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ABSTRACT 

Highly focused and directional beams of electromagnetic radiation can be obtained 

using a two-dimensional periodic leaky wave antenna (2D periodic LWA) formed by a 

periodic arrangement of metal patches on a grounded dielectric layer, excited by a simple 

source such as a slot in the ground plane. The slot in the ground plane launches a radially-

propagating (cylindrical) TM0 surface wave, guided by the grounded substrate. This 

surface wave becomes perturbed into a leaky wave due to the periodic patches, resulting 

in radiation from a higher-order space harmonic (Floquet wave) of the leaky wave, 

producing a beam that is asymmetric, being narrower in the E plane than in the H plane. 

Such structures are extremely simple in construction and can produce very narrow beams 

at broadside. The leaky wave propagates anisotropically, having a complex wavenumber 

that varies with the angle of propagation. One of the goals of this investigation is to 

characterize the wave propagation and radiation characteristics of this class of 2D 

periodic leaky-wave antennas, and to show how the beam properties can be optimized.  

The phenomenon of directive beaming at optical frequencies using a periodically 

corrugated plasmonic metal (e.g., silver) film can be explained and studied in terms of 

leaky plasmon waves. The structure usually consists of a periodic set of grooves 

surrounding a subwavelength aperture in a thin silver film. At optical frequencies the 

silver has a negative permittivity due to plasmonic behavior, allowing for the guidance of 

a plasmon wave (similar to the TM0 surface wave that propagates on a grounded substrate 

layer at microwave frequencies). The grooves perturb the cylindrically propagating 

plasmon wave that is launched by the subwavelength aperture. Therefore, the structure 
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has a physical principle of operation similar to the periodic metal-patch LWA at 

microwave frequencies. The theory developed for the microwave LWA discussed above 

is applied to the plasmonic directive-beaming structure to illustrate its fundamental 

principle of operation, and to show how it can be optimized. 
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CHAPTER 1     INTRODUCTION 

A leaky-wave antenna can be thought of as a guided-wave structure that has been 

modified to gradually leak out power from the guided mode along the direction of 

propagation of the guided mode. The power leakage is dependent on factors like the 

geometric parameters of the structure with respect to the wavelength of operation, the 

materials comprising the guiding structure, the frequency of operation, and the guided 

mode from which the leakage occurs. Leaky-wave structures can be designed to produce 

narrow beams that scan over a range of angles from broadside to endfire. The attenuation 

constant, due to the leakage of power, and the phase constant need to be carefully 

considered in designing these antennas, and therefore their design is fairly complicated. A 

2D leaky-wave antenna design is more complicated than that of a 1D leaky-wave 

antenna, and therefore it becomes necessary to carefully study the behavior of these 

structures. Understanding the fundamental principles of operation of the 2D leaky-wave 

antenna is very important in order to design these antennas.  

Various books and book chapters cover the basics of leaky-wave antennas (LWAs) 

[1–7]. The first leaky-wave antenna was a waveguide with a slit along its side [8, 9], 

being a 1D uniform LWA. After that came waveguides with closely spaced holes instead 

of a slit, which produced narrower beams by having less perturbations per unit length 

[10], being a 1D quasi-uniform LWA. A 1D periodic LWA called the “sandwich wire 

antenna” [11] was studied but was found to be not practical. In [12] the concept of 

introducing a uniform or periodic asymmetry to turn a waveguide or transmission line 

structure into a leaky-wave antenna was first introduced. Oliner and others did much 

work on 1D LWAs, and a comprehensive report was published [13].  
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Von Trentini began work on 2D LWAs using a 2D periodic partially reflective 

screen over a ground plane in order to produce narrow pencil beams at broadside [14]. It 

was the first quasi-uniform 2D LWA, although it was not recognized as such. Jackson 

and Alexopoulos studied uniform 2D LWAs consisting of a superstrate over a grounded 

substrate in [15, 16], though again it was not originally recognized that this structure was 

acting as a 2D LWA. This structure was further analyzed by Jackson and Oliner in [17, 

18] from a leaky-wave point of view. A 2D LWA using a partially reflective surface was 

further explored in [19] using different kinds of elements. The radiation characteristics of 

a 2D quasi-uniform LWA with metal patches and slots was studied in [19, 20]. Since 

then, metamaterial structures have also been used in the design of LWAs [22 – 25]. 

1.1   Background and Motivation  

In the area of optics, the phenomenon of directive beaming of light through a sub-

wavelength aperture has been observed, wherein a beam of light incident on the sub-

wavelength aperture in a thin sheet of a plasmonic metal such as silver emerges on the 

other side as a highly directive narrow beam of light. This occurs when the sub-

wavelength aperture is surrounded by a periodic set of optimized grooves on the exit 

surface. When the entrance face of the metal sheet is similarly covered by an optimized 

periodic distribution of grooves around the aperture, there is an enhancement of the 

power transmitted through the aperture. This optical effect is known as enhanced 

transmission of light through a sub-wavelength aperture and is related to the directive 

beaming effect by reciprocity. Usually the periodicity of the periodic structure placed 

around the aperture is optimized for maximum radiation at broadside, but it can also be 
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designed to produce beams with different scan angles. It has been shown that this 

phenomenon is due to leaky-wave radiation from a surface plasmon wave supported by 

the metal film [26, 27]. Therefore, leaky-wave theory has been found to be successful in 

the design and optimization of the 1D plasmon structures and in predicting their behavior. 

In this work we shall apply the concepts of 2D leaky waves to predict the behavior of 2D 

periodic plasmon structures. The surface plasmon mode in the plain metal film becomes 

leaky due to the presence of a 2D periodic corrugation at the surface. 

1.2   Review of Previous Work 

Much research has been done in the area of leaky-wave antennas and some 

interesting designs have emerged, and various methods and approaches for analyzing 

these structures have been proposed and demonstrated. Some of these previous works 

that are relevant to the present study are discussed here. 

In [28], a linear printed circuit LWA has been explored for microwave and 

millimeter-wave applications. Here modal analysis was performed on the unit cell, based 

on the spectral-domain method. The beam-scanning properties of the LWA were studied 

in terms of spatial harmonics as a function of both phase shift and spacing between the 

periodic elements. This work explored the transition region between the surface wave and 

leaky wave regimes, and the formation of grating lobes due to the presence of additional 

complex improper modes. This work also analyzed the radiative properties of a linear 

array of microstrip LWAs, with focus on the occurrence of grating lobes in the pattern. A 

parametric analysis was also done on the dispersion behavior as a function of the phase 

shift and geometry. 
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Recently, substrate integrated waveguide (SIW) leaky-wave antennas have become 

popular. In [29] a new slotted substrate integrated waveguide (SIW) leaky-wave antenna 

is constructed by including a periodic set of centered transverse slots on the top surface of 

the SIW, in order to interrupt the current flow on the top conductor and produce leakage 

from the TE10 mode of the SIW. This structure is found to have a leaky mode, a proper 

waveguide mode, and a surface-wave type of mode all propagating on the structure. This 

work studied the design of a uniformly slotted SIW leaky-wave antenna that has a 

frequency dependent beam scanning from near broadside to forward endfire. This type of 

antenna has a wide impedance bandwidth and a narrow beam that scans with frequency. 

When the beam scans away from endfire, the radiation is coming from the leaky-wave 

mode. When the beam scans to endfire, the radiation is due to a combination of the 

proper waveguide mode and the surface-wave mode, in addition to the leaky mode. 

Another design for an SIW LWA [30] consists of a periodic arrangement of metallic vias 

where an open periodic waveguide structure supports the propagation of leaky-wave 

modes when the distance between the vias is large. It is seen that the leakage loss of the 

structure increases with distance between the vias. In this work the leakage loss is studied 

and is used to design a leaky-wave antenna based on the SIW structure. This can find 

application at millimeter-wave frequencies. The finite difference frequency domain 

method was used for analyzing the periodic leaky-wave antenna, and two modes were 

identified and analyzed – TE10 and TE20. In this work a novel concept was applied, which 

utilizes the fact that the leakage loss increases as the via separation is increased, which 

enables the formation of leaky waves in the structure. The radiation properties of the 

leaky TE20 mode were found to be better than that of the TE10 mode.  
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In [31] an array factor approach was proposed for fast and efficient computation of 

the radiation pattern of complex metamaterial leaky-wave structures of arbitrary size. 

This method is based on the analysis of a single periodic unit cell of the structure.  

A novel design of a leaky-wave antenna with a double-strip grating is proposed in 

[32], which consists of two strips per unit cell. With this design the stopband behavior 

around the broadside scan region can be almost (but not completely) eliminated. 

Therefore, this leaky wave antenna is able to scan from backward end-fire to forward 

end-fire without any large frequency range of high attenuation. 

A full-wave numerical approach for the modal analysis of 2D printed periodic 

structures on a grounded dielectric slab was presented in [33]. The proposed method 

allows the analysis of an arbitrary metallization in the unit cell over a grounded dielectric 

substrate. The method is based on a mixed-potential integral equation using the method 

of moments in the spatial domain to solve the integral equation.  

Another full-wave numerical analysis method for the modal analysis of 2D periodic 

planar structures on a grounded dielectric slab with arbitrary metallization in the unit cell 

was introduced in [34]. Leakage effects are accounted for by choosing the correct path of 

integration in the spectral domain for each spatial harmonic. 

The radiation patterns from a 2D Electromagnetic Band Gap (EBG) structure were 

studied in [35]. The structure consists of a metallic strip grating over a grounded 

dielectric substrate excited by a line source. This structure is theoretically studied with a 

full-wave spectral analysis, solved using the method of moments.  

For aperiodic problems, the “array scanning method” (ASM) was used to find the 

solution from the corresponding periodic problem where the line source is also 
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periodically duplicated. Excitation of both proper and improper leaky-wave modes were 

investigated in this work. The Kirchoff-Huygens integral was used to calculate the 

radiation pattern due to the leaky wave from the complex propagation constant of the 

leaky wave. They found that the TM case allowed a small range of scanning angles due 

to a strong variation of the modal leaky-wave wavenumber with frequency. On the other 

hand, the TE case had a moderate variation of the modal leaky-wave wavenumber with 

frequency, so it had a wide range of scanning angles, with beam that scanned close to 

broadside. Overall, scanning from near end-fire to near broadside with a nearly constant 

beamwidth was obtained. 

In [36], an equivalent transmission line model was developed using linearized series 

and shunt immitances to approximate the periodic (Bloch) structure of a periodic LWA. 

Based on that, asymptotic transmission line formulas were derived that characterized the 

propagation constant, impedance, energy, power, and quality factor for near broadside to 

off-broadside radiation in either the forward or backward directions. Then it was shown 

that for radiation at broadside, the total power in the series and shunt elements are always 

equal. Therefore there would be a fair amount of degradation in broadside radiation when 

only one of the two elements, either series or shunt, is responsible for the radiation and 

the other dissipates the energy. A condition for optimum broadside radiation was 

presented that is also found to be identical to the Heaviside condition for distortionless 

propagation in transmission line theory.  

In reference [37], the mixed-potential integral equation along with the method of 

moments was used to analyze a 1D periodic leaky-wave antenna in a layered media. The 

unit cell contains an arbitrary 3D shaped metallic or dielectric structure in a layered 
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media. This method considers both periodic electric and magnetic current sources, 

including vertical current sources, and calculates both bound and leaky-mode 

wavenumbers. 

In [38] a simple perturbation analysis is used to study the fields generated by a 

planar periodic leaky-wave antenna based on the perturbation of the surface-wave fields 

from a slot exciting a grounded dielectric substrate. The periodic LWA consists of a 

circular metallic grating on top of a grounded dielectric substrate, which causes the 

perturbation of the surface wave. Radiation is achieved using a fast n = −1 space 

harmonic. In order to characterize the complex radial wavenumber that corresponds to 

the leaky mode, a perturbation analysis was done on the surface wave excited by a slot in 

the grounded dielectric slab. 

Reference [39] introduced a method to find the dispersion characteristics of open 

periodic structures. This method is based on the reflection pole method. When 

illuminated by a plane wave, the poles of the reflection coefficient will be the leaky or 

bound modes of the open waveguide structure. Here, the modes are tracked by varying 

the incident angle of the plane wave, and in case of low loss structures, the poles are 

detected based on the frequencies at which the surface impedance of the open structure 

resonates. In the slow-wave region, inhomogeneous plane wave incidence is used and a 

reflection coefficient is obtained that is greater than unity. 

A leaky-wave antenna consisting of a metallic grating of concentric annular rings fed 

by a non-directive TM0 surface wave source is presented in [40]. This antenna is meant 

for two-sided continuous beam scanning and directive pencil beam radiation at broadside. 

To ensure only the leakage of the TM0 field and its radiation into the far-field region, the 
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launching of a TE polarized field distribution is suppressed over a large bandwidth by 

choosing the right grating periodicity and sectoring (which involves the removal of 

portions of the grating and the ground plane) of the 2D guiding structure. This antenna 

could be used for radar systems and communication applications. Suppressing the TE 

polarized surface wave launched by the source can increase the gain, minimize reflection 

losses, and reduce cross-polarization levels. 

The design of a conformal leaky-wave antenna (CLWA) with a metal strip grating 

that utilizes a backward-radiating leaky wave to focus the beam is done in [41]. This 

work demonstrates that it is possible to get proper focusing of the beam towards 

broadside in spite of a smoothly curved aperture by modulating the periodicity of the 

metal strip grating. Using a bi-directional wave results in a doubling of the aperture but 

the directivity is also doubled. A simple 2D Fourier series analysis was used to interpret 

the radiation physics. One of the CLWA that was designed had different parts of the 

structure operating in the forward, open-stopband, and backward regions. All three 

sections corresponding to these three operating regions were modulated for radiation at 

broadside. It was also found that unlike the planar case, the open-stopband was not a 

problem for the LWA with curvature. 

There have been several studies done on the Fabry-Pérot leaky-wave antenna, which 

has a partially reflective surface (PRS) over a grounded dielectric slab [42, 43]. This class 

of antenna has a structure that is somewhat similar to the periodic leaky-wave antenna 

discussed in this dissertation, and some of the fundamental physics is the same; but it has 

a very different mode of operation. Some of these Fabry-Pérot antennas have an artificial 

magnetic conductor (AMC) as the ground plane instead of the usual electric conductor as 
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the ground plane [44, 45]. This serves to reduce the height of the antenna structure. 

Reference [46] demonstrates a simple way to solve for the complex wavenumber and 

therefore the dispersive characteristics of a thin periodic 2D Fabry-Pérot leaky-wave 

antenna. This method eliminates the process of root-finding in the complex plane to get 

the leaky-wave complex wavenumber. This technique employs the method of moments 

and reciprocity in combination with array theory to get the complex dispersion 

characteristics. This technique is applicable for high gain planar leaky-wave antennas 

using PRS or AMC surfaces. However, this method does not work when grating lobes are 

present.  

The motivation for the present research in this dissertation comes from the area of 

plasmonics, from the phenomena of directive beaming and enhanced transmission. 

Therefore, some of the most relevant research in this area is described below. 

In [47] the link between the phenomena of extraordinary transmission and surface 

plasmons is noted. It is shown that the enhanced transmission is due to the coupling of 

light to the surface plasmon.  

The fundamental physics behind the phenomena of directive beaming from a 

subwavelength aperture in a thin silver film is explored further in [48]. This reference 

points out that light passing through a subwavelength aperture would normally spread 

uniformly in all directions as it emerges through the small aperture that does not transmit 

light well. With periodic grooves on the surface of the silver film on the exit face, the 

transmitted light emerges as a highly directional and collimated beam. This reference 

identifies the excitation of surface plasmons that are diffracted by the grooves and 

produce the directional beam. In this reference a bull’s-eye structure was studied. 
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Some of the most seminal works establishing the link between leaky waves and 

directive beaming were presented in [26] and [27]. Reference [27] provides a 

fundamental explanation for the directive radiation from a sub-wavelength aperture in a 

silver film surrounded by corrugations on the exit face, in terms of leaky-waves. This 

investigation provides evidence that the distribution of fields along the interface and the 

radiation from the structure is due to a leaky plasmon wave on the silver film. This work 

also showed that the 1    relation holds for this structure in order to achieve 

maximum power density radiated at broadside, as it usually does in the case of leaky-

wave radiation. A method to approximately calculate the radiation efficiency was also 

proposed here. In [26] the open stop band effect was described in detail, and it was shown 

that the directive beaming and enhanced transmission effects are related to each other by 

reciprocity. 

The phenomena of enhanced transmission in a silver film by placing concentric ring 

nanoslits on the surface of the silver film was further explored in [49]. This structure was 

found to result in the generation of both radially and azimuthally polarized light, and the 

transmission through the structure was found to have spectral and spatial inhomogeneity. 

The work in [50] provides a semi-analytical theoretical basis for the operation of a 

plasmonic structure made of a nano-slit aperture surrounded by surface corrugations, in 

terms of two nested coupled surface plasmon polariton modes. This leads to figures of 

merit defined for the structure, relating the structural parameters to the normal or oblique 

wave incidence or beaming. This allows for an easy optimization of the structure and a 

performance prediction. 
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Then, in [51] there was given a practical application of an optical antenna formed 

with a concentric ring grating around a subwavelength aperture, also known as a “bull’s-

eye” structure. This grating improves the coupling of the incident illumination to the 

antenna, even when it is focused by an aplanatic lens and the beam that is produced is 

restricted to a small solid angle and is well-collimated. 

The different ways to tweak the parameters to optimize the bull’s-eye structure were 

explored in [52]. Both an experimental and theoretical study were done and the resonance 

intensity variations dependent on different geometrical parameters were explored to see 

the patterns and form rules for the optimization of the transmission properties. 

In [53] the corrugations in the bull’s-eye structure were placed in such a way that 

there is maximum leakage of radiation to the sides. Then, some secondary corrugations 

are added at some distance from the source, which cause reflection of these leaky waves 

thus trapping the leaky waves and producing standing waves with a strong optical 

(particle) trapping. 

A method to convert surface plasmon polaritons into leaky-wave modes that produce 

radiation by using a periodic array of plasmonic nano-scatterers is demonstrated in [54]. 

The structure consists of a subwavelength slit placed next to an array of periodic gratings, 

which couples the energy from the slit into leaky plasmon waves. The coupling between 

the excitation and the surface plasmon polarition can be maximized by varying the slit 

width and the angle of excitation in order to channel the excitation more towards the 

grating side. This also has the advantage of suppressing slit diffraction. 

In [55] a split bull’s-eye nanometer germanium antenna was designed to function as 

a photodetector. Here aluminum was used, which is a non-traditional plasmonic material, 
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in order to form the antenna structure that was meant for applications in optoelectronic 

devices. The new design, with the bull’s-eye structure split in two halves, with a nanogap 

in between, can result in a significant enhancement in absorption over the area of 

illumination, allowing for a reduction in the grating area required. An optical leaky-wave 

antenna formed out of the semiconductor silicon was designed and analyzed and then 

integrated within a Fabry Pérot resonator in [56] in order to obtain better performance 

and better control over the intensity of radiation. 

In [57], an optical leaky-wave antenna was introduced that consists of a silicon 

nitride dielectric with periodic silicon semiconductor corrugations. This structure 

produces a narrow beam radiation because of leaky wave present in the structure. This 

work also showed that by means of carrier injection in the semiconductor corrugations 

the antenna can be electronically tuned. 

The design of a low profile horn antenna [58] was inspired by the optical leaky-wave 

antenna construction, taking advantage of the leaky waves to produce radiation. In this 

design a subwavelength aperture was placed in the middle of periodic concentric ring 

corrugations on a conducting plate. The aperture in the center was fed by a waveguide. 

This antenna operates on the principles of enhanced transmission/directive beaming and 

produces a narrow beam of radiation with a high gain. A bull’s-eye corrugation is 

integrated with an artificially soft surfaces structure into the ground plane of a microstrip 

patch antenna to prevent diffraction from the edges and improve the pattern in [59]. 
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1.3   Leaky-Wave Theory 

A leaky-wave antenna operates by gradually leaking out energy from a guided mode 

or travelling wave. The wavenumber of the leaky guided mode along the direction of 

propagation (z-axis) is taken to be 
zk j    where   is the phase constant and   is 

the attenuation constant. A 1D leaky-wave antenna is one where the leaky guided mode 

travels in a fixed direction (called z). A 2D leaky-wave antenna is one where the leaky 

guided mode propagates out in a radial direction as a cylindrical wave. 

Classification of leaky-wave antennas 

Uniform The antenna is structurally uniform along the direction of propagation of the 

guided wave. The leaky-wave antenna radiates through one of the fast-wave modes of the 

waveguide, i.e. 0k  . One of the most common examples of a 1D uniform LWA is a 

waveguide with a narrow slit along its length, or a wide microstrip line operating in its 

first higher-order mode, which is a fast-wave. 

Periodic A waveguiding structure is used that supports a non-radiating guided wave that 

is a slow wave. When periodic discontinuities (in the form of metallization, slots, changes 

in permittivity, etc.) are introduced into the waveguiding structure, the guided mode is 

perturbed into an infinite number of space harmonics known as Floquet modes. The 

wavenumbers of the Floquet modes are periodically spaced. For a 1D LWA the phase 

constants are 0 2n n p    , where p is the periodicity of the structure, n  is the phase 

constant of the nth space harmonic, and 0  is the phase constant of the fundamental mode 

or the 0th space harmonic.  One of these Floquet modes, usually n = −1, can be designed 
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to be a fast wave and thus become leaky and radiate, making a leaky-wave mode out of 

the mode on the waveguiding structure. The structure is designed so that the n = −1 space 

harmonic is the only space harmonic that radiates, forming a single beam that can scan 

from broadside to endfire in both the forward and backward directions, unlike the 

uniform LWA that is usually limited to scanning only in the forward direction. 

Quasi-Uniform Quasi-uniform LWAs are geometrically similar to the periodic LWAs 

and also have infinite number of space harmonics or Floquet modes. However, they 

behave as uniform leaky-wave antennas. The quasi-uniform LWAs have a period that is 

much smaller than a wavelength, i.e. 0p  . Therefore the higher-order Floquet modes 

are all slow waves. The quasi-uniform LWA radiates from its fundamental Floquet mode, 

which is a fast wave. 

1.4   Proposed Structure of the 2D Periodic Leaky-Wave Antenna 

The structure that is proposed and studied here in the present work is shown in Fig. 

1.1. It is a 2D periodic leaky wave antenna with a periodic arrangement of patches in a 

2D rectangular lattice on the surface of a grounded dielectric. The plasmonic structure 

that is examined to study the phenomena of directive beaming has a similar geometry 

with the patches replaced by grooves of the same shape and no ground plane; also the 

dielectric (silver) has much higher loss than the microwave case, and it has a negative 

permittivity. The grooves are modeled as conducting patches for the mathematical 

analyses. 
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Fig. 1.1.  Schematic of the 2D periodic leaky-wave antenna under consideration. 

The structure considered here consists of a grounded dielectric slab with a 2D 

rectangular periodic arrangement of metal patches on the upper surface. The periodicity 

in the x direction is a and that in the y direction is b. The dimension of the patches in the x 

direction is L and that in the y direction is W. The height of the dielectric substrate is h 

and is chosen to be such that only a TM0 surface wave would propagate when the patches 

are not present. The relative permittivity of the substrate is r . A magnetic dipole source 

is located at z = –hd, x = –a/2, and y = 0. For the plasmonic structure at optical 

frequencies, there is no ground plane and the position of the magnetic dipole is taken to 

be at the surface of the dielectric slab since the subwavelength aperture is located at the 

surface of the dielectric, i.e., at z = 0. 
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1.5   Organization of the Dissertation 

The present chapter, Chapter 1, “Introduction,” introduces the subject of the 

dissertation, namely 2D periodic leaky-wave antennas in the microwave and optical 

regime. It talks about the background and motivation, some of the related work done in 

this area so far, the general leaky-wave theory, the geometry of the antenna structure 

under consideration, and the organization of the dissertation. 

The next chapter, Chapter 2, “Theoretical Foundation,” goes into the details of the 

theoretical analyses. It explains in details all the methods of analysis and theoretical 

approaches with the relevant mathematical formulations, for studying the 2D periodic 

leaky-wave antenna under consideration. The methods discussed here are (i) the spectral 

domain immittance method and reciprocity, (ii) the array scanning method, and (iii) CAD 

formulas for LWAs. This chapter also includes a theoretical discussion of the grating 

lobes that appear on this type of structure, and their origin. 

Chapter 3, titled “Radiation Characteristics of the 2D Periodic Microwave Antenna,” 

presents some of the radiation properties observed for the 2D periodic leaky-wave 

antennas, including optimization of the design, radiation patterns, comparison with the 

CAD formula, the cross-sectional characteristics of the main beam of the pattern, and the 

variation of the beamwidths and the enhancement factor with the size of the patches. It 

also presents the bandwidth, figure of merit, and normalized tolerance of the 2D periodic 

LWA for some cases. 

Chapter 4, titled “Properties of the Leaky Wave in the 2D Periodic Microwave 

Antenna,” investigates the modal analysis and dispersion properties of the 2D periodic 
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leaky-wave antennas, the characteristics of the radiating leaky mode, and the grating 

lobes that are observed, and presents some results related to these properties. This chapter 

also includes a discussion about the radiation efficiency of the antenna along with some 

results. 

In Chapter 5, “Plasmonic Structure – Directive Beaming at Optical Frequencies” the 

equivalent plasmonic structure is studied using some of the same methods that were used 

for the 2D periodic leaky-wave antenna, examining the radiation characteristics and 

modal properties of the 2D plasmonic structure and presenting some results. 

Chapter 6 is titled “Summary and Conclusions”, and it summarizes the entire 

dissertation and provides a number of conclusions drawn from the results presented in 

Chapters 3, 4, and 5. All the references are provided at the end of the dissertation. 
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CHAPTER 2     THEORETICAL FOUNDATION 

2.1   Nature of the Leaky Waves 

When there are no patches present on the surface of the grounded dielectric slab, and 

the slab is excited by a slot in the ground plane along the y-axis, a surface wave is excited 

within the slab as shown in Fig. 2.1. The height of the substrate is chosen such that only 

the TM0 surface wave is excited in the slab. Therefore, the height of the substrate needs 

to be below the cutoff of the TE1 surface-wave mode. The height or thickness of the 

dielectric slab h, having a relative permittivity εr, should therefore be restricted as (where 

0 is the free-space wavelength) 

 0 4
.

1r

h






  (2.1) 

The y-directed slot in the ground plane, which can be modeled as a y-directed 

magnetic dipole, excites the TM0 surface wave in the grounded dielectric slab as a 

cylindrical wave propagating radially outward from the source. So the resulting z-directed 

electric field distribution due to the surface wave will be of the form 

 cos ,TM

z TME A    (2.2) 

where ATM is the amplitude of the z-directed electric field. The strength of the surface-

wave field launched by the magnetic dipole varies with angle ϕ. Therefore, the surface 

wave is strongest when propagating along the x-axis (ϕ = 0) and much weaker along the 

y-axis (ϕ = 90
o
). In Fig. 2.1 the green wedge region around the x-axis represents the 

region where the surface wave carries the most energy. 
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Fig. 2.1.   Distribution of the surface-wave field over the 2D periodic leaky-wave antenna 

structure, when excited by a horizontal magnetic dipole. 

When the surface of the grounded dielectric slab has periodic patches present, as in 

the case of the present structure, the surface wave gets perturbed into an infinite number 

of spatial harmonics or Floquet waves defined by the wave numbers 
0 2xp xk k p a   

and 
0 2yq yk k q b   for the (p, q)

th
 Floquet harmonic, where 0xk  and 

0yk  correspond to 

the (0, 0)
th

 or the fundamental Floquet harmonic. One or more of these Floquet waves is a 

fast wave and is thus a leaky wave, and this produces the radiation. 

2.2   Far Field Calculation – Spectral Domain Immittance (SDI) with Reciprocity to 

Analyze the Periodic Leaky-Wave Antenna 

Figure 2.2 shows the 2D periodic leaky-wave antenna structure at microwave 

frequencies with the grounded dielectric slab and metal patches on the upper surface. The 

magnetic dipole source is located at (x0, y0, −hd) with hd = h since the magnetic dipole 

models a slot in the ground plane. A testing dipole is also shown here located at (r, θ, ϕ), 

where r → ∞ since we calculate the radiation in the far-field region. This is used in the 

reciprocity calculation of the far-field pattern. 
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Fig. 2.2.   Side view of the 2D periodic leaky-wave antenna for microwave frequencies. 

Similarly for the plasmonic structure at optical frequencies, Fig. 2.3 shows the 2D 

periodic leaky-wave antenna structure with the dielectric slab (silver) and no ground 

plane, and conducting patches on the upper surface. For the practical optical 2D periodic 

LWA there are periodic rectangular grooves on the surface of the substrate that are 

modelled here as conducting patches. The magnetic dipole source is located at (x0, y0, 

−hd), with hd = 0 since the magnetic dipole models a subwavelength aperture in the 

dielectric slab. A testing dipole is also shown here located at (r, θ, ϕ), where r → ∞ since 

we calculate the radiation in the far-field region. 

 

Fig. 2.3.   Side view of the 2D periodic leaky-wave antenna for optical frequencies. 
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The testing dipole is an infinitesimal electric dipole located in the direction of unit 

vector p̂ , which is θ̂ for TMz polarization and ϕ̂ for TEz polarization. The incident field 

from the testing dipole is given by 

 0 ˆ ˆˆ ˆ,         for TM ,  for TE .
4

jk rinc jk r

z z

j
E p e e p

r


 



   
   

 
 (2.3) 

Here r is the distance of the testing dipole from the origin, r  is the location of the 

observation point, and the incident wavenumber of the plane wave is 

 ˆ ˆ ˆ,pw pw pw

x y zk k x k y k z    (2.4) 

where 

 
0 0sin cospw

x xk k k    , (2.5) 

 
0 0sin sinpw

y yk k k    , (2.6) 

and 0 0cos .pw

z zk k k     (2.7) 

The total field seen on the surface of the patches is given by 

 total layer scaE E E  , (2.8) 

where the “layer” field is that produced in the absence of the patches (i.e., by the layered 

structure only), and the scattered field is that due to the radiating currents of the patches. 

Considering the field in the x-direction, 

  1layer inc

x xE E  , (2.9) 

where for the microwave structure (Fig. 2.2)  
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 

 
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1 1 0
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,

tan

z

z

jZ k h Z

jZ k h Z


 


 (2.10) 

and for the optical structure (Fig. 2.3) 

 
 
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1

0 1 0 1

tan
,        .
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zin
in

in z

Z jZ k hZ Z
Z Z

Z Z Z jZ k h


  

 
  (2.11) 

The incident field from the testing dipole is scattered by the patches. The scattered field is 

given by 

      1
, , ,xp yqj k x k ysca EJ P

x xx xp yq sx xp yq

p q

E G k k J k k e
ab

 
 

 

    (2.12) 

where 

              
   

22
2 2

2 2

1 1
, ,

, ,

yEJ TM TE x
xx x y x y

t t TM x y TE x y

kk
G k k k V k V

k k D k k D k k

 
        

  

 (2.13) 

where for the microwave structure 

    0 1 1, cotTM TM

TM x y zD k k Y jY k h   (2.14) 

and    0 1 1, cot .TE TE

TE x y zD k k Y jY k h   (2.15) 

For the optical structure 

  
 

 

1

0 1 1

0 1

1 0 1

tan
,

tan

TM TM

zTM TM

TM x y TM TM

z

Z jZ k h
D k k Y Z

Z jZ k h



 
     

  (2.16) 

and  
 

 

1

0 1 1

0 1

1 0 1

tan
, .

tan

TE TE

zTE TE

TE x y TE TE

z

Z jZ k h
D k k Y Z

Z jZ k h



 
     

  (2.17) 
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The derivation of the Green’s function  ,EJ

xx x yG k k  is shown in detail later. 

The current on the patches is taken to be in the x-direction and is given by 

        
1 1

, ,
N N

P

sx n n n n n

n n

J x y a B x y a f x g y
 

   , (2.18) 

where na  is the coefficient of the n
th

 basis function  ,nB x y  and 

    
 

2 2

1
sin ,         .

2 2
n n

n L
f x x g y

L W y

   
    

   
 (2.19) 

The Fourier Transform of the patch current is then given by 

        
1 1

, ,
N N

P

sx x y n n x y n n x n y

n n

J k k a B k k a f k g k
 

   , (2.20) 

where 

  
   

   

2

2 2

cosx xjk L jk L

n x

x

e n L e L n n
f k

k L n

  




 




 (2.21) 

and    0 2 .n y yg k J k W  (2.22) 

The method of moments is then applied by enforcing the electric field integral equation 

(EFIE) on the (0, 0)
th

 patch (assuming it to be a perfect electric conductor) in the x-

direction, 

 0.tot layer sca

x x xE E E    (2.23) 

Substituting from Eqs. (2.9) and (2.12), we have 
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        1
1 , , 0.xp yqj k x k yinc EJ P

x xx xp yq sx xp yq

p q

E G k k J k k e
ab

 
 

 

      (2.24) 

Applying Galerkin’s method and taking the testing function to have the same form as the 

basis function, we have  
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 
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 

   

  (2.25) 

Replacing  ,P

sx xp yqJ k k  from Eq. (2.20) and  , ,0inc

xE x y  from above, we have 
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  (2.26)   

or 
     

    
1

0 0

1
, , ,

                                   0,0,0 1 , .

N
EJ

n xx xp yq n xp yq m xp yq

n p q

inc

x m x y

a G k k B k k B k k
ab

E B k k

 

  

 

    

  
    

  (2.27) 

The matrix form of the above EFIE relation is 

     mn n mZ a R , (2.28) 

where 

       0
1

, , ,  .zpqjk zEJ

mn xx xp yq n xp yq m xp yq

p q

Z G k k B k k B k k e
ab

 
 

 

     (2.29) 
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Here ∆z denotes the z-displacement between the current on the patches and the testing 

function, and 

     0 00,0,0 1 , .inc

m x m x yR E B k k      (2.30) 

The z-displacement ∆z is added for easier convergence of the infinite summations in p 

and q and makes the computations easier. It can be thought of as accounting for the 

thickness of the conductor patches. Unless otherwise specified, the z-displacement has 

been applied in all numerically generated theoretical results presented in later chapters, 

and it is taken to be 0.01z a  . The above matrix equation is then solved for the 

coefficients of the basis function, na . Using reciprocity, the electric field in the far-field 

region is then calculated as 

      0 0, , , , 2,0,FF

i y d y dE r H x y h H a h        (2.31) 

or 

 

   

  
 

 

     

11

0 0 0 0

1

0 0

2

1

2
0 1

1

11
, , 1

1

1
                             , , .

pwpw
dzdz

x y

pw
z

xp yq

j k h hjk h

j k x k yFF inc

i x
j k h

N
j k x k yHJ

n yx xp yq n xp yq

n p q

e e
E r E e

Z e

a G k k B k k e
ab

 

 

 



 
 

  

    
     

   
 

   

   

  (2.32) 

Here 0 2x a  , 0 0y  , 0 dz h  , and  for TM,  for TEi    polarization. The 

Green’s function  ,HJ

yx x yG k k  is given by (the derivation is given later) 

      2 2

2

1
, .HJ TM TE

yx x y x i d y i d

t

G k k k I h k I h
k

        (2.33) 

 



26 
 

Case I   

This case is when hd = 0, i.e. the magnetic dipole source is located at the surface of 

the dielectric. The transverse equivalent network (TEN) model is used to find the Green’s 

function, and is shown in Fig. 2.4. 

 

Fig. 2.4.   TEN model for the LWA structure with the patch currents as the source. 

In Fig. 2.4 above, ZL = Z0 for the optical case (no ground plane) and ZL = 0 for the 

microwave case (PEC ground plane). Consider the impedances above and below the 

source in Fig. 2.4, 

 
 

 
1 1

0 1

1 1

tan
,      .

tan

L z

L z

Z jZ k h
Z Z Z Z

Z jZ k h

 


 


 (2.34) 

Using the current divider rule, the current right above the surface of the dielectric at z = 0 

is 

  0 .i

Z
I

Z Z




 



 (2.35) 
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Again using the current divider rule, the current right below the surface of the dielectric 

at z = 0 is 

  0 .i

Z
I

Z Z




 
 


 (2.36) 

At the location of the dipole,  

      0 0 0 .i i iI I I    (2.37) 

Case II 

This case is when 0 < hd  ≤ h, i.e., the magnetic dipole source is inside the dielectric 

slab, below the patches.  In this case we have 

    

  
 

11

1

2

1
1

1
2

11

1
0 ,       .

1

pwpw
dzdz

pw
z

j k h hjk h

L
i d i

j k h
L

e e Z Z
I h I

Z Ze

 



 
   


  (2.38) 

For the microwave case, 1 1    and the above expression reduces to 

    
  
 

1

1

cos
0 .

cos

pw

z d

i d i pw

z

k h h
I h I

k h


   (2.39) 

Derivation of the Green’s Functions  ,EJ

xx x yG k k ,  ,HJ

yx x yG k k  

A spectral-domain transverse equivalent network is used to formulate the Green’s 

functions. We define the transverse component of the wavenumber as  

          
 

ˆ ˆ
t x yk xk yk  . (2.40) 
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In Fig. 2.5 the vectors û  and v̂  are shown in the transverse, i.e., x-y plane, and are 

defined in Fig. 2.5. 

 

Fig. 2.5.   The orientation of the vectors û  and v̂  with respect to the x and y axes.  

We then have 

  
ˆ /t tu k k , (2.41) 

 ˆ ˆ ˆ ˆˆ ˆ    or,    v z u u v z    , (2.42) 

 ˆ ˆ cos x

t

k
u x

k
   , (2.43) 

 ˆ ˆ sin
y

t

k
v x

k
     ,  (2.44) 

 ˆ ˆ sin
y

t

k
u y

k
   , (2.45) 

and ˆ ˆ cos .x

t

k
v y

k
    (2.46) 

Considering the components of the surface current sJ  at an interface (with the same 

material on either side) as shown in Fig. 2.6, suJ  launches a TMz wave and svJ  launches 

a TEz wave. The fields of the TMz and TEz polarizations launched by these components 
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of the surface current are as follows: for :   and z su u vTM J E H , and for 

:       and z sv v uTE J E H . The transverse magnetic field 
tH   above and the transverse 

magnetic field 
tH   below the surface of dielectric shown in Fig. 2.6 are equal and 

opposite due to symmetry and are related to the surface current as 

 
 1

ˆ .
2

t SH z J     (2.47) 

 

Fig. 2.6.   The surface current 
sJ and the magnetic fields it produces at the surface.  

Using the usual TEN convention, the transverse electric and magnetic fields are modeled 

as voltages and currents as given below. 

:           

                     

TM

z u

TM

v

TM V E

I H




   

:           

                     .

TE

z v

TE

u

TE V E

I H




 

In Fig. 2.4, the impedances for the TMz and TEz components in the medium are denoted 

by i (0 for air or free space, 1 for dielectric) and are given as 

 TM zi
i

i

k
Z


  (2.48) 

and .TE i
i

zi

Z
k


  (2.49) 

From the boundary conditions,  
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  ˆ
t t sz H H J    , (2.50) 

where 
tH   is the transverse magnetic field above the interface and 

tH   is the transverse 

magnetic field below the interface. For the TMz field, we have 

  ˆ ˆˆ  v v suz v H H u J    
 

, (2.51) 

   ˆ ˆ  v v suu H H u J    , (2.52) 

  
v v suH H J    , (2.53) 

  TM TM

suI I J    . (2.54) 

Similarly, for the TEz mode, 

  ˆ ˆˆ   u u svz u H H v J    
 

, (2.55) 

   u u svH H J   , (2.56) 

  TE TE

svI I J   . (2.57) 

Also from the boundary conditions, 

  ˆ 0t tz E E    , (2.58) 

  ,         u u v vE E E E     , (2.59) 

  ,          TM TM TE TEV V V V     . (2.60) 

The electric surface current density is modeled as a parallel current source in the TEN 

model as shown in Fig. 2.4. The current source in the TEN model is  
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 ,         TM TE

S su S svI J I J   . (2.61) 

The normalized voltage and current functions then represent the fields following the 

usual convention of the TEN model, as  

 

 

 

 

 

0

0

0

0

ˆ  ,

ˆ   ,

ˆ     ,  and

ˆ      ,

TM TM

i s u

TM TM

i s v

TE TE

i s v

TE TE

i s u

V V J u E

I I J u H

V V J v E

I I J v H

   

   

   

  

 

where TM

iV and TE

iV  are the voltages due to a unit amplitude parallel current source, and 

TM

iI  and TE

iI  are the currents due to a unit amplitude parallel current source at the source 

location. The spectral-domain electric field 
xE  due to a the spectral-domain surface 

current 0sJ  is given by 

    ˆ ˆ ˆ ˆ
x u vE E u x E v x    , (2.62) 

    
yx

x u v

t t

kk
E E E

k k

 
   

 
, (2.63) 

  
 x yj k x k yyTM TEx

x

t t

kk
E V V e

k k

   
    

  
, (2.64) 

       
0 0

ˆ ˆ x yj k x k yyTM TEx
x i s i s

t t

kk
E V J u V J v e

k k

   
       

  
, (2.65) 

       
0 0

ˆ ˆ ˆ ˆ  x yj k x k yyTM TEx
x i sx i sx

t t

kk
E V J x u V J x v e

k k

  
     
 

, (2.66) 
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  
 

0 0

x yj k x k yy yTM TEx x
x i sx i sx

t t t t

k kk k
E V J V J e

k k k k

     
       

    
, (2.67) 

  
 2 2

02

1 x yj k x k yTM TE

x i x i y sx

t

E V k V k J e
k

 
     . (2.68) 

Therefore, the Green’s function is 

      2 2

2

1
, , .EJ TM TE

xx x y x i y i

t

G k k z k V z k V z
k

      (2.69) 

From the TEN model of the layers, represented in Fig. 2.4, the voltages  TM

iV z  and 

 TE

iV z  for z = 0 (i.e., at the surface of the dielectric) can be calculated as  

  
1

1 1 1 1
0 .

1 1
i SV I

Z Z D

Z Z



 

 

 
    

    
 

  (2.70) 

where, substituting from Eq. (2.34), 

 
 

 

1

1 1

0 1

1 1

tan1 1
.

tan

L z

L z

Z jZ k h
D Y Z

Z Z Z jZ k h



 

  
           

  (2.71) 

Therefore,  

    
 

 

1

1 1

0 1

1 1

tan
0 ,

tan

TM TM

L zTM TM TM

i TM x y TM TM

L z

Z jZ k h
V D k k Y Z

Z jZ k h



 
      

  (2.72) 

and    
 

 

1

1 1

0 1

1 1

tan
0 , .

tan

TE TE

L zTE TE TE

i TE x y TE TE

L z

Z jZ k h
V D k k Y Z

Z jZ k h



 
      

  (2.73) 

The spectral-domain magnetic field yH  due to a particular spatial harmonic of the 

surface current 0sJ  is given by 
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    ˆ ˆ ˆ ˆ
y u vH H u y H v y    , (2.74) 

    
y x

y u v

t t

k k
H H H

k k
  , (2.75) 

  
 x yj k x k yyTE TM x

y

t t

k k
H I I e

k k

  
  
 

, (2.76) 

       
0 0

ˆ ˆ x yj k x k yyTE TM x
y i s i s

t t

k k
H I J v I J u e

k k

  
     
 

, (2.77) 

       
0 0

ˆ ˆ ˆ ˆ  x yj k x k yyTE TM x
y i sx i sx

t t

k k
H I J x v I J x u e

k k

  
     
 

, (2.78) 

  
 

0 0  x yj k x k yy yTE TM x x
y i sx i sx

t t t t

k k k k
H I J I J e

k k k k

     
       

    
, (2.79) 

  
 2 2

02

1 x yj k x k yTE TM

y i y i x sx

t

H I k I k J e
k

 
     . (2.80) 

Therefore, the Green’s function for this field is 

      2 2

2

1
, , .HJ TM TE

yx x y x i y i

t

G k k z k I z k I z
k

      (2.81) 

For the reciprocity calculations, the source magnetic dipole is always assumed to be 

of unit amplitude with zero phase. The distance between the magnetic source dipole and 

the testing dipole does not affect the final result, as the radiation pattern is usually 

normalized, and it is taken to be unity at the maximum. 
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2.3   Current Distribution and Near Field Calculation – Using the Array Scanning 

Method for the Currents on the Patches of the 2D Periodic LWA Structure 

A section of the 2D periodic leaky-wave antenna with the patches on the surface of a 

grounded dielectric substrate is shown in Fig. 2.7. In applying the array scanning method 

to calculate near-field quantities, the single magnetic dipole at the center of the structure 

is first replaced by an array of phased current sources with the same spatial periodicity as 

the patches, as shown in Fig. 2.8. Then the near field parameter of interest for this set-up 

is determined, and from this the corresponding near field parameter for the single source 

in the original structure is determined as detailed below. 

 

Fig. 2.7.   The 2D periodic leaky-wave antenna. 

The current amplitude at the center of the patch for the (m, n)
th

 patch in the 2D 

periodic LWA structure is given by 

 
 
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/ /
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j k ma k nb

x y x y
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ab
A A k k dk dk

ab
A k k e dk dk

 

 

 

 







 

 

 





 

 

 (2.82) 
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where  0 0,mn x yA k k  denotes the amplitude of the current at the center of the (m, n)
th

  

patch for the structure with the infinite number of phased sources.  

 

Fig. 2.8.   A single source is replaced by infinite array of sources in the ASM calculation. 

The current density distribution on the patch surface, when there is an infinite phased 

array of magnetic dipole sources along with the infinite array of patches, is taken to be 

        
1 1

, ,
b bN N

sx l l l l

l l

J x y a f x g y a B x y

 

   , (2.83) 

where 

    
 

2 2

1/
sin ,        .

2 / 2
l

l L
f x x g y

L W y

   
    

   
  (2.84) 

The Fourier transforms are given by 

  
    

   
   

2

02 2

cos
,      / 2 .

x x
j k L jk L

l x y y

x

e l L e L l l
f k g k J k W

k L l

  



     


  (2.85) 
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The current amplitude on the (0, 0)
th

 patch in the infinite-dipole phased array set-up is  

    00 0 0

1

, 0
bN

x y l l

l

A k k a f



 . (2.86) 

The 2D periodic leaky-wave antenna geometry and configuration are the same as shown 

in Fig. 2.2 (or Fig. 2.9) and Fig. 2.3 for the microwave case and optical frequency case, 

respectively. 

 

Fig. 2.9.   Side view of the 2D periodic leaky-wave antenna for the microwave case. 

In the method of moments the EFIE is applied on the surface of the (0, 0)
th

 patch, 

enforcing 

 , , , ,0        .layer sca layer scaE E E E         (2.87) 

Here, ,layerE   is the electric field at the surface of the dielectric slab if there were no 

patches present and ,scaE   is that due to the current on the patches. The ∞ superscript 

denotes the incident and scattered field due to the infinite number of dipole sources. The 

current on the patch array is taken to be x-directed. Therefore, the EFIE is enforced on the 

electric field in the x-direction as 

 , ,sca layer

x xE E   . (2.88) 
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The x-component of the scattered field due to the patches can be obtained from the 

current distribution and is given by 

      , 1
, , xp yqj k x k ysca EJ

x xx xp yq sx xp yq

p q

E G k k J k k e
ab

 
  

 

   , (2.89) 

where the Green’s function in this case is given by  

  
   

22

2

1
,

yEJ x
xx x y

t TM t TE t

kk
G k k

k D k D k

 
   

  

. (2.90) 

The derivation of the above Green’s function is the same as was done before for the far-

field radiation pattern calculation in the previous section. For the microwave case 

    0 1 1, cotTM TM

TM x y zD k k Y jY k h   (2.91) 

and    0 1 1, cot .TE TE

TE x y zD k k Y jY k h   (2.92) 

For the optical case 

  
 

 

1

0 1 1

0 1

1 0 1

tan
,

tan

TM TM

zTM TM

TM x y TM TM

z

Z jZ k h
D k k Y Z

Z jZ k h



 
     

  (2.93) 

and  
 

 

1

0 1 1

0 1

1 0 1

tan
, .

tan

TE TE

zTE TE

TE x y TE TE

z

Z jZ k h
D k k Y Z

Z jZ k h



 
     

  (2.94) 

The incident field from the infinite number of phased dipole sources can be 

calculated from the dipole currents using the TEN model. The surface current density for 

a single infinitesimal magnetic dipole located at ,   / 2,   0    dz h x a y  can be 

represented as  
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      , 2 0 .dip

syM x y x a y     (2.95) 

The Fourier transform is 

    /2
, .xj a kdip

sy x yM k k e


  (2.96) 

The surface current density distribution from the infinite number of phased dipole sources 

at dz h   is 

        0 0, , 2 .x yj k x k ydip

sy

m n

M x y x ma a y nb e 
 

 

 

      (2.97) 

In the spectral domain, the component of the magnetic current dip

sM at the source dip

suM  

launches a TEz wave, and the component dip

svM  launches a TMz wave. The fields of the 

TMz and TEz polarizations launched by these components of the surface current are as 

follows: for :  and dip

z sv u vTM M E H  and for :       anddp

z su v uTE M E H . The 

transverse electric field tE  above and tE  below the source magnetic surface current 

density dip

sM  are equal and opposite due to symmetry, and are related to the magnetic 

surface current density as 

 
 1

ˆ .
2

dip

t sE z M    (2.98) 

Using the usual TEN convention, the fields are modeled as voltage and current as  

:           

                     

TM

z u

TM

v

TM V E

I H




   

:           

                     .

TE

z v

TE

u

TE V E

I H




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From the boundary conditions, the spectral-domain magnetic surface current dip

sM  and 

the corresponding fields are related as, 

  ˆ dip

t t sz E E M     , (2.99) 

where 
tE  is the transverse electric field above the magnetic surface current and 

tE  is 

the transverse electric field below the magnetic surface current. For the TEz field, 

  ˆ ˆˆ  dip

v v suz v E E u M     
 

, (2.100) 

   ˆ ˆ dip

v v suu E E u M     , (2.101) 

  dip

v v suE E M   , (2.102) 

  TE TE dip

suV V M    . (2.103) 

Similarly, for the TMz field, 

  ˆ ˆˆ  dip

u u svz u E E v M     
 

, (2.104) 

  dip

u u svE E M    , (2.105) 

  TM TM dip

svV V M    . (2.106) 

Also, from boundary conditions, 

  ˆ 0t tz H H    , (2.107) 

  ,         u u v vH H H H     , (2.108) 

  ,          TM TM TE TEI I I I     . (2.109) 
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In the TEN model, the magnetic current sheet is modeled as a voltage source as shown in 

Fig. 2.10. The spectral domain magnetic surface current density dip

sM  is modeled as a 

current source in the TEN model as  

 ,         TM dip TE dip

S sv S suV M V M    . (2.110) 

 

Fig. 2.10.   The TEN model for the layers of the LWA with the series voltage source (magnetic 

dipole). 

The normalized voltage and current functions then represent the fields following the 

usual convention of the TEN model, as  

 

 

 

 

 

0

0

0

0

ˆ  ,

ˆ   ,

ˆ     ,  and

ˆ      ,

TM TM dp

v s u

TM TM dp

v s v

TE TE dp

v s v

TE TE dp

v s u

V V M v E

I I M v H

V V M u E

I I M u H

   

   

    

   

 

where TM

vV and TE

vV  are the voltages due to an unit amplitude series voltage source in the 

TEN model, and TM

vI  and TE

vI  are the currents due to an unit amplitude series voltage 
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source in the TEN model at the source location. The spectral-domain electric field due to 

a the magnetic surface current 
0

dip

sM  is given by 

    ˆ ˆ ˆ ˆ
x u vE E u x E v x    , (2.111) 

    
yx

x u v

t t

kk
E E E

k k

 
   

 
, (2.112) 

  
 x yj k x k yyTM TEx

x

t t

kk
E V V e

k k

   
    

  
, (2.113) 

       
0 0

ˆ ˆ x yj k x k yyTM dip TE dipx
x v s v s

t t

kk
E V M v V M u e

k k

  
      
 

, (2.114) 

       
0 0

ˆ ˆ ˆ ˆ x yj k x k yyTM dip TE dipx
x v sy v sy

t t

kk
E V M y v V M y u e

k k

  
      
 

, (2.115) 

  
 

0 0

x yj k x k yy yTM dip TE dipx x
x v sy v sy

t t t t

k kk k
E V M V M e

k k k k

     
       

    
 , (2.116) 

  
 2 2

02

1 x yj k x k yTM TE dip

x x v y v sy

t

E k V k V M e
k

 
     . (2.117) 

The x-directed component of the electric field inside the substrate due to the single 

magnetic dipole source under the (0, 0)
th

 patch is therefore 

   
 

     2 2

02 2

1 1
, , .

2

x yj k x k yinc TM TE dip

x x v y v sy x y

t

E x y z k V z k V z M e dk dk
k

 
 

 

 
     

 
   (2.118) 

Next we try to find TM

vV and TE

vV  at z = 0. In Fig. 2.10, the impedances for the TMz and 

TEz fields in the medium that is denoted by i  (0 for air or free space, 1 for dielectric) are  
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 TM zi
i

i

k
Z


  (2.119) 

and .TE i
i

zi

Z
k


  (2.120) 

Here, ZL = 0 for the microwave case, ZL = Z0 for the optical case. In these expressions 

 2 2 2 2

zi i x yk k k k   ,  (2.121) 

where zik  is always chosen to be proper (a decaying wave). 

The impedance at the source in Fig. 2.10, looking up is 

  

 
 

 
0 1 1

1

1 0 1

tan

tan

z d

d

z d

Z jZ k h
Z h Z

Z jZ k h


 

     
.                            (2.122) 

The impedance at the source, looking down is 

  
  
  

1 1

1

1 1

tan
.

tan

L z d

d

L z d

Z jZ k h h
Z h Z

Z jZ k h h


 

 
 

 (2.123) 

By the voltage divider rule, the total voltage just above the magnetic dipole source (Vs = 

1 V) at dz h   is 

 
 

   

 

   

 



   

 
 

     

d d

vs s

d d d d

Z h Z h
V V

Z h Z h Z h Z h
. (2.124) 

The reflection coefficient right below the surface of the substrate (looking up through the 

substrate) is 

 0 1

0 1


 



Z Z

Z Z
. (2.125) 
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Also, 

  12
1 z dj k h

vs sV V e
   , (2.126) 

where 
sV   is the forward or upward-going wave at the source in Fig. 2.10. 

The total voltage at the surface of the substrate i.e., z = 0 is 

    
 

 

1

1

12

1
0 1

1

z d

z d

z d

jk h

jk h

v s j k h

eZ
V z V e

Z Z e




  

 
     

  
. (2.127) 

The incident field from the single magnetic dipole at the surface of the patches from Eq. 

(2.118) is 

 
 

     2 2

2 2

1
0 0

2

x y

dip
j k x k ysyinc TM TE

x x v y v x y

t

M
E k V k V e dk dk

k

 
 

 

  
     

  
  . (2.128) 

The incident field due to the infinite number of phased dipole sources is then given by 

 

     

 

, 2 2

2

1 1
0 0

1
          ,

xp yq

xp yq

j k x k yinc TM TE dip

x xp v yq v sy

p q tpq

j k x k yEM dip

xy sy

p q

E k V k V M e
ab k

G M e
ab

 
 

 

 
 

 

  
     

  



 

 

  

  (2.129) 

so that 

      2 2

2

1
, 0 0EM TM TE

xy xp yq xp v yq v

tpq

G k k k V k V
k

  
     

  

. (2.130) 

Next, we solve for the basis function coefficients using the method of moments and 

Galerkin’s Method where the testing function is taken to be same as the basis function. 
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The electric field integral equation (EFIE) is enforced over the patch (0, 0), i.e., m = 0, n 

= 0, as 

 , , 0inc sca

x xE E   , (2.131) 

     
/2 /2 /2 /2

, ,

/2 /2 /2 /2

, ,

W L W L

sca inc

x l x l

W L W L

E B x y dxdy E B x y dxdy 

 

   

     , (2.132) 

  

     

     

1

1
, , ,

1
                             , , , ,

bN
EJ

l xx xp yq l xp yq l xp yq

l p q

EM dp

xy xp yq sy xp yq l xp yq

p q

a G k k B k k B k k
ab

G k k M k k B k k
ab

 



  

 



 

 

   

  

 

   

  (2.133) 

      l l l lZ a R  , (2.134) 

where  

       0
1

, , , zpqjk zEJ

l l xx xp yq l xp yq l xp yq

p q

Z G k k B k k B k k e
ab

 
 

 

 

     (2.135) 

and      
1

, , , .EM dp

l xy xp yq sy xp yq l xp yq

p q

R G k k M k k B k k
ab

 

 

 

      (2.136) 

Here ∆z is the z-displacement between the current on the patches and the testing function. 

We solve for the coefficients la  in Eq. (2.134) for the (0, 0)
th

 patch of the structure with 

an infinite number of magnetic dipole sources. This is later denoted as 00,

la  . In the above 

expressions the wavenumbers are defined as 

 
2 2

,    .xp x yq y

p q
k k k k

a b

 
     (2.137) 
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We then find the far-field radiation from the structure, excited by a single magnetic 

dipole source embedded in the dielectric. The far-field radiation is given by 

      , ,, , , , , , .FF FF dip FF patch

i i iE r E r E r        (2.138) 

Here, i stands for  or    corresponding to TMz and TEz polarization, respectively, 

 , , ,FF dip

iE r    represents direct radiation from the magnetic dipole source, and 

 , , ,FF patch

iE r    represents the radiation from the patch currents. 

The far-field radiation from the single magnetic dipole at (0, 0, –hd) is given by 

   ,

0 0, , 1FF dip pw pw

i y dE H x y h   , (2.139) 

    
  

 

11

1

2

1,

0 0 2

1

1
, ,0 1

1

z dz d

z

j k h hjk h

FF dip pw pw

i y j k h

e e
E H x y

e

 




 


, (2.140) 

  
 

 
  

 

11

0

1

2

1( /2),

2
0 1

10,0,0
1

1

z dz d

pw
x

z

j k h hjk hpw

jk axFF dip pw

i j k h

e eE
E e

Z e

 

 




  


, (2.141) 

where 

 1
1

1

,L

L

Z Z

Z Z


 


  (2.142) 

where ZL = 0 for the microwave case, ZL = Z0 for the optical case. We also have 

 . .

0
ˆ ˆ  .

4

pw jkr jk r jk rj
E p e e p E e

r





    
   

 
 (2.143) 
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Here, p̂  stands for the unit vector ˆ ˆ or    corresponding to the TMz or TEz polarization, 

respectively, r is the distance of the testing dipole from the origin, and r  is the location 

of the observation point. 

For the microwave case, Eq. (2.141) reduces to 

 
 

 
  
 

0
1( /2),

0 1

sin0,0,0
1 .

sin

pw
x

pw
z djk axFF dip pw

i

z

k h hE
E e

Z k h

 


     (2.144) 

The coefficients of the basis functions, for the structure with a single magnetic dipole 

source, are calculated as  

 
   

 , 00,

2 2
2 2

x y

b a b a
j k ma k nbmn mn

l l x y l x y

b a b a

ab ab
a a dk dk a e dk dk

   

    

  

   

     . (2.145) 

The far-field radiation from the array of patches is then given by 

       0 0,

0 0

1

0,0,0 1 ,
b pw pw

x y

N
j k ma k nbFF patch pw pw pw pw mn

i x l x y l

l m n

E E B k k a e




    
 

  , (2.146) 

where 

 
 

 
1 10

1

0 1 1

tan
,       .

tan

pw
L zpw pwL

Lpw

L L z

Z jZ k hZ Z
Z Z

Z Z Z jZ k h


  

 
 (2.147) 

The wavenumbers 0 0 and pw pw

x yk k  correspond to the wavenumbers of the radiated plane 

wave observed at an angle  ,  . 
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2.4   Solving for the Wavenumber of the Leaky Wave on the 2D Periodic LWA 

Structure 

From the ASM formulation, the determinant of the Z Matrix in Eqs. (2.134) and 

(2.135) is equated to zero for a guided wave, since there is no source, and therefore, 

         0
1

Det Det , , , 0.zpqjk zEJ

l l xx xp yq l xp yq l xp yq

p q

Z G k k B k k B k k e
ab

 
 

 

 
 

  
     
  
    

  (2.148) 

Here, ∆z is the z-displacement between the current on the patches and the testing 

function, and 

 
2 2

,    xp x yq y

p q
k k k k

a b

 
    ,  (2.149) 

and 
00 00cos ,    sin .LW LW

x yk k k k      (2.150) 

In the above expressions, 
LWk  is the wavenumber of the leaky wave along a radial 

direction, and 00 is the angle of propagation that the fundamental Floquet wave makes 

with the x-axis in Fig. 2.7. 

In solving for the wavenumber of the leaky wave, i.e. finding the leaky-wave pole, 

the value of the wavenumber 
2 2 2 2

zi i x yk k k k    for a given Floquet mode, where 
x xpk k  

and 
y yqk k , is chosen by enforcing the wave to be physical. Therefore, the square root 

2 2 2

zi i x yk k k k    is chosen so that the following conditions are fulfilled [60]. Consider 

that 

 ,     x x x y y yk j k j       , (2.151) 
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and ˆ ˆ .t x yk k x k y j       (2.152) 

 

a) If 0    (there is no attenuation, 0x y   ) then    

 if ik   (fast wave), then 0z    and     

 if ik   (slow wave), then 0z  . 

b) If 0    the wave is a forward wave in the transverse direction) then  

 if ik   (fast wave), then 0z    (improper) and    

 if ik   (slow wave), then 0z  . 

c) If 0    (the wave is a backward wave in the transverse direction) then  

 if ik   (fast wave), then 0z    (proper) and    

 if ik   (slow wave), then 0z  . 

2.5   Enhancement Factor 

The enhancement factor is defined here as the E-field magnitude radiated by the 

leaky-wave antenna at broadside or any other direction specified, divided by the 

maximum E-field magnitude radiated by the same magnetic dipole source in free space. 

This is a measure of how much the leaky-wave antenna structure enhances the power 

density of the radiation in a particular direction. It is also indirectly an indicator of the 

directivity of the antenna. 

 



49 
 

2.6   CAD Formula for Calculating the Radiation Pattern of a 1D Leaky-Wave 

Antenna 

A bi-directional 1D leaky-wave antenna with equal fields propagating in opposite 

directions away from a center point (the source of excitation of the LWA), can be 

modelled approximately as a travelling-wave source [61], which can be seen as a line 

source of current travelling along the two arms of the leaky-wave antenna, away from the 

center where it is excited. In the case of the 1D periodic leaky-wave antenna formed by 

periodic patches on a grounded dielectric substrate, it can be modelled as an electric 

current source. Let us assume a bi-directional electric line current source along the 

rotated x-axis, or x- direction (for a particular     in the cylindrical coordinate 

system), radiating in free space as shown in Fig. 2.11 below. This line current source is 

polarized in the x-direction. 

 

Fig. 2.11.   Representation of current on a bi-directional 1D leaky-wave antenna in free space. 

The current due to this line source is given by 
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      ˆ( , , )  ,
LWjk x

J z x z e  
     

 
     (2.153) 

where  LWk   is the wave number of the leaky wave along the - direction. This can 

also be expressed as a bi-directional line current along the x- direction,  

    
.

LWjk x
I x e   

    (2.154) 

The array factor due to this line current radiating in free space is given by 

 
   0

/2
sin cos

/2

.
LW

l
jk x jk x

l

AF e e dx        



    (2.155) 

Here we have ignored the element pattern due to the patches and we have assumed that 

the length of the 1D leaky-wave antenna (aperture) is l. For an infinitely long leaky-wave 

antenna, Eq. (2.155) reduces to the closed-form expression 

 
 

     
2 2

0

2
.

sin cos

LW

LW

jk
AF

k k







   




  
  (2.156) 

This is the array factor of the 1D leaky-wave antenna and can be used to calculate the 

approximate radiation pattern of the beam due to the leaky wave. 

This current as shown in Fig. 2.11 would produce two conical beams centered 

around the line source in free space. But when the current exists on the surface of a 

grounded dielectric substrate, the radiation pattern predicted by the CAD formula of Eq. 

(2.156) is valid only in the positive half space, i.e., for z > 0. 

Since the CAD formula in Eq. (2.155) is applicable to 1D leaky-wave antennas, to 

formulate a CAD formula more applicable to the 2D leaky-wave antennas, a modified 

formula is proposed as 
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 

   
 0

1

/2
sin cos

/2 2

.

LWjk xl
jk x

c
LW

l

e
AF e dx

k x c p

 
  

 

 
  




  

   (2.157) 

Here p is the period of the patches, a in the E-plane and b in the H-plane. Also, c1 and c2 

are arbitrary constants whose values are determined by the nature of the leaky wave and 

could be different in the E-plane and the H-plane. The term in the denominator is 

included to account for the algebraic spreading due to some form of cylindrical wave 

propagating along the structure where the energy in the leaky wave spreads radially 

instead of transmitting along one linear direction as in the case of 1D leaky-wave 

antenna. 

2.7   Grating Lobes   

In the Fig. 2.12 below the red circles denote the boundaries for a Floquet mode to 

become radiative and produce a main beam or grating lobes. The axes are the normalized 

x component, 0/x xu k     and y component, 0/y yv k    of the wavenumber of 

propagation in the air region. The green curve denotes the rough values of the normalized 

phase constant of the leaky wave that is propagating in the radial direction for different 

angles . The Floquet modes (−1, 0) and (0, −1) produce the main beams in the E-plane 

and the H-plane, respectively. The condition for no grating lobes to exist due to any 

Floquet Mode (p, q) ≠ (−1, 0) or (0, −1) is that the red circle corresponding to that mode 

should not intersect with the green curve. In the first quadrant in Fig. 2.12, the grating 

lobe could be produced by the (−1, −1) circle intersecting with the green curve. When the 

main beam is optimized for maximum radiation at broadside, i.e., it is optimum in both 

the E-plane and H-plane to radiate maximum power density at broadside, the green curve 
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intersects with the x-axis near 2π/(aλ0) and with the y-axis is near 2π/(bλ0). Therefore 

there is very high chance that the (−1, −1) circle would intersect with the green curve. 

Therefore it might not be possible to avoid grating lobes in the pattern. In the other 

quadrants in the above figure, due to symmetry, the other Floquet modes (−1, 1), (1, 1) 

and (1, −1) would be radiative and produce grating lobes in conjunction with (−1, −1). 

 

Fig. 2.12.   Circle diagram to explain the grating lobes. 

The equation for the red circles corresponding to the Floquet mode (p, q) is given by 

 

2 2

0 0

2 2
1

p q
u v

ak bk

    
      

   
.  (2.158) 

The region inside the green curve represents the radiative region. When the red circle 

corresponding to any Floquet mode overlaps with the green curve and partially lies inside 
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the region enclosed by the green curve, the corresponding Floquet mode radiates. A 

couple of methods are discussed below to predict the occurrence and direction of the 

grating lobes in the radiation pattern. 

Method A. Predicting the angle  of the grating lobes in the radiation pattern for a given 

ϕ plane. 

Figure 2.13 below shows a 2D Periodic LWA with a grounded dielectric slab having 

a periodic lattice of rectangular patches on the upper surface fed by a slot in the ground 

plane. Here, the vector ρ (at an angle ϕ with the x-axis) is in the azimuthal plane of 

observation in which the radiation pattern is considered, and we assume here that the 

grating lobes in the radiation pattern are at an angle θg with the z-axis. 

 

Fig. 2.13.   Direction of the radial component of the leaky wave and the plane of observation. 

The assumption here is that the grating lobes are caused by the (p, q)
th

 Floquet 

harmonic. This means that in the radial direction at an angle 00  with the x-axis, the 

fundamental Floquet mode with wavenumber (0,0)

LWk  and phase constant (0,0)

LW  is 



54 
 

propagating. Note that (0,0)

LW  is a function of the angle 00  along which it propagates. The 

phase constant vector of the (p, q)
th

 Floquet harmonic ( , )

LW

p q  corresponding to this is 

directed at an angle ϕ with respect to the x-axis, i.e. parallel to   (same as the plane of 

observation). Therefore, in order to test that assumption, the following conditions must be 

true,  

 ( , )
ˆ 0,LW

p q     (2.159) 

where 

 ( , ) (0,0) 00 (0,0) 00

2 2
ˆ ˆcos sin .LW LW LW

p q

p q
x y

a b

 
    

   
      
   

  (2.160) 

From Eqs. (2.159) and (2.160) it follows that 

 
(0,0) 00

(0,0) 00

sin 2
tan ,

cos 2

LW

LW

q b

p a

  


  

 
   

  (2.161) 

and since the grating lobe is directed along the angle 
g  in the   plane, we get 

 ( , ) 0 sin .LW

p q gk    (2.162) 

 

Method B. Using a modified CAD formula for an arbitrary ϕ plane. 

For any angle ϕ, assume that part of the radiation pattern is formed by the (p, q)
th

 

Floquet harmonic radiated by a narrow strip section of the structure in the ϕ-direction. 

Also assume that in the radial direction at an angle 00  with the x-axis, the fundamental 

Floquet harmonic with wavenumber (0,0)

LWk  is propagating for which the corresponding 

phase constant vector ( , )

LW

p q  is directed at an angle ϕ with respect to the x-axis, i.e. 
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parallel to  , and the assumption here is that this mode is mainly responsible for the 

grating lobe in the radiation pattern in the ϕ plane. Then,  

 ( , )
ˆ 0,LW

p q     (2.163) 

where  

 ( , ) (0,0) 00 (0,0) 00

2 2
ˆ ˆcos sin .LW LW LW

p q

p q
x y

a b

 
    

   
      
   

  (2.164) 

From Eqs. (2.163) and (2.164) it follows that 
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cos 2
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q b
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  


  
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   

  (2.165) 

For the radiation pattern calculation, the narrow strip section of the structure is 

treated as a bi-directional line source. The phase constant vector ( , )

LW

p q  is already parallel 

to ρ and along the line source. Therefore, the wavenumber of the leaky wave along the 

direction of the line source is  

  ( , ) (0,0) 00cos .LW LW LW

p qk j         (2.166) 

The normalized radiation pattern in the ϕ plane is then given by the array factor [61], 

 0

2

sin

2

.
LW

l
jk x jk x

l

AF e e dx  



    (2.167) 

For an infinite aperture i.e. l → ∞, this reduces to 
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56 
 

The structure analyzed in this work is infinite, so l is always taken to be infinity and Eq. 

(2.168) is used for the calculations. 
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CHAPTER 3     RADIATION CHARACTERISTICS OF THE 2D 

PERIODIC MICROWAVE ANTENNA 

This chapter investigates the radiation characteristics of the structure described in 

Section 1.4 of Chapter 1 and shown in Fig. 1.1 at microwave frequencies. It is a 2D 

periodic leaky-wave antenna (LWA) that consists of a grounded dielectric slab with 

periodic arrangement of narrow metal patches on top and a slot in the ground plane for 

excitation of the 2D leaky wave. All the results presented in this chapter have been 

computed with one basis function in Eq. (2.18) for the surface current distribution on the 

surface of the patches.  

3.1   Optimization of the 2D Periodic Leaky-Wave Antenna 

The 2D periodic leaky-wave antenna produces a three-dimensional conical beam that 

can be optimized to converge into a narrow directive beam at broadside, as shown in Fig. 

3.1. The beam is optimized by adjusting the spatial period in the x-direction a to get the 

maximum power density at broadside, keeping all other parameters fixed for a given 

length L and width W of the patches, including the substrate properties. The spatial period 

in the y-direction b is either kept fixed or is taken to be a constant fraction of a (such as b 

= a/1.2). Figure 3.2 shows the contour plot of the power radiated (in dB) in the far field at 

broadside for a range of values of a and b. For this case the frequency is f = 12 GHz, the 

height of substrate is h = 1.27 mm, the relative permittivity of the substrate is 9.8r  , 

and the substrate is taken to be lossless. The length of the patch is L = 0.25 cm and width 
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is W = L/5. The power radiated is calculated using reciprocity as described in Section 2.2 

of Chapter 2.  

 

Fig. 3.1.   Optimization of the beam at broadside. 

 

Fig. 3.2.   Contour plot of the power radiated at broadside for different values of a and b. 

In Fig. 3.2, the band of red is the region of highest power radiated and the plot shows 

that this region is like a ridge that runs across the whole range of values for b; there is no 
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clear maxima seen on this color scale. Figure 3.3 gives the maximum E field at broadside 

plotted with respect to b, for which the power at broadside is maximized by adjusting a 

for the given b. For the field calculation, the magnetic dipole source is taken to be unit 

amplitude. 

 

Fig. 3.3.   Plot of optimized maximum electric field at broadside vs b. 

Figure 3.2 shows that there is a value of b for which, when the value of a is 

optimized, gives the maximum power radiation at broadside; but this might not be 

considered a good design as there will be a lot of grating lobes in the radiation pattern. It 

has been observed that choosing a lower value of b reduces the grating lobes in the 

radiation pattern. So there is a trade-off in the design between power density radiated at 

broadside and grating lobes. 
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3.2   Radiation Patterns 

For the microwave design, throughout the study, the frequency is taken to be f = 12 

GHz. The substrate here is chosen to have a relative permittivity of εr = 9.8, a loss tangent 

of tanδ = 0.002, and the height of substrate is h = 1.27 mm. The substrate is a grounded 

dielectric with the excitation provided by a narrow y-directed slot in the ground plane. 

The slot is centered at the location (x0 = a/2,  y
0

= 0). The slot in the ground plane is 

modeled as an infinitesimal magnetic dipole. Radiation patterns for some typical cases 

with small patch sizes will be shown. 

In the case in Fig. 3.4 the length of the patches is L = 0.250 cm, the width is W = L/5, 

and the dimensions of the unit cell are given by a = 2.29705 cm and b = a/1.2. Here the 

substrate is taken to be lossless. In this case the enhancement factor is 283.70. In the case 

presented in Fig. 3.5 the length of the patch is slightly larger, L = 0.300 cm, the width is 

W = L/5, and the dimensions of the unit cell are given by a = 2.27271 cm and b = a/1.2. 

The substrate is again taken to be lossless. In this case the enhancement factor is 110.89. 

In the case shown in Fig. 3.6 the length of the patch is L = 0.250 cm, the width is W = 

L/5, and the dimensions of the unit cell are given by a = 2.29708 cm and b = a/1.2. Here 

the substrate is taken to be lossy with a loss tangent tanδ = 0.002. In this case the 

enhancement factor is 78.68. In the case presented in Fig. 3.7 the length of the patch is L 

= 0.300 cm, the width is W = L/5, and the dimensions of the unit cell are given by a = 

2.27280 cm and b = a/1.2. Here the substrate is taken to be lossy with loss tangent tanδ = 

0.002. In this case the enhancement factor is 70.02. 
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Fig. 3.4. (a)-(f)   Radiation patterns in different ϕ planes for a lossless substrate with L = 0.25 cm. 

(e) ϕ = 75o (f) ϕ = 90o 

(c) ϕ = 45o (d) ϕ = 60o 

(a) ϕ = 0o (b) ϕ = 30o 
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Fig. 3.5. (a)-(f)   Radiation patterns in different ϕ planes for a lossless substrate with L = 0.30 cm. 

(e) ϕ = 75o (f) ϕ = 90o 

(c) ϕ = 45o (d) ϕ = 60o 

(a) ϕ = 0o (b) ϕ = 30o 
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Fig. 3.6. (a)-(f)   Radiation patterns in different ϕ planes for a lossy substrate with L = 0.25 cm. 

(e) ϕ = 75o (f) ϕ = 90o 

(c) ϕ = 45o (d) ϕ = 60o 

(a) ϕ = 0o (b) ϕ = 30o 
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Fig. 3.7. (a)-(f)   Radiation patterns in different ϕ planes for a lossy substrate with L = 0.30 cm. 

(e) ϕ = 75o (f) ϕ = 90o 

(c) ϕ = 45o (d) ϕ = 60o 

(a) ϕ = 0o (b) ϕ = 30o 
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3.3   Variation of the Main Beam with Frequency 

At first the design is optimized for the frequency f = 12 GHz so that the power 

density at broadside is maximum. Once again, the substrate is chosen to have a relative 

permittivity of εr = 9.8 and a loss tangent of tanδ = 0.002. The substrate is a grounded 

dielectric and the height is h = 1.27 mm, with the excitation provided by a narrow y-

directed slot in the ground plane. The slot is centered at the location (x0 = a/2,  y
0

= 0). 

Here the length of the patch is L = 0.300 cm, the width is W = L/5, and the dimensions of 

the unit cell are given by a = 2.27280 cm and b = a/1.2. Then the frequency is varied to 

0.5 GHz above and below the optimum to see the effects on the radiation pattern in the E-

plane and H-plane, shown in Fig. 3.8 and Fig. 3.9 respectively. 

 

Fig. 3.8.   Splitting of the beam in the E-plane, when the frequency is changed from the optimum 

frequency of 12 GHz. 
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Fig. 3.9.   Variation of the beam in the H-plane, when the frequency is changed from the optimum 

frequency of 12 GHz. 

From Fig. 3.8 we see that for both increased and decreased frequency from the 

optimum frequency, the main beam splits in the E-plane. In the H-plane, as seen in Fig. 

3.9, when the frequency is varied from the optimum the beam splits to a great extent for 

the higher frequency but completely disappears for the lower frequency. 

3.4   CAD Formula for the Leaky-Wave Radiation Pattern 

For the calculation of the pattern due to a leaky wave propagating in a radial 

direction, the CAD formula for a 1D leaky-wave antenna given in Eq. (2.156) works very 

well. Any attempts to improve this by trying different combinations of c1 and c2 in Eq. 

(2.157) in the E-plane and H-plane were unsuccessful. So the speculation is that though 
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the power spreads out radially for the 2D leaky wave, and the power in the radial 

direction diminishes, the width of the angular sector region contributing to the beam 

increases as the distance from the source increases. Therefore, henceforth, the CAD 

formula used to calculate the pattern due to the radial leaky wave in any direction for the 

2D periodic leaky-wave antenna is the same as that for the 1D leaky-wave antenna given 

in Eq. (2.156). 

A comparison of the radiation patterns from reciprocity and the CAD formula in the 

E-plane is shown in Fig. 3.10 and for the H-plane in Fig. 3.11. In the following case the 

length of the patches is L = 0.300 cm, the width is W = L/5, and the dimensions of the 

unit cell are given by a = 2.27271 cm and b = a/1.2. Here the substrate is taken to be 

lossless with a loss tangent tanδ = 0. The wavenumber of the radiating (−1, 0) harmonic 

of the leaky-wave mode along the x-axis is  4 4

06.0401 10 5.7653 10LWk j k

     , 

and the wavenumber of the radiating (0, −1) harmonic of the leaky-wave mode along the 

y-axis is   00.01001408 0.010489LWk k   where k0 is the wavenumber of plane wave in 

free space at this frequency. The total radiation pattern of the 2D periodic LWA has two 

components. One is due to the radiation from the leaky wave supported by the structure, 

and this produces the main beam at broadside. This component is approximately 

described by the CAD formula. The rest of the radiation pattern is due to the space wave, 

which is direct radiation from the source dipole. There appears to be good agreement 

between the main beam from reciprocity and the leaky-wave beam given by the CAD 

formula as seen in Fig. 3.10 and Fig. 3.11, since the level of the space wave is fairly 

small (less than −30 dB relative to the peak of the main beam). 
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Fig. 3.10.   (a) Pattern of the leaky-wave beam compared to the pattern from reciprocity in the E-

plane. (b) An expanded view of the main beam around the −20 dB power level. 

 

Fig. 3.11.   Pattern of the leaky-wave beam compared to the pattern from reciprocity in the H-

plane. 
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3.5   Designs for 2D Periodic Leaky-Wave Antenna with Different Practical 

Substrates 

In the case shown in Fig. 3.12, the frequency is 24 GHz, the grounded dielectric slab 

has a relative permittivity of εr = 10.2, a loss tangent of tanδ = 0.0023, and the height of 

substrate is h = 0.635 mm. The excitation, as before, is provided by a narrow y-directed 

slot in the ground plane. The slot is centered at the location (x0 = a/2,  y
0

= 0). The slot 

in the ground plane is modeled as an infinitesimal magnetic dipole. The length of the 

patches is L = 0.250 cm, the width is W = L/5, the dimensions of the unit cell are given by 

a = 1.17748 cm and b = a/1.2. For these cases we take Δz = 0 in the method of moments 

calculation. For the next case with radiation patterns given in Fig. 3.13, the parameters 

are the same as before except that the length of the patches is L = 0.300 cm, the width is 

W = L/5, and the dimensions of the unit cell are given by a = 1.17258 cm and b = a/1.2. 

 

Fig. 3.12.   Radiation patterns in E-plane, H-plane, and D-plane (ϕ = 45o). 
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Fig. 3.13.   Radiation patterns in E-plane, H-plane, and D-plane (ϕ = 45o). 

For the case with radiation patterns given in Fig. 3.14, the parameters are the same as 

before except that the length of the patches is L = 0.180 cm, the width is W = L/5, and the 

dimensions of the unit cell are given by a = 1.10804 cm and b = a/1.2. For the next case 

with radiation patterns given in Fig. 3.15, the parameters are the same as before except 

that the length of the patch is L = 0.190 cm, the width is W = L/5, and the dimensions of 

the unit cell are given by a = 1.03408 cm and b = a/1.2. 

For the case with radiation patterns given in Fig. 3.16, the parameters are the same as 

before except that the length of the patches is L = 0.200 cm, the width is W = L/5, and the 

dimensions of the unit cell are given by a = 1.24716 cm and b = a/1.2. For the following 

case with radiation patterns given in Fig. 3.17, the parameters are the same as before 

except that the length of the patch is L = 0.210 cm, the width is W = L/5, and the 

dimensions of the unit cell are given by a = 1.20828 cm and b = a/1.2. 
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Fig. 3.14.   Radiation patterns in E-plane, H-plane, and D-plane (ϕ = 45o). 

 

Fig. 3.15.   Radiation Patterns in E-plane, H-plane, and D-plane (ϕ = 45o). 
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Fig. 3.16.   Radiation patterns in E-plane, H-plane, and D-plane (ϕ = 45o). 

 

Fig. 3.17.   Radiation patterns in E-plane, H-plane, and D-plane (ϕ = 45o). 
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In the case shown in Fig. 3.18, the frequency is 24 GHz, the grounded dielectric slab 

has a relative permittivity of εr = 2.2, a loss tangent of tanδ = 0.0009, and the height of 

substrate is h = 1.575 mm. The excitation, as before, is provided by a narrow y-directed 

slot in the ground plane. The slot is centered at the location (x0 = a/2,  y
0

= 0). The slot 

in the ground plane is modeled as an infinitesimal magnetic dipole. The length of the 

patch is L = 0.250 cm, the width is W = L/5, and the dimensions of the unit cell are given 

by a = 1.12997 cm and b = a/1.2. For the next case with radiation patterns given in Fig. 

3.19, the parameters are the same as before except that the length of the patch is L = 

0.300 cm, the width is W = L/5, and the dimensions of the unit cell are given by a = 

1.12162 cm and b = a/1.2. 

 

Fig. 3.18.   Radiation patterns in E-plane, H-plane, and D-plane (ϕ = 45o). 
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Fig. 3.19.   Radiation patterns in E-plane, H-plane, and D-plane (ϕ = 45o). 

In the following case as shown in Fig. 3.20, the frequency is 24 GHz, grounded 

dielectric slab with relative permittivity of εr = 9.2, loss tangent of tanδ = 0.0022 and the 

height of substrate is h = 0.635 mm. The excitation, as before is provided by a narrow y-

directed slot in the ground plane. The slot is centered at the location (x0 = a/2,  y
0

= 0). 

The slot in the ground plane is modeled as an infinitesimal magnetic dipole. The length of 

the patch is L = 0.250 cm, the width is W = L/5, the dimensions of the unit cell are given 

by a = 1.18979 cm and b = a/1.2. For the next case with radiation patterns given in Fig. 

3.21, the parameters are the same as before except that the length of the patches is L = 

0.300 cm, the width is W = L/5, and the dimensions of the unit cell are given by a = 

1.18230 cm and b = a/1.2. 



75 
 

 

Fig. 3.20.   Radiation patterns in E-plane, H-plane, and D-plane (ϕ = 45o). 

 

Fig. 3.21.   Radiation patterns in E-plane, H-plane, and D-plane (ϕ = 45o). 
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In the following case shown in Fig. 3.22, the frequency is 24 GHz, the grounded 

dielectric slab has a relative permittivity of εr = 3.66, a loss tangent of tanδ = 0.004, and 

the height of substrate is h = 0.813 mm. The excitation, as before, is provided by a 

narrow y-directed slot in the ground plane. The slot is centered at the location (x0 =

a/2,  y
0

= 0). The slot in the ground plane is modeled as an infinitesimal magnetic dipole. 

The length of the patch is L = 0.250 cm, the width is W = L/5, and the dimensions of the 

unit cell are given by a = 1.17633 cm and b = a/1.2. For the next case with radiation 

patterns given in Fig. 3.23, the parameters are again the same as before except that the 

length of the patch is L = 0.300 cm, the width is W = L/5, and the dimensions of the unit 

cell are given by a = 1.14608 cm and b = a/1.2. 

 

Fig. 3.22.   Radiation patterns in E-plane, H-plane, and D-plane (ϕ = 45o). 
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Fig. 3.23.   Radiation patterns in E-plane, H-plane, and D-plane (ϕ = 45o). 

3.6   Cross-Section of the Main Beam for Different Power Levels 

In this section we take a close look at the cross-section of the beam at power levels 

of −3 dB in Fig. 3.24, −6 dB in Fig. 3.25, −9 dB in Fig. 3.26, and −12 dB in Fig. 3.27. 

The frequency here is taken to be f = 12 GHz. The substrate is chosen to have a relative 

permittivity of εr = 9.8, a loss tangent of tanδ = 0, and the height of the substrate is h = 

1.27 mm. The substrate is a grounded dielectric with the excitation provided by a narrow 

y-directed slot in the ground plane. The slot is centered at the location (x0 = a/2,  y
0

= 0). 

The slot in the ground plane is modeled as an infinitesimal magnetic dipole. The length of 

the patch is L = 0.250 cm, the width is W = L/5, and the dimensions of the unit cell are 

given by a = 2.28859 cm and b = 1.22367 cm. We can see from Figs. 3.24 – 3.27 that 

there are spikes extending out of the cross-section around ϕ ≈ 85o; this is due to the 
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grating lobes in the pattern. The cross-section of the main beam is highly elliptical with 

the beam much wider in the H-plane than in the E-plane. 

 

Fig. 3.24.   Cross-section of beam at a power level of −3 dB. 

 

Fig. 3.25.   Cross-section of beam at a power level of −6 dB. 
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Fig. 3.26.   Cross-section of beam at a power level of −9 dB. 

 

Fig. 3.27.   Cross-section of beam at a power level of −12 dB. 
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3.7   Variation of Beamwidth and Enhancement Factor with the Length of the 

Patches 

The dependence of the beamwidth of the radiation patterns in the E-plane and the H-

plane and the Enhancement Factor (EF) on the dimensions of the patches of the 2D 

periodic LWA are explored here. The parameters of the 2D periodic LWA are as follows: 

The frequency is  f = 12 GHz, the substrate has a relative permittivity of  εr = 9.8, a loss 

tangent of tanδ = 0.002, and the height of substrate is h = 1.27 mm. The substrate is a 

grounded dielectric with the excitation provided by a narrow y-directed slot in the ground 

plane. The slot is centered at the location (x0 = a/2,  y
0

= 0). The slot in the ground plane 

is modeled as an infinitesimal magnetic dipole. The length of the patches L is varied, 

while the width is W = L/5. For each different length of patch L, the length of the unit cell 

a is adjusted for maximum power density at broadside while maintaining the width of 

unit cell as b = a/1.2. The plot of variation of the beamwidths and enhancement factor 

with respect to length of the patches for the lossy case is given in Fig. 3.28 and the same 

plot for the lossless case is given in Fig. 3.29. Note that the enhancement factor for the 

lossless case in Fig. 3.28 is plotted on a log scale. 

In Fig. 3.28, for the lossy case, the enhancement factor and the beamwidths decrease 

as the dimensions of the patches are made very small. Although the beam becomes very 

narrow for very small lengths of patches, the proportion of the space wave increases and 

therefore the enhancement factor decreases. In Fig. 3.29 on the other hand, as the length 

of patches becomes very small, the beamwidths decrease rapidly and the enhancement 

factor increases monotonically. 
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Fig. 3.28.   Beamwidths and enhancement factors vs. length of patches for a lossy substrate. 

 

Fig. 3.29.   Beamwidths and enhancement factors vs. length of patches for a lossless substrate. 
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3.8   Bandwidth, Figure of Merit, and Normalized Tolerance of the 2D Periodic 

Leaky-Wave Antenna 

The bandwidth of the 2D periodic LWA for both lossy and lossless substrates is 

calculated here. The parameters of the 2D periodic LWA taken in this section are as 

follows: The frequency is f = 12 GHz, the substrate has a relative permittivity of  εr = 9.8, 

and the height of substrate is h = 1.27 mm. The substrate is a grounded dielectric with the 

excitation provided by a narrow y-directed slot in the ground plane. The slot is centered at 

the location (x0 = a/2,  y
0

= 0). The slot in the ground plane is modeled as an 

infinitesimal magnetic dipole. The length of the patches L is varied, while the width is W 

= L/5. For each different length of patch L, the length of the unit cell a is adjusted for 

maximum power density at broadside while maintaining the width of unit cell as b = 

a/1.2.  

The figure of merit of the structure is defined as the fractional bandwidth times the 

maximum directivity of the structure, and is usually calculated for the lossless substrate. 

The normalized tolerance of the 2D periodic leaky-wave antenna is defined as the 

difference in the upper and lower values of a (length of the unit cell) at which the power 

level at broadside drops by 3 dB from maximum (or optimum), divided by the optimum 

a, expressed as a percentage. It is a measure of the degree to which the beam is sensitive 

to the length of the unit cell a. For the percentage bandwidth, the upper and lower bounds 

of frequency are taken to be the points where the power level at broadside drops by 3 dB 

from maximum (or optimum). 

The exact directivity D0 of the structure at broadside is calculated by integrating over 

the radiated power density, calculated using the reciprocity method. The approximate 
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directivity of a planar array is sometimes calculated from the beamwidths in the E-plane 

and H-plane using the formula [62] 

 
2

0 ,A

E H

D



 

  (3.1) 

where 
E  is the beamwidth in the E-plane and 

H  is the beamwidth in the H-plane 

(both in radians). 

Table 3.1 lists the bandwidth, the figure of merit, the exact and approximate 

directivities, and the beamwidths in the E-plane and the H-plane for different lengths L of 

the patches. Here the substrate is lossless. The Table 3.1 also gives the optimized a for 

maximum power density at broadside for each given length L of the patches. 

Table 3.1.   Bandwidth, figure of merit, exact directivity, approximate directivity, and 

beamwidths in the E-plane and the H-plane for the 2D periodic leaky-wave 

antenna for different lengths L of the patches, for a lossless substrate. 

Length 

of the 

patches 

L (cm) 

Length 

of the 

unit cell 

a (cm) 

 Bandwidth 

(%) 
D0 

Figure 

of 

merit 

Beamwidth 

in the E-

plane  

(radians) 

Beamwidth 

in the H-

plane 

(radians) 

D0
A 

0.25 2.2970 0.013667 11297 1.5439 0.001679 0.02884 203823 

0.30 2.2727 0.085417 1672.9 1.4289 0.007288 0.07558 17918 

0.40 2.4180 0.53525 221.87 1.1875 0.03248 0.2216 1371.2 

 

From Table 3.1 we see that the approximate directivity formula, which is based on 

the beamwidths in the E-plane and the H-plane, does not work well. This is because the 
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beam is highly asymmetric and, even more importantly, there is a lot of space wave 

radiation and grating lobes in the pattern. Also, it is seen that the figure of merit decreases 

slightly as the length of the patches is increased.   

Table 3.2 lists the bandwidth, normalized tolerance, and beamwidths in the E-plane 

and the H-plane for a lossy substrate with loss tangent tanδ = 0.002, for different lengths 

L of the patches. Table 3.2 also gives the optimized a for maximum power density at 

broadside for each given length L of the patches. 

Table 3.2.   Bandwidth, normalized tolerance, and beamwidths in the E-plane and the H-

plane for the 2D periodic leaky-wave antenna for different lengths L of the 

patches, for a lossy substrate. 

Length of 

the patches 

L (cm) 

Length of the 

unit cell a 

(cm) 

Bandwidth 

(%) 

Normalized 

Tolerance 

(%) 

Beamwidth 

in the E-

plane 

(radians) 

Beamwidth 

in the H-

plane 

(radians) 

0.25 2.2971 0.049333 0.06554 0.003196 0.05404 

0.30 2.2728 0.13592 0.19613 0.0092 0.0944 

0.40 2.4176 0.60583 0.88194 0.03466 0.2376 

 

From Table 3.2 we observe that the normalized tolerance of the 2D periodic leaky-

wave antenna is quite low but increases when the beam is broader (which usually occurs 

when the size of the patches is larger). From Tables 3.1 and 3.2 we see that the bandwidth 

increases with the length of the patches and is larger for the lossy substrate, compared to 

the lossless substrate with the same length of patches, especially for smaller patches.   
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CHAPTER 4     PROPERTIES OF THE LEAKY WAVE IN THE 2D 

PERIODIC MICROWAVE ANTENNA 

In this chapter we delve deeper into the nature and characteristics of the leaky wave 

in different azimuthal directions, i.e., angles ϕ. Here, we have tried to understand the 

basic physics of the leaky wave and explain how the leaky wave leads to the formation of 

the main beam and the grating lobes. All of the results presented in this chapter have been 

computed with one basis function in Eqs. (2.18) and (2.83) for the surface current 

distribution on the surface of the patches. 

4.1   Current Distribution on the Patches 

The current at the center of the patches in the 2D periodic leaky-wave antenna is 

calculated using the array scanning method (ASM) discussed in Section 2.3 of Chapter 2 

and is plotted in Fig. 4.1 and Fig. 4.2 for the E-plane (along the x-axis) and H-plane 

(along the y-axis), respectively. The magnitude of the current distribution on the patches, 

given by the red curve in Fig. 4.1 and Fig. 4.2, is normalized. The blue curve gives the 

asymptotic distribution of the leaky wave based on the exponential decay of the 

fundamental harmonic of the leaky wave, and an appropriate algebraic decay is also 

added. For the E-plane the leaky-wave field distribution over the surface of the dielectric 

is 
1/2/E x

e x


 and for the H-plane it is 
3/2/H y

e y


, where E  and H  are the attenuation 

constants of the leaky wave in the E-plane (along the x-axis) and H-plane (along the y-

axis), respectively. Along the surface of the dielectric, the leaky wave interferes with the 

space wave, therefore the current distribution on the patches is not smooth and displays 
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an interference pattern. In the absence of interference with the space wave, the current 

distribution from ASM (the red curve) would closely match the blue curve in Fig. 4.1 and 

Fig. 4.2. In this case the design parameters for the 2D periodic leaky-wave antenna are as 

follows. The frequency is f = 12 GHz. The substrate has a relative permittivity of εr = 9.8, 

the loss tangent is tanδ = 0.002, and the height of substrate is h = 1.27 mm. The substrate 

is a grounded dielectric with the excitation provided by a narrow y-directed slot in the 

ground plane, which is centered at the location (x0 = a/2,  y
0

= 0). The length of each 

patch is L = 0.40 cm, the width is W = L/5, and the dimensions of the unit cell are given 

by a = 2.41758 cm and b = a/1.2. The design has been optimized for maximum power 

density radiated at broadside. In this case the attenuation constants in the E-plane and H-

plane are 03.04402  0.0121034E k    and 020.6845 0.082244H k   respectively, 

where k0 is the wavenumber in free space at this frequency. 

 

Fig. 4.1.   Current distribution from ASM on the patches in the E-plane. 
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Fig. 4.2.   Current distribution from ASM on the patches in the H-plane. 

In Fig. 4.3, the current distribution obtained from simulation in Ansys Designer is 

compared with the current distribution obtained from ASM in the E-plane (along the x-

axis). The current distribution obtained from both Designer and ASM show a similar 

interference pattern with the same beat period. The agreement is fairly good down to a 

level of about −30 dB. For the case presented in Fig. 4.3, the design parameters for the 

2D periodic leaky-wave antenna are as follows. The frequency is f = 12 GHz. The 

substrate has a relative permittivity of 10,r   the loss tangent is tanδ = 0.05, and the 

height of substrate is h = 1.24915 mm. The substrate is grounded dielectric with the 

excitation provided by a narrow y-directed slot in the ground plane which is centered at 

the location (x0 = a/2,  y
0

= 0). The length of each patch is L = 0.370 cm, the width is W 

= L/4.8, and the dimensions of the unit cell are given by a = 2.39825 cm and b = a/1.2. 
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The design has been optimized for maximum power density radiated at broadside. In this 

case the attenuation constant in the E-plane is 0 10.3674 0.041222E k   . 

 

Fig. 4.3.   Current distribution from ASM and Designer on the patches in the E-plane. 
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harmonic of the leaky mode is the radiating wave. The normalized values of the 

propagation constant β and attenuation constant α of the radiating waves ((−1, 0) for the 

E-plane and (0, −1) for the H-plane) are plotted along with the power density radiated in 

the far field at broadside with respect to a variation of the spacing between the patches a 

in the E-plane (along the x-axis) in Fig. 4.4, and the spacing between the patches b in the 

H-plane (along the y-axis) in Fig. 4.5. The following design parameters for the 2D 

periodic leaky-wave antenna have been assumed: the frequency is f = 12 GHz, the 

substrate is chosen to have a relative permittivity of εr = 9.8, the substrate is lossless, i.e., 

the loss tangent is tanδ = 0, and the height of the substrate is h = 1.27 mm. The substrate 

is a grounded dielectric with the excitation provided by a narrow y-directed slot in the 

ground plane. The slot is centered at the location (x0 = a/2,  y
0

= 0). The length of each 

patch is L = 0.250 cm, the width is W = L/5, and the dimensions of the unit cell are given 

by a = 2.29705 cm and b = a/1.2. This design has been optimized for maximum power 

density radiated at broadside. 

In Fig. 4.4, it can be observed that when the power radiated in the far field region at 

broadside is maximum, the normalized propagation constant and the normalized 

attenuation constant have the same magnitude. Also, a region of open stopband can be 

observed where the phase constant is very low and decreases to zero while the attenuation 

constant has a much higher value than usual. This is the exact behavior that has been 

observed in 1D periodic leaky-wave antennas [63]. 
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Fig. 4.4.   Plot of normalized α and β along the x-axis and the power radiated at broadside vs. a. 

 

 

Fig. 4.5.   Plot of normalized α and β along the y-axis and the power radiated at broadside vs. b. 
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In Fig. 4.5, it can again be observed that when the power radiated in the far field 

region at broadside is maximum, the normalized propagation constant and the normalized 

attenuation constant have the same magnitude. This is the same property as the leaky 

mode along the x-axis observed in Fig. 4.4; but unlike the leaky mode along the x-axis, 

no open stopband region is observed for the leaky mode along the y-axis. 

4.3   Dispersion Behaviour – Variation of Leaky-Mode Wavenumber as a Function 

of the Azimuthal Angle ϕ 

The wavenumber of the leaky mode that produces the radiation in the 2D periodic 

leaky-wave antenna varies with the radial angle of propagation ϕ. We take the following 

design parameters for the 2D periodic leaky-wave antenna: the frequency is  f = 12 GHz, 

the substrate is chosen to have a relative permittivity of εr = 9.8, the substrate is lossless, 

i.e., the loss tangent is tanδ = 0 and the height of the substrate is h = 1.27 mm. The 

substrate is a grounded dielectric with the excitation provided by a narrow y-directed slot 

in the ground plane. The slot is centered at the location (x0 = a/2,  y
0

= 0). The length of 

each patch is L = 0.250 cm, the width is W = L/5, and the dimensions of the unit cell are 

given by a = 2.29705 cm and b = a/1.2. This design has been optimized for maximum 

power density radiated at broadside. The normalized propagation constant of the 

fundamental harmonic of the leaky mode is plotted in Fig. 4.6 with respect to the angle ϕ. 

Similarly, the normalized attenuation constant of the fundamental harmonic of the leaky 

mode is plotted in Fig. 4.7 with respect to the angle ϕ.  
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Fig. 4.6.   Dispersion diagram showing the variation of the phase constant with ϕ. 

 

Fig. 4.7.   Dispersion diagram showing the variation of the attenuation constant with ϕ. 

0 10 20 30 40 50 60 70 80 90

-10

-8

-6

-4

-2

0

x 10
-3

 (in degrees)


 /

k
0
 o

f 
th

e
 (

0
,0

) 
F

lo
q
u
e
t 

h
a
rm

o
n
ic

4o
44o37o

56o

50o 71o68o 74o
78o

0 10 20 30 40 50 60 70 80 90
1

1.5

2

2.5

 

 


(0,0)

/k
0
 Improper, Mode E


(0,0)

/k
0
 Proper, Mode E


(0,0)

/k
0
 Improper, Mode H


(0,0)

/k
0
 Proper, Mode H


(0,0)

/k
0
 Improper, Mode 3


(0,0)

/k
0
 Proper, Mode 3

0 10 20 30 40 50 60 70 80 90
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

 (in degrees)


 /

k
0
 o

f 
th

e
 (

0
,0

) 
F

lo
q
u
e
t 

h
a
rm

o
n
ic

 

 

4o

44o

50o

74o

37o 56o

78o

71o

68o

0 10 20 30 40 50 60 70 80 90
1

1.5

2

2.5

 

 


(0,0)

/k
0
 Improper, Mode E


(0,0)

/k
0
 Proper, Mode E


(0,0)

/k
0
 Improper, Mode H


(0,0)

/k
0
 Proper, Mode H


(0,0)

/k
0
 Improper, Mode 3


(0,0)

/k
0
 Proper, Mode 3



93 
 

From Figs. 4.6 and 4.7, we see that there are three separate leaky modes. The one 

that is dominant along the x-axis, i.e., in the E-plane, is shown in blue and is termed the 

E-plane mode. The one that is dominant along the y-axis, i.e., in the H-plane is shown in 

red and is termed the H-plane mode. Then there is the third somewhat more mysterious 

mode that is shown in green. The E-plane leaky mode produces the beam in the E-plane 

and the H-plane leaky mode produces the beam in the H-plane. 

4.4   CAD Formula to Predict the Shape of the Main Beam at Arbitrary Angle ϕ 

The CAD formula for calculating the radiation pattern due to the leaky wave in 

Section 2.6 of Chapter 2 can be used to plot the shape of the main beam for arbitrary 

angle ϕ. We take the following design parameters for the 2D periodic leaky-wave 

antenna: the frequency is f = 12 GHz, the substrate is chosen to have a relative 

permittivity of εr = 9.8, the substrate is lossless, i.e., the loss tangent is tanδ = 0, and the 

height of the substrate is h = 1.27 mm. The substrate is a grounded dielectric with the 

excitation provided by a narrow y-directed slot in the ground plane. The slot is centered at 

the location (x0 = a/2,  y
0

= 0). The length of each patch is L = 0.250 cm, the width is W 

= L/5, and the dimensions of the unit cell are given by a = 2.29705 cm and b = a/1.2. This 

design has been optimized for maximum power density radiated at broadside. The 

wavenumber of the radiating (−1, 0) harmonic of the leaky wave along the x-axis is 

 4 4

06.0401 10 5.7653 10LWk j k

     , where k0 is the wavenumber of free space at 

this frequency. The leaky-wave beam pattern from the CAD formula for the E-plane 

mode is compared with the exact radiation pattern from reciprocity in Figs. 4.8, 4.9, 4.10 

and 4.11 for ϕ = 45o, ϕ = 60o, ϕ = 75o, and ϕ = 85o respectively. 
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Fig. 4.8.   (a) Comparison of the main beam from reciprocity and the CAD formula for an angle ϕ 

= 45o. (b) An expanded view of the main beam around the −20 dB power level. 

 

Fig. 4.9.  (a) Comparison of the main beam from reciprocity and the CAD Formula for an angle ϕ 

= 60o. (b) An expanded view of the main beam around the −20 dB power level. 
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Fig. 4.10.  (a) Comparison of the main beam from reciprocity and the CAD formula for an angle 

ϕ = 75o. (b) An expanded view of the main beam around the −20 dB power level. 

 

Fig. 4.11.  (a) Comparison of the main beam from reciprocity and the CAD formula for an angle 

ϕ = 85o. (b) An expanded view of the main beam around the −20 dB power level. 

It can be observed from Figs. 4.8, 4.9, 4.10 and 4.11 that the main beam is mainly 

due to the bi-directional leaky wave travelling along the x-axis and for smaller values of ϕ 
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(less than 85o in this case), the leaky-wave beam pattern can be predicted accurately by 

applying the CAD formula with the E-plane leaky mode. However, for ϕ close to 90o 

(beyond 85o in this case), the leaky mode travelling along the y-axis starts to dominate 

and mainly influences the shape of the main beam. The patterns from the CAD formula 

and reciprocity agree very well at the −20 dB power level and even better near the 0 dB 

power level. The agreement is very good until ϕ = 85o.  

4.5   Formation of the Grating Lobes and Predicting their Location 

Methods A and B described in Section 2.7 of Chapter 2 are applied here to explore 

the origins of the narrow grating lobes that are often observed in the radiation pattern. We 

take the following design parameters for the 2D periodic leaky-wave antenna: the 

frequency is f = 12 GHz, the substrate is chosen to have a relative permittivity of εr = 9.8, 

the substrate is lossless, i.e., the loss tangent is tanδ = 0, and the height of the substrate is 

h = 1.27 mm. The substrate is a grounded dielectric with the excitation provided by a 

narrow y-directed slot in the ground plane. The slot is centered at the location (x0 =

a/2,  y
0

= 0). The length of each patch is L = 0.250 cm, the width is W = L/5, and the 

dimensions of the unit cell are given by a = 2.29705 cm and b = a/1.2. This design has 

been optimized for maximum power density radiated at broadside. 

Usually there are up to three grating lobes that can be observed in the radiation 

pattern. A few cases are presented next that successfully predict the occurrence of grating 

lobes in the pattern using Methods A and B and give us some idea about the mechanism 

of formation of the grating lobes in the radiation pattern. 



97 
 

Case 1 

Here the leaky wave travelling radially along the angle 
00 50   is considered, and 

the (−1, −1) Floquet harmonic of the E-plane mode (the perturbed surface-wave mode) is 

considered, which has a wavenumber for the fundamental Floquet harmonic as 

  (0,0) 01.0819 0.00004638 272.11303 0.011664LWk j k j    . 

Then, from Eq. (2.161), the phase constant vector of the (−1, −1) Floquet harmonic is at 

an angle 

 
(0,0) 001

(0,0) 00

sin 2
tan 50.53

cos 2

LW

LW

b

a

  


  


 

    

. (4.1) 

 

From Eq. (2.160), the magnitude of the phase constant vector of the (−1, −1) Floquet 

harmonic is 

 

2 2

( 1, 1) (0,0) 00 (0,0) 00

2 2
cos sin 155.1632LW LW LW

a b

 
     

   
       

   
.  (4.2) 

The wavenumber of the (−1, −1) Floquet harmonic is therefore 

  ( 1, 1) 155.1632 0.011664cos 50 50.53 .LWk j       (4.3) 

From Eq. (2.162), the angle of the grating lobe with the vertical axis due to the (−1, −1) 

Floquet harmonic is 

 0.6649 rad 38.09g   . (4.4) 
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Method A works well here since the actual grating lobes are at roughly around θ = 38.09o 

and 15o. The Method B CAD formula is also very successful in predicting the location of 

the grating lobes as well, as can be seen from the radiation patterns for 50.53   shown 

in Fig. 4.12. 

 

Fig. 4.12.   Grating lobe predicted using the CAD formula for case 1. 

Case 2 

Here the leaky wave travelling radially along the angle 
00 18   is considered, and 

the (−1, −1) Floquet harmonic of the E-plane mode (the perturbed surface-wave mode) is 

considered, which has a wavenumber for the fundamental Floquet harmonic as 

 (0,0) 01.0838 0.000058205 272.5841 0.01464LWk j k j    . 

Then, from Eq. (2.161), the phase constant vector of the (−1, −1) Floquet harmonic is at 

an angle  
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 (0,0) 001

(0,0) 00

sin 2
tan 86.65 .

cos 2

LW

LW

b

a

  


  


 

    

  (4.5) 

 

From Eq. (2.160), the magnitude of the phase constant vector of the (−1, −1) Floquet 

harmonic is 

 

2 2

( 1, 1) (0,0) 00 (0,0) 00

2 2
cos sin 244.424.LW LW LW

a b

 
     

   
       

   
  (4.6) 

The wave number of the (−1, −1) Floquet harmonic is therefore 

  ( 1, 1) 244.424 0.01464cos 18 86.65 .LWk j       (4.7) 

From Eq. (2.162) the angle of the grating lobe with the vertical axis due to the (−1, −1) 

Floquet harmonic is  

 1.333 rad 76.37g   .  (4.8) 

Method A works well here since the actual grating lobes are at roughly θ = 76o. The 

Method B CAD formula is also very successful in predicting the location of the grating 

lobes, as can be seen from the radiation patterns for 86.65   shown in Fig. 4.13. 
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Fig. 4.13.  Grating lobe predicted using the CAD formula for case 2. 

Case 3 

Here the leaky wave travelling radially along the angle 
00 18   is considered, and 

the (−1, 0) Floquet harmonic of the E-plane mode (the perturbed surface-wave mode) is 

considered, which has a wavenumber for the fundamental Floquet harmonic as 

 (0,0) 01.0838 0.000058205 272.58407 0.01464LWk j k j    . 

Then, from Eq. (2.161) the phase constant vector of the (−1, 0) Floquet harmonic is at an 

angle  
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  (4.9) 

From Eq. (2.160), the magnitude of the phase constant vector of the (−1, 0) Floquet 

harmonic is 
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  
2

2

( 1,0) (0,0) 00 (0,0) 00

2
cos sin 85.4366.LW LW LW

a


    

 
    

 
  (4.10) 

The wavenumber of the (−1, 0) Floquet harmonic is therefore 

  ( 1,0) 85.4366 0.01464cos 18 80.37 .LWk j      (4.11) 

From Eq. (2.162), the angle of the grating lobe with the vertical axis due to the (−1, 0) 

Floquet harmonic is  

 0.3466 rad 19.86g   .  (4.12) 

Method A works well here since the actual grating lobes are at θ = 19.86o and 53.33o. The 

Method B CAD formula is also very successful in predicting the location of the grating 

lobes, as well as can be seen from the radiation patterns for 80.37    shown in the Fig. 

4.14. 

 

Fig. 4.14.  Grating lobe predicted using the CAD formula for case 3. 
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Case 4 

Here the leaky wave travelling radially along the angle 
00 30   is considered, and 

the (−1, 0) Floquet harmonic of the E-plane mode (the perturbed surface-wave mode) is 

considered, which has a wavenumber for the fundamental Floquet harmonic as 

 (0,0) 01.08324 0.00006053 272.436 0.01522LWk j k j    . 

Then, from Eq. (2.161), the phase constant vector of the (−1, 0) Floquet harmonic is at an 

angle 

 
(0,0) 001

(0,0) 00

sin
tan 74.57 .

cos 2

LW

LW a

 


  


 

     

  (4.13) 

From Eq. (2.160), the magnitude of the phase constant vector of the (−1, 0) Floquet 

harmonic is 

  
2

2

( 1,0) (0,0) 00 (0,0) 00

2
cos sin 141.3111LW LW LW

a


    

 
    

 
.  (4.14) 

The wavenumber of the (−1, 0) Floquet harmonic is therefore 

  ( 1,0) 141.3111 0.01522cos 30 74.57 .LWk j      (4.15) 

From Eq. (2.162), the angle of the grating lobe with the vertical axis due to the (−1, 0) 

Floquet harmonic is  

 0.5966 rad 34.18g   .  (4.16) 

Method A works well here since the actual grating lobes are at roughly  θ = 46o and 34o. 

The Method B CAD formula is also very successful in predicting the location of the 
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grating lobes as well, as can be seen from the radiation patterns for 74.57    shown in 

Fig. 4.15. 

 

Fig. 4.15.  Grating lobe predicted using the CAD formula for case 4. 

It has been observed that there are up to three grating lobes in the radiation pattern of 
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in the radiation pattern. Tables 4.1, 4.2, and 4.3 show the tracking of these components of 
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leaky wave (0,0)

LWk , the angle 
pq  at which the phase constant of the (p, q)th harmonic 

has its radiation directed, the magnitude of the phase constant of the (p, q)th harmonic 

( , )

LW

p q , and the angle of the grating lobe with the vertical axis 
g . 

Table 4.1.   Tracking the grating lobe due to the (−1, 0) Floquet harmonic of the E-plane 

leaky mode (perturbed surface-wave mode). 

00  
(0,0)

LWk   

(in m-1) 

 i.e. pq   

(in degrees) 

( 1,0)

LW   

(in m-1)  

g  predicted  

(in degrees) 

5o 272.84625 − j0.019974 −85.8515 23.84259 5.43987 

10o 272.68787 − j0.014068 −83.9871 47.61371 10.91298 

15o 272.61756 − j0.012224 −81.7707 71.29270 16.46732 

20o 272.56016 − j0.015464 −79.4213 94.83288 22.15212 

25o 272.49924 − j0.015815 −77.0108 118.18727 28.02955 

30o 272.43620 − j0.015224 −74.5705 141.31114 34.18523 

35o 272.38935 − j0.015001 −72.1194 164.16557 40.74867 

40o 272.25387 − j0.010652 −69.6311 186.67390 47.92241 

45o 272.19028 − j0.014018 −67.1597 208.84286 56.13825 

50o 272.11303 − j0.011664 −64.6803 230.60348 66.47806 

55o 272.03659 − j0.007300 −62.1982 251.91940 Complex 

number. No 

grating lobe. 

60o 272.03038 − j0.009039 −59.7267 272.78469 Complex 

number. No 

grating lobe. 

65o 271.90439 − j0.004247 −57.2315 293.06640 Complex 

number. No 

grating lobe. 
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Table 4.2.   Tracking the grating lobe due to the (−1, −1) Floquet harmonic of the E-plane 

mode (perturbed surface-wave mode). 

00   
(0,0)

LWk  

(in m-1) 

  i.e. pq    

(in degrees) 

( 1, 1)

LW    

(in m-1)  

g  predicted  

(in degrees) 

5o 272.84625 − j0.019974 89.6754 304.46411 Complex number. 

No grating lobe. 

10o 272.68787 − j0.014068 88.9827 280.93187 Complex number. 

No grating lobe. 

15o 272.61756 − j0.012224 87.7322 257.88270 Complex number. 

No grating lobe. 

20o 272.56016 − j0.015464 85.7633 235.66226 69.55725 

25o 272.49924 − j0.015815 82.8935 214.72573 58.62472 

30o 272.43620 − j0.015224 78.9221 195.66713 51.07747 

35o 272.38935 − j0.015001 73.6671 179.23651 45.45225 

40o 272.25387 − j0.010652 67.0226 166.44372 41.43732 

45o 272.19028 − j0.014018 59.1598 158.13138 38.95792 

50o 272.11303 − j0.011664 50.5354 155.16316 38.09356 

55o 272.03659 − j0.0072997 41.8930 157.84544 38.87420 

60o 272.03038 − j0.009039 33.9706 165.81881 41.24770 

65o 271.90439 − j0.004247 27.2828 178.47564 45.20569 

70o 271.84761 − j0.002790 21.9555 194.67431 50.71885 

75o 271.80214 − j0.001609 17.9183 213.54284 58.11089 

80o 271.76871 − j0.000713 14.9886 234.31256 68.69430 

85o 271.74808 − j0.000089 12.9659 256.38522 Complex number. 

No grating lobe. 

88.364o 271.74130 − 

j0.0000000004766 

12.0241 271.73650 Complex number. 

No grating lobe. 
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Table 4.3.   Tracking the grating lobe due to the (0, −1) Floquet harmonic of the H-plane 

mode. 

00   
(0,0)

LWk  

(in m-1) 

  i.e. pq   

(in degrees) 

(0, 1)

LW   

(in m-1)  

g  predicted 

(in degrees) 

88.5o 399.90317 − j0.050847 81.6736 72.28877 16.70409 

85o 472.20717− j0.033488 73.8553 148.00796 36.05046 

80o 540.90273− j0.019732 65.3249 224.98966 63.45531 

75o 592.31881− j0.006187 57.8482 288.07556 Complex 

number. No 

grating lobe. 

70o 632.01157− j0.001262 50.8653 342.48975 Complex 

number. No 

grating lobe. 

66.1o 656.11189− j0.000000 45.6178 380.04374 Complex 

number. No 

grating lobe. 

 

We see from Tables 4.1, 4.2, and 4.3 that the E-plane mode and the H-plane mode 

produce the grating lobes. The third (somewhat mysterious) mode does not seem to be 

producing the grating lobes. There are usually up to three grating lobes in the region (0 < 

θ < 90o) which seem to be due to the (−1, 0) and (−1, −1) Floquet waves of the E-plane 

mode (perturbed surface-wave mode) and the (0, −1) Floquet harmonic of the H-plane 

mode. The main beam seems to be produced by a narrow sector of the structure along the 

x-axis and also the H-plane mode along the y-axis.  

The grating lobes here should not be confused with grating lobes in antenna arrays. 

The grating lobes occurring in the 2D periodic leaky wave antenna are originating from 
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the  (−1, 0), (0, −1) and (−1, −1) Floquet modes, interacting with different sectors of the 

structure other than the narrow wedge regions along the x-axis and y-axis. 

4.6   Radiation Efficiency of the 2D Periodic Leaky-Wave Antenna 

The approximate radiation efficiency of the 2D periodic leaky wave antenna can be 

calculated as 

 ,rad rad
r

total rad loss

e
 

  
 


  (4.17) 

where rad  is the attenuation constant due to the radiation from the leaky wave and loss  

is the attenuation constant due to the material loss. The attenuation term loss  is a sum of 

the dielectric loss ( d ) and the conductor loss ( c ). The conductor loss is a sum of the 

loss in the patches (
p ) and loss in the ground plane (

g ). This gives us the relation 

 .loss d p g        (4.18) 

The attenuation constant of the surface wave is equal to  d g   and here the ground is 

treated as lossy with the finite conductivity of copper. The attenuation constant due to 

radiation ( rad ) is calculated by making the dielectric and conductor completely lossless 

and calculating the attenuation constant of the leaky wave. The total attenuation constant 

total  ( rad loss   ) is the attenuation constant of the leaky wave. Therefore, rad  can 

also be calculated as 

 rad total loss    .  (4.19) 
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The loss in the patches 
p  can be calculated by modifying the determinant equation for 

calculating the leaky wave wavenumber in Eq. (2.148), to account for the loss due to the 

patches. In order to do this we go back to the EFIE (electric field integral equation) as 

implemented in Section 2.3 of Chapter 2. Here we assume that there are no magnetic 

dipole sources but only a surface current on the surface of the dielectric to represent the 

patch currents, given by the surface current density 

        
1 1

, , ,
b bN N

sx l l l l

l l

J x y a f x g y a B x y
 

     (4.20) 

where 

    
 

2 2

1/
sin ,        .

2 / 2
l

l L
f x x g y

L W y

   
    

   
  (4.21) 

The EFIE is then enforced over the patch (0, 0) as 

 ,sca

x s sxE Z J   (4.22) 

where sZ  is the surface impedance of copper with conductivity 73 10    S/m. The 

above equality is enforced in the average sense by multiplying by a testing function and 

integrating over the area of the patch. The testing function on the left hand side is taken to 

be the same as the basis function. On the right hand side, doing the same would result in 

an integral that is too singular to be integrated. Therefore, on the right hand side we pick 

a testing function that has no variation along the y-direction and has the same y integral 

(i.e., the same current on the patch), given by 

    
1 1

, sin .
2

l l

l L
T x y f x x

W W L


 

      
        

      
  (4.23) 

Therefore, by testing Eq. (4.22) in this way we obtain 
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    
/2 /2 /2 /2

/2 /2 /2 /2

, , .

W L W L

sca

x l s sx l

W L W L

E B x y dxdy Z J T x y dxdy 

   

      (4.24) 

Similar to the derivation leading up to Eq. (2.89), the scattered field sca

xE  due to the 

surface current sxJ  is 

      1
, , .xp yqj k x k ysca EJ

x xx xp yq sx xp yq

p q

E G k k J k k e
ab

 
 

 

     (4.25) 

Substituting from Eqs. (4.20) and (4.25) in Eq. (4.24) and integrating, we obtain 

        
1 1

1 1
, , , .

2

b bN N
EJ

l xx xp yq l xp yq l xp yq l s l l

l p q l

L
a G k k B k k B k k a Z

ab W


 

 

   

   
      

   
      (4.26) 

This gives us the matrix equation 

     0.
2

l l s

L
Z Z U

W


 
  

 
  (4.27) 

Here, [U] is the identity matrix, L is the length of the patches, W is the width of the 

patches, and  l lZ   is the Z Matrix defined in Eqs. (2.134) and (2.135). The determinant 

of the left hand side in Eq. (4.27) is equated to zero and we then have 

    Det 0.
2

l l s

L
Z Z U

W


  
   

  
  (4.28) 

Solving this equation gives us the complex wavenumber of the leaky wave supported by 

the 2D periodic LWA structure that has patches with finite conductivity. 

The attenuation constant of the leaky wave obtained by solving Eq. (4.28) while 

assuming the ground plane to have finite conductivity is total . The attenuation constant 
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of the leaky-wave wavenumber obtained by solving Eq. (2.148) while assuming the 

ground plane to have finite conductivity gives 
total p   since Eq. (2.148) assumes 

lossless PEC patches. The attenuation constant due to leaky-wave radiation ( rad ) was 

calculated by solving Eq. (2.148) while assuming a lossless ground and lossless substrate. 

In this section we take the following design parameters for the 2D periodic leaky-

wave antenna: the frequency is f = 12 GHz, the substrate is chosen to have a relative 

permittivity of εr = 9.8, the substrate is lossy with a loss tangent tanδ = 0.002, and the 

height of the substrate is h = 1.27 mm. The substrate is a grounded dielectric with the 

excitation provided by a narrow y-directed slot in the ground plane. The slot is centered at 

the location (x0 = a/2,  y
0

= 0). The length of each patch L is varied, the width is W = 

L/5, and the design has been optimized for maximum power density radiated at broadside 

by adjusting the length of the unit cell a while keeping the width b = a/1.2. The 

attenuation constant of the surface wave with lossy, copper ground plane is 

00.00030942 ,k  where 0k  is the wavenumber in free space. 

Table 4.4 gives the radiation efficiency for three different cases with different 

lengths of patches. Table 4.4 also lists the optimum length of the unit cell a for maximum 

power density at broadside, the attenuation constant of the E-plane leaky mode with and 

without considering the loss from the patches, and the attenuation constant due to the 

radiation from the E-plane leaky mode. From Table 4.4 we see that the radiation 

efficiency increases as the length of the patches is increased. 
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Table 4.4.   Radiation efficiency vs. length of patches. 

Length of 

the patches, 

L (in cm) 

Optimized 

length of the 

unit cell, a 

(in cm) 

Attenuation 

constant of 

the E-plane 

leaky mode 

with patch 

loss 
total   

Attenuation 

constant of 

the E-plane 

leaky mode 

without 

patch loss 

total p   

Attenuation 

constant due 

to leaky-wave 

radiation rad   

Radiation 

efficiency 

0.25 2.2968 
00.0014148k

  

00.0013600k  00.00057653k   40.750 % 

0.30 2.2725 
00.0037817k

  

00.0035224k  00.0025556k   67.578 % 

0.35 2.1204 
00.038145k   00.035159k  00.034023k   89.194 % 
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CHAPTER 5     PLASMONIC STRUCTURE – DIRECTIVE 

BEAMING AT OPTICAL FREQUENCIES 

The phenomena of directive beaming is observed at optical frequencies in a 

plasmonic structure that consists of a thin silver (or similar plasmonic material) film with 

a subwavelength aperture surrounded by periodic corrugations. Silver is a plasmonic 

material and behaves like a lossy dielectric with a negative permittivity at optical 

frequencies. Usually the transmission of light through a subwavelength aperture in a 

silver film without corrugations produces a broad radiation pattern as the aperture 

radiates. But when periodic corrugations are present and optimized, directive beaming 

occurs where the beam emerges on the other side of the aperture as a very focused narrow 

beam of light. Figure 5.1 shows the silver film with periodic corrugations on its upper 

surface and a subwavelength hole in the center through which the incident energy is 

coupled into the surface plasmon wave.  

 

Fig. 5.1.   Directive beaming in a silver film with corrugations around a subwavelength aperture. 

(a) Cross-section view, (b) 3D view of the plasmonic structure.  

(b) (a) 
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This structure has the same operating principle as a 2D periodic leaky-wave antenna 

at microwave frequencies. The silver film supports a surface plasmon wave that is similar 

to a TM surface wave in a grounded dielectric substrate at microwave frequencies. Due to 

the presence of corrugations, the surface plasmon waves get perturbed into leaky plasmon 

waves which radiate producing the narrow beam. 

In the plasmonic structure, for the purpose of analysis, the corrugations on the 

surface of the silver film can be modeled as conducting patches and the subwavelength 

aperture can be modeled as a magnetic dipole at the upper surface of the silver film, as 

shown below in Fig. 5.2. In this case there is no ground plane and the media above and 

below the silver layer is air. 

 

Fig. 5.2.   Top view and cross-sectional view of the silver film, with the grooves modeled as 

perfectly conducting patches and the aperture modeled as a magnetic dipole. 
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As shown in Fig. 5.2, the grooves (modeled here as perfectly conducting patches) are 

arranged on the surface of the silver film in a rectangular lattice. The dimensions of the 

patches  are  L for the length and W for the width, and the dimensions of the unit cell are  

a in the x-direction and b in the y-direction. The height or thickness of the silver film is h, 

the relative permittivity of silver is 4.5r   , and the loss tangent is tan 0.04545  . 

The subwavelength aperture that is modeled as the magnetic dipole source is located at z 

= –hd, x = –a/2 and y = 0. For the plasmonic structure hd = 0. Similar to the microwave 

case, the plasmonic structure is optimized by adjusting the period a. 

5.1   Radiation Patterns and Radiation Properties 

The radiation patterns are obtained from reciprocity, applied along with the spectral 

domain immittance method as discussed in detail in Section 2.2 of Chapter 2. For the 

optical plasmonic structure the frequency is taken to be f = 750 THz. The substrate here is 

silver, which has a relative permittivity of  εr = −4.5 and a  loss tangent of tanδ = 0.04545, 

and the height of the substrate is h = 300 nm. The substrate is a slab of lossy dielectric 

(silver), with the excitation provided by a subwavelength aperture through the dielectric 

slab. The aperture is centered at the location, x0 = a/2,  y
0

= 0. The subwavelength 

aperture in the silver layer is modeled as an infinitesimal y-directed magnetic dipole at 

the upper surface of the silver layer. Figure 5.3 shows a contour plot of the power 

radiated (in dB) in the far field at broadside for a range of values of a and b. This plot is 

similar to what we have seen in the microwave case (in Fig. 3.2). The band of red is the 

region of highest power radiated and the plot shows that this region is like a ridge that 
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runs across the whole range of values for b; there is no clear maxima seen on this color 

scale. 

 

Fig. 5.3.   Contour plot of the power radiated at broadside for different values of a and b. 

Some of the typical radiation patterns for the plasmonic case are given next. In the 

following case, shown in Fig. 5.4, the length of the patches is L = 140 nm, the width is W 

= 50 nm, and the dimension of the unit cell in the y-direction is b = 90 nm. The number 

of basis functions assumed for modeling the currents on the patches (given in Eq. (2.18)) 

is five. Here the design is optimized by keeping all other parameters fixed and varying 

the spacing a between the unit cells in the x-direction to get maximum power density 

radiated at broadside. Based on this, the dimension of the unit cell in the x-direction is 

given by a = 380.114 nm. 
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Fig. 5.4.   Radiation patterns for different angles ϕ, calculated with 5 basis functions. 

In the following case, shown in Fig. 5.5, all of the physical parameters are kept the 

same as before. The length of the patches is L = 140 nm, the width is W = 50 nm, and the 

dimension of the unit cell in the y-direction is b = 90 nm. The number of basis functions 

assumed for modeling the currents on the patches (given in Eq. (2.18)) is now taken to be 

one. Once again the design is optimized by keeping all other parameters fixed and 

varying the spacing a between the unit cells in the x-direction to get maximum power 

density radiated at broadside. Based on this, the dimension of the unit cell in the x-

direction is given by a = 378.824 nm. 
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Fig. 5.5.   Radiation patterns for different angles ϕ, calculated with 1 basis function. 

Comparing Figs. 5.4 and Fig. 5.5, the radiation pattern calculated using five basis 

functions is slightly different from that obtained using one basis function. Using five 

basis functions is slightly more accurate than using one basis function, but it requires 

much more time to compute the results. Therefore in all other calculations done here, 

only one basis function has been used. 

The dependence of the beamwidths of the radiation pattern in the E-plane and the H-

plane and the enhancement factor (EF) on the dimensions of the patches of the plasmonic 

structure is examined in Fig. 5.6. The parameters of the plasmonic structure are as 

follows. The frequency is  f = 750 THz, the substrate is silver, which has a relative 

permittivity of  εr = −4.5 and a loss tangent of tanδ = 0.04545, and the height of the 

substrate is h = 300 nm. The excitation is provided by a subwavelength aperture through 
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the dielectric slab. The aperture is centered at the location, x0 = a/2,  y
0

= 0. The 

subwavelength aperture in the silver layer is modeled as an infinitesimal y-directed 

magnetic dipole at the upper surface of the silver layer. The length of the patches L is 

varied while the width is chosen as W = L / 2.8. For each different length of patch L, the 

length of the unit cell a is adjusted for maximum power density at broadside while 

maintaining the width of unit cell as b = a/4. The variation of the beamwidths and 

enhancement factor with respect to the length of the patches is given in Fig. 5.6. 

 

Fig. 5.6.   Beamwidths and enhancement factor vs. the length of the patches. 

From Fig. 5.6 we see that as the length of the patches is made very small, the 

beamwidths decrease but so does the enhancement factor. If the beamwidths decrease 

then the enhancement factor is normally expected to increase, but in this case it decreases 

because the space wave field increases relative to the leaky-wave field to a great extent as 
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the patches are made very small. As the patches get larger, the beamwidths increase and 

then decrease whereas the enhancement factor shows an opposite trend as the beamwidth 

– it increases when the beamwidth decreases. This is very similar to the behavior seen at 

microwave frequencies, as shown in Fig. 3.28. 

5.2    CAD Formula to Calculate the Radiation Pattern of the Leaky-Wave Beam 

In this section the CAD formula for calculating the radiation pattern due to the leaky 

wave, discussed in Section 2.6 of Chapter 2, is compared to the radiation pattern obtained 

from reciprocity and the spectral domain immittance method (SDI) as discussed in 

Section 2.2 of Chapter 2. The reciprocity technique along with the SDI method gives the 

total radiation pattern, which is a superposition of the radiation due to the leaky wave as 

well as the space wave radiated directly by the magnetic dipole source. 

The frequency here is taken to be f = 750 THz. The substrate is silver which has a 

relative permittivity of  εr = −4.5 and a loss tangent of tanδ = 0.04545, and the height of 

the substrate is h = 300 nm. The substrate is a layer of lossy dielectric (silver) with the 

excitation provided by a subwavelength aperture through the dielectric layer. The 

aperture is centered at the location, x0 = a/2,  y
0

= 0. The subwavelength aperture in the 

silver layer is modeled as an infinitesimal y-directed magnetic dipole at the upper surface 

of the silver layer. In the following case shown in Figs. 5.7 and 5.8, the length of the 

patch is L = 140 nm, the width is W = 50 nm, and the dimension of the unit cell in the y-

direction is b = 90 nm. The number of basis functions assumed for modeling the currents 

on the patches (given in Eq. (2.18)) is one. Here the design is optimized by keeping all 

other parameters fixed and varying the spacing a between unit cells in the x-direction to 
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get maximum power density radiated at broadside. Based on this, the dimension of the 

unit cell in the x-direction is a = 378.824 nm. Figure 5.7 shows the comparison of the 

CAD formula and the reciprocity method using the spectral domain immittance method 

(which gives a numerically exact pattern) for the E-plane (ϕ = 0o), and the Fig. 5.8 shows 

the same comparison for the H-plane (ϕ = 90o). The leaky mode wavenumbers in the E-

plane and the H-plane are   5 5

02.79 10 3.58 10 0.0177 0.0228LWk j j k        for the 

(−1,0) Floquet harmonic and  6 6

01.515 10 1.78 10 0.0964 0.113LWk j j k        for 

the (0,−1) Floquet harmonic respectively, where k0 is the wavenumber of free space for 

the same frequency (750 THz). 

 

Fig. 5.7.   Pattern of the leaky-wave beam compared to the pattern from reciprocity in the E-plane 

for a lossy silver substrate. 
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Fig. 5.8.   Pattern of the leaky-wave beam compared to the pattern from reciprocity in the H-plane 

for a lossy silver substrate. 

Similarly, Fig. 5.9 and Fig. 5.10 show the comparison of the CAD formula and the 

reciprocity method using the spectral domain immittance method for the E-plane (ϕ = 0o), 

and the H-plane (ϕ = 90o) respectively, for the case of lossless silver (relative permittivity 

of  εr = −4.5 and a loss tangent of tanδ = 0). The dimension of the unit cell in the x-

direction a is optimized for maximum power density at broadside, and therefore a = 

378.959 nm.  The leaky mode wavenumbers in the E-plane and the H-plane are  

 5 5

02.44 10 2.67 10 0.0155 0.0170LWk j j k        for the (−1,0) Floquet harmonic 

and  6 6

01.25 10 1.377 10 0.0795 0.0876LWk j j k        for the (0,−1) Floquet 

harmonic respectively, where k0 is the wavenumber of free space for the same frequency 

(750 THz). 
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Fig. 5.9.   Pattern of the leaky-wave beam compared to the pattern from reciprocity in the E-plane 

for a lossless silver substrate. 

 

Fig. 5.10.  Pattern of the leaky-wave beam compared to the pattern from reciprocity in the H-

plane for a lossless silver substrate. 

The CAD formula when applied to the E-plane works quite well to predict the shape 

of the leaky-wave beam, as seen in Fig. 5.7 and Fig. 5.9. For the H-plane shown in Fig. 

5.8 and Fig. 5.10, the leaky-wave beam from reciprocity is less clearly defined due to the 
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large amount of space wave, though the agreement is still fairly good near the peak of the 

beam. 

5.3   Current Distribution on the Patches from the Array Scanning Method 

The current at the center of the patches, which models the grooves in the plasmonic 

directive beaming structure, is calculated using the array scanning method (ASM) 

discussed in Section 2.3 of Chapter 2 and is plotted in Figs. 5.11 and 5.12 for the E-plane 

(along the x-axis) and H-plane (along the y-axis), respectively. The magnitude of the 

current distribution on the patches, given by the red curve in Figs. 5.11 and 5.12, is 

normalized. The blue curve gives the asymptotic distribution of the leaky wave based on 

the exponential decay of the leaky mode and an appropriate algebraic decay that is also 

added. For the E-plane the leaky mode field distribution over the surface of the dielectric 

is 
1/2/E xe x

 and for the H-plane it is 
3/2/H y

e y


, where E  and H  are the attenuation 

constants of the leaky mode in the E-plane (along the x-axis) and H-plane (along the y-

axis), respectively. Along the surface of the dielectric, the leaky mode interferes with the 

space wave, and therefore the current distribution on the patches is not smooth and 

displays an interference pattern. In the absence of interference with the space wave, the 

current distribution from ASM (the red curve) would closely match the blue curve in 

Figs. 5.11 and 5.12.  

In this case the design parameters of the plasmonic structure are as follows: The 

frequency is f = 750 THz. The substrate is silver which has a relative permittivity of  εr = 

−4.5 and a loss tangent of tanδ = 0.04545, and the height of the substrate is h = 300 nm. 

The substrate is a layer of lossy dielectric (silver) with the excitation provided by a 
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subwavelength aperture through the dielectric layer. The aperture is centered at the 

location, x0 = a/2,  y
0

= 0. The subwavelength aperture in the silver layer is modeled as 

an infinitesimal y-directed magnetic dipole at the upper surface of the silver layer. The 

length of the patches is L = 140 nm, the width is W = 50 nm, and the dimension of the 

unit cell in the y-direction is b = 90 nm. The number of basis functions assumed for 

modeling the currents on the patches (given in Eq. (2.83)) is one. Here the design is 

optimized by keeping all other parameters fixed and varying the spacing a between unit 

cells in the x-direction to get maximum power density radiated at broadside. Based on 

this, the dimension of the unit cell in the x-direction is a = 378.824 nm. The values of the 

attenuation constants are 
5

03.58 10 0.0228E k     and 
6

01.78 10 0.113H k    , 

where k0 is the wavenumber of free space for the frequency of 750 THz. 

 

Fig. 5.11.   Current distribution on the patches in the E-plane from ASM. 
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Fig. 5.12.   Current distribution on the patches in the H-plane from ASM. 

5.4   Dispersion Behaviour – Variation of Leaky Plasmon Wavenumber as a 

Function of the Azimuthal Angle ϕ 

The wavenumber of the leaky plasmon wave, which produces the narrow directive 

beam in the plasmonic structure, varies with the radial angle of propagation ϕ. We take 

the following design parameters for the plasmonic directive beaming structure: The 

frequency is f = 750 THz. The substrate is silver, which has a relative permittivity of  εr = 

−4.5 and a loss tangent of tanδ = 0.04545, and the height of the substrate is h = 300 nm. 

The substrate is a layer of lossy dielectric (silver) with the excitation provided by a 

subwavelength aperture through the dielectric layer. The aperture is centered at the 

location, x0 = a/2,  y
0

= 0. The subwavelength aperture in the silver layer is modeled as 

an infinitesimal y-directed magnetic dipole at the upper surface of the silver layer. The 

0 5 10 15 20 25 30 35 40
-100

-80

-60

-40

-20

0

20

40
H plane

Patch number n

C
u
rr

e
n
t 

d
is

tr
ib

u
ti
o
n
 (

in
 d

B
)

 

 

ASM

n-3/2 e-nb



126 
 

length of the patch is L = 140 nm, the width is W = 50 nm, and the dimension of the unit 

cell in the y-direction is b = 90 nm. The number of basis functions assumed for modeling 

the currents on the patches (given in Eq. (2.18)) is one. Here the design is optimized by 

keeping all other parameters fixed and varying the spacing a between patches in the x-

direction to get maximum power density radiated at broadside. Based on this, the 

dimension of the unit cell in the x-direction is a = 378.824 nm. The normalized phase 

constant of the fundamental harmonic of the leaky plasmon wave is plotted in Fig. 5.13 

with respect to the angle ϕ. Similarly, the normalized attenuation constant of the 

fundamental harmonic of the leaky plasmon wave is plotted in Fig. 5.14 with respect to 

the angle ϕ.  

 

Fig. 5.13.   Dispersion diagram showing the variation of the phase constant with ϕ. 
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Fig. 5.14.   Dispersion diagram showing the variation of the attenuation constant with ϕ. 

From Figs. 5.13 and 5.14, we see that there are two separate leaky modes. The one 

that is dominant along the x-axis, i.e., in the E-plane, is shown in blue and is termed the 

E-plane mode (Mode E). The one that is dominant along the y-axis, i.e., in the H-plane, is 

shown in red and is termed the H-plane mode (Mode H). The E-plane leaky mode 

produces the beam in the E-plane and the H-plane leaky mode produces the beam in the 

H-plane. 

So far it has been observed that the behavior of the plasmonic directive beaming 

structure is very similar to the 2D periodic leaky-wave antenna at microwave frequencies. 
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and observations that were observed for the 2D periodic leaky-wave antenna would be 

approximately duplicated for the plasmonic structure. 
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CHAPTER 6     SUMMARY AND CONCLUSIONS 

6.1   Summary 

A 2D periodic leaky-wave antenna at microwave frequencies and a similar 

plasmonic structure at optical frequencies have been studied here. The radiation 

characteristics and the dependence of these characteristics on antenna parameters have 

been examined. Also, a fundamental explanation for the radiation behavior of this class 

of antenna – a 2D periodic leaky-wave antenna, has been explored. 

The phenomena of directive beaming, which is observed in the plasmonic structure 

at optical frequencies, is the motivation behind this research into the 2D periodic leaky-

wave antenna. The basic principle of operation of the 2D periodic leaky-wave antenna 

and the directive-beaming plasmonic structure is the same, and the narrow beam in each 

structure is produced by a radially-propagating radiating leaky wave supported by the 

structure.  

The theoretical methods of analysis used for studying this antenna structure are: (1) 

reciprocity based on the spectral domain immittance method and the method of moments, 

(2) the array scanning method, and (3) an approximate CAD formula for calculating the 

radiation pattern due to a leaky wave. With these mathematical tools the radiation 

characteristics and the fundamental principle of operation of the leaky wave have been 

studied. This research has been conducted to study the nature of the radiating leaky wave 

and its correlation with the formation of the narrow main beam, grating lobes, an 

optimization of the pattern to get maximum power radiated at broadside, and the current 

distribution on the surface of the patches. The dispersion behavior of the different leaky 
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wave modes that exist on the structure has been examined to see how the wavenumber of 

the leaky mode varies with the azimuthal angle of propagation on the 2D periodic leaky-

wave antenna structure. Some of the practical characteristics of the 2D periodic leaky-

wave antenna such as radiation efficiency, bandwidth, figure of merit and normalized 

tolerance have been calculated. 

Since the plasmonic structure at optical frequencies has similar radiation 

characteristics and principle of operation as the 2D periodic leaky-wave antenna, the 

same theoretical methods of analysis are used to study the plasmonic structure, namely: 

(1) reciprocity based on the spectral domain immittance method and the method of 

moments, (2) the array scanning method, and (3) an approximate CAD formula for 

calculating the radiation pattern due to the leaky wave. These theoretical methods are 

applied to the plasmonic structure to study the radiation characteristics and the 

fundamental principle of operation of the leaky mode, which have been found to be very 

similar to the 2D periodic leaky-wave antenna at microwave frequencies. The aspects of 

the plasmonic structure examined were the nature of the radiating leaky plasmon wave, 

the formation of the narrow main beam, an optimization of the pattern to get maximum 

power radiated at broadside, and the current distribution on the surface of the patches. 

The dispersion behavior of the different leaky wave modes was also examined to see how 

the wavenumber of the leaky mode varies with the azimuthal angle of propagation on the 

plasmonic structure. 
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6.2   Conclusions 

From the radiation properties observed in Chapter 3 we see that the 2D periodic 

leaky-wave antenna can be optimized for maximum power density at broadside by 

adjusting the periodic spacing between the patches in the x-direction, i.e., the dimension 

a. When the periodic spacing between the patches in the y-direction, i.e., the dimension b 

is increased, the power density at broadside increases but so does the number of grating 

lobes. Hence, in order to keep the grating lobes at a minimum, b should be small. The 

power level of the grating lobes seem to decrease a little bit when a small amount of loss 

is added to the substrate. We have also observed that with a small variation in frequency 

the main beam, which is optimized for maximum power radiation at broadside, is split in 

the E-plane. In the H-plane it splits to a greater extent when the frequency is increased, 

but this splitting effect disappears and the beam diminishes when the frequency is 

lowered from its optimum value.  

It is established that the CAD formula for the calculation of the leaky-wave radiation 

pattern for a 1D leaky-wave antenna works quite well in predicting the shape of the main 

beam in the E-plane and H-plane of the 2D periodic leaky-wave antenna. We also see that 

an effective 2D periodic leaky-wave antenna can be designed for a variety of substrate 

material, even one with relative permittivity as low as εr = 2.2, as well as one with a 

higher loss tangent such as tanδ = 0.004. The cross-section of the main beam reveals that 

the beam is usually much narrower in the E-plane and much wider in the H-plane. For a 

lossless substrate, the beamwidths in the E-plane and H-plane decrease and the 

enhancement factor increases monotonically as the patches are made very small. For a 

lossy substrate, on the other hand, the enhancement factor decreases and the beamwidths 
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in the E-plane and H-plane also decrease along with an increase in the space wave for 

very small patches. When the patches are larger, for both the lossy and lossless cases, the 

beamwidths increase and then decrease again as the length of patches is increased, while 

the enhancement factor follows an opposite trend. 

In Chapter 4, looking at the current distribution on the patches, we can see evidence 

of interference between the leaky wave and space wave in the E-plane and H-plane, along 

the interface of the substrate and air. Overall, the current distribution on the patches 

follows the asymptotic trend expected for the leaky wave. When the design of the 2D 

periodic leaky-wave antenna is optimized to get maximum power radiated at broadside, 

the condition of    is satisfied, i.e., the magnitude of the propagation constant is 

equal to the attenuation constant of the radiating fast wave harmonic of the leaky mode in 

both the E-plane and the H-plane. For the E-plane leaky mode, a region of open stopband 

at broadside has been observed but it is absent for the H-plane leaky mode. From the 

dispersion diagrams we observe that the wavenumber of the leaky mode, including the 

propagation constant and attenuation constant, vary with the angle ϕ. Three different 

leaky modes have been observed. The leaky mode that is dominant along the x-axis or the 

E-plane is called the E-plane mode, and the one that is dominant along the y-axis or the 

H-plane is called the H-plane mode. In addition to those, a third mode is observed, which 

does not seem to impact the radiation from the structure in any way. The E-plane mode 

propagating along the x-axis appears to be mostly responsible for the formation of the 

main beam, but close to the H-plane, the H-plane mode along the y-axis dominates in 

influencing the shape of the main beam. There are usually up to three grating lobes in the 

region (0 < θ < 90o) which seem to be due to the (−1, 0) and (−1, −1) Floquet waves of 
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the E-plane mode (perturbed surface wave mode) and the (0, −1) Floquet harmonic of the 

H-plane mode. 

In Chapter 5 the case of the directive beaming plasmonic structure has been explored 

in detail, and we have found it to be very similar to the 2D periodic leaky-wave antenna. 

The beam is much narrower in the E-plane than in the H-plane, as for the 2D periodic 

leaky-wave antenna at the microwave frequencies. There is a lot of dielectric loss in the 

substrate at the optical frequencies for the plasmonic structure; therefore there is a lot of 

space wave in the radiation pattern. The variation of the beamwidths in the E-plane and 

the H-plane and the enhancement factor with the length of the patch is similar to that seen 

in the 2D periodic leaky-wave antenna with a lossy substrate, which is that the 

beamwidths decrease and so does the enhancement factor for very small patches. When 

the size of the patches are increased, the beamwidths increase up to a certain point and 

then decrease while the enhancement factor shows an opposite trend to the beamwidths. 

The CAD formula for calculating the beam pattern due to the leaky wave agrees well 

with the main beam shape in the E-plane and to some extent in the H-plane for the 

plasmonic structure. The current distribution on the patches in the E-plane and the H-

plane for the plasmonic structure have the same trends as the 2D periodic LWA. The E-

plane current distribution shows that the propagation constants of the space wave and the 

leaky wave along the x-axis must be close since the beat period is relatively large and 

there is no significant interference. In the H-plane, however, the interference between the 

space wave and the leaky wave can be seen clearly. From the dispersion diagrams we see 

that the wavenumber, including the propagation constant and the attenuation constant of 

the leaky mode, is a function of the angle of propagation ϕ. As seen in the case of the 2D 
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periodic leaky-wave antenna at microwave frequencies, the leaky mode that is dominant 

along the x-axis or the E-plane is the E-plane mode, and the one that is dominant along 

the y-axis or the H-plane is the H-plane mode. Both of these modes combine together to 

produce the main beam.  

We have obtained a satisfactory explanation for most the radiation characteristics 

and modal behavior observed in the 2D periodic leaky-wave antenna. This structure can 

provide a good design for a highly-directive antenna at microwave, millimeter wave, and 

optical frequencies with a simple feed and simple structure. 

6.3   Future Work 

One of the future possibilities to continue to study the 2D periodic leaky-wave 

antenna is to do fabrication and measurements, at least at microwave frequencies. This 

will help us understand some of the practical challenges for implementing the 2D 

periodic leaky-wave antenna and explore the best way to implement the feed. It will also 

give us a chance to study the effects of truncating the substrate and the ground plane. It 

will also form a basis for comparison with the theoretical model which assumes ideal 

conditions such as an infinite structure and an ideal infinitesimal magnetic dipole feed; 

and this will tell us how effective the theoretical model is. We will then know how well 

the radiation pattern obtained from the theoretical calculations agree with the actual 

measurements. 

Along the same lines, in order to study the effects of truncation of just the periodic 

metallization on the surface of the dielectric, one could simulate the 2D periodic leaky-

wave antenna using a truncated periodic array of patches on an infinite grounded 
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dielectric slab using software such as Ansys Designer, which is a full-wave simulation 

software. 

There are several ideas for variations and improvements on the design of the 2D 

periodic leaky-wave antenna that can be studied in the future. For example, one could 

have an array of 1D periodic leaky-wave antennas with separate sources, which could be 

a phased array of sources, even having an amplitude variation and amplitude tapering to 

obtain a desired radiation pattern. One could also experiment with a 2D periodic leaky-

wave antenna shaped like a cross, i.e., the periodic array of patches is restricted within a 

cross-shaped region with the arms of the cross along the x-axis and y-axis. Since the main 

beam is produced by the leaky modes travelling along the x-axis and the y-axis, removing 

some of the patches in between the x-axis and the y-axis might not affect the beam too 

much, and might even improve the pattern and also get rid of the grating lobes.  

The launching efficiency of the leaky wave could be calculated for the 2D periodic 

LWA and the plasmonic structure. The launching efficiency is an estimate of the 

percentage of power that is launched into the leaky wave that produces the narrow main 

beam at broadside with respect to the total power radiated, which includes the power 

going into the space wave, the grating lobes, and the main beam. 

Another task for the future is to form a better understanding of the H-plane mode, 

which is the dominant leaky mode propagating along the y-axis and mainly responsible 

for the formation of the beam in the H-plane. The E-plane mode, which is the dominant 

leaky mode propagating along the x-axis and is responsible for the formation of the beam 

in the E-plane, is well understood. The E-plane mode is due to the perturbation of the 

TM0 surface wave mode. But the H-plane mode is not a perturbation of the surface wave 
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mode. It appears to be a perturbation of a higher order TE-like component of the surface 

wave. Since the TM0 surface-wave mode has a 
2cos   power variation, there is no 

propagation of the first-order component of the surface wave along the y-axis. However 

there is some higher-order component of the surface wave which propagates along the y-

axis, which has a TE-like polarization and could be perturbed by the periodic patches 

along the y-axis. At the same time, whatever the periodic spacing in the y-direction, b is, 

the propagation constant of the H-plane mode is always close to 2 / b  when the 2D 

periodic leaky-wave antenna is optimized for maximum power radiation at broadside. 

There are many aspects of the H-plane mode that are perplexing, so this mode needs to be 

studied further to form a better understanding. 
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