Early Evening Medium Negative Small

10 Late Evening High Negative Big

11 Late Evening Low Negative Small

12 Late Evening Medium Negative Medium

energy state, hypothetical medication dynamics, personalized levels of energy state, and the

rule base, we utilize the appropriate number of relevant membership functions presented in

Figure 14. As observed in Figure 14, we employ six membership functions for time of the

day (input 1), three membership functions for estimated energy values (input 2), and seven

membership functions for the control output to cover all cases in the rule base (Table 3).

In Figure 14, top panel shows the first input membership functions describing time of the

day. Middle panel shows the input membership functions associated with the estimated

energy-related state. In Figure 14, bottom panel shows the membership functions for the

actuation output (i.e. control signal uk). The abbreviations P, N, Z, S, M, and B stand for

“Positive,” “Negative,” “Zero,” “Small,” “Medium,” and “Big”, respectively.

We use Mamdani inference engine to execute the inference and produce fuzzy outputs

[76]. We employ minimum method for both AND operation in the fuzzy inputs and impli-

cation process for fuzzy output generation. We also use Maximum method for rule output
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Figure 5: Input and output membership functions.

aggregation. Consequently, the final fuzzy output will be resulted as

µmamdani(q) = µm(q) = max
j

[µj(q)] = max
j

[min
(
min(µtime(t), µstate(x)), µactuation(c)

)
] =

max
j

[min(µtime(t), µstate(x), µactuation(c))],

(18)

where j denotes the effective rules at each time step and µj(q) is the resulted fuzzy set.

µtime(t), µstate(x), and µactuation(c) also stand for the membership functions presented in

Figure 14. To demonstrate the way that this inference engine works, we explain the proposed

fuzzy system (18). At each time step, the fuzzy system monitors all the rules presented

in Table 3 and finds the effective rules according to the input membership functions (Fig-

ure 14). By extracting the corresponding membership degree and executing AND operation

in each applied rule, it then performs implication between the resulted input fuzzy sets (time
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and the estimated energy state) and the corresponding output fuzzy membership function

(medication actuation). By aggregating results from all applied rules, it generates the final

fuzzy output. To produce crisp output out of the generated fuzzy outputs and applying it

into the system in real-time, we employ centroid defuzzification method

q∗ =

∫
µm(q)q dq∫
µm(q) dq

. (19)

At any time step where either the rules with Zero actuation output (Table 3) are effec-

tive, or the output q∗ in (19) equals zero, the fuzzy system would determine no need for

applied control. At the time t that the fuzzy system results a nonzero output (q∗ 6= 0),

time of actuation would be derived (τ∗ = t). Considering the resulted crisp output and

constraint to apply maximum two medications per day, the designed control will determine

the time and the amplitudes of each medication. Hence, by taking the decisions about the

dosage and the desired time of the hypothetical medications (i.e., q∗ and τ∗ in (14)), the

resulted control signal (i.e., uk in (61)) will be applied to regulate the internal energy state.

2.3 Results

In this section, first we present the open-loop results. Then, we present our real-time

closed-loop results for two categories of Cushing’s diseases: one without circadian rhythm

in their cortisol profiles, and another with circadian rhythm in their cortisol profiles. The

results associated with ten simulated subjects are presented in Figures 6–7.

For each subject, panel (A) displays the open-loop results. Panel (B) shows closed-loop

results for the Cushing’s patients without circadian rhythm. Panel (C) shows closed-loop

results for the Cushing’s patients with circadian rhythm. In each panel: the top sub-panel

shows the estimated cognitive energy-related state, the middle sub-panel displays the control

input, and the bottom sub-panel depicts the medication injections. Red pulses are related

to excitation and the blue pulses are related to inhibition. The white and grey backgrounds

indicate open-loop (i.e. u = 0) and closed-loop results, respectively.
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Figure 6: Open-loop and closed-loop energy regulation results (Subjects 1-5).
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Figure 7: Open-loop and closed-loop energy regulation results (Subjects 6-10).
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2.3.1 Open-loop (Healthy subject)

In the first part, we use data associated with healthy subjects to show the tracking

performance. As depicted in the left panels of Figures 6–7, the system tracks the energy

state in an open-loop manner. In the middle sub-panel, it is observed that there is not any

control in this stage (uk = 0). Top sub-panels show that the estimated energy state has

its peak during the daytime (06:00 - 16:00) and it drops in the evening. It verifies that we

successfully track the energy state in the simulated healthy profiles.

2.3.2 Closed-loop (Cushing’s patients without circadian rhythm)

In this part, we employ the simulated cortisol data associated with Cushing’s patients

without circadian rhythm in their cortisol profiles. The results are observed in the middle

panels of Figures 6–7. The white and grey backgrounds correspond to the open-loop and

the closed-loop periods, respectively. After day two, the control is activated and the closed-

loop system detects an imbalanced energy state (top sub-panel in the middle panels of

Figures 6–7). Then, the time and dosage of the required simulated medications are produced

by the control system (bottom sub-panel in the middle panels of Figures 6–7). The red

pulses stand for the simulated medications with excitation effects, while the blue pulses are

associated with the simulated medications with inhibitory effects. Employing the suggested

hypothetical medications will lead the generated control input to follow the curves presented

in the middle sub-panel of Figures 6–7. Thereafter, starting day three of simulation (once

the loop gets closed), the energy state is being regulated.

2.3.3 Closed-loop (Cushing’s patients with circadian rhythm)

Similar to the previous case, here we investigate the performance of the proposed closed-

loop architecture by making use of simulated Cushing’s patients’ data together with existing

circadian rhythm in their cortisol profiles. The results are presented in the right panels of

Figures 6–7. Similarly, the system detects the irregular energy patterns and regulates

the energy state variations by designing the corresponding control signals in a closed-loop
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manner.

2.4 Discussion

Inspired by the fact that CRH plays an undeniable role in internal energy regulation,

we proposed our novel approach for regulating the energy-related state using a wearable

brain machine interface architecture. In the proposed architecture, we infer one’s energy

variations by monitoring cortisol data which can be collected using wearable devices in real

time [59]. We implemented the control algorithm on ten simulated data profiles in healthy

subjects and Cushing’s patients.

In the offline stage of this research, we simulated the cortisol data for multiple subjects.

As it is validated in the literature, we employ stochastic models to simulate multi-day

cortisol secretion patterns. Following [54, 29, 60, 23], we consider different gamma distribu-

tions for inter-arrival times associated with cortisol secretion impulses. We also assume the

pulse amplitudes follow Gaussian distributions. Employing the model parameters that are

presented in the manuscript, we simulate cortisol profiles which have day-by-day variabil-

ity. The stochastic variability existing in model parameters would be viewed as a realistic

multi-day case in this in silico study. Employing the state-space approach along with EM

algorithm, we estimated the model parameters and the forcing circadian function. Using

the virtual patient environment, we aimed to track the energy state based on the changes

in cortisol secretion times and cortisol upper and lower envelopes (See Figure 2).

With the goal of tracking the energy state in the proposed architecture, we first simulated

a real-time open-loop case. In this part, we used the data associated with healthy subjects.

In the present study, due to the lack of real-time deconvolution algorithm, we assume

the presence or absence of cortisol secretion forms a binary point process and follows a

Bernoulli distribution. Besides, we take the cortisol upper and lower bound envelopes as

the continuous observations. Utilizing the EM algorithm, we estimated the hidden energy

state. As it can be seen in the left panels, with no control implemented (i.e. uk = 0),

the energy state variations in simulated healthy profiles are as desired. It is observed that
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the energy state is at its peak during the daytime and it drops in the evening. It leads to

providing enough energy for daily activity and having well-ordered sleep cycles at evening.

In fact, this normal condition is because of the well-balanced cortisol secretion patterns in

healthy subjects.

In this research, we assumed that including the hypothetical medications would impact

the energy state. Hence, we incorporated the simulated medication dynamics as the ac-

tuation while closing the loop. In this regard, we first presented the system identification

required to design the control system. To incorporate the corresponding medications in

real-world implementation of the proposed closed-loop architectures, it is important to pay

appropriate attention to medications’ half-lives. In the present design, we assumed that the

hypothetical medications have prompt effects on one’s energy levels. In the case of utiliz-

ing long-acting agents, the rules and membership functions should be revised accordingly.

While this step is performed in the offline stage of this research, in the practical case, it is

recommended to execute it in real-time to update the medication dynamics according to

the subject’s response. To design the control, we proposed a knowledge-based fuzzy con-

troller. Employing the estimated energy state, personalized desired levels of energy state,

and hypothetical medication dynamics we built the rule base, membership functions, and

inference engine (See Figure 2).

Next, we presented the results of the closed-loop system. In this regard, we employed

the cortisol data profiles associated with the Cushing’s patients. To depict the performance

of the closed-loop system, we assumed the control system gets activated starting day three,

which means the system is open-loop (i.e. uk = 0) in the first two days of the simulation.

During the open-loop period, we observe that the energy variations do not follow the ideal

circadian rhythm. In other words, the patients with hypercortisolism do not have normal

cortisol secretion patterns which will cause them to have insufficient energy levels in the

day time and experience disturbed sleep cycles at night [10]. Starting day three, the feed-

back control system (i.e. uk 6= 0) closes the loop (grey background in Figures 6–7). In the

closed-loop period, the implemented control system detects undesired energy variations and
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tries to infer the right time and dosage of the simulated medications in real-time. That is to

say, the fuzzy structure receives the estimated energy state, employs the rule base (Table 3)

and membership functions (Figure 14), and generates the appropriate control signal. This

intermittent control signal is depicted in the bottom sub-panels of Figures 6–7. When low

levels of energy are detected, the red pulses would be generated to adjust the dosage of the

required medications with excitation effect to provide required energy levels. On the other

hand, once undesired high levels of energy are detected in the evening, the medications with

the energy lowering effect, i.e. blue pulses, would be suggested to provide the inhibition

effect. The required time and dosage of these hypothetical medications are produced by

the fuzzy structure. The control actuation signal, which is result of applying these simu-

lated medications, is presented in the middle sub-panels of Figures 6–7. Considering the

constraint of using maximum two medications per day [77], the energy state is regulated

in real-time. It is worth mentioning that in the real-world case, the only needed signal for

closing the loop is the time and dosage of required medications. Since this simulation study

is the first step to show the feasibility of our proposed approach, we simulated hypothetical

medication dynamics to include actuation in the virtual patient environment.

In the final part of our results, we presented the outcomes of our proposed structure

on simulated cortisol data profiles associated with the Cushing’s patients with circadian

rhythm in their profiles. While Cushing’s patients do not generally have the required

circadian rhythm in their cortisol profiles, there exist some patients with some circadian

rhythm in their blood cortisol profiles [60]. This slight circadian rhythm could be assumed

to be available in the patients in their early stages of Cushing’s disease. Similar to the results

of the Cushing’s patients without circadian rhythm, our proposed closed-loop architecture

successfully detects the energy irregularities and makes the control decisions in real time.

Analyzing the results of multiple subjects, we observe some interesting outcomes. In

the results associated with subjects 1, 5, 6,7 and 10, we see that for some days no blue

pulses (i.e. simulated medications with the inhibition effects) are necessary. It might be

because energy levels are already low and would not affect their sleep cycles. In these cases,
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employing only the medications with excitation effects in the morning may lead to energy

regulation in the evening too. These results are shreds of evidence of an intrinsic advantage

of our proposed closed-loop architectures which is handling the energy regulation in an

automated way and suggesting the medications as needed.

To further depict the efficiency of the proposed closed-loop architecture, we define cor-

responding metrics (Figures 8–9). Panel (A) shows the difference between average levels

of energy in the day and night. Panel (B) shows the internal energy growth required for

the wake-up time balance. Panel (C) shows the decrease in internal energy levels required

for sleep time balance. The empty circles and the filled green circles show the results of the

open-loop and closed-loop cases, respectively. The left and right sub-panels show the data

corresponding to the Cushing patients without and with circadian rhythm in their cortisol

profiles, respectively.

As the first criteria, we analyze the effect of closed-loop system in increasing the dif-

ference between average levels of energy in the day and night (top panel of Figure 8). As

presented, the difference between the average levels of energy in day and night has been

increased for all ten simulated subjects in both Cushing’s classes (filled green circles com-

pared to the empty circles). As the second criteria, we analyzed the growth of internal

energy state in the morning, which will ultimately lead the subjects to wake up with higher

levels of energy. To do this task, we compared the growth of energy before the start of

the day in both open-loop and closed-loop cases (middle panel of Figure 8). The observed

growth of energy in all simulated subjects will help them to wake up with having more

energy required for their daily activities. As the final criteria, we compared the drop of

energy levels late at evening (bottom panel of Figure 8). It demonstrates how the proposed

closed-loop architecture resulted in decreasing the energy levels required for a better sleep

cycle. As presented in the bottom panel of Figure 8, the internal energy state in patients

with Cushing’s disease are not decreased sufficiently in the evenings (empty circles). How-

ever, in the closed-loop case, by applying the required medications, the simulated energy

state has been dropped more efficiently which will further help the subjects to experience
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Figure 8: Open-loop and closed-loop results analysis.

more balanced sleep cycle at night.

In Figure 9, the lower- and upper-bounds of the of each box represents the 25th and 75th

percentiles of the distribution of each metric for all ten simulated profiles, and the middle line

in each box displays the median. Panels (A) and (B) show the data corresponding to the

Cushing patients without and with circadian rhythm in their cortisol profiles, respectively.

Analyzing the results on all the simulated subjects, the difference between the average

energy levels in day and night in Cushing’s patients without and with circadian rhythm in

their cortisol profiles is improved by 140% and 97%, respectively (left sub-panels in Fig-

ure 9). The growth in the energy levels before the wake time in both classes of Cushing’s
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Figure 9: Overall closed-loop results analysis.

patients is improved by 245% and 75%, respectively (middle sub-panels in Figure 9). Sim-

ilarly, the average drop in the energy levels required for sleep time regulation is improved

by 473% and 208% in simulated Cushing’s patients without and with circadian rhythm

in their profiles has been, respectively (right sub-panels in Figure 9). This analysis verify

how our proposed architecture is effective in regulating energy levels in a virtual patient

environment.

In the offline stage of this research, we simulated multi-day data profiles for healthy

subjects and subjects with Cushing’s disease. It is worth mentioning that this stage of

simulating multi-day data profiles is because of the lack of technology for real-time cortisol

measurements. Future advances in wearable technologies would provide the opportunity to

continuously monitor the cortisol data and design a system that could take care of inter- and

intra-subjects fluctuations. In the present study, we assumed that the suggested medications

could be successful in lowering or increasing energy levels. In practical implementation,

there exist multiple factors that might cause the proposed architectures (i.e., using suggested

medications to regulate internal energy state) to fail and result in less efficiency.
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• Diverse sensitivity to glucocorticoid hormones among individuals might prevent to

observe similar energy adjustments in response to the medications [78].

• Sever dysregulation of the HPA axis, which happens in some endogenous Cushing’s

syndrome cases, could only be treated by removing the pituitary or adrenal tumor(s)

[79].
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3 Closed-Loop Cognitive Stress Regulation

3.1 An Overview of Cognitive Stress Regulation in Wearable-Machine

Interface Architectures

Stress-related health issues attract massive attention in the modern world [6, 7]. Despite

recent advances in technology, handling cognitive stress-related disorders is still a major

problem around the globe and impacts quality of life in general [9]. Additionally, low

levels of eustress, or positive cognitive stress, could negatively affects work productivity

[2]. Experiencing high levels of cognitive stress while performing routines, or low cognitive

engagement with the environment, may seriously affect an individual’s life [19]. Over 60%

of Americans feel that stress negatively affects their work performance [80]. Considering the

fact that the brain performs better when internal cognitive stress state is within a moderate

range [81], stress regulation has recently received a lot of attention. Figure 10 depicts the

relationship between performance and the amount of stress that a person encounters. As

depicted in Figure 10, the performance is at its peak when the stress level is within a normal

range [2]. While high amount of arousal (stress) may cause nervousness, too little amount

of arousal (stress) may negatively affects productivity and bring the person about feeling

bored and inactive. Eustress or good type of stress will cause the person to be focused,

more productive, and better engaged with the environment. While there exist methods for

managing stress, there is still a lack of reliable systems that continuously track the stress

levels in individuals and automatically regulate stress levels by suggesting appropriate non-

invasive solutions during daily activities [20, 21].

The human brain detects and mediates the physiologic response to environmental stimuli

including cognitive stress tasks [23]. Traditional approaches that try to directly monitor

brain activity (e.g., using electroencephalogram (EEG) signal[82]) are neither comfortable

nor practical in daily life [83]. Thanks to the recent advances in wrist-worn wearable device

Chapter three was first presented in part at the proceedings of the 2019 IEEE Engineering in Medicine
and Biology Society Conference [6]. Chapter three has been mainly adopted from Azgomi, Hamid Fekri,
Iahn Cajigas, and Rose T. Faghih. “Closed-Loop Cognitive Stress Regulation Using Fuzzy Control in
Wearable-Machine Interface Architectures.” IEEE Access 9 (2021): 106202-106219 [3].
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Figure 10: Arousal-performance relationship.

technologies, we now have the opportunity to easily monitor various physiological signals

and understand brain activity [84, 85, 86, 87]. To infer internal stress state, rather than

monitoring the brain activity directly, one might be able to collect measurements that

correspond to the hidden stress state using the wearable devices [51, 53, 88, 89, 50, 90, 91].

Among the data that can be collected via wearable devices, skin conductance data carries

important information about the brain’s cognitive stress [92, 93, 94, 95, 52]. Cognitive stress

can be inferred from the tone of the sympathetic nervous system (or “fight or flight” response

system). The sympathetic nervous system is a branch of the automatic nervous system

(ANS) [96]. Since Electrodermal activity (EDA) does not include any representation of the

parasympathetic nervous system (i.e., another branch of ANS), it is a suitable representative

for cognitive stress analysis [97, 98]. While heart rate also provides insight about the

internal arousal state, it carries information associated with cardiac activity [96, 99]. As

skin conductance signal provides information about sympathetic nervous system, we focus

on this physiological signal for further analysis [100]. In the presence of external (e.g.,

environmental) or internal (e.g., mental) stimulus, there are small variations in the activity

of the sweat glands [101]. Consequently, electrical characteristics of the skin will change.

Such fluctuations are indicated in the skin conductance response (SCR), which can be

35



measured using wearable devices [50, 53, 52].

That the SCR rate encodes stress-related information (i.e., more stress is associated

with the increased SCR and vice versa) has been validated in experimental studies [50, 94,

102]. In addition to the studies related to inferring brain activity using skin conductance

signal [52, 103, 101], there exist research that employ this biomarker as a reference signal

[104, 105, 106]. For instance, Lee et al. use motion sensors to classify the stress level and

employ skin conductance as a reference for stress detection [107]. Perry et al. designed a

wearable device that can determine stress levels by monitoring the amount of cortisol that

is present in human’s sweat [108]. In this research, we relate the internal cognitive stress

state to the changes in skin conductance signal.

Compared to available methods that try to detect stress and send an alert to the person

[109, 110], our goal here is to track stress levels in a continuous manner and design a

control strategy to regulate the cognitive stress by a non-invasive approach in a simulation

environment. Rachakonda et al. used physiological data such as respiration, heart rate and

skin conductance, and then, by incorporating machine learning algorithms, they performed

a classification method on the stress levels [111]. The results demonstrate classifications for

particular stress ranges. Similarly, Sano et al. have employed machine learning tools on the

collected physiological signals (i.e., accelerometer and skin conductance data), mobile data

such as text and call, and the surveys completed by the subjects to perform stress range

classification [112]. Compared to the majority of research being done in this area, which

employ machine learning approaches to classify the stress levels [113, 114, 115], the proposed

state-space method would lead us to track stress severity as a continuous value in real-time.

This will further provide the chance to better design the actuation policy for closing the

loop and keeping the stress state within a desired range. Moreover, continuously tracking

of cognitive stress might help the person to increase eustress [116]. Hence, following the

proposed architecture, we would be able to track subject’s cognitive stress as a continuous

state and design the control mechanism to keep this hidden state within a desired range.

In recent years, there have been several studies dealing with closed-loop approaches
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[117, 118, 119, 120, 121, 122]. Walter et al. classified workload in an adaptive learning

environment [122]. They proposed to track mental workload using the EEG signal and

design the course material to close the loop and increase the efficiency. Utilizing our pro-

posed approach, one would be able to track the internal stress state continuously and design

the required actuation accordingly. This actuation could be any changes in the workload,

changing light colors and frequencies in workplaces, listening to music, drinking excitatory

or relaxing beverages, or designing the break time based on internal stress levels to keep

them within desired range. In this research, we propose to use wearable-machine interface

(WMI) architectures to control the cognitive stress-related state in a simulation environ-

ment. As presented in Figure 1, the architecture includes collecting physiological signals

using a wearable device, inferring neural stimuli underlying pulsatile SCR events, estimat-

ing an unobserved stress-related state from underlying neural stimuli, designing the control,

and closing the loop to regulate subject’s cognitive stress state and keep it within a desired

range in a real-time manner [6].

Taking advantage of the real-time simulation model, we present our approach in de-

signing the control algorithm and closing the loop in a systematic way. We employ fuzzy

logic, as a knowledge-based control approach, to control cognitive stress state in a simula-

tion environment [123, 124]. The knowledge-based control approaches make inference and

design the control action using the insight achieved from system dynamics. The fuzzy logic

controller employs insights about the system, performs inference, and derives the actuation

policy [75, 125]. Researchers in [123] assume that all the states are available while designing

the control system. Zhang et al. employ a fuzzy adaptive state observer to estimate the

hidden state and design a fuzzy controller to close the loop [125]. Their proposed approach

is effective when dealing with unknown control directions [125].

In this regard, we present a simulation setting to show how an automated control action

will result in regulation of both modeled SCR events and the estimated cognitive stress-

related state. Toward this aim, we relate the internal stress state to the changes in SCR

events. By estimating the hidden stress-related state and designing the control action, we
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close the loop in real-time. More specifically, we consider one open-loop, one closed-loop

inhibitory, and one closed-loop excitatory examples to demonstrate the performance of our

proposed WMI architecture in different simulation scenarios. The final results verify that

the proposed architecture not only can successfully track one’s cognitive stress state, but

also that the control mechanism is effective in both excitation and inhibition applications

in real-time. The present in silico study based on experimental data is one of the very first

attempts to build a real-time environment to further investigate the effects of modern control

techniques in regulating internal arousal state. The main contributions of this research are

summarized as follows.

• Building a simulation environment based on experimental data from wearable devices

to relate the changes in skin conductance signal to one’s internal arousal state.

• Simulating the required environmental stimuli functions for both high and low arousal

sessions.

• Real-time and continuous tracking of the internal arousal state in response to the

changes in the environmental stimuli via state-space methods and Bayesian estimation

in the simulation framework.

• Estimating an internal arousal state based on peripheral physiological data that are

collected using wearable devices, rather than directly monitoring of brain activity.

• Presenting a novel framework suitable to investigate the effects of various noninvasive

strategies to regulate the internal stress-related state.

• Implementing a straightforward fuzzy controller to take advantage of the open-loop

simulation results and regulating the estimated arousal state in both inhibitory and

excitatory class of closed-loop systems.

3.2 Methodologies

Figure 11 illustrates an overview of the present research paradigm. The dashed box

implies the offline process (A) and the solid box depicts the real-time closed-loop system
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Figure 11: Overview of closed-loop cognitive stress regulation.

(B). In the offline process prior to the real-time implementation, we aim to build a sim-

ulation environment based on the experimental measurements [83] (red box in panel (A)

of Figure 11). To this end, we focus on the collected skin conductance data from subjects

during a cognitive stress task followed by a relaxation period. Performing deconvolution

on skin conductance data, we take the information regarding the number, timings, and

amplitudes of underlying neural stimuli associated with SCR [50, 94]. By binarizing the

neural impulses, and employing a state-space approach, we follow the methods presented in

[94, 95, 126] to relate the internal cognitive stress-related state to the changes in underlying

neural impulses. Incorporating Bayesian filtering with an Expectation Maximization (EM)

algorithm, we estimate the hidden cognitive stress-related state in an offline manner.

To design the real-time simulation environment, we take the estimated cognitive stress

state as the output of the offline process and model the required environmental stimuli

responsible for the changes in estimated state trajectory. Then, we generate two different

sets of stimuli: one for causing low arousal (relaxation), and one for inducing high arousal

(cognitive stress). Next, in a real-time simulation environment, we relate a cognitive stress-

related state to the simulated SCR events using a state-space approach. In a state-space

representation, human model simulates the skin conductance response (SCR) events by a
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Bernoulli distribution. We estimate the hidden stress-related state using Bayesian filtering.

To close the loop and regulate the estimated cognitive stress-related state in the simulation

environment, we design a fuzzy control algorithm to derive essential control signals in real-

time. Fuzzy controller takes the estimated stress state and regulates it with the derived

control action in a closed-loop manner.

3.2.1 Experimental Collected Data Description

In this study, we focus on the Non-EEG Dataset for Assessment of Neurological Status

[83] which is publicly available in the PhysioNet database [127]. In this experiment, twenty

college students were subjected to different tasks: physical stress, cognitive stress, emotional

stress followed by a relaxation period [83]. With the goal of investigating human responses

to different types of stress, they have collected skin conductance, body temperature, and

3D accelerometer signals using the Affectiva Q Curve wearable device [83]. In addition,

they have collected heart rate and blood oxygenation by the Nonin Wireless WristOx2

oximeter [83]. Among all of the collected physiological signals, it has been shown that

SCR, which reflects changes in the sweat gland activities, carry important information

regarding sympathetic nervous system arousal [105, 51, 50, 94, 52, 66]. Toward the goal of

creating a closed-loop simulation environment for cognitive stress regulation, we extract skin

conductance data that corresponds to the cognitive stress task and the relaxation periods

[83, 94, 95].

The cognitive stress task in this experiment consists of an arithmetic task (i.e., counting

backward by sevens, starting with 2485) for three minutes and the Stroop test (i.e., reading

words including a color’s name written in a different color ink and indicating the color ink)

for two minutes. This arithmetic stress task is a good representative for the cognitive stressor

[128]. In the relaxation task, subjects are asked to sit and listen to relaxing music. In the

relaxation period, subjects have listened to a portion of Binaural, (i.e, a soothing music used

in meditation [129, 130]). As the arithmetic task and the relaxation period are considered

as the most representative cases, we select on these two parts to show the feasibility on
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Table 4: Selected Subjects’ Information.

Participants Subjects ID Gender Age Height [cm] Weight [kg]

1 1 M 30 177 94
2 5 M 30 182 82
3 8 M 27 182 64
4 9 M 25 177 68
5 12 F 32 162 53
6 16 M 24 180 54

the most extreme arousal scenarios (i.e., high arousal vs low arousal [6]). In other words,

we investigate these two parts of data to get insight about how the brain will respond

during extreme cases. Skin conductance signal can be contaminated by measurement noise

sources such as motion artifacts, range saturation and amplification factor changes [131].

The present work builds on a previously published dataset [50, 94, 95, 52]. So, highly noisy

data was discarded prior to further processing. Selected subjects’ information is presented

in Table 4.

3.2.2 Deconvolution Algorithm

In the offline process, we perform a deconvolution algorithm to infer underlying neural

stimuli. While we followed the approaches presented in [94, 50], in what follows we present

a brief description of the deconvolution method.

Skin conductance signal ySC(t) contains two parts; tonic and phasic parts [94, 50]. The

tonic which is slow varying in nature is highly related to thermoregulation and is a function

of ambient temperature and humidity. The phasic part which includes faster changes is

generated by sympathetic nerve fibers stimulating the sweat glands

ySC(t) = yP (t) + yT (t), (20)

where yP (t) and yT (t) stand for the phasic and tonic components, respectively. The phasic

part yP (t) is extracted from the skin conductance signal by an algorithm such as cvxEDA

[132]. The physiology behind the formation of the phasic component could be found in
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detail in [94, 50, 133, 134, 131] and will result in the following state-space model:

ż1(t) = − 1

θr
z1(t) +

1

θr
u(t) (diffusion) (21)

and ż2(t) =
1

θd
z1(t)− 1

θd
z2(t) (evaporation), (22)

where z1(t) and z2(t) are internal state and the phasic component, respectively. u(t) repre-

sents the neural stimuli to the sweat glands to cause skin conductance responses (SCR). θr

and θd are the rise and decay times of a single SCR. As the number of underlying neural

impulses, which causing the SCRs, is also small, it leads us to employ a sparsity constraint

when solving for u(t). We model u(t) as a finite summation of weighted, shifted delta

functions

u(t) =

N∑
i=1

uiδ(t−∆i), (23)

where ui represents the SCR’s amplitude at time ∆i, and N is the total number of samples

in the neural stimuli signal and is proportional to the recording duration Td and the input

sampling frequency fu (N = Td · fu). We consider the phasic part z2(t) as the output in

the state-space model

yP (t) = z2(t) + µ(t), (24)

where µ(t) is Gaussian measurement noise. If the signal is periodically sampled at Ty

intervals to yield a total of M measurements, we can define the equivalent discrete-time

observation yk as

yk = x2(kTy) + µk. (25)

Given all the discrete measurements yk = yP (k) for k = 1, 2, . . . ,M , we aim to find u(t)

and estimate θr and θd. We take z1(0) = 0 as an initial condition assuming that the sweat
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duct is empty at the beginning. The state-space solution for z2(kTy) leads us to [92]

yk = aky0 + bku + µk, (26)

where ak = e
− kTy

θd , bk =
[

1
(θr−θd)(e−

kTy
θr − e−

kTy
θd ) 1

(θr−θd)(e−
kTy−Tu

θr − e−
kTy−Tu

θd ) 1
(θr−τd)

(e−
kTy−2Tu

θr −e−
kTy−2Tu

θd ) · · · 1
(θr−θd)(e−

Tu
θr − e−

Tu
θd ) 0 · · · 0︸ ︷︷ ︸

N− kTy
Tu

]
, and u = [u1 u2 · · ·

uN ]> represents a sparse vector containing all the neural stimuli over the entire signal du-

ration (i.e., very few of the ui’s are non-zero). Concatenating all the measurements into a

single vector y = [y1 y2 · · · yM ]> we derive

y = Aθy0 + Bθu + µ, (27)

where Aθ = [a1 a2 · · · aM ]>, Bθ = [b>1 b>2 · · · b>M ]>, µ = [µ1 µ2 · · · µM ]>,

and y0 is the initial condition of the phasic skin conductance signal. Here, Ty is an integer

multiple of Tu. Letting θ = [θr θd]
>, to derive the SCR events u, we aim to solve the

optimization problem

argmin
θ, u

Cθ≤b, u≥0

J(θ,u) =
1

2
||y−Aθy0 −Bθu||22 + λ||u||pp, (28)

where C =

 −1 1 0 0

0 0 −1 1


>

, b = [−0.1 1.4 −1.5 6]> and λ is the lp-norm regular-

ization parameter determining the sparsity level on u. Due to the unavoidable challenges in

solving this optimization problem, we follow the approaches presented in [95, 92, 28, 25] and

break it into two sub-problems. A desired coordinate descent approach can be formulated

as

1. u(l+1) = argmin
u

s.t. u≥0

Jλ(θ(l),u)

2. θ(l+1) = argmin
θ

s.t. Cθ≤b

J(θ,u(l+1))

43



To derive the final results, we iteratively solve the above sub-problems (for l = 0, 1, 2, · · · )

until convergence.

3.2.3 Human Brain Stimulus-Response Model

To model human brain responses, we use the state-space approach and assume that the

hidden cognitive stress-related state is affected by the environmental stimuli

xk+1 = xk + uk + ηk, (29)

where xk is the hidden cognitive stress-related state, uk is the control signal, ηk = sk + νk

is the environmental input, sk is the environmental stimuli with the process noise νk ∼

N (0, σ2
ν) at kth time step. [95, 66]. Similar to [94, 95], we assume the probability of

receiving SCR events follows a Bernoulli distribution

P (nk|xk) = qnkk (1− qk)1−nk . (30)

To relate probability qk of observing a SCR event nk to the stress state xk, we employ

a Sigmoid function

qk =
1

1 + e−(β+xk)
, (31)

where β is the person-specific baseline parameter. To derive β, we define the baseline

state of the subject as zero (x0 = 0) and look at changes from this baseline state. Then,

we calculate β based on the average probability of an SCR occurring in the whole data(
β = log( q0

1−q0 )− x0

)
[94].

3.2.4 Cognitive Stress State Estimation

To estimate the hidden cognitive stress-related state, we follow the state estimation

framework presented in [94, 95]. For the sake of completeness, we briefly review the method-

ology and employ it for further analysis. Given the simulated SCR events nk, we estimate

hidden state xk and its corresponding variance term σ2
k. At this stage of the offline process,
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Figure 12: Cognitive arousal state estimation in multiple tasks.

we ignore environmental stimuli term, ηk, in (61):

x̂k = x̂k−1 + (σ̂2
k−1 + σ2

ν)
(
nk −

1

1 + e−(β+x̂k)

)
(32)

and σ̂2
k =

( 1

σ̂2
k−1 + σ2

ν

+
e(β+x̂k)

(1 + e(β+x̂k))2

)−1
. (33)

where x̂k and σ̂2
k are the estimated hidden cognitive stress-related state and its variance,

respectively. We use the EM algorithm presented in [94, 95], to find the σ2
ν in (61) and

initial values (i.e., x0 and σ2
0). The details of EM algorithm can be found in [126, 135].

It should be noted that x̂k observed on both sides of (32) results in a nonlinear equation.

Hence, Newton’s method is employed to solve update equations. While for control design

we only focus on cognitive stress (as the high arousal representative) and relaxation (as

the low arousal representative) periods, we present the results of implementing the same

modeling and estimation algorithms on the whole experiment in [83] to show the accuracy

and the adequacy of proposed approach (see Figure 12) [94, 95]. The top panel and the

bottom panel show the SCR events and the estimated arousal state, respectively. The

shaded backgrounds correspond in turn to the instruction for cognitive stress task (white),

arithmetic task (red), Stroop test (yellow), relaxation (green), and emotional stress (grey).

Both arithmetic task and Stroop test are associated with the cognitive stress period.

As discussed, we perform EM algorithm to estimate the initial values (i.e., x0 and σ2
0)
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Table 5: EM Algorithm Initialization.

Participant Reference session x0 σ2
0

High arousal 0.9134 0.00049
1 Low arousal 0.8312 0.00032

Combined sessions 0.8817 0.00041

High arousal 0.4473 0.00087
2 Low arousal 0.3501 0.00071

Combined sessions 0.4112 0.00080

High arousal 0.4334 0.00047
3 Low arousal 0.3815 0.00032

Combined sessions 0.4209 0.00041

High arousal 0.4501 0.00036
4 Low arousal 0.3318 0.00024

Combined sessions 0.4017 0.00031

High arousal 0.5333 0.00044
5 Low arousal 0.4321 0.00039

Combined sessions 0.4983 0.00042

High arousal 0.7434 0.00022
6 Low arousal 0.7102 0.00015

Combined sessions 0.7321 0.00019

[94, 126, 135]. This step is important in designing the real-time filter to estimate the state.

Hence, we estimate these initial values in three different scenarios and compare the outcome.

We derive the initial values using EM algorithm employing: (1) high arousal session, (2)

low arousal session, and (3) combined sessions. The resulted initial values are presented in

Table 5. To show the outcome in response to these different initializations, we present the

open-loop results for participant 1 in Figure 13. In Figure 13, the top panel shows the results

while the filter is initialized based on the high arousal session. The middle panel shows the

results while the filter is initialized based on the low arousal session. The bottom panel

shows the results while the filter is initialized using both high and low arousal sessions. In

each panel, the top sub-panel displays the SCR events, while the bottom sub-panel displays

the estimated cognitive stress-related state. The grey and white backgrounds belong to

the high arousal (i.e., the cognitive stress task) and low arousal (i.e., the relaxation task)

environmental stimuli, respectively.
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Figure 13: Open-loop results based on different EM initialization.

47



As presented in Figure 13, different initial values, which are derived based on different

sessions, do not significantly affect the state estimation performance. The open-loop results

presented in Figure 13 verify that the implemented Bayesian filter is sufficiently robust to

the offline EM initialization process.

3.2.5 Environmental Stimuli Model

As presented in Figure 11, to design the real-time simulation environment, we model

the environmental stimuli which is responsible for the fluctuations in estimated stress state.

It is worth mentioning that in case of real-world settings, SCR events are obtained via

deconvolving measured skin conductance signal [50, 52, 53] in a real-time manner. Analyzing

the estimated stress-related state in both cognitive stress and relaxation tasks in the offline

process, we aim to find the required environmental stimuli for both sessions. Examining the

open-loop system and considering there is no control in (61) (i.e., uk = 0), we derive ηk =

sk + νk = xk − xk−1. Where xk is the estimated cognitive stress-related state in the offline

stage. By ignoring the process noise in this stage, we find time series for environmental

stimuli sk 

s1

s2

...

sT


=



x1 − x0

x2 − x1

...

xT − xT−1


. (34)

Investigating the offline open-loop results on all selected subjects, we analyze the gen-

eral trend in sk. To simulate a general environmental stimuli function sk responsible for the

changes in cognitive stress session, we consider the summation of sinusoidal harmonic func-

tions. We also assume the behaviour of sk in the relaxation period follows an exponential

decay [6]. These assumptions are made to simplify solving the optimization problems and

generating the environmental stimuli. Hence, we consider two environmental stimuli mod-

els: one for the cognitive stress task sck, and one for the relaxation period srk. We assume

sck =
∑N

n=1 αn cos(ωnk + γn), where N is the number of the harmonics, and αn, ωn, and
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γn for n = 1, .., N are the amplitude, frequency, and phase shift of each of the harmonics,

respectively. Performing spectral analysis on each participant, we find the optimal number

of harmonics N needed for estimating the high arousal stimuli. The regression parame-

ters are estimated using a least square approach [136]. Similarly, for relaxation period, we

assume an exponential decay as the environmental forcing function. More specifically, we

let srk = aebk where the regression parameters a and b are being derived using least square

regression method.

It should also pointed out that any changes to these assumptions (i.e., sinusoidal har-

monics for high arousal, and exponential decay for low arousal) would change the resulted

environmental stimuli functions. However, in real-world implementation of the proposed

approach, by monitoring the skin conductance signal and performing the deconvolution

algorithm on the captured signal, there is no need to apply these simulated environment

functions.

By extracting the environmental stimuli associated with both high and low arousal, and

including the process noise, νk, we incorporate them in the state-space model (61) and

build the simulation environment. Consequently, we run the whole simulation system in

both open-loop (i.e., uk = 0) and closed-loop (i.e., uk 6= 0) scenarios.

3.2.6 Control Design

Analyzing the system’s open-loop behaviour in the simulation environment leads us to

design the fuzzy structure including the membership functions, defuzzification, and inference

engine [137]. We use the simulated environmental stimuli for both high and low arousal

sessions and obtain the required knowledge about the system behavior in an open-loop

manner. In the simulation environment, the human brain model generates SCR events in

response to the various environmental stimuli. As a result, we see how the estimated stress

state will fluctuate in response the changes in external environmental stimuli. This feature

of incorporating insights about the system while designing the control structure is the main

reason for choosing the fuzzy control.
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In the proposed architecture, the real-time estimated cognitive stress-related state xk is

the input and the control signal uk in (61) is the output of the fuzzy system. The heart

of any fuzzy system, is its rule base. These rules are based on the constraints and insight

about the system dynamics. To build a rule base applicable for multiple subjects, we form

the rules as follows:

• If the estimated cognitive state is low arousal, then control is excitatory.

• If the estimated cognitive state is neutral, then control is neutral.

• If the estimated cognitive state is high arousal, then control is inhibitory.

Figure 14: Input and output membership functions.

To convert the linguistic variables presented in the rule base to the crisp values, we

impose the membership functions. These membership functions for both input and out-

put values are depicted in Figure 14. In Figure 14, the top-panel shows the membership

functions for the input (i.e., estimated cognitive stress-related state xk). The bottom-panel

shows the membership functions for the output (i.e., control signal uk). As presented in

top-panel of Figure 14, the input membership functions of the fuzzy system, which are

related to the stress state, include three sets of functions; low arousal, neutral, and high

arousal. The output of the fuzzy system, which is the control signal, consists of three sets;

inhibitory, neutral, and excitatory (bottom-panel of Figure 14). The membership functions
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Table 6: Input and Output Membership Functions (Figure 14).

Variable Membership Function Category

µ(xk)
zmf(xk,−2, 0.5) Low arousal

psigmf(xk, 5.6,−1.2,−5.6, 1.2) Neutral
smf(xk, 0.5, 2) High arousal

µ(uk)
zmf(uk,−0.004, 0.0001) Inhibitory

psigmf(uk, 3500,−0.002,−3500, 0.002) Neutral
smf(uk, 0.0001, 0.004) Excitatory

presented in Figure 14 are described in Table 6.

According to the rule base, once the system detects the high arousal, we need to have

inhibitory control to decrease the number of SCR events and lower the stress state. On the

other hand, when we deal with the low levels of cognitive stress state, we need excitation

control to increase the number of SCR events and elevate the stress-related state. Simi-

lar to [6], we use Mamdani engine and centroid method for inference and defuzzification,

respectively [124, 125].

3.2.7 Stability Analysis

According to the state-space model (61) and nonlinear stochastic observation (62), sim-

ilar to any control technique, global stability could not be guaranteed within the proposed

control approach [138]. However, by following the recent approaches that handle the stabil-

ity analysis for control of probabilistic models [139], we aim to calculate a stability region.

It will ensure that the state trajectory will be converged to the target levels in a finite time

horizon [140]. In this approach, taking advantage of the simulation environment, as well

as the real-time estimate of state mean, x̂k, we analyze the performance of the closed-loop

system in response to multiple initial starting point, x0, and derive the stability region [139].

According to Lyapunov’s stability theory, the target point xd is stable, if for any ε > 0,

there exists δ > 0, such that ||xk − xd|| < ε and ||x0 − xd|| < δ. A stability region, Xs,

denotes to a subset in which ||xk − xd|| → 0 for all x0 ∈ Xs as k → ∞. Here, we aim to

obtain such a region which would guarantee that the difference between the current state
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and the target levels would be decreased as time evolves. So,

||xk − xd|| < ζ||xk−1 − xd||, (35)

for a fixed ζ < 1. According to the positively invariant sets[139, 141], once the state

transition starts within the calculated region (i.e., x0 ∈ Xs) and (35) holds, it will never

leave it.

3.3 Results

Implementing the proposed WMI architecture on selected subjects’ simulated profiles

(Table 4), we present the results in this section. Particularly, we illustrate the results in

three different cases: (A) open-loop cognitive stress tracking, (B) closed-loop inhibitory, and

(C) closed-loop excitatory. For each case, we consider two environmental stimuli models

in the simulation: (1) cognitive stress stimuli, and (2) relaxing stimuli. Following the

offline process presented in Figure 11, we simulate the environmental stimuli and run the

simulation system in real-time. The final results are presented in Figure 15–17. In each

case, we consider the environmental stimuli associated with the high arousal (cognitive

stress) and low arousal (relaxation period) in the first and second half of the simulation,

respectively.

3.3.1 Open-Loop

The main objective of presenting the open-loop case is to show how we could track the

cognitive stress-related state without any control implemented (i.e., uk = 0) in the developed

simulation environment. In each panel of Figure 15, the top sub-panel shows the SCR events

from the human model, the bottom sub-panel displays the estimated cognitive stress-related

state. The grey background belongs to the high arousal environmental stimuli (i.e., the

cognitive stress task), while the white background implies the low arousal environmental

stimuli (i.e., the relaxation task). As observed in the top sub-panels of Figure 15, the number

of SCR events significantly decreased in the second half of the simulation (i.e., relaxation

52



period) because of the decreased sympathetic firing rate compared to the first half of the

simulation (i.e., cognitive stress task). This variation in the number of SCR events results

in a lower level of the estimated cognitive stress-related state (bottom sub-panels) in the

relaxation period compared to the high arousal (cognitive stress) period. This open-loop

case shows that our proposed algorithm is successful in tracking internal cognitive stress

state in the real-time simulation environment.

3.3.2 Closed-Loop Inhibitory

In this case, we examine the performance of the proposed WMI architecture in lowering

high levels of cognitive stress-related state caused by an high arousal environmental stimuli.

By detecting high levels of cognitive stress state, the control systems attempts to regulate it

in real-time. In each panel of Figure 16, the top sub-panel shows the SCR events from the

human model, the middle sub-panel displays the estimated cognitive stress-related state, and

the bottom sub-panel depicts the control signal. The grey background belongs to the high

arousal environmental stimuli (i.e., the cognitive stress task), while the white background

implies the low arousal environmental stimuli (i.e., the relaxation task).

As presented in the Figure 16, the high number of SCR events and the higher levels

of estimated cognitive stress-related state (top and middle sub-panels) are detected by the

system and control becomes active (bottom sub-panel). Then, employing the derived control

actions results in fewer number of SCR events and a lower levels of estimated stress state

in the first half of the simulation (i.e., cognitive stress period). This closed-loop inhibitory

case validates the performance of proposed WMI architecture in lowering the estimated

cognitive stress-related state levels in a real-time manner.

3.3.3 Closed-Loop Excitatory

As discussed earlier, it is important to keep one’s cognitive stress levels within a de-

sired range. Meaning, the cognitive stress state is sometimes considered as the cognitive

engagement which is a positive stress (or eustress). In each panel of Figure 17, the top
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Figure 15: Open-loop results of cognitive arousal estimation.

sub-panel shows the SCR events from the human model, the middle sub-panel displays the

estimated cognitive stress-related state, and the bottom sub-panel depicts the control signal.

The grey background belongs to the high arousal environmental stimuli (i.e., the cognitive

stress task), while the white background implies the low arousal environmental stimuli (i.e.,

the relaxation task). The main goal in this case is to prevent cognitive disengagement.

More particularly, as observed in Figure 17, the small number of SCR events and the lower

levels of estimated cognitive stress-related state (top and middle sub-panels) in the second

half of the simulation (i.e., low cognitive engagement period) are detected by the system.

Then, employing the control signals (bottom sub-panel) results in more SCR events and a

higher estimated cognitive-related state levels in this period of low cognitive engagement.

This closed-loop excitatory case illustrates how the proposed WMI approach is effective in

elevating the cognitive stress-related state in a real-time manner.
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Figure 16: Closed-Loop inhibition results in WMI architecture.

3.4 Discussion

To design a simulation system for tracking and control internal cognitive stress state

based on SCR events, we analyzed recorded data on multiple subjects in an offline process

(Figure 11). Next, we presented two different models for environmental stimuli: one for

cognitive stress (high arousal) and one for relaxation (low arousal). Taking advantage of

simulated environmental stimuli, we designed the real-time system for further analysis. By

modelling SCR events, we employed the state-space approach to relate the internal cognitive

stress state to the changes in SCR events. Using Bayesian filtering, we estimated the hidden

cognitive stress-related state in real-time. To close the loop and regulate the estimated stress

state, we designed a fuzzy control system in the proposed WMI architecture.

To the best of our knowledge, this research is one of the very first to relate the cognitive

stress state to the changes in SCR events and designing the control mechanism to close the

loop in a real-time simulation system. In particular, we accomplished the task of closed-

loop cognitive stress regulation in a simulation study based on experimental data. The
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Figure 17: Closed-Loop inhibition results in WMI architecture.

final results verify that the proposed architecture has great potential to be implemented in

a wrist-worn wearable device and used in daily life. To illustrate this idea, we presented

three cases. In the first case (Figure 15), open-loop results demonstrated how the proposed

architecture is successful in tracking internal stress state in both high and low arousal

periods.

In the second case (Figure 16), we investigated the performance of the proposed approach

in cognitive stress inhibition. Here, we assumed that the first half of the simulation (first

5 min in Figure 16) is associated with the undesired cognitive stress, which is due to an

unpleasant stressful environment. The goal of lowering the estimated cognitive stress state

is achieved by detecting the high arousal levels and applying the appropriate control action

in the real-time system. Hence, the number of SCR events and the estimated cognitive stress

levels have significantly dropped in the first half of the simulation compared to the same

period of time in the open-loop case (Figure 15). Furthermore, since the main goal in this

case was to inhibit cognitive stress-related state, and as the second half of the simulation is
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associated with the low arousal session, the control input goes to zero during this time span.

The simulated human brain responses in the second half of the simulation, which is related

to low arousal (relaxation) environment, is affected by the inhibitory control applied in the

first half of the simulation. For example, in an experiment with a cognitive task followed by

a relaxation task, if a subject listens to relaxing music during the cognitive stress task to

decrease his/her stress levels, he/she will be even more calmed during the relaxation period

compared to a subject who did not listen to relaxing music during the cognitive stress task.

So, the more calmed response in the second half of the simulation is due to the applied

inhibitory control in the first half of the simulation. In other words, for the closed-loop

inhibition case, while we do not observe any control action during the second half of the

simulation, the number of SCR events and estimated stress levels are lower in this period

of simulation compared to the open-loop case.

The final case is related to the condition in which we assume the simulated subject

is not cognitively engaged with the environment. Here, we aimed to increase the arousal

state which is useful for concentration and productivity [2]. Implementing the proposed

excitatory WMI architecture, the number of SCR events and the estimated cognitive stress-

related state have been elevated remarkably in the second half of the simulation compared

to the same period of time in the open-loop case (Figure 15). As a result, the proposed

approach could be used to detect this low arousal state and increase it in real-time. It

should be pointed out that, since the objective in this case was to excite cognitive stress-

related state, and as the first half of the simulation is associated with the high arousal

environmental stimuli, the control input will remain zero during this time period. From

medical perspective, modulating the levels of cognitive stress and increasing eustress are

potentially beneficial in individuals with anxiety and depression. In particular, patients

with traumatic brain injury who suffer from both disorders could benefit from increased

eustress to enhance their engagement during rehabilitation treatments [142].

To further analyze the performance of the closed-loop system, we present the following

Figure 18 on achieved closed-loop results. Analyzing the final results on all simulated
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subjects, we present the effect of the real-time closed-loop system in decreasing (increasing)

the number of SCR events and lowering (elevating) the levels of estimated stress state in

Figure 18. As depicted in Figure 18, each row belongs to one subject. In each row, left panel

(big green box) and right panel (big red box) are related to the inhibitory and excitatory

closed-loop cases, respectively. In each colored box, the left sub-panel is related to the total

number of observed SCR events in each high/low arousal session, while the right sub-panel

depicts the difference in the average levels of stress state in each session. Red bars are

associated with the first half of the simulation (i.e., high arousal or cognitive stress period),

while the green bars are related to the second half of the simulation (i.e., low arousal or

relaxation period).

By running the closed-loop system and observing the results, we analyze the performance

of the proposed closed-loop system for both inhibitory (big green box in each row) and

excitatory (big red box in each row) controllers. To better show the performance, we

present the results of the implemented control system on both simulated SCR events (left

sub-panels) and estimated stress levels (right sub-panels). In both closed-loop cases, we

summed the number of SCR events in both high arousal (red bars) and low arousal (green

bars) periods of the simulations. To analyze the performance of the closed-loop system on

the estimated stress levels, we averaged the levels of estimated stress state over both high

arousal (red bars) and low arousal (green bars) sessions (right sub-panels).

The decline in the total number of SCR events and the average levels of estimated stress

state in the first half of the simulation (red bars) is due to the applied inhibitory controller

in the high arousal session. Similarly, the increase in the total number of SCR events and

the average levels of estimated stress state in the second half of the simulation (green bars)

is due to the applied excitatory controller in the low arousal session.

To illustrate the performance of our proposed closed-loop architecture, we perform the

t-test analysis on all six participants’ results. To this end, we analyze the performance of the

proposed closed-loop system for both inhibitory and excitatory controllers (See Figure 18).

Hence, we investigate the results of implemented control system on both simulated SCR
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Open-Loop vs Closed-Loop Excitation
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Figure 18: Closed-loop performance evaluation for all participants.
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Figure 19: Closed-loop performance analysis on all participants.

events and estimates stress levels. We compute the number of observed SCR events per

minute in both open-loop and closed-loop sessions for both high and low arousal periods

(i.e., five minutes in each case). Moreover, to examine the effect of proposed architecture on

the estimated stress state, we averaged the values associated with the estimated stress state

in both open-loop and closed-loop sessions. The results of performing the t-test analysis

on all simulated profiles are depicted in Figure 19. In Figure 18, the left panels show the

performance of the inhibitory closed-loop system. The right panels are associated with the

results of the excitatory closed-loop system. The top panels depict the performance of the

closed-loop system in regulating the number of SCR events per minute. The bottom panels

show the performance of the closed-loop system in regulating the estimated stress levels.

The numbers on top of the arrows stand for the corresponding p-values.

The decrease in the number of SCR events and average levels of estimated stress state

presented in left sub-panels of Figure 19 are due to the implemented inhibitory control sys-

tem. Conversely, the increase in the number of SCR events and average levels of estimated

stress state observed in right sub-panels of Figure 19 are because of applying excitatory

control system. In each t-test analysis, the resultant p-values presented on top of the ar-

rows confirm the efficiency of the proposed closed-loop architecture in both inhibitory and
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excitatory classes.

It should also be highlighted that different experimental environments would influence

the results. In fact, this in silico study is based on the experiment in [83], in which the

high and low arousal sessions are designed accordingly. In [83], the cognitive stress session

is designed to ask the subjects to perform the Stroop and arithmetic tests, while the low

arousal is derived by asking them to listen to relaxing music. While the performance of

the proposed algorithm is validated by implementing it on multiple subjects’ profiles, any

changes in the reference experiment would further affect the subjects’ skin conductance

response and estimated stress state, accordingly.

In comparison to other available efforts that attempt to infer brain activity by directly

monitoring it [82, 122, 143, 144], our proposed approach aims to detect the cognitive stress

indirectly by collecting physiological signals from wearable devices and inferring the arousal

state. Compared to the existing approaches, which classify the stress levels based on the

physiological data and provide different classes of stress levels, the proposed approach tracks

the stress state in a systematic way and in a continuous manner. The state-space model

and Bayesian filter are in good agreement with the physiology underlying the sympathetic

arousal activities [63, 145]. An increase in sympathetic arousal, which is a natural response

to certain external stimuli, causes rise to measurable bio-signal such as skin conductance.

The applied filter in this research takes the information presented in SCR changes and

relates it to the hidden cognitive stress state.

Although scientists and engineers have performed research in the field of emotion reg-

ulation [117, 118, 119, 146, 147, 148], the present work is one of the first to present a

simulation environment for designing closed-loop control algorithms based on the inferred

arousal state. In the proposed architecture, the arousal decoder only requires a skin con-

ductance signal that can be collected using wrist-worn wearable devices. Indeed, instead

of using the raw skin conductance signal, we infer the underlying neural responses (i.e.,

the increase or decrease in sympathetic tone termed the skin conductance events rate) and

use that information to decode the hidden arousal state. Then, we design the controller
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to close the loop. In this research, we demonstrated how the fuzzy control is successful in

closing the loop and managing internal stress state. One of the main advantages of a fuzzy

control structure is its expandability. This knowledge-based approach can be modified to

cover different types of stress. The results on all simulated subjects’ profiles verify the per-

formance of the proposed architecture and show its feasibility to be implemented in the real

world. Although the steps presented in section 3.2.7 provide the local stability condition

in the proposed fuzzy controller in a finite time horizon window, it should be noted that

finding the stability region in a closed form, and for an infinite time horizon, is not yet a

tractable problem and needs further investigation [149]. Applying uncertainty-based con-

trol techniques is an alternative approach to establish a stable control system. While the

proposed approach in this study employs point process analysis for state-space modeling

and Bayesian filtering for the state estimation process, Li et al. proposed a novel adaptive

fuzzy tracking and control system to handle the system nonlinearities both in the filter

design and tracking procedures [150]. Another possible approach for closing the loop is to

consider the model nonlinearities, which are present in the observations, while tracking the

state and designing the control system [150].

In this in silico study, we made use of a publicly available dataset to create a virtual

environment for real-time tracking and regulation of internal cognitive stress state. In what

follows, we present some of the main challenges we faced in the design process. We used the

skin conductance signal as a biomarker that carries valuable information about the auto-

nomic nervous system and could be collected using wearable devices. Selecting clean profiles

with fewer artifacts was one of the very first challenges addressed. Performing a deconvo-

lution algorithm and Bayesian filtering to estimate the hidden cognitive stress-related state

are the next important steps. To design the virtual environment, we successfully simulated

environmental stimuli functions. This challenging step led us to evaluate the efficiency of

the proposed architectures in stress tracking and closing the loop in real-time. The next

challenging task is to design an appropriate control strategy for closing the loop and regulat-

ing the stress state. To this end, we employed fuzzy control as a powerful knowledge-based
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approach to enhance the closed-loop system with some expertise inference. Developing a

unified fuzzy structure to efficiently regulate stress state in all simulated profiles is the

next important step. By analyzing the open-loop results, we designed appropriate rule

base, membership functions, and defuzzification methods to ensure handling inter-subject

variability in the proposed architecture and closed the loop.

The present research is the first attempt to design a virtual environment based on

the experimental data and relate the internal cognitive stress state to the changes in skin

conductance. Taking advantage of the developed system, we track cognitive stress state

in real-time. By designing the control algorithm, we demonstrated the feasibility of the

proposed closed-loop architectures to inhibit and excite the estimated stress state in real

world.
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4 Enhancement of Closed-Loop Cognitive Stress Regulation

using Supervised Control Architectures

4.1 An Overview of Supervised Control Architectures

In the modern world, any challenge might be a source of cognitive stress [151]. The

fast-paced life has the potential to induce emotional and cognitive stress [152]. Feeling

overwhelmed, anxiety, and agitation are among the symptoms associated with the high

levels of cognitive stress [153]. Conversely, loss of cognitive engagement might also prevent

individuals from following their goals [154]. A low level of positive stress, which is also called

eustress, might cause memory problems, lack of motivation, and poor concentration [155].

It can also negatively affect persons’ productivity in work places. While it is important

to track internal stress levels [94], it is also critical to establish a mechanism for keeping

internal cognitive stress state within a favorable range [6]. In this research, we aim to track

the internal cognitive stress and propose novel control architectures to maintain it within

the pleasant range. Advances in the fields of control and automation have opened avenues

of applications in various area such as autonomous vehicles, robotics, and financial systems

[156]. Recently, there has been much interest in investigating the use of modern control

techniques in physiological systems [157]. Researchers are actively working on automating

multiple clinical processes such as: artificial pancreas for regulating blood glucose levels

[158, 159], feedback control mechanism in neuroprosthesis [160], internal energy regulation

in patients with cortisol-related disorders [4, 23, 5], anesthesia delivery system for medically

induced coma [48, 161, 162], and deep brain stimulation for treating neurodegenerative

disorders [163]. Hence, we propose to employ control methods in internal cognitive stress

regulation.

As internal cognitive stress state is a hidden state and can not be measured, we approach

this problem indirectly [66]. In human body, the autonomic nervous system (ANS) is

Chapter four is mainly adopted from the accepted manuscript Fekri Azgomi, Hamid and Rose T. Faghih.
“Enhancement of Closed-Loop Cognitive Stress Regulation using Supervised Control Architectures.” IEEE
Open Journal of Engineering in Medicine and Biology (2021).
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responsible for a vast number of functions in response to the mental stress [53]. Changes in

the arousal of the sympathetic nervous system (SNS) and parasympathetic nervous systems

(PSNS), as branches of ANS, are presented in different physiological signals [164, 165]. In

fact, the human brain employs SNS and PSNS to react to environmental stimuli. As a result

of SNS and PSNS activation, we observe changes in physiological signals such as heart rate,

respiration, and skin conductivity [166]. In response to internal/external stress stimuli,

brain changes the sweat gland activation via SNS [167, 168, 169]. Consequently variations

in sweat glands activation could be reflected in skin conductance signal monitored by sensors

located in wrist-worn devices [170]. Skin conductance signal or electrodermal activity has

been shown to be an indicator of mental arousal and cognitive stress [94, 171, 50, 95].

Therefore, we follow the approaches presented in [3] for further analysis. In the simulation

system presented in [3], the hidden cognitive stress state is connected to the changes in skin

conductance response (SCR) events via a state-space approach. Employing experimentally

collected data, a real-time simulation system is developed to investigate the control design

algorithm for closing the loop [3].

In the system presented in [3, 6], we took SCR events as the binary observation and

estimated the hidden stress state in real time. While SCR time events carry important

information about internal arousal state [94, 95], focusing on only the events’ time as the

binary observations and ignoring their amplitudes may cause loss of valuable details. As

reported in several articles [50, 53], SCR amplitudes includes information about internal

arousal state. In [66], a modified version of the filtering approach, which incorporates

continuous-valued information from the SCR amplitudes (i.e., phasic amplitude and tonic

levels) is presented. In their proposed approach, they have reported overfitting to the

continuous values [66]. To solve this issue, authors in [56] proposed the marked point process

(MPP) filtering approach. The MPP filter is applied to estimate internal arousal state

from SCR events and their corresponding amplitudes to address the overfitting problem

[56]. Compared to our previous approach [3], which we only included SCR time events

as binary observations, here we enhance the state estimation process by incorporating the
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event amplitudes and estimate the internal state with MPP approach.

Exploiting the state-space representation which will lead us to track internal arousal

state in a systematic way, we aim to invest in control system techniques to regulate the

estimated arousal state and close the loop. In recent years, there exists a growing interest

in employing control methods to automate various procedures [172, 173]. Researchers in

[174] developed a novel boundary control scheme to regulate a rigid-flexible wing system

and close the loop. He et al. considered distributed disturbances and designed a robust

control strategy to reject them [175]. Similarly, in present research, we propose novel con-

trol approaches to close the loop, regulate the estimated stress state, and keep it within

the desired range. The state-space model and the real-time estimation enable us to han-

dle this physiological system as a control-theoretic problem. Hence, we propose to employ

well-established model-based optimal control techniques, including linear quadratic regula-

tor (LQR) and model predictive control (MPC) to close the loop. In both LQR and MPC,

by optimizing corresponding objective functions, the optimal control would be derived in

a real-time manner. The performance of both LQR and MPC depends on the selection of

the objective functions [176]. Additionally, due to the nature of this physiological system,

the inter- and intra-subject variability make the objective function selection process a chal-

lenging task. Among available approaches that address the challenges associated with the

objective function selection, research in [177] proposed to use genetic algorithm for opti-

mal tuning of MPC weights. Ramasamy et al. have established a mechanism to update

the cost functions based on the system performance as well as the operator input in an

offline manner [177]. In their proposed approach, they use an interactive decision tree to

get feedback from the operator and infer the optimal gain weights. Researchers in [178]

proposed a multi-scenario approach for designing a robust MPC system. They evaluated

the operational system for each scenario and considered them while tuning the MPC. Van

et al. also proposed to combine the genetic algorithm with a multi objective fuzzy decision

making system for MPC tuning [179]. In their proposed approach, they rank the predefined

objective functions based on the fuzzy systems [179]. Zhao et al. in [180] implemented a
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real-time system for adjusting the MPC tuning parameters in an adaptive cruise control

system. The expert system proposed in [180] adjusts the tune parameters based on if-then

rules. The corresponding cost functions are regulated based on the changes in sign of error

terms [180]. To address the need for creating a system to dynamically update the control

tune parameters, we propose to establish a supervised layer on top of the implemented

model-based control systems. In the proposed architectures, a knowledge-based fuzzy sys-

tem would supervise the LQR and MPC and adjusts the objective functions in real-time.

The combination of fuzzy systems and model-based control techniques have been ex-

plored in the literature [181, 182, 183]. The researchers in [181] have used fuzzy logic

methodology to address the output constraints while designing the MPC. Researchers in

[182] use the fuzzy system to decouple the modeling process and use LQR approach to

control the power plant. In a similar approach, researchers in [183] apply fuzzy system to

model building heating system and implemented the MPC for the process control. How-

ever, the present work is the first attempt to use a fuzzy system as the supervised layer

to adjust tuning parameters in model-based control structures. Moreover, the proposed

supervised control architectures provide a setting to include the relevant medical expertise

to enhance the closed-loop system. These novel supervised control approaches could be

further expanded to deliver adaptive and robust closed-loop characteristics. The key con-

tributions of the present research include (i) implementing real-time MPP Bayesian-type

filter to estimate the hidden arousal state from amplitude and timings of skin conductance

response events, (ii) taking advantage of state-space representation of internal arousal state

and utilizing model-based LQR and MPC structures to regulate the hidden state, and

(iii) presenting novel supervised fuzzy-LQR and fuzzy-MPC architectures to adjust control

tuning parameters in real-time.

4.2 Methodologies

An overview of the proposed closed-loop supervised control architectures is presented

in Figure 20. We utilize the simulation system presented in [3]. The idea presented in
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[3] is associated with employing experimental data [83] and simulating the environmental

stimuli for two scenarios: cognitive stress and relaxation. In Figure 20, the orange dashed

box displays the open-loop system (A). The solid green box, shows the supervised control

architectures (D). We take the SCR events generated by human brain model and utilize

the MPP Bayesian filter to estimate the cognitive stress state. To close the loop, we use

the optimal control and model predictive control structures (B). We establish a knowledge-

based fuzzy system, as a supervised layer (C), and apply expertise knowledge for updating

the control tune parameters in a real-time manner (D).
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Figure 20: Overview of supervised control architectures.

In a state-space representation, we take simulated SCR events and estimate the hidden

cognitive stress state in real-time. To this end, we employ the MPP Bayesian-type filtering

((A) in Figure 20). To design the control signal and close the open-loop system, we use the
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model-based approaches LQR and MPC ((B) in Figure 20). We establish a supervised fuzzy

system on top of the LQR and MPC structures to automatically update the control tune

parameters ((C) in Figure 20). The supervised layer executes this task based on feedback

from the estimated cognitive stress state, desired state levels, and expertise knowledge.

4.2.1 Human Brain Stimulus-Response Model

We use the simulation model that is based on the experimental data [83] and presented

in [3]. Non-EEG Dataset for Assessment of Neurological Status [83] is publicly available

through the PhysioNet database [83, 127]. This study contains multiple experiments that

induce different types of the stress to the subjects. The simulation model is based on two

sessions: cognitive stress and relaxation, as the most representative cases [3]. In the original

study [83], multiple physiological data were collected (i.e., skin conductance, body temper-

ature, 3D accelerometer signals, heart rate, and blood oxygenation levels). In this research,

we aim to track and regulate internal stress state by monitoring skin conductance measure-

ments which were collected using Affectiva Q Curve wearable device to build the simulation

environment. Similar to [94, 3], we analyze profiles associated with six selected partici-

pants whose data were clean and reliable. More information regarding this experiments

and simulation system could be found in [83, 94, 3].

In the simulation system presented in [3], to model individual’s brain responses, we

relate the internal cognitive stress-related state to the changes in skin conductance signal

by employing a first-order state-space model [94, 95]

xk+1 = xk + sk + νk + uk, (36)

where xk stands for the hidden stress-related state, sk reflects the environmental stimuli,

and νk ∼ N (0, σ2
ν) represents the process noise [66, 95]. uk denotes the control input

signal designed and applied in real-time to regulate the simulated stress-related state. It is

worth mentioning that we include the sk in (61) for the simulation purpose. In a real-world

scenario, the human’s internal cognitive stress state is affected by real environmental stimuli.
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The details of modeling the environmental stimuli is presented in [3]. We also assume the

occurrence of SCR events, nk, follows a Bernoulli distribution with the probability function

P (nk|xk) = qnkk (1− qk)1−nk , (37)

where the probability qk is connected to the stress state xk, via a Sigmoid function [184]:

qk =
1

1 + e−(γ+xk)
, (38)

where γ is the person-specific baseline parameter that should be determined. Similar to

[3], we first assume x0 approximately equals to zero. We then calculate the γ based on the

average probability of an SCR occurring in the whole data. According to (38), with increase

in the levels of the cognitive stress state, the probability of receiving the SCR events also

increases.

To incorporate all the information included in SCR events, we extend our previous re-

search [3], which only employs the SCR events’ time, to comprise the amplitudes associated

with the SCR events. To this end, we assume there exists a linear relationship between the

internal cognitive stress state xk and the SCR amplitudes

rk = ρ0 + ρ1xk + ωk, (39)

where rk is assumed to be the log transformation of the continuous-valued associated with

each SCR event’s amplitude. ρ0 and ρ1 are constant values derived by the offline expectation

maximization algorithm [56, 3]. ωk ∼ N (0, σ2
ω) is measurement noise with variance σ2

ω.

Accordingly, the joint density function on the probability of receiving the SCR event nk

with the corresponding amplitude rk is

p(nk ∩ rk|xk) =


qk

1√
2πσ2

ω

e
−(rk−ρ0−ρ1xk)

2

2σ2ω if nk = 1,

1− qk if nk = 0.

(40)
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As presented in (40), the amplitude information will not be included when there is no

impulse (nk = 0) [56].

It is worth mentioning that the log transformation, discussed in rk modeling (64), is

only considered in this in silico study [66]. In real-world implementation of the proposed

algorithm, we take amplitude and timing of SCR events to model and estimate cognitive

arousal state [56].

4.2.2 Cognitive Stress State Estimation via Marked Point Process Filtering

Taking the SCR events time and their corresponding amplitudes (nk, rk), as the binary

and continuous observations, we follow the MPP-based Bayesian filtering approach to esti-

mate the hidden cognitive stress state xk [56]. While the estimation process includes the

forward filter and a backward smoother, we only implement the forward part of the filter

for further real-time analysis. At each time step, a Gaussian approximation is applied to

the posterior density. Combining the prediction and the update steps in the forward filter

[56], we estimate the stress state and its variance using the recursive equations

x̂k = x̂k−1 + nkCk + (σ̂2
k−1 + σ2

ν)(nk − qk)

(
(1− nk)ρ2

1(σ̂2
k−1 + σ2

ν) + σ2
ω

ρ2
1(σ̂2

k−1 + σ2
ν) + σ2

ω

)
(41)

and σ̂2
k =

( 1

σ̂2
k−1 + σ2

ν

+ qk(1− qk) + nkDk

)−1
, (42)

where,

Ck =
ρ1(σ̂2

k−1 + σ2
ν)(rk − ρ0 − ρ1x̂k−1)

ρ2
1(σ̂2

k−1 + σ2
ν) + σ2

ω

and Dk =
ρ2

1

σ2
ω

, (43)

when there exists a SCR event (nk 6= 0). Otherwise (i.e., nk = 0), Ck and Dk equal zero

(Ck = Dk = 0). In fact, the terms Ck and Dk presented in (41) and (42) incorporate the

continuous-valued information (rk in (64)) associated with the observed SCR event nk at

time step k. So, these terms are applied only when there exists a SCR event (nk 6= 0). The

probability qk presented in (41) and (42) is being related to the state xk via (63). So, it

will results in a nonlinear problem that should be solved by employing numerical methods
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such as Newton-Raphson [56]. Consequently, we estimate the cognitive stress-related state

x̂k and its corresponding variance parameter σ̂k in a real-time manner.

4.2.3 Control Design

In this part, we follow the goal of establishing a knowledge-based fuzzy system ((C) in

Figure 1) as a supervised layer in model-based control approaches ((B) in Figure 1) to close

the loop and regulate the estimated cognitive stress state. Particularly, we implement the

fuzzy control structure as a supervised layer in LQR and MPC structures. In the supervised

architectures, the fuzzy system will automatically adjust the control tune parameters in

real-time. In what follows, we discuss both model-based control approaches.

LQR

Taking advantage of the state-space model and estimates of cognitive stress state, in

LQR framework, we find the optimal solution of a predefined cost function. Hence, the

obtained control signal uk will minimize the objective function

J =
K∑
k=1

(x̂k − xd)′kQ(x̂k − xd) + u′kRuk, (44)

where K is the ultimate time of the process. Q and R are positive definite weight matrices

to penalize the state deviations and the input efforts, respectively. xd in (44) also stands for

the desired levels of estimated stress state. Solving this optimization problem, the optimal

control signal uk is derived as a linear state feedback controller

uk = −Gkx̂k, (45)

where, the feedback gain Gk is derived recursively

Gk = (R+ Pk+1)−1Pk+1, (46)
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where Pk is the discrete solution of the algebraic Riccati equation

Pk = Q+
(
Pk+1 − Pk+1(R+ Pk+1)−1Pk+1

)
, (47)

with the PK = Q initial condition.

MPC

To advance the optimal control LQR, we propose to use MPC structure as the second

model-based control technique. In MPC framework, we first project the state values for

whole time-window horizon [185]. Then, we derive the control input for all future prediction

window and apply the first control action. To this end, we form a quadratic function that

needs to be minimized

Juk =

Np∑
l=1

x̂′k+l|kQx̂k+l|k + ∆u′k+l|kR∆uk+l|k, (48)

where Np is the prediction horizon, x̂k+l|k denotes to the state estimate prediction, and

∆uk+l|k = uk+l+1|k − uk+l|k is the predicted variation of control input at each time step.

Similar to LQR, Q and R are positive definite weight matrices to penalize the predicted

state deviations and control efforts. To find the control signal, we aim to derive uk =

[uk|k uk+1|k . . . uk+Np−1|k]
′ which is the control input for whole time horizon window

prediction. To this end, we first define ∆x̂k = x̂k− x̂k−1 and ∆uk = uk−uk−1. Using these

terminologies, general state-space model (61) would be simply transferred to ∆x̂k+1 =

∆x̂k + ∆uk. By considering the estimated state as the output equation (yk = x̂k), and

defining a new augmented variable, we build

xa(k) =

∆x̂k

yk

 . (49)

So, the augmented system dynamics would be derived as

xa(k + 1) = Aaxa(k) +Ba∆u(k) (50)
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and y(k) = Caxa(k), (51)

where the augmented system matrices in (50) and (51) are

Aa =

1 0

1 1

 , Ba =

1

1

 , and Ca =

(
0 1

)
. (52)

Employing the output equation in the augmented system (51), we build the predicted

future observation for whole prediction horizon Np as

Y = Wxa(k) + Z∆U, (53)

where:

Y =



y(k + 1|k)

y(k + 2|k)

...

y(k +Np|k)


,W = Ca



Aa

A2
a

...

A
Np
a


, and Z = Ca



Ba

AaBa Ba
...

. . .

A
Np−1
a Ba . . . AaBa Ba


.

(54)

Now, the goal of finding control action uk is converted to calculating the sequence of

∆U =

(
∆u(k) ∆u(k + 1) . . . ∆u(k +Np − 1)

)
. Consequently, this sequence will provide

the predicted state variables

(
xa(k + 1|k) xa(k + 2|k) . . . xa(k +Np|k)

)
.

To find the sequence ∆U in (53), by knowing Y,W,Z and xa(k), minimizing the cost

function presented in (48) would be equal to minimizing the objective function

J∆U = Y ′QTY + ∆U ′RT∆U, (55)

where RT = RINp×Np and QT = QINp×Np are diagonal matrices for penalizing the control

effort and deviations in the estimated state, respectively. Assuming there is no constraint,
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by setting ∂J
∂∆U = 0, we derive the optimal solution

∆U∗ = (RT + ZTQTZ)−1ZTQTWxa. (56)

It is also worth mentioning that positive definite matrices RT and QT (i.e., R � 0,

Q � 0) will guarantee the second order necessary condition in the computed ∆U∗. Finally,

the first element in ∆U∗, which is ∆u(k), includes required control action signal for each

time step (i.e., uk = uk−1 + ∆u(k)).

It should be also noted that by any selections of positive definite weight matrices Q and

R, finding the optimal control would be equal to solving a quadratic program optimization

problem (55). Solution ∆U∗ in (56) only relies on the current state, past control input, and

the desired level. Consequently, it will result in a closed-loop well-posed system that always

has a unique solution [186].

In MPC design, while there exist methods for ensuring stability in infinite time hori-

zon cases, utilizing a straightforward method for delivering rigorous stable property with

finite time horizon remains challenging. In this research, to invest the stability, we eval-

uate prediction tail and consider terminal constraint [187]. Assuming terminal constraint

x̂k+Np = xd in (48) also provides with recursive feasibility. To this end, we consider the

general form of optimal control input as Lyapunov function

V (k) = min

Np∑
i=1

l(x̂k,∆uk), (57)

where l(x̂k,∆uk) = x̂′kQx̂k + ∆u′kR∆uk. In (k + 1) time instant, the first component of

V (k+1) has been occurred and is no longer prediction. This unused part is called prediction

tail (i.e., [∆uk+1 . . . ∆uk+Np−1]) [187, 188]. For the sake of simplicity, we assume zero

terminal constraint at this stage (i.e., x̂k+Np = 0). Next, we follow the steps presented in

[189] and derive V (k + 1)

V (k + 1) = V (k)− l(x̂k,∆u0) + l(0, 0), (58)
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where initial cost l(x̂k,∆u0) is subtracted and corresponding cost for staying at terminal

state is added (i.e, l(0, 0)) [187]. Hence,

V (k + 1)− V (k) ≤ −l(x̂k,∆u0). (59)

Since l(x̂k,∆u0) ≥ 0, we may conclude that V (k + 1) − V (k) ≤ 0 and the Lyapunov

function candidate is stable.

4.2.4 Supervised Control Architectures

As illustrated, in both LQR and MPC approaches, the selection of weight matrices Q

and R plays an important role in the control design process. In fact, derived control gain in

these model-based approaches highly depends on the weight matrices presented in (44) and

(48). To update the weight matrices in real-time, we consider a knowledge-based system

as a supervised layer in the design process. Therefore, we establish a fuzzy system on top

of the pure LQR and MPC structures to (i) take the intrinsic advantages of the modeled

dynamics employed in LQR and MPC, (ii) enhance the performance of the conventional

architectures by adjusting the tune-parameters in real-time, and (iii) overcome the heuristic

nature of the pure fuzzy control design (i.e., presented in [3]). To this end, we define the

corresponding rule-base and fuzzy structure to change the tune-parameters (i.e., Q and R

matrices) in real-time. On the basis of LQR and MPC, the larger Q and R values are, the

more we penalize state deviations and control effort, respectively. Therefore, we set to use

higher values for Q while the error between the estimated state and target state levels is

large and decrease it once the estimated stress state is within a predefined range. Following

a similar logic, while the error term between the estimated state and the desired value is

large, we set not to penalize the control input and let it minimize the error. Once the

estimated state tends to a predefined range of the target level, we set to increase the R and

penalize the control effort to minimize it. Hence, we build the fuzzy rule base as presented

in Table 7.
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Table 7: Supervised Fuzzy Rule Base.

Rule number
IF Then

e error Q parameter R parameter

Rule1 Large Strong Weak

Rule2 Moderate Moderate Moderate

Rule3 Small Weak Strong

To quantify the linguistic variables presented in Table 7, we employ the membership

functions depicted in Figure 21. According to the rule base (Table 7), three sets of mem-

bership function for each input and output variables (i.e., error between the estimated state

and the target level, Q parameter, and R parameter) are considered. For each error input

e and the tune parameters Q and R, three membership functions are employed to quantify

the linguistic variables presented in Table 7. Blue notations are for the error input and the

green notations associated with the output tune parameters.

Input / Output Ranges

De
gr

ee
 o

f M
em

be
rs

hi
p

a b                 c                d    

Small / Weak Moderate / Moderate Large / Strong

Figure 21: Input and output membership functions in supervised architectures.

For each sets of input and outputs in Figure 21, the middle functions belong to π-shaped

membership functions with parameters a, b, c and d. The left one and the right ones are

z-shape function with the parameter a and b and s-shape function with parameters c and

d, respectively. To illustrate the shape of the membership function presented in Figure 21,
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we present the middle π-functions as:

µ(x; a, b, c, d) =



0 if x ≤ a,

2
(
x−a
b−a
)2

if a ≤ x ≤ a+b
2 ,

1− 2
(
x−b
b−a
)2

if a+b
2 ≤ x ≤ b,

1 if b ≤ x ≤ c,

1− 2
(
x−c
d−c
)2

if c ≤ x ≤ c+d
2 ,

2
(
x−c
d−c
)2

if c+d
2 ≤ x ≤ d,

0 if x ≥ d.

(60)

The s-shaped and z-shaped functions are spacial cases of the π-shaped function. The

values associated with variables a, b, c and d for each input and output are presented in

Table 8. We also use the Mamdani inference engine and centroid defuzzification to execute

the fuzzy system in the proposed supervised control architectures.

Table 8: Membership Function Values in Supervised Layer (60).

Membership Function Variable a b c d

Input Error e value 0.1 0.3 0.5 0.7

Output Fuzzy-LQR
Q parameter 100 300 500 800

R parameter 5 20 30 45

Output Fuzzy-MPC
Q parameter 1000 1500 2000 2500

R parameter 3 6 9 12

4.3 Results

Implementing the model-based LQR and MPC methods in addition to the proposed

supervised fuzzy-LQR and fuzzy-MPC approaches, we present the results. To show the

performance of MPP filter in tracking cognitive stress state and demonstrate the efficiency
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of implementing the proposed supervised architectures, we present open-loop and closed-

loop results. We follow the developed simulation environment in the order of first inducing

cognitive stress and then causing the relaxation [3]. To analyze the accuracy of proposed

control architectures, we present two closed-loop scenarios: inhibition for reducing the cog-

nitive stress levels in the first half, and excitation to increase the levels of cognitive stress

estimates in the second half of the simulation. Figures 22–27 depict the results associated

with the Participants 1-6. In each figure, the top four panels show the closed-loop inhibition

results. The bottom four panels show the closed-loop excitatory results. In each panel, the

top two sub-panels show the SCR events along with their amplitudes in open-loop (orange

color) and closed-loop (blue color) cases. In open-loop case, there is no control applied (i.e.,

uk = 0 in (61)). The third sub-panel shows the estimated cognitive stress-related state. The

bottom sub-panel shows the designed control implemented in real-time to close the loop and

either inhibit or excite the estimated stress levels. The grey and white backgrounds corre-

spond to the high and low arousal environmental stimuli, respectively (i.e., cognitive stress

condition vs relaxing condition).

4.3.1 Closed-Loop Inhibition

The main goal in inhibitory closed-loop case is to design the control action to reduce

the levels of the estimated cognitive stress state in the first half of the simulation. To

investigate the effects of supervised layer, we present each model-based LQR and MPC

methods along with their fuzzy supervised pairs (top four panels of Figures 22–27). As

presented in Figures 22–27, control system detects high arousal levels and, by deriving the

appropriate action, reduces the high levels of cognitive stress state in the first half of the

simulation. As the second half is related to the low arousal period (or relaxation), there

is no need to apply any control (i.e., u = 0). The left panels in Figures 22–27 present

the results of applying LQR and supervised fuzzy-LQR controllers. The right panels in

Figures 22–27 present the results of applying MPC and supervised fuzzy-MPC controllers.
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Figure 22: Supervised inhibition and excitation results (Participant 1).
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Figure 23: Supervised inhibition and excitation results (Participant 2).
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Figure 24: Supervised inhibition and excitation results (Participant 3).
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Figure 25: Supervised inhibition and excitation results (Participant 4).
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Figure 26: Supervised inhibition and excitation results (Participant 5).
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Figure 27: Supervised inhibition and excitation results (Participant 6).
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4.3.2 Closed-Loop Excitation

The main objective in excitatory closed-loop case is to design the control action for in-

creasing the levels of the estimated cognitive stress state in the second half of the simulation

(with low arousal environmental stimuli). The results of applying each model-based LQR

and MPC method along with their fuzzy supervised pairs are presented in bottom four

panels of Figures 22–27. The excitatory control aims to detect the low levels of estimated

cognitive stress state in the second half of the simulation and derive the appropriate control

action to enhance it. As the first half is related to the high arousal (or cognitive stress

stimuli), there is no need to apply any control action in this period (i.e., u = 0). The left

panels in Figures 22–27 present the results of applying LQR and supervised fuzzy-LQR

controllers. The right panels in Figures 22–27 present the results of applying MPC and

supervised fuzzy-MPC controllers.

4.4 Discussion

In this research, as one of the very first in the context of closed-loop cognitive stress reg-

ulation, we proposed to use MPP filtering along with novel supervised control approaches to

enhance the closed-loop control performance. In this regard, we utilized a simulation envi-

ronment [3] based on the experimental data [83] to investigate the proposed methodologies

in tracking and regulating internal cognitive stress state. To this end, we investigated skin

conductance signal measurements and related them to the hidden stress state. To estimate

the hidden state in real-time, we employed the MPP Bayesian-type filter and incorporated

the information regarding the time and the amplitudes of SCR events.

The open-loop results, presented in Figures 22–27, illustrate the sufficiency of internal

stress state tracking in response to the changes in simulated environmental stimuli. The

higher numbers/values of SCR events (i.e., orange spikes in the first sub-panel) and levels

of estimated stress state (i.e. orange graph in the third sub-panel) in the first half of the

simulation is because of the applied high arousal environmental stimuli. Moving toward

the low arousal session (white background in Figures 22–27), both the numbers/values of
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SCR events and the estimated stress levels drop significantly, which is due to the induced

relaxing environmental stimuli in the second half of the simulation. These changes in the

estimated stress state are in good agreement with the changes in SCR events: higher levels

of the estimated stress state in the first half of the simulation (i.e., cognitive stress), and

lower levels for the second half of the simulation (i.e., relaxation). These results verify the

efficiency of the state-space approach along with the MPP filter in tracking the cognitive

stress state in real-time.

To regulate the estimated stress levels in a closed-loop manner, we proposed novel

supervised control approaches. Taking advantage of the state-space model as well as the

real-time state estimation, we first presented the results of applying model-based system-

theoretic control approaches: LQR and MPC. As the performance in these controllers

highly depends on adjusting tune-parameters (i.e., weight matrices), we proposed a novel

knowledge-based fuzzy supervised layer to enhance the control systems and update the

control tuning parameters in real-time. The fuzzy system performs this task based on

the insights into the system and changes in the control design criteria. The results of the

proposed supervised control approaches in both inhibition and excitation cases are presented

in Figures 22–27.

In the closed-loop inhibition task (top four panels of Figures 22–27), the goal is to reduce

the levels of the estimated stress state in the stress session (i.e., first half of the simulation).

During this period, we assume that the environmental stimuli cause the subject to feel

stressed. As a result, SNS would activate the sweat glands and skin conductivity would

be increased. Consequently, more activation on SCRs would be observed (top sub-panels

of Figures 22–27). By tracking the estimated stress state, the designed control system

derives the required action for inhibition task. The control signal, presented in third sub-

panel, is mainly active in the first half and results in lowering the stress state. The results

of implementing supervised fuzzy-LQR approach is presented in the bottom left panel of

Figures 22–27. Establishing a supervised layer on top of the LQR approach results in

achieving the control goal more precisely (second sup-panel) with more optimized control
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efforts. The results of applying MPC and supervised fuzzy-MPC approaches to inhibit the

cognitive stress state are depicted in the right panels of Figures 22–27. The control signal,

presented in third sub-panel, is active in the first half of the simulation and tries to lower

the estimated stress state. The results of implementing the supervised fuzzy system on

top of the MPC system are presented in the bottom right panel of Figures 22–27. This

supervised architecture has improved the state tracking accuracy. Besides, the supervised

layer has resulted in achieving the control goal with a more optimal control effort.

Compared to the inhibition task, the goal of implementing excitation class of controllers

is to excite the low levels of arousal state. It is also important to keep the positive stress

(i.e., eustress) in a desired range. The second half of the simulation in the presented

environment is assumed to induce low cognitive stress condition on the person. We assume

that the similar condition might happen while the subject is supposed to concentrate on

the task, but due to multiple possible reasons, the cognitive engagement would be lost. The

goal of elevating the estimated stress-related state has been followed by both designing the

LQR and MPC approaches. The results of closed-loop excitation task are presented in the

bottom four panels of Figures 22–27.

First, by implementing the pure LQR method, the control action is active in the second

half of the simulation, which is associated with the low arousal environmental stimuli. The

LQR control action results in more activation in the simulated SCRs (first sub-panel), and

leads to a higher level of estimated cognitive stress state (middle sub-panel). Enhancing

the LQR closed-loop system by considering the supervised layer and updating the control

tune-parameters in real-time, improves the results on both state tracking and control effort

criteria. As presented in the bottom left panel of Figures 22–27, the supervised fuzzy-LQR

has led to a more precise state tracking with more optimal control efforts. As the second

model-based approach, we implemented MPC method. First, by applying the pure MPC,

the control action (third sub-panel) has elevated the levels of estimated stress state (second

sub-panel). By enhancing the pure MPC structure with supervised fuzzy layer, we derive

the results presented in the bottom right panel of Figures 22–27. Similar to fuzzy-LQR,
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Table 9: Closed-Loop Performance Analysis (Participant 1).

Closed-Loop Class Controller 1
KT

∑KT
k=1 e

2
k

1
KT

∑KT
k=1 |uk|

Inhibition

LQR 0.1642 0.0045
Supervised LQR 0.1260 0.0052

MPC 0.0658 0.0662
Supervised MPC 0.0592 0.0590

Excitation

LQR 0.0664 0.0074
Supervised LQR 0.0640 0.0054

MPC 0.0181 0.0621
Supervised MPC 0.0154 0.0338

Table 10: Closed-Loop Performance Analysis (Participant 2).

Closed-Loop Class Controller 1
KT

∑KT
k=1 e

2
k

1
KT

∑KT
k=1 |uk|

Inhibition

LQR 0.0630 0.0038
Supervised LQR 0.0434 0.0047

MPC 0.0394 0.0415
Supervised MPC 0.0261 0.0402

Excitation

LQR 0.0744 0.0047
Supervised LQR 0.0599 0.0051

MPC 0.0123 0.0444
Supervised MPC 0.0149 0.0294

the supervised fuzzy-MPC architecture has improved the performance of the closed-loop

excitation in both tracking accuracy and control effort minimization. To better evaluate

the results of establishing supervised fuzzy system on top of model-based LQR and MPC

approaches, we analyze the closed-loop results. Hence, we consider two criteria: (1) the

effectiveness in reducing error term and improving the state tracking, and (2) achieving the

closed-loop goal with optimized control efforts (see Tables 9–14).

Table 11: Closed-Loop Performance Analysis (Participant 3).

Closed-Loop Class Controller 1
KT

∑KT
k=1 e

2
k

1
KT

∑KT
k=1 |uk|

Inhibition

LQR 0.2356 0.0076
Supervised LQR 0.1841 0.0138

MPC 0.1059 0.1385
Supervised MPC 0.0611 0.1249

Excitation

LQR 0.1416 0.0107
Supervised LQR 0.1381 0.0113

MPC 0.0580 0.1489
Supervised MPC 0.0372 0.0931
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Table 12: Closed-Loop Performance Analysis (Participant 4).

Closed-Loop Class Controller 1
KT

∑KT
k=1 e

2
k

1
KT

∑KT
k=1 |uk|

Inhibition

LQR 0.1429 0.0059
Supervised LQR 0.1119 0.0102

MPC 0.3438 0.1390
Supervised MPC 0.2780 0.1235

Excitation

LQR 0.0967 0.0115
Supervised LQR 0.0954 0.0085

MPC 0.0736 0.1699
Supervised MPC 0.0494 0.1309

Table 13: Closed-Loop Performance Analysis (Participant 5).

Closed-Loop Class Controller 1
KT

∑KT
k=1 e

2
k

1
KT

∑KT
k=1 |uk|

Inhibition

LQR 0.1584 0.0093
Supervised LQR 0.1225 0.0107

MPC 0.1110 0.1214
Supervised MPC 0.0859 0.1093

Excitation

LQR 0.0823 0.0151
Supervised LQR 0.0868 0.0081

MPC 0.0348 0.1162
Supervised MPC 0.0221 0.0810

Table 14: Closed-Loop Performance Analysis (Participant 6).

Closed-Loop Class Controller 1
KT

∑KT
k=1 e

2
k

1
KT

∑KT
k=1 |uk|

Inhibition

LQR 0.2751 0.0145
Supervised LQR 0.2334 0.0154

MPC 0.3458 0.1401
Supervised MPC 0.3087 0.1391

Excitation

LQR 0.1542 0.0058
Supervised LQR 0.1261 0.0108

MPC 0.0471 0.1330
Supervised MPC 0.0362 0.0961
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Table 15: Overall Closed-Loop Performance Analysis.

Closed-Loop Class Criteria Controller Improvement

Inhibition

Average Error
Supervised LQR +22.6%
Supervised MPC +23.0%

Control Effort
Supervised LQR -35.4%
Supervised MPC +7.6%

Excitation

Average Error
Supervised LQR +5.4%
Supervised MPC +20.4%

Control Effort
Supervised LQR -0.0%
Supervised MPC +32.9%

In Tables 9–14, ek and uk represent the tracking error and the control input, respec-

tively. KT is the total time that the control is active in the loop. For example, as presented

in Table 9, the supervised layer in LQR structure has decreased the tracking error ek in

inhibition task (0.1260 compared to 0.1642). Supervised fuzzy-LQR approach has improved

state tracking accuracy by 23% with a 14% increase in the control efforts. In the excitation

class, establishing supervised layer on top of the LQR system has resulted in a small im-

provement in state tracking accuracy (0.0640 compared to 0.0664) with a 27% decrease in

total control efforts (0.0054 compared to 0.0074). Implementing the supervised fuzzy-MPC

approach has resulted in more promising results. In comparison to the pure MPC, the

supervised fuzzy-MPC system has reduced the tracking error by 10% and 15% in inhibition

and excitation tasks, respectively. The supervised fuzzy-MPC architecture has also lead

to applying less control efforts. It has reduced the total control effort by 10% and 45%

in inhibition and excitation closed-loop tasks, respectively. We also analyzed the results

of implementing supervised approaches on all six simulated profiles [3, 94]. A summary of

overall closed-loop performance analysis for all simulated profiles are presented in Table 15.

As presented in Table 15, establishing supervised fuzzy system has significantly im-

proved the MPC performance in both inhibition and excitation closed-loop systems. The

proposed supervised fuzzy-MPC architecture has resulted in an enhanced tracking accuracy

with more optimized control efforts. These analyses verify how the proposed supervised con-

trol architectures result in a more accurate state tracking with more optimal control efforts

in MPC design. While the supervised fuzzy layer has also improved the tracking accuracy
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in LQR design, it has not been effective in accomplishing this task by reducing the control

efforts. Supervised fuzzy-LQR system has decreased the tracking error on all six simulated

profiles by average of 22.6% and 5.4% in inhibition and excitatory closed-loop classes, re-

spectively. However, these improvements are not achieved by reducing the control efforts.

Instead, in inhibition task, supervised LQR resulted in an average of 35% increase in control

efforts. These analysis show that the proposed supervised architecture has great potential

in improving state tracking accuracy in LQR design. The results in this in silico study con-

firm that the proposed supervised architectures have great potentials to be implemented in

real-world.
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5 Adaptive and Robust Control Systems for Closed-loop Cog-

nitive Stress Regulation

5.1 An Overview of Adaptive and Robust Control Design

Concerned by inter- and intra subject variation presented in different individuals’ physio-

logical responses, we aim to design adaptive and robust control architectures in this chapter.

To further enhance the control methodologies presented in chapters 3 and 4, we expand the

main state-space equation by incorporating model uncertainty and additional disturbance

input [3, 6].

To model inter-subject variations, we include model uncertainty in the proposed state-

space representation. To model intra-subject variations, we propose to include additional

disturbance input to handle potential model mismatch within the subjects. To handle the

uncertainty in model parameter and additional disturbance input, we explore adaptive and

robust design methodologies. Bolus et al. proposed an optimal feedback control to establish

robust control design in a system with optogenetically driven neural activity [190]. In their

proposed approach, they utilize an extended Kalman filter to re-estimate the augmented

state that consists of the latent state and additional disturbance term. Yang et al. developed

an adaptive latent state estimation algorithm to model brain network dynamics [191]. In

their proposed algorithm, a rate-optimized adaptive linear state-space model is utilized to

enable adaptation [191]. In a similar manner, we propose to employ a linear quadratic

regulator (LQR) to estimate (1) time varying coefficient in an adaptive framework and (2)

additional disturbance input to make the closed-loop system robust to these changes.

5.2 Methodologies

5.2.1 Human Brain Stimulus-Response Model

We utilize the simulation model that is generated based on the experimental data [83]

and presented in [3]. The original dataset (i.e., Non-EEG Dataset for Assessment of Neu-

rological Status) is publicly available through the PhysioNet database [83, 127]. This study
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includes several experiments that induce different types of stress to the participants. The

simulation model presented in [3] is based on two sessions: cognitive stress and relaxation,

as the most representative cases [3]. Similar to what is discussed in chapter 4, we track

and manage internal stress state by monitoring skin conductance measurements which were

collected using Affectiva Q Curve wearable device. Similar to [94, 3], we analyze six profiles

associated with selected participants whose data were clean and reliable. Further informa-

tion regarding these experiments are available in [83, 94, 3].

As presented in [3], in a nominal case without any uncertainty in model parameter and

in the absence of disturbance input, we model the internal cognitive stress-related state to

the changes in skin conductance signal by employing a first-order state-space model [94, 95]:

xk+1 = xk + sk + νk + uk, (61)

where xk corresponds to the hidden stress-related state, sk stands for the environmental

stimuli, and νk ∼ N (0, σ2
ν) represents the process noise [66, 95]. uk is the control signal to

regulate the simulated stress-related state. It should be noted that incorporated sk in (61)

is only for the simulation purpose. In experimental implementation, the human’s internal

cognitive stress state is influenced by actual environment. Additional details of modeling

the environmental stimuli is presented in [3]. To derive the observations, we assume the

occurrence of SCR events, nk, follows a Bernoulli distribution with the probability function

P (nk|xk) = qnkk (1− qk)1−nk , (62)

where the probability qk is connected to the stress state xk, via the Sigmoid function [184]

qk =
1

1 + e−(γ+xk)
, (63)

where γ is the person-specific baseline parameter that should be determined. Similar to

[3], we first assume x0 approximately equals to zero. We then calculate γ based on the
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average probability of receiving SCR in the whole data. According to (63), with increase

in the levels of the cognitive stress state, the probability of receiving the SCR events is

also increased. To incorporate additional information presented in skin conductance signal,

similar to chapter 4, we employ continuous feature as well. Hence, we assume there is a

linear relationship between the internal cognitive stress state xk and the tonic component

of skin conductance signal

rk = ρ0 + ρ1xk + ζk, (64)

where rk is assumed to be the log transformation of the continuous-valued observation

associated with the tonic component of skin conductance signal. ρ0 and ρ1 are constant

values derived by the offline expectation maximization algorithm [56, 3]. ζk ∼ N (0, σ2
ζ ) is

measurement noise with variance σ2
ζ .

In the literature, the dynamics of hidden neural states are frequently modeled as random

walks and first-order auto-regressive with extra input (ARX) models [64, 192]. We utilize the

same family of models to capture the evolution of cognitive stress-related state through time.

Hence, we extend the state-space model (61) and consider two different cases: uncertainty

in model parameters and disturbance input. In the first representation, we aim to design

adaptive control system to handle the variations. In the second case, we wish to establish

a robust control method to handle undesired disturbance input in modeled dynamics.

5.2.2 State-Space Modeling in Presence of Time-Varying Model Uncertainty

To incorporate model uncertainty in state-space formulation (61) [193], we relax the

imposed time-invariant condition as

xk+1 = ρkxk + uk + sk + νk, (65)

where uncertainty in model parameter ρk is modeled as a random walk process

ρk = ρk−1 + εk and εk ∼ N (0, σ2
ε ). (66)
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To design adaptive control and close the loop, we first purse developing an estimation

algorithm to estimate ρk and xk simultaneously. To this end, we employ a recursive Bayesian

estimator that jointly estimates these variables based on the observation Yk =

nk
rk

. We

derive the two-dimensional augmented state vector

xa,k =

x
(1)
a,k

x
(2)
a,k

 =

xk
ρk

 . (67)

Therefore, the augmented system’s dynamic is

xa,k+1 =

x
(2)
a,k 0

0 1

 xa,k +

1

0

uk + wa,k = fa(xa,k, uk) + wa,k, (68)

where wa,k =

νk
εk

, is a Gaussian random vector with zero mean vector, and covariance

matrix Ka =

σ2
ν 0

0 σ2
ε

. The proposed recursive Bayesian estimator consists of the pre-

diction and update steps. The prediction step relays on a recursive probabilistic model for

the time evolution of the augmented states. The update step, utilizes a probabilistic obser-

vation model relating the hidden cognitive stress-related arousal state to the SCR events

time and continuous feature.

Prediction step:

xa,k|k−1 = fa(xa,k−1|k−1, uk) (69)

and Σa,k|k−1 = Fa,k−1Σa,k−1|k−1F
′
a,k−1 + Ka, (70)

where xa,k|k−1, Σa,k|k−1 are the mean and the coveriance of xa,k and are derived using all the

previous k−1 observations, Y1:k−1 at each time step k. Moreover, Fa,k−1 =
[
∂fa
∂xa

]
xa,k−1|k−1

.

Update step:

ga,k =

∂log(p(Yk|x
(1)
a,k))

∂x
(1)
a,k


x
(1)
a,k=x

(1)
a,k|k−1

, (71)
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xa,k|k = xa,k|k−1 + Σa,k|k

ga,k
0

 , (72)

and Σ−1
a,k|k = Σ−1

a,k|k−1 +


[
∂ga,k

∂x
(1)
a,k

]
x
(1)
a,k=x

(1)
a,k|k−1

0

0 0

 . (73)

5.2.3 Adaptive Feedback Controller Design

We follow the goal of designing an adaptive feedback-controller to derive on the control

input uk. The adaptive controller will utilize the real-time estimate of the hidden states

and model parameter as feedback to “optimally” solve for uk. Satisfying the optimality

criterion implies defining a cost function and finding uk to minimize it. We formulate a

quadratic cost function given as

Ja =
∞∑
k=0

Qa(xk − x∗)2 +Ra(uk − u∗k)2, (74)

where Qa, Ra are positive weight matrices. By fixing the time-varying parameter at its

current estimate (i.e., ρk = x
(2)
a,k|k), ignoring environmental stimuli, and given the system

reaches the steady state, we derive a single linear equation described in (65). Solving it for

u∗k, we derive

u∗k = x∗(1− x
(2)
a,k|k). (75)

Fixing the cognitive stress-related arousal state dynamics parameters at their current

estimate, both formulas lead to a non-zero set-point LQR problem [194, 195]. To convert it

to a traditional LQR formulation, where the control goal is to derive the state close to the

origin, we let x̃k = xk − x∗, ũk = uk − u∗k. The optimal ũk for the classical LQR problem is

simply a linear feedback control as

ũk = −lkx̃k, (76)

97



where
a
lk is a scalar feedback gain derived as

lk =
ρkpa,k

pa,k +Ra
, (77)

where pa,k is the solution of the algebraic Riccati equation in the discrete form [194]

ρ2
kpa,k +

ρ2
kp

2
r,k

pa,k +Ra
+Qa = pa,k. (78)

Consequently, the optimal control signal uk will be equal to uk = u∗k − lk(xk − x∗).

5.2.4 State-Space Modeling in Presence of Disturbance Input

In this part, we add an additional input to nominal dynamical system to model distur-

bances. The nominal system expands as

xk+1 = xk + uk + sk + νk + dk, (79)

where dk is defined as

dk = dk−1 + ωk and ωk ∼ N (0, σ2
ωk

). (80)

To estimate the added parameter along with the hidden state, we follow an approach

similar to adaptive counterpart, with the only change in the system dynamics. Concate-

nating xk and dk into an augmented two-dimensional state vector

xr,k =

x
(1)
r,k

x
(2)
r,k

 =

xk
dk

 . (81)

We derive dynamics of augmented system as

xr,k+1 =

1 1

0 1

xr,k +

1

0

uk + wr,k = fr(xr,k, uk) + wr,k, (82)
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where wr,k =

νk
ωk

, is a Gaussian random vector with zero mean vector, and covariance

matrix Kr =

σ2
ν 0

0 σ2
ω

. In what follows, we derive prediction and update steps to estimate

variable in augmented system.

Prediction step:

xr,k|k−1 = fr(xr,k−1|k−1, uk) (83)

and Σr,k|k−1 = Fr,k−1Σr,k−1|k−1F
′
r,k−1 + Kr, (84)

where xr,k|k−1, Σr,k|k−1 are the mean and the coveriance of xr,k and being estimated using

observation Y1:k. Moreover, Fr,k−1 =
[
∂fr
∂xr

]
xr,k−1|k−1

.

Update step:

gr,k =

∂log(p(Yk|x
(1)
r,k))

∂x
(1)
r,k


x
(1)
r,k=x

(1)
r,k|k−1

, (85)

xr,k|k = xr,k|k−1 + Σr,k|k

gr,k
0

 , (86)

and Σ−1
r,k|k = Σ−1

r,k|k−1 +


[
∂gr,k

∂x
(1)
r,k

]
x
(1)
r,k=x

(1)
r,k|k−1

0

0 0

 . (87)

5.2.5 Robust Feedback Controller Design

In this part, we design a robust feedback-controller to derive the control action uk [190].

Similar to adaptive control design, we formulate a quadratic cost function as

Jr =

∞∑
k=0

Qr(xk − x∗)2 +Rr(uk − u∗k)2, (88)

where Qr and Rr are positive weight matrices. By fixing the time-varying parameter at its

current estimate (i.e., dk = x
(2)
r,k|k), ignoring environmental stimuli, and given the system

reaches the steady state, we derive a single linear equation described in (79). Solving it for
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u∗k, we derive

u∗k = −x
(2)
r,k|k. (89)

Fixing the cognitive stress-related arousal state dynamics parameters at their current

estimate, both formulas lead to a non-zero set-point LQR problem [194, 195]. To convert it

to a traditional LQR formulation, where the control goal is to derive the state close to the

origin, we let x̃k = xk − x∗, ũk = uk − u∗k. The optimal ũk for the classical LQR problem is

simply a linear feedback of the form given

ũk = −lkx̃k, (90)

where
a
lk is a scalar feedback gain derived as

lk =
pr,k

pr,k +Ra
, (91)

where pr,k is the solution of the algebraic Riccati equation in the discrete form [194]

pr,k +
p2
r,k

pr,k +Ra
+Qa = pr,k. (92)

Consequently, the optimal control signal uk will be equal to uk = u∗k − lk(xk − x∗).

5.3 Results

We utilize the developed simulation environment presented in [3] in the order of first

inducing cognitive stress and then causing relaxation [3]. We present the closed-loop results

in both adaptive and robust frameworks.

5.3.1 Adaptive Closed-Loop Results

The main goal of designing an adaptive closed-loop system is to establish a control

system for handling model uncertainty in state-space representation. The results associated

100



with both adaptive inhibitory and robust excitatory classes are presented in Figures 28–33.

In Figures 28–33, the top and bottom panels show the results associated with closed-loop

inhibition and excitation, respectively. In each panel, the top two sub-panels show the SCR

events along with their amplitudes in open-loop (orange color) and closed-loop (blue color)

cases. The third sub-panel shows the estimated cognitive stress-related state. The bottom

sub-panel shows the designed control implemented in real-time to close the loop and either

inhibit or excite the estimated stress levels. The grey and white backgrounds correspond to

the high and low arousal environmental stimuli, respectively (i.e., cognitive stress condition

vs relaxing condition).

5.3.2 Robust Closed-Loop Results

The main goal of designing robust closed-loop system is to utilize a control system to

handle additional disturbance input in state-space representation. The results associated

with both adaptive inhibitory and robust excitatory classes are presented in Figures 34–39.

In Figures 34–39, the top and bottom panels show the results associated with closed-loop

inhibition and excitation, respectively. In each panel, the top two sub-panels show the SCR

events along with their amplitudes in open-loop (orange color) and closed-loop (blue color)

cases. The third sub-panel shows the estimated cognitive stress-related state. The bottom

sub-panel shows the designed control implemented in real-time to close the loop and either

inhibit or excite the estimated stress levels. The grey and white backgrounds correspond to

the high and low arousal environmental stimuli, respectively (i.e., cognitive stress condition

vs relaxing condition).

5.4 Discussion

As inter- and intra-subject variations in human-in-the-loop problems are unavoidable,

we implemented adaptive and robust control systems to handle them. To this end, we

employed a simulation environment [3] based on the experimental data [83]. To model

inter- and intra-subject variations, we extended the state-space representation and included
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Figure 28: Adaptive inhibition and excitation results (Participant 1).
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Figure 29: Adaptive inhibition and excitation results (Participant 2).
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Figure 30: Adaptive inhibition and excitation results (Participant 3).

104



Figure 31: Adaptive inhibition and excitation results (Participant 4).
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Figure 32: Adaptive inhibition and excitation results (Participant 5).
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Figure 33: Adaptive inhibition and excitation results (Participant 6).
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Figure 34: Robust inhibition and excitation results (Participant 1).
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Figure 35: Robust inhibition and excitation results (Participant 2).

109



Figure 36: Robust inhibition and excitation results (Participant 3).
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Figure 37: Robust inhibition and excitation results (Participant 4).
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Figure 38: Robust inhibition and excitation results (Participant 5).
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Figure 39: Robust inhibition and excitation results (Participant 6).

113



uncertainty in model parameters and disturbance input. To simultaneously estimate the

hidden cognitive arousal state along with added unknown parameter, we defined augmented

states. To close the loop, we designed and implemented an optimal controller. Applying

adaptive and robust control approaches, we enhanced the closed-loop performance by han-

dling model uncertainty and disturbance input. The results on all six simulated profiles

[3] further validate our proposed algorithms in regulating the hidden cognitive stress state

while considering time varying model parameters and additional disturbance input in the

state-space representation.

The open-loop results, presented in Figures 28–39, illustrate the sufficiency of internal

stress state tracking in the presence of uncertainty in model parameters and disturbance

input. The higher numbers/values of SCR events (i.e., orange spikes in the first sub-

panel) and levels of estimated stress state (i.e. orange graph in the third sub-panel) in the

first half of the simulation is because of the applied high arousal environmental stimuli.

Moving toward the low arousal session (white background in Figures 28–39), both the

numbers/values of SCR events and the estimated stress levels drop significantly, which is

due to the induced relaxing environmental stimuli in the second half of the simulation.

These changes in the estimated stress state are in good agreement with the changes in SCR

events: higher levels of the estimated stress state in the first half of the simulation (i.e.,

cognitive stress), and lower levels for the second half of the simulation (i.e., relaxation).

To regulate the estimated stress levels in a closed-loop manner, we first presented the

adaptive control design to handle model uncertainty presented in state-space representation.

To close the loop, we considered inhibition and excitation classes of controllers. In the

closed-loop inhibition task, the goal is to reduce the levels of the estimated stress state

in high arousal session (i.e., first half of the simulation) (Top panels of Figures 28–33).

During this period, we assume that the environmental stimuli cause the subject to feel

stressed. As a result, SNS would activate the sweat glands and skin conductivity would

be increased. Consequently, more activation on SCRs would be observed (Top panels of

Figures 28–33). By tracking the hidden stress state in the presence of model uncertainty,
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the designed adaptive optimal control signal derives the required action for inhibition task

(Top panels of Figures 28–33). The control signal, presented in third sub-panel, is mainly

active in the first half and results in lowering the stress state.

Compared to the inhibition task, the goal of implementing excitation class of controllers

is to excite the low levels of arousal state. The second half of the simulation in the simulated

environment is assumed to induce low cognitive stress condition on the person. The goal of

elevating the estimated stress-related state has been followed by designing adaptive optimal

control signal. The results of closed-loop excitation task are presented in the bottom panels

of Figures 28–33.

Next, we developed a robust control system to handle disturbance input presented in

state-space representation. Similar to the adaptive control design, we considered inhibition

and excitation classes of controllers for closing the loop (Figures 34–39). The closed-loop

results further validate the effectiveness of designed robust control systems by either inhibit-

ing the estimated arousal state (Top panels of Figures 34–39) or exciting it (Bottom panels

of Figures 34–39) in the presence of additional disturbance input. The proposed adaptive

and robust control designs would lead us one step closer to implementing the proposed WMI

architectures in real-world settings.
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6 Closed-loop Human-Subject Experiments for Internal Brain

State Regulation with Wearable Technologies

6.1 An Overview of Closed-Loop Human-Subject Experiments

Any activity might be a source of cognitive stress. Stress in workplaces [196] and cog-

nitive load while learning at schools [197] are reported as examples of condition that might

cause cognitive stress on humans. Additionally, to reach enhanced productivity and retain

it, it is beneficial to elevate internal cognitive arousal levels and prevent low engagement

[3, 198, 199]. According to the Yerkes–Dodson law, there exists an inverse-U relationship

between the internal arousal state and cognitive performance [199]. Therefore, the perfor-

mance is maximized once the internal arousal state is regulated and lies in a normal optimal

range [200, 201]. Hence, it is highly crucial to regulate the arousal state and keep it within

the optimal range [202]. Over the last few years, a growing interest in human emotion reg-

ulation arises in various areas such as education [203, 204], neural rehabilitation [205, 206],

and brain computer interfaces [207]. In this study, we aim to analyze the internal arousal

state in individuals while performing cognitive stress tasks and taking safe actuation for

the purpose of closed-loop arousal regulation. With respect to the recent enhancement in

ubiquity of wearable technologies, we focus on employing wearable devices for monitoring

brain responses.

To this end, we propose three sets of human-subject experiments. In the first two

experiments, to induce cognitive stress, we propose to employ well-explored memory-related

n-back tasks [208]. We design and perform n-back experiments to investigate the brain

responses while under cognitive load [209, 210, 110]. In n-back tasks, the system represents

a sequence of stimuli, each followed by a consistent fixation [211]. The subjects are asked

to recall if the stimulus they observe is the same as the one they were shown during the

n-th step before. It is obvious that higher values for n will result in more difficult tasks.

This study also seeks to explore effects of using safe actuation in influencing physiological

responses and enhancing cognitive performance in a closed-loop manner. To close the loop
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in these experiments, we propose to incorporate safe actuation such as listening to music,

smelling perfumes, and drinking coffee while performing cognitive stress tasks.

To further investigate the relationship between the cognitive performance and internal

arousal state, we aim to analyze the changes in internal cognitive arousal state while un-

der cognitive load [94, 6]. As internal arousal state is a hidden state, we approach this

problem indirectly. In response to the cognitive stress stimuli, similar to any other in-

ternal or external stimuli, the brain starts to react in multiple ways. Monitoring brain

signals with Electroencephalography (EEG) [212, 213, 214, 215] or functional Near-Infrared

Spectroscopy (fNIRS) [216] would shed light on how the brain would respond to those en-

vironmental stimuli. From a physiological signals perspective, there are also changes in

heart rate, blood volume pulses, and electrodermal activity [217] that carry important in-

formation about an individual’s internal arousal state. With recent advances in wearable

technologies, there exist fascinating and unique opportunities to investigate human brain

responses in a more applicable way. Compared to research-grade technologies that are more

expensive and precise in sensing, wearable devices are designed to deliver more practical

properties [218, 219, 220, 217, 221]. Low-cost and portability features are the most re-

markable characteristics that make the wearable technologies more attractive in the field

of emotion recognition [222, 223, 224]. Hence, we propose to use Empatica E4 wristbands

[225] and a muse headband [226] to collect data from human subjects while exposing them

to cognitive stress tasks. The Empatica E4 wristband employs noninvasive sensors to col-

lect multiple physiological signals (i.e., electrodermal activity (EDA), blood volume pulse

(BVP), photoplethysmography (PPG), 3-axis accelerometer data, and skin temperature).

Additionally, we employ a muse headband to directly record brain electrical activity with

a noninvasive EEG method [227, 228]. Compared to other research-grade devices that are

not applicable in daily life, a muse headband collects EEG signals from a limited number

of channels [229].
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6.1.1 Experiment 1: Brain Cognitive States Regulation in Memory Experi-

ments by means of Listening to Music

To regulate cognitive performance and cognitive arousal states, we propose to use music

as the safe actuation in experiment 1. There are multiple studies showing how listening to

different kinds of music might affect humans’ internal states [230, 231, 232]. Researchers

in [233] performed an experiment to show the efficiency of listening to music in improving

imagery in the context of sport skills. By collecting physiological data such as skin con-

ductance and heart rate, they have demonstrated the effectiveness of listening to music in

enhancing the performance index. Lehmann et al. examined effectiveness of background

music in enhancing learning outcome [234]. They asked half of the subjects to perform a

memory task in silence and the second half while listening to two pop songs [234]. The

results further prove their hypothesis about positive role of music in improving working

memory capabilities [235]. In a similar study, Du et al. analyzed the effects of high and low

arousal music on neural responses. They collected 64-channel EEG signal and inferred the

arousal state using eye blinks extracted from the recorded EEG data [235].

6.1.2 Experiment 2: Brain Cognitive State Regulation in Memory Experi-

ments by means of Smelling Perfume and Drinking Coffee

In experiment 2, we aim to explore the effects of drinking coffee and smelling perfumes

on cognitive performance and arousal states. There also exists extensive research showing

how caffeine drinks influence individuals’ performance in positive ways [236, 237, 238, 239,

240]. McLellan et al. performed a comprehensive review of multiple studies verifying the

effects of caffeine in enhancing alertness, attention, and reaction time [241]. Souissi et

al. demonstrated how caffeine ingestion is effective in enhancing cognitive and physical

performance [242]. They used reaction time and the number cancellation test to analyze

cognitive performance [242]. Researchers in [243] designed an experiment and analyzed

the effects of coffee intake in the brain electrical activity. To this end, Saifudinova et al.

collect EEG signal before and after taking coffee. In a recent study by Sargent et al., they
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performed experiments and collected EEG and EDA data from subjects while performing

daily tasks in a naturalistic work environment [244]. While participants are in an office-

type environment, they were provided with hot beverages. In a similar study, researchers

in [245] designed and performed experiments to investigate the effects of hot tea and coffee

on cognitive performance. During the experiment, they collected EDA and fNIRS data

from the subjects. To explore the effects of coffee in brain computer interfaces, Meng et

al. performed an experiment and analyzed EEG signal from the subjects who are asked to

drink coffee [246]. In a separate study, Fine et al. verified the effects of caffeine in improving

cognitive performance and reducing fatigue.

In experiment 2, to further explore the effects of safe actuation, we use favorite fra-

grances for closing the loop. In past decades, the effects of olfactory stimulation have

been explored by multiple researchers [247]. Examples of these studies are analyzing effects

of smelling perfumes in lung function and exercise performance [248], pain management

[249, 250], and alleviating psychological effects in women’s menopausal symptoms [251].

Porcherot et al. designed and performed experiments to investigate changes in emotions

in response to smelling fragrances [252]. Similar to any stimulation, to analyze the effects

of olfactory stimulation, researchers proposed to collect multiple physiological signals such

as cardiac and electrodermal activity [253], EEG recording [254], galvanic skin response

[255], heartbeat [256], and fNIRS [257]. Saeki et al. investigated effects of inhaling favorite

fragrances for relieving pricking pain. [258]. They used electrical stimulation to cause pain

and measured skin conductance levels as the corresponding biomarkers [258]. The results

verify their hypothesis about the influence of fragrances to alleviate the pain. They also

discuss the possibility of the effectiveness of aromatherapy in chronic pain relief [259]. On-

uma et al. conducted similar research and recorded brain activity from the frontal region

and explored how smelling fragrances would affect it [260]. They concluded a positive rela-

tionship between activity associated with the right region of brain and induced impression

[260]. Moss et al. performed experiments for evaluating the effects of different aromas in

modulating cognitive performance [261]. They showed that peppermint has great potential
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in enhancing cognitive mood. The results of these studies validate the effects of smelling

fragrances on changes in individuals’ psychological and physiological conditions.

6.1.3 Experiment 3: Closed-Loop Experiments to Help Subjects with Acro-

phobia by means of Music and Diaphragmatic Breathing

In experiment 3, we design and perform closed-loop human-subject experiments to in-

vestigate how safe actuation such as listening to music and breathing exercises could affect

the participants with high levels of acrophobia. According to [262], acrophobia is knows

as irrational fear of heights, resulting in the prevention of such occasions with substantial

high levels of stress. While exposing to acrophobia, there exist evidences of changes in

physiological signals such as heart rate, skin conductance signal, and salivary cortisol levels

[263]. Researchers in [264] employed machine learning and deep learning-based methods

and multimodal sensory data (i.e., EEG, HR, and SCR) as well as self-reported emotion

assessment to detect fear levels. Kritikos et al. develop an architecture to collect EDA

signals while exposing the subjects to different virtual reality environments [265]. In this

experiment, we ask the participants to watch the clips that might induce fear of heights

condition. To analyze their physiological signals, we propose to use Empatica E4 and muse

headband. To close the loop and alleviate internal arousal states, we propose to use safe

actuation (i.e., listening to music and practice diaphragmatic breathing). In the literature,

the efficiency of listening to music in relaxing the participants have been explored [266].

As the first actuation, we wish to play relaxing music and analyze how this safe actuation

could help them with lowering arousal and engagement levels. In the second session, we play

newly generated relaxing music. As the final actuation, the subjects are asked to practice

diaphragmatic breathing while watching the clips. Diaphragmatic breathing is an influen-

tial self-administered, cost-free, and non-pharmacologic intervention [267]. Researchers in

[268] investigated the efficiency of diaphragmatic breathing to relax the human subjects

while are exposed to their fear condition in virtual reality. They collected HR, SCR, and

their self-assessment to explore the influence of diaphragmatic breathing while taking the
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VR treatment exposure. The results demonstrate that the group of subjects who practice

diaphragmatic breathing show better progress in their fear of heights treatment. Shiban

et al. analyze raw skin conductance levels to evaluate the effectiveness of diaphragmatic

breathing [268]. The research by Hopper et al. also verifies the impacts of diaphragmatic

breathing in reducing physiological and psychological stress [267]. In a similar study, Ma

et al. investigate effects of this breathing exercises in stress relieving and improving mental

health function.

6.1.4 Summary of Closed-Loop Experiments

In what follows, we summarize the experiments in this research. In experiment 1, we

analyze the effectiveness of listening to different kinds of music while under cognitive load.

In experiment 2, we propose to explore the effects of drinking coffee and smelling fragrances

as safe actuation in closing the loop. To analyze the performance index, and explore effects

of safe actuation in regulating it, we record the correct/incorrect responses as well as their

reaction time. Next, we employ a Bayesian filter to estimate the cognitive performance

index based on these observations. We hypothesize that taking this actuation would influ-

ence the cognitive stress state and affect the cognitive performance. In experiment 3, we

design procedures to expose the subjects with degree of acrophobia to face their fear condi-

tioning. To this end, we asked the participants to watch the clips in which the individuals

jump between tall buildings without caring facilities. Watching these clips would lead the

participants to assume themselves in similar situations and could arouse them. To measure

changes in cognitive arousal, we employ the same wearable devices (i.e., Empatica E4 and

muse headband) to collect their physiological data while watching the clips. To investigate

how safe actuation would affect them, we propose to use music and diaphragmatic breathing

to overcome their fear of heights.

To infer an individual’s internal arousal state, we aim to model and estimate the hid-

den state by utilizing well-established computational tools. Hence, we analyze EDA data

measured by the Empatica E4. While the main function of sweat gland activation is body

121



thermoregulation, it also carries important information regarding an individual’s internal

arousal state [94, 51]. In response to internal and external stimuli, the human brain em-

ploys the autonomic nervous system to adjust sweat gland secretions [269]. Accordingly,

skin surface conductivity, which is measured by electrodes placed on the Empatica wrist-

bands, provides information about brain peripheral signal. By performing deconvolution

algorithms and inferring underlying neural impulses [50], we employ state-space represen-

tations and point process-based algorithms to model and estimate internal arousal state

[56, 66]. Scholars have shown that the state-space representation is a suitable tool for cap-

turing internal arousal state in response to the changes in skin conductance signal [168, 63].

As another measure, we also propose to collect EEG signal to directly explore brain activity.

We further evaluate the relationship between the cognitive arousal and performance state

in all participants. The acquired data in these experiments will give us the insight required

to confirm our hypothesis in effectiveness of safe actuation while closing the loop [212].

While there exist multiple studies verifying the impacts of safe actuation in regulating

the human brain states, there is still lack of a systematic approach required for implementing

them in real-world environments. The experiments in this study are the first attempts

to systematically explore closed-loop cognitive stress regulation using safe actuation with

wearable technologies. Employing commercially available wearable devices (i.e., Empatica

and muse headband) along with safe actuation make this research applicable in real world

settings. The goal is to demonstrate how safe actuation along with practical wearable

technologies could be effective in enhancing cognitive performance state and regulating

cognitive stress state. The insight resulted from this study would shed light on future

closed-loop regulation of internal brain states in a more applicable way. As a result of this

research, we aim to publish comprehensive physiological data and their detailed responses

in memory-related n-back experiments. Consequently, future research teams could analyze

these data sets within different perspective and further investigate these closed-loop human-

in-the-loop experiments.
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muse headband

Empatica E4 Action Camera

Figure 40: Human-subject experiments setup.

6.2 Methods and Materials

All experiments were performed in the computational medicine lab (CML) at the Uni-

versity of Houston (see Figure 40). During the experiment, subject is seated comfortably

on an armchair and wears muse headband and Empatica E4 wristbands on both hands.

During the experiment, subject looks at the screen to perform n-back memory-related tasks

or watching inducing “fear of heights” clips. We also record facial activity with an action

camera.

6.2.1 Participants

This pilot study includes three closed-loop experiments. Subjects from the University

of Houston population participated in these experiments. In Experiment 1, 17 subjects (11

males, 6 females), with a mean age of 28.5 (SD=4.7), involved in total. In Experiment 2,

13 subjects (10 males, 3 females), with a mean age of 28.4 (SD=3.8), involved in total.

In Experiment 3, overall 18 subjects participated (10 males, 7 females with a mean age

of 28.3 (SD=4.3)). Participants were required to be at least 18 years old. All subjects

read and signed an informed consent document. In analyzing subjects’ data, four subjects

123



were excluded due to program crashes (N = 1) or skin conductance issues (N = 3) in

experiment 1. In experiments 2 and 3, one subject was excluded due to program crashes and

skin conductance issues. Subjects received gift cards as incentive compensation. They all

received a base amount plus additional incentive to further encourage them to fully focus on

the tasks. All the experimental procedures and corresponding documents were approved by

the institutional review board at the University of Houston, TX, USA (STUDY 00002490).

6.2.2 Equipment

We used two wearable Empatica E4 wristbands and a portable muse headband for EEG

recording. Using the Empatica E4 wristbands, we collected electrodermal activity (EDA)

(or skin conductance) that tracks the changes in skin conductivity using two metal elec-

trodes, blood volume pulse (BVP), from which heart rate variability can be measured, using

a photoplethysmography sensor, motion-based activity using a 3-axis accelerometer sensor,

and skin temperature using infrared thermopile. Using the 2016 edition muse headband,

we collected brain activity using four EEG sensors.

6.2.3 Procedure

In this study, we propose to perform three sets of closed-loop experiments. As pre-

sented in Figure 41, in the first experiment we aim to analyze effects of listening to music

in enhancing brain states. As presented in Figure 42, in the second experiment we aim

to evaluate the effects of drinking coffee and smelling perfume in a closed-loop manner.

In experiments 1 and 2, we ask the subjects to perform memory-related n-back tasks (see

Figure 43). In experiment 3, we investigate the effects of safe actuation (i.e., listening to

relaxing music and practicing diaphragmatic breathing) while the subjects are exposed to

the fear of heights (see Figure 44). Prior to their participation, they are asked to answer

behavioral questionnaire and they were recruited only if they show specific levels of acro-

phobia. To induce fear of heights emotion, we ask the subjects to watch the clips in which

humans jump between the tall buildings and run on the edge of them.
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Figure 41: Experiment 1 procedures.
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Figure 42: Experiment 2 procedures.

To design the experiments 1 and 2, we used E-Prime professional software (version 3.0)

on a Dell Latitude 5580 DESKTOP-Q6TBA9H. Within E-Prime, E-Studio and E-Data

Aid modules were used to design the presentation of multiple sessions of n-back tasks. To

record the responses, we used Chronos. To have a more comfortable setting, we used a 50

inches LCD screen mounted on the wall in 2 meter distance of the subjects (see Figure 40).

Participants were asked to sit in an armchair comfortably facing the screen with their

dominant hand on the Chronos response device.

In the designed n-back experiments, subjects were shown trials of stimulus (500 ms)

1-back
Observed stimuli 

Correct responses N Y

B B D

N

B

N

D D

N Y

3-back
Observed stimuli 

Correct responses

B B D B DD

N YN N YN

n-back experiments 

Figure 43: Memory-related n-back tasks.
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along with a plus sign for their response (1500 ms). Each session consisted of an instruction

that lasted for 5 s and 16 trials each of which includes 22 stimuli. There were 10 s breaks

in between trials and 20 s relaxation in between the 16 trials. The total duration of each

session was 964 s (i.e., 16 × [5 + (22 × 2) + 10] + 20 = 964 ). To specify their response,

participants had to press target (green) vs non-target (red) buttons on Chronos. Before

the start of the experiment, they were provided explanation about the tasks and provided

with a couple practice trials (i.e., one 1-back and one 3-back trials). In the 1-back task, the

participants were asked to determine if the stimulus they saw is the same as they saw one

steps before. Conversely, in the 3-back task, they were asked to indicate if the one they

saw is the same as they observed three steps before (see bottom sub-panel in Figure 40).

In session one of experiment 1, subjects perform n-back tasks with no music. In the second

session, they are asked to repeat the tasks while listening to their choice of relaxing music.

In the third session, they repeated the tasks while listening to their choice of exciting music.

In the final session, they repeated the tasks while listening to the newly generated relaxing

music. In what follows we illustrate the process of generating music based on their taste of

relaxing music.

Music taste is a colloquial term to represent how different songs have distinct effects

on each individual. Nowadays, there are multiple music genres and within each genre

there are various bands producing a variety of content, in accordance with a wide range

of preferences from their audiences. Musical preference is a very subjective matter, which

usually encodes distinct auditory stimulation responses in the brain [270]. Moreover, music

has been used to improve clinician-rated depressive symptoms [271], reduce stress levels and

increase performance during exams [272, 273] and improve performance in non-complex

cognitive tasks [274]. Artificially generated music is an interesting research topic that

has the potential to automatically alter musical parameters and optimize the songs to

achieve certain desired goals, such as relaxation, excitation or concentration [275]. In this

research, we employ deep learning neural networks to generate new songs based on the

subject’s preference. More specifically, we use a long short-term memory (LSTM) neural

126



network. LSTMs are capable of learning long-term and short-term dependencies and have

been widely used in music generation [275, 276]. The LSTM architecture is comprised of

various interconnected cell blocks that transfer the cell’s hidden state to the next cell, after

mathematical manipulations. Each cell block has a memory component that gets altered via

the Forget, Input and Output gates. The Forget gate is responsible for removing unwanted

information from the cell state, the Input gate selects relevant information to be stored in

the cell’s state and the Output gate filters information for the next cell, all based on the

input data and previous cell’s output. Each gate works by computing [276]

ft = σ(wf [ht−1, ut] + bf ), (93)

it = σ(wi[ht−1, ut] + bi), (94)

and ot = σ(wo[ht−1, ut] + bo), (95)

where ft, it, ot represent forget, input, and output gates, respectively. σ stands for a Sigmoid

function, wx and bx are weights and biases for a gate x respectively. ht−1 represents the

output of the previous cell block at time-step t− 1, ut is the input at current time-step.

To generate the music in this study, we employ a neural network with three LSTM layers

in succession, with a recurrent dropout parameter set to 0.3. With this parameter, at every

update, a percentage of the input is dropped, preventing over-fitting. Next, a batch normal-

ization layer is be added, followed by a fully connected layer, and an activation layer with a

rectified linear activation function (ReLU). Subsequently, another batch normalization layer

layer is added, a dropout layer, and a fully connected layer before the final activation layer

with a “SoftMax” function. The “SoftMax” is a generalized logistic function. Finally, the

loss metric is calculated during the training phase with a categorical cross entropy function.

The input songs for the training phase of the neural network need to be in textual format.

For this, we use of the musical instrument digital interface (MIDI) format as there are plenty

of songs available online [277]. This text-based musical format carries instructions on how

to play the song, such as notation, pitch and tempo. With this format, the neural network
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is easily trained on the n-th sequence of notes of songs from a dataset. Once training is

complete, each prediction of a future note considers the n-th previous notes and the neural

network would be capable of generating new songs with a similar structure. We trained 3

separate networks in 3 different datasets of MIDI songs, obtained from [277]. The musical

genres chosen were, (1) classical music with songs from Ludwig van Beethoven, Johann

Sebastian Bach and Frédéric François Chopin; (2) fantasy music with video-game songs

such as the various Final Fantasy and Mario theme songs; and (3) jazz music including

songs from Frank Sinatra and various other authors. Prior to start of the experiment,

samples of these types of music are played for the subjects and we asked them to choose

their favorite one. Within the experiment newly generated music based on their selection

is played for them in the last session. After each session, they sit and relaxed for three

minutes (the relaxation time after the second session was six minutes). The entire duration

of the experiment is about 80 minutes.

In experiment 2, in first session, they perform n-back tasks with no actuation (Figure 42).

Before the second session, they are asked to smell their choice of fragrance. They have six

minutes to apply this actuation. Next, they are asked to repeat the n-back tasks. In the

third session, we propose to investigate the effects of drinking coffee as the actuation. They

were provided with their regular coffee and were asked to sit down and drink their coffee

during a 30-minute period while resting. Next, they repeat performing the memory tasks.

The entire duration of the experiment is about 90 minutes.

In experiment 3, we incorporate three closed-loop sessions to analyze effects of each

actuation separately (Figure 44). In the first and second sessions, effects of listening to

relaxing music and newly generated music are analyzed. In the final session, we asked the

subjects to start diaphragmatic breathing. In each session, they start with five minutes

relaxation to measure their baseline. Next five minutes is dedicated to watching the clips to

analyze the open-loop responses without any relaxing practices. In the third five minuets,

subjects are asked to watch the clips and practice relaxing actuation (i.e., listening to

relaxing music in the first and second sessions, and diaphragmatic breathing in the final
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Figure 44: Experiment 3 procedures.

session). In the last five minutes of each session, subjects are supposed to continue relaxing

practices to reach their baseline. After each session, we consider two minutes of relaxation

prior to starting the next session. The overall duration of this experiment is around 70

minutes.

6.2.4 Data Analysis

To study the effectiveness of closing the loop in real-world situations, and investigate how

changes in physiological signals affect internal brain states, we perform multiple analyses.

These include physiological signal processing and internal cognitive performance estimation.

In response to cognitive stress stimuli, we track subjects arousal state and engagement

levels. Recording subjects’ responses during the n-back experiments (experiments 1 and

2), we follow the goal of performance state estimation. Among the physiological signals

collected via Empatica E4 devices, we analyze EDA signal to estimate cognitive arousal

state.

Cognitive performance analysis

Analyzing correct/incorrect responses and recorded reaction times, we estimate the per-

formance index to further evaluate the effect of listening to music on cognitive arousal and

cognitive performance. Pursuing the state-space model in [65], we consider the cognitive
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performance state as

zk+1 = ρzk + wk, (96)

where zk is the hidden performance state, vk ∼ N (0, σ2
w) represents the process noise, ρ is the

unknown coefficient; k stands for the trial number during each experiments. Assigning one

binary observation (correct/incorrect response at kth trial) and one continuous observation

(reaction time of the corresponding trial) [65], we form the observation model

Ik = log(tk) = α0 + α1zk + δk, (97)

where δk ∼ N (0, σ2
δ ), tk displays the reaction time at each trial; α0 and α1 are the unknown

parameters. The binary response is assumed to follow a Bernoulli distribution with the

probability mass function pmkk (1 − pk)1−mk where pk stand for the probability of receiving

response (i.e., P (mk = 1)). To relate the performance state to the probability of having

correct response, we apply the same Sigmoid transform function. Therefore,

pk =
1

1 + e−(zk+µ)
. (98)

The constant term µ can be evaluated by µ ≈ log
(

p0
1−p0

)
where p0 is the average probability

of having a correct response over the experiment. Utilizing an expectation maximization

(EM) approach, we estimate unknown parameters θP = {ρ, σ2
w, α0, α1, σ

2
δ} as well as the

performance state zk. The E-step formulation consists of the following prediction and

update steps.

Prediction:

zk|k−1 = ρzk−1|k−1 (99)

and s2
k|k−1 = ρ2s2

k−1|k−1 + σ2
w. (100)
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Update:

zk|k = zk|k−1 +
s2
k|k−1

α2
1s

2
k|k−1 + σ2

δ

[
σ2
δ (mk − pk|k)] + α1(Ik − α0 − α1zk|k−1)

]
(101)

and s2
k|k =

[
1

s2
k|k−1

+ pk|k(1− pk|k) +
α2

1

σ2
δ

]−1

. (102)

To achieve smoother results, we perform the following smoothing steps

Bk = ρ
s2
k|k

s2
k+1|k

, (103)

zk|K = zk|k +Bk(zk+1|K − zk+1|k), (104)

and s2
k|K = s2

k|k +B2
k(s2

k+1|K − s
2
k+1|k). (105)

The expected values of z2
k, and zkzk−1 can be derived as,

E[z2
k] = z2

k|K + s2
k|K (106)

and E[zk+1zk] = zk+1|Kzk|K +Bks
2
k+1|K . (107)

At the M-step, the expected log-likelihood function can be formulated as

Q2 =

K∑
k=1

E[mk(µ+ zk)− log(1 + eµ+zk)] (108)

+
−K

2
log(2πσ2

δ )−
K∑
k=1

E
[
(Ik − α0 − α1zk)

2

]
2σ2

δ

+
−K

2
log(2πσ2

w)−
K∑
k=1

E
[
(zk − zk−1)2

]
2σ2

w

.

Consequently, in response to the correct/incorrect responses and subject’s reaction time,

the cognitive performance state can be obtained.

Cognitive arousal analysis via EDA measurements

While main purpose of EDA or skin conductivity is the body’s thermoregulation, it

carries important information about internal cognitive arousal state. The human brain
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employs the autonomic nervous system to handle sweat gland activation and response to

the internal and external stimuli. The skin conductance signal consists of two components:

fast varying phasic and slow varying tonic [278]. By performing cvxEDA type approach we

first separate phasic and tonic parts. By performing a deconvolution algorithm, similar to

the ones presented in [50, 51, 168, 94], we obtain the underlying neural impulses. Next,

we employ a state-space approach to relate the internal arousal state to the changes in

SCR events. Since the internal cognitive arousal state is not directly measured, we utilize a

marked pint process Bayesian-type filter to estimate the hidden arousal state [56]. In what

follows, we review the steps.

In this study, we utilize the approach presented in [168]. SCR measurement as a function

of time can be thought of as the summation of a slow varying (tonic) component and a fast

varying (phasic) component. The SCR signal can be represented combining these three

components as

y(t) = yp(t) + ys(t) + ν(t), (109)

where y(t), yp(t), ys(t), and ν(t) represent the SCR signal, phasic component, tonic compo-

nent, and noise process, respectively. The phasic responses can be written as the convolution

operation between the autonomic nervous system activation u(t) and the phasic response

h1,τ (t), i.e. yp(t) = h1,τ (t)∗u(t). The phasic impulse response hτ (t) can be written as [168]

hτ (t) =


1

τr−τd

(
e−

t
τr − e−

t
τd

)
; if t ≥ 0

0 ; otherwise.

(110)

Here, τr and τd are the rise time and decay time of a skin conductance response. On

the other hand, the autonomic nervous system activation can be modeled as the weighted

shifted some of the delta functions.

If SCR is periodically sampled with a period of Ty for M measurements, we can write

the discrete observation equation as follows, i.e., u(t) =
∑N−1

i=0 uiδ(t− iTu). Here, N is the
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number of impulses in the input and Tu is the sampling frequency of the input

y[k] = yp(kTy) + ys(kTy) + ν[k], (111)

where k ∈ {1, 2, · · · ,M} represents the kth measurement with sampling frequency of Ty.

One should note that here, Td = NTu = MTy is the sampled signal duration. Here, ν[k]

represents the discretized measurement errors. We model ν[k] as a zero-mean independent

and identically distributed (i.i.d) Gaussian random variable. We write the discrete model

for y[k] based on the tonic and phasic modeling

y[k] = h0,τ [k]yp0︸ ︷︷ ︸
initial condition

+ h1,τ [k]u︸ ︷︷ ︸
phasic

+ h2[k]q︸ ︷︷ ︸
tonic

+ν[k], (112)

where h0,τ [k] = e
− kTy

τd , h1,τ [k] =
[
h1,τ (kTy) h1,τ (kTy−Tu) · · · h1,τ (Tu) 0 · · · 0︸ ︷︷ ︸

N− kTy
Tu

]>
, h2[k] =

[
h2(kTy+Λs) h2(kTy) h2(kTy−Λs) · · · h2(kTy−(P−1)Λs)

]>
; u = [u1 u2 · · · uN ]>

represents a sparse vector containing all the amplitudes of the impulses in the autonomic

nervous system activation model over the entire signal duration and q = [q1 q2 · · · qN ]>

represents all the coefficients of the cubic B-spline basis functions and yp0 = yp(0). Here

h2(t) represents the cubic B-spline basis functions and h2[k] is the discretized version of a

shifted cubic-spline basis function. Here the knot size for the cubic B-spline basis functions

is selected similar to [168]. The overall vector matrix form becomes

y = H0,τyp0 + H1,τu︸ ︷︷ ︸
phasic

+ H2q︸︷︷︸
tonic

+ν, (113)

where y = [y[1] y[2] · · · y[M ]]>, H0,τ = [h0,τ [1] h0,τ [2] · · · h0,τ [M ]>, H1,τ =

[h1,τ [1] h1,τ [2] · · · h1,τ [M ]]>, H2 = [h2[1] h2[2] · · · h2[M ]]>, and ν = [ν1

ν2 · · · νM ]>. Here yp0 is assumed to be unknown and estimated during the decon-

volution. During the deconvolution, all the unknowns, i.e., τ , u, and q are identified by

solving an optimization problem in a coordinate descent manner that utilizes physiological
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prior information and generalized-cross-validation. The details for the estimation is pro-

vided in [168]. For a long measurement, we split the data into multiple blocks of 200 seconds

with a stride of 100 seconds to perform the deconvolution for each of these blocks. Later,

all the results of u are concatenated by discarding 50 seconds of the start and end part of

the results to avoid inaccuracies in the boundaries of the deconvolution. Only for the first

block and last block, we keep the first 50 second and last 50 second parts, respectively, as

they cannot be replaced by results from the adjacent blocks.

Following [56], we specify a first-order autoregressive model for hidden cognitive arousal

state

xj+1 = xj + εj , (114)

where xj and εj ∼ N (0, σ2
ε ) stand for internal cognitive arousal state and process noise at

time j, respectively. Employing SCR events’ timing and their amplitudes as the observation,

we intend to estimate hidden arousal state using a marked point process Bayesian filter [56].

To this end, we consider the occurrence of a neural impulse nj , as a Bernoulli-distributed

random variable with probability mass function a
nj
j (1− aj)1−nj where aj = P (nj = 1). To

relate relate xj to aj , we use Sigmoid transfer function [62]

aj =
1

1 + e−(xj+β)
, (115)

where β is a constant that can be calculated from β ≈ log
(

a0
1−a0

)
and a0 represents the

average probability of observing an impulse during the experiment. Similar to [56], we

define the continuous-valued amplitude rj of each neural impulse as

rj = γ0 + γ1xj + vj , (116)

where rj is the amplitude of the observed neural impulse due to ANS activation, vj ∼

N (0, σ2
v) describes the sensor noise, γ0 and γ1 are the unknown parameters to be determined.
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Consequently, the joint density function for the observed neural stimuli is

p(nj ∩ rj |xj) =


1− aj if nj = 0

aj
1√

2πσ2
v

e
−(rj−γ0−γ1xj)

2

2σ2v if nj = 1

. (117)

Applying the expectation-maximization framework, we estimate the unknown parame-

ters θA = {σ2
ε , γ0, γ1, σ

2
v}, and hidden state xj , simultaneously. The E-step equations have

been derived based on the observations RJ = {(n1, r1), ..., (nJ , rJ)} up to time J . At the

E-step, the main objective is to estimate xj and its variance. The forward filter consist of

the prediction and updates steps.

Prediction:

xj|j−1 = xj−1|j−1 (118)

and σ2
j|j−1 = σ2

j−1|j−1 + σ2
ε . (119)

Update:

If nj = 0

xj|j = xj|j−1 + σ2
j|j−1(nj − aj|j) (120)

and σ2
j|j =

[
1

σ2
j|j−1

+ aj|j(1− aj|j)

]−1

. (121)

If nj = 1

Cj =
σ2
j|j−1

γ2
1σ

2
j|j−1 + σ2

v

, (122)

xj|j = xj|j−1 + Cj

[
σ2
v(nj − aj|j) + γ1(rj − γ0 − γ1xj|j−1)

]
, (123)

and σ2
j|j =

[
1

σ2
j|j−1

+ aj|j(1− aj|j) +
γ2

1

σ2
v

]−1

. (124)

To derive xj|j appears on both sides of (120) and (123), we use Newton-Raphson method.
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Next we follow a smoother approach to derive s smooth estimate

Aj =
σ2
j|j

σ2
j+1|j

, (125)

xj|J = xj|j +Aj(xj+1|J − xj+1|j), (126)

and σ2
j|J = σ2

j|j +A2
j (σ

2
j+1|J − σ

2
j+1|j). (127)

At the M-step, we define J̃ = {j|nj = 1} to indicate the locations of neural impulse

occurrences. Similar to [56] and [62], we compute the expected values of x2
j and xjxj−1 as

E[x2
j ] = x2

j|J + σ2
j|J and E[xj+1xj ] = xj+1|Jxj|J +Ajσ

2
j+1|J . (128)

Thereafter, we derive the log-likelihood function Q1 and, we estimate the unknown

parameters such that they maximize it. The Q1 function is

Q1 =
J∑
j=1

E[nj(β + xj)− log(1 + eβ+xj )] (129)

+
−J̃
2

log(2πσ2
v)−

∑
j∈J̃

E
[
(rj − γ0 − γ1xj)

2

]
2σ2

v

+
−J
2

log(2πσ2
ε )−

J∑
j=1

E
[
(xj − xj−1)2

]
2σ2

ε

.

The algorithm iterates between the E-step and the M-step until convergence.

6.3 Results

In this section, we employ the physiological measurements and utilize state-space rep-

resentation to model internal brain states. We then apply signal processing techniques to

estimate hidden brain states. To demonstrate how incorporating safe actuation would af-

fect subjects’ performance state in experiments 1 and 2, we first present the changes in

cognitive performance state in response to the recorded correct/incorrect responses and re-

action times. Next, we present the cognitive arousal estimates in response to the changes

in skin conductance signal. The results associated with selected subjects are presented in

136



Figures 45–73.

The results for experiment 1 are presented in Figures 45–54. In top panel of Figures 45–

54, the first sup-panel shows the reaction time along with correct (black) and incorrect (red)

responses. Second sub-panel shows cognitive performance state estimates. Bright and dark

backgrounds present 1-back and 3-back tasks, respectively. In the bottom panel, sub-panels

show in turn the skin conductance signal, underlying neural impulses, and estimated cog-

nitive arousal state. The grey, green, purple, and blue background colors in turn represent

the results associated with no music, relaxing music, exciting music, and newly generated

relaxing music sessions, respectively.

The results for experiment 2 are presented in Figures 55–64. In top panel of Figures 55–

64, the first sup-panel shows the reaction time along with correct (black) and incorrect (red)

responses. Second sub-panel shows cognitive performance state estimates. Bright and dark

backgrounds present 1-back and 3-back tasks, respectively. In the bottom panel, sub-panels

show in turn the skin conductance signal, underlying neural impulses, and estimated cog-

nitive arousal state. The grey, green, purple, and blue background colors in turn represent

the results associated with no music, relaxing music, exciting music, and newly generated

relaxing music sessions, respectively.

The results for experiment 3 are presented in Figures 65–73. In Figures 65–73, the

sub-panels show in turn the skin conductance signal, underlying neural impulses, and es-

timated cognitive arousal state. The grey, red, orange, and yellow background colors in

turn represent the results associated with rest, fear of heights with no actuation, fear of

heights with relaxing actuation, relaxing periods, respectively. Left box is associated with

relaxing music. Middle box is associated with newly generated relaxing music. Right box

is corresponding to diaphragmatic breathing.

6.3.1 Cognitive Performance Analysis

We follow the methodology presented in [65] to decode latent performance state in

experiments 1 and 2. We take correct/incorrect responses and reaction times as binary and

137



continuous observations, respectively. The results of cognitive performance analysis in both

experiments 1 and 2 are presented in top panels of Figures 45–64.

6.3.2 Cognitive Arousal and Engagement Analysis

To estimate internal arousal state, we analyze skin conductance signal collected via

Empatica E4 wristbands. By applying deconvolution algorithm and inferring underlying

neural impulses, we establish a marked point process Bayesian filter to estimate hidden

cognitive arousal state. The results of cognitive arousal estimation in all three experiments

are depicted in middle panels of Figures 45–64 (for experiments 1 and 2) and top panel of

Figures 70–73 (for experiment3).

6.4 Discussion

As one of the very first attempts in closed-loop brain state regulation, we designed and

performed novel human-subject experiments using wearable devices. We also proposed to

use safe actuation to regulate brain states and enhance the productivity. More specifically,

we designed two memory-related n-back experiments and proposed to take safe actuation

(i.e., listening to music tracks in experiment 1, smelling perfumes, and drinking coffee in

experiment 2) to close the loop. In experiment 3, we explored effects of safe actuation (i.e.,

relaxing music and diaphragmatic breathing) while watching the clips that induce fear of

heights on individuals with levels of acrophobia. In what follows we discuss the results in

each experiment. Next we elaborate on general findings and discuss the challenges.

6.4.1 Experiment 1

Analyzing the results for all subjects, we observe an enhancement in all subjects’ per-

formance state while listening to music. While the main goal of designing the closed-loop

architectures is to keep the persons’ performance state within a desired range and prevent

them from feeling bored and unengaged, listening to music has further enhanced the per-

formance state and helped them better concentrate on memory tasks. To further explain
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Figure 45: Results of Experiment 1 (Subject 1).
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Figure 46: Results of Experiment 1 (Subject 2).
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Figure 47: Results of Experiment 1 (Subject 3).
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Figure 48: Results of Experiment 1 (Subject 2).
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Figure 49: Results of Experiment 1 (Subject 6).
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Figure 50: Results of Experiment 1 (Subject 8).
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Figure 51: Results of Experiment 1 (Subject 14).
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Figure 52: Results of Experiment 1 (Subject 19).
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Figure 53: Results of Experiment 1 (Subject 26).
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Figure 54: Results of Experiment 1 (Subject 27).
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Figure 55: Results of Experiment 2 (Subject 2).
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Figure 56: Results of Experiment 2 (Subject 3).

150



Figure 57: Results of Experiment 2 (Subject 5).
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Figure 58: Results of Experiment 2 (Subject 6).
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Figure 59: Results of Experiment 2 (Subject 7).
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Figure 60: Results of Experiment 2 (Subject 8).
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Figure 61: Results of Experiment 2 (Subject 12).
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Figure 62: Results of Experiment 2 (Subject 13).
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Figure 63: Results of Experiment 2 (Subject 15).
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Figure 64: Results of Experiment 2 (Subject 16).
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Figure 65: Results of Experiment 3 (Subject 2).

Figure 66: Results of Experiment 3 (Subject 3).

Figure 67: Results of Experiment 3 (Subject 4).
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Figure 68: Results of Experiment 3 (Subject 5).

Figure 69: Results of Experiment 3 (Subject 6).

Figure 70: Results of Experiment 3 (Subject 7).
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Figure 71: Results of Experiment 3 (Subject 18).

Figure 72: Results of Experiment 3 (Subject 22).

Figure 73: Results of Experiment 3 (Subject 25).
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these results, we perform multiple analyses to compare the subjects’ performance levels in

open-loop case (i.e., baseline with no music) with closed-loop periods (i.e., while listening

to different music). As it is presented in Table 16, listening to relaxing music has elevated

the average levels of performance state from 0.12 and -0.08 to 0.15 and 0.04 in 1-back and

3-back tasks, respectively. In a similar manner, listening to exciting music has increased the

performance state estimate from 0.12 and -0.08 in 1-back and 3-back tasks to 0.23 and 0.13,

accordingly. In addition to these familiar types of music, we also played newly generated

relaxing music in the fourth session of the experiment, which they had never heard before

and was created by using deep learning. In response to this new music, subjects show im-

proved performance state levels (i.e., reaching 0.25 and 0.145 performance levels in 1-back

and 3-back tasks, respectively).

It is also worth mentioning that this enhancement in levels of estimated performance

state is because of receiving more correct responses and/or the improved reaction times. The

Bayesian filter incorporates this recorded information and results in cognitive performance

state estimation. To further illustrate effects of listening to music while performing cogni-

tive stress tasks, we perform corresponding statistical analysis. As presented in Table 16,

listening to different music in all sections have not affected the reaction times in 1-back

tasks. However, relaxing, exciting, and newly generated relaxing music have improved the

reaction times in 1-back task by 0.3%, 5.2%, and 5.9%, respectively. Interestingly, listening

to music in all three sessions brought about enhancement in receiving more correct responses

in less reaction times 3-back tasks. Relaxing, exciting, and newly generated relaxing mu-

sic have improved the rate of correct responses by 2.5%, 4.3%, and 3.4% in 3-back tasks,

respectively. These improvements in correct responses are achieved with enhancements in

reaction times; 10.5%, 13.7%, and 17.2% in relaxing, exciting, and newly generated relaxing

music, respectively.

These comparisons demonstrate how listening to music has improved subjects’ perfor-

mance state with both reducing reaction times and increasing correct responses. It should

be also noted that this experiment lasted for more than 70 minutes and it is more probable
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Table 16: Experiment 1 - closed-loop analysis.

Performance criteria
Baseline (No Music) Relaxing Music Exciting Music New Music
1-back 3-back 1-back 3-back 1-back 3-back 1-back 3-back

Correct responses (%) 93.8 81.7 93.6 84.2 92.87 85.98 93.7 85.1
Reaction time (ms) 606 743 604 665 574 641 570 615
Performance state 0.12 -0.08 0.15 0.04 0.23 0.13 0.25 0.145

that without this music, subjects’ performance state would be dropped due to tiredness.

Hence, we can conclude that listening to music while performing memory-related tasks

would enhance subjects’ productivity.

6.4.2 Experiment 2

Analyzing the results of all subjects in experiment 2 (i.e., perfume smelling and coffee

drinking), we observe an enhancement on average levels of performance state after taking

safe actuation. Similar to experiment 1, taking these safe actuation not only prevent the

participants to feel bored and unengaged, but also they helped the subjects to show higher

performance levels. To further describe the outcome of this closed-loop experiment, we

execute multiple analyses to compare the performance levels in open-loop case (i.e., baseline

with no actuation) with closed-loop periods (i.e., after smelling fragrance and drinking

coffee). As it is presented in Table 17, smelling fragrances has increased the average levels

of performance state from 0.27 and 0.11 to 0.36 and 0.27 in 1-back and 3-back tasks,

respectively. In a similar manner, drinking coffee has increased the performance state

estimate from 0.27 and 0.11 in 1-back and 3-back tasks to 0.42 and 0.37, accordingly. It

should also be noted that this enhancement in levels of estimated performance state is

due to receiving more correct responses and shorter reaction times. To further demonstrate

effects of olfactory stimulation and caffeine intake in improving brain cognitive performance

levels, we present corresponding statistical analyses.

As presented in Table 17, smelling perfumes results in an improvement in the rate of

correct responses by 0.6% and 1.1% in 1-back and 3-back tasks, respectively. These im-

provements in correct responses are achieved with enhancements in reaction times; 4.4%

and 8.2% in 1-back and 3-back tasks, respectively. Similarly, in response to drinking coffee,
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Table 17: Experiment 2 - closed-loop analysis.

Performance criteria
Baseline (No Actuation) After smelling Perfume After Drinking Coffee
1-back 3-back 1-back 3-back 1-back 3-back

Correct responses (%) 92.9 84.0 93.5 85.1 93.9 88.8
Reaction time (ms) 617 766 590 708 570 678
Performance state 0.27 0.11 0.36 0.27 0.42 0.37

subjects showed 1% and 4.8 enhancement in the rate of correct responses in 1-back and

3-back tasks, respectively. After Drinking coffee, more correct responses are achieved with

shorter reaction times (i.e., 7.6% and 11.5% improvement in 1-back and 3-back tasks, respec-

tively). This comparison further shows how these safe actuation have improved subjects’

performance state by both reducing reaction times and receiving more correct responses.

Hence, we may conclude that performing memory-related tasks after smelling perfume and

drinking coffee would enhance subjects’ productivity.

6.4.3 Experiment 3

The outcome in experiment 3 further validates our hypothesis. In this experiment, we

recorded physiological data to analyze how listening to music and diaphragmatic breath-

ing would alleviate subjects with fear of heights. While we derive the results for all 18

participants, due to the potential variations in subjects’ responses and different levels of

skin conductance levels in different subjects, we mainly discuss the subjects with significant

levels of skin conductance signal. Hence we select eight subjects with sufficient responses

(Table 18). On average, we observe that listening to music has lead them to have lower

levels of cognitive arousal states from 0.83 in open-loop with no actuation to 0.75 while lis-

tening to relaxing music. In a similar manner, listening to newly generated relaxing music,

based on their specific taste of relaxing music, has lead the average levels of arousal state to

reach -0.62 compared to the average levels of -0.3 in open-loop period with no actuation. As

the third relaxing actuation, we asked the subjects to practice diaphragmatic breathing. In

response to this relaxing exercises, they demonstrate lower levels of arousal state (i.e., -0.54

while performing diaphragmatic breathing compared to -0.46 over open-loop period with

no actuation). While we only analyzed skin conductance signal and EEG measurements,
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further analysis could consider different features from other recorded physiological signals.

Table 18: Experiment 3 - closed-loop analysis.

Selected Subject id
Relaxing Music Generated Music Diaphragmatic Breathing

open-loop closed-loop open-loop closed-loop open-loop closed-loop

2 1.6160 0.9766 -2.1187 -2.1532 -0.4974 -1.1883
3 0.7619 0.5436 -0.2574 -0.2898 -1.5040 -1.3018
4 1.3724 1.2499 0.7566 0.3154 -1.2026 -1.3184
5 1.5824 1.0817 -0.0528 -1.7936 1.2058 1.1387
6 -0.0540 0.1731 0.0281 0.0262 0.0481 -0.0850
7 0.4228 0.8024 -0.0212 0.0204 0.0091 -0.0775
18 0.6464 1.0378 -0.7358 -1.0886 -1.6532 -1.4108
22 0.2743 0.1341 0.0149 0.0283 -0.0507 -0.0474
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7 Conclusion and Future Work

Inspired by recent advances in wearable technologies, we proposed wearable-machine

interface (WMI) architectures for controlling internal brain states. The WMI architecture

encompasses collecting physiological data using wearable devices, inferring neural stimuli

underlying pulsatile signals, estimating an unobserved state based on the underlying stimuli,

designing the controller, and closing the loop in real-time. In the proposed architectures,

we approach the human-in-the-loop problems in a system theoretic framework. Relying on

physiological signals that are collected via wearable devices and employing signal processing

and control system techniques to infer internal brain state(s) would enhance current medical

practices.

7.1 Energy Regulation in Patients with Hypercortisolism

In chapter 2, by implementing the proposed WMI architecture on multiple simulated

cortisol profiles, we demonstrated that we can reach energy regulation in hypercortisolism.

Simulated results verify that the proposed closed-loop approach has great potential to be

utilized in real life. In the prospective practical system, a real-time deconvolution algorithm

should be utilized to derive the corticotrophin-releasing hormone (CRH) secretion times.

With future generations of wearable devices that could monitor cortisol data in real-time, the

time and dosage of the required medications would be regulated in a closed-loop automated

manner. With the goal of real implementation of the proposed WMI architectures and due

to the lack of technologies for real-time monitoring of cortisol data, we explored cognitive

stress regulation in chapters 3–6.

7.2 Closed-loop Cognitive Stress Management

In chapter 3, utilizing the experimental data, we followed the goal of designing a sim-

ulation environment by monitoring subjects’ skin conductance variations (as a validated

stress indicator). In the developed simulation system, we designed a knowledge-based fuzzy

control system to close the loop and regulate the internal cognitive stress-related state in
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real-time. The results in this simulation study validate the performance of our proposed

WMI architectures in accomplishing the tasks of (1) tracking the cognitive stress state, (2)

lowering the levels of cognitive stress-related state by applying inhibitory control in high

cognitive arousal environments, and (3) elevating the cognitive stress-related state levels by

applying excitatory control in low cognitive arousal environments. All of these tasks are

accomplished in an automatic closed-loop manner. This work is an important first step

which will ultimately lead to help patients suffering from stress and anxiety disorders.

7.3 Supervised Control Architectures in Cognitive Stress Management

In chapter 4, influenced by the fact that skin conductance carries important information

regarding the internal arousal state, we first developed novel closed-loop architectures to

enhance the cognitive stress estimation and regulation. To this end, we further expanded

the estimation algorithm to incorporate amplitudes associated with SCR events. Hence, we

implemented a marked point process filtering approach and included both amplitude and

timing of SCR events while estimating the hidden state. To close the loop, by taking ad-

vantages of state-space representation, we first implemented model-based LQR and MPC.

Using these methods, we overcame the heuristic nature of fuzzy control design in chapter 3.

Since the performance of model-based LQR and MPC approaches rely on defining appro-

priate objective functions, we next utilized our novel supervised control techniques to take

advantage of both model-based and knowledge-based methods. Hence, we established su-

pervised LQR and supervised MPC architectures for regulating the cognitive arousal state.

We investigated the efficiency of the proposed architectures in two classes of closed-loop

scenarios: inhibition and excitation. The results verify the effectiveness of proposed ar-

chitectures in keeping the estimated stress state within a target range with more optimal

control efforts. The idea of applying a supervised layer on top of the model-based control

systems would result in performance improvement in closed-loop systems. It can also pro-

vide an excellent structure to incorporate medical expertise while designing the control. As

we are dealing with a human-in-the-loop system, it is highly crucial to supervise the control
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systems. In the proposed supervised architectures, with respect to the nature of model-

based control approaches, we ensure that the essential control system design criteria, such

as stability and optimality, would be guaranteed. In fact, the supervised knowledge-based

network would further enhance their efficiency by adjusting the control tune parameters in

real-time. The proposed supervised methodologies are well-aligned to the human physiology

basis and could be further investigated in similar closed-loop disorder treatments.

7.4 Adaptive and Robust Control Systems for Closed-loop Stress Man-

agement

As uncertainty in model parameters, presented in the state-space representation, is un-

avoidable, we followed the goal of designing adaptive control systems to handle it in chapter

5. Considering potential disturbance inputs while implementing the WMI architectures, we

performed research in robust state estimation and control design. In chapter 5, we ex-

panded the state-space model and considered uncertainty in model parameters as well as

undesired disturbance input. These state-space model extension would capture inter- and

intra-subject variation. To handle the added parameters and establish robust and adap-

tive control architectures, we first defined augmented states and estimated them using a

Bayesian filtering approach. We next designed and implemented adaptive LQR and Robust

LQR to handle uncertainty in model parameters and additional disturbance input, respec-

tively. The simulation results verify the effectiveness of adaptive and robust control design

in regulating cognitive arousal. Considering inter- and intra-subject variation in human

subject responses, corresponding adaptive and robust control approaches should be utilized

while designing control action and incorporating experimental actuation.

7.5 Closed-loop Human-Subject Experiments with Incorporating Safe

Actuation

In the last chapter of this research, we followed the goal of investigating effects of possible

safe actuation effective in regulating internal brain states to be implemented in real-world
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settings. In chapter 6, we designed and performed three sets of closed-loop experiments.

To this end, we employed wearable devices to collect human physiological data. Using only

the wearable devices provides us with an excellent opportunity to implement the proposed

architectures in real-life. In the first experiment, we proposed to apply music while per-

forming memory-related n-back tasks. In the second experiment, we suggested to apply

olfactory stimuli (i.e., smell perfume) and coffee to further explore their effects on internal

brain states while performing memory-related tasks. To validate our hypothesis about ef-

fectiveness of listening to music, smelling fragrance, and drinking coffee in regulating brain

states, we performed multiple analyses. To estimate cognitive performance, we analyzed

correct/incorrect responses as well as their reaction times. To explore effects of safe actua-

tion in cognitive arousal, we analyzed changes in electrodermal activity. The experimental

results verify our hypothesis about effectiveness of the proposed safe actuation in regulat-

ing internal brain states. In the third experiment, we explored the influence of listening to

relaxing music and diaphragmatic breathing while watching clips that might induce a fear

of heights on the subjects with acrophobia. The hypothesis about the impacts of the pro-

posed relaxing actuation is confirmed in the experimental data. Listening to relaxing music

and newly generated music and practicing diaphragmatic breathing caused the subjects feel

more relaxed.

7.6 Future Directions

In the simulation study of closed-loop energy regulation, we showed the feasibility of

the proposed algorithms to be implemented in real life. With respect to future advances

in wearable technologies, which could monitor cortisol data in real-time, one should apply

the proposed architectures and implement it in real-world settings. By performing human-

subject experiments, we could better understand how a specific medication would affect

cortisol profiles and internal energy state in real-time. Since cortisol variations are influenced

by a variety of physiological and psychological factors, a future direction of this research
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could be including additional information from multiple sources while designing the closed-

loop system. In the prospective architectures, a multi-input multi-output system will take

the information from multiple sources and make the required decisions about taking the

medications (i.e., dosage and time). It results in an enhancement in medications’ efficiency

and minimizes their possible side effects. Future directions of this research could also

include incorporating all possible medications and designing the control algorithms with

the capability to choose among them. Similar to what is presented in cognitive stress

regulation, one may explore more advanced control strategies (e.g., supervised, adaptive,

and robust control methods) to close the loop. Another possible future direction could be

including the system identification process for each medication inside the real-time system.

As a result, the way that each specific individual responds to a particular medication will be

monitored to update the medication dynamics in real-time. Consequently, the personalized

control design would be more efficient.

In cognitive stress regulation, as skin conductance could also be affected in response

to other types of stimuli, it would be beneficial to analyze variations in valence state. As

emotional valence is another important aspect of the emotional state, exploring valence

state regulation could be another future direction of this research. By analyzing more

physiological measurements, we are able to differentiate between excitement and nervousness

as well. While the proposed fuzzy control system is designed in a simple single-input single-

output structure, it has the capability to be further expanded and incorporates multiple

physiological measurements from wearable devices. Accordingly, the expanded multi-input

multi-output system would be expanded to receive data from multiple sources, perform

appropriate analysis, and govern the control action to regulate corresponding internal states.

Furthermore, investigating more advanced control approaches such as genetic algorithm on

top of fuzzy structure could further enable us to optimize the actuation design and achieve

the ultimate goal of practically employing the WMI architectures to manage individuals’

internal states.

The supervised control architectures discussed in chapter 4 could be further expanded
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to result in adaptive, robust, and person-specific closed-loop tools. While we designed and

implemented separate adaptive and robust control systems in chapter 5, a future direction of

this research would be combining them to establish a unified system that could handle both

mode uncertainty and disturbance input simultaneously. In the prospective system, terms

associated with model uncertainty and disturbance input would be considered together and

we should consider a more expanded augmented state while estimating the hidden state.

To design the control system, one might also apply the supervised architectures presented

in chapter 4 and establish an advance supervised adaptive and robust control architecture.

Exploring artificial intelligence-based decision making approaches such as deep learning and

reinforcement learning could also considered as alternative approaches while designing the

control and closing the loop.

As a result of the human subject experiments presented in chapter 6, we collected and

published multiple physiological data (i.e., EDA, BVP, PPG, 3-axis accelerometer data,

skin temperature, EEG). An important future direction of this research could be exploring

the dynamic effects of each safe actuation in humans’ responses. One important aspect

that should be considered while analyzing these dataset is to explore pharmacokinetics

and pharmacodynamics of each actuation. To further evaluate effects of the proposed safe

actuation, performing more experiments on more subjects would enhance the conclusion.

To further evaluate our hypothesis, we propose to repeat experiments and shuffle open-

loop and closed-loop (i.e., performing the tasks while taking the actuation) periods. It

would enhance our understanding of each safe actuation’s dynamics. Considering subject-

specific reactions and possible latency in physiological responses to any actuation, one may

model the actuation dynamics and include them in the real-world implementation of WMI

architectures. In such practical WMI architectures, a wearable device collects physiological

data from human in the loop, a decoder estimates the cognitive stress state, and a controller

brings the cognitive stress to the desired range by incorporating modeled safe actuation in

a closed-loop manner. Another future direction of this research includes performing more

experiments with more subjects to achieve a more diverse dataset.
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With ongoing recent advances in wearable technologies, the proposed research could

open avenues of opportunities addressing mental and hormone-related disorders within the

remote monitoring properties. The proposed architecture could provide an excellent infras-

tructure to incorporate medical expertise while designing the actuation and closing the loop.

Humankind would derive a benefit from the proposed real-time monitoring and regulation

toolsets by receiving the personalized effective suggestions and medications with minimized

side-effects to enhance their overall quality of life.
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and Andreas Mühlberger. Diaphragmatic breathing during virtual reality exposure

therapy for aviophobia: functional coping strategy or avoidance behavior? a pilot

study. BMC Psychiatry, 17(1):1–10, 2017.

[269] Rosalind W Picard, Szymon Fedor, and Yadid Ayzenberg. Multiple arousal theory

and daily-life electrodermal activity asymmetry. Emotion Review, 8(1):62–75, 2016.

212



[270] Gregory S Berns, C Monica Capra, Sara Moore, and Charles Noussair. Neural mech-

anisms of the influence of popularity on adolescent ratings of music. Neuroimage,

49(3):2687–2696, 2010.

[271] S Aalbers, L Fusar-Poli, RE Freeman, M Spreen, JC Ket, AC Vink, A Maratos,

M Crawford, XJ Chen, and C Gold. Music therapy for depression. In Cochrane

Database of Systematic Reviews, 2017.
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