VIDEO-BASED CHANGE DETECTION

A Dissertation Presented to
the Faculty of the Department of Computer Science

University of Houston

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

By
Hakan Haberdar

August 2013



VIDEO-BASED CHANGE DETECTION

Hakan Haberdar

APPROVED:

Dr. Shishir K. Shah, Chairman
Dept. of Computer Science

Dr. Edgar Gabriel
Dept. of Computer Science

Dr. Ricardo Vilalta
Dept. of Computer Science

Dr. George Zouridakis
College of Technology

Jayan Eledath
SRI International

Dean, College of Natural Sciences and Mathematics

il



Acknowledgments

First of all, I thank God for giving me the chance to have this experience. My
special thanks go to my advisor Dr. Shishir K. Shah for his guidance, his insightful
comments, and his support throughout this endeavor. I do believe in that Dr.
Shah is a great Ph.D. advisor. I would like to express my appreciation to my
dissertation committee for their valuable suggestions. Throughout my graduate
studies, there have been some special people who gave their support which I will
never forget, Dr. Garbey, Dr. Hilford, and Dr. Paris. I also want to thank to the
staff at the department for always doing the best that could be done, Yvette, Liz,
Jackie, and Anh.

I also extend special thanks to all my friends for their help, moral support,
and, above all, their friendship, Saber Feki, Apurva Gala, Charu Hans, Serhat
Okyay, Mehmet Ali Ozbay, Gokhan Ozer, Ahmet Sonmez, Khai Tran, Tayfun
Tuna, Ilyas Uyanik, Xuging Wu, Xu Yan, and Erol Yeniaras.

Last but not least, I am grateful to my parents Melahat and Abdulaziz, my
sister Meltem, my brother Fatih, and my parents-in-law, Umran and Hasan for
their love and encouragement. Nothing would be possible without the love of life,
my wife, my Rubabe. I wish we had our beloved daughter Zehra earlier, so we
could just look at her face and fingers and feel the joy whenever either I or Rubabe

had a tough time during our Ph.D. studies.

iii



VIDEO-BASED CHANGE DETECTION

An Abstract of a Dissertation
Presented to
the Faculty of the Department of Computer Science

University of Houston

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

By
Hakan Haberdar
August 2013

v



Abstract

Change detection from video recordings is critical in many applications related
to surveillance, medical diagnosis, remote sensing, condition assessment, motion
segmentation, and advanced driver assistance systems. The main goal of the
change detection using videos is to identify the set of pixels that are significantly
different between spatially aligned images that are temporally separated.

This is an extremely challenging problem because of a variety of factors, in-
cluding changes in the illumination over time, appearance or disappearance of
objects in the scene, and the need for temporal synchronization of the videos.
Moreover, when a mobile video acquisition platform is used, a change in scale
of the observed scene along with rotation and translation changes between im-
age pairs is introduced. Thereby, the imaging geometry cannot be modeled by
ordinary transform constraints because of the varying field-of-view.

Over the years, many standard image processing techniques have been lever-
aged to realize a solution to the problem of change detection. Each potential
approach attempts to exploit properties of the image, the application domain, or
a combination. The relevance of the kind of changes to be detected is application-
specific, but the underlying algorithms need to detect all changes as the first step,
which can later be post-processed to discriminate between relevant and unim-
portant changes. It would be beneficial to have a framework that analyzes the
changes between videos in an automated manner.

In this dissertation, we explore more complex imaging models for solving the
change detection task and propose a complete framework that accomplishes spa-

tiotemporal registration and change detection. To this end, we develop a set of



methods for: 1) temporal alignment of the unsynchronized videos, 2) estimation
and refinement of the disparity maps using temporal consistencies, 3) segmenta-
tion of the dominant plane in the scene, 4) estimation of spatial transform for the
dominant plane, and 5) detection of relevant changes in the presence of several
altering background elements.

To demonstrate the feasibility of the proposed methods, we carried out exten-
sive experiments using videos obtained from various sources and present visual and
quantitative results that address: 1) temporal alignment of video pairs recorded
by mobiles platforms under varying illumination and scene conditions, 2) scene
depth estimation, dominant plane segmentation, and change detection between
videos captured by moving sensors where the complicated geometry and parallax
are present, and 3) detection of relevant changes in videos acquired by stationary

cameras where the environment contains several dynamic regions.
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Chapter 1

Introduction

The detection of relevant changes in videos of the same scene acquired at differ-
ent instances is crucial in vision tasks, especially in applications related to video
surveillance [42, 76, 86, 152, 176], remote sensing [17, 27, 102, 121, 154], medi-
cal diagnosis [12, 21, 80, 165, 182], condition assessment [72, 84, 97, 114, 181],
motion segmentation [29, 77, 115, 118, 142], and advanced driver-assistance sys-
tems [22, 70, 89, 101, 157]. Despite the diversity of applications, change detec-
tion methods employ many common processing steps [148] to detect application-
specific regions of interest. The core problem is to identify the set of pixels that are
significantly different between two images of the same scene, and these pixels com-
prise the region of change. The region of change may result from a combination
of factors, including appearance or disappearance of objects, motion of objects

relative to the background, or shape changes of objects. The key issue is that



the region of change should not contain irrelevant forms of change, such as those
induced by camera motion, sensor noise, illumination variation, and nonuniform

attenuation.

Our data acquisition scheme is the one used by typical vision applications
where mobile or stationary sensors collect either monocular or stereo data for
change detection purposes. A desired change detector should automatically cor-
relate and compare multiple videos of the scene from different viewing angles at
different times and then exploit the ability to identify changes. Despite recent
progress in computer vision, there are still major challenges to be overcome in
realizing a robust solution to the problem of change detection. The challenges
are attributed to complex variations in the appearance of dynamic scenes, un-
known calibration parameters of video acquisition platform, temporal alignment

of videos, and changes in the illumination over time.

1.1 Motivation

In the last decade, the use of visual imagery for the problem of change detection
has become one of the most significant and active areas in the field of computer
vision because of the advances in the imaging technologies. Depending on the spe-
cific goal of the change detection application, the data acquisition unit could cap-
ture images by various imaging modalities, such as stationary video cameras [10],

mobile camera platforms [37], MRI scanners [21], computed tomography scanners



[80], and remote sensing [154]. Multiple stationary cameras or mobile platforms
are used to observe large environments for the surveillance. It is not possible for
a single stationary camera to capture the complete area of interest because of the
finite sensor resolution and structures limiting the visible areas [1]. MRI scanning
is an important diagnostic tool for monitoring disease evolution in medical imag-
ing [21]. Similarly, computed tomography scanner creates tomographic images of
cross-sections of the specific areas of the body. These cross-sectional images are
used for diagnostic purposes, such as the risk of cancer and heart diseases and
detecting tumors [80]. In the remote sensing systems, multispectral data are pro-
cessed and interpreted for various purposes, for example environmental changes,

land usage monitoring, building damage assessment, and aerial traffic control [31].

The constant flow of video from a number of cameras provides data but no
actionable information [71]. Processing such data by a human is tiring, expensive,
and ineffective. After only 20 minutes, human attention to video monitors degen-
erates to an unacceptable level [74]. Therefore, a common practice in commercial
stores or banks is to record the videos on tapes and use them as forensic tools,
i.e., after a crime, the recorded video is used to collect evidence [99]. Especially
for the scenarios where a mobile platform patrols sensitive areas, the task of the
human observer is even more difficult and almost impossible because the observer
is supposed to remember the condition of the area in the previous recording of

the scene.



Limitations of the human observers and the amount of the data to be pro-
cessed can be practically and effectively achieved by automating the monitoring
process and employing human interaction only for evaluation of anomalies that
are detected. Our motivation is to address the need for developing methods for

the automation of the change detection task.

The core problem discussed in this work is as follows. Given two videos of the
same scene captured at different times under different illuminating conditions, we
aim to develop a framework for detecting relevant changes in the scene. Namely,
the goal of this dissertation is to identify image regions that are significantly

different between two videos that may be temporally and/or spatially separated.

1.2 Challenges

Despite the diversity of applications, a basic video change detection framework
mainly follows a four-step processing pipeline [48,; 165] to accomplish detection of
anomalies (Figure 1.1).

Image Spatial
Enhancement Registration

L L

Temporal Change
Alignment Detection

Figure 1.1: Block diagram of the common processing steps used for the change
detection problem in different applications.



Apparent intensity changes and noise at a pixel resulting from data acquisition
or environmental conditions are virtually never desired to be detected as real
changes. Hence, a necessary preprocessing step for all change detection algorithms
is accurate image enhancement. Then, establishing correspondences in time and
in space between different videos of the same dynamic scene allows us to make a

direct observation of relevant changes in the scene.

While the complexity of a real change detection problem solely depends on
the characteristics of data sets [50], one working on a robust change detection
framework should take a number of apparent challenges into account because of
the nature of problem. Those challenges are introduced and investigated in the

following sections.

1.2.1 Image Enhancement Challenge

A major issue with change detection in videos is to guarantee robust detection
in the presence of illumination variations and noise. Illumination variations can
be observed at each pixel within spatiotemporally aligned frames because of a
variety of factors [148], including slightly different viewing angle of the camera,
and change in the position and intensity of direct or ambient light sources. In
addition, nonrigid deformations of the objects in the scene may cause intensity
changes. Furthermore, in an outdoor environment, illumination not only changes
slowly as daytime progresses, but may change rapidly because of changing weather

conditions and passing objects (e.g., cars, airplanes, clouds, and overpasses) [25].



In this case, changes in the illumination do not have to be global. For instance,
there may be shadowed regions in an outdoor scene on a partly cloudy day. These
illumination variations introduce challenges on almost all of the modules of a

change detection system.

1.2.2 Temporal Alignment Challenge

When the change detection problem occurs in the context of multiple videos, it
is natural to exploit the temporal consistency of pixels in the same location at
different times [148]. Videos of the same scene (Figure 1.2) may differ from
one to another because of a mobile camera platform and scene dynamics. The
primary challenge is to decide which pair of frames should be selected for the

spatial registration.

This problem can be addressed by bringing two videos recorded at different
times into temporal alignment. The process of establishing temporal correspon-
dence has to deal with various imaging and scene conditions. Especially working
with moving cameras increases the number of system parameters (e.g., time off-
set and external camera parameters) dramatically [146]. Camera parameters may
change from frame to frame, and they should be determined or at least compen-

sated for each individual frame.



Secondar}fvideoj Vs 1...IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII8I51IIIIIIIIIIIIIIIIIIIIIII1I8.55

Reference Video, V' ¢

Figure 1.2: TIllustration of the temporal alignment. Given two unsynchronized
videos V" and V*® of the same environment, where r denotes reference and s de-
notes secondary. V* was recorded after objects of different sizes and textures were
placed in the outdoor environment, and V" was taken without the objects. Frames
I}, and I, have the most similar view. Red points indicate the synchronization
points. The time offset, At, is 408 at the synchronization point, where At may
changes from point-to-point.

1.2.3 Spatial Registration Challenge

The existence of temporal alignment step poses additional registration challenges
compared to an ordinary image registration problem. Furthermore, complex vari-
ations in the appearance of dynamic scenes include nonrigid changes in the scene
(e.g., waving tree branches) and parallax caused by change in the observation

position (Figure 1.3).

Another practical issue regarding registration is the selection of feature-based
or intensity-based registration algorithms. Determining an appropriate transform
model relating pixel coordinates in one image to pixel coordinates in the other

image is the main challenge. A variety of such parametric transformation models



Figure 1.3: Example of two frames from temporally aligned video pairs acquired
by a mobile platform. These two frames have the most similar view of the scene
shown. Nevertheless, the moving camera platform causes a significant chance in
the viewing angle between the frames. This introduces parallax among the trees
in the scene.

are possible such as similarity (i.e., scaled rotation), affine, projective (i.e., ho-
mography), and quadratic. After a suitable transformation model is determined,

parameters of the transformation model should be estimated.

1.3 Research Goals

In this work, we aim to establish correspondences in time and in space between
two videos of the same dynamic scene acquired under different conditions and
subsequently detect the regions of change between the spatiotemporally aligned
frames of the two videos. In order to achieve this goal and to overcome the

challenges described in Section 1.2, we propose a set of novel methods, each of
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which addresses different subproblems of a generic video-based change detection

framework.

Our first subgoal is to bring two videos taken at different times into temporal
alignment. The main idea is to combine the mutual information observed from
one set of matched frames and the information provided by the dynamics of the
scene. This will provide us varying dynamic time offsets and corresponding frames

that have the most similar view of the same scene between the two videos.

Various spatial registration algorithms have been presented in the computer
vision literature. Nevertheless, each one of the existing approaches rely on tuning
of different sets of parameters, which make them challenging to use for the dynamic
environments. One should employ and integrate existing techniques and develop
a registration module that is robust under complicated scene structure variations.
Assuming the existence of a dominant plane and using only the dominant plane
regions for spatial registration can overcome some difficulties related to the scene
structure, but the detection of the dominant plane remains a challenging problem.
There are several algorithms using the idea that all points obeying the same plane
equation will be in the same layer within a frame, and those points in the layer can
be employed to calculate parameters of the plane equation. Nevertheless, there are
many cases where this assumption does not work because of complex geometry of
the dominant plane. Hence, we need to design an alternative approach to estimate

the dominant plane using a more robust scene feature, such as the scene depth.



Image change detection step is the most critical task of the proposed video-
based change detection framework. We need a change detection strategy that is
robust against illumination changes and a reasonable range of spatial distortion.
In addition, a sophisticated change detection method should discriminate the rel-
evant changes from the others where the background has several altering elements

that may cause false alarms.

All algorithms, approaches, and techniques described in this section will be
evaluated in all aspects of our central goal. For generalization, both monocular
and stereo videos are considered on this work. To present the correctness and
the benefits of each module, we used a video benchmark that includes recordings
acquired in wide variety of conditions, such as videos recorded in real outdoor
environments at night and day time, videos which include both challenging types
of scene structures and changes of different sizes and textures, and videos captured

by mobile platforms.

1.4 Dissertation Outline

The organization of the remainder of this dissertation is as follows. We begin
in Chapter 2 by presenting a literature review of existing approaches to each of
the steps that build up the entire framework. Chapter 3 describes modules for
the temporal and spatial alignment procedures. We present the proposed image

change detection methods in Chapter 4. In Chapter 5, we discuss experimental
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results of different modules of the video-based change detection framework. Fi-
nally, the last chapter summarizes the dissertation and highlights its contributions

along with presenting the future perspective of this work.
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Chapter 2

Related Work

This chapter reviews and discusses performance, relative merits and limitations
of existing approaches for each step in a video-based change detection framework.
Several approaches for analysis of videos are provided in the literature. Although
each system may require application-specific tasks, modules of a typical system

can be summarized as illustrated in Figure 2.1.

Data Acquisition Frame
‘{} Comparison Dvideo seguences
. Registration [[] imaging sensor
Synchronization L DTemporaI alignment

D Spatial alignment
Image change detection

Figure 2.1: Schematic overview of a typical video-based change detection system.

In different application scenarios, different number of videos may be available
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[47], while in most cases two videos are used [30, 35, 160]. Based on the limitation
of the environment, stationary cameras, moving cameras [160], or rigidly attached
cameras [197] can be employed for the data acquisition. Accurate temporal align-
ment to find corresponding frames in the videos is the first step towards robust
spatial image registration. Because the complexity of the spatial registration de-
pends solely on the data provided, each approach may require application-specific
substeps. In the following sections, we present a review of previously proposed
video-based change detection frameworks and discuss individual modules in these

frameworks.

2.1 Video-based Change Detection Frameworks

The term video registration in literature has been interchangeably used for two
different problems. The first one refers to the problem of registering frames of a
single video to one of the other frames in the video. The second problem addresses
the spatial alignment of two different videos of the same scene recorded at different

times. In this dissertation, we focus on the task of registering multiple videos.

Various vision-based methods for detecting objects in a scene using station-
ary cameras are presented in the literature, while considerably fewer publications
address the analysis of images acquired by mobile camera platforms. Sand and
Teller [160] describe an algorithm for bringing two non-stereo videos into spa-

tiotemporal alignment and compare them using feature point correspondences.
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First, they determine a pixel matching probability using 3x3 maximum and min-
imum intensity filters. A motion consistency probability is calculated by starting
with a corner detector for each candidate match. The product of pixel matching
probability and motion consistency probability finally determines the best match.
The limitation of their approach is that they require the input videos to follow spa-
tially similar camera trajectories. Therefore, the algorithm cannot align images
from substantially different viewpoints. Primdahl et al. [146] presents a method
for autonomous control of moving vehicles making repeated passes through a very
specific, well-defined indoor environment. They utilize measurements from a po-
sitioning system to find corresponding frames from different videos. After the
frame alignment, the presence of new objects within the frame is simply detected
by comparison of the gradient information. Caspi et al. [35, 36, 185] have devel-
oped a unified framework for the problem of video registration. The registration
is performed by maximizing a similarity measure across all the sub-volumes of
the videos. Tanjung and Lu [175] propose an automatic change detection method
for multiple images of the same scene acquired by a mobile camera from different
positions. Their method consists of three steps: 1) automatic image registration,
2) temporal differencing, and 3) irrelevant change removal. The main drawback of
their method is that effects of illumination changes are not taken into considera-
tion in any way. Furthermore, the experimental evaluation is very limited and does
not provide enough insight about when and why the technique should be expected
to yield the desired result. Chakravarty et al. [37] presents a mobile robot which

is capable of moving along a route while detecting visual anomalies. They use a
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monocular panoramic vision sensor to detect and track the objects. Nevertheless,
they assume the nonexistence of any environmental changes and require a manu-
ally defined similar trajectory. Buchanan [28] describes a method for the detection
of improvised explosive devices in videos taken over roads and terrain at different
instances by unmanned aerial vehicles. Scene pixel correspondences are formed by
performing image registration through the generation of images of the static scene
from multiple viewpoints which have not been previously seen. After estimating
the camera parameters, they create a texture-mapped three-dimensional model of
the terrain and generate new views of it by direct image rendering. They report
results on a few images and the performance of their system is poor when the
aerial vehicle follows different paths. In this dissertation, we extend these appli-
cations to a more difficult case where a moving camera platform, which utilizes
monocular or stereo sensors, follows an unknown trajectory in unknown dynamic

environment under changing illumination conditions.

2.2 Temporal Alignment

In a video-matching framework, the first parameter which has to be computed
before performing the spatial registration is the time offset between videos. The
problem of temporal alignment has been extensively studied, and many approaches
have been developed since Stein’s first method [171]. Stein achieves the tempo-

ral alignment using tracking data acquired from multiple cameras assuming: the
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cameras are static, and the images are related by a two-dimensional projective
transformation. Caspi and Irani [34] report a direct approach to aligning two
videos by finding the spatiotemporal transformation that minimizes the sum of
squares difference between videos. Videos are assumed to be captured from two
cameras which are mounted close to each other and move jointly. The limitation of
their approach is that they align all the frames with a single image transformation
and a single time offset. The proposed method fails for videos with dynamic time
shifts. Tuytelaars and Gool [184] tackle the problem of video synchronization for
independently moving camera platforms. They manually picks five independently
moving points which must be tracked successfully to obtain the time shift. An
alternative approach for the same scenario is proposed by Whitehead et al. [196].
Multiple objects are tracked through each video, and the salient points in each
trajectory are located. Initial estimates of the trajectory correspondences and
the time offset are established by locating points from each video which satis-
fies the epipolar geometry. Temporally aligned frames are then determined by
locating frames where the location of the object in all views satisfies the epipolar
geometry. This allows the time offset and frame rate to be recovered for all pairs
of the videos. Wedge et al. [192] utilize the iterative random sample consensus
method [62] to recover transformation from matched spatial features in two im-
ages. These matches are then used to compute the time offset. This approach is
also limited to stationary or jointly moving cameras. Meyer et al. [125] perform
temporal alignment in two steps based on motion trajectory correspondences be-

tween two or more videos recorded by unsynchronized non-stationary cameras.
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They estimate time offset by analyzing the trajectories and matching their char-
acteristic time patterns. After finding the coarse time offset by extracting salient
points of trajectories and matching their time patterns, they use the estimated

fundamental matrix to directly calculate the fine time offset.

2.3 Image Registration

Image registration is the process of determining the spatial transformation (e.g.,
translation, affine, and homography) which maps points from one image (i.e., fixed
image) to the corresponding points in the second image (i.e., moving image). The
problem of image to image alignment has been extensively studied in the liter-
ature, and it is a recurring challenge in computer vision. Image registration is
a first step in variety of applications, such as image stitching, medical imaging,
image-based modeling and rendering, structure from motion, and object recogni-
tion. Traditional methods for aligning images are often subdivided into two main
categories: intensity-based methods and feature-based methods. One challenging
issue regarding registration is the selection of feature-based, intensity-based, or

hybrid registration algorithms.

2.3.1 Intensity-based Spatial Registration

Intensity-based image registration methods first define a metric, such as the sum-

of-square differences and mutual information. The registration problem is then
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solved by the minimization or maximization of a cost function derived from the
metric. These methods employ intensity differences and image gradients to com-
pute an update to the estimate of the spatial transformation. Then, the estimated
transform parameters are used to warp the moving image on top of the fixed im-
age. This iterative process continues until a stopping condition is satisfied or a

fixed number of iterations is reached.

An early attempt of a widely used image registration algorithm is the opti-
cal flow method, which was developed by Lucas and Kanade [119]. Optical flow
establishes a similarity metric and produces a dense pixel correspondence; how-
ever, it is not robust to occlusions. One disadvantage of the pixel-based methods
is that they require high computational time (for both model construction time
and prediction time). To overcome this limitation, techniques using a hierarchi-
cal coarse-to-fine approach with image pyramids have been developed. First, an
image pyramid is constructed, and then a search over a small number of discrete
pixels is performed at coarser levels [147]. An optimizer is employed to estimate
parameters of the transformation model using a cost function. A commonly used
approach is to apply gradient descent [119] on the cost function. For a com-
plex transform model (e.g., homography), estimation of the parameters becomes
complicated. Shum and Szeliski [166] propose that this can be simplified by first
warping the moving image according to the current transform estimate and then
comparing it against the fixed image. Intensity-based registration methods has

been used extensively in medical imaging applications [94]. A major shortfall of
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the intensity-based approach is that the cost function minimization procedure is
quite sensitive to local minima. Accordingly, when the images to be registered

have a low-overlap, this approach usually tends to fail.

2.3.2 Feature-based Spatial Registration

Feature-based registration algorithms first extracts distinctive features from the
fixed and moving images. The feature points are then mapped from the moving
image to the fixed image using matching methods, such as normalized cross cor-
relation. After a rough set of matches are obtained, the closest fixed image point
for each mapped point is refined. These temporary correspondences are used to
estimate the geometric transformation between the images. These steps are re-
peated iteratively. Feature-based approached is faster and has the advantage of

being more robust against scene variations.

Feature-based approaches have been used since the early days of image regis-
tration [78, 133]. They have more recently gained popularity for image stitching
applications [158, 169, 210]. The most well-known feature detection methods are
Canny edge detection [33] and Harris corner detection [81]. Most recent methods
rely on using local descriptors that are more invariant to scale and transforma-
tions to estimate the similarity of pixels across images. These local descriptors
include scale-invariant feature transform (SIFT) [117], gradient location and ori-

entation histogram (GLOH) [128], speeded up robust features (SURF) [14], and
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DAISY [179]. Salient points are not the only features that can be used for reg-
istering images. Mikolajczyk et al. [129] use affine-invariant regions to detect
correspondences for wide baseline stereo matching. Matas et al. [123] detect
maximally stable extremal regions to establish correspondences between a pair of
images taken from different viewpoints. While this approach improves the reg-
istration accuracy in many cases, it has not been shown to fully handle the low

overlap that occurs in the challenging data sets.

In this dissertation, we assume the existence of a dominant plane in the scene
and subsequently employ it for the spatial registration. To segment the dominant
plane in each frame, we employ the depth information of the scene. Therefore,
in the following sections we briefly discuss the previous work about the disparity

estimation and and dominant plane segmentation methods.

2.4 Disparity Estimation

Stereo matching is an active research area and an important computer vision
problem. The goal of the stereo matching problem is to obtain an accurate depth
representation of a scene from a stereo image pair. The term disparity was first
used in the human vision literature in order to describe the difference in location
of corresponding features seen by the left and right eyes [174]. Disparity is of-
ten treated as synonymous with inverse depth [163] in computer vision. A wide

variety of computational models including area-based approaches, feature-based
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methods, and energy minimization-based approaches have been proposed to solve
the problem of disparity estimation of a scene from the left and right images of a

stereo pair.

2.4.1 Area-based Methods

Area-based disparity estimation methods [140] employ the assumption that dis-
parities within a neighborhood of a pixel in each image are constant; therefore,
the intensity distribution within the area can be used to find the corresponding
pixels in the other image using the photometric similarity and spatial consistency.
The drawback of this approach is that the disparity map becomes sparse because
the matching process does not consider any distinctive feature points, which are
very crucial for accurate estimation of dense depth fields. Furthermore, area-based
stereo methods assume that the disparities are equal for all the pixels in a match-
ing window. This results in the blurring effect in object boundaries and causes

the removal of small details.

2.4.2 Feature-based Approaches

Feature-based methods establish initial correspondences between among feature
points extracted from the images. Edges, gradient peaks, line segments, and curves
are usually selected as the feature points because they are the most prominent

parts of the scene [193]. The main advantage of using features for the matching
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stems from their robustness against photometric variations and the noise. Major
drawbacks of this approach are the sparseness of the estimated disparity map and

the error propagation from the errors caused by the feature mismatches.

2.4.3 Energy-based Disparity Estimation

Energy-based disparity estimation methods make use of the intensity at a sin-
gle pixel coupled with energy minimization formulation for the matching. These
methods suffer from three problems: 1) slow convergence, 2) computational load
involved in solving partial differential equation, and 3) local minima problem.
On the other hand, the energy-based disparity estimation methods tend to yield
dense disparity fields with high accuracy. Early studies in this category utilize
the epipolar constraint to convert the two-dimensional matching problem to a
one-dimensional matching problem, which can be solved efficiently using dynamic
programming [65]. Wei et al. [193] propose a stereo correspondence method
by minimizing intensity and gradient errors simultaneously. Different from the
conventional use of image gradients, they use the gradient in the deformed image
space. In order to avoid local minima, they propose to parameterize the disparity
function by hierarchical Gaussians. In the last decades, graph cuts have emerged
as a powerful optimization technique for the minimization of energy functions.
Very first work on the graph cuts was proposed by Roy and Cox [156]. They ap-
plied it to an N-camera stereo correspondence problem. Roy and Cox presented

that the global minimum of a certain type of two-dimensional energy function
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could be computed using the graph cuts. Nonetheless, their formulation does
not allow the sharp discontinuities in disparity and yields poor results at the
object boundaries. Boykov et al. [24] propose an alternative approach for the
minimization known as the multiway cut. This approach finds a provably good
local minimum and preserves the sharp discontinuities. However, its disadvantage
is that it cannot guarantee to find the global minimum. Kolmogorov and Zabih
[105] employ fast energy minimization algorithms based on graph cuts, which have
the ability of avoiding the problems due to the local minima. This method can be
applied to the cases where the intrinsic and extrinsic camera parameters are not
provided. Kolmogorov and Zabih directly compute the disparity map from the
gray-level image intensities without dealing with any intermediate process, such
as rectification. Another popular approach to the depth analysis is to formulate
the correspondence problem in the scope of segmentation. Before the matching,
the image is segmented using monocular cues. Then, the correspondences be-
tween the layers is determined. These methods [18, 20] assume that the scene
can be decomposed into a small set of layers with few parameters. They use an
expectation-maximization algorithm to iteratively segment the image into regions
of common transformation. Hong and Chen [91] first segment each image individ-
ually using a color-based mean shift algorithm. Then, they proceed the disparity
estimation step. These techniques are quite successful on untextured regions and
color images; however, they tend to fail on textured gray-level images because of

the difficulty of the monocular segmentation.

23



2.5 Dominant Plane Detection

A dominant plane is defined as a planar region which occupies the largest area in
the image observed by a video camera. The detection of the dominant plane is a
preprocessing step to a wide variety of vision tasks, such as camera self-calibration,
feature matching, image mosaicing, obstacle detection, object recognition, and
scene analysis. This usually precedes the exploitation of constraints imposed by

planarity.

Existing methods for the dominant plane segmentation are typically based on
the extraction and matching of salient geometric features from images. Se and
Bredy [164] propose a dominant plane disparity model which is formulated as a
planar map linear to the image coordinates. They use a set of pixel coordinates
and disparity values to generate the dominant plane disparity map. Then, they
employ the iterative random sample consensus method [62] to estimate optimal
parameters for the dominant plane from disparity values, which is robust to the
obstacles in the scene. Lourakis et al. [116] propose a method for detecting the
dominant plane in a scene using line features and a set of matched points. The
proposed method searches for homographies using an iterative voting model based
on point and line feature correspondences without requiring camera calibration.
The disadvantage of this method is that it relies upon the availability of a set
of corresponding points and lines extracted from a pair of stereo images. Yang
et al. [198] describes two methods for planar segmentation based on integrating

the image point coordinates in a higher dimensional real of complex plane. The
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advantage of this approach is that a closed-form solution is presented; however,
they are limited to two views. Ohnishi and Imiya [138] tackle the problem
of segmenting the dominant plane using optical flow from a sequence of images
captured by a moving robot for the purpose of navigation. They describe that the
points on the dominant plane between consecutive images could be tracked using
an affine transformation. After the affine transform parameters are computed,
they are used to estimate the dominant plane motion between the images. The
difference between the estimated planar flow and optical flow fields enables them to
segment the dominant plane region using the matched flow vectors. Chumerin and
Hulle [45] describe an approach for disparity plane estimation and subsequently
use it to segment the dominant plane for a calibrated stereo camera system. They
use a predefined road mask on the disparity map to filter out the pixels which
belong to sky and regions above the ground plane. Then, they try to fit a linear
plane model to the masked disparity map using am iterative weighted least squares
regression method. The main disadvantage of this method is that it relies heavily
on the accuracy of the disparity map estimation, while they do not provide any
disparity map refinement model. Cherian et al. [43] present an approach that
uses monocular cues for the scene depth estimation. They utilize the assumption
that the depth of an object in the scene can be approximated using the distance
between the point at which the object connects to the ground and where the
camera is located. The proposed method first reconstructs the three-dimensional
depth map of the scene using the Markov random field and then smoothes it

based upon the principal component analysis. Finally, segmentation of the image
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is performed using texture features in order to find the boundaries of the dominant
plane. Once the dominant plane is segmented, they use the intrinsic and extrinsic
parameters of the camera to build a three-dimensional coordinate system for the
image. The drawback of this method is that the systems needs be to trained for

the parameter estimation.

2.6 Image Change Detection

In image processing and computer vision literature, the term change detection
has been used to refer to different problems [148]. For example, the scene change
detection methods deal with the problem for determining the frame at which an
image sequence switches between scenes [205]. In this dissertation, we address
the problem of determining the set of pixels which are pictorially different between
spatiotemporally aligned images of the same scene captured at different times. The
change between the images may be the result of a combination of different external
factors, such as appearance or disappearance of objects, motion of objects relative
to the background, and appearance changes of objects. The core requirement is
that the change detection framework should be able to discriminate between the
relevant changes and the unimportant forms of change that may be caused by the

camera motion, parallax, sensor noise, and illumination variation.

Over the years, many standard image processing techniques have been lever-

aged to find a solution to the problem of change detection in images of a scene
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acquired at different instances. Different change detection algorithms have their
own advantages, and no single approach is optimal and applicable to all cases.
There are plenty of change detection approaches attempting to exploit and com-
pare domain specific properties of the images, ranging from video surveillance
[131] to video coding [9], object tracking [120], monitoring the earths surface [17],
and motion estimation [139]. Previous literature has shown that we can classify
existing change detection techniques into three main categories: 1) pixel-based
methods, 2) background modeling, and 3) hypothesis testing and predictive mod-

els. In the following sections, we will present these categories.

2.6.1 Change Detection Using Pixel-based Features

Because of its algorithmic simplicity, image differencing is the most popular method
used for various applications [17, 38, 124] involving change detection. The appar-
ent first step is to compute the absolute values of the difference between the corre-
sponding pixels in two images. It is usually followed by a thresholding operation
to indicate regions of change in a binary change mask. Nevertheless, choosing
a proper value for the threshold is a very critical and data-dependent task. A
too low value may overwhelm the difference map with pixels which are labelled
as false positives. On the other hand, a too high threshold value may suppress
salient changes and result in a large number of false negatives. Furthermore, the
threshold value may depend on the scene and viewing conditions that may change

over time. This requires the dynamic calculation of the threshold based on the
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image content because selecting an empirical threshold value is not considered
as proper for a robust autonomous vision system. Local thresholding can also
improve change detection particularly when the scene illumination varies locally
over time. An extension of change detection using pixel-based feature is change
vector analysis method [40, 194, 208], which is developed for multispectral remote
sensing images using a similar approach. A feature vector is first generated for
each pixel by using the several spectral channels. Then, thresholded difference
between two feature vectors at each pixel is used to estimate regions of change.
Image ratioing [55] is another image differencing related technique that uses the

ratio instead of the difference.

Pixel-based change detection methods are computationally efficient because
only the pixel intensity is processed. Nevertheless, they are extremely sensitive to
even minor image registration artifacts and illumination changes because they do
not consider local structural information. Hence, scalability of pixel-based meth-
ods is limited, especially in the context of real-world applications with complex

and dynamic scenes.

2.6.2 Background Modeling

In the context of detecting regions of change among the consecutive frames of a
single video, background modeling is considered as a substep of the change de-
tection problem [143]. The goal to determine which pixels belong to the scene

background and should not be classified as change. The entire frame sequence
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in the video is used as the basis for making decisions about change, in contrast
to comparing a pair of images in an ordinary change detection problem. These
methods are usually limited to the case of static or slowly varying background.
The most common approach is to build a model for illumination changes and
minor variations using Gaussian mixture models [109, 211]. The probability of
observing an intensity value at a pixel location is modelled as the weighted sum
of multiple Gaussian distributions. Gaussian mixture models are usually built on
pixel-based structures and work well in detecting changes that can be described as
independent events. In adaptive approaches, the mean and variance of the Gaus-
sian are updated using simple adaptive filters to accommodate changes in lighting
or objects that become part of the background. However, the background model-
ing tends to fail to model complicated change patterns that may be correlated in

a spatiotemporal volume.

2.6.3 Hypothesis Testing and Predictive Models

Pixel-based methods have the advantage of the algorithmic simplicity, but region-
based techniques yield results more robust to noise. A basic region-based approach
is to compare if statistics of a specific region between two images have the same
intensity distribution. The decision rule for the change is modeled as a statistical
hypothesis testing. In order to make the change detection more reliable, deci-
sions are made based on a set of differences inside a small window instead of a

single pixel. The decision as to whether or not a change has occurred at a given
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pixel corresponds to choosing one of two competing hypotheses: no-change and
change [148]. Images to be compared are considered as random vectors. Knowl-
edge of the conditional probability distributions allows us to choose the hypothesis
that describes the intensity deviation at pixel [2, 3]. Rignot and van Zyl [153]
propose hypothesis tests on the ratio and difference images of SAR data assum-
ing intensities could modeled by a gamma distribution. Bruzzone and Prieto [26]
present that using estimated variance values in the decision rule may increase the
false alarm rate. Instead, they propose an automatic change detection technique
that estimates the parameters of the mixture distribution from the difference im-
age. Black et al. [26] describes an innovative approach, where they softly classify
the pixels into mixture components corresponding to different generative models
of change: 1) parametric object or camera motion, 2) illumination phenomena,
3) specular reflections, and 4) pictorial changes. Pixels which are poorly de-
scribed by any of the four category are labeled as outliers. This algorithm uses
the optical flow field between the images along with the expectation-maximization
algorithm [132] to assign of each vector to one of the classes. Exploiting the re-
lationships among the neighboring pixels has been shown to improve the change
detection accuracy. A well-known approach is to divide the image into blocks
and fit the intensity values in each block to a polynomial function of the pixel
coordinates. Hsu et al. [92] discusses generalized likelihood ratio tests using con-
stant, linear, or quadratic models for the blocks. Skifstad and Jain [167] improves
Hsu'’s intensity modeling by developing an illumination-invariant model. They use

partial derivatives as the change decision criterion.
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Texture is a measure of the intensity variation of a region, and it quanti-
fies properties, such as recurrence, smoothness, and regularity. Visual experi-
ments show that the texture feature remains relatively stable with respect to
noise and illumination changes. From this point of view, textural features for
the change detection have been extensively investigated in different applications
[15, 126, 149, 168]. Texture requires a processing step to generate the descriptors.
There are various texture descriptors, such as Gabor filters, wavelet transforms,
linear predictors, eigen filters, and several encoding methods [108, 128, 201].
Yokoi [203] proposes a texture-based change detection method combined with
background learning. They use a ternary code for encoding the intensity differ-
ence between pixels in the texture. Miezianko and Pokrajac [126] propose a
framework that is based on wavelet decomposition of localized texture. Objects
left in the scene and objects moved or taken from the scene are considered as the
change in the background. The main disadvantage of the texture-based change
algorithms is that when the scene and the object share homogeneous regions, the
texture difference measure will fail. Therefore, incorporating intensity and texture
differences improves the robustness of the change detection framework. Li and Le-
ung [112] proposes a change detection algorithm using a weighted combination of

the intensity difference and a texture difference measurement.
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Chapter 3

Spatiotemporal Alignment

Our goal is to detect regions of change between two videos of the same scene
recorded at different times. In such a case, we may need to deal with videos that
are neither temporally nor spatially aligned. To properly compare the videos,
we first need to establish correspondences between the frames of the videos, in
the sense of having the most similar view of the same scene. Namely, one needs
to estimate the time instances that images of the same scene are captured from
similar viewing points. After the temporal alignment, we can proceed to spatially
align the synchronized frames of the two videos. To this end, in this chapter we
propose temporal and spatial alignment methods that are necessary before the

change detection analysis.
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3.1 Temporal Alignment

With the advent of imaging techniques, using large sets of images and videos has
become essential in computer vision and image processing applications [16, 35,
68, 73, 200]. This rapid increase in the amount of visual data introduces new chal-
lenges, such as temporal and spatial alignment of the data from different sources.
When a pair of corresponding frames from different videos is provided, synchro-
nization of the rest of the frames is a relatively easy task because of time and space
continuity constraints. Nevertheless, the initial temporal correspondence between
the asynchronous videos is not available in many applications. To overcome this
limitation, different methods with specific constraints have been presented in the
literature. Many solutions rely on the assumption that the temporal correspon-
dence can be formulated as a linear function of time [35], or there is a constant
time offset between the videos [141]. Various systems require the use of additional
hardware, such as GPS [56]. A few studies allow the use of mobile platforms, but
they require to follow almost the same trajectory [160]. Our goal is to find ways
to relax these constraints and to design a synchronization method that can be ap-
plied to more flexible video acquisition scenarios. We have two main motivations:
to develop a vision-based method for the synchronization of videos recorded by
mobile platforms and to eliminate the need for examining all the frames (or in-
clusion of any kind of prior information) for the initial temporal correspondence.

Majority of the existing solutions rely either on prior information or additional
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Figure 3.1: Block diagram of the proposed temporal alignment method. V* and
V" are videos of the same environment recorded at different times. Given the
frame I in V*, the goal is to find its corresponding frame I7, that is the frame
having the most similar view of I] in V". We examine V", and if the SVM and
RNN based hybrid one-class learner detects a potential corresponding frame, it
assesses a high similarity score. Frames having similarity scores greater than a
threshold constitute the pool of candidate frames. I, and I, are the first and
the last frames in the pool, and T, (T, > Py — Pp) is the total number of the
frames in V". The exact corresponding frame pair is determined by minimizing
the similarity error in the pool.

hardware to avoid an exhaustive search for the initial match. It would be bene-
ficial to have a method providing the initial match in an automated manner. To

this end, we cast the video synchronization problem to a one-class classification

problem.

Let us assume that we are given two frames from different videos of the same
environment captured at different times, we propose a hybrid one-class learner that
can assess a similarity score based on the visual features between two frames from
the videos by combining the outputs of a Replicator Neural Network (RNN) and
Support Vector Machines (SVM) (Figure 3.1). Using the output of the learner, we

select potential corresponding frames and perform a secondary search to find the
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exact match by minimizing the similarity error. The advantage of this approach is
that it does not rely on any initial guess or assumption. Different from the previous
studies, our system anticipates the possibility that when two asynchronous videos
are given, the videos may contain frames that do not have a corresponding pair

in the other one.

In the following sections, we use the terms video synchronization and temporal

alignment interchangeably to address the same problem.

3.1.1 Temporal Alignment as a One-class Learning

Problem

Given two videos of the same environment recorded at different times, we call one
of them reference video and the other secondary video (denoted by V" and V*,
respectively). The goal of the temporal alignment problem is to find a mapping
set U:V* —V" providing the pairs of corresponding frames between the videos
V" and V*®. We here address a more general case of this problem where the videos

are recorded by mobile platforms following unknown trajectories.

For a synchronized reference-secondary video pair, U is a set of temporally
aligned frame pairs: U = {(If,]j)}ﬁl I} is the " frame in V*, I7 is the jth
frame in V", and T is the total number of the frames in V*. I? is called frame of

interest, and I is called corresponding frame, having the most similar view of /;’ in

the reference video V. In our acquisition scenario, because the mobile platform
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carrying the camera follows unknown trajectories, some frames in V* may not
have corresponding frames in V. In the literature, the idea of using predictive
modeling to detect the changes in remote sensing images is presented in some
studies [46, 68]. We follow a similar approach and propose the idea that pairs of
corresponding frames in the mapping set U should be instances of a class called
similar enough. If we formulate the relationship among these instances using a
d-dimensional feature vector, each pair in U can be represented by a point in the
d-dimensional feature space (Figure 3.2). Because these points belong to the class
similar enough, they should constitute a dense region in the space. We can model
this region and train a one-class learner, which finds a boundary that separates
in-class instances from out-of-class instances. The learner can then be used to
produce a similarity score for a given pair of frames. If the similarity score is

greater than a threshold, the pair is classified as potential corresponding frames.

3.1.2 Feature Selection

Experience shows that humans performing manual image retrieval or video syn-
chronization tend to focus on the coarse details (e.g., a large field or a building)
in the images first [186]. After finding potential corresponding images, they look
at the fine details for the final matching. This observation is the main inspira-
tion leading to selection of the discrete cosine transform (DCT) as one of the
feature extraction methods. DCT is widely used in image compression and re-

trieval applications because of its superior energy compaction property and low
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Figure 3.2: Illustrative example of a three-dimensional feature space. p and A
represents features obtained using discrete cosine transform, and € is the gradient-
based feature. These features are extracted from a reference-secondary video
pair provided. The black points in the figure refer to feature values extracted
from unmatched pairs of frames. On the other hand, the blue asterisks refer
to the feature vectors extracted from pairs of corresponding frames. One of the
corresponding frame pair, (I5;4,, I5993) and the value of its feature vector 1 A &]7
are presented.

computational complexity. In these applications, the image is usually divided into
blocks before computing DCT, and DCT is said to be sensitive to changes in the
viewing angle. We here follow a different approach [206] and apply DCT to the
entire image as a global descriptor. The resulting DCT matrix has the same size
as the image. Nevertheless, it preserves the most important image characteristics
in a small subset of the coefficients, while majority have very small magnitudes
and the DC (i.e., direct current) component is simply ignored. The remaining

coefficients represent distinctive coarse details. This can then be used to initialize
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frame matching efficiently. This approach overcomes the problems resulting from
the sensitivity of DCT to the viewing angle. To investigate the applicability of
DCT as a global descriptor, we used the Amsterdam Library of Object Images [66).
This is an image database of a thousand objects, recorded under systematically
varied viewing angles. We compute DCT-based feature p (introduced below) for
a subset of images in the database. For each object, we use the neutral image
of the object (angle= 0°) and the images of the same object captured by differ-
ent viewing angles (within the bound of [—45°,4+45°]). Then, we compute the

unbiased variation coefficient of the DCT-based feature values:

1
4% N,

o=+ ) (%) x 100%, (3.1)

where N, is the number of viewing angles, m and o are mean and standard

deviation of the feature values. ¢ is a normalized measure of the dispersion of

v
a distribution, and a low ¢, denotes a small extent of dispersion. We use ¢ to
quantify precisely the amount of dispersion caused by the change in viewing angles.

The average value of ¢, for the DCT-based feature is about 4% even though the

viewing angle varies significantly.

In the last decade, scale-invariant feature transform (SIFT) keypoints [117]
have been widely used for different applications which require the feature match-
ing due to its superior reported results. The matching process is performed by

individually comparing each feature from a secondary image to the features of a
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reference image and finding candidate matching features based on Euclidean dis-
tance of the feature vectors. Nonetheless, SIF'T has high computational complex-
ity. For instance, we observe that for the same input images of the size 576x460,
the matching process with SIFT usually takes about 30 times longer than DCT

counterpart, while both yield very similar or the same result.

Let I be a gray-level image of the size N x M, and let us denote two-dimensional
DCT of I as DCT(p,q) [206], where p=0,...,M-1 and q=0,...,N-1. This yields a
real valued DCT coefficient matrix, and it is a fast transform because of its linear
separability. To decrease the sensitivity of DCT to illumination changes, we apply
median filter and map the intensity values so that about 1% of data is saturated
at low and high intensities of I. While it is not necessary, a square DCT matrix
may be preferable for a symmetric spectrum. The total amount of low energy
coefficients that will be neglected should be decided carefully because keeping too
much energy may result in false matches. Let us denote the DCT matrix, which
is thresholded to remove insignificant coefficients, as DCT'. Given two images I
and I, to be compared, our first feature p is computed using DCT, and DCT;

matrices. We first compute the absolute difference of DCT; and DCT, as follows

ADCT, , = |DCT, — DCT,)|. (3.2)

Then, we compute the mean of non-zero elements in ADCT]_,
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w(h, L) & = Z > ADCTY ,4(p, q) (3.3)

p=0 ¢=0
where 7 is the number of non-zero elements in ADCT,_,. We use a slope function
to limit maximum value of p in order to normalize it to the range [0,1]. The
normalization plays a crucial role in SVM and RNN training. Our second DCT-
based feature relies on the number of the high energy coefficients that appear in
both DCT matrices of I; and Is. Let L represent the number of such frequency
components. We define our second feature as A = 9%, where 91 is the normalization
factor.

As a spatial domain descriptor, we use local intensity statistics. Intensity gra-
dient [112] is known to be less affected by changes in the illumination. Magnitudes
of intensity gradients of I; and I, are stored in G; and Gy using the Sobel oper-
ator. We define our third feature £ as being the mean absolute difference of G,

and Gao:

1 M-1

MN

p=0 ¢

2

§(N, 1) = ’Gl — Ga(p, q)l- (3.4)

Il
o

Similar to p, £ is normalized to the range [0, 1]. For problems dealing with videos,
the idea of exploiting the temporal consistency among the consecutive frames is a
well-known factor improving the robustness of the system. Given a pair of frame
of interest and corresponding frame (I3,I7), we expect that the neighboring frame

pairs (I;_;,I7 ;) and (I3, ,I%,,) should also exhibit similarity. Accordingly, the
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feature vector F (; ;) € R? for the frame pair (If,I7) is defined as:

F(i,j):[ufl to Py A-1 Ao Apr o1 o 5+1}T7 (3.5)

where Mf:ﬁ‘(lf+éalg+£)7 A =A( H ;+£>7 and &=¢( A ;-&-ﬁ) for (={—1, 0, +1}.

3.1.3 Omne-class Learner

We propose to model the similarity relationship between images in 9-dimensional
feature space and to consider dissimilar images as anomalies or outliers. These
outliers constitute the negative class called not similar. It is not feasible to sam-
ple all the negative examples properly. In the literature, out of the approaches
tackling the problem of one-class learning using only positive examples, the sta-
tistical models and neural network based methods are the most widely used and
successful ones [88]. We propose a hybrid one-class learner incorporating Support
Vector Machines and Replicator Neural Network. Following a hybrid approach
exploits the advantages of multiple methods and overcomes their weaknesses and

deficiencies [177].

3.1.4 Support Vector Machine

SVM is a kernel-based maximum margin method that allows the model to be

described as a sum of the influences of a subset of the training examples [8]. SVM
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has been initially applied to two-class classification problems and then extended
to the multiple-class classification problems. One-class SVM is used a tool to
estimate regions of high density in a feature space. In such a case, the goal is to
find a boundary separating volumes of high density from volumes of low density.
The estimated boundary is employed to detect the outliers. SVM kernel defines a
hyperplane separating in-class instances from the others according to its notion of
similarity. We select a radial-basis function (RBF) as the kernel [39]. RBF kernel

is defined as

K(z,a') = exp(—llz — 2'|["), (3.6)

where x is the center, v = 1/s? and s is the radius of the kernel. 7 and the
fraction factor v € (0,1) are the parameters of the learner. By tuning v, one
can control the fraction of support vectors. Following the SVM training approach

proposed in [39], values of the parameters are found as v = 0.33 and v = 0.47.

3.1.5 Replicator Neural Network

RNN is a multi-layer artificial neural network and trained in such a way that the
input values are reconstructed at the output. Its effectiveness for one-class classifi-
cation is presented by Hawkins et al. [85]. We use a replicated feed forward neural
network with one hidden layer, 10 neurons in the hidden layer, with hyperbolic

tangent sigmoid as the transfer function. The number of neurons in the hidden
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layer is chosen experimentally to minimize the reconstruction error. Input layer
has 9 units, and it is fed with the 9—element feature vector F. Accordingly, the

output layer has 9 neurons with linear transfer function (Figure 3.3).

=Yy

Input Layer Hidden Layer Output Layer

Figure 3.3: Illustrative example of the RNN used in the one-class learner. F ! is the
9-dimensional feature vector for the training sample ¢. x; and y;, i = 1,...,9 are
the input and output units, respectively. w}j is the weight of the connection from
the input x; to the hidden unit j in the first layer. Similarly, w?i is the weight
of the connection from the hidden unit j to the output unit y; in the second
layer. During the training, the weights wj; and w3;, i,j = 1,...,9 are adjusted
to minimize the mean reconstruction error for all training patterns. Eventually,
RNN generates an implicit and compressed model of the training data. Then, an
input that is correlated to the training samples is expected to be reconstructed at

the output with with a low reconstruction error.

In the online learning step of RNN, we update the weights according to gradient
descent with momentum to avoid large oscillations. The momentum parameter is

set to 0.6, the learning rate is set to 0.3, and number of epochs is 200.
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3.1.6 Combining Multiple One-class Learners

Manually generating a complete mapping set U of temporally aligned frames for
a reference-secondary video pair is not always feasible and not required for our
method. Instead, we can use a small set of corresponding frames for the training
purposes. Let x denote the training set with y = {(I7,17)'}}L,, where 9N is the
number of the pairs in the training set.

In our hybrid classifier, we use SVM and RNN as the base learners, and they
work in parallel (Figure 3.4). First of all, we compute the training feature vectors
F Iéi,j) fort =1,...,9 where ¢ and j are the frame indices. Let ys,,, be the output
of the one-class SVM learner. yg,,, is the sum of the influences of support vectors
given by the RBF kernel. When SVM is used as a standalone classifier, the output
is usually transformed into probability values, and SVM predicts the class label. In
our one-class setting, we use the SVM output without transferring it into another
form, and we do not rely on the output class labels. SVM produces the largest
output values for the in-class inputs. Concurrently, we feed F fi’j) to the RNN. Let
Yrnn be the output of the RNN learner. 4., is the mean reconstruction error of the
network. The trained RNN is expected to reproduce in-class feature vectors with
a small reconstruction error. Accordingly, feature vectors representing out-of-class

instances result in large reconstruction errors.

We combine one-class learners by the weighted voting method. Let v; and v
be the weights of the votes of SVM and RNN outputs in the hybrid learner. We

denote the normalized outputs as v,,,, and ¥,,,. We combine them by taking a
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Figure 3.4: Illustrative example of combining the base learners SVM and RNN
by the weighted voting method. 7v,,,, and ¥,,,, are the normalized output values.
Value of the weights v; and vy indicate the influences of each base learner to the
hybrid framework.

linear combination of the votes:

Y= ysvm * U+ yrnn * V2. (37)

Normalization is required because the outputs are not posterior probabilities [98].
Developing a one-class learner requires a threshold which separates in-class in-
stances from out-of-class instances. Let us denote the decision threshold as e.
If the output of the combined learner is smaller than €, the input is labeled as
in-class instance. Our goals during the combining process are: i) to minimize
combined output value y and ii) to mazimize the value of the decision threshold

e under the constraints:

v+ vy = 1,01 > 0,03 >0, and vy > vy. (3.8)

We start with equal weights of SVM and RNN votes. By the minimizing the
synchronization error on the training data, the value of v; is determined as v, =

0.43, the value of vy is determined as v, = 0.57, the value of decision threshold e
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is determined as € = 0.29.

3.1.7 Synchronization Algorithm

Given a pair of reference-secondary videos and a frame of interest I7 in V?°, we
use the algorithm below to find its corresponding frame I7 in the reference video
V7. The proposed temporal alignment algorithm is presented in Algorithm 1.
Synchronization after the initial match is performed in a local search manner

using a window surrounding the previous estimate following the same approach.

46



Algorithm 1 Video Synchronization

Initial Match:
Set the loop condition variable similar to false.
Set the threshold ¢ to 0.29.
Set the frame index ¢ of the reference video V" to 1.
> Generate the Pool of Potential Corresponding Frames
while ¢ is less then T, and similar is false do
Calculate F (;4) for the current frame pair (7, )
Get the output y; of the hybrid one-class learner
for the input [ ;4
if y; is less than ¢ then
Set the candidate frame pool counter p to 1
repeat
Get the output 4, for the input f ; 14p)
Increase the value of the counter p
until ¢ + p is greater than 7, or
Yi+p 15 greater than e
Store the frame pairs (I7,I}) for P=1t,...t +p—1
Set the variable similar to true
> Note that ¢ corresponds to P, and
t +p — 1 corresponds to Py in Figure 3.1
else
Increase the value of ¢
end if
end while
> Minimize the Similarity Error Using the Feature
for all frame pairs (P =t,...,t +p— 1) in the pool do
Calculate the feature pp
end for

Select the frame I; that minimizes pp,

namely arg min{ee).
VS

> T, is number of frames in V", F (; ) is the feature vector, Pr, and Py are the

indexes of the first and last frames in the candidate pool.
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3.2 Spatial Alignment

We can reduce the problem of registering two videos to that of registering multi-
ple images after the video synchronization is accomplished. A classical problem in
computer vision is to align images of the same scene taken at different instances.
The spatial misalignment between the two images of the same scene results from
the fact that the two acquisitions may have different external calibration param-

eters. The registration process can remove the effects of these parameters.

-, V" Reference images _VS: Secondary images .

Temporal
Alignment

(—‘ 7-

Disparity Disparity Disparity Di_spari.ty
Estimation Refinement Refinement Estimation
Dominant Plane Spatial > Dominant Plane
Extraction Alignment [~ Extraction

Spatially registered images

Figure 3.5: Illustration of the proposed spatial alignment method. Two videos
(either stereo or monocular depending on the disparity estimation scheme) are
first temporally aligned. The dominant planes are segmented using the disparity
maps. We then register the dominant planes in the scene.

The residual pixels after the registration can be due to either areas of change
or the parallax. Many change detection methods utilize the whole frame region for
the spatial registration, whereas imposing the same transformation function for

the whole scene, which contains different planes, may produce inadequate results.

Instead, we propose a registration module (Figure 3.5) based on the assumption
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that there is a dominant plane in the scene, and the relevant changes occurs on

the dominant plane.

Employing the dominant plane for spatial image registration can overcome
some difficulties related to the scene structure. Nevertheless, segmentation of
the dominant plane still remains a challenging problem. We propose a nowvel
approach that utilizes videos to extract depth information of the scene using stereo
and monocular cues. Resulting disparity map and texture information of each
disparity layer are combined to segment the dominant plane in the scene. Finally,
extracted dominant planes from the images are used for the spatial alignment. In
the following sections, we present the modules of the proposed spatial registration

framework.

3.2.1 Disparity Information

The spatial displacement of corresponding points between the images of the same
scene is called disparity. Disparity is inversely proportional to depth and deter-
mine a dense point-to-point correspondence. Disparity map of a scene can provide
detailed content information that is less invariant to shadows and illumination

changes compared to other vision-based features.
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3.2.2 Depth Estimation using Monocular Cues

Disparity estimation is most widely performed using stereo imagery (i.e., disparity
from binocular) [163]. Nonetheless, there are also various monocular visual cues,
such as texture variation, focus, and gradients, that could be employed for the
depth estimation from a single monocular image [51, 161, 162]. Saxena et al. [161]
propose a supervised learning approach to the monocular disparity problem. They
begin by collecting a training set of monocular images of outdoor environments
and their corresponding ground-truth disparity maps. Finally, they apply super-
vised learning to predict the disparity map as a function of the image. Hoiem et
al. [90] propose a method that divides image regions into geometric classes using an
appearance-based learning model, which coarsely describe the three-dimensional

scene orientation.

Another approach to the monocular disparity problem is structure from motion
[52, 54]. Structure from motion is the process of estimating three-dimensional
structures from a sequence of two-dimensional images which may be coupled with
local motion. Geometric constraints along with sufficient and non-degenerate
set of initial correspondences are used to construct the structure in uncalibrated
images. Dellaert et al. [54] propose a novel way to solve the structure from motion

problem without a priori correspondence information.
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3.2.3 Estimation of Disparity Map from Binocular Video

Given two stereo frames Fr; and Fr} from temporally aligned reference and sec-
ondary videos, respectively. Our goal is to estimate the disparity maps D} and D]
for Fr; and Fr;} using the image pairs in the stereo frames. We need the disparity
map to segment the dominant plane in the scene. Over the years, several ap-
proaches based on disparity differencing have been proposed to detect the regions
of change directly from the disparity maps [13, 82, 83, 173]. In most cases, the
distance between an object to be detected and the dominant plane (i.e., ground
plane) in the scene is not large; therefore, when the object of interest is close to the
background, there is a very good chance that the object is missed. This is a very
common problem associated with the disparity-based change detection methods.
In our setting, we follow a different approach and use the disparity maps D] and
D? only for establishing spatial correspondences between the two stereo frames

Fr; and Fr} of the same scene.

The necessity of accurate disparity map for spatial registration module lead
us to employ a sophisticated method. The graph cut based energy minimization
technique recently has attracted a lot of attention because of its optimality prop-
erties and the success of reported results [104]. Energy minimization approach
processes the input images symmetrically and imposes spatial smoothness while
preserving the discontinuities [104]. Let us assume that we are given a stereo pair
of images of a scene, and both the intrinsic and extrinsic parameters of the camera

are not available. In such a case, disparity map can be directly computed from
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image intensities without dealing with any intermediate process such as image
rectification [41]. In a stereo imaging system, two-dimensional projection of each
physical point in the scene is represented in left and right images of the stereo
frame. The only exception is the the occluded points. Accordingly, one pixel in
one of the stereo image pair should correspond to at most one pixel in the other
image. This is called as the uniqueness requirement [24]. Similarly, if a pixel does
not have a corresponding pair, it is labelled as an occluded pixel. Nevertheless,
in our disparity estimation setting, we do not specially treat the occluded pixels;
instead, we assume that they are part of the closest disparity layer. In the lit-
erature, disparity estimation methods usually considers one of the images (either
right or left) in a stereo frame as the reference image and compute the disparity
based on the selected image [23, 155]. Kolmogorov and Zabih [104] presented
that treating the left and right images in a stereo frame symmetrically is the only
way to make full use of the information in both images. This is accomplished by
taking both images into account while computing the cost of correspondences. In
our disparity estimation module, we follow the symmetric approach and cast the

correspondence problem to energy minimization problem using graph cuts.

We are given a stereo frame Fr which consists of two images called left image
(denoted by ) and right image (denoted by Ig). Let Py, be the set of pixels in I,
let Pg be the pixels in Ig, and finally let P; be the set of all pixels: P; = Py |J Pi.
A pixel pg, in I is specified by its image coordinate pair (xp,yr). Similarly, a

pixel pg in Ig is specified by (zg, yr). Let us assume that pg is the corresponding
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pixel of py. In an ordinary correspondence problem, given the pixel p;, at (xp,yr)
in I, the goal is directly to estimate the coordinate of the corresponding pixel
Pr, (Tr,yr) in Iz and then compute the disparity value d,,) for each pixel in
I;, one by one. In the energy minimization approach, our goal is to first describe
the disparity relationships among the pixels in terms of a cost function and then
to minimize the total energy of the entire system simultaneously. Computing
a strong local minimum for the energy function corresponds to implicit way of
estimating the disparity map. Let d denote a correspondence configuration for
the pixels in P, and Pg with d : {(p;,p;)}Y,, pi € Pr, pj € Pr, and N is the
number of the pixels in Py. p; and p; are initially assigned in such a way that they
are potentially corresponding pixels. The desired state for d is that d contains
only pairs of pixels which indeed correspond to each other. Let us define an energy
function (i.e., the cost function) for an arbitrary correspondence configuration d

as follows:

E(d) = Edata(d) + Esmooth<d)7 (39)

where the data term Egu,(d) takes value based on the differences in intensity
between corresponding pixels, and the smoothness term Ego0n(d) guarantees
that neighboring pixels tend to have similar disparity values. We assume that

disparity values can lie in a limited range,

d(pz) = ('rpi - 'xpja Yp; — ypj>7 (310)
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where 0 < ), —xp, < kg, 0 < yp, — yp, < ky; and k, and k, are user defined
parameters. In this way, we anticipate the fact that the set of possible disparities

could be two-dimensional. The data term Egu,(d) is defined as

Esara(d) = D D(pi,p)), (3.11)

(pi,pj)€d

where D (p;, p;) is defined symmetrically [19] as follows

D (pi,pj) = min{ Dy (z,,, Ty, I, Ir), Dg(zp,, Tp,, IR, 1)}, (3.12)

Dy (xp,, Ty, 11, Ir) = max{0, I(zp,) — Lmazs Imin — LL(zp,) }, (3.13)

Loz = max{%(IR(xpj) + IR(xpj - 1))a %([R('ij) + IR<xpj + 1))? IR(xpj)}v and
(3.14)

Frin = min{ 3 (I, ) + Tn(ay, — 1), 5 (Taley,) + Ty, + 1)), Tnlay,)}. (3.15)

Dg(wy,, p,, Ir, I1) is computed using the symmetric counterparts of the Equa-
tions 3.13, 3.14, and 3.15. In the Equation 3.9, the smoothness term Eg;,0011(d) im-
poses a penalty if two neighboring pixels have different disparity values. Eg o0 (d)

is defined as follows
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Esmooth(d) = Z V(pippiz)a (316)

(pil »ng)em
where 91 is a neighborhood relationship and V(p;,, p;,) is the penalizing factor.
V(pi,,pi,) is zero if neighboring pixels (p;,, pi,) have the same disparity, and if

not, V(p;,, pi,) has a positive value given by

Adpae = max(|IL(pi) — 1L(piy)]s Ir(Pi + dp,) — Ir(Piy + dp,,)]) and  (3.17)

Olow if Adpar < AT
V(pil?piQ) =

Ohigh otherwise

where 045, and oy, are empirically selected penalty coefficients, Al is a factor
controlling the boundaries, p;, + d,, is the corresponding pixel of p;, in I, and

i, + dp,, 1s the corresponding pixel of p;, in Ig.

Once the energy function E(d) is defined, one can minimize it by simulating
all possible correspondence configurations in a brute force manner. If there are
N pixels in Pp, the number of all possible configurations is N! by enforcing the
uniqueness requirement. This is not a feasible approach and requires enormous
computational costs because a middle-size stereo frame consists of about one mil-
lion pixels. Instead, we perform the minimization by using the graph cuts. We
follow the method that Kolmogorov and Zabih [104] proposed to construct the

graph G = (V, E), whose nodes (i.e., vertices) are image pixels, and whose edges
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have weights obtained from the energy term. Cost of a cut is the summation
of the weights of the edges, and the minimum cut problem deals with finding
the cheapest way to cut the edges. The minimum cut on G results in a corre-
spondence configuration which minimizes the energy term. This is achieved by
a—expansion algorithm [24]. Given a correspondence configuration deyrens and a
disparity value «, a transition from the configuration d.y.ren: to @ new configura-
tion d,.,, is called a—expansion if any set of pixels changes their disparity labels to
a. The a—expansion algorithm is an iteration of transitions that generates local
improvements for different disparity values a. The iteration continues until no
more a—expansion reduces the energy. The steps of the a—expansion procedure

is explained in Algorithm 2.

Algorithm 2 a—expansion [24]

Initialization: Start with an arbitrary configuration d.. . ens
2: Set success to false
for all disparity values a do

Find d, .., = arg min, E(d*) within a single a-expansion of d

if E(dpew) < E(dewrrens) then

dcurrent = dnew
Set success to true
end if
end for

if success is true then
goto the line 2:
end if
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3.2.4 Noise Reduction of the Disparity Map

We observe that noise and the intensity variations caused by the changes in illu-
mination may affect the disparity map estimation. This is actually an anticipated
result considering the definitions of Egu, and Egpnoorn. We perform intensity nor-
malization, apply noise reduction, and enhance the sharp boundaries in the image.
First of all, the pixel intensity values in Fr; are normalized to have the same mean
and variance as the pixel intensity values in Fr}. Then, we apply a smoothing fil-
ter with Gaussian kernel for removing the noise from images. Finally, we sharpen
the images to enhance texture, edges and details. The disadvantage of image
smoothing using the Gaussian kernel is that the process makes it difficult to high-
light transitions in intensity (i.e., the sharp boundaries). These transitions may
improve the accuracy of the disparity estimation. Even for the cases where the
smoothing does not reduce sharp transitions, it tends to distort the fine structure
of the image, which may result in inaccurate disparity values. One of the ways
to overcome this problem is to apply the smoothing in restricted regions with
localized parameters. Malladi and Sethian [122] introduce an alternative tech-
nique to the linear-filtering and propose the min/max curvature flow method for
the denoising process. Min/max curvature flow employs a parameter whose value
depends on the differential structure of the image. The advantage of min/max
curvature flow filter is that it can remove small noise artifacts, while preserving the
sharp boundaries among the objects. We present the effect of different different

smoothing strategies to the disparity map estimation in Figure 3.6.
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(b)

Figure 3.6: Effects of different smoothing strategies to the disparity map esti-
mation. In (a), the left image is the estimated disparity map using Gaussian
smoothing and the image on the right is the left image of the input stereo frame.
In (b), we present the estimated disparity map using min/max curvature flow
smoothing. Min/max curvature flow smoothing yields noticeable improvement in
the disparity map. One of the enhancements is indicated with the red horizontal
line.

3.2.5 Refinement of the Disparity Map Estimation

as a Post-processing

Because of the ill-posed nature of the correspondence problem, estimated disparity
maps D of the stereo frame Fr; and D7 of the stereo frame Fr} sometimes exhibit

very high level of noise. A video can be treated as a volume of three-dimensional
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data (i.e., two-dimensional image and the time), and it contains much more in-
formation than an individual frame does. In particular, when a mobile stereo
image acquisition platform is used, the video captures depth information of the
entire environment as the mobile moves. It therefore provides an additional clue
for the estimation of disparity map. By employing this additional information,
we propose a novel refinement method for the disparity map estimation as a
post-processing. The key idea behind our proposed refinement algorithm is that
consecutive disparity maps of a scene in a stereo video cannot change dramatically.
Based on this assumption, we can examine if the disparity levels calculated in the
sequential frames are reasonable values. In our refinement strategy, we perform

following two controls: point-based tracking and layer-based consistency.

We are given two stereo videos V" and V* of the same environment recorded
by a mobile data acquisition platform, with V" : {Fr{,... Fr] ... Fri} and
Ve oo {Fry, ... Fri,... Fry b, where N and M are the number of the frames.
Each stereo frame Fr! consists of a pair of images (If;, I'), where I, is the left
image, Ifj, is the right, and ¢ = {r, s}. We perform the disparity refinement of each
stereo video individually. First of all, our algorithm selects control points in the
horizontal and vertical directions at a step size of 3 pixels in stereo frame image I,
(Figure 3.7), and then it tracks the control points across four consecutive frames

IT‘

Gi-2yp L1y Llignyn, and I(;, o), using the Lucas-Kanade tracker [180].

Let dS"" denote the estimated disparity value of a point p in the disparity
P

map Dj. If the estimated disparity value is not within the range of expected
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Figure 3.7: Control points in Ijy,;; of Frj,, are presented. If an estimated
disparity value is within the range of expected boundaries, it is depicted as blue;
otherwise, as red. Purple points indicate that disparity values of a control point
in the consecutive frames are not the same, but there may be a gradual depth
change. Turquoise points are the ones where the tracking is failed.

boundaries, we update the disparity value the point p. Let Adg’r) denote the

deviation of disparity values of the point p among the consecutive frames. Adz(f’r)

is defined as follows

Adl()i’r) _ max(|dz(f”") . d;i—i—l,r) |7 |d§)i+1,r) - déi+2,r) |7 |d;2,r) . déi—l,r) |7 |d1()i—1,r) . d}()i—2,r) |)

(3.18)

If the value of Ad;(f’r) is larger than levelypeqnoa , Wwe update the disparity value

of p using the disparity level mean function
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d}(}i,r) _ meanlevel(dl(j_zm)a d;i—l,r)’ d}(}i,r)’ d;i-l—l,r)7 dl()i—i—Z,r))‘ (319)

new

The function mean;.,.; computes the arithmetic average of its arguments and cast
the mean value to the closest disparity level possible. Then, 8 neighbor pixels

of the point p are set to the same disparity value dl(f’r)n Finally, we use a

w-
median filter to overcome problems because of noisy points and guarantee that
adjacent control points have similar disparity values while preserving the edges.
The drawback of our refinement strategy is that it assumes that majority of the
estimated disparity values among the five consecutive frames calculated accurately.

Therefore, before we start refinement process, we search the whole disparity map

sequence until we find reliable disparity values.

The layer-based consistency relies on the idea that size of a disparity layer in
consecutive frames cannot change dramatically, while we expect smooth disparity
value changes of a layer because a layer may come closer to (or move away from)
the camera in the next frame. Let s}, denote the size of a disparity layer £ in
terms of the number of pixels having the disparity level £ in the disparity map D;.
We compute a metric using the size of a disparity layer among the consecutive

frames as follows

r 2 r \2
S, + (s]
ASL = Y ( <+j>’3) (r ) . (3.20)
j=—2,—1,4+1,42 S(itj)e * Sig

If the value of AG], is larger than the empirically selected value sizei eshold, We
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restore the layer £ in the disparity map D using the adjacent disparity maps in
the sequence. Otherwise, we keep the layer £ as it is. We iterate the point-based
tracking and the layer-based consistency controls until there are no more changes
in the refined disparity map D;" . We repeat all the steps for the disparity map
D; to obtain enhanced disparity map Df In Figure 3.8, we present the estimated

disparity map Dj,,; before and after the refinement.

a) Estimated disparity map Dj b) Refined disparity map D]
1007 1007

Figure 3.8: Disparity refinement module can compensate errors of disparity esti-
mation step.

As will be demonstrated in the following section, building on accurately refined
disparity map allows robust ground plane estimation and prevents many of the
problems related to the registration. In Figure 3.9, we present an estimated ground

plane line with and without disparity map refinement step.
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Figure 3.9: Illustrative example of the disparity refinement and the ground plane
estimation. In (a), we present the estimated disparity map Di;y, . In (b), the
refined version of D3a,, that is Disg,, is shown. In (¢) and (d), we present
the dominant plane (i.e., ground plane) estimation results before and after the
refinement process. The white line in both images show the estimated ground
plane line after disparity map refinement. On the other hand, the red line shows
the estimated ground plane line without refinement of the disparity map.

3.2.6 Integrating Temporal Consistency Constraint into

Disparity Estimation Framework

In the previous section, we presented a method that works on the already esti-
mated disparity maps as an image enhancement tool. In this section, we will use

the same idea, that is the temporal consistency of consecutive disparity maps;
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however, this time we propose a way of directly integrating the temporal con-
sistency constraint into an energy minimization framework. In addition to the
Eguta and Eg,00tn terms in the Equation 3.9, we can use the temporal consistency
constraint if sequential stereo pairs are available. The idea of using temporal
consistency for disparity estimation is not new [183], but it has not been exten-
sively studied. The common drawback of current methods is that they add too
much overhead to the system or rely on additional hardware [183, 209]. Tucakov
and Lowe [183] compute the first disparity map in the sequence, and then they
calculate the next one based on the relative motion of the mobile platform using
an odometry. David et al. [53] add a temporal dimension to the neighborhood
relationship and call it spacetime stereo. They enforce temporal consistency by
using a set of spatial windows in the consecutive frames, but they assume that
the camera is stationary. Min et al. [130] use a temporal coherence function com-
bining disparity of the previous frame, motion probability and similarity based on
the matched feature points. The closest techniques to our approach is probably
Leung et al. [111], nonetheless, ours differs in several significant ways. Leung et
al. initially follows a similar approach to ours but propose an energy minimiza-
tion method based on dynamic programming. The drawback of this method is
that smoothness and temporal constraints are encoded in the same energy term

because of the limitation of the framework.

We are given N sequential stereo pairs continuously recorded by an uncalibrated

mobile camera. Let V denote a binocular video, where V : {Fry, ... Fry, ... Fry},
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Figure 3.10: We delineate disparity changes Az; and Azgr between consecutive
frames caused by the relative motion between a mobile stereo rig and a physical
world point P: (a) the disparity value of P at time ¢ — 1, where p and p’ are the
projections of P on the left and right image planes, ¢, and cg are the principal
points of the two image planes, O and Opg are the centers of projection, (b) the
stereo rig is stationary but P moves, (c) P is stationary but the stereo rig moves,
and (d) both the stereo rig and P move.

Fr; = (Ii1, Iir), Iz, is the left image, and ;g is the right image of the stereo pair.
Let p,—; denotea pixel in [;_1)z, and let p’,_; be the corresponding pixel in I;_1)z.
pi—1 and p’;,_, are the projections of a physical worldpoint P onto image planes of
the stereo rig (Figure 3.10). Similarly, p; and p/, denote the corresponding pixels of
pi—1 and p’;_; in the subsequent frame Fr;. Disparity value of P in Fr,, that is d;,
should be consistent with d;_; in Fr;_; because of the time and space locality. We
call this factor temporal consistency constraint and add it to the general energy

term given in the Equation 3.9. The new energy function becomes of the form:

E(d) = Edata(d) + Esmooth<d) + Etemporal<d)> (321)

where the value of E,,.0in is larger when there is a strong disagreement between
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the temporal samples of the disparity value and zero otherwise. Integrating a
new term into an existing energy function is a demanding process. The new
term should treat inputs fairly, its addition should not change dominant features
of the function, and be a metric on the space of disparity labels. Under these
assumptions, given disparity values of a point in the previous and current frame
in the sequence, the temporal consistency energy term is defined as a function of

the current d; and previous disparity estimate d;_; of a point of interest

Etemporal(d) = C<dt717 dt) (322)

To explicitly specify C(d;_1,d;), one naive approach is simply to copy one
of the existing terms in the energy function and modify it. Another one is to
encode both prior and temporal constraints in the same term [111] although they
exploit different characteristics. A better way is to examine the new external
factor and to define a new function encoding unique features of it. Formulation
of C(d;—1,d;) requires to observe possible disparity values between consecutive
frames. Therefore, the first step is to find out how much a pixel of interest may
move between the consecutive frames. Relative motion of the pixel and mobile
platform will determine the new location of pixel. This relative change may result
in a disparity change in the consecutive frame (Figure 3.10). We can categorize
all possible relative motions between a physical point and a camera in three-
dimensional space into three main groups: the distance between them stays the

same, increases, and decreases. We can anticipate a disparity change in the image

66



planes if the distance changes. Because we do not have external sensors [183] to
calculate motion of the mobile platform, we need to estimate inter-frame motion in
some way. A straightforward approach is to use optical flow [32]. This will provide
us the exact location and disparity value of the pixel in the previous frame. We
here want to investigate if we need to know the exact location and accordingly the
exact disparity value of the pixel in the previous frame. If not, we may eliminate
the optical flow. In almost all real world scenarios, pixels that belong to different
parts of the same entity move together in groups if the entity is not deformable
object. These groups may form different disparity layers, a set of pixels whose
disparity values are the same. From this point of view, we anticipate that the
disparity value of a pixel between consecutive frames is related to its neighbors
in the previous frame because of the time and space locality. Furthermore, the
new disparity values have to be within close range of the current disparity values.
Given the coordinates of the pixel p;(x4, ;) in Fr; and the disparity map Dy
(Figure 3.11(a)), we can draw a circle with origin D;_y(z¢, ;) and diameter of

T%|d;_1|, where 7 may vary depending on the stereo rig as shown in Figure 3.11(b).

We draw 4 more circles with the same diameter but different origins: (x; —
%7?#)’ ($t+%a Ye), (T, Y — %), and (z, yt—l—%). We then select
four intersection points, pr ,, p ;, pi_, and p; ,, and the point in the center
(p?_,). One can select more points from the intersections of the circles in order

to increase the accuracy. Finally, we use disparity values of these approximate

corresponding pixels to estimate the disparity value of actual corresponding pixel
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Figure 3.11: Estimation of the approximate disparity value dy_1 of pixel p; in
disparity map D,_; without optical flow: (a) frames used to compute the disparity
map D;_q, the actual disparity value d;_; of p;, and the coordinates of pixel p;
in F}, and (b) the candidate pixels correspond to approximate locations of p; in
D,_;.

pi—1 as follows

di_y = m * (i ! >_1, (3.23)

— Pi_4
where m is the number of the selected points. One can set values of m and 7 in a
way that the average error % S % for all the pixels in P will be less than
desired error value e. Using either the optical flow or our approximation to track
a pixel does not affect the performance our proposed method notably because we
need the disparity layers to extract the dominant plane rather than the individual

disparity values. In addition, our approach has constant time complexity, while

the time complexity of a robust implementation of optical low algorithm may grow
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quadratically [32]. In fact, the real power of our method comes from the proper
integration of temporal consistency into the energy function where we have the
advantage of using an approximate disparity value instead of the exact disparity

value.

After determining disparity value of p; in the previous frame, we can assign
a consistency penalty based on the disparity change. Nevertheless, the amount
of the penalty should not become too large to tolerate. Therefore, the choice
of C(dy_1,d;) is very critical because the degree of penalization can affect the
disparity estimation drastically. For example, when the value of penalty increases
linearly with increasing |d; — d;_1|, for very large values of |d; — d;_1|, the penalty
can be so immense that the disparity changes may not be possible. We therefore

limit the maximum value of the penalty by the value k,,q, as follows

Kmaz if |dl - dj| Z Q2
C(dl7 d]) = RKmin if |dl - d]| =0
W’di —d j‘ + Komin otherwise

where K., is fixed to be 17.00, penalty factor 2 is 20.00, and &, is assigned to
1.00. The penalty k,,;, may be greater than zero if disparity change is more likely

between the consecutive frames.
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3.2.7 Dominant Plane Estimation

Disparity map estimation is followed by a layer-based segmentation step allowing
for the estimation of the position of the dominant plane within each image for
spatial registration purposes. For temporally aligned videos, there are usually
cases where there is not enough common spatial information within the two aligned
frames to allow reliable spatial registration of the entire frame regions. One such

example is illustrated in Figure 3.12.

(a) I5081, (b) Iosor,

Figure 3.12: Example of two temporally aligned frames from the reference and
secondary videos. In (b), we present the left image I35, of the stereo pair in
the secondary video. In (a), we present ]3¢, , which is the corresponding frame
of the image I{y5,,. Although the two images are temporally matched, it is still
challenging to spatially register I7g5,; onto I{s;gq; because of the complex scene
structure.

To overcome this challenge, a real world scene can be interpreted with respect
to a dominant plane (e.g., ground plane) which is a planar surface and occupies
the largest domain in the image. In this way, we can construct a mapping between

two image using the dominant planes. In this section, we address the problem of
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finding the dominant plane within the frame. The dominant plane estimation is
an essential task for a robust scene registration. We develop an algorithm for
dominant plane detection using disparity layers and their textural structure. We
assume that the distance from the dominant plane to the mobile platform is finite.
We represent the scene structure as a collection of disparity layers. Many stereo
algorithms impose the assumption that all three-dimensional points in each layer
lie on the same plane in the three-dimensional world and the disparities in each
layer obey the same plane equation [163], whereas resulting disparity maps do not
always satisfy this constraint and sometimes include over-segmented layers. We
relax the constraint and assume that the extracted disparity layers do not adhere
to a single scene layer. In contrast, we allow for a region merging step that can
analyze the estimated disparity maps to generate a refined layer representation

(Figure 3.13).

A hierarchical tree-like data structure with a set of linked nodes is built to esti-
mate ground plane layer within each frame using neighborhood relationship among
the disparity layers. We start by constructing a graph on the over-segmented dis-
parity map, as shown in Figure 3.13, whose nodes represent the candidate disparity
layers and an edge refers to the first order neighborhood relationship of a candi-
date layer. The first disparity layer, the node 0 in Figure 3.13(a), is assumed to be
ground plane, knowing that other candidate layers may also be part of the ground
plane. In many cases, there may also be more than one root node. We employ a

log-Gabor filter bank to extract texture features of each candidate disparity layer
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Figure 3.13: Illustrative example of region merging process for an over-segmented
disparity map. In (a), we present the over-segmented disparity map D7js;. The
nodes mark the disparity layers that may belong to ground plane. In (b), we
present the merged regions in Df ... In (c), we present the final estimated ground
plane Gj,5; overlaid with texture from the original input image.

[163]. We use this information to merge the disparity layers that belong to the

ground plane.

In the over-segmented disparity map shown in Figure 3.13(a), nodes represent
candidate disparity layers that may belong to the ground plane and links show the
first and second order neighborhood. The hierarchical structure is actually not a

tree, but a planar directed connected graph where a candidate disparity layer has a
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link to the neighbor candidate disparity layer. The top area of the frame is usually
not the part of ground plane. Hence, the first disparity layer (i.e., the node 0), the
closest regions to the mobile platform, is assumed to be ground plane, while we
know that other candidate layers may be parts of the ground plane. Let N(n,m)
denote m'" order neighbors of the node n. First-order neighbors of the root
node 0 are defined as the layers (or nodes) connected to the first disparity layer:
N(0,1) = {1,2,3}. Similarly, first-order neighbors of the nodes 1, 2, and, 3 are
N(1,1) = {2,4}, N(2,1) = {3,4,5,6}, and N(3,1) = {6,7,8,9}. We can obtain
the second-order neighbors of the root node using above relationships assuming
the transition property: N(0,2) = {3,4,6,7,8,9}. Please notice that there may
be more than one root node for some cases. Our experiments showed that growing
the tree to the second-order neighbors of the root node was required for reliable
region merging. It is observed that the further growing does not change the result,
while it requires more computational time. After candidate layers are determined,

we perform pairwise comparison of them using their texture similarities.

Gabor filter banks are a traditional choice for obtaining localized frequency
information. Nevertheless, they have two main limitations: (1) the maximum
bandwidth of a Gabor filter is limited to approximately one octave and (2) Gabor
filters are not optimal if one is seeking broad spectral information with maximal
spatial localization [106]. An alternative to the Gabor function is the log-Gabor
function. It is suggested that natural images are better coded by filters (e.g.,

log-Gabor function) that have Gaussian transfer functions when viewed on the
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logarithmic frequency scale [61]. Please note that Gabor functions have Gaussian
transfer functions when viewed on the linear frequency scale. Once the candidate
disparity layers are determined, using their neighborhood relationship and texture

similarities we perform the steps shown in Algorithm 3 to merge the layers.

Algorithm 3 Region Merging
Require: a« A0V 3 #0
for each candidate disparity layer L; do
Divide layer L; into « regions
for all k such that 1 <k < a do
Extract texture feature T% of region R}, using log-Gabor filter bank
Compute mean absolute deviation MADq; of region R},
end for all
Compute mean absolute deviation M ADy,, of the layer L;
for each L;, where L; € N(L;,1) do
Divide layer L; into [ regions
for all [ such that 1 <[ < (8 do
Extract texture feature T{ of region R{ using log-Gabor filter bank
Compute mean absolute deviation MADT{ of region R{
end for all
Compute mean absolute deviation MADy,; of the layer L;
end for each
Compute similarity metric my;4p
if my ap < MADyjeshoia then
Merge layers L; and L;
else
Do not merge layers
end if
end for each

We first divide each candidate layer into number of square regions. The number
of the square regions in a layer varies according to the size of the layer. To
assess similarity between textures of the neighboring disparity layer, we use a

mean absolute deviation (MAD)-based similarity metric [98]. MAD is known to
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be insensitive to outliers and the points in the extreme tails of the distribution.
Given a set of numbers, MAD is defined as the mean of the absolute deviations of
the numbers from the mean of the set. We define a similarity metric using MAD

values as follows

(MAD,)* + (MAD,)?
MAD; * MAD,

Mprap = (324)

where MAD; and MAD, are MADs of the layers to be compared. We perform
a pairwise comparison of MAD values of neighboring layers. The layers L; and
L, are merged if the metric my;4p is less than MADy,esn0ia-  The value of
MAD:p esnoa is fixed to be 2.25, where a value of 2.0 indicates that two layer

have exactly the same texture.

We first divide each candidate layer into number of square regions. The number
of the square regions in a layer varies according to the size of the layer. Then, we
compute MAD of regions and layers using a log-Gabor filter bank output [151],
respectively. In our setting, MAD of a region can be defined as the mean of the

absolute deviations from mean of the data

N
1 =L

where L is the index of the layer, RiL is a region in layer L, N is the number of
pixels in RY, and x; is the data element of TF. Using the definition in equation

(3.25), we now have two sets of MAD values:

1)



MLI = {MADTfl’ MADTéll, Tt ,MADTLla e ’MADTé’l}

M5 = {MADqss, MAD g2, ,MADpso, -+, MADqs2}  (3.26)

where o and 3 are the number of regions in the layers L1 and L2, respectively. To
be able to compare two sets in equation (3.26), we calculate MAD of each layer

as follows

1 — —
MADy,, = — > IMAD6 — My (3.27)
j=1
1< _
MADy,,, = 5 > IMAD 12 — M| (3.28)
j=1

Finally, the layers L1 and L2 are merged or not based on the value of similarity

metric mys4p as follows:

o merge if mpsap is less than MADypeshold
decision =

not merge otherwise

where

(MADML1)2 + (MADML2)2
MADMLI * 1VLA])1\/[L2

(3.29)

MpyAp =

and the value of MADyjesnoiq i fixed to be 2.25. For example, a value of 2.0

indicates that two layers have exactly the same texture.
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3.2.8 Spatial Alignment of the Dominant Planes

Various spatial alignment strategies apply the same transformation function to the
entire image region. The apparent disadvantage of this approach is that to impose
the same transformation function for a scene that consists of different planes may
produce inaccurate registration results. In our setting, a global spatial alignment
strategy cannot ensure the accurate registration of the ground planes (i.e., domi-
nant planes) because of complex scene geometry. Therefore, we propose a spatial
registration approach that solely employs the dominant planes in the scene. We
consider the spatial alignment problem as the process of transforming the ground
plane G} in the frame Fr} in such a way that it is at the same position, orienta-
tion, and scale as the ground plane G in the frame Fr;. If this is accomplished,
the ground planes can be compared for the changes pixel by pixel. Modules of a

generic spatial alignment method are shown in Figure 3.14.

Registration is treated as an optimization problem with the goal of construct
a spatial mapping that will bring G} into alignment with Gj. The transform
module of the registration process represents the spatial mapping of points from
the ground plane G} space to points in the ground plane Gi space. The inter-
polator is used to evaluate image intensities at non-grid positions. The metric
component provides a measure of how well G} is matched by the transformed G?.
The optimizer optimizes the quantitative criterion formed by the metric over the

search space of the transformation function parameters.

When the cameras having widely spaced views are used to capture the scene,
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Figure 3.14: Illustration of the modules of a generic registration process [94]. G
and G refer to the estimated ground planes in temporally aligned frames.

it may improve the registration accuracy to employ a non-global transformation
function. We deal with a very challenging spatial image alignment task that
requires the use of intra-structure information and sophisticated transformation
models. Our experiments show that some ground planes may have diverse dis-
parity values. Therefore, one should avoid using a single transformation function
for all the segmented ground planes in a video. Instead, we dynamically esti-
mate the suitable transformation function and the parameters for each frame. In
the proposed method, an accurate spatial registration depends on both accurate
temporal alignment and ground plane segmentation. These constraints add more
challenges to design the modules of the registration process. Some basic error
metrics tend to ignore the fact that some of the pixels being compared may lie
outside the original image boundaries [174]. There may be a low overlap between

the images to be aligned. Because of anticipated dominant plane segmentation
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artifacts, this is quite important issue while selecting a proper metric for our
framework. Furthermore, using metrics based on direct comparison of gray levels
is not applicable because G; and G} may have varying illumination conditions.
To overcome these limitations, we employ Viola-Wells mutual information [189]

as the spatial alignment cost function to maximize mutual information [204].

Choosing an appropriate spatial transformation for the registration is a critical
step to detect the changes between the image. When the scene has mostly rigid
structures and if the mobile platform motion is reasonably small, registration
can often be performed using a global spatial transformation function such as
similarity (i.e., a combination of translation, rotation, and scaling), affine, or
projective (i.e., homography) transformations [148]. In our case, while applying
these transform functions to the entire frame region is probably not feasible, we
can employ them to align the dominant planes. The similarity transformation is
performed by applying the translation, the rotation, and the scaling. It is specified

by four transformation parameters

r = xscos(f) — yssin(0) + ¢, (3.30)

y = yssin(f) + yscos(d) + ¢, (3.31)

where & and g are the transformed points, s is the scaling parameter, 6 is the
rotation parameter, and (¢,,t,) are the translation parameters. The similarity

transformation is commonly used for the registration of rigid structures where the
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image acquisition platform is at a very large distance from the scene. The affine
transformation function does not preserve the angles or lengths, but it retains the
parallel lines in the scene. The affine transformation function has six parameters.
If enough number of corresponding points are known, they can be estimated by

solving the following equations

T =ar+by+t, (3.32)

Y= cx+dy +t,. (3.33)

The six parameters in Equations 3.32 and 3.33 specify the rotation, the scaling,
the shearing, and the translation. Image acquisition is a projective process where
a three-dimensional world is projected to a two-dimensional space. When the
camera is far from the scene, the projective nature can be approximated by an
affine transformation function. On the other hand, to be able to estimate actual
homography parameters, we employ assumption of the presence of a dominant
plane (i.e., ground plane) in the scene. Let p = (z,y,1)T denote homogeneous
coordinate of a point in G;. Let H be a nonsingular 3 x 3 homography matrix
of the spatial transformation between G} and G}. H is represented by eight

transform parameters as follows

hir hia has
H= | hy ho hos | (3.34)
h31 hzy 1
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and the transformed point p = (&, ¢) is described by

h h h
- 11T + h11y + hag (3.35)
hsiz + haoy + 1
. horx + haoy + hos

hs1x + hsoy +1

(3.36)

Namely, we need to estimate the eight transformation parameters in the matrix H
to calculate the homography that maps the points. Nevertheless, one should note
that H may be different for consecutive frames because of movement of the mobile
platform and the change in the scene structure. We want to point out that we
are not restricted to always using the homography because a more complicated or
simpler transform model may result better spatial registration. Therefore, we also
include the homography transformation with radial lens distortion [199]. Image
acquisition device may introduce a certain amount of nonlinear distortion. This
adds two more transformation parameters k; and ko, which are the radial distor-
tion coefficients in the polynomial radial distortion model [195]. We categorize
the transformation functions based on the number of the transform parameters

(Table 3.1).

Considering all the aspects of the mobile image acquisition platform described
below, we employ the dual-bootstrap iterative closest point algorithm [199]. SIF'T
features [117] and Harris corners [127] are used as the image descriptors to match

localized regions between the images. The registration framework is capable of
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Transformation Number of Parameters

1. Similarity 4
2. Affine 6
3. Homography 8
4. Homography with radial lens distortion 10

Table 3.1: The order of the transformation functions used in the spatial registra-
tion. The similarity transform has the lowest order, while the homography plus
radial lens distortion has the highest order.

automatically switching from the simplest to higher order transformation func-
tions based on the registration error. The transformation function estimation is
performed based on the criteria [199] employing the weighted average error of
the matching of transformed features and the spatial alignment error of the local
patches. In Table 3.1, we present the set of transformation models used in the reg-
istration where each one successively involves more parameters. The system has
a hierarchy of following transformation functions: similarity, affine, homography,

and homography with radial lens distortion.
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Chapter 4

Change Detection

In this chapter, we present methods developed for the detection of the changes
between spatiotemporally aligned frames from different videos. In particular, we
deal with two data acquisition scenarios: a stereo video captured by a mobile
platform following unknown trajectories and a monocular video captured by a
stationary camera in a scene with dynamic background where there are several

altering elements in the the background.

4.1 Image Change Detection in Stereo Videos

Let us assume that we are given two stereo videos V" and V* (i.e., reference and

secondary videos) of the same environment recorded by a mobile camera platform
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following unknown trajectories. A necessary preprocessing step for all change de-
tection algorithms is accurate image registration, the alignment of the two images
into the same spatial coordinate system so that changes at corresponding pixels
in two images resulting from different camera positions alone are virtually never
desired to be detected as real changes. In the Chapter 3, we presented a complete
algorithm including techniques for the temporal alignment, for the segmentation
of the dominant plane in the scene, and for the spatial registration. By apply-
ing these methods, we can bring the two stereo videos into an spatiotemporal

alignment. Thereby, it is now feasible to analyze the changes between the videos.

4.1.1 Comparison of the Ground Planes

The goal of change detection step is to distinguish the new object pixels from
the ground plane pixels, and the ability to quantitatively compare two registered
ground plane (i.e., dominant plane) images is very crucial task. Illumination
distributions of the scene in ground plane images G} and Gj (Figure 4.1) are quite
different because of temporal separation, and there are also large shadow regions
within the images. Furthermore, it is a well-known fact that a highly accurate
registration step is required to obtain good change detection results [59]. These
factors may result in false detection in the absence of any change. Hence, we need
a change detection strategy that is robust against illumination changes, and the
comparison module should not be very sensitive to minor registration errors and

a reasonable range of spatial distortion.
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(a) Ground plane Ggsg (b) Ground plane Gfy57

Figure 4.1: Two extracted ground planes to be compared. In (a) and (b), we
present dominant planes Gy and Gj,5; which were segmented from the stereo
frames Frgqy and Frj,.; in the videos V" and V°.

4.1.2 Feature Extraction for the Change Detection

Texture feature has been widely and successfully used for various application
in computer science, such as content based image retrieval, segmentation, and
classification. It represents the spatial arrangement of intensity values in an image
and also remains relatively stable with respect to noise and illumination changes
unless it is covered by objects. This aspect of the texture feature has given us
the idea that differences in texture characteristics can be employed for the change
detection. It is common for change decision at a given point to be based on a small
block of pixels in the neighborhood of the point in each of the two images because
interesting changes are often associated with localized groups of pixels. From this
point of view, instead of performing pixel by pixel comparison, we first divide G;
and Gj (that is the ground plane G} after the spatial registration) into a number
of regions of 13 by 13 pixels (Figure 4.2). We apply the decision reached at a
block to all the pixels in it. Although texture representations are more accurate

than local statistics, when regions of change and the scene are homogeneous,
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the texture difference measure will fail. Therefore, we have decided to integrate
gradient values into the change detection module. Our experiments show that
Sobel gradient detection [170] is barely affected by changes in the illumination
conditions between spatiotemporally aligned images. Hence, we calculate image
intensity gradients of corresponding subregions in two images. Two important
aspects of this approach is that minor spatial misalignments and changes in the

illumination can be handled without further preprocessing.

Figure 4.2: The comparison module should not be very sensitive to image scale
and rotation, and it should provide robust matching across a reasonable range of
affine distortion, addition of noise, and change in illumination.

We extract texture information using the similar approach explained in Sec-
tion 3.2.7. Let RZ’T denote a square subregion k in G}, and let TZT the texture
feature extracted from RZ’T. We assume that each block contains N pixels. First,
we extract the texture feature of RZ’T and its corresponding subregion Ri’s in the

spatially transformed Gj using a log-Gabor filter bank. Then, we calculate MADs

of the texture features TZ’T and Ti’s as defined below
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N
1 =i,
MAD, . = = > |x - T, (4.1)
where x; denotes the elements of TZ’T and Ti’s. We define a metric denoted by
my to assess the similarity between R}" and R7°. The similarity metric my is

computed using the formula

(MAD - )* + (MADy;.)*
MAD,.» + MAD

mr =

(4.2)

T®
As a second phase, Sobel gradient operator is applied to the regions RZT and R{f

in vertical and horizontal directions. The resulting gradient approximations are

combined to give the gradient magnitude as follows

G’Ri,r - \/(GR;‘C’T\/)Q _|_ (GR;C,TH)2

k

2 2
Gy = \/(GRQSV) +(Ggyo ) (4.3)

where the subscripts V' and H stand for vertical and horizontal, respectively.
Then, we use MAD values of GRZT and GR?;’S to define the same metric explained

above for the gradient magnitude as follows
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(4.4)
1=1
and
(MAD:+)? + (MAD;.:)*
MADGZT * MADGQS
Finally, combined similarity metric m is computed as
m = w (4.6)

for the corresponding regions R;" and R}®. If the value of the combined metric m
is greater than MAD?;;SShOl 4> We label the square subregion as a region of change
(Figure 4.3). Choosing a threshold value is critical because low or high value
will result different problems. We calculate it dynamically based on the current
image content because experimentally selecting a value is not appropriate for a
robust autonomous vision system. We anticipate that local thresholding may be
useful especially when the scene illumination varies locally between the registered

frames.

Our experiments show that we can obtain much better change detection results
by exploiting both gradient and texture differences than by using the intensity

differences directly.
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Figure 4.3: Illustrative example of a change detection result. We labeled white
bordered square subregions as the regions of change because combined texture
and gradient features are quite different in corresponding regions R;" and R7”.

4.2 Detection of Changes in Monocular Videos

In this section, we investigate a more complicated change detection scenario
where a stationary monocular camera is employed to capture videos in outdoor
scenes where the background has several altering elements that may cause false

alarms [69].

In such cases, there are almost always changes in the scene. To establish a clear
distinction between what is a relevant change and what is not, we first categorize
the change into two main classes; namely, ordinary change and salient change.
The ordinary change is considered as irrelevant if they are recurrent elements and
changes pertaining to the dynamic background of the scene. On the other hand,
an alteration that does not conform to the expected pattern of ordinary change
is defined as the salient change (e.g., transient changes). We need to distinguish
ordinary changes from salient changes in order to avoid false alarms. To this

end, we follow the data flow diagram illustrated in Figure 4.4 which consists of
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Figure 4.4: Our algorithm consist of three main blocks. First, given a video
without salient changes, we are interested in finding representations where the
spatiotemporal features of the ordinary changes can be captured. Then, we apply
statistical tests on the training examples to extract spatiotemporal signatures of
the ordinary change patterns. Finally, we estimate the existence of the salient
change in given test input by interpolating from the training samples.

three major processing blocks: i) spatiotemporal correlation analysis, ii) feature

extraction, and iii) salient change detection by interpolating from the ordinary

change patterns.

Pixels, which belong to a region of an ordinary change pattern, are typically
correlated in space and/or time among a set of consecutive frames. This cor-
relation stems from the repetitive nature of the ordinary change patterns, and
it induces spatiotemporal signatures specific to each local ordinary change pat-
tern. The human visual system directly uses the dynamic information to identify
the entities that surround us [135, 190]. Stone [172] demonstrated that such

spatiotemporal signatures, which are encoded in the representation of an object,
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could be used for object recognition. Similarly, we propose that one can make
use of the spatiotemporal signature to discriminate salient changes from the ordi-
nary change in a given local region. Capturing spatiotemporal signatures requires
three-dimensional data processing, and the image pixel plane is usually not con-
sidered as suitable for extracting spatiotemporal features [67]. Dollar et al. [57]
presented that the direct three-dimensional counterparts to commonly used two-
dimensional descriptors are inadequate for spatiotemporal features. Instead, we
propose to transform local three-dimensional regions containing ordinary change
patterns to a transform domain where the pixels in the region are decorrelated.
Thereby, we can capture spatiotemporal signatures which are unique to each local
ordinary change. This will allow us to learn and to recognize ordinary change
patterns. Then, when a change sample which is unrelated to ordinary change

patterns occurs, the framework can label it as a salient change.

Because of the amount of the data in video processing, the chosen transform
should be fast and simple to implement such as linear transforms. Orthogonal
linear transforms redistribute the energy stored in the input data and decorrelate
it [5]. They are successfully applied to the methods based on compact represen-
tations, such as image compression [159], watermarking [95], face recognition [49],
and speech processing [7]. In this study, we use the data compaction capabil-
ity of orthogonal linear transforms in order to exploit spatiotemporal signatures

of local ordinary change patterns. Estimation of the optimal transform for each
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local ordinary change pattern is not a trivial process. In terms of energy com-
paction, Karhunen-Lo’eve transform (KLT) has the best efficiency; however, KLT
has high computational complexity and is mostly of interest for theoretical and
historical reasons [4, 5, 159]. We propose to estimate not the optimal one but
a suitable transform for each local ordinary change pattern from a pool of linear
transformations which have complementary orthogonal basis vectors. A transform
is considered as suitable for a local ordinary change pattern if the transform do-
main provides a compact representation of the local ordinary change pattern. Our
approach is built up on localization by applying a data decomposition model that
generates local three-dimensional blocks. Therefore, the estimated change mask
may suggest if there is a salient change within the three-dimensional block, but
we need to examine each frame region in the block to obtain individual pixels be-
longing to the regions of change in each frame. This may cause blocking artifacts.
In order to compensate for these artifacts, we apply Markov random field regular-
ization [113]. To evaluate the performance of the proposed method, experiments
are performed using the test videos provided by ChangeDetection.net [69]. The
quantitative comparison of the detection results from the proposed framework to

other methods demonstrates improved accuracy.
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4.2.1 Spatiotemporal Signature Analysis

The proposed framework exploits spatiotemporal signatures of local regions in
consecutive frames in order to detect the salient changes. This requires three-
dimensional block based processing and extends the change detection problem
from comparing two regions between two frames to comparing two sets of consec-

utive regions between two sets of frames (i.e., sequence to sequence comparison).

An ordinary change in a local region is typically correlated in space and/or
time among consecutive frames. This correlation induces a spatiotemporal signa-
ture specific to the ordinary change pattern in the region. Our goal is to find a

representation space where we can capture this spatiotemporal signature.

4.2.2 Data Decomposition

In the literature, the term “data decomposition” has been used to refer to a
number of different concepts. Throughout this study, we will use the term “data
decomposition” to refer to the process of spatially splitting the three-dimensional
input data into subgroups of the same size (i.e., cubes). This decomposition
approach is usually used in data compression [159] and parallel programming
[64] applications. In this study, we need the data decomposition to divide a
frame sequence into three-dimensional subblocks such that local spatiotemporal
signatures can be extracted. Before the data decomposition, we apply median

filter and map the intensity values in a frame such that about 1% of data is

93



saturated at low and high intensities of the frame. The aim of the filtering and
the intensity adjustment is to compensate for illumination variations between the

data acquisitions.

Let V denote a sequence of frames, with V.= {Fy,...  F,, F..1,..., Fz}. Let
V, be a subset of V|, including all the frames between F; and F,. We are given that
the subset V, contains only ordinary changes. Our focus in this study is solely on
the change detection problem, but not the background modeling problem. This
is a reasonable assumption for the change detection problem where two states of
an entity are under investigation. The rest of V may contain ordinary changes,
salient changes, or both. We first divide each frame into 8 by 8 pixels regions in
order to improve the localized correlation. Then, 8 consecutive frames are grouped

to form a stack as shown in Figure 4.5.

Let § denote the set of stacks, with § = {S;},, where K = 7/8. Each stack

Sy is composed of 8 x 8 x 8 blocks called cubes. Cube elements in the stack S;, are

k
75

denoted by ¢%., where i =1,...,1, 7 =1,...,J, I, and J are the number of the
cubes in vertical and horizontal directions, respectively. We anticipate that the
spatiotemporal signature of every cube element in a stack may be different. After
the data decomposition, a set of 7 frames turns into a set of K stacks, each of which
contains I*J cube elements as shown in Figure 4.5(b). Cubes in different stacks are

said to be corresponding cubes if u = p and v = r for ¢} and ¢, where k; # Ka.

v pro

We perform a further grouping and collect the corresponding cube elements in

corresponding cube sets. Let C;; denote a corresponding cube set, where 7 and j
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Figure 4.5: Illustration of data decomposition. Each frame is divided into 8 by 8
pixels regions, and every 8 consecutive frames are stacked as in (a). Stacking is
performed across all the frames. S; denotes the first stack. A stack is composed of
8 x 8 X 8 blocks, called cubes. In (b), cube elements in the stack Sy are denoted by
cfj, where i=1,....I; j=1,...,J; and I and J are the number of the cubes in vertical
and horizontal directions, respectively. K is the total number of the stacks. In
(c), we present corresponding cube sets. A corresponding cube set is composed
of corresponding cube elements in different stacks. For example, the correspond-
ing cube set Cr; in (b) consists of the cube elements {cj;,...,ck}. We expect
the cube elements in a corresponding cube set to share similar spatiotemporal
signatures.
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refer to the location of the cube elements in the data decomposition approach as
shown in Figure 4.5(b). Namely, the entire frame set V, becomes a I x J grid
of corresponding cube sets as illustrated in Figure 4.5(c). Every corresponding
cube set C;; is considered as the summary of ordinary change pattern in the local
region at ¢ and j. We expect the cube elements in a corresponding cube set to

share similar spatiotemporal signatures.

We now need to estimate a suitable transform for each corresponding cube set

so that we can exploit their spatiotemporal signatures.

4.2.3 Adaptive Transform Estimation for the Ordinary

Change Patterns

Let us define a I x J matrix T of transforms. An element 7;; of T refers to the
transform that is suitable for the corresponding cube set C;;. A suitable trans-
form is defined as the one where the transformed values are independent of one
another, and the energy is compacted on a few transformed values regardless of
their relative locations as opposed to the general assumption in data compression
methods. Estimating T is not a straightforward procedure. Orthogonal linear
transforms, which are widely used in data compression methods [44, 144, 191],
redistribute the energy stored in the input data and provide a compact represen-
tation. The principle of minimum description length in the model selection [79]

suggests that methods that yield compact representations should be employed
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for recognition purposes. Accordingly, we employ three orthogonal linear trans-
forms as the base transforms: i) discrete cosine transform (DCT) [4], ii) Walsh-
Hadamard transform (WHT) [6], and iii) Slant transform (ST) [145]. DCT, WHT,
and ST are incorporated together because they have complementary basis vectors
that enable the framework to capture different types of ordinary change patterns.
In addition, Fridrich [63] presents that DCT, WHT, and ST achieve an energy
compaction efficiency close to the that of Karhunen-Lo’eve transform. DCT is a
sinusoidal transform which is widely used in applications requiring compact repre-
sentations such as video compression [110], watermarking [93], and content based
retrieval [136]. WHT is a non-sinusoidal transform having basis vectors that are
rectangular or square waves with values of +1 or —1; therefore, it can represent
patterns with sharp discontinuities more accurately using fewer values than DCT.
In the literature, WHT has been applied to variety of applications because of its
low computational cost, such as image compression [100], speech recognition [137],
segmentation [187], and face recognition [60]. The basis vectors of ST are derived
from sawtooth waveforms and considered as a good complement to WHT [58].
Compared to DCT and WHT, ST has been applied to a limited number of prob-
lems, mostly to image watermarking [87, 188, 207]. Nevertheless, as it is seen our
experimental results, SL is found to represent more ordinary change patterns than
WHT does. Needless to say, we observe that DCT is superior to ST. These three
transforms constitute our base transform space. Our goal is to estimate the most
suitable transform to represent the ordinary change pattern encapsulated in each

corresponding cube set using the spatial signatures of ordinary change patterns
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and the base transform space. Namely, we need to estimate the transform 7T;; that

yields the most compact representation &;;

where T;; is assigned to one of these three base transforms depending the ordinary

change pattern in Cj;.

Various performance criteria [150], such as energy packing efficiency, coding
gain, and decorrelation efficiency, are proposed to determine how efficient a par-
ticular transform for a given input. Kitajima [103] defines the energy packing
efficiency as the ratio of energy contained in the first retained m transformed
values to the total energy, where m is coding dependent parameter. Neverthe-
less, one cannot guarantee that most of the input energy are always packed into
low-frequency components or a specific sub-band of a generalized spectrum. In
addition, Yip and Rao [202] presented that the energy packing efficiency may not
be a suitable measurement for determining the efficacy of the discrete unitary
transforms. The coding gain is the ratio of the arithmetic mean to the geometric
mean of the transform coefficient variances. It measures how well a transform
compacts energy into a small number of coefficients, regardless of frequency type.
The decorrelation efficiency is the ratio of the sum of off-diagonal elements of
the coefficient covariance matrix to the sum of the input values. Computation
of the decorrelation efficiency and the coding gain require to estimate the covari-

ance matrix of the transformed values by making assumptions for the inter-pixel
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relationships. Accurately estimating the true covariance matrix from a limited
number of data samples is very challenging problem [178]. Instead of such mea-
surements, we propose a novel energy compaction criterion, called compactness

coefficient, for the comparison of the different discrete transforms.

We call a transform compact if the energy of transformed values does not
uniformly distributed in the transform domain. Let D be a set of real valued
numbers, with D = {d,...,dy}, where N is the number of the data points. Our
goal is to estimate the most suitable transform available for D from the pool of
base transforms. In our setting, D refers to a cube element in a corresponding
cube set. Out of the base transforms provided, the most suitable transform for D
is defined as the one having transformed values where the energy in D is the least
scattered in the transform domain. Let €2 denote the set of transformed values of

D, with Q = {wy,...,wy}. Let E be the total energy stored in , with

E=) w. (4.8)

In terms of energy scattering, the worst case is a uniformly distributed energy
across the transformed values. For such a case, all w? values will be the same,

namely

E
w? = N for each 1. (4.9)

1
Let us normalize ) based on the energy stored in each transformed value so that
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E is going to be 1. Accordingly, energy of the elements of {2 will be as follows

for each 1. (4.10)

1
N

=&,
= |=zl=

We shall use this extreme case (i.e., uniformly distributed energy in the transform
domain) to define the compactness coefficient. Let & denote the compactness
coefficient. &, describes how compact the energy of D is redistributed in the
transform domain. We will use & to assess the efficacy of each base transform for

the input data set D.

For a moment, let us focus on an ordinary input data set D and forget about the
extreme case explained above. We first compute the transformed values ) using
the transformation matrix. We do not have any assumption about the energy
redistribution in 2. We compute the total energy E of {2 using the Equation 4.8.
Then, we apply the energy normalization and obtained the set of normalized
transformed values €. The relationship between the elements of 2 and Q is

straightforward: w; = for ¢« = 1,...,N. Finally, we define the compactness

Wy
E

coefficient &, as follows:

£ = ﬁ: (% — w)2 (4.11)

where & € [0,1— %] If a transform can compact all the energy of the input in one
single transformed value, the transform can be considered as the most suitable

one for the input data D. In such a case, only one element of Q) will be 1, while
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the rest is zero. Accordingly, the value of & would be

£s=2<%—wi> =(N—1)*% +(%—1)2:1—%. (4.12)

On the other hand, when the energy is distributed uniformly, &, becomes

S E e

i=1
Namely, the greater the compactness coefficient, the more compact the trans-
formed values. We can now establish a two-step model to estimate the most suit-
able transform from the base transforms DCT, WHT, and ST for a corresponding
cube set C;;. First, we compute compactness coefficients ¢P¢T ¢WHT and €57 for
the base transforms for each cube element cfj in C;j, where k = 1,..., K. Then,
the transform having the largest compactness coefficient value is estimated as the

most suitable transform for the cube element cfj

T} = argmax &P, for BT={DCT, WHT, ST}. (4.14)

This process is performed for all the cube elements in C;; and results in K trans-
forms for the corresponding cube set C;;: {Té, s Tg }. Then, the transform that
is the most common amongst estimated K transforms is assigned to 7;;. We re-
peat the process for all corresponding cube sets. In the rest of the framework, a

local change pattern in a corresponding cube set is represented by the estimated
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transform for that corresponding cube set.

4.2.4 Significant Transform Coefficients

Throughout the remainder of this dissertation, let us call the transformed values
transform coefficients. With a suitable transform, majority of the transform co-
efficients tend to have small values. Our goal is to find a significant subset of
transform coefficients for each corresponding cube set. A significant subset should
contain a small number of coefficients that contribute to most of the energy. The
estimated transform and significant subset of the transform coefficients would be
considered as the spatiotemporal signature of the ordinary change pattern captured

in the corresponding cube set.

In several approaches employing orthogonal linear transforms, it is assumed
that values of a specific predefined subset of the transform coefficients can be ne-
glected for different types of input data [11, 159]. The accuracy of this assumption
solely relies on the characteristics of the input, and it may cause loss of distinctive
features. Instead, we propose to estimate a significant subset based on the energy
of each coefficient in cube elements of a corresponding cube set. We suggest that
an adaptively selected subset of transform coefficients for a corresponding cube set
will exploit spatiotemporal signature of the ordinary change pattern encapsulated
in the corresponding cube set. Let Qf] be a set of transform coefficients computed

for the cube element cfj in the corresponding cube set C;;
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QF = {wi', . Wiy (4.15)

ij

where N is the number of transform coefficients. For example, value of N for
a cube element of the size 8 x 8 x 8 would be 2°. We compute ij for all the
cube elements k =1, ..., K in C;;. Transform coefficients for every cube element

are normalized to carry the unit energy. Let Qf] denote the set of normalized

. . ~ \k . N
transform coefficient values, with QF, = {@*}I.,. Transform coefficients ;'
K2,8

and w;;" in different cube elements of the corresponding cube set C;; are defined

as corresponding coefficients, where ky # ko. For N transform coefficients, we

. . s _ (~lis <255 «K,s
have N corresponding coefficient sets, denoted by cc; = {w;;*,w;;°, ..., w;; "} and
s=1,..., N. Using these correspondences, let us define a parameter ¢;; to assess

significance to each corresponding coefficient set cc;; in C,; using the average

normalized energy. ¢;; is computed for each s as follows

1
s < k,s
gij — kg 1 Wij . (416)

This results in ¢;; € [0, 1] values, where Zivzl s;; = 1. Finally, we use an iterative
forward selection algorithm [8] to form one significant subset for each correspond-
ing cube set. We start with no coefficients and add them one by one based on
s;; values, at each step adding the one that stores the most energy, until any fur-
ther addition does not increase the total energy in the subset or increases it only

slightly. This generates a significant subset ¢;; = {méj}le, where L << N for
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C;;. Elements of €;; represent coordinates of the selected transform coefficients
for C;;. The significant subset and the estimated transform for a correspond-
ing cube set is considered as the spatiotemporal signature of the ordinary change
pattern captured in the corresponding cube set. Accordingly, in the rest of the
framework only the transform coefficients in the significant subsets are used for

change detection purposes.

4.2.5 Statistical Properties

The advantage of using statistical properties compared to strategies assuming a
priori parametric distribution is that one can distinguish fluctuations due to the
fact that the assumed model may not be valid over the whole input space. In
our setting, a corresponding cube set C;; is considered as a unified structure that
captures the local ordinary change pattern within itself. C;; is specified by the
estimated base transform T;; € T and its significant subset &;;. Let us define a
function £((, k) that maps coordinates in €;; to actual transform coefficient values
in the cube elements of C;: £(x};, k) — wfj’s forl=1,...,Land s=1,...,N.
One should note that the distribution of each significant transform coefficient
may be different, and the estimation of each unique distribution is not a trivial

process. Instead, we construct a maximum likelihood model by interpolating from

the training instances.

Let 91 be a I x J matrix of the number of significant coefficients, with 91 =

{mij}f’:‘ij:l. m;; is the number of significant coefficients in the significant subset
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¢;; for the corresponding cube set C;;. Let u denote a vector parameter called
unbiased mean. ﬁfj € R™i is defined for the cube element k£ in C;;. An element

~kl ~L .
u;: of uy; is calculated as follows

K
- 1
uf]?l =% 1 Zﬂ(xw, k) and Kk # k. (4.17)
k=1
We compute u "for I =1,. m;;. We can represent every cube element in Cj;

using the significant coefficients. Let ij be a m;;—dimensional vector of significant
coefficient values for the cube c . We define a deviation vector D’“ € R™4 | which

describes the deviation of ij from its unbiased mean ﬁfj as follows

ol = |Cf — U, (4.18)

where k = 1,..., K. We then calculate standard deviation afj and mean ,ufj of the

elements of ij In the next section, CX, 9%, oF and uk for k=1,..., K are to

150 Yigo Vg

used to construct a maximum likelihood model for the salient change detection.

4.2.6 Salient Change Detection

Let us recall the given frame set V.= {Fy,..., F,, F1q,...,Fz}. We used the
subset V, = {F},..., F;} to estimate spatiotemporal signatures of the local ordi-
nary change patterns. We will now analyze the changes in the rest of the frames,

namely in V — V,. Let us assume that we initially process the first 8 frames
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{F.11,..., Fr1g}. As described in the Section 4.2.2, we group the frames to form

the stack S;cs; and and decompose the stack into the cube elements cﬁ?“. We com-

pute the transform coefficients of ¢{5* using the estimated base transform Tj; € T.
Then, the significant coefficient subset €;; and m;; € 9t are used along with the
mapping function £(1, k) to construct a m,;—dimensional descriptor Cf;?St for each

7 and j. We then compute the deviation of ijSt from the training samples ij:

k,test k test
0, =G5 =G5, (4.19)

for k =1,..., K. We calculate standard deviation afj’t“t and mean ,uf]?t“t of the

_y .k test
deviation values in 9;7°".

We cast the analysis of the salient change as a significance testing. The de-
cision rule for whether or not a salient change has occurred within a given cube
corresponds to choosing one of two competing hypotheses: the null hypothesis H,
or the alternative hypothesis H;, corresponding to ordinary change and salient
change decisions, respectively. The null hypothesis Hg is characterized using the
training samples in V,, which are assumed to have only ordinary change patterns.
A significance test on the difference between an observation and the training sam-
ples is performed to assess how well the null hypothesis describes the observation,

and this hypothesis is accepted or rejected.

Given Hg, let X, Y be two random variables with means py, py, standard

deviations ox, oy, and correlation coefficient pxy. The bivariate inequality of
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Lal [107] is given by

P()\LX < X< )\UX,)\LY <Y < )\UY|HO) > ny, and (420)
1 2 2 2 2\2 21.2 1.2
Pey = 1= oo (B + 1 + VX T2 —4p203k2),  (421)
XY

where A\, + Avy = 2ux, Ay + Avy = 2y, kx = (Auy — Aoy )/20x, and ky =
(Ay — ALy )/20y. In the Equation 4.20, Pxy gives a lower bound for the joint
probability of the interval AL, Ay, ] around py and the interval [Az, , Ay, | around
py for the random variables X and Y. We propose that if X and Y are dependent
events, we expect Pxy to be large for the same interval [AL, = AL, A\vy = Avy]
around px and py for X and Y. Accordingly, we define a symmetric interval
ALy = Ay = (Ux + iy)/2 — 2% (0x + oy) and Ay, = Ay = (x + py)/2 + 2 *
(0x + oy) for X and Y. We can use the value of Pxy to estimate the likelihood

of X and Y to be dependent random events. In our change detection setting,

we consider the elements of the pair (ij, ij?t“t) as the values of the two random
k,test

variables X and Y, with the means (ufj , My ) and the standard deviations
Lk _ktest

o) I ijft%t is found to be independent from 9%, one can deduce that there

(U YR

is a salient change in the cube cfj“. Using the Equation 4.21, we can compute a
joint probability PX, for a stack Sy in the training samples, where k = 1,..., K.
Because the Equation 4.20 provides a lower bound but not the actual probability,

we can compute an average Pxy for all the stacks in the training samples by
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K
1
Pxy = ?Zp)kgy- (4.22)

k=1
4.2.7 Change Detection at Pixel Resolution

When a change having spatiotemporal signature different from ordinary change
patterns is detected in a cube, the proposed method suggests that there may be
salient change within the regions comprising the cube. At the frame level, this
corresponds to a two-dimensional projection of spatiotemporal changes within the
stack of 8 consecutive frames (Figure 4.6(a)). This summary image is called binary
change mask (Figure 4.6(b)), where 1 and 0 indicate the salient and ordinary

change, respectively.

We use the binary change mask to analyze the mid-frames to avoid large
blocking artifacts. Then, we use the two-dimensional version of the estimated
base transform within a window around pixels having the value of 1 in the binary
change mask. The block-based nature of our approach may cause noise at the
pixel level. To overcome this limitation, the resulting change mask is assumed
to be a Markov random field, where each node (i.e., pixel) is connected using
4-connected neighborhood: 1) up, 2) down, 3) left, and 4) right. Then, the node
is labeled as either salient change or ordinary change based on the probability
maximization achieved by the Markov Random Field regularization [113]. We

repeat the process by sliding the frame stack in order to evaluate all frames.
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(a) Input frames (b) Change mask

(¢) Ia000 (d) Output (e) Ground truth

Figure 4.6: Illustrative example of a binary change mask. In (b), the binary change
mask for 8 consecutive frames in (a) is presented. The binary change mask is a two
dimensional projection of spatiotemporal changes in these 8 frames. In (c),(d),
and (e), we present input Iy, salient changes detected, and the ground truth,
respectively. The gray levels in ground truth are 0:ordindary change, 255:salient
change, 85:outside region of interest, and 170:unknown motion [69]. We are inter-
ested in detecting pixels labeled as salient change.
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Chapter 5

Experimental Results and

Discussion

We carried out several experiments to justify the effectiveness of each method

proposed in this dissertation. We here present the results topic by topic.

5.1 Training and Testing Videos

The proposed methods were developed and tested on 19 videos obtained from
different sources [56, 69, 73]. We present different properties of the videos in
Table 5.1. All the videos were recoded in outdoor environments during daylight
or at night. The distance between the camera and the objects in the scene usually

varies throughout videos because of either camera or object movement.
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ID | Video Frame | Number of | Frame Data Obtained
Name Size Frames Type Acquisition from
V1" | Forest 640480 3,256 Stereo Mobile [73]
Vis | Forest 640%480 3,256 Stereo Mobile [73]
V2 | Game Field | 640x480 1,385 Stereo Mobile [73]
V2 | Game Field | 640x480 1,854 Stereo Mobile [73]
V3" | Parking Lot | 640x480 1,381 Stereo Mobile [73]
V3 | Parking Lot | 640x480 1,855 Stereo Mobile [73]
V4| Soccer Field | 640x480 3,256 Stereo Mobile [73]
V4 | Soccer Field | 640x480 3,256 Stereo Mobile [73]
V57 | Broadway 640x 480 1,594 Monocular Mobile [160]
V55 | Broadway 640x480 3,122 Monocular Mobile [160]
V6 | Highway? 576x432 2,281 Monocular Mobile [56]
V6s | Highway? 576x432 1,432 Monocular Mobile [56]
V™ | Night 576x460 999 Monocular Mobile [56]
V7 | Night 576 x 460 448 Monocular Mobile [56]
V& | Boats 320x240 7,999 Monocular Stationary [69]
V9 | Canoe 320%240 1,189 Monocular Stationary [69]
V10 | Fall 720%480 4,000 Monocular Stationary [69]
V| Fountain01 | 432x288 1,184 Monocular |  Stationary [69]
V12 | Fountain02 | 432x288 1,499 Monocular |  Stationary [69]
V13 | Overpass 320x240 3,000 Monocular Stationary [69]

Table 5.1: List of test and training videos used in this dissertation.
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The stereo video pairs V7 — Vs V2" — V25, V3 — V3 and V¥ — V* were
acquired by a mobile camera platform in four different environments. For each
pair, the secondary video was taken after objects of different sizes and textures
were placed in the scene, and the reference video was taken without the objects.
We used these videos for the verification of temporal alignment, dominant plane
estimation, disparity enhancement, and change detection methods. The monoc-
ular video pairs V" — V5 V6 — V6 and V™™ — V7™ were recorded by mobile
camera platforms in three different environments. We used these videos for the
verification of the video synchronization method. Different from the rest of the
videos, the videos V8 — V8 were captured at night. The monocular videos V8,
VO vyl yi2 and V1B were captured by a stationary camera in outdoor
environments where there are a lot of altering regions, which are not considered
as change, in the background. We used these videos for the verification of the

change detection module.

Some high resolution frames are reduced to the lower resolution (e.g., from
640x480 to 384x288 pixels) using anti-aliased filtering and subsampling. There
are two reasons behind the subsampling. First, it decreases the required compu-
tational time for the algorithms. Second, the subsampling improves the accuracy.
For example, high-resolution frames produce disparity maps which contain too
much detail. For the subsequent modules in the framework, when it requires,
we resize the output image back the original size. The experiment results are

evaluated both visually and/or quantitatively depending on the test case.
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5.2 Disparity Estimation and Refinement

In this section, we will present the results obtained from the experimental test

that mainly employ the stereo videos.

5.2.1 Results of Disparity Map Refinement Method as a

Post-processing Approach

In Section 3.2.5, we presented a disparity map refinement method using consec-
utive estimated disparity maps. We evaluated the proposed method using four
stereo video pairs (i.e., V7 — Vs V2 — Y2 Y3 — V3% and V4 — V%) that were
acquired by a mobile camera platform in different real outdoor environments un-
der different illumination conditions at different times. For each environment, we
have two videos called reference and secondary where the secondary videos were
recorded after seven objects of different sizes and textures (Figure 5.1) were placed
in the environment, and the reference videos were taken without the presence of

the objects.

In Table 5.2, we report the number of frames in which an object can be seen
and the number of frames where we detected the object successfully. Results of
detecting the change with and without disparity map refinement are presented

and clearly show the advantage of the disparity refinement method.

For the objects O,, O3, and Os our change detection module failed for some
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Figure 5.1: Example images of the objects which were places in the outdoor
environment.

of the frames because of the problems related to spatial registration. For the
objects O; and Og, most of the failures were caused by inaccurate estimation
of the disparity maps. For objects O, and Oz, our ground plane segmentation
method sometimes produced incorrect results, such as labeling closer objects as
part of the ground plane. Nevertheless, since this was the same case for both
reference and secondary frames, the texture comparison module was successfully

able to detect the objects.

We performed a second experiment to observe the accuracy of the proposed
framework when we do not place any objects in the scene. This was based on ana-
lyzing frames where there were no objects introduced in the scene. Our framework

could recognize that there was no change with 92.18% accuracy.
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Video | Object | Viewable Detected Accuracy (%)
1D 1D Original | Refined | Original | Refined
Vs Oy 68 93 29 77.94 86.76
Vs Os 11 5 8 45.45 72.73
V28 O3 24 15 20 62.50 83.33
V3s Oy 21 12 17 o7.14 80.95
Vi Os 43 26 34 60.47 79.07
Vi Og 61 23 ol 37.70 83.61
Vs O7 57 45 93 78.95 92.98

Total 285 179 242 62.81 84.91

Table 5.2: Results on the test set. Disparity map refinement module notably
increases the change detection performance of the system.

Our third experiment was performed to assess how well the different decision
threshold models describe the change. The threshold MAD;‘thghold presented in
Section 4.1.2 can be computed to produce a desired true positive and false alarm
rate (i.e., false positive rate). The test is carried out using the models given in
Table 5.3, where Maz is the the maximum value of combined metric m values
calculated for each block in the registered ground plane images, p is mean of
m values, and o is standard deviation of m values. k; and ko are parameters
ranging from 0.00 to 3.00. Similar tests are performed to observe how well the
disparity enhancement threshold levelin eqnod (Section 3.2.5) and the region merg-
ing threshold MADeshoia (Section 3.2.7) perform. We use Receiver Operating
Characteristic (ROC) analysis to compare the different decision thresholds and to
observe effects of the disparity enhancement and region merging modules on the

system performance (Figure 5.2).

It is important to keep in mind that every change detection methodology in
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Figure 5.2: ROC analysis: (a) ROC curves for the various change detection de-
cision threshold models, (b) and (c¢) region merging and disparity enhancement
components of the change detection framework are evaluated individually.

one way or another must determine if a given value of change is of sufficient
strength to actually be called change. Figure 5.2 illustrates the ability to detect
the changes of interest for the various thresholds in the framework. The closer
the curve of a threshold approaches the upper left corner of the diagram, the
better the threshold performs. Sensitivity and false positives are typically at

odds with each other and are a strong function of the decision threshold. High
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Threshold Values/Model

Static MAD’ ¢, (r) 2.10, 2.15, 2.25, 2.50, 2.87, 2.90,
3.20, 3.60, 4.00, 4.50, 5.00, 5.70
Dynamic MAD?~¢ (12) wx (ky + -
threshold 1 2 1 n—o
Dynamic MAD?,"C . (73) k1 x Max
Dynamic MAD?;L;eGshold 3 (Ta) kisxpu+koxo

Table 5.3: Different threshold models used in the change detection module.

sensitivity is desirable in change detection algorithms. On the other hand, a
large fraction of false positives can cause unnecessary alarms which can lead to
significant performance loss. Thus, a good change detection technique should
have high sensitivity and a small fraction of false positives. False positives are
computed as the fraction of frames where the change is detected, while there were

no objects introduced in the scene.

The static threshold 7 and dynamic threshold modelr, outperforms the other
two dynamic models, yielding 0.86 true positive and 0.09 false alarm ratios. The
threshold modelty shows slightly higher sensitivity than the threshold modelr.
It is evident that the threshold models 7 and 75 can not perform well with a a

maximum sensitivity of only of 71.58% and 42.06%, respectively.

Results show that the disparity enhancement module achieves a maximum
sensitivity of 86.43% for a selected false alarm ratio of 9.16% when the sizesn,eshoid

is set to allow for a 20% change in the size and the value of levelip,esholg 1S set to
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be 30 where normalized disparity values range from 0 to 255.

Presenting consecutive registered frames and fused pair of images, is direct

way of showing the efficiency of an algorithm as a visual evaluation.

In Figure 5.3, we present change detection results in 8 consecutive frames
from the stereo video pair V4 — V4. We first warp segmented dominant planes
in V4 on top of the dominant planes in V4¢. Then, the estimated change mask is

superimposed on the fused images.

5.2.2 Results of Disparity Estimation using Temporal

Consistency Constraint

In Section 3.2.6, we present a way of integrating the temporal consistency con-
straint among the consecutive stereo frames into an energy minimization frame-
work. We perform three experiments to evaluate performance of our method for
different test cases using the stereo videos V17, V18 V2 Y25 V3 V35 V4 and

V4 (Table 5.1).

In Section 3.2.6, we propose an approach to estimate the disparity value of a

pixel in the previous frame using its location in the current frame in the sequence.

In this experiment, we use the stereo video pairs V" — Vs y2r _y2s y3r _y3s,
and V¥ — V4 to evaluate the performance of our method in a video change
detection framework. In Section 3.2.5, we propose a post-processing disparity

refinement strategy. In Section 5.2.1, we present how this approach improves the
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Figure 5.3: Illustrative examples of the change detection results in V4" — V4.

change detection accuracy. We now repeat the same experiment after we integrate
the temporal consistency constraint into the cost function. We report the change

detection results in Table 5.4.

Especially the increase in accuracy for the objects O; and Oy is very notable
because most of the failures for these two objects were resulted from the inac-

curate estimation of disparity maps in the post-processing strategy. We would
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Detected Accuracy (%)
Video | Object | Viewable Post- Energy Post- Energy
ID ID processing | Function | processing | Function
Vis Oy 68 59 62 86.76 91.18
Vs O, 11 8 8 72.73 72.73
V28 O3 24 20 20 83.33 83.33
V3s Oy 21 17 18 80.95 85.71
Vs Os 43 34 35 79.07 81.40
Vs Og 61 51 55 83.61 90.16
Vs Or 57 53 54 92.98 94.74
Total 285 242 252 84.91 88.42

Table 5.4: Comparison of change detection results with two different disparity
estimation approaches.

like to emphasize that in an energy minimization scheme, there may be several
constraints or external factors affecting the final solution. The advantage of us-
ing the optimization approach in computer vision problems is that it provides a
generic framework that enables us to incorporate different external factors in a
balance. An apparent disadvantage of our approach is that very fast motions and

the existence of very thin objects may cause errors.

5.3 Temporal Alignment

In Section 3.1, we propose a method for bringing two videos of the same scene
recorded at different times to a temporal alignment. Namely, given a frame in
one of the videos, the proposed method can find the corresponding frame, which
has the most similar view, in the other video. Our experiments were conducted

on one training (i.e., V4 — V%) and six test reference-secondary video pairs (i.e.,
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Vi Yl Y22 Y yBs Y5 s Y6 16 and VT — V75) recorded
by mobile platforms in different dynamic outdoor environments (e.g., rural and
urban) at daylight and night. In the videos, the mobile platform was driven in the
same lane; however, the position of the vehicle in the lane changed continuously
within a bound of +2 meters due to the driving conditions. Variations in the
camera location introduced significant changes in the viewpoints of the same scene

between reference-secondary videos (Figure 5.6(a)-(f)).

System parameters were set empirically on the training set extracted from the
training set to obtain good synchronization results, and the same parameters were
used for the rest of the videos. 45 pairs of corresponding frames from the training

reference-secondary video pair V4 — V** are selected. We denote the training set

)t 45

as x. x consists of 45 pairs of corresponding frames: x = {(I7, I7)"};2;.

RN

First of all, the ground-truth data for all the test videos are generated to
evaluate the performance of the video synchronization (i.e., temporal alignment)
approach quantitatively. For some frames of interest in the secondary video,
there is more than one corresponding frame in the reference video because some
reference frames are quite similar. The other reason for multiple correspondence
is the speed difference of the mobile platform between reference and secondary
videos. For example, for the video pair V¥ —V?* (Table 5.5), there are 1227 (i.e.,
1679—453+1) frame of interest between 13,55 and 7479, whereas the total number
of corresponding frames is 1385. We calculate temporal alignment error for a frame

in two different ways: 1) single corresponding frame and 2) corresponding frame
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interval. A corresponding frame interval is defined as the set of a few neighboring
frames around the corresponding frame. We follow this approach because of the
multiple correspondences mentioned above. In Figure 5.3, we present an example

result of the proposed temporal alignment method.

(¢) Superimposed Image

Figure 5.4: In (a) and (b), we present the result of the temporal alignment (i.e.,
corresponding frames) from the video pair V°" — V5%, In (c), we present spatially
registered superimposed images, where the transparent regions refer to the changes
between the corresponding frames.

Temporal alignment error is computed based on the difference between the

index of corresponding frame determined by the the proposed algorithm and the
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index of corresponding frame along with the frame interval in the ground-truth.
Let us denote a corresponding frame interval of a frame of interest I} as [I7 , I7 ],

where L and U refer to lower and upper, respectively. Let I7 denote the output

of the algorithm. The error function is defined as follows

0 if (j—7j.)* (ju —4) >0
erf(j) & (j—Jo)* (v —J) = (5.)

lj — ﬂ%\) otherwise.

Based on the error function, let us define the synchronization accuracy as the
ratio of the frame pairs with zero error to the total number of the frames. We first
evaluate the synchronization accuracy by assigning only a single corresponding
frame for every frame of interest. Then, we assign a frame interval to each frame
of interest. In Table 5.5, we present the temporal alignment accuracy results for
Single and Interval correspondence. The limitation of our approach arises from
two main reasons. First of all, when the mobile platform is driven along a route
in rural areas, the scene content among many frames is similar. In addition to
scene content, the error increases when the speed of the mobile platform is very
different between the videos. We compared our algorithm to the method proposed
by Diego et al. [56] on their most challenging video pair Highway2 (i.e., V°),
where they observed the worst synchronization accuracy. We should point out
that they tested this video with their algorithm using only vision based features
and obtained 64% accuracy. The accuracy is defined as the percentage of the
frames with zero error when a single corresponding frame in the ground-truth is

allowed. Our algorithm outperforms their result and synchronizes the same video
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with 79% accuracy. The accuracy increases to 87% when a frame interval is used

instead of a single corresponding frame.

To evaluate the effect of combining two one-class learners, we conduct a dif-
ferent experiment using a standalone SVM based one-class learner, a standalone
RNN based one-class learner, and the hybrid one-class learner. In a regular video
synchronization problem, once the initial match is found, the space and time
locality are taken into account, and the frame match is performed among the
neighboring frames as explained in the algorithm. In this experiment setup (Fig-
ure 5.5), to measure the synchronization accuracy of different one-class learner
models, we treat all the frames in the secondary videos as if they are the initial

frames, and we never use the local search window.
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Figure 5.5: In (a), we present a frame of interest in V!*. Our goal is to find
its corresponding frame in V. For experimental purposes, we examine a subset
of the frames in V¥ and compute the feature vector F ;o) for (I, I5y,), i =
1,...,786. Output values of SVM and RNN are given in (c). Due to the nature of
one-class learners, SVM maximizes and RNN minimizes the outputs for the most
similar frame pairs. In (b), we present the estimated corresponding frame.
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We observe that using the hybrid one-class learner decreases the average num-
ber of frames in the candidate pool from 28 frames to 22 frames. Furthermore,
we observe that the hybrid one-class learner selects better candidate frames and
results in more accurate synchronization. We observe that the stand-alone SVM
classifier has average accuracy of 79%, stand-alone RNN has 82%, and hybrid

one-class learner has 85% accuracy on the entire test videos.

Our experiments show that thresholded global DCT coefficients produces ex-
cellent results even when it is used for the synchronization of the frames, where
there is a large variety of changes in the scene content of the corresponding frames,
or there is a significant change in the view points. Examples of these cases are

shown in Figure 5.6.

The proposed feature descriptor is invariant to changes in the illumination
of the environment. Figure 5.6 (b) and (e), we present a pair of corresponding
frames where the illumination conditions are significantly different. The feature

descriptor is also robust to viewpoint changes (Figure 5.6(c) and (f)).
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Boundaries of the Synchronization
Candidate Frame Pool Mapping Set U Accuracy

Video for the Initial Match (%)
Pair PL Pu Initial Match Last Match Single Interval
Vir— v 132 149 (I001+10143) | (I3256-12760) 81 88
Vi — 2 1 18 (Ia53:10001) | (Lgro-I1sss) 84 92
Ve — 442 47l (L001-164 6) (Igrs 1as1) 91 95
vor — s 1 29 (Too06-10005) | (Hass, 1594) 89 94
Vor — o 558 585 (To001-X0576) | (11 14327 2117) 79 87
Vi — e 63 82 (Boo1:16071) | (Tass-L0553) 86 93

Table 5.5: Total number of the frames (Table 5.1) in the secondary and reference
videos of a pair are usually different because: 1) the speed of the mobile platform
between the recordings may dynamically change, 2) the mobile platform does not
follow the same trajectory, or 3) both. Candidate frame pool (Figure 3.1) contains
the frames from the reference video that are considered as similar enough to the
frame of interest in the secondary video by the hybrid one-class learner. It is also
possible that some frames in the secondary video may not have corresponding
frames in the reference video. For example, frames 1-452 in the secondary video
V2% do not have matches in the reference video V2. The initial match for this
pair is estimated as (I§;53,15001). When the one-class learner processes the frame
5453, it labels 27 frames (i.e., P, = 1 and Py = 27) in the reference video as
similar enough. These frames constitute the pool of candidate matches. Then, by
minimizing the similarity error in the pool, Iy, is selected as the corresponding
frame. ‘U denotes the mapping set which provides the pairs of corresponding
frames between reference and secondary videos. The first of the last elements of
the mapping sets are provided. Single synchronization accuracy refers to the case
when only a single corresponding frame is assigned to the frame of interest in the
ground-truth data. On the other hand, when multiple neighboring frames (i.e.,
corresponding frame interval) are assigned to the frame of interest, the case is
called interval. In the interval case, the accuracy increases as expected.
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(a) 576 (b) 200 (c) L3200

(d) Tis16 (e) Tryg (f) Tas

Figure 5.6: Challenging corresponding frame pairs successfully matched. Frames
(I376,I1516) given (a) and (d) exhibit large region of change. In (b) and (e), the
frame pair (I559,1549) presents a case that shadow regions within the images are
significantly different due to weather conditions. In (c) and (f), the viewpoint
between the corresponding frames (I550,17643) changes significantly.

5.4 Change Detection in Dynamic Scenes

In Section 4.2, we propose an algorithm that is able to detect changes in outdoor
scenes where the background has several altering elements that may cause false
alarms. We perform experiments to evaluate performance of the change detection
using the monocular videos V8, V9 V10 V11 112 and V13 (Table 5.1). Videos
contain scenes with highly varying elements in the background such as shimmering

water, fountains, and blowing trees (Figure 5.4).

The dataset includes a comprehensive set of annotated ground-truth change
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(d) Vll (e) V12

Figure 5.7: Test videos with dynamic scenes.

areas to enable a precise quantitative evaluation.

5.4.1 Base Transform Estimation

The proposed method requires the estimation of suitable base transform for differ-
ent types of ordinary change patterns. In Table 5.6, we present the ratio of regions
modeled by different base transforms. The type of the estimated base transform
can also be a good descriptor for the scene content. For example, DCT is known
to have strong energy compaction property when applied to natural images [159].

In the videos V' and V2, there is a notable decrease in the overall use of DCT.
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Video | Dynamic Background Description Estimated Base Transform (%)
DCT WHT SL
V8 shimmering water, blowing bushes 63.75 2.16 34.09
Vo shimmering water, blowing trees 61.00 1.66 37.34
V10 blowing trees 55.48 8.92 35.60
yi fountain, shimmering water 27.00 8.44 64.56
V12 fountain, shimmering water, blowing bushes 36.00 14.81 49.19
Vi3 shimmering water, blowing trees 52.58 5.16 42.26

Table 5.6: DCT, WHT, and SL are the base transforms: discrete cosine, Walsh-
Hadamard, and Slant. We present the results of the transform estimation for the
backgrounds in the six test videos. For example, in video boats 63.75% of the
frame region is modeled by DCT. The type of the base transform used for the
background actually gives hint about the scene content.

This is because of the fountains which jet water into the air, causing artificial or-

dinary change patterns. This result stresses the importance of employing different

base transformations with complementary basis vectors.

5.4.2 Quantitative Evaluation of Salient Change

Detection

A precise validation of a change detection method requires ground-truth at pixel
resolution. Let p,. denote a pixel in a region of salient change, and let p,. denote
a pixel in a region of ordinary change. If a change detection method labels ps.
as salient change, this case is called true positive (TP), and false negative (FN),
otherwise. If a change detection method labels p,. as ordinary change, this case is

called true negative (TN), and false positive (FP), otherwise. For the entire test
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V8 V9 VlO Vll V12 V13
Number of Test Frames | 6,100 | 390 | 3,001 | 785 | 1,000 | 2,001 | Average
Specificity (%) 99.96 | 99.74 | 99.96 | 99.49 | 99.95 | 99.99 99.83
Accuracy (%) 99.82 | 99.59 | 99.88 | 99.38 | 99.93 | 99.98 99.76

Table 5.7: The proposed method is able to identify ordinary changes with 99.83%
specificity.

set, a joint probability value Pxy less than 0.33 is considered as an evidence that
there is a salient change. Table 5.7 shows specificity and accuracy results at the

pixel level.

ChangeDetection.net uses seven metrics to rank different change detection
methods. Let us here present the two of the metrics, Recall (Re) and Precision
(Pr), to compare our method to the other methods under the dynamic background
category. The details of all the metrics and the ranking are presented in [69]. Re
and Pr are given by: Re = TPZ% and Pr = %. We present the comparison

of our method to the three methods having the highest ranking for the dynamic

background category on ChangeDetection.net in Table 5.8.

The major limitation of our method is that estimating base transforms requires
a set of frames without salient changes. This a common issue for data-driven ap-
proaches. There may be scenarios where capturing training frames is not feasible.
Another limitation arises from cube based computations, which may cause block-
ing artifacts. Compared to other methods demonstrated on the same test videos,

our method shows significant improvement in change detection results.
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Method 1% 1% yil % yis yo Average
(Ranking) Re | Pr Re | Pr Re | Pr Re | Pr Re | Pr Re | Pr Re | Pr
[75] (4.71) | 0.63|0.92 | 0.95/0.79 | 0.99/0.68 | 0.80|0.50 | 0.96|/0.86 | 0.99|0.92 | 0.89|0.78
[134] (5.71)| 0.75/0.82 | 0.89/0.92 | 0.82|0.90 | 0.63|0.15 | 0.89/0.93 | 0.94 |0.87 | 0.82|0.76
[96] (6.14) | 0.53|0.97 | 0.79|0.99 | 0.91]0.89 | 0.86(0.40 | 0.86/0.98 | 0.70]0.92 | 0.77|0.86

Ours (2.14)‘ 0.78‘0.93 ‘ 0.96‘0,93 ‘ 0.93 ‘0.77 ‘ 0.81 ‘0.58 ‘ 0.96‘0.98 ‘ 0.95 ‘0.97 ‘ 0.90‘0.86 ‘

Table 5.8: In this table, we compare Recall (Re) and Precision (Pr) values of
the top-three methods under the dynamic background category on ChangeDetec-
tion.net to ours. On the far left, we provide the rankings of each method. The
overall ranking of a method across seven metrics is computed by taking the av-
erage of its ranking for each metric. The overall ranking of our method is 2.14,
and the proposed method outperforms other 23 methods demonstrated for the
dynamic background category on ChangeDetection.net (ranking results retrieved
on June 2013).
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Chapter 6

Conclusion

This dissertation has presented a set of methods for analyzing the regions of
change between videos of the same environment recorded at different times: 1)
temporal alignment of the unsynchronized videos, 2) estimation and refinement of
the disparity maps using temporal consistencies, 3) segmentation of the dominant
plane in the scene, 4) estimation of spatial transform for the dominant plane, and
5) detection of relevant changes in the presence of several altering background

elements.

The ultimate goal of these methods is to be able to reliably detect all relevant
changes between a recent video and a reference video of the same scene captured at
different instances and/or from different viewing angles in an automated pipeline.
There are a number of areas of applications, such as video surveillance, medical

diagnosis, condition assessment, remote sensing, and driver assistance systems,
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which may benefit from this ability. We here summarize our contributions to the
field of spatiotemporal alignment by implementing this system and present the

future work in this research area.

6.1 Summary of Key Contributions

Our primary contribution is a framework for spatially and temporally aligning
videos. Spatial and temporal registration of the videos enables integration of
information across multiple videos. The ability to align and integrate information
across multiple videos both in time and in space can be applied to many real world

scenarios. The following is a summary of our key contributions and novelties.

A vision-based change detection framework.

A method for utilizing sequential depth information for refining disparity

maps.

A method for integrating temporal disparity consistency constraint into en-

ergy minimization framework.

A method for temporal alignment of videos which are recorded by a mobile

platform following unknown trajectory at different instances.

A method for spatial registration of scenes where complex image geometry

and parallax are present.
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e A method for detection relevant changes in the presence of several altering

background elements.

e A method for efficacy comparison of unitary discrete transformations.

6.2 Future Work

In this section we mention potential additions or modifications to this dissertation

which could provide topics of future research.

In Section 3.2.2, we discuss the methods for disparity estimating from single
or a set of monocular images using motion and monocular cues. The problem
of learning the depth from monocular images has not been extensively studied
in the literature. Investigating new approaches for this problem would be highly

beneficial.

In Section 3.2.6, we describe a way of integrating the temporal consistency
constraint into an energy minimization framework. Nonetheless, there is a lack of
the availability of a large ground-truth data for the disparity values of consecutive
stereo frames. Considering the stereo videos available, it would be beneficial to
prepare such ground-truth images for the research community working on the

correspondence problem.

In Section 3.2.8, we assume that the change will occur within the dominant

plane in the scene. Nonetheless, there may be cases where the regions of the
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change are part of other planes in the scene. Therefore, introducing segmentation
for all the planes in a frame and extending the spatial alignment method to the
entire frame may improve the registration framework dramatically. Accordingly,

the limitation because of the registration module would be overcome implicitly.

In Section 4.2.3, we propose a method for extracting spatiotemporal signatures
of the local ordinary change patterns. Further improvements could be made to
the set of base transforms in order to better capture different types of the change
patterns. Similarly,the transform estimation scheme may be enhanced by improv-
ing the transform selection criterion. The proposed method may be extended to a
background modeling algorithm by continuously updating the transformation ma-
trix T with each new frames beyond the video subset V,. With this extension, the
proposed method become capable of incorporating new types of ordinary changes

into the background of the scene.
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